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POPULAR SUMMARY (IN SWEDISH)

Ljus ar verkligen fantastiskt. Det kan ge oss kdnslomaéssiga upple-
velser, som nér det faller genom en trddkrona i en skog eller vid en
blodrod fullmane, men det gor det ocksd mojligt for oss att upp-
fatta och forstd var omgivning. Majoriteten av den information vi
kan tillgodogora oss om Universum, far vi genom det ljus som ato-
mer och joner i olika kosmiska objekt sander ut. Varje foton - den
minsta energimangd ljus som kan 6verfora information - bar infor-
mation i form av energi med en viss intensitet och vaglangd. For
att komma 4t denna information ldter man det till synes enfdargade
ljuset, falla genom ett prisma sa att det delas upp i farger av olika
vaglangder — ett sa kallat spektrum.

Stjarnor, som var egen sol, sinder ut ljus av alla vaglangder, och
den uppfattade fargen dr ett matt pa stjarnans temperatur, precis
sd som fargen pd en jarnbit dndras frdn gult, via violett och blatt,
till rott under upphettning. Undersoker man stjarnspektrumet nér-
mare sa upptdcker man smala morka band som bryter av den kon-
tinuerliga fargférdelningen. Dessa linjer uppstar da ljuset passerar
genom stjarnans atmosfar och dér delvis absorberas av atomer, jo-
ner eller molekyler. Ett exempel pd ett sddant absorptionsspektrum
fran Solen visas i figur 1.1 pa sida 5 i kapitel 1.

Varje grunddmne i periodiska tabellen har ett helt eget unikt fin-
geravtryck med avseende pa vilka vdglangder det kan absorbera
eller avge i form av fotoner. S, genom att studera exempelvis ab-
sorptionsspektra fran stjarnor, och jamfora med spektra for enskil-
da atomer eller joner bestimda via experiment i laboratorier eller
matematiska modeller, kan vi bestimma vilka &mnen som absorbe-
rade det kontinuerliga ljuset och skapade de morka absorptionslin-
jerna. Vet vi dessutom hur mycket ljus som olika @mnen forvantas



=

absorbera vid en viss farg, sa kan vi bestimma den totala kemiska
sammansattningen i stjarnans atmosfar. Det har visat sig att ytter-
ligare information om miljon i vilken atomen befinner sig, sdsom
temperaturer, densiteter eller styrkan pa magnetfilt, ocksd kan be-
stimmas pd detta sitt.

Den hir avhandlingen handlar om atomer och deras joner, och att
genom kvantmekaniska modeller och datorsimuleringar férutsaga
deras egenskaper, for just sddana syften som vid studier av stjar-
natmosfdrer. Av sdrskilt intresse d4r hur atomer paverkas av om-
givande magnetfilt, i exempelvis solens yttre atmosfar — den s.k.
koronan. Aven om Solen dr den stjdrna vi kdnner bést, sa r en av
de storsta gatorna for astronomer hur koronan kan ha en tempera-
tur pa miljontals °C, da solens yta endast dr ungefar 6ooo °C. Ett
relaterat mysterium ar vad for slags processer som ger upphov till
de kraftfulla solstormar som, om de tréffar jorden, ger upphov till
norrsken, men kan ocksa sl ut teknisk utrustning. Figure 1.3 pa si-
da 10 visar en bild pa ensd kallad korona-massutkastning, som néar
den traffade jorden ett par dagar senare gav uppphov till kraftfullt
norrsken. Ett exempel &r fran 2003 dd 50 ooo Malméobor strom-
16sa under en timmes tid, och den bakomliggande orsaken tros
vara jordmagnetiska strommar orsakade av solstormar. Ett annat
exempel dr da Karlstads telefonstation natten till pingstdagen 1921,
fattade eld pa grund strommar inducerade av en kraftig solstorm,
med skador som forvarrades ytterligare av att dven larmsystemet
till brandkdren slogs ut'. Forklaringarna till solstormarna tros lig-
ga i komplexa processer i de magnetfalt som omsveper Solens yta.
I dagslaget finns det dock inte ndgra tillforlitliga metoder for att
understka magnetfalten i koronan.

I den hér avhandlingen undersoker vi, bland annat, en alternativ
metod for att médta magnetfilten i Solens atmosfar, med malet att
forutsdga det sa kallade rymdvadret.

Den totala kostnaden for branden och skadorna efter solstormen berdknades uppga
till 200 0oo kronor, och anlédggningen var forsakrad till 177 ooo kronor. Forsakringen
hade dock nyligen sagts upp av besparingskal.

vi
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SUMMARY OF PUBLICATIONS

The thesis is based on the results presented in the following peer-
reviewed articles. The articles are independent although conve-
niently classified into two main groups, labeled A and B, and pre-
sented in projects when felt appropriate. Author contributions are
given after each summary.

Group A: Accurate multiconfiguration Dirac-Hartree-Fock (MCDHF)
calculations of atomic structure and radiative properties, large-scale
spectrum calculations and forbidden-line spectroscopy for fusion- and
astrophysical plasma diagnostics.

Group B: Rigorous treatment of effects from non-spherical per-
turbations from the nucleus (hyperfine interactions) and external
magnetic fields (Zeeman interactions) on radiative atomic spectra
as well as the development of a general methodology to include
these symmetry-breaking perturbations in the wavefunctions and
to determine radiative properties. In particular, these publications
concern intensity redistributions and unexpected transitions in atomic
spectra, and their applications to plasma diagnostics for abundance
analyses in stellar atmospheres, the impact of magnetic fields in
storage rings as well as coronal magnetic field measurements and,
ultimately, space-weather meteorology.

Papers A1 and Ayy: Large-scale spectrum calculations with applications
in fusion and astrophysical plasma diagnostics.

[A1] Energy levels and radiative data for Kr-like W33+ from
MCDHF and RMBPT calculations
X. Guo, ]. Grumer, T. Brage, R. Si, C. Chen, P. Jonsson, K. Wang,
J. Yan, R. Hutton, and Y. Zou
J. Phys. B: At. Mol. Opt. Phys. 49 13 (2016)
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[A11] A spectral study of Te V from MCDHEF calculations
J. Ekman, |. Grumer, H. Hartman, and P. [onsson
J. Phys. B: At. Mol. Opt. Phys. 46 9 (2013)

Summary: These two papers address what could be termed spec-
trum calculations - systematic and accurate ab-initio calculations of
a range of atomic eigenstates up to a certain excitation energy limit,
as well as relevant radiative transition properties. The application
of paper Aj, which concerns a detailed theoretical analysis of Kr-
like W, is fusion plasma diagnostics; of particular relevance to the
~ €13 billion ITER fusion reactor under construction in southern
France. In paper Aj; we report on a spectrum calculation of four
time ionized tellurium (Te V). With a cosmic abundance larger
than for any element with atomic number greater than 40, Te is
one of the most important heavy elements in astronomical stud-
ies. Detailed understanding of its atomic structure and spectra is
therefore of great importance to analyze astronomical spectra for
determination of e.g. element abundances in stars.

Contributions: For the scientific work presented in publication Ay, I
was acting as supervisor for X.G., who was visiting us in Lund
from Fudan University in Shanghai to learn about calculations
with the Grasr2k code during some months in 2015. As a super-
visor I took part in essentially all steps of the MCDHF modeling,
as well as in the preparation of the manuscript, and lead the sub-
mission procedure. Paper Aj; was done in close collaboration with
J.E., who was driving the project. I took part in the design of the
theoretical model, performed parts of the calculations, and con-
tributed to the preparation of the manuscript, although the first
version was mainly compiled by J.E.



Papers Ay to Avyp: Forbidden-line spectroscopy of ions relevant to
fusion plasma diagnostics.

