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1. Introduction

This aim of this report is to describe a Matlab toolbox consisting of a set of
commands for robustness analysis with Integral Quadratic Constraints (IQC).
The first version of the toolbox was developed in the late summer of 1994. Since
then there have been a continuous development of the toolbox, which has been
driven by our research needs and by the development of new versions of the
LMI-Lab part of the Matlab LMI Control Toolbox, [3]. The data structures
and the command library in the toolbox are to some extent inspired by u-
Tools. The toolbox will for this reason go under the name IQCtools in this
report.

The toolbox supports the use of IQCs for stability analysis and performance
analysis of control systems. The basic framework behind the toolbox is the
particular use of IQCs for robustness analysis that was suggested by Megretski
in [8].

How to use the Toolbox

The toolbox is built on top of LMI-Lab and u-Tools, see [3] and [2], respec-
tively. These packages are necessary when using the toolbox. The IQCtools
commands are provided in two directories:

IQCtools/commands: Contains the IQCtools user commands
IQCtools/subs: Contains subroutines used by the IQCtools commands

General information on the commands in IQCtools can be obtained with the
Matlab commands help IQCtools/commands and help IQCtools/subs.

The directories IQCtools/commands and IQCtools/subs can at the De-
partment of Automatic Control, Lund, Sweden, be put in your MATLABPATH
with the commands

>>path(path,’/home/ulfj/matlab/IQCtools/commands’) ;
>>path(path,’/home/ulfj/matlab/IQCtools/subs’);

A Note

The toolbox should in the present form be regarded mainly as a research
tool and not a fully developed software package. It may be subject to future
development and improvements.

About this report

This report is a manual for IQCtools. Section 2 contains a brief survey of basic
IQC-based robustness analysis. Then Section 3 describes the ideas that form
the basis for the implementation of the toolbox. The reader who is familiar
with, for example, [9], [5], and [4] can skip these two sections without any
essential loss. Section 4 contains a tutorial for the toolbox. The main part of
the tutorial consists of three numerical examples. Comments and suggestions
for future improvements are given in Section 5, and finally, Section 7 contains
the command reference for the toolbox.

Notation
M Hermitian conjugation.

T

|- The Euclidean norm |z| = vVeTz.
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Figure 1 System consisting of a nominal plant G and a bounded causal pertur-
bation A.

RLT*™ The proper real rational matrix functions with no poles on the
imaginary axis. If H € RLT*™ then the adjoint is defined as
H*(s) = H(-s)T.

RHTX™  The subspace of RLTX™ consisting of functions with no poles in
the closed right half plane.

Py The projection operator defined by Pru(t) = u(t) when t < T
and Pru(t) =0 whent > T.

L7*[0,00) The space of R™ valued square integrable functions with norm

uf? = / fu(t) 2.

L7 [0,00) The vector space of functions f with Prf € L3'[0,00) for all
T >0.

An operator H : LT[0, 00) — L7 [0, 00) is said to be causal if PrH Pr = PrH
for all T > 0. This means that the value at a certain time instant does not

depend on future values of the argument. A causal operator H on L7;[0, c0)
is bounded if H(0) = 0 and if the gain defined as

|| ]
H||= sup 1
” ” u€LT*[0,00) Hu” ()
u#0

is finite, see [11] for a more detailed discussion.
An operator H with transfer function in RH, is causal and bounded.

2. Introduction to IQC Based Robustness Analysis

We will in this section give a brief introduction to IQC-based robustness anal-
ysis. Our presentation will be limited to the concepts that are used in the
toolbox. For further details on the material in this and the next section we
refer to [9] and [4].

We consider systems consisting of a bounded causal operator G in a positive
feedback interconnection with a bounded causal operator A, see Figure 1. We
will assume that G has a rational transfer function.

The idea behind the IQC approach for robustness analysis is to find a
description of A in terms of multipliers II, that satisfy

/°° [ﬂ(jW)]*H(jw) [37(1:0’)] dw >0, (2)

—oo LT(jw) 7(jw)



for all square integrable y and v = A(y). Here ¥ and v denotes the Fourier
transforms of y and v, respectively. It is assumed that II is a rational transfer
function matrix satisfying the condition II(s) = II(—s)T for all s € C. This

can also be formulated as II = IT* € RL(°l°+m)x(l+m)’ where | and m are the
number of inputs and outputs of A, respectively.

This way of defining multipliers excludes the use of the often very useful
Popov multipliers. We will therefore generally consider multipliers consisting
of a proper part IIp = Il € RL(OI;T")X(H'") and a nonproper Popov multiplier
on the form

° """AT] , 3)

IIp(jw) =
p(j«) [ij 0
where A € R™*!, Popov multipliers give useful descriptions of static nonlin-
earities, parametric uncertainties and of slowly time-varying parameters.

We use the Popov multiplier in (3) to define constraints involving the
integral

[ 2awi i (4)

We can now combine the bounded multiplier Ilp with a Popov multiplier to
get the following definition of IQC

DEFINITION 1
We say that A satisfies the IQC defined by II = IIp + Ilp if there exists a
positive constant 4 such that

[ ) m B e [ v

—oo LU(jw) (
for all y and v = A(y) such that y,3,v € L5*[0, 00). O

We note that in order to use the Popov multiplier we must ensure differen-
tiability of y. This enforces a condition on strict properness of the nominal
transfer function that would be overly restrictive in applications when A is
a sparse matrix. This problem can be overcome. In fact, it is only necessary
to differentiate the components of y that contributes to the integral (4). This
means that the Popov multiplier imposes the following condition on strict
properness of the nominal plant

AG(o0) = 0. (5)
For more details, see [4].

Combination of Multipliers

In order to obtain the most accurate robustness condition we need to find as
many multipliers for the perturbation A as possible. The next two properties
can be used to combine multipliers for this purpose.

Property 1 Assume that A satisfies the IQCs defined by IIy, ... ,II,. Then

A also satisfies the IQC defined by the conic combination > ;. ; o;II;, where
a; >20,i=1,...,n.



Property 2 Assume that A = diag(A;,...,Ay), and that, fori =1,... ,n,
A; satisfies the IQC defined by

Mi11) gy

= |
Hi(lZ) Ii(22)

where the block partitions are consistent with the number of inputs and out-
puts of the perturbations A;. Then A satisfies the IQC defined by

[ I3(11) IT; (12) 1
I, I,
daug(Ily, . .. ,TL,) = - (11) (12)
H1(12) 111 (22)
I H:(lz) In(22) |

This is easily seen by writing out the expression for the IQC in Definition 1.

It follows from the first property that the set of multipliers that describe
A is a convex cone. We use the notation IIs for any such convex cone of mul-
tipliers that describe A. In applications it is important to find an as accurate
as possible description of A. A description of A can be improved by addition
and augmentation of convex cones of multipliers.

Addition: If A is described by the convex cones II;a, ¢ = 1,...,n, then
A is also described by > & I;a = {30 IL : II; € Ia }.

