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Popular summary

Modification of the environment to satisfy the needs of society is causing signif-
icant harm to the ecosystems and human well-being. Several assessments have
been conducted to evaluate changes in a ecological community in relation to cli-
mate change and exposure to chemicals; the effect of sustainable agroecological
practices on conservation of species, the effect of management interventions to
reduce contamination levels on the air, land and water; and establishing safety
thresholds of consumption and thereby support decision making.

There is uncertainty in these types of assessments arising from high variabil-
ity in a population, scarce data and/or measurement errors, however decisions
still need to be made. To take this uncertainty into account, it is necessary
to assess, characterize and communicate uncertainty in the results of an as-
sessment, to inform decisions properly and avoid over or under confidence in
the conclusion. How and what to communicate depends on how uncertainty
is expressed (quantitatively, qualitatively or not at all). For example, in the
Intergovernmental Panel on Climate Change (IPCC) 2018 report, uncertainty
is described using verbal and quantitative expressions together (e.g. very likely
indicates 90-100% probability). Uncertainty can also be expressed by subjec-
tive probability (a person’s degree of belief). For instance, a person might feel
that there is a 20% probability that it will rain tomorrow or that there is a
20 - 30% probability that it will rain tomorrow. Characterizing uncertainty is
important to describe a range of possible things that may affect the outcome
and make better and informed decisions. Organizations such as European Food
Safety Authority (EFSA), United States Environmental Protection Agency (US
EPA) and the World Health Organization (WHO) have developed guidance and
recommendations about characterizing uncertainty in scientific assessment and
communicating uncertainty to decision makers and the public.

Developments in computer science and statistics, have led to an increase of
useful tools and models to assess and quantify uncertainty in these types of
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assessments, yielding to more accurate estimates and conclusions, and facili-
tating integration of uncertainty quantification and communication to decision
makers. This thesis focuses on probabilistic approaches (Bayesian analysis and
robust Bayesian analysis) that allow to combine prior knowledge with available
data, make predictions and use expert knowledge.

This thesis contributes to the advance of methods for quantifying uncertainty
using probabilities and shows through case studies how they can be applied in
scientific assessments including evidence synthesis and quantitative risk assess-
ments, for instance, to assess the effect of biomanipulation to improve water
quality in eutrophic lakes (Paper I), the efficacy of a drug in the treatment
of a disease (Paper III), the effect of multiple diversified farming practices on
biodiversity and crop yields (Paper IV) and the probability of exceeding the
aluminium tolerability safety threshold via consumption of chocolate products
(Paper II).
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Introduction

Environmental risk assessment is the process for identifying and evaluating the
nature, magnitude, and likelihood of possible environmental risks to inform
decisions (Institute of Medicine, 2013). For instance, assessing changes in an
ecological community (population) in relation to a contamination level, climate
change, introduction and spread of an invasive species and exposure to chem-
icals (Institute of Medicine, 2013). Environmental risk assessments contribute
to identify populations at risk and thus, provide recommendations to decision
makers such as prioritization of resources and locations and regulation of specific
chemicals.

Unfortunately, knowledge is often limited to inform decisions on how to manage
environmental systems, but since actions are required and processes are not
reversible, decision makers have to make decisions under uncertainty (Institute
of Medicine, 2013; National Research Council, 2009). To this end, knowledge and
methods to identify, characterize and communicate uncertainty are important
to enhance transparency and increase trust in risk assessments (Fischhoff and
Davis, 2014; Sahlin et al., 2021).

In this thesis, I discuss ways to express and characterize uncertainty in scientific
assessments and provide examples of probabilistic approaches (Bayesian anal-
ysis and robust Bayesian analysis) relevant for scientific assessment, including
evidence synthesis and quantitative risk assessment.

This chapter provides a general overview to evidence synthesis, quantitative risk
assessments, scientific assessments and uncertainty analysis as a basis for the
analyses and discussions in this thesis.



Evidence synthesis

Evidence based decision making is a formalized process to compile scientific
evidence to support decisions. Synthesizing evidence often involves the following
frameworks: systematic reviews and weight of evidence (Higgins et al., 2019;
Suter et al., 2020). These frameworks are useful for assembling and making
inference from several studies.

According to the Cochrane handbook, a systematic review attempts to gather
all empirical evidence that fits pre-specified eligibility criteria in order to answer
a specific research question (Higgins et al., 2019). Systematic reviews use ex-
plicit methods to identify, select, and critically appraise relevant research, and
to collect and analyze data from the studies that are included in the review.
Systematic reviews involve comprehensive search strategies for identifying all
relevant evidence that meet the eligibility criteria (DeLuca et al., 2008). Sys-
tematic reviews aim to provide reliable synthesis of evidence by using methods
that increase repeatability, reproducibility and reduce bias to support decision
making (Higgins et al., 2019; Mikolajewicz and Komarova, 2019).

Organizations such as the Cochrane Collaboration and the Collaboration for
Environmental Evidence (CEE) produce relevant and up to date systematic
reviews to support health and environmental decision making respectively (CEE,
2013; Higgins et al., 2019). A common statistical method for analyzing and
summarizing the results of systematic reviews is meta-analysis. It estimates an
intervention effect by combining results from different studies that have a similar
research question (same outcome measures) (Higgins et al., 2019).

On the other hand, weight of evidence gathers information from different types
of evidence (e.g. expert knowledge, lab and field data, chemical and biological
measurements) which requires the application of methods able to combine all
these types of information (e.g. expert elicitation, qualitative and quantitative
methods) for making inference (Suter et al., 2020). Although, weight of evidence
is commonly seen in the context of risk assessments, features of systematic
reviews are often used to integrate and make inference from evidence in risk
assessments (Suter et al., 2020).