[Arr1] The M1 ground state fine structure transition in Ag-like
Yb
R. Zhao, ]. Grumer, W. Li, ]. Xiao, T. Brage, S. Huldt, R. Hutton,
and Y. Zou
J. Phys. B: At. Mol. Opt. Phys. 47 18 (2014)

[A1yv] Coronal lines and the importance of deep-core-valence
correlation in Ag-like ions
J. Grumer, R. Zhao, T. Brage, W. Li, S. Huldt, R. Hutton, and Y.
Zou
Phys. Rev. A 89 6 (2014)

[Av] Forbidden-line spectroscopy of the ground-state configu-
ration of Cd-like W
Z. Fei, W. Li, ]. Grumer, Z. Shi, R. Zhao, T. Brage, S. Huldt, K.
Yao, R. Hutton, and Y. Zou
Phys. Rev. A 90 5 (2014)

[Avi] Experimental and theoretical study of the ground-state
Mz1 transition in Ag-like tungsten
Z. Fei, R. Zhao, Z. Shi, |. Xiao, M. Qiu, |. Grumer, M. Anders-
son, T. Brage, R. Hutton, and Y. Zou
Phys. Rev. A 86 6 (2012)

Summary: This set of papers tells a story about accurate determi-
nation of forbidden lines in open f-shell ground-configurations in
heavy and highly ionized atomic systems, using a combination
of electron-beam ion trap (EBIT) experiments and theoretical model-
ing in what could be called forbidden-line spectroscopy. The main
motivation of this project was to understand the formation of for-
bidden lines in laboratory plasma, such as the tokamak plasma in
the ITER fusion reactor, starting with a detailed analysis of highly
ionized Ag-like ions with ground state configuration 4f, and later
expanded to the more complex Cd-like system with a 4f? ground
configuration at the high end of the isoelectronic sequence.
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The Ag-like system consists of a single M1 transition, which re-
quires very high accuracy for a trustworthy spectroscopic identifi-
cation. Using the theoretical model developed in paper Ay, which
was further enhanced and analyzed in paper Ay, we identify this
line in Ag-like W and Yb, as presented in paper Ay and Ajyg
respectively. In paper Ay we analyze the ground configuration of
highly ionized Cd-like ions, which consists of 13 fine structure lev-
els connected by a number of forbidden transition. We establish
the energy structure of the ground configuration in Cd-like W and
successfully identify seven of the forbidden transitions by using a
combination of theory and experiment.

Contributions: I was driving the theoretical work and performing a
majority of the calculations in all these publications together with
and under supervision of T.B., with the exception of the support-
ive RMBPT calculations in Ay/, which were performed by W.L. The
idea of an separate core-valence model for the Ag-like systems
was introduced by T.B. Paper Ajy is purely theoretical and fully
drafted by me with input from T.B., and I took an active part in the
authoring of the other papers, especially in writing the theoretical
parts.

Paper Ay 11: Magnetic-dipole transitions in negative ions.

[Av11] Resolving a discrepancy between experimental and theo-
retical lifetimes in atomic negative ions
T. Brage and ]. Grumer
arXiv:1606.08361 [physics.atom-ph] (submitted to J. Phys.
B: At. Mol. Opt. Phys.)

Summary: We have recently seen breakthroughs when it comes to
measuring long lifetimes of bound states in negative ions (Back-
strom et al 2015 PRL 114, 143003). The development of the exper-
imental method has, however, recently been hampered by an ap-
parent discrepancy between experimental and theoretical lifetimes
in the fairly simple atomic anion, S™. Since it has been hard to
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see why computations would fail for this case, the experimental
technique has been cast into doubt. In this paper we remove this
discrepancy through a systematic theoretical study for this and
some other negative ions. This could in turn serve as a confirma-
tion of the identification of transitions in these systems. The hope
is that these results will serve to validate earlier efforts and support
further development of trapping techniques to measure long-lived
states in atomic systems.

Contributions: This paper was done in close collaboration with T.B.
who conceived the idea of the project. I took part in the whole re-
search process; ranging from performing calculations to taking an
active part in writing the manuscript.

Paper B to Bi: Hyperfine induced intensity redistributions of spectral
lines, in general and for accurate abundance analyses in the Sun and
other stars.

[Bi] Hyperfine induced intensity redistribution in In II
J. Grumer, M. Andersson, and T. Brage
J. Phys. B: At. Mol. Opt. Phys. 43 7 (2010)

[B11] Hyperfine-dependent gf-values of Mn I Lines in the 1.49-
1.80 um H Band
M. Andersson, ]. Grumer, N. Ryde, R. Blackwell-Whitehead, R.
Hutton, Y. Zou, P. Jonsson, and T. Brage
Astrophys. ] Suppl. Series, 216 1 (2015)

Summary: This project started already back in 2009 during my mas-
ter thesis project at Fudan University, Shanghai, at the EBIT Labo-
ratory lead by R.H. and Y.Z. Both these papers concern hyperfine-
induced intensity redistributions in atomic spectra - the spectral shifts
in wavelength and intensities due to the symmetry-breaking per-
turbation from non-spherical electromagnetic interactions with the
nucleus. Publication B} concerns singly ionized indium (In II), whi-
ch has a perfect atomic structure for investigations of hyperfine-
induced effects. Available high-resolution spectra from Fourier tra-
nsform spectroscopy, made this a very suitable model system. The
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paper presents a detailed analysis of the hyperfine-dependent ef-
fects on the spectral distribution of radiation. In connection to
this work we developed much of the theoretical framework and
codes, which have formed a basis for the the relativistic hyperfine-
Zeeman code (RHyzE) program - a general-purpose code to deter-
mine wavefunctions and radiative properties under the perturba-
tion of symmetry-breaking effects (see Ch. 6 for details).

The developed method was then extended to the much more com-
plex and, from an astrophysical perspective, relevant system of
neutral manganese (Mn I), as presented in paper Bi;. The abun-
dance of manganese in e.g. the atmosphere of the Sun, has previ-
ously been overestimated by several orders of magnitude due to a
too crude treatment of hyperfine-induced effects on the spectrum.
In this paper we combine our method with stellar atmosphere
simulations and compare with observed spectra to validate and
demonstrate the importance of hyperfine-induced effects. We also
present new hyperfine-dependent atomic data which should be of
use in future analyses of stellar spectra.

Contributions: The work leading up to both these papers was done
in close collaboration with M.A who acted as my supervisor to-
gether with T.B. for my master thesis project. For paper B; I wrote
the software and performed all simulations, under supervision of
and based on M.A.’s previous codes. I prepared all figures and
wrote the original draft of the manuscript, which then was final-
ized together with M.A., with input from T.B. This project was the
starting point for the implementation of our method to treat the
symmetry-breaking perturbations into the Ruyze program, which
is written by me. For paper Bj;, M.A. conceived the idea of the
project together with R.B-W. The development of the necessary
codes was done collaboratively by me and M.A based on the pre-
vious project on In II. M.A. added in particular routines for semi-
empirical adjustments of certain atomic parameters. The atomic
structure calculations and simulations were also done collabora-
tively, although mainly by M.A. The simulations of the stellar at-
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mospheres were carried out by N.R. The manuscript was written
collaboratively by M.A, me and N.R with input from T.B. I was
driving the finalization of the paper as well as the submission pro-
cedure.

Paper By - By: Unexpected radiative transitions induced by symmetry-
breaking perturbations from hyperfine interaction or external magnetic-
fields.

[Bir1] Analysis of the competition between forbidden and
hyperfine-induced transitions in Ne-like ions
M. Andersson, |. Grumer, T. Brage, Y. Zou, and R. Hutton
Phys. Rev. A 93 3 (2016)

[Brv] Theoretical investigation of magnetic-field-induced
2p5353 Po2 - Zp6 1S, transitions in Ne-like ions without
nuclear spin
J. Li, ]. Grumer, W. Li, M. Andersson, T. Brage, R. Hutton, P.
Jonsson, Y. Yang, and Y. Zou
Phys. Rev. A 88.1 (2013)

[Bv] Effect of an external magnetic field on the determination
of E1M1 two-photon decay rates in Be-like ions
J. Grumer, W. Li, D. Bernhardt, ]. Li, S. Schippers, T. Brage, P.
Jonsson, R. Hutton, and Y. Zou
Phys. Rev. A 88 2 (2013)

Summary: These publications concern unexpected transitions induced
by hyperfine interactions and external magnetic fields. The energy
structures and spectral information of Ne-like ions are of great
interest in many applications. In paper Bi;; we compare hyperfine-
induced transitions with forbidden transitions for Ne-like ions with
non-zero nuclear spin at the neutral end of the isoelectronic se-
quence. Paper By is similar to the first one, but concerns another
class of unexpected transitions in Ne-like ions, namely magnetic-field
induced transitions - transition appearing due to the perturbation
of an external magnetic field. The results presented in this publi-
cation were recently confirmed experimentally (Beiersdorfer et al.
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2016 Ap] 817, 67). The last work in this group, paper Ay, con-
cerns storage-ring measurements of the 2s2p 3Py — 252 'Sy E1M1
two-photon decay in Be-like ions. The bending magnets of the ring
give rise to an additional magnetic-field induced decay channel
connecting these states which will impact the extraction of the two-
photon rate. We present an elaborate model for the atomic struc-
ture and predict the rate of the induced transition of all ions in the
isoelectronic sequence ranging from Be-like boron (Z = 5) to ura-
nium (Z = 92). By comparing with existing theoretical models for
the E1M1 rate, we show that the magnetic-field induced transition
dominates or is of the same order for low- and mid-Z ions for a
typical storage-ring field strength.