Diagonal Augmentation: If, for i = 1,...,n, A; is described by the convex
cone Il4,, then A = diag(A4,...,A,) is described by the convex cone

daug(Ila,,...,0a,) = {daug(Ily,... ,II,) : II; € Ia; }.
We illustrate with an example

ExAMPLE 1
Let A = diag(y, 6I), where

1. @ is a memoryless nonlinearity satisfying the sector condition 0 < ¢(z)z <
22, forallz € R,

2. 61 is an repeated uncertain real parameter with § € [-1,1].

It is easy to see that the sector nonlinearity ¢ satisfies the IQCs defined by
the multipliers

mo={e[} Sfrezop me={[j 07| aen)
1l = T 1 —9 e ’ 20 = ij 0 . .

For the repeated uncertain parameter we use

thor = { [ b X(zjw)]  X(jw) = X(ju) 2 0},



and

I2sr = { [Y*?jw) Y(;w)] Y (jw) = —Y(.'fw)*} ;

We note that the multipliers in II;5; also can be used if § is a norm bounded
complex uncertainty.

The combination II = daug(Ily, + Iy, 157 + Ilasr) gives a convex cone
of multipliers that describes the diagonal operator A = diag(e, 6I). It is easy
to see that every II € Il is on the form

0 0 T — jwA 0
M(jw) = 0 X(jw) 0 Y (jw)
T+ jwA 0 —z 0
0 Y*(jw) 0 ~X(jw)

Stability Analysis

Robust stability analysis of the system in Figure 1 can now be formulated as
a feasibility problem on the following form:

RoOBUSTNESS TEST 1-—INFINITE-DIMENSIONAL FEASIBILITY TEST
Find II € IIa such that

4 o 7]

for all w € [0, c0]. O

Here IIp corresponds to a convex cone of multipliers that gives an IQC de-
scription of the operator A.

There are some technical well-posedness conditions that must be verified
before using Robustness Test 1. However, apart from the strict properness
condition in (5), these conditions are trivially satisfied in most practical ap-
plications. We refer to [9] and [4] for further details.

Robust Performance Analysis

For robust performance analysis we consider the system described by the equa-

tions
MR [:}] : (6)

Here A is a bounded causal operator and G is a bounded causal operator with
rational transfer function. We assume that G is block partitioned according to
the size of the signals

Gy G
G:[ 11 G2

] € RELX(m+a),
Gz Gz
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Figure 2 System setup for robust performance analysis.

The system (6) can be illustrated with the block diagram in Figure 2.

The performance of the system in (6) is generally measured in terms of
disturbance attenuation. A measure of this attenuation can, for example, be
obtained in terms of the energy ratio of the error signal z and the disturbance
input w. It is important to exploit the spectral characteristics of the distur-
bance w when studying such a performance measure. We will as it has been
suggested in, for example, [7], [8], and {10], study performance criteria in terms
of disturbance inputs from a set Winp C L3[0, 00). This set is assumed to be
defined by the convex cone Tip, C RLZL? in the following way

Winp = {w € L[0, 00) / H(jw) L (jw)B(w)dw > 0, ¥ € Tinp}.
We note that Wipp = LJ[0,00) if Tinp = {0}. If we in a certain application
have a set of signals W then we need to find a convex cone Ti,, C RLIX¢
such that W C Wi,p. We consider robust performance in terms of a weighted
induced Lj-norm according to the following definition

DEFINITION 2
Assume that the signal w is in the set Winp C L3[0, 00) defined by the convex
cone Yinp. The system in (6) is said to have robust weighted Ly-performance

level 71, = /7 if
(¢) the feedback interconnection of G11 and A is stable,
(é2) the inequality
[ [ } [W(jw)*W(jw) Al i) | <o
(i) o il laGe)] ®
holds for all possible z = (Gaz+Ga1 A(I — G11A) 1 G12)w, With w € Wigp.

Here W € RHE? is used to obtain appropriate weighting of the output chan-
nels. O

The performance level 71, = /7 in Definition 2 can be found by solving the
optimization problem

—00

RoBuUsTNESs TEST 2—Ro0BUST PERFORMANCE TEsST
infy subject to (N
Il € Ia, T € Tinp, such that

[G(;w)]*daug(n’ [W;W 711 T])(J'w) [G(;w)] <0, VYw € [0,00],
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Figure 3 System for Example 2.

REMARK 1

The convex cone IIp contains multipliers that describes the operator A. Each
multiplier from II is generally on the form II = IIg 4+ IIp. If A is the Popov
parameter in IIp then the following constraint needs to be satisfied

A[Gy1(00) Gia(o0)] =0.

REMARK 2
There are technical well-posedness conditions that should be verified before
using the optimization problem in (7) to compute the performance level vy, =

\/7- See, Theorem 3.2 and Remark 3.4 in [4]. d
REMARK 3

Note that it is in general only a suboptimal value of the performance level
that can be obtained from the optimization problem in (7). O

We illustrate robust performance analysis with an example

EXAMPLE 2

We will here illustrate robust performance analysis with a simple example.
Consider the system in Figure 3. The perturbation A is assumed to be a
dynamic uncertainty with ||A||c < 1, where || - ||oo denotes the H-norm. We
assume that w belongs to the set

wl|?
Wi = {w e 130,00) s [@(Gu) = GG}, ()

where H € RHXX! is strictly proper and where the Hy-norm is defined by

1 [* .
1#1E= 5 [ IHGw) .

We can regard Wy as a set of filtered deterministic noise signals. We want to
compute the performance measure

sup  |[|Gawl|l, (9)
wEWH, [|w||<1
[Alle<1



where the closed loop system operator is defined as

o _I+WA)Go
T T+ (T +WA)G,

The optimization problem in (9) is infinity if G is unbounded for some A.
If we assume that the nominal system is stable then the system in Figure 3
can be put into the form in Figure 2 with

I [_WG" WGO] € RH2X?,

14 G 1 Go =
An upper bound for the optimal value in (9) can be obtained as ~1/2 where
7 is the solution to the optimization problem in (7) when

Tinp = {T € RLX: /

—00

Ya)lEGe) o2 o). (10

and

e ([ e

It is easy to verify that Wy C Winp, when Tinp in (10) is used to define Winp.

The resulting optimization problem is infinite-dimensional. This follows
since both IIp and Tj,, are infinite-dimensional convex cones. We will in the
next section formulate a methodology that can be used to obtain suboptimal
solutions to this optimization problem. Numerical computations for this ex-
ample will be given in Section 4 O

3. LMI Formulations of Robustness Problems

We will in this section discuss a format for finite-dimensional restrictions of
Robustness Test 1 and Robustness Test 2. An application of the Kalman-
Yakubovich-Popov (KYP) lemma then gives an equivalent LMI formulation
the restricted robustness tests. The toolbox is nothing but an interface to
LMI-Lab that implements the ideas of this section.