Evidence is seldom conclusive and therefore, it is necessary to deal with uncer-
tainty. Failing to acknowledge uncertainty could result in bad decisions (Fis-
chhoff and Davis, 2014).



Quantitative risk assessments

Quantitative Risk Assessment (QRA) (also referred to as Probabilistic Risk
Assessment (PRA)) is an approach for evaluating events, hazards or impacts in
the future (Aven, 2011). It is often associated to safety-related issues. QRA
comprises risk analysis, risk assessment and risk management.

QRA involves the identification of hazards or threats, analysis of their causes
and consequences, and description of risk (Aven, 2011; Aven et al., 2018). QRA
typically addresses questions such as: i) what could go wrong?, ii) how likely is
it to happen? and iii) what are the consequences if it does happen?

A QRA is usually done by specifying an assessment model, integrating informa-
tion from experts and data as well as considering sources of uncertainty in the
analysis. QRA often provides a quantitative estimate of risk using probabili-
ties and expected values (e.g. probability of exceeding a tolerable or acceptable
threshold). QRA cannot eliminate risk, but it can provide support to risk man-
agement and decision making processes (Aven, 2011).

Scientific assessments

Scientific assessment is the process of using scientific evidence and reasoning
to answer a question or estimate a quantity of interest (EFSA et al., 2018).
This term is used by EFSA as a generalization of risk assessment with a spe-
cific decision making focus. A scientific assessment aims to evaluate scientific or
technical knowledge by gathering and compiling evidence from multiple sources:
data, models, assumptions and expert judgments to characterize uncertainty in
available information. Among the many desirable characteristics of scientific as-
sessments we find: quality, consistency, impartiality, transparency and openness,
and fitness-for-purpose (Deluyker, 2017).

Scientific assessments include, but are not limited to: weight of evidence anal-
yses; meta-analysis; health, safety, or ecological risk assessments; integrated
assessment models and exposure assessments (EFSA et al., 2018; Higgins et al.,
2019; Institute of Medicine, 2013). These assessments can be seen as a scientific
approach to produce knowledge to answer specific problems sometimes under
non-ideal conditions (i.e without high quality data coming from randomized con-
trolled trials or controlled experiments). Scientific assessments use principles of
evidence based decision making, quantitative risk analysis and uncertainty anal-
ysis. Scientific assessments typically need to adapt their methods to quantify



uncertainty in the available information (EFSA et al., 2018). Incorporating un-
certainty in scientific assessments is an area for research in several fields (Cox
Jr., 2012; Maier et al., 2008), which could be transferred to evidence synthesis.

Uncertainty

Uncertainty refers to all types of limitations in available knowledge (Burgman,
2005; Lindley, 2006; O’Hagan et al., 2006). Uncertainty is associated to asses-
sors’ limited knowledge at the time of an assessment (Burgman, 2005; Lindley,
2006; O’Hagan et al., 2006; O’Hagan, 2019). A distinction is made between
uncertainty coming from inherent randomness, natural variability and stochas-
tic uncertainty (i.e. aleatory uncertainty) and uncertainty related to knowledge
based, for example due to some level of ignorance, or incomplete knowledge
of the system under study (i.e. epistemic uncertainty). Aleatory uncertainty
cannot be reduced with further knowledge while epistemic uncertainty may be
reduced with improved understanding. In the literature, aleatory and epistemic
uncertainty are often referred to as variability and uncertainty respectively (In-
stitute of Medicine, 2013; Helton et al., 2004). For example, sources of epistemic
uncertainty are measurement and systematic errors, models (i.e. parameter un-
certainty); and sources of aleatory uncertainty are natural variation in body-
weight and height in a population, weather variability, as well as flipping a coin
and predicting either heads or tails.

Uncertainty can be expressed by probability, however, there could also be un-
certainty regarding the probability values themselves (for example: when a hi-
erarchical model has been specified). In this case two levels of uncertainty can
be distinguished: first- and second-order uncertainty. Second-order uncertainty
is often expressed by probability distributions over first-order probability distri-
butions (Hansson, 2008).

Moreover, van der Bles et al. (2019) propose to categorize epistemic uncertainty
into two levels: direct and indirect uncertainty. Indirect uncertainty concerns
the quality of the evidence and strength of knowledge used in an assessment
whereas direct uncertainty refers to how is uncertainty in the assessment out-
come expressed (e.g. probability distribution, probability interval). This distinc-
tion is useful for understanding the implications of indirect uncertainty about
knowledge bases on the conclusion of the assessment as well as for deciding how
to treat direct uncertainty (van der Bles et al., 2019). Indirect uncertainty is
often presented as a list of caveats about the different sources of evidence in
assessments.



Characterizing and communicating uncertainty is important to ensure that de-
cision makers do not place too much or too low confidence in the conclusion of
an assessment (Fischhoff and Davis, 2014). To accomplish this, an uncertainty
analysis (i.e. the process of identifying and characterizing uncertainty about a
quantity of interest) should be conducted (EFSA et al., 2018). Organizations
responsible for scientific assessments have developed guidance and recommen-
dations about characterizing epistemic uncertainty in scientific assessment and
communicating uncertainty to decision makers and the public (EFSA et al.,
2018, 2019; Institute of Medicine, 2013; FAO and WHO, 2021).