Contributions: The work resulting in paper Bjj; was initiated by
M.A. and T.B. The calculations were mainly performed by M.A,
and I took part in the development of the underlying theoretical
method and in writing the software. M.A. wrote the majority of
the draft of the paper and then left the field. Thereafter I lead the
process of finalizing the paper in close collaboration with T.B. T.B
and P. ]. initiated the work presented in paper By . The project was
done in close collaboration with J.L., who was visiting us in Lund
at the time. The design of the methods and calculations were per-
formed collaboratively with J.L. with input from the other authors.
J.L. carried out most of the relativistic magnetic-field-induced transi-
tion (MIT) calculations, I did the non-relativistic calculations and
verified the results. Finally, paper By was done in collaboration
with the experimental group of S.S at the heavy ion storage-ring at
the Max-Planck-Institut fiir Kernphysik in Heidelberg. I was driv-
ing the entire process of this project - I initiated the contact with
S.S, designed the theoretical model with support from PJ. and T.B.,
performed all calculations and wrote the draft of the manuscript
and compiled all figures, with exception for the section concerning
the storage-ring measurements, which was written by S.S.
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Paper By 1: An overview of unexpected transitions.

[Bvi] Unexpected transitions induced by spin-dependent, hyper-
fine and external magnetic-field interactions
J. Grumer, T. Brage, M. Andersson, J. Li, P. Jonsson, W. Li, Y.
Yang, R. Hutton, and Y. Zou
Phys. Scr. 89 11 (2014)

Summary: This proceeding outlines the concept of unexpected tran-
sitions due to symmetry-breaking spin-dependent, hyperfine and
external magnetic-field interactions, in a general fashion.

Contributions: This publication was compiled in close collaboration
with T.B. and M.A. The spin-dependent section was drafted by
T.B., I wrote the section on magnetic-field induced effects and M.A.
the section on hyperfine dependent properties. I produced most
of the figures with the exception of the ones related to hyperfine-
interaction and the angular distribution, which were done by M. A.
and J.L., respectively.

Papers By to By 11: A novel method to probe magnetic fields in the
solar corona to predict solar storms with applications in space-weather
meteorology.

[Bvii] A novel method to determine magnetic fields in low-
density plasma facilitated through accidental degeneracy
of quantum states in Fe’ ™"

W. Li, ]. Grumer, Y. Yang, T. Brage, K. Yao, C. Chen, T. Watan-
abe, P. Jonsson, H. Lundstedt, R. Hutton, and Y. Zou
Astrophys. J. 807 1 (2015)

[Bviri] Atomic-level pseudo-degeneracy of atomic levels giving
transitions induced by magnetic fields, of importance for
determining the field strengths in the solar corona
W. Li, Y. Yang, B. Tu, ]. Xiao, ]. Grumer, T. Brage, T. Watanabe,
R. Hutton and Y. Zou
Astrophys. J. 826 2 (2016)
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Summary: In this on-going project we suggest a novel method to
measure magnetic-fields in low-density plasma, such as in the so-
lar corona, via a magnetic-field-induced transition in Fe X. The mea-
surement of the relatively weak magnetic fields in the solar corona
remains one of the major challenges in solar physics, and is of im-
portance to the prediction of solar events such as flares or coronal
mass ejections, and ultimately space-weather forecasting. In Fe X
we have found a unique system - it is abundant in the solar atmo-
sphere and it has a rare quasi-degenerate energy structure of a few
cm ™! which results in a strongly enhanced magnetic-field-induced
transition. It is our belief that measurement of line intensity ratios
involving this magnetic-field-induced transition could be used to de-
termine the strength of coronal magnetic fields. The main method
is presented, for the first time, in paper By, while we in paper
Byi1r present an experimentally determined value for the quasi-
degeneracy.

Contributions: This project is the result of an intense collaboration
between the groups in Lund, lead by T.B., and in Shanghai, lead by
R.H. My involvement in the project has been in the development of
the theoretical methods to determine the magnetic-field sensitive
magnetic-field-induced transition rate together with T.B. and PJ., and
to implement the methods in a general-purpose software (RuyzE),
under supervision of P.J. The majority of the atomic structure cal-
culations and the evaluation of the magnetic-field-induced transition
rates was done by W.L. who also performed the plasma model-
ing. I took part in the whole procedure leading up to paper By,
while for paper By/ 111, which is mostly experimental, my contribu-
tion was mostly through discussions and in preparing the paper
for submission.
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OTHER SCIENTIFIC CONTRIBUTIONS In addition to peer-revie-
wed articles appearing in scientific journals, the work included in
this thesis has also been presented through a number of talks at
scientific conferences and meetings, ranging from classic atomic
physics and spectroscopy conferences, such as EGAS, ASOS and
ICAMDATA, to astrophysics meetings such as HINODE - the an-
nual international meeting for the solar satellite Hinode which is
governed by the Japanese (JAXA/ISAS), United States (NASA),
UK (STFC) and European (ESA) space agencies - as well as on a
joint meeting between the Swedish Institute of Space Physics (IRF)
and Swedish Civil Contingencies Agency (MSB) on space weather
forecasting.
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Part1

INTRODUCTION

"Space is the Place"

— Sun Ra






BACKGROUND AND MOTIVATION

Natural science is a certain way of knowing about the world - it
embodies the description, prediction, and understanding of nat-
ural phenomena, based on observational and empirical evidence
[1]. The scientific method requires scientific advances to be vali-
dated through rigorous quality control mechanisms such as peer
review and reproducibility of findings. Explanations which cannot
be founded on empirical evidence, are not part of science. Ein-
stein’s theory of relativity, the evolutionary theory, first formulated by
Darwin in 1859 in his book "On the Origin of Species", or plate
tectonics, are examples of successful families of theories within
physics, biology, and geology. More modern examples of scientific
theories inhabit comparatively recent disciplines such as climate
science, cognitive science, molecular biology or geographic infor-
mation science (GIS).

Physics in particular, is concerned with the study of the most el-
ementary constituents of the Universe and their motion through
space and time. Via mathematical models it attempts to describe
how these constituents interact with one and another through fun-
damental forces such as gravitation or the electromagnetic force,
and the result of these interactions, ranging from the formation of
galaxies to the prediction, and recent discovery, of the Higgs bo-
son. This thesis concerns the fundamental structure and radiative
properties of atoms and ions; how the atomic electrons interact
with each other, with the nucleus, as well as with external mag-
netic fields, and ultimately how atomic systems interact with light
for the purpose of analyzing laboratory and astrophysical spectra.
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1.1 THE ATOM AND THE UNIVERSE

It is the current belief [2] that 4.6% of all matter in the Universe is
directly visible. The remaining 95.4% is of an exotic nature which
does not interact with photons, hence it is invisible to us and there-
fore referred to as cold dark matter and dark energy [3]. Around
99% of the visible part of the Universe is made up plasma;
ionized clouds consisting of ions, free Homs
electrons and photons, continuously -
emitted and absorbed by the ions [3, 4].  Mater
Despite being the dominating phase of
ordinary matter, plasma is something

that many of us find strange and unfa-

miliar. It is indeed interesting to note credit: NASA/WMAP [2]
that we live in an environment which almost exclusively belongs
to the remaining 1% - being solids, liquids and ordinary gases.