Our means of obtaining finite-dimensional restrictions of Robustness test 1
is to introduce a format for a finite-dimensional parametrization of a convex
subcone of IIa. The subcone is defined in terms of a basis multiplier and a
convex cone of parameters according to the following definition.

DEFINITION 3
Let

1. ¥ = [¥, 9] be a basis multiplier, where ¥, and ¥, are N x | and
N X m rational transfer functions,

2. ®,,...,®x be proper rational transfer functions,and let ® = [ $4,..., %],
3. Myre C RYXN be a structure matriz with parameters,

4. My € RVXN be a constant matrix.



Then Pip (¥, ®, Mytruc, Mo) C IIa denotes the subcone defined as

PiA(q’7 Q; Mstruc; MO) = {‘I'*(Mstruc ‘|‘ MO)\I’ :
Pp(jw)*(Mstrue + Mo)@r(jw) < 0, Yw € [0, o0], Vk}.

We note that My contains the free parameters of Pia (¥, ®, Mgtruc, Mo).
O

REMARK 4

Note that the constraints on Mg, are defined as strict inequalities. It would
in many applications be preferable with non-strict inequalities. However, the
strict inequalites can be verified as strict LMIs, which are easier to treat nu-
merically than the corresponding non-strict LMIs. O

We note that ¥ in general is nonproper due to the Popov multipliers. If we
for a given M = Mgime + Mo write out the expression for the corresponding
multiplier we see that it has the structure

- [Hn le] _ [lI':M\I’a U My,

I, My |[TME, TIMT, |-

Before we give an example we notice that addition and diagonal augmentation
of subcones on the the form in Definition 3 can be done in a simple way.

Addition: Let

Pijp = Piya(¥1, ®1, Mistrue, Mi0),
and

Pija = Piga(¥a, B2, Mastruc, M20)-

Then addition is performed as

. ) v ¢ 0 Mlsruc 0 M 0
PilA+Ple:PlA([‘I’:],[01 ‘I’z],[ Ot Mgy ]’[ 010 Mzo]'

S~—

Diagonal Augmentation: Let

Pip, = Pin, (%1, ®1, Matruc, , Mo, ),
and

Pip, = Pin, (%2, B2, Matruc; , Mo, ).
Then diagonal augmentation is performed as

3, o] [Mstml 0 ] [Mol 0 ])
0 @2 ’ 0 Mstrucz ’ 0 M02

where ¥ is defined as follows. If ¥; = [¥;, ¥y;]and ¥y = [Ty, Uy ], then

¥ = I:Tla. 0 ‘I'lb 0 ]
L0 Wy, 0 Ty’

da.ug(PiAl,PiAz) = PiA(‘I’, [

We will next give some simple examples of parametrizations on the form in
Definition 3.



ExAMPLE 3
It is easy to see that II;,, ITo,, IT151, and IIsr in Example 1 have the following
finite dimensional parametrizations

o The set II;, can be formulated as Pij, (¥, ®1, Mstruc, Mo), where

) iy I S 3 P
'—01,1—1)stmc—10,0—-

e The set Iy, can be formulated as Pisy(¥,{ ], Mstruc, Mo), where

‘I’_[jw 0] u _[0 /\] M0
- 0 1 ) struc — A 0 3 [V

Note that there are no constraints, i.e., ® is empty. This follows since A
is free to take any value in R.

o The set II;57 is infinite dimensional since X can be chosen from an
infinite dimensional set of proper rational transfer functions. We use the
restriction X(jw) = R(jw)*UR(jw), where R € RHY*™ and where
U € RVXN gatisfy U = UT > 0. Here R is chosen by the user, U
is the parameters that the toolbox should optimize, m is the number
of repetitions of §, and N is some integer. We get the parametrization
Piysr(¥, ®1, Mstruc, Mo), where

R 0 0 U 0
U= &, = Myrue = y My=0.
[0 R]’ ' [I] ‘ [0 —U] i

e The set IIy47 is also infinite dimensional. Here we use the finite-dimensional
restriction Y (jw) = VS(jw) — S(jw)*VT, where § € RNX™ and V €
R™*N for some integer N. We get Piasr(®,[ |, Mstruc, Mo), where

I 0 0 0 vV 0
o 0 I 7 10 0o 0V Ma—0
. 0 S 3 struc — VT 0 0 0 ) 0 —
-5 0 o VT o0 o
O
REMARK 5
The transfer functions & = [®,,..., 2k | that defined the constraints on the
parameters in M, are often constant matrices. We have also seen that @
may be empty, i.e., there are no constraints. O
REMARK 6

The constant matrix My is often zero. This is due to the conicity of the set
of multipliers ITa . It can sometimes be useful to either fix some parameters in
Mirue to a constant value or to limit the range of the parameters in M.
In both of these cases we need a nonzero My. O

If we restrict Robustness Test 1 to Pia (¥, ®, Matruc, M) C Ia, then the
resulting feasibility problem becomes

10



RoBUsTNESS TEST 3—FINITE DIMENSIONAL FEASIBILITY PROBLEM
Find a parameter matrix Mg such that

;. (jw)(Mstrue + Mo)®r(jw) < 0, Vw €[0,00], k=0,...,K,

where

weolf]

|

It is possible to obtain an LMI formulation of this feasibility problem as follows.
Introduce representations

), =

A | By
Cy | Dg ’

Then by the KYP lemma, the finite dimensional feasibility problem is equiv-
alent to the following LMI problem.

RoBUsTNESS TEST 4—FEASIBILITY TEST wWITH LMIs
Find a parameter matrix Mg, and matrices P, = P,;‘r € R™Xm k=0,...K,

where np = dim (Ag), such that

A/E‘Ak(Pk)Mstruc)Nk < 0, k= 0, v ;K

where
A, By 0 P, 0
Nk = I 0 ) Ak(Pk: Mstruc) = Pk 0 0
Ck Dk 0 0 | Mstruc + MO
O
REMARK 7
The usual situation is that $,(s) is a constant matrix (for k=1, ... K). In
that case, the k** LMI becomes
B (Mytrac + Mo) &y < 0.
O

We can apply exactly the same ideas as above when considering robust perfor-
mance problems as in Robustness Test 2. The only difference is that we need to
introduce a finite dimensional restriction also for the input description Ti,p.
Exactly as in Definition 3, we define Upsinp(‘I’inp, ®, Mgtruc, Mo) C Tinp to
consist of the multipliers

{95 (Matrue + Mo)¥inp : 2(jw)"(Matruc + Mo)Br(jw) < 0, Yw € [0, 00], Vk}.
(11)

11



A total finite dimensional multiplier description is now obtained as

Pigy = da'ug(PiAypiLz .3 ITI;inp)a

where Piy, (¥,{ ], Mstruc, Mo) has

0 0 I, ©
¥ = IP+¢1) Mgtrue = 0 _71. y Mo = o o’
q

and where Iﬁ;\s- ([0 ¥inp], ®, Matruc, Mo) has the same ¥y, &, Mgy, and

inp

My as in (11).