EFSA’s guidance on uncertainty analysis presented the main steps of an un-
certainty analysis as: 1) identifying uncertainty affecting the assessment, 2)
prioritizing uncertainty within the assessment, 3) dividing the uncertainty anal-
ysis into parts, 4) ensuring assessment questions and/or quantities of interest
are well-defined, 5) characterizing uncertainty in each part, 6) combining un-
certainty from different parts, 7) characterizing overall uncertainty (including
both quantitative and qualitative uncertainty sources, i.e. uncertainties that
can and cannot be quantified respectively) and 8) reporting and communicating
the uncertainty analysis (EFSA et al., 2018).

Uncertainty analysis should embrace methods able to deal with different sources
and types of uncertainty. There is not one method that fits all problems, there-
fore what method to use depends on what sources of uncertainty are considered,
how uncertainty is described as well as the context of the decision (e.g. severity
of the problem at hand and the time frame within which a decision needs to
be taken). Methods for uncertainty analysis face a potential trade-off between
resource requirement (i.e. time constraint, simplicity) and scientific rigor (i.e.
methods that transparently characterize uncertainty in all steps of an uncer-
tainty analysis) (EFSA et al., 2018). For those reasons, uncertainty analysis
needs to be planned on a case-by-case basis. Uncertainty analysis is being de-
veloped to embrace quality of knowledge, subjective aspects of risk, decision
context and stakeholders (Sahlin and Troffaes, 2017).

Characterization and quantification of uncertainty

Uncertainty can be described through qualitative expressions of uncertainty (i.e.
verbal terms or ordinal categories). A word or phrase can have different mean-
ings to different people (Morgan, 2014). Thus, qualitative expressions of un-
certainty by themselves are ambiguous and therefore, for clarity they should
be accompanied by a quantitative definition or scale (EFSA et al., 2018). For



this reason, in scientific assessments, it is recommended to express epistemic
uncertainty about a quantity of interest in a quantitative way using subjective
probability (either precise or bounded) (EFSA et al., 2018). A subjective prob-
ability represents someone’s degree of belief that a statement is true now (or
will be true at a specified time in the future) given his/her current knowledge
(Hampton et al., 1973; Lindley, 2006; O’Hagan and West, 2013; Singpurwalla
and Wilson, 2008). It is recommended to complement a quantitative measure
of uncertainty (e.g. a probability) with judgments of the strength of knowledge
(Aven et al., 2018; Aven, 2020).

Subjective probability is a key concept to the approach presented in this thesis.
Precise probability indicates a single probability value or distribution whereas
bounded or imprecise probability refers to a pair of lower and upper probability
values or a set of probability distributions (Walley, 1991).

Probabilistic methods allow integration and propagation of multiple sources of
uncertainty through a model and summarize the impact of uncertainty on de-
cisions (Apostolakis, 1990; Lindley, 2006; O’Hagan, 2012). Once uncertainty in
model inputs has been characterized, it is then propagated through the model
to characterize uncertainty in model outputs. Simulation based methods such
as one and two dimensional Monte Carlo simulations (1D-MC and 2D-MC) have
been used in risk assessments for propagating uncertainty where 1D-MC consid-
ers only epistemic uncertainty and 2D-MC accounts for both, aleatory and epis-
temic uncertainty (Cohen et al., 1996; EFSA et al., 2018; Helton, 1997; Nauta,
2000). An advantage of the 2D-MC is that maintains a distinction between
aleatory and epistemic uncertainty when epistemic uncertainty is expressed by
a precise probability (US EPA, 2011; Helton, 1997; Nauta, 2000; O’'Hagan and
West, 2013).

Methods for uncertainty quantification that rely on precise and bounded proba-
bility using Bayesian and robust Bayesian frameworks have also been proposed
respectively (Burgman, 2005; Cox Jr., 2012; Lindley, 2006; O’Hagan et al., 2006;
Ferson et al., 2003; Helton et al., 2004; Troffaes and Cooman, 2014; Walley,
1991). These two approaches are presented in more details later.

Quantification of uncertainty is usually done and summarized by estimating
statistical quantities of interest such as expectations and percentiles (median,
probability intervals) as well as bounds on probability or expectation which often
relies on propagation of uncertainty methods. The motivation for research in
this area is to argue for, and propose, solutions to integrate uncertainty analysis
in evidence based decision making. This requires to expand current frameworks
for evidence synthesis with analyses of robustness to uncertainty. Specifically,



in this thesis, the focus is on the characterization of uncertainty by bounded
probability using robust Bayesian analysis (i.e. Bayesian inference over a set
of priors) which includes standard Bayesian analysis as an special case where
uncertainty is quantified by precise probability.






Aims

The aim of this thesis is to contribute to evidence synthesis and quantitative
risk assessments in scientific assessments by developing the methodology for
robust Bayesian analysis, and applying and comparing different ways to quantify
uncertainty in existing assessments. The specific objectives are to:

e Apply and evaluate methods for uncertainty analysis in scientific assess-
ments (Paper II).

e Contribute to methods to quantify epistemic uncertainty by bounded prob-
ability (Paper I, Paper III).

e Contribute to the methodology of uncertainty analysis using Bayesian
analysis and robust Bayesian analysis with applications in scientific as-
sessments including evidence synthesis and quantitative risk assessment
(Paper I-IV).