Dark
Energy
71.4%

TODAY

Information about the very earliest stages in the evolution of the
Universe, from the time before any stars or galaxies had formed,
travels to us by blackbody background radiation. These and other
photons are signatures of various astronomical phenomena and
originate from radiaitve processes in nuclei, atoms and molecules.
So, if we can understand how the photons were formed, how they
are affected on their journey through intergalactic and interstellar
space, and finally how to capture and record their characteristics,
represented by spectral distributions, we can learn much about the
Universe. Photons therefore play a crucial role to someone who
would like to study the Universe, simply because they act as the
fundamental information carriers® between a distant astronomical ob-
ject, say a galaxy or a star, and an observer using a space-borne
telescope or just you starring at the stars?.

As an initial example of an actual spectrum, we show in Fig. 1.1 the

See also cosmic rays (high-energy atoms and protons) and the very recently discov-
ered gravitational waves [5].

2 Disclaimer: make sure you wear protective eyewear when watching the Sun.
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Figure 1.1: The solar spectrum generated from observations with the
Fourier Transform Spectrometer at the McMath-Pierce Solar Fa-
cility at the National Solar Observatory on Kitt Peak, Arizona
(cropped and rescaled, credit: N.A.Sharp, NOAO/NSO/Kitt Peak
FTS/AURA/NSF [6]).

visible range of the solar spectrum, as recorded by the National So-
lar Observatory on Kitt Peak in Arizona. The Sun emits continuous
blackbody radiation of all colors, so the dark patches seen in the
specturm have to arise from absorption in the atmospheres of the
Sun and the Earth. The wavelength and intensities of these darker
regions contain fundamental information about the abundance of
elements in the atmospheres, but one can also extract additional
information such as electron densities, temperatures or magnetic-field
structures.

An excellent example of how spectroscopy can be used to increase
our knowledge about the Universe, is the discovery of helium -
the second most abundant element in the Universe (24% of the
total elemental mass), after hydrogen (75%). Despite its dominant
abundance in the Universe as a whole, the first evidence of helium
was not found on Earth, instead it was observed as a yellow line
at 587.49 nanometers in the spectrum of the Sun’s chromosphere
during a solar eclipse on August 18, 1868 by the French astronomer
J. Janssen in Guntur, India, and later the same year by the English
astronomer N. Lockyer [7, p. 256]. It took another 14 years before
the Italian physicist L. Palmieri found traces of helium on Earth
by observation of the same yellow spectral line in an analysis of
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the lava at Mount Vesuvius [8, p. 201]. Lockyer, together with the
English chemist E. Frankland, named the element after the Greek
word for the Sun (helios) [9].

We can visit the moon and bring home a piece of rock to a labora-
tory for analysis, or we can send spacecrafts to Mars and investi-
gate its geology and habitability potential, but these are about the
only examples where such direct studies are within reach. In the
vast majority of cases we have to resort to analysis of light through
plasma spectroscopy.

1.2 PLASMA SPECTROSCOPY

Plasma spectroscopy, being the study of emitted or absorbed elec-
tromagnetic radiation from an ionized media, manifests itself as
one of the oldest and most fundamental tools in physics and as-
tronomy. Quantitative analyses of the spectra from astronomical
or earth-bound plasma sources require a detailed understanding
of atomic structures as well as radiative and collisional processes.
The spectral distribution of emitted or absorbed radiation is sensi-
tive to variations in plasma parameters such as particle densities
and temperatures, element type and their ionization stages, the
magnitude and direction of external magnetic and electric fields,
and more fundamentally on basic atomic properties such as tran-
sition wavelengths and oscillator strengths. The determination of
such basic atomic parameters is however often far from trivial.

1.2.1 The Fusion Energy Dream

Much of the work in this thesis is motivated by the analysis and un-
derstanding of various plasmas, not only astrophysical ones. It has
been a long-standing dream to bring the "fire" of the Sun down to
Earth and harness its energy as a solution to the escalating energy
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crisis. Fusion energy is produced by the melding of light nuclei
into heavier ones - in the Sun hydrogen is fused to helium via the
proton—proton chain reaction. Each such process yields energies
of the order of MeV’s, which could be compared to, say, the 13.6
eV gained by adding an electron to a hydrogen nucleus. Realiz-
ing this "fusion dream" is, however, a hard-won game due to the
strong repulsion between the protons, which the Sun is overcom-
ing with its massive gravitational pressure. On Earth we have to
resort to speed. By accelerating the nuclei to high velocity, their
electrostatic repulsion can be beaten and the nuclei have a chance
to end up close enough for the attractive nuclear force to kick in
and fusion to take place.

The Tokamak fusion plasma in the International Thermonuclear Ex-
perimental Reactor (ITER) [10, 11] (a megaproject3 under construction
in southern France), has to reach a temperature of at least 150 mil-
lion °C for the fusion process to start - this is ten times the tem-
perature at the core of the Sun [13]. The plasma is confined with
strong dynamic magnetic fields in order to keep it stable at these
extreme temperatures, which puts high demands on the plasma di-
agnostics. Fig. 1.2 shows the inside of the Tokamak vessel in Joint
European Torus (JET), which has an equivalent setup to the one in
ITER.

The plasma facing wall material of choice in the divertor of the
ITER Tokamak, will be tungsten*. The divertor, which was first in-
troduced in the 1950’s, essentially functions as the exhaust system
of the Tokamak. It allows for online removal of waste material, i.e.
heavy contaminating ions sputtered form the vessel lining, under
operation of the reactor. See the channel in the lower part of the
JET Tokamak in Fig. 1.2.

An early attempt to make use of tungsten in a fusion vessel was

Extremely large-scale investment projects [12]. The current total cost of the ITER
project is ~€13 billion.

The word tungsten comes from a combination of the two Swedish words for "heavy"
and "stone".
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Figure 1.2: A picture of the JET Tokamak vessel superimposed with a sec-
tion of plasma in pink (authentic color) [14]. (credit: EUROfu-
sion).

in the limiter of the Princeton Large Torus in the late 1970’s. The
limiter, which was used extensively in the 1980’s as a replacement
of the divertor, was a small piece of material projecting into the
outer edge of the main plasma confinement area so that ions es-
caping from the plasma would strike the limiter and thereby pro-
tecting the walls of the chamber from damage. It was however
soon realized that the problems with contaminating material be-
ing deposited into the plasma remained; the introduction of the
limiter had simply changed where the sputtering was taking place.
The large radiation losses caused by the contaminating tungsten
atoms/ions, still gave a significant degradation of the plasma per-
formance [15], and the limiter was therefore abandoned. This lead
to the re-introduction of the divertor now used in modern fusion
devices.

Tungsten is the most heat-resistant material we know of, but atoms
will nevertheless be sputtered and contaminate the fusion plasma.
The main problem with tungsten is that it, as a heavy element,
has ions with many electrons which generate a lot of radiation,
in particular through intense X-ray emissions. Even a very small
abundance of tungsten will cool the plasma substantially. The situ-
ation is similar to the plasma in a fluorescent tube, where a single
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Mercury atom dominates the radiative output over 1000 Argon
atoms [16]. The ratio of tungsten to hydrogen/helium in a toka-
mak plasma such as in ITER, should be even smaller - the radia-
tive power of tungsten can be estimated to dominate at a ratio of
around 1/10000 [17].

The existence of tungsten impurities in fusion plasmas seems to
be a necessary evil. It is crucial to monitor the tungsten influx
and transport to control and keep the fusion process stable, which
is most conveniently done through spectroscopic studies of their
emitted radiation. The tungsten charge state distribution provides
a good estimation of the radiation loss from the plasma, but re-
quires identification of spectroscopic lines with the correct element
and ionization stage, and matched with an oscillator strength, whi-
ch puts a high demand on accurate atomic data from theoretical
and laboratory predictions. As an example, researchers recently
determined the density of tungsten ions in high temperature deu-
terium plasmas at the JET facillity via X-ray spectroscopy, sup-
ported by atomic structure calculations for the spectrum analysis
[18].