4. Tutorial

There are three levels of commands in the toolbox. This is illustrated in Fig-
ure 4. The purpose of the commands on each level is defined as follows:

Elementary multiplier classes

i

Multiplier combination

LMI optimization

Figure 4 The three command levels in the toolbox

Elementary multiplier classes: This level of commands in the toolbox
can be viewed as a library of IQCs. Each command on this level defines
a finite-dimensional set of multipliers parametrized as in Definition 3.

The following commands are currently implemented at this level:

Multipliers for operators

complexpar uncertain complex parameter

LTTuncert LTI dynamic uncertainty

delay uncertain delay operator

harmonic multiplication with harmonic oscillation
Popov Generalized Popov multipliers

realpar uncertain real parameter

sectorNL sector bounded nonlinearity

slopeNL slope restricted nonlinearity

slowtvpar slowly time-varying parameter

tvpar arbitrarily time-varying real parameter

12



Multipliers for signals

domharmonic signals with dominant harmonics

wspectr signal with given spectrum

Multiplier combination: The commands on this level are used to combine
multipliers from the elementary multiplier classes into a multiplier de-
scription of a diagonally structured perturbation A. The level consists
of the following two commands:

Multiplier combination
IQCadd  addition of multipliers
IQCdaug diagonal augmentation of multipliers

LMI optimization: This level contains the commands for the actual stabil-
ity and performance analysis. The commands in the table below trans-
forms the analysis problem into a convex optimization problem in terms
of LMIs as described in Section 3.

LMI optimization
IQCfeas feasibility test in terms of IQCs
IQCopt optimization problem in terms of IQCs

IQCperf performance analysis in terms of IQCs

We will illustrate the operation of the toolbox with a couple of simple
examples. The first example is simply an application of the Popov criterion to
a nonlinear systems example.

ExXaMPLE 4
Consider the system in Figure 5.

T u G

Figure 5 Feedback interconnection of a linear time-invariant plant G with a mem-
oryless nonlinearity ¢.

We assume that

s—10
Gl)=—Fist 10 (12)

and that the memoryless nonlinearity satisfies the sector condition

0<zp(z)<z?, VzeR.

13



In order to obtain a multiplier description of ¢, we combine the following two
sets of multipliers

o= {e[i S e of mame= {0 7] 2]
1lp =932 1 —9 > , an 20 = jw 0 i .

Stability for the system in Figure 5 can now be investigated by use of Robust-
ness Test 1 with ITIp = II;, + II5,. We obtain the stability test

RoBusTNESS TEsT 5—THE CrLassicaAL Popov CRITERION
Find ¢ > 0 and A € R such that

[G(IJ_'W)]* [Hojw/\ 2:2]:»\] [G(;w)] <0, Ve [0,00]

(]

We can use the toolbox to search for suitable values of  and A (if there exists
any). The following sequence of commands does the job:

> b = -[1 -10];
>> a = [11 10];
>> [A B C D] = tf2ss(b,a);
>> G = pck(4,B,C,D);
>>
>> Pi_1phi = sectorNL(0,1);
>> Pi_2phi = Popov(1,’0’);
>> Pi_Delta = IQCadd(Pi_iphi,Pi_2phi);
>> [Mstruc,tmin] = IQCfeas(G,Pi_Delta,’FDIO0’);
ndec =
5

Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative for feasibility

Iteration : Best value of t so far
1 0.011768
2 5.363203e-04
3 5.363203e-04
4 5.363203e-04
5 2.664274e-04
6 7.818501e-05
7 7.818501e-05
8 1.84591260-05
9 1.845912¢-05

10 2.767277e-06
11 2.767277e-06
12 5.613782e-07
13 5.613782e-07
14 1.315827e-07

14



15 2.836331e-08

16 9.103451e-09
* switching to QR
17 9.103451e-09
18 1.991093e-09
19 1.496203e-10
20 6.305374e-11
21 1.23863be-11
22 6.014747e-12
23 8.735706e-13
24 4.126056e-13
25 2.673200e-14
26 2.673200e-14
27 2.673200e-14
28 2.673200e-14
29 -5.420680e-14
ok new lower bound: -0.095000
30 -6.072912e-14

Result: feasible solution
f-radius saturation: 2.336% of R = 1.00e+09
Termination due to SLOW PROGRESS:
t was decreased by less than 10.000) during
the last 10 iteratioms.

Mstruc =
1.0e+05 *
0 2.4675 0 0
2.4675 0 0 0
0 0 0] -1.5831
0 0 -1.5831 0
tmin =
-6.0729e-14
>>

Next follows an explanation the command sequence. We refer to the command
reference section for more detailed explanation of the various commands.

o The first four commands defines the transfer function G in (12) as a
p-Tools SYSTEM matrix data structure. All transfer functions in the
IQC toolbox must be given in the SYSTEM matrix data structure of
u-Tools.

e The command Pi_1phi = sectorNL(0,1) defines the multipliers II;,.
Here the numbers 0 and 1 in the first and second argument of the com-
mand simply defines the lower and upper sector bound. The resulting
variable Pi_1phi is a certain data structure that contains all necessary
information to define the set Pij (¥, ®1, Metruc, Mo) in Example 3.

e The command Pi_2phi = Popov(1,’0’) defines the Popov multipliers
in Iy in the format Piz, (¥, [ ], Mstruc, Mo) as defined in Example 3.

e The command Pi_Delta=IQCadd(Pi iphi,Pi 2phi) defines the multi-
pliers IIo = II, + Iy, in the format in Definition 3.
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Figure 6 A plot of the inequality in Robustness Test 5 as a function of frequency.

e The command [Mstruc,tmin] = IQCfeas(G,Pi Delta,’FDIO’) solves
Robustness Test 5 by applying the ideas in Section 3. The output from
matlab is the following

— ndec=5 shows that there are five variables two solve for in the LMI
that corresponds to Robustness Test 5. Two of these are z and A
and the other corresponds to the Py matrix in Robustness Test 4.

— Then follows the the trace of execution from LMI-Lab. We see that
we obtain the value tmin=—=6.0729 - 1014 after four iterations. This
means that Robustness Test 5 is feasible, i.e., there exists suitable
values for  and A.

— We also see that the total Mgy matrix becomes

0 2.4675 0 0
2.4675 0 0 0
Mstruc = 105
0 0 0 —1.5831
0 0 —1.5831 0

This means that LMI-Lab found the values z = 2.4675 - 10° and
A= —-1.5831-105.

The third input argument of the command IQCfeas is a request for a
plot of the largest eigenvalue of the inequality in Robustness Test 5 as
a function of frequency. It should be less than zero for all frequencies if
the test is feasible. The plot in Figure 6 shows that this is indeed the
case in this example.

O

The next example is a continuation of Example 2 in Section 2.
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EXAMPLE b
We assume that the nominal transfer functions is

100
Go(s) = s2 + 2s + 100’

and that the weighting filter for the dynamic uncertainty is
s+ 15
(s) = 54 150"

Furthermore, the spectral characteristic for the input signal w is assumed to
be defined by the filter

1
824+0.1s+1"

Three steps need to be taken when using the toolbox to obtain an upper bound
for (9) in Example 2, see also Figure 7.