Theory and Methods

In this thesis, I used different research approaches: research done via case studies
(Paper I-III) and research done using empirical studies (Paper IV). Specifically,
in Paper I and Paper III, I used data from already published meta-analyses
that have been conducted using traditional methods (classical approach). To
illustrate and motivate the methodology, I reanalyzed the data, but within a
robust Bayesian framework. In Paper II, a report comparing and demonstrat-
ing a probabilistic approach to quantify uncertainty was used to support the
development of methods for uncertainty analysis at EFSA. In Paper IV, I ex-
tracted data from a global database to compare the effect of diversified farming
practices on biodiversity and crop yields.

My research has emerged from practical problems in evidence synthesis and risk
assessments. Next, I describe the Bayesian and robust Bayesian frameworks for
quantifying uncertainty by precise and bounded probability respectively.

Bayesian analysis

The Bayesian approach provides a consistent framework to quantify uncertainty
about model parameters and to make predictions of future events. A key feature
is the use of subjective probability for quantifying uncertainty by setting a full
probabilistic model. Bayesian analysis is a method of statistical inference that
allows to combine prior knowledge in the form of probability with evidence (ob-
served data). The Bayesian framework quantifies uncertainty about unknown
parameters, 0, by treating them as random variables. This requires the specifi-
cation of a prior distribution p(f) which characterizes uncertainty about € (i.e.
epistemic uncertainty) before the data is observed. The prior distribution is
updated with observed data, x = (x1,...,x,) using Bayes’ rule yielding the
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posterior distribution, p(#|x) which is:

p(0]x) o< p(x|0) - p(0) (1)
where p(x0) is the likelihood.

The prior can, but does not have to, be expressed with a parametric probabil-
ity distribution, p(0|t), (i.e. probability density function with a fixed number
of parameters) (Cox, 2006). Parameters of parametric prior distributions are
called hyperparameters. The use of hyperprior distributions, p(t) to character-
ize uncertainty in prior distributions is known as hierarchical Bayesian modeling
(Gelman et al., 2013).

A simple hierarchical Bayesian model is then:

(0, t[x) oc p(x[0) - p(8]t) - p(t). (2)

As an example, variability in bodyweight of individuals of a certain age can be
modeled by a normal distribution with unknown mean p and known variance

o2, Uncertainty about parameter ; can be modeled by a normal distribution

with known mean pg and variance o3:

;| ~ Normal(p, o?),

1 ~ Normal(ug, 03).

Dependencies between variables, parameters and hyperparameters can be rep-
resented through a Directed Acyclic Graph (DAG) (Figure 1).

(i [P

Figure 1: DAG of the hierarchical Bayesian model. Parameters are represented by ellipses, hyperparameters by circles and
observed variables by grey squares. Plates indicates repeated cases.
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Bayesian statistical methods are often criticized as being subjective, specifically,
due to the subjective nature of the choice of prior (i.e. driven by assessors’ ex-
perience and expert knowledge) (Gelman, 2008; Reich and Ghosh, 2019). Prior
distributions play an important role in Bayesian models (Gelman, 2008), how-
ever, different priors can be specified for the same model, and consequently
obtain different posteriors which can lead to different conclusions (Figure 2).
Moreover, when data is scarce (i.e. small sample size), the prior has more im-
pact on posterior summaries (Figure 3). Therefore, priors should be carefully
specified and it is also recommended to conduct a sensitivity analysis comparing
the effect of different priors on the posterior distribution (Berger, 1990; Roos
et al., 2015).

0.8 0.8 0.8
— Likelihood — Likelihood — Likelihood
— Posterior — Posterior — Posterior
06 — Prior 0.6 — Prior 0.6 — Prior
5 5 5
0.4 0.4 0.4
o Q Q.
0.2 0.2 0.2
o9 15 20 25 30 o2 15 20 25 30 2 15 20 25 30

(a) po = 25,08 =2 (b) po =25,08 =5 (c) po = 25,08 =10

Figure 2: Effect of different priors (different hyperparameter values) on the posterior, n = 12. Normal prior density, normal
likelihood (with unknown mean and known variance) and normal posterior density.

As more data are gathered, the impact of the prior is diminished and the pos-
terior is shaped more like the likelihood (Figure 3).

0.8 0.8 0.8
— Likelihood — Likelihood — Likelihood
— Posterior — Posterior — Posterior
06 — Prior 0.6 — Prior 0.6 — Prior
5 5 5
0.4 0.4 0.4
o o Q.
0.2 0.2 0.2
o 10 16 20 25 30 o0 15 20 25 30 o 15 20 25 30
(a)n=14 (b) n =12 (c) n=30

Figure 3: Effect of data (sample size) on the posterior. Normal prior density, normal likelihood (with unknown mean and
known variance) and normal posterior density.
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A prior distribution is conjugate to the likelihood if the resulting posterior distribution belongs to the
same family of distributions as the prior (Gelman et al., 2013). Conjugate priors are important in
exact Bayesian inference. The conjugacy property is convenient because the analytical form of the
posterior distribution

tion is known. However, the use of conjugate priors is limited in real applications
because it is not always possible to specify conjugate priors for a specific prob-
lem (for example, it does not reflect prior knowledge or there is no conjugate
prior for the specified model).

When the analytical form of the posterior distribution is unknown, numerical
methods are needed for estimating posterior summaries such as expected values
and credible intervals of parameters of interest. A common method is Markov
chain Monte Carlo (MCMC) sampling which can handle high-dimensional prob-
ability distributions and therefore useful in Bayesian inference (Gelman et al.,
2013; Liu, 2008). An important characteristic of MCMC sampling is that draws
correlated samples from the posterior distribution.