There is however a lack of atomic data for tungsten ions, see e.g.
the NIST Atomic Spectra Database [19], much explained by their
complex electron structure. Ions in the range between, say, W8+ to
W24+ have either more than four 4f holes or electrons in the outer
shell, leading to a large amount of levels even in their ground con-
figurations. Studies of tungsten ions is therefore very difficult and
before the idea that ITER would use tungsten as the plasma-facing
divertor material, no real motivation to perform such investiga-
tions existed. The charge distribution models are therefore often
inaccurate and lack important contributions from e.g. ionization
from metastable states in the complex ground configurations [16],
which is something we address in some of the work presented in
this thesis.
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Figure 1.3: Picture taken by the Solar Dynamics Observatory (SDO) [20] on
August 31, 2012 of a coronal mass ejection (CME) bursting out
into space at more than 1500 km/s. The CME did not hit Earth
directly, but connected with the magnetosphere and caused an
Aurora on September 3 (credit: NASA/GSFC/SDO).

1.2.2  Space Weather and the Solar Corona

One of the most intriguing and mysterious plasma environments
to date is probably the solar corona - the aura of hot plasma which
makes up the outermost atmosphere of the Sun, reaching millions
of kilometers into space. Its high temperature results in extreme
plasma conditions in which unusually highly ionized ions are form-
ed>, which led to the suggestion in the end of the 19:th century
that the corona contained a previously unknown element named
"coronium". This was resolved by Edlén and Grotrian around 1940
by identification of the coronal lines as forbidden transitions from
metastable levels in the ground configurations of highly ionized
iron ions - the green Fe XIV line at 5303 A and the red Fe X line
at 6374 A. The interested reader is referred to the George Darwin
Lecture by Edlén [23] and the publications [24, 25] for further de-
tails on the discovery of the coronal lines. The discovery of the
existence of these ions in the corona suggested surprisingly high
temperatures at millions of °C, which is about a thousand times

5 See e.g. Slemzin et al. [21] and Del Zanna and Mason [22] for recent reviews of
spectroscopic diagnostics of the corona.
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higher than the temperatures at the solar surface. The formation of
the extreme coronal temperatures remains to be understood and
makes up an active area of research. It is the current belief that
the high coronal temperatures are related to violent events such as
solar flares or coronal mass ejection’s (CME’s), formed by obscure
magnetic field processes [26, 27].

The existence of magnetic fields in the solar atmosphere was first
noticed by G. E. Hale in 1908 who saw the familiar splitting of spec-
tral lines due to the Zeeman effect in solar spectra from sun spots
[28]. These fields seem to play a fundamental role in the violent
dynamics of the Sun’s atmosphere, which ultimately governs the
space weather surrounding Earth and all other planets in the solar
system. Failure to predict coronal events such as flares or coronal
mass ejection’s (CME’s), could have a drastic impact on essentially
all systems and technologies, in orbit, and on Earth. Flares some-
times produce strong x-rays which might block high-frequency ra-
dio waves used for communication, or solar energetic particles that
could damage satellite electronics. CME’s can give rise to geomag-
netic storms in Earths” atmosphere, which not only cause the Au-
rora, but potentially also strong degrading currents in power grids
with possible serious outcomes. This so-called space weather will
have an impact on everything and everyone who depend on mod-
ern technology.

Determination of the relatively weak coronal magnetic fields re-
mains one of the major challenges to solar physics. Knowledge
about the fields is indeed crucial to our understanding of the dy-
namics in the corona, and ultimately for the prospect of conducting
space weather meteorology in order to prepare ourselves for geomag-
netic storms [29, 30]. Fig. 1.3 shows a picture of a CME escaping
into space at high-speed from the solar corona, taken by the Solar
Dynamics Observatory (SDO) at August 31 in 2012.

The origin of coronal eruptions such as the CME in Fig. 1.3 is
thought to be related to conversion of magnetic to thermal en-
ergies through complex magnetic re-connection processes in the

11
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coronal plasma [31], but the magnetic fields are too weak to be
measured via traditional methods. One important result presented
in this work is the development of a novel method to probe coronal
magnetic-field strengths based on magnetic-field-induced transition’s
(MIT’s), a class of so-called unexpected optical transitions in atoms
with intensities that are sensitive to the strength of the surround-
ing fields. The MIT of interest in the corona originates from Fe X
(Fe?T) and lies in the extreme ultraviolet (XUV) spectral region6. Fig.
1.4 shows an example XUV spectrum of the Solar corona recorded
by the Hinode (Solar-B) mission”, where the Fe X MIT belongs to
the blended structure at 257.26 A.

1.3 FURTHER ASPECTS OF THE STUDY OF ATOMS

Finally, we should not forget that the atom is interesting in itself,
being a natural laboratory for theoretical and experimental physi-
cists. The interactions amongst the atomic electrons and between
the electrons and the nucleus are of electromagnetic nature, which
can be described within the framework of quantum electrodynam-
ics (QED) - arguably the most accurate physical theory to date®.
The fact that the interactions of interest to predict the atomic struc-
ture are well-known, in contrast to, say, the interactions within the
nucleus [33], makes the atom a perfect testing ground for many-
body theory and correlation effects [34—36]. This remains a persis-
tent motivation throughout the work featured in this thesis.

Other interesting fields within fundamental atomic physics, not
touched upon in this work, involve time-dependent light-matter in-
teraction studies on atto-second time scales [38, 39], the search for

The XUV spectral range spans the region from 1240 to 100A.

The main science goals of the Hinode mission are to investigate the mechanisms re-
sponsible for heating the corona and to determine the mechanisms behind coronal
events such as flares and CME’s

The QED interaction parameter, the finestructure constant, x ~ 1/137, is known
to 0.2 parts in a billion [32]
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Figure 1.4: XUV spectrum of the solar corona as recored by the Hinode
satellite [37]. The purple line correspond to observations of ac-
tive regions (AR) (e.g. loop structures) and the green line to the
quiet sun (QS) [21, 22].

parity-violating effects [40], space-time variations of fundamental
constants, such as the fine-structure constant® [43, 44] and construc-
tion of the next generation of super-accurate atomic clocks [45]
where a recent and, to this thesis, relevant development has been
the incorporation of radiative effects induced by hyperfine inter-
actions [46], and much more. See for example the comprehensive
book "Springer Handbook of Atomic, Molecular and Optical Physics"

[47] or numerous review articles such as the one by Martensson-
Pendrill [48]).

All in all, understanding the fundamental function of atoms and
their interactions with photons, and ultimately how they make up
everything within us and around us, is key to building knowledge

about the history of the Universe. I hope this work is a small step
in that direction.

9 Recent observations of quasar absorption spectra point towards the existence of a
spatial gradient in the value of « [41, 42].

13



14

10

BACKGROUND AND MOTIVATION

1.4 THESIS OUTLINE

The remainder of this introduction, Part I, is focused on giving a
comprehensible background to the concepts and theoretical frame-
work used in the included papers. We begin in Ch. 2 with a ba-
sic, and relatively qualitative, review of atomic many-body the-
ory as well as a motivation and introduction to the relativistic
multiconfiguration Dirac-Hartree-Fock (MCDHF) approach, which is
the many-body method of choice in this work. Ch. 3 summarizes
the relativistic theory of radiative transition for a general many-
electron system - i.e. the emission or absorption of photons. Ch. 4
gives a brief discussion about various many-body methods, their
implementation into computer codes and, in particular, the General-
purpose Relativistic Atomic Structure Package (Grasr2k) code. We
then outline in Ch. 5 how to treat effects from additional perturba-
tions to the atomic system from the atomic nucleus (hyperfine in-
teraction) and from external magnetic-fields (Zeeman interaction)
and the determination of radiative transition rates between the re-
sulting perturbed eigenstates. After introducing the RuyzE code in
Ch. 6, which has been developed to determine perturbed eigen-
states in the general case as well as radiative transition rates of any
multipole and radiative lifetimes, we evaluate the impact of such
perturbations on the atomic spectrum. This subject is separated
into two parts; Ch. 7 deals with hyperfine-induced intensity redistri-
butions in spectra, and Ch. 8 with an exotic class of spectral features
appearing due to the perturbations called unexpected radiative tran-
sitions. Both of these topics are central concepts in this work. Part
I is then finished with a brief conclusion in Ch. q.

Part II is devoted to the scientific articles included in this thesis®®.
See also the Summary of Publications in the thesis preamble for an
overview of the articles.

Note that Part II has been removed from the electronic version of the thesis for
copyright reasons. The reader is instead referred to the journals where the papers
are published.