H(s)=

1. The first step is to transform the system to the nominal form for robust
performance analysis. This amounts to obtaining the transfer function

G- 1 [—WGO WGO]
1+ G 1 Go
as a p-Tools SYSTEM matrix. This is done in the first 11 lines of code
below.

2. The next step is to use the commands from the first level to obtain
finite-dimensional multiplier sets Pia C IIa and Ups;,;, C Yinp. For this
we use the commands

e Pi Delta=LTIuncert(1,1) which gives the multipliers

(o )

e Ups_inp=wspectr(PsiO,H), where
10s

2
To(s) = s —|—2.;+100

s+ 2

This gives the multipliers

o0

Upsin = { Talju) U¥a(ju) : [ Wi(je)0alju)|H(judw > 0}

—00

where U = UT € R2%?,

3. Finally the command [Mstruc,L2P] = IQCperf(G,Pi Delta,1,Ups_inp)
solves Robustness Test 2 for the case when W = 1,IIpo = Pia, and
Yinp = Ups;y,. The optimal value for this finite-dimensional restriction
is L2P = /7 = 0.598. Lower values of L2P may be obtained by using
other basis multipliers than R = 1 for the command LTIuncert and
the ¥4 defined above for the command wspectr. However, it is easy to
verify that the optimal value in the case when there is no uncertainty,
i.e., when W = 0, is L2P = 0.5025. This means that our choice of basis
is quite good.

17



>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

)

The IQC Library

Pia Upsinp

IQCperf

Figure 7 The following steps are taken when using the toolbox for computing an
upper bound for (9) in Example 2. The first step is to transform the system to the
nominal form for robust performance analysis. The next step is to use the commands
from the first level of commands to obtain finite dimensional multiplier descriptions
Pip and Ups, . We here call the first level of commands the IQC library. The last

inp*

step is to use the command IQCperf with Pia and Ups;,, as arguments.

%A% Open loop transfer function (GO):
b=[100];

a=[1 2 100];

[A B C D]=tf2ss(b,a);
GO=pck(4A,B,C,D);

%4 Weighting matrix for dynamic uncertainty
W=pck(-150,-135,1,1);

%A% Nominal transfer funnction for total system (G):
Glin=mscl(mmult(W,G0),-1);

G12n=mmult(W,GO);

G21in=1;

G22n=G0;

Gden=minv(madd(1,G0));

G=mmult (sbs(abv(Glin,G21n),abv(G12n,G22n)) ,daug(Gden,Gden));

%A% Specification of Pi_Delta

R=1;
Pi_Delta=LTIuncert(1,1);

18



>>

> b=[1];

>> a=[1 0.1 1];
>> [A B C D]=tf2ss(b,a);
>> H=pck(4,B,C,D);

>>

>> Y% %Specification of Ups_inp
>> b=[0 10 0];

> a=[1 2 100];

>> [A B C D]=tf2ss(b,a);

>> Hi=pck(4,B,C,D);

>> H2=pck(-2,1,2,0);

>> PsiO=abv(H2,H1);

>> Ups_inp=wspectr(Psi0,H) ;

>>

>>[Mstruc,L2P] = IQCperf(G,Pi_Delta,1,Ups_inp);

ndec =
140

Solver for linear objective minimization under LMI constraints

Iterations : Best objective value so far
i
2
3
4
5 108.743553
6 59.287019
35 0.361103
*okok new lower bound: 0.343581
36 0.361103
*okok new lower bound: 0.347273
37 0.357546
okok new lower bound: 0.354149
Result: feasible solution of required accuracy

>> L2P
L2p =

best objective value: 0.357546
guaranteed absolute accuracy: 3.40e-03

f-radius saturation: 86.991% of R = 1.000+09

0.5980

>>
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Goe—aT

The IQC Library

Y

Pij,| |Pig,| |Pia,

t 3

PiA = daug(Pim + Piz‘p,PiAT)

Y
IQCperf

Figure 8 The steps taken in the analysis of the anti-reset windup example.

EXAMPLE 6
Consider the control system in the upper part of Figure 8. A process Goe~*T is
controlled with a PI controller. There is also an anti-reset windup compensator
to reduce the effect of integrator windup due to saturation in the actuator.
The particular anti-reset windup compensator in this example is of tracking
type, see [1] for further details. The idea is to feed the error signal e, to the
integrator when the actuator saturates. With a suitably chosen tracking time
constant, T, this device prevents the integrator from integrating to a large
value during saturation. The filter H corresponds to the sensor dynamics.
We will in this example study stability of the control system in the upper
part of Figure 8. In particular we will study how large the time delay T can be
before the system becomes unstable. For this purpose we assume that the time
delay is uncertain but restricted to be in the interval [0, To]. We will search for
an upper bound on Ty such that stability is ensured. The following steps are
taken when we use the toolbox for the analysis, see also Figure 8.

1. The system is transformed to the nominal form for stability analysis. It
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is easy to verify that

1- TtsG’pI(s)H(s)Go(s) _ sTtG'pI(s)H(s)
G(s) = sTy +1 sTy +1 , (13)
Go(s) 0
A = diag(p, Ar) (14)

where Gpr(s) = k + k/(sT;), ¢ corresponds to the saturation nonlinear-
ity, and Ay = e™°T — 1, where T € [0,Ty]. We assume that k = 0.07,
T, =T, = 0.11,

z, 2] <1,
p(z) = ¢ 1, z>1,
-1, z < -1,

(% + 0.05s + 1)(s + 200)

Gols) = 50 (s + 55 + 50)(s + 10)2
and
50
H(s)= 0

. The next step is to use the first level of commands, which we also call
the “IQC Library”, to obtain suitable sets of multipliers.

The saturation nonlinearity, ¢, is odd with its slope restricted to the
interval [0, 1]. This means that it satisfies the IQCs defined by the mul-
tipliers from [12], i.e.,

m={[ 0 ho + H(jw)”

the > 0,||kll1 < hop,
ho + H(jw) —2(h0+ReH(jw))] 0 1Alls °}

(15)

where h is the inverse Fourier transform of H and where the L;-norm is
defined as

Ialls = [~ o)

The first row of the system matrix G in (13) is strictly proper. This
means that we also can use a Popov multiplier for the description of ¢,

ie.,
0 —jw)\] }
II,, = :A€eER .
i {[jW)\ 0

The operator Ay = e *T — 1, where T € [0,Tp), is described by the
multipliers

ta, = (i) [0 ° Ty 20}, o)
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Figure 9 The diagram shows the Nyquist curve for G.. The stability condition in
(17) can be satisfied with proper choice of the Popov parameter A and the multiplier

H.

where

w? + 0.08w?
1+ 0.13w? + 0.02w?’