Robust Bayesian analysis

Robust or robustness is typically used to refer to methods that can cope with
uncertainty (Moallemi et al., 2020). Within the Bayesian framework, there are
different types of robust analysis, for instance i) seen as Bayesian sensitivity
analysis towards the choice of priors (Berger, 1990), ii) use of distributions with
heavier tails thereby inference is less sensitive to outliers (Rosa et al., 2003), and
the one in this thesis iii) Bayesian inference over a set of distributions (Bernard,
2005; Walley et al., 1996).

Robust Bayesian analysis provides a way to consider the impact of the choice
of prior on uncertainty in relevant quantities by specifying a set of possible
prior distributions (bounded probability) instead of a precise prior probability
(Berger, 1990; Troffaes and Cooman, 2014; Walley, 1991). Consequently, a set
of posterior distributions is derived from a set of prior distributions. This thesis
focuses on the impact of prior distributions, but similar issues are raised when
considering doubts about the specification of the likelihood of a given parametric
model or dealing with imprecise data (Benavoli and Ristic, 2011; Cattaneo and
Wiencierz, 2012).

This type of robust Bayesian analysis can be seen as an extension of Bayesian
analysis which relies on statistical principles for inference within the theory of
imprecise probability (Walley, 1991). From a technical point of view, this proce-
dure is closely related to robust Bayesian inference. However, the degree of inde-
terminacy (imprecision) from limited information, ambiguity or ignorance, the
use and interpretation of the resulting bounded probability goes beyond a simple
sensitivity analysis and robustness analysis (Coolen et al., 2011). An example of
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this type of robust Bayesian analysis can be found in (Sahlin et al., 2021) where
a robust Bayesian decision analysis is performed to solve an environmental risk
management problem under severe uncertainty and value ambiguity. Moreover,
Rinderknecht et al. (2012) used imprecise (bounded) probability to characterize
ambiguity in probability distributions elicited from experts and discussed their
implications for environmental decision support.

A set of priors represents prior beliefs measured through bounds. It reflects
expert’s uncertainty in the chosen prior or a range of prior judgments from
several experts. For example, sets of prior distributions have been used to resolve
prior-data conflicts (Walter et al., 2007; Walter and Augustin, 2009). Specifying
sets of priors to model prior uncertainty involves some compromises among the
following i) the calculation of the lower and upper bound should be as easy as
possible; ii) the set should contain as many ‘reasonable’ priors as possible; iii)
the set should correspond to easily elicitable prior distributions (Berger, 1990).
Robust Bayesian analysis is useful to address severe uncertainty arising from
low quality in knowledge, when data are scarce, for combining several sources
of information and for dealing with expert elicitation (Sahlin et al., 2021).

In robust Bayesian analysis, one is interested in estimating a quantity of in-
terest (e.g. expectations, percentiles or probability intervals) with uncertainty
quantified by bounded probability (Berger, 1990; Troffaes and Cooman, 2014;
Walley, 1991). For instance, the lower bound on expectation of a function f
with respect to a set of posterior distributions, M, is expressed as

E(N) = inf, [ f@)pla)da. (3)
pEM

Here a set of posterior distributions is derived from a set of prior distributions.

If the difference between upper and lower bound is small enough then the inde-

terminacy in the prior is not relevant (Berger, 1990).

In practice, computations are not always easy since they require the estimation
of supremum and infimum of quantities of interest which involve calculating
complicated integrals. In the case of conjugate models, bounds on probability
or expectation may be directly computed. Otherwise, it is required to apply
Monte Carlo methods or MCMC sampling where the quantities of interest are
approximated.
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Results and Discussions

In this thesis, I have contributed to the methodology of robust Bayesian analysis
for quantifying uncertainty by bounded probability with applications in scientific
assessments. In general my research outputs are models and methods motivated
by the need to distinguish between aleatory and epistemic uncertainty in sci-
entific assessments, integrate subjective judgment with statistical inference and
improve the methodology for uncertainty quantification.

My main contributions are i) an expression for the effective sample size of impor-
tance sampling that accounts for correlated MCMC samples, thereby allowing
to combine iterative importance sampling with MCMC sampling for estimat-
ing an expected value with uncertainty quantified by bounded probability in
robust Bayesian analysis (Paper I); ii) a framework, robust Bayesian analysis,
that combines the principles of Bayesian inference and the theory of imprecise
probability, which allows for epistemic uncertainty to be quantified by bounded
probability (Paper II); iii) robust Bayesian bias analysis, as an alternative to
consider ambiguity or ignorance about bias terms in meta-analysis (Paper III);
iv) a probabilistic uncertainty analysis and a decision analysis applied to an ev-
idence synthesis about the effect of diversified farming practices on biodiversity
and crop yields. (Paper IV). More details are given below.

Paper I

Importance sampling is a technique within Monte Carlo methods that can be
used for estimating expectations by weighting samples drawn from a proposal
‘alternative’ distribution which it is easier to generate samples from (Owen,
2013). An iterative version of importance sampling has been proposed for esti-
mating expectation bounds using independent samples (Troffaes, 2017, 2018).

In this paper, we extended the use of iterative importance sampling proposed
by Troffaes (2018) to models that require MCMC sampling. We combined it-
erative importance sampling with MCMC sampling for estimating expectation
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bounds in robust Bayesian analysis. To achieve this, it was needed to derive a
new expression for the effective sample size, ESS, (i.e a measure of efficiency)
of importance sampling which accounts for the correlation in the MCMC sam-
ples (the standard effective sample size relies on independent and identically
distributed (iid) samples and therefore it is not possible to use). Yielding to the
following estimate:

BSS ~ E5SMemce ()

N - ESS1s.