RELATIVISTIC ATOMIC THEORY AND METHODS

The past decades have seen a strong development of relativistic
atomic structure theory. The general theory and methodology used
in this work is outlined in a number of recent text books. To men-
tion a few, Strange’s book on relativistic quantum mechanics [49]
and the book on atomic structure theory by Johnson [50], give an
excellent introduction to the relativistic treatment of atoms. The
book by Grant outlines in great detail realtivistic theory and mod-
elling of atoms and molecules, and in particular the MCDHF meth-
od [36], which is central to this work. Lindgren’s new book on rela-
tivistic many-body theory [51] uses a field-theretical approach, and
can be regarded as a relativistic continuation of the well-known
book by the same author and Morrison [34]. Finally, a recent re-
view article by Fischer et al. on multiconfiguration methods [52]
covers much of the theory and methodology applied in this work.

In the following we will draw inspiration from these sources and
just briefly introduce the subject of relativistic multiconfiguration
many-electron theory, motivate approximations and the choice of
method, and refer to the literature for further details.

2.1 INTRODUCTION TO THE ATOMIC MANY-BODY PROBLEM

Theoretical physics plays the role of predicting different measur-
able physical quantities - observables - which in combination with
experiments, in the form of laboratory measurements or astronom-
ical observations, allow us to build better physical models and in-
crease our understanding of the world around us.

15
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The basic task for most quantum theorists is, in one way or another,
connected to solving partial differential equations - the Schrodinger
equation for non-relativistic theories, or the Dirac equation in a rel-
ativistic framework. In a stationary-state regime with a Hamilto-
nian operator, H, corresponding to the total kinetic and potential
energy of the system under consideration, such an equation can be
represented by the well-known eigenvalue problem,

(H-—Ex) ¥y =0 (2.1)

which is solved to obtain stationary wavefunctions, ¥, with en-
ergy spectrum, E,. The label « is such that it provides enough
information to distinguish at-least non-degenerate states. Once the
wavefunctions have been obtained, it is possible to determine other
physical observables such as radiative transition rates or isotope
shifts. The wavefunction representing a many-body system, such
as an atom with more than one electron, is however an extremely
complex entity and as such the determination of physical quanti-
ties ends up being a true challenge to theory.

For an atom consisting of N electrons, each individual electron
has three spatial, r, and one spin, o, degree of freedom. The total
wavefunction thus becomes a 4 x N multidimensional function,

wa(‘lh‘llr-uqu) (2'2)

where q; = (ri, 01). Exact solutions to (2.1) can not be found for
N > 1 and one has to resort to some approximate scheme. Dou-
glas R. Hartree expressively argued for the need of approximate
solutions:

"One way of representing a solution quantitatively would
be by a table of its numerical values, but an example will
illustrate that such a table would be far too large ever to
evaluate, or to use if it were evaluated. Consider, for example,
the tabulation of a solution [of (2.1)] for one stationary state
of Fe [Z = 26] . Tabulation has to be at discrete values of the
variables, and 10 values of each variable would provide only
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a very coarse tabulation; but even this would require 1078
[103% 4] entries to cover the whole field; and even though
this might be reduced to, say, 578 ~ 10°3 by use of the
symmetry properties of the solution, the whole solar system
does not contain enough matter to print such a table. And,
even if it could be printed, such a table would be far too bulky
to use. And all this is for a single stage of ionization of a
single atom."

— Douglas R. Hartree [53]

In brief, most theoretical models start off in an independent-particle
approach - an approximation in which it is assumed that the in-
dividual one-particle properties are of dominant nature and the
many-body contributions come in as smaller perturbations. This
allows for a separate treatment of each particle which then can be
combined into a many-body description of the complete system
through methods of varying complexity and advantages, based on
e.g. variational methods, such as Hartree-Fock (HF), configuration
interaction (CI) and multiconfiguration self-consistent field (MCSCF),
perturbative approaches such as Moller-Plesset many-body perturba-
tion theory (MP-MBPT), as well as the well-known coupled cluster
(CQC), density functional theory (DFT) and quantum monte-carlo (QMC)
methods.

In the present work we exclusively utilize a combination of the
relativistic MCDHF method, to obtain one-electron wavefunctions,
and relativistic configuration interaction (RCI) to include further elec-
tron correlation effects as well as contributions from the Breit in-
teraction and one-loop QED corrections in the form of the electron
self-energy and vacuum-polarization. But, before introducing this
method in some more detail, the situation may be simplified fur-
ther by making use of the symmetry properties inherent in the
wavefunction.
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2.2 THE WAVEFUNCTION AND THE ROLE OF SYMMETRY

A certain symmetry of a physical system can be related to a physi-
cal quantity which is preserved or remains unchanged under some
transformation. Identifying and learning how to take advantage of
these symmetries is essential when dealing with the quantum me-
chanical many-body problem.

A first fundamental symmetry observation is that any isolated sys-
tem' in a quantum state |«x) must be completely invariant under
continuous coordinate rotations in three-dimensional space, simply
due to the presumed isotropy of space. Similarly, the state of a iso-
lated system remains unaltered under coordinate inversion®. These
two observations implies that quantum states of e.g. free nuclei,
atoms or molecules can be labeled by a definite total angular mo-
mentum, J, its projection, M, and by parity, 7, such that

o) = [yI™™) . (2.3)

where 7y is an additional label introduced to uniquely identify the
states. The rotational invariance of isolated systems further implies
that there is a (2] + 1)-fold degeneracy among the states which only
differ in their projection quantum number, M, which therefore is
suppressed in the following. If, however, the system is perturbed
by an external field of definite direction in three-dimensional space,
the rotational symmetry will be broken and the M-degeneracy
lifted. We will return to this in Ch. 5 when discussing effects in-
troduced by the influence of an external magnetic field.

The quantum theory of angular momentum of many-body systems
is embodied in what is called Racah (or Racah-Wigner) algebra
[54—56]. With group-theoretical roots, Racah algebra introduces ir-
reducible spherical tensor operators as central building blocks. This

An isolated system is really isolated in the sense that it does not exchange any
matter or energy with its surroundings.
Ignoring the weak interaction which is not invariant under parity transformation.
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lead to the derivation of fundamental relations such as the Wigner-
Eckart theorem, which factors out fundamental symmetry informa-
tion of a matrix element. In brief, Racah algebra provides, in a
most elegant fashion, calculational and notational simplifications
which have proven decisive for the evaluation of matrix elements
between complex many-electron configurations. It should be em-
phasized that Racah algebra only deals with the angular part of
the wavefunction - the evaluation of the radial integral is straight-
forward once the radial functions have been obtained. With these
tools at hand, one can then readily deal with questions such as,

¢ How to form a totally anti-symmetric many-electron basis from
one-electron functions?

¢ How to ensure that this basis also conserves parity and angular
momentum?

* How to construct irreducible tensor operators that applies to
this basis?

* How to evaluate matrix elements for such operators between
these basis states efficiently?

* How to transform eigenstates from one coupling scheme to an-
other, e.g. jj — LS]J?

There are a number of books covering the subject of angular mo-
mentum theory and Racah algebra for general many-electron sys-
tems. To select two, the well-known book on non-relativistic atomic
structure theory by Cowan [57] is very useful, in particular since
it connects the sometimes quite abstract angular momentum al-
gebra to the actual atomic many-electron problem in a clear self-
contained package. And, when in need, never doubt the exhaustive
compilation of angular momentum expressions and tensor algebra
by Varshalovich et al. [58].
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2.3 HARTREE ATOMIC UNITS

Before we begin discussing relativistic effects and many-body meth-
ods, we introduce the Hartree atomic units, which will prove espe-
cially convenient to atomic structure theory.

In Hartree’s system of natural units the numerical value of four
fundamental constants are set to unity; the electron mass, m, the
electron charge, e, the reduced Planck’s constant, h, and the Coulo-
mb’s constant k. = 1/(47meq). These definitions will then clear
many of the mathematical expressions appearing in atomic the-
ory of unnecessary constants, but they might also cause confusion
when left out, so we will sometimes include them nevertheless.

The atomic unit of energy is the Hartree, Ey,, which is equal to two
Rydbergs3, Ey, = hca/ap = 2Ry ~ 27.2 eV, where o« = 1/137 is
the (unitless) fine-structure constant, and the Bohr radius ag =~
0.52 A, is the atomic unit of length. Mass is measured in units of
the electron mass, m ~ 9.1 x 1073 kg, and charge in the electron’s
charge, e =~ 1.6 x 10~ 17 C. In addition, the atomic unit of time is
h/Ep &~ 24 x 10718 s and the unit of velocity is then apEy/h =
ca~~c/137 =~ 2.2 x 10 m/s.