To(jw) =

see [9].
The sets II,, and IIa, are infinite-dimensional and must be restricted.
We use the following commands in the toolbox:

e Pi_1phi=slopeNL([0 -10],0,1) gives the subset, Piy,, of (15)
that has H(s) = «/(s — 10), where =z € R.
e Pi_2phi=Popov(1,’0’) gives the Popov multipliers in II,,.

¢ PiDelta_T=delay(T.0,R) gives the subset, Pia,, of (16) that has
z(jw) = R(jw)*UR(jw), where U = UT > 0.

3. A multiplier description Pia = daug(Pi;, 4 Pisyp,Pia,) of the diagonal
operator in (14) is obtained with the command
Pi Delta=IQCdaug(IQCadd(Pi_1phi,Pi 2phi),Pi Delta T).

4. Finally, the command [Mstruc,tmin] = IQCfeas(G,PiDelta) solves
Robustness Test 1 for the case when IIp = Pia. The command sequence
below shows that tmin<o0, i.e., the system is stable when T € [0, 0.01].

The value T = 0.01 is in fact close to the optimal bound. To see this consider
the transfer function

_ Tgst;(s)H(s)Go(s)e_’T - 1.

Geils) ST, + 1

The control system in the upper part of Figure 8 can be viewed as a negative
feedback interconnection of G.(s) and the saturation nonlinearity ¢. It can
be shown that the system is stable if

Re[(1 4+ jwA + H(jw))(Ga(jw)+1)] >0, VYw € [0,00]. (17)
The Nyquist plot for G when T = 0.011 is given in Figure 9. The system is
very close to instabily for this choice of time delay. In fact, the Nyquist curve is

very close to the critical point (—1,0) for which the system would be unstable
even for a unity gain feedback.
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>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

% System transfer function GO(s)

num_GO = 50xconv([1 0.05 1],[1 200]);

den_GO = conv{([1 5 50],conv([1 10]1,[1 10]));
% Sensor dynamics

num_H = 50;

den_H = [1 50];

% PI controller

k=0.07;

Ti=0.11;

num_c=[k*Ti k] ;

den_c=[Ti 0];

% Tracking time constant

Tt = Ti;

% System G(s) used in the final loop

den_cs = Ti

num_sl = conv(-Tt¥num_c,conv(num_GO,num_H));

num_G11 = addpoly(conv(den_cs,conv(den_GO,den_H)) ,num_sl);
den_G11 = conv(conv([Tt 1],den_cs),conv(den_GO,den_H));
[A_11,B_11,C_11,D_11] = tf2ss(num_G11,den_G11);

G_11 = pck(A_11,B_11,C_11,D_11);

num_G12 = conv{(-Tt*num_c,num_H);

den_G12 = conv([Tt 1],conv(den_cs,den_H));
[A_12,B_12,C_12,D_12] = tf2ss(num_G12,den_G12);
G_12 = pck(A_12,B_12,C_12,D_12);

num_G21 = num_GO;

den_G21 = den_GO;

[A_21,B_21,C_21,D_21] = tf2ss(num_G21,den_G21);

G_21 = pck(A_21,B_21,C_21,D_21);
G_22 = 0;
G = sbs(abv(G_11,G_21),abv(G_12,G_22));

% Multipliers for the saturation nonlinearity
Pi_iphi = slopeNL([0 -10],0,1);

>> Pi_2phi = Popov(1,’07?);
>>
>> ), Multipliers for the time-delay
>> R=1;
>> T_0=0.010;
>> Pi_Delta_T = delay(T_O0,R);
>>
>> Pi_Delta = IQCdaug(IQCadd(Pi_1iphi,Pi_2phi),Pi_Delta_T);
>>
>> [Mstruc tmin] = IQCfeas(G,Pi_Delta)
ndec =
141

Solver for LMI feasibility problems L(x) < R(x)

This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative for feasibility

Tteration : Best value of t so far
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1 0.270783

kkok new lower bound: ~-0.107595
2 0.042401
3 0.042401
61 -2.648646e-07
62 -3.539663e-07
63 -3.539663e~-07
64 -5.108738e-07

Result: feasible solution
f-radius saturation: 92.926% of R = 1.00e+09
Termination due to SLOW PROGRESS:
t was decreased by less than 10.000% during
the last 10 iteratioms.
>> tmin
tmin =
-5.1087e-07
>>

5. Discussion

The two hardest parts when using IQCtools for robustness analysis are gener-
ally

o Transforming a complex system consisting of several nonlinear, time-
varying or uncertain components into the normal form for stability or
performance analysis in Figure 1 and Figure 2, respectively. This can be
done by using u-Tools commands for manipulating SYSTEM matrices
(abv, sel, madd, mmult, e.t.c). This can be rather cumbersome.

An IQC toolbox with a graphical interface that supports the user in this
step has been reported by Megretski, [6].

e It is in general hard to know what basis multipliers are good for a certain
application. It is often wise to start with as simple multipliers as possi-
ble. Non-dynamic multipliers combined with Popov multipliers can often
give a good start. The plots of the frequency domain inequalities that
appear in the robustness tests gives information on critical frequencies
where multipliers are needed. Add multipliers that are active at these
frequencies.
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7. Command Reference

Multipliers for operators
complexpar uncertain complex parameter
LTIuncert LTI dynamic uncertainty
delay uncertain delay operator
harmonic multiplication with harmonic oscillation
Popov Generalized Popov multipliers
realpar uncertain real parameter
sectorNL sector bounded nonlinearity
slopeNL slope restricted nonlinearity
slowtvpar slowly time-varying parameter
tvpar arbitrarily time-varying real parameter

Multipliers for signals

domharmonic signals with dominant harmonics

wspectr signal with given spectrum

Multiplier combination
IQCadd  addition of multipliers
IQCdaug diagonal augmentation of multipliers

LMI optimization
1QCfeas feasibility test in terms of IQCs
IQCopt  optimization problem in terms of IQCs

IQCperf performance analysis in terms of IQCs




complexpar

Purpose

Multipliers corresponding to a repeated complex parameter.

Synopsis
Pi Delta = complexpar(R)

Description

Specifies a set of multipliers corresponding to a bounded complex parameter
i.e., A = §I, where § can be;

1. scalar LTI-system with ||§(jw)| <1
2. constant parameter with |§| <1

The size of the identity matrix corresponds to the column size of R.
The multipliers are defined as

X(jw) 0

=10 —x(w]”

where X (jw) = R(jw)*UR(jw), and U = UT > 0.
If § is real valued then these multipliers should be combined with multi-
pliers obtained with the command realpar.

See also

realpar
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delay

Purpose

Multipliers corresponding to an uncertain delay operator

Synopsis
Pi Delta = delay(TO,R,S)

Description

Specifies a set of multipliers corresponding to an uncertain delay, i.e. A(s) =
e*T — I, where 0 < T < Ty. We have A(u)(t) = u(t — T) — u(t) for some
T € [0, To).