The derived expression consists on the standard expression for the effective sam-
ple size of importance sampling ESSig times the effective sample size of MCMC
divided by the number of samples, ESSM%, which accounts for a reduction in
the effective sample size due to correlated MCMC samples. Other difference
with respect to the method introduced in (Troffaes, 2018) is the requirement of
a large sample size when updating via MCMC sampling to guarantee that the
optimization is done using a reliable sample. In practice, we suggest setting the
target effective sample size first and then specifying how much larger the effec-
tive sample size should be using MCMC sampling relative to the target effective
sample size. In the application, we used a 20% greater, but, other values could
have been used as well.

We also described how a set of prior distributions can be specified in robust
Bayesian analysis using an approach similar to prior predictive check. The set
of priors is here specified by different hyperparameter values.

Iterative importance sampling with MCMC sampling was applied to estimate
the expected overall effect with uncertainty quantified by bounded probability
in a previously published meta-analysis on the effect of biomanipulation with a
random effects model. The conclusion of a positive effect from the original meta-
analysis (done in a classical statistical framework) is confirmed to be robust to
uncertainty associated with prior specification.

We tested the method’s performance by using two target effective sample size,
5 000 and 10 000, as well as by changing the degree of prior-data conflict in
the selected sets of priors. Our recommendation is to use the method when
the set of priors does not have conflict with data (i.e. there is not prior-data
conflict). Although, sets of priors allow to express prior knowledge more cau-
tiously, expectation bounds are sensitive to the choice of sets of priors (Walter
and Augustin, 2009). Iterative importance sampling with MCMC sampling of-
fers more flexibility in robust Bayesian analysis, but it needs to be evaluated on
more complex models to further assess its potential and limitations.
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Paper 1T

This paper was motivated by the recommendation of EFSA to use quantitative
expressions of epistemic uncertainty in scientific assessments (EFSA et al., 2018)
and to some extend by the ongoing debate in the risk analysis community about
the use of probability only as an expression of aleatory uncertainty and the use
of other expressions of uncertainty for expressing epistemic uncertainty (Aven,
2010, 2020; Ferson and Ginzburg, 1996; Helton et al., 2004). We argued that
any expression of uncertainty has pros and cons which should be recognized in
the assessment.

Bounded probability is often presented using p-boxes (i.e. a pair of lower and
upper cumulative distribution functions), where epistemic uncertainty is ex-
pressed by intervals and aleatory uncertainty by a probability distribution, or
where there is no distinction made between the two types of uncertainty, e.g.
using predictive distributions, or where there is no step to integrate evidence,
e.g. uncertainty is given by expert judgment and there is no updating. In
this paper, bounded probability was presented within the framework of robust
Bayesian analysis instead of using p-boxes.

For this, we reviewed and discussed a mathematical framework for the quan-
tification of epistemic uncertainty by precise and bounded probability using
Bayesian and robust Bayesian analysis. The framework meets two important
requirements for scientific assessment, i) the possibility to distinguish aleatory
from epistemic uncertainty and ii) a systematic principle to integrate evidence
to the assessment.

We also discussed propagation of uncertainty via two dimensional Monte Carlo
simulation. We showed different representations of uncertainty at variable and
parameter levels depending on how is uncertainty quantified (either by Bayesian
analysis, probability bounds analysis or robust Bayesian analysis). For instance,
when parameter uncertainty (i.e. epistemic) is characterized by a precise prob-
ability, an interval and a bounded probability then, uncertainty in variable can
be characterized by 2D-distribution, a p-box and 2D-distributions for every
distribution in the set of probability distributions for the parameter respec-
tively (Figure 1, Paper IT). However, we argued that robust Bayesian analysis,
does not have a standard way to visualize uncertainty at the variable level in
a manner that clearly separate aleatory and epistemic uncertainty similar to
the 2D-distribution in the precise probability case. We highlighted the impor-
tance of communicating the results of the assessment in a way that shows that
uncertainty has been quantified.

Bayesian and robust Bayesian analysis were applied to an intake assessment
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about aluminium intake (chronic toxicity) by consumption of chocolate and co-
coa products for children (Schendel et al., 2018). The intake assessment contains
several continuous assessment variables, which are combined to estimate a quan-
tity of interest, (i.e. the frequency of exceeding the tolerable weekly intake of
aluminium of a child in a target population). For doing this, a hierarchical
Bayesian model was specified and later extended to a robust Bayesian model by
specifying a set of priors. Both Bayesian and robust Bayesian analysis include
the possibility, although with small probability, of exceeding the weekly intake
safety threshold. We also presented how results can be communicated using
quantitative and verbal expressions.

Paper 11T

Quantitative bias analysis is a statistical method that acknowledges differences
in study quality associated with the design and conduct of studies (i.e. risk
of bias) in meta-analysis (Lash et al., 2009, 2014). Quantitative bias analysis
requires the meta-analysis model to be extended with bias adjustments (e.g. ad-
ditive or proportional adjustments of study specific errors in the model) (Turner
et al., 2009; Spiegelhalter and Best, 2003; Verde, 2021), and additional expert
judgment (Turner et al., 2009; van der Bles et al., 2019; Rhodes et al., 2020) on
bias terms.