2.4 MOTIVATION TO A RELATIVISTIC TREATMENT

Relativistic effects clearly become more and more apparant the
faster particles move - with fundamental implications such as mass
increase and time dilation. It was long thought that a relativis-
tic treatment of the relatively slow-moving (v < c) valence elec-
trons, which determine most physical and chemical properties,
was unimportant. Even Dirac himself argued that relativistic ef-
fects would be negligible in atomic physics and chemistry in the

Rydberg used a slightly different value for the electron mass and charge in his
definition of atomic units.
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opening paragraph of his most cited paper from 1929+:

"This general theory of quantum mechanics is now almost
complete, the imperfections that still remain being in connec-
tion with the exact fitting of the theory with relativity ideas.
These give rise to difficulties only when high-speed particles
are involved, and are therefore of no importance in the consid-
eration of atomic and molecular structure and ordinary chem-
ical reactions, in which it is, indeed, usually sufficiently accu-
rate if one neglects relativity variation of mass with velocity
and assumes only Coulomb forces between the various elec-
trons and atomic nuclei. The underlying physical laws nec-
essary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and
the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It there-
fore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can
lead to an explanation of the main features of complex atomic
systems without too much complications."

— P. A. M. Dirac [60]

Today, despite Dirac’s prediction, many of us rely on the theory of
special and general relativity almost every day through technical
innovations, such as the GPS system which. Accurate prediction of
geographical location, necessary for e.g. self-navigating robots or
precise clock-synchronization, depend heavily on relativistic cor-
rections. This is of course hard to relate to since they are hidden
in the software in e.g. the technical apparatus on-board satellites -
but there is a much more hands-on example, and that is the yellow
shimmering color of solid gold.

The lure of gold has been the downfall of many - from alchemists
persistent endeavor to achieve transmutation, to gold diggers filled
with false hope during the 19th century gold rush. But, as we will

4 See also the analyze of Dirac’s famous paper by Kutzelnigg [59].
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see, if it was not for relativistic effects, gold would actually be
boringly grey-ish like the majority of the other metals.

The importance of relativistic effects in atomic physics, chemistry
and solid state physics in general, and of gold in particular, has
recently been highlighted by Gorin and Toste [62] and reviewed
in numerous articles, especially by Pyykko [63-66] (who also re-
cently suggested a new relativistic periodic table up to Z = 172
based on Dirac-Hartree-Fock (DHF) calculations [67]), but also by
Schwerdtfeger [68] and Autschbach [69] and many others.

In the following we will try to motivate our usage of a relativis-
tic quantum mechanics in two steps; first by a simple argument
in which we combine the Bohr’s simplistic atomic model with the
special theory of relativity, and then by comparing radial electron
densities and energies from non-relativistic HF with those from
relativistic DHF calculations. We then relate the findings to the
band-structure and reflectivity of solid gold in a qualitative man-
ner.

2.4.1 The Relativistic Bohr Model

One of the most basic consequences of special relativity is that the
mass of a particle increases towards infinity as its velocity, v, ap-
proaches the speed of light c. Mathematically the relativistic mass
is expressed as

mr—m/\ﬂ—(v/c)z, (2.4)

where m is the mass of the particle at rest (m = 1 a.u. for an
electron). In a simplistic Bohr picture of a hydrogenic one-electron
atom, the average velocity, energy, and orbital radius of an atomic
electron, are given by

(v) = Z/n, (r) = Z/ [mdv}z} , (BE)= —mTZZ/ [an} (2.5)
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in atomic units, where n is the principal quantum number, and m,
is the relativistic electron mass (2.4).

The gold atom has a nuclear charge of Z = 79 and its atomic
ground-state has the electron configuration

152252 2p®.. .55 5p®5d'%6s,

in standard spectroscopic notation (nl)", where 1 is the orbital
angular momentum quantum number and w the subshell occupa-
tion. Its 1s-electrons, which are closest to the nucleus and subject
to strong electrostatic interaction from all 79 protons (ignoring the
small shielding from the other 1s electron), have, according to (2.5)
a speed of 58% of c (v/c =79/137 in a.u.). Using this in (2.4) gives
a substantial 22% mass increase, which implies a decrease of the
Bohr radius from 1/79 ~ 0.013 a.u. to 1/(1.22 x 79) ~ 0.010
a.u., that is about —18%. This relativistic radial contraction, which
applies to, at least, all s and p~ (pj—7,2) orbitals, then results in
greater ionization energies of these electrons. We will return to
this shortly, for now we just note that the linear dependence on the
electron mass in the total energy as predicted by the relativistic
Bohr model (2.5) implies a —22% decrease in the total energy of
the 1s electron - that is, an increased binding energy.

2.4.2 Direct and Indirect Relativistic Effects

Being an inner-shell electron, the 1s electron in heavy elements is
obviously strongly relativistic. But how does relativity affect the
much more physically and chemically active outer electrons, such
as the 5d and 6s electrons in gold? To answer this we perform a
non-relativistic HF calculation and compare the results with those
from a relativistic DHF calculation.

Starting with the radial expectation value, we get for the 6s orbital
that
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from which it is clear that the 6s orbital undergoes a relativistic
contraction of -17%. This so-called direct relativistic effect affects all
s and p~ electrons since they all have a non-negligible density in
the vicinity of the nucleus. The contraction can clearly be seen if
we plot the radial electron densities of 6s from HF and DHF wave-
functions, see Fig. 2.1a.

For the 5d orbital on the other hand, where both the relativistic
orbtials are considered, we get

M =154au — @E4r=162au, (FR4=154au

So for 5d the effect is apparently smaller, but interestingly enough
we see, not a relativistic contraction as in the 6s-case but instead, a
radial expansion. This is the result of a, so-called, indirect relativistic
effect caused by the increased screening of the nucleus by the rela-
tivistically contracted s and p~ electrons. This effect can be seen for
many electrons with high angular momentum, which are radially
located relatively far out from the nucleus. Just like for 6s, a com-
parison between the non-relativistic and relativistic radial densities
for 5" shows a small expansion in its radial distribution, see Fig.
2.1b.

As an example of an observable relativistic effect, consider the ion-
ization energy of neutral gold. In a relatively simple model one
can predict the ionization energy from the difference between the
ground-state energy of singly ionized gold, Au*, with that of neu-
tral gold and compare the non-relativistic and the relativistic re-
sults. The ground state of Au* has the configuration 5d'° and neu-
tral gold an additional 6s electron. From the HF model the non-
relativistic ionization energy becomes 5.92 eV, while the relativistic
DHEF calculation, including the Breit interaction and leading order
QED effects, results in 7.65 €V - that is an increase of 29% towards
the experimental value at 9.22 eV [70], mainly explained by the rel-
ativistic contraction of the 6s electron. Adding contributions from
electron correlation makes the relativistic result converge towards
and reach the experimental value, which is not the case for the
non-relativistic model.
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m 65 Non-relativistic (HF) : gj+ Eoln;}”e_latt_lVE]S:;llf"(:f){F)
elativistic

m 6s* Relativistic (DHF)

0 2 4 6 8 10 0 2 3 4 5

r[a.u.] r[a.u.]

(a) Direct effect: contraction of 6s (b) Indirect effect: expansion of 5d

Figure 2.1: Comparison between non-relativistic and relativistic radial
densities of 6s and 5d electrons from HF and DHF calculations.
The contraction of 1s is shown in the (b) inset plot (-12% in
this model), which, together with the other s and p~ orbitals,
results in the radial expansion of 5d and other high-1 orbitals.
Note that only 5d* is included since the relativistic effect on
5d” is negligible in this case.