The multipliers are defined as

(o) = o) [0 O s [] 1],

where
o z(jw) = R(jw)*UR(jw), with U = UT > 0
y(jw) = S(Hw)*VS(jw)

Uo(jw) = H(jw)*H(jw), with H(s) = 2s(s + v/12.5)/(s* + as + b),
b= \/%, and a = v/2b+ 6.5

if R =[] then only the second term of II
if § =[] then only the first term of II
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domharmonic

Purpose

Multipliers characterizing a signal with dominant harmonics

Synopsis
Ups_inp = domharmonic(a,b,n,H)

Description

Gives multiplier description for signals satisfying either of the following con-
ditions:

1. supp @W(jw) = [-b, —a] U [a,}]

2. supp W(jw) = [—a,a] (ifb=]], a > 0)

3. supp @(jw) = (~o0, —al]) U ([lal, 00) (if b = [}, a < 0)
We use the multipliers

Y(jw) = [e|H(jw)[* - d|I,,

where n is the dimension of the signal.

H is a filter with monotone slopes. For case 1 H should be band-pass and
for case 2 and 3 H should be low-pass. The following is conditions on H and
default choices of filter for the three cases above

1. z|H(ja)|2—d > 0, z|H(5b)|*—d > 0, 2,d > 0, and the default filter is
H(s) =5/(10s/a + 1)(s/(10b)+ 1)

2. ¢|H(ja)|2~d > 0,z,d > 0, and the default filter is H(s) = 1/(s/10a+1),
3. z|H(ja)|*~d > 0, z,d < 0, and the default filter is H(s) = 1/(10s/a+1).

See also

wspectr
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harmonic

Purpose

Multipliers corresponding to multiplication with an harmonic oscillation

Synopsis
Pi Delta = harmonic(R,wp)

Description

Specifies multipliers corresponding to the operator defined by multiplication
with an harmonic oscillation, i.e., (Au)(t) = cos(wot)u(t).
The multipliers are defined as

L X (o o) + X(w+jun)) 0

H(Jw) = H
0 —X(jw)

where X (jw) = R*(jw)UR(jw),and U = UT > 0.

These multipliers should be combined with multipliers that take the re-
alness of cos(wpt) into account. For example, the multipliers formed by the
command tvpar could be used.

See also

tvpar
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IQCadd

Purpose

Addition of multipliers for integral integral quadratic constraints

Synopsis
Pi Delta = IQCadd(Pi_1Delta,...,Pi NDelta)

Description

From given sets of multipliers for integral quadratic constraints, this function
generates the set of all sums of such multipliers. Currently limited to 9 input
arguments.

See also
IQCdaug
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IQCdaug

Purpose

Diagonal augmentation of multipliers for integral integral quadratic constraints

Synopsis
Pi Delta = IQCdaug(PiDelta-l,...,PiDeltaN)

Description

From given sets of multipliers for the operators A4,...,Apn, this function
generates the corresponding set of multipliers satisfied by the operator

diag(Aq, ..., Ay).

Currently limited to 9 input arguments.
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IQCfeas

Purpose

Feasibility test in terms of integral quadratic constraints

Synopsis
[Mstruc,tmin] = IQCfeas(G,PiDelta,plot_type,wvec)

Description

Feasibility test of the frequency domain inequality (FDIO)

[G(;'w)]*n(jw) [G(;W)] <0 el

where II(jw) is defined by Pi Delta, i.e.,

H(Jw) = ‘I’(jw)*(Mstruc + MO)lI’(]w):

subj to: ®p(jw)*(Mstruc + Mo)®r(jw) < 0, Yw € [0,00], (FDIL...FDIN)
If the FDI is feasible then tmin<0 else tmin>0.
Inputs:
G System matrix obtained with the mu-tools command pck
Pi Delta A set of multipliers for IQCs
plot_type Either of the following alternatives

‘none’ (default) no plot

'FDIO’  plot largest eigenvalue corresponding to FDIO above.

"all FDIs’ plot largest eigenvalue corresponding to FDIO,...,FDIN
in separate windows.

wvec The FDI plots are calculated at these frequencies. By default we
use wvec=logspace(-2,2).

Outputs:

Mstruc The “optimal” value for the parameter matrix

tmin The robustness test is feasible if tmin<0

See also

IQCopt and IQCperf
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IQCperf

Purpose

Robust performance analysis in terms of IQCs

Synopsis
[Mstruc,L2P] = IQCperf(G,PiDelta,W,Ups_inp,plot_type,wvec)

Description
Computes the robust weighted L, performance of a system when the input is
constrained to be in the set described by Ups_inp. The optimal performance
criterion is given as L2p= ,/7,p;, Where Yopt is the solution to the following
optimization problem

infy subject to (18)

dII € PiDelta, T € Ups_inp, such that
G(jw w*w 0 . [G(jw)
)(jw)

| donetn+ |
daug(II
I wg(l+] 0 riy T

] <0, Vwe]l0,c0],

where v > 0, and W is the weighting matrices for the output. The sets Pi_Delta
and Ups_inp are defined by the relations

M(jw) = ®o(jw)"(Mstruc + Mo)®o(jw),
subj to: ®x(jw)*(Mstruc + Mo)®r(jw) < 0, Vw € [0,00], k=1,...,Na
(19)

T(jw) = Yinp(jw) (Matrucia, + Moy, ) Tinp(jw),

subj to: g, (W) (Mstruciap + Moya, ) Bhinp (Jw) < 0,Yw € [0,00], k = 1, ..., Ninp
(20)

Inputs:

G System matrix obtained with the mu-tools command pck

PiDelta A set of multipliers for IQCs. Pi_Delta may be empty ([]).

W weighting matrix.

Ups_inp Input specification in terms of IQCs. May be zero matrix of ap-
propriate size.

plot_type Either of the following alternatives

‘none’ (default) no plot

'FDIO’  plot largest eigenvalue corresponding to the FDI in (18)
above.

’all FDIs’ plot largest eigenvalue corresponding to the FDIs in
(18), (19) and (20) in separate windows.

wvec The FDI plots are calculated at these frequencies. By default we
use wvec=logspace(-2,2).

See also
IQCfeas and IQCopt
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IQCopt

Purpose

optimization problem in terms of IQCs
Synopsis

[Mstruc,gammaotp] = IQCopt(G,PiDelta 1,Pi Delta2,n2,plot_type,wvec)

Description

Solves the optimization problem

inf4y subject to (21)
JII € Pi Delta(y) such that
G . * G .
[ (}w)] II(jw) [ (}w)] <0, Ywelo,o0]

where Pi_Delta(y)=IQCdaug(PiDelta_1,Pi Delta2). We assume that ev-
ery II € Pi_Delta(7y) has the structure

Mll M12

Y(jw),
Moy ‘YMzz] (3e)

() = (o)’ |

where Mpjy is the lower right n2xn2 block of M (the total structure ma-
trix). By default we use n2=size(M2)/2, where M2 is the structure matrix of
PiDelta 2.

Pi_Delta_1 may be empty ([]).