We proposed a way to consider uncertainty, arising from ambiguity or ignorance,
about bias terms by modeling bias in a bias-adjusted random effects model with
imprecision. We described how to transform qualitative judgments about risk of
bias (using the Cochrane’s risk of bias table) into a set of bias terms (bounded
probability) to be incorporated in a meta-analysis. Then, the difference between
the bounds on the overall effect is only associated to how we specify the risk of
bias.

We illustrated a robust Bayesian bias analysis on a bias-adjusted random effects
model with data from a published meta-analysis from the Cochrane Collabora-
tion where the risk of bias table (i.e. a qualitative assessment of the quality of
evidence) is available (Lopez-Olivo et al., 2015). The Cochrane’s risk of bias ta-
ble contains six risk of bias domains which are assessed separately and classified
in three categories: low, unclear and high risk of bias (Higgins et al., 2019).

The paper outlined some considerations for establishing the rate between studies
and constructing the set of study qualities based on the three categories. The
process was described and illustrated step by step for each Cochrane’s risk of
bias table domain. It also included an example of how multiple domains can be
combined, thereby giving a full description of possible cases.
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For comparison, both unadjusted and robust Bayesian bias-adjusted random
effects models were applied for each risk of bias domain. The estimated overall
effect and specific study effect were displayed using forestplots for each bias
domain (Appendix, Paper III). The results from robust Bayesian analysis, were
added to the standard forestplots which showed bounds on the expected overall
effect, the lower 2.5th percentile and the upper 97.5th percentile (Figure 2, Paper
I1I).

The difference between bounds (degree of imprecision) of the expected overall
effect varied when adjusting for different risk of bias domains (Figure 3, Paper
III). As expected, there was more (less) imprecision in the estimated overall
effect when all studies had an unclear (low) risk of bias, Domain 1-2 (Domain
5-6).

Adjusting for bias may reveal important aspects to consider when framing a
conclusion in evidence synthesis. In this example, adjusting for bias did not have
a large impact on the estimated overall effect of the meta-analysis (Lopez-Olivo
et al., 2015) (Figure 3, Paper III). Thus, the evidence in favor of the treatment
group from the meta-analysis remained strong after adjusting for bias.

The use of robust Bayesian bias-adjustment modeling opens up to include more
studies into the meta-analysis. It also allows to consider the influence of indi-
rect uncertainty in the specification of direct uncertainty. More experience and
training with robust Bayesian bias adjustment analysis needs to be gained in
terms of real decision-making. The proposed approach contributes to bridge the
gap between qualitative and quantitative expressions of uncertainty.

Paper IV

Agricultural intensification is one of the main drivers of global biodiversity loss
(Emmerson et al., 2016; Tilman et al., 2002; Wittwer et al., 2021). To mitigate
this problem, diversified farming practices, such as agroforestry, crop rotation
and embedded natural, have been proposed as more sustainable strategies for
land use and management and can contribute to reduce the negative impact
of agricultural intensification on biodiversity loss (Beillouin et al., 2021; Rosa-
Schleich et al., 2019; Sanchez et al., 2021; Wittwer et al., 2021).

We compared the effect of different diversified farming practices with respect
to their effect on biodiversity and crop yields. For biodiversity, we selected the
organism groups: birds, insects (natural enemies) and below ground organisms;
and two common biodiversity metrics: species abundance and species richness.
For the analysis, data was extracted from a global database of the effects of diver-
sified farming practices on biodiversity and crop yields (Jones et al., 2021). The
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comparisons were made using Bayesian network meta-analyses (an extension of
pairwise meta-analysis) which allows to compare three or more interventions in
a single coherent analysis of all relevant studies by generating direct and indi-
rect (based on a common comparator) comparisons of interventions (Dias et al.,
2018; Dias and Caldwell, 2019; Hu et al., 2020). We did not find a clear effect
of diversified farming because between study heterogeneity was large, which can
be explained by the heterogeneity in the data.

In addition, we compared alternative allocations of farming practices across a set
of hypothetical farms. The decision analysis model was calibrated on network
meta-analysis models where biodiversity was measured by species richness and
contained multiple diversified farming practices. The decision analysis using
portfolio theory was conducted considering uncertainty about parameters of the
Bayesian network meta-analysis models, which were later propagated into the
utility functions. Bayesian network meta-analysis has the potential to be useful
to calibrate the portfolio analysis, however, due to the large variability and
uncertainty in the network meta-analysis, the paper showed the need to include
more random effects.

The conclusion from this paper highlighted challenges in the use of evidence
based decision making in environmental policy, as there was no diversified farm-
ing practice that clearly performed better than the other.

Decision making context

Papers I-IV have used different studies to estimate a quantity of interest. Al-
though these types of assessments are very important, it is necessary to put
them into a decision context to inform decisions and provide scientific advise.

For example, (National Research Council, 2009) proposed a framework for risk-
based decision making that comprises three phases: 1) problem formulation and
scoping, 2) planning and conduct of risk assessment and 3) risk management.
This framework highlights the importance of the communication between risk
assessors and decision makers to identify and specify an assessment question,
what the assessment model represents, how to summarize the model and how
to distinguish between aleatory and epistemic uncertainty. The task of risk as-
sessors is mainly to answer the assessment question whereas the task of decision
makers is to make decisions based on uncertainty about the conclusion of the
assessment.

Three different types of decisions are also discussed in (Fischhoff and Davis,
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2014) which distinguish between decisions about action threshold, with fixed
options and about potential options. These types of decisions are closely re-
lated to the assessment question and how uncertainty has been characterized.
Decision makers often choose the alternative with less uncertainty (Gérdenfors
and Sahlin, 1988) without relying on decision rules.