2.4.3 The Relativistic Yellow Color of Gold

But what about the original question - what actually makes solid
gold "golden"? The answer is hidden in the band-gap between the
top of the filled 5d-band and the Fermi level in the half-filled 6s-
band. For a single gold atom we know that the absorption of the
blue light in gold is due to a radiative transition in which a 5d elec-
tron is excited to a 6s electron, or more accurately the magnetic
dipole transition 5d'°6s — 5d?6s?. The critical parameter here is
then the energy difference between these two configurations which
is related to binding energy of the 5d and 6s electrons which in
turn depends on their radial density distribution, as was shown
in Fig. 2.1. Since the 5d-electrons are slightly moved upward in
the energy spectrum by the indirect relativistic shift induced by
the increased screening from the inner electrons, whereas the 6s-
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Figure 2.2: Schematic spectral reflectance curves for relativistic (solid yel-
low line) versus non-relativistic (dashed grey line) gold in solid
form. The non-relativistic curve has a behaviour much similar
to the true curve for silver. The relativistic wavelength shift
corresponds to a shift in energy of about 1.5 eV [66] and is
responsible to why gold is golden and not silvery.

electrons become tighter bound by the direct relativistic radial con-
traction - the band-gap becomes smaller.

In a non-relativistic model, the energy separation between the 5d
and 6s bands lies in the UV region which then is shifted towards
the middle of the visible energy-range by the relativistic effects.
Thereby it will absorb all blue wavelengths while all yellow and
red wavelengths are reflected. Fig. 2.2 shows a schematic plot of
the relativistic and non-relativistic reflectivity, illustrating the im-
pact of this relativistic shift on the perceived color of gold in solid
form. Non-relativistic gold is therefore white, just like silver and
the majority of the other metals, and the yellow color of gold is
indeed a product of relativity.

2.5 THE ATOMIC MANY-BODY HAMILTONIAN

The atom is ultimately a mash-up of charged particles and pho-
tons, and as such it can be described by a combination of QED
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and many-body physics - two parts with a seemingly complicated
relationship. The "best" fully relativistic covariant Hamiltonian we
know of is the Bethe-Salpeter equation, first introduced for bound-
state problems in 1951 by Salpeter and Bethe [71, 72] and by Gell-
Mann and Low [73]. This equation does, in principle, predict all
kinds of electron correlation and QED effects.

The Bethe-Salpeter equation is however extremely hard to solve
for a number of reasons, essentially due to its theoretical formu-
lation in relation to how one normally treats many-body systems
in quantum mechanics. One major problem is that the equation is
based on field theory and therefore lacks a direct connection to the
conventional Hamiltonian approach of relativistic quantum me-
chanics. Another intricacy is that its solutions, which are on four-
component form, involve individual time variables for two parti-
cles - one for the particle and another for its anti-particle, which
becomes even more complicated in the many-particle regime when
each particle has its own local time. This is very different from
the normal quantum-mechanical picture in which there is a single
time variable for the total system. There are nevertheless recent at-
tempts to construct a joint many-body-QED theory by extending
the Bethe-Salpeter equation to the multireference case resulting in
the so-called Bethe-Salpeter-Bloch equation. However, as interest-
ing as this subject may be (see the recent book by Lindgren for
details [51]) it falls outside the scope (and required accuracy for
our purposes) of this thesis.

A good working basis for a quantitative relativistic many-body
treatment has proven to be the Dirac-Coulomb-Breit (DCB) Hamil-
tonian, where the fully relativistic electron-electron interaction is
replaced by the regular Coulomb interaction, 1/7i;, and corrected
for by leading QED terms by the retarded Breit interaction [51] which
includes the transverse magnetic interaction as well as retardation
effects due to the finite speed of the exchanged virtual photons.

Consider a general Hamiltonian for a fixed number of electrons, N,
in a central nuclear potential, Vyuc(r), resulting from an extended
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nuclear charge distribution. It is convenient to express the many-
body Hamiltonian in terms of a sum over one h; and two-particle
hi; operators,

N N

H=> hi+) hy. (2.6)
i i<

The one-particle term is usually taken as the Dirac Hamiltonian,

hP = co - pi + Bic? + Vaue(ri), =V, (2.7)

where a; and 3; are the Dirac matrices for particle i. The Dirac-a
is a three component vector of matrices with components

ocs=<02 GS), S=%X,Y, 2 (2.8)

where 0, is a (2 x 2) zero-matrix, and o the Pauli matrices,

[ 01 [0 = (1 0 (
x=\q 0 )=, o) =" o 1) @9

The Dirac-f3 matrix is a diagonal matrix defined as

ﬁ:<(])§ _0]22>,where12:<2) ?) (2.10)

The two-particle Hamiltonian can as a first approximation be repre-
sented by the instantaneous electron-electron Coulomb interaction

hG =1/ry =1/ =1y, (2.11)

which together with the single-particle Dirac operator hP, gives
the extensively used Dirac-Coulomb (DC) Hamiltonian,

N N

DC __ D C

H =3 hP+) h§. (2.12)
i i<j

5 It is important for heavy nuclei to replace the point-like representation and use an

actual extended representation of the nuclear charge, such as the Fermi distribution.
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2.5.1  The Coulomb Cusp Condition

Note that the Coulomb interaction is singular for r; = r; such that
the DC Hamiltonian diverges to infinity whenever two electrons
coincide, i.e. each electron is surrounded by a classically forbidden
region known as the Coulomb hole.

As a simplified illustration, inspired by Knowles et al. [74], con-
sider a non-relativistic model of the He-like two-electron system
for which highly accurate wavefunctions are easily constructed.
The non-relativistic two-electron Hamiltonian can for a point-like
nucleus of infinite mass be written,

2
1 1
H= (v%z_)+, (213)

in Cartesian coordinates with the origin at the nucleus, with sin-
gularites in the inter-electronic repulsion term at r1; = 0 and in
the two attractive nuclear terms at r; = [r;j| = 0. For the left-hand
side of the Schrodinger equation H\{» = E1p to remain finite at these
points, the "infinities" must be canceled by equal "infinities" of op-
posite sign. This is equivalent to that the local energy,

H'l.l)(T],T'Z)
P(ry,rp) 7

remains constant and equal to the eigenenergy, E, at all points in
space. Since the electrons are not always close to the nucleus, the
only remaining terms that can accomplish this cancellation are the
kinetic operators —V?/2 —V3/2. The Schrodinger equation then
implies that if these operators are to produce such infinite local
energies, the wavefunction must be non-differentiable at the coales-
cence points.

e(ry,m2) = (2.14)

To analyze the effects the singularities have on the wavefunction
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we follow Knowles et al. and transform to center-of-mass and rela-
tive coordinates,

1
Rzi(ﬁ +12), T=T-T (2.15)
which gives the Hamiltonian,
o1, 22 > 1
—*ZVR*E*E*VrJ“; (2.16)

The ground-state of He-like systems (1s2'S) is spherically sym-
metric, such that one can approximate the wavefunction by simple
expansion in r around r = 0 at a given distance from the nucleus,
say 1 =713 a.u.,

2

b=ap+air+arr-+... (2.17)

Insertion in the Schrodinger equation gives [74, Eq. 17],
1
0:;(a0—2a1)+(a1—6(12—4/R—E)+r(... (2.18)

In order for the energy expression to be finite across r = 0, then
the terms that multiply 1/r must cancel, such that ap = 2ay, or,

[

1
or =¥

, (2.19)
r=0 2

r=0

a result known as the inter-electronic Coulomb cusp condition. This
implies that the wavefunction has a linear dependence on r as the
electrons move away from eachother in any direction, implying
a characteristic discontinuous first derivative in the wavefunction
for spatially coinciding electrons. The inter-electronic cusp in the
He-like ground-state wavefunction is visualized in Fig. 2.3 for fixed
electron radii [r1| = [r;| as a function of the relative angle 6 between
™ and Ty .

The Hamiltonian (2.16) also provides an analogous nuclear cusp
condition, representing the coalescence of the electrons with a point-
like nucleus,

. =—ZP(r; =0), (2.20)

ari Ti:O
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-Tt -Tt/2 0 /2 m

Figure 2.3: Schematic representation of the spherically symmetric He-like
1S ground-state wavefunction (solid thick red line) plotted at
fixed radii |r1| = [rz| as a function of the relative angle 6 be-
tween 11 and 1. The exact wavefunction is compared to a
mean-field HF solution which completely fails to account for
the cusp behavior at r1; = 0 & 8 = 0, but may be improved by
a successively enlarged CI wavefunction (thin solid gray lines).

so that the singularities at the nucleus are balanced by kinetic
terms proportional to 1/75.

While the singularity at vy = 0 due to the nuclear cusp