It is assumed that the conditions of Proposition 3.2 in [4] are satisfied.
Inputs:

G System matrix obtained with the mu-tools command pck

Pi Delta_1 A set of multipliers for IQCs. Pi_Delta_1 may be empty ({]).
PiDelta 2 A set of multipliers for IQCs

n2 See explanation above.

plot_type Either of the following alternatives

‘none’ (default) no plot

'FDIO’  plot largest eigenvalue corresponding to the FDI in (21)
above.

'all FDIs’ plot largest eigenvalue corresponding to the FDI in
(21), and the FDIs corresponding to constraints for the
multipliers in Pi Delta_1 and Pi Delta_2, in separate
windows.

wvec The FDI plots are calculated at these frequencies. By default we
use wvec=logspace(-2,2).

See also
IQCfeas and IQCperf
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LTIuncert

Purpose

Multipliers corresponding to an LTI dynamic uncertainty

Synopsis
PiDelta = LTIuncert(R,n)

Description

Specifies a set of multipliers corresponding to uncertain LTI dynamics A(jw)
with ||A(jw)||ec £ 1. The integer n corresponds to the number of inputs and
outputs of A.

The multipliers are defined as

M(jw) = z(jw)ln 0 } ’

0 z(jw)ly,,
where z(jw) = R(jw)*UR(jw), and U = UT > 0.

See also

complexpar, realpar
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Popov

Purpose

Defines generalized Popov multipliers

Synopsis
Pi Delta = Popov(n,sign)

Description
Specifies a set of generalized Popov multipliers on the form

0 - ij]
N(jw) =
where A is a symmetric n X n matrix specified as follows
sign="4+’" A >0
sign='0’ A need not be definite

sign="-" A <0

See also

sectorNL, slopeNL, realpar, slowtvpar
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realpar

Purpose

Multipliers corresponding to a repeated real parameter

Synopsis
Pi Delta = realpar(S)

Description

Specifies multipliers corresponding to a repeated real parameter A = §I, where
the size of the identity matrix corresponds to the column size of the basis
multiplier S.

The multipliers are defined as

0 Y(]w)]
(w0 [’
where Y (jw) = V§(jw)—S(jw)*VT. This means that Y (jw) is skew-Hermitian.

These multipliers should be combined with the multipliers corresponding
to the command complexpar.

o) = |

See also

complexpar
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sectorNL

Purpose

Multipliers corresponding to a sector bounded nonlinearity

Synopsis
PiDelta = sectorNL(a,f)

Description

Specifies a set of multipliers corresponding to a nonlinear and possible time-
varying gain, which satisfies the condition

az’(t) < p(z(t),t)z(t) < Bz?(t), Vi

It is assumed that —oo < a < 8 < oo0.
The multipliers are defined as

B 1
l'[(jw):TT[z E]T, where T:|:ﬂ—a ﬂ—a],

- 1

and where 2 > 0.

39



slopeNL

Purpose

Multipliers for an odd slope restricted nonlinearity

Synopsis
Pi Delta = slopeNL(mult,a,f)

Description

Specifies a set of multipliers corresponding to an odd slope restricted nonlin-
earity, i.e., A(z)(t) = ¢(z(t)), where ¢ satisfies

(i) isodd

(ii) o has slope restricted to the interval [a, 8], where —00o < a < 8 < 00. In
other words

a< ‘p(wl) = ‘p(mz) <8
1 — T2

If the command slopeNL(mult) is used, then a = 0 and 8 = co.
(#ét) there exists k > 0 such that |p(z)| < k|z|, for any z € R
The multipliers are defined as

W(je) = 77 [ho FHGY) 0

where

e the transformation matrix is

o ho >0
e H(s)= ZkNﬂ(a:;: — &, )Hy(s), where gl ,z; > 0and

!

Hy(s) = G+ At

The parameters are defined by the vector mult=[n; A1,...,nx AN].

e the following L; norm constraint holds

ng!

N
> ek + @) Hull < ho, | Hells = i

k=1

See also

sectorNL
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slowtvpar

Purpose

Multipliers corresponding to a repeated real parameter.

Synopsis
Pi Delta = slowtvpar(M;,M,,a,R)

Description

Defines multipliers corresponding to a slowly time-varying parametric uncer-
tainty, i.e., A(t) = §(t)I, where §(t) satisfies either of the following two condi-
tions:

1. If the fourth input argument is omitted then

a. € < 6(t) < 1/¢, for some small € > 0.
b. —2a6 < 6(t) < 2a8(t), where a > 0.

2. The other alternative is to let R > 1 (close to 1). Then
a. 6(t) € [-1,1]
b. §(t) € [-a,a], where a > 0
The multipliers are defined as
0 M(jw)

.w . T
T0D=T oy 0

T,

where M = UMy + M;V7T, and
a. My, M, are analytic in Res > —a
b. M; and/or M, may be defined as empty i.e., M; = [| and/or My = []
c. U,V are suitably sized matrices
d. we have the constraints:
1. for the case with positive §(t):
UMy(jw — a) + My(jw — a)*UT >0
VM, (jw — a) + Ma(jw — )V >0

2. for the case with uniform bounds on §(t):
UM (jw — 2a/R) + My(jw — 2a/R)*'UT > 0
V Ms(jw — 2a/R) + My(jw — 2a/R)*VT > 0
e. the transformation matrix is defined as

1. for positive §(t) we use T' = I (identity matrix of suitable size)

2. for the uniform bounds we use

RI —I]
T =
[RI I

See also

tvpar, harmonic
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tvpar

Purpose

Multipliers for an arbitrarily time-varying real parameter

Synopsis
PiDelta = tvpar(Kmax,Kmin,m)

Description

Specifies a set of multipliers corresponding to the operator defined by multi-
plication by a time-varying parameter, i.e. A(t) = §(t)I,, where §(t) satisfies:
Kmin < §(¢) < Kmax, for all £.

The multipliers are defined as

w5 A TIE 205 o]
al, Pln Y* -X|laln BI.
where

¢ a = —(Kmax + Kmin)/(Kmax — Kmin)

¢ 3 =2/(Kmax — Kmin)

e X=XT>0

oV =-YT
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wspectr

Purpose
Multipliers for signals with given spectral characteristic

Synopsis
Ups_inp = wspectr(¥y,H,r)

Description

Specifies a set of multipliers corresponding to the IQC description of an Ly[0, 00)
signal with given spectral characteristic, i.e., v € Wg, where Wg is the set

Wi = {v € L3[0, ) : [v(jw)| = #L%L—lﬂ(iw)l}

and where H € RH,, is a given strictly proper filter.
The multipliers are defined as

Tip = {T = T*: /°° T(jw)|H (jw)Pdw > 0},

—00

where T(jw) = ¥o(jw)*U¥o(jw), and U = UT.
The inputs are defined as follows
o ¥y € RH is a (Nx1) "basis function”
e H € RH is a (1x1) strictly proper filter ("spectral characteristic”)

e "precision” for approximation, by default 0.001.

See also

domharmonic
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