To support and guide decision making, decision theories and approaches have
been developed, for example, theories relying on maximization (minimization)
of expected utility (loss) (e.g. Bayesian decision theory) (Parmigiani and In-
oue, 2009; Reich and Ghosh, 2019) or maximization (minimization) of minimal
(maximal) expected effect (e.g. within a robust Bayesian framework) (Walley,
1991). Scenario based approaches have also been proposed to cope with un-
certainty where possible alternative scenarios are considered in the assessment
(Parmigiani and Inoue, 2009).

In summary, the results of this thesis provide important insights as well as
methodological developments on the quantification of uncertainty by subjective
probability in scientific assessments. Furthermore, the results can directly be
used in initiatives for evidence synthesis, not limited to the field of environmental
sciences.
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Environmental science
perspective

Value of modeling uncertainty

Environmental science is an interdisciplinary field which focuses on understand-
ing how environmental systems (i.e. natural systems under influence of human
activity) function and finding solutions to environmental problems. Although,
there is a lot of uncertainty associated with these systems, for instance: natural
variability in the biological processes; limited or imperfect data due to observa-
tion errors and/or incomplete understanding of environmental systems (model
structure and dynamics), decisions still need to be made. To take this uncer-
tainty into account, it is required to characterize, assess and convey uncertainty
(Fischhoff and Davis, 2014).

What to communicate is closely related to how is uncertainty expressed. For
example, in case a quantitative expression is chosen, uncertainty may be ex-
pressed by a subjective probability (either precise or bounded). These two
measures of uncertainty are advantageous as they allow for propagation and
continuous learning when new data become available. The Bayesian approach
formalizes the use of subjective information, including personal judgments from
experts, for characterizing uncertainty about parameter estimates and for mak-
ing predictions. This is an useful feature because, in many risk assessments,
available information is limited and sometimes even fully subjective. In addi-
tion, the Bayesian framework allows to make predictions conditional on data
which contributes to better support management decisions (Maier et al., 2008).
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Value of expert knowledge

Expert knowledge is a valuable source of information to support decisions in
scientific assessments where data is typically scarce (Cook et al., 2010; Drescher
and Edwards, 2019). Sometimes, expert judgments may be the only basis for
an informed management decision, without any additional empirical evidence
(Drescher et al., 2013; Martin et al., 2012). For instance, in (EFSA (AHAW)
et al., 2021), expert knowledge is used to quantify uncertainty in the conclusion
of an assessment regarding swine fever, by looking just at the evidence.

Expert knowledge provides a credible source of information for supporting man-
agement decisions, modeling species distributions and assessing the detection
probability, prevalence, and risk of establishment of an invasive species (Burgman,
2005; Drescher et al., 2013; Kuhnert, 2011; Martin et al., 2012). Expert knowl-
edge can provide information about model parameters and thus help to char-
acterize uncertainty in models (Drescher et al., 2013). For example, in (EFSA
(BIOHAZ) et al., 2020), expert knowledge is used to quantify uncertainty in
parameters (model inputs) of a stochastic model for Salmonella detection sensi-
tivity, and then propagates it within the model, without using Bayesian inference
to learn from data.

Elicitation of expert knowledge in the form of a (subjective) probability is rele-
vant in Bayesian analysis for specifying informative prior distributions (O’Hagan
et al., 2006; O’'Hagan, 2019). The use of expert knowledge in ecology and con-
servation biology is broad and diverse. It can be used to inform ecological
models and to fill potential knowledge gaps or pitfalls, that could result, es-
pecially with limited supporting evidence. For example, Murray et al. (2009)
used informative priors based on expert knowledge with field data in a species
distribution model within the Bayesian framework. Martin et al. (2005) elicited
and used expert knowledge (as prior) to inform an ecological model concerning
the effect of grazing on birds using the Bayesian approach. Barons et al. (2018)
estimated the probability of good pollinator abundance under weather, disease,
and habitat conditions using structured expert judgment. Bayesian modeling
with informative priors based on expert knowledge can provide a useful “bridge”
for ecologists, from purely conceptual models to statistical models that are cal-
ibrated to observed data (Low-Choy et al., 2009).
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Conclusions

This thesis dealt with methods to quantify uncertainty by probability such as
Expert Knowledge Elicitation, Bayesian and robust Bayesian analysis. Bayesian
and robust Bayesian analysis provide a rigorous methodology to quantify un-
certainty by precise and bounded probability to support decision making under
uncertainty in evidence synthesis. Both frameworks are useful for modeling de-
cision problems and learning from experience. In practice, the use of bounded
or precise probability depends on several factors such as the nature of available
information, the amount of risk involved, the aim of the analysis, as well as
computational requirements.

This thesis has contributed to the methodology of robust Bayesian analysis by
developing and extending methods to quantify uncertainty by bounded probabil-
ity. It has also evaluated and improved the methodology of uncertainty analysis
in scientific assessments by making use of Bayesian and robust Bayesian analysis.
This thesis has shown the potential of robust Bayesian analysis in frameworks for
evidence based decision making where uncertainty arise from low quality data,
scarce data, imprecise information or disagreement among experts. It has also
showed how to quantify uncertainty and propagate it into a decision analysis.

Future work will explore the performance of iterative importance sampling with
MCMC sampling in more complex models and how to extend Bayesian network
meta-analysis with additional random effects. To conclude, there is still a need
for research testing the usefulness, applicability and reliability of these methods
for uncertainty analysis in evidence synthesis and evaluate how to fit them in
evidence based decision making.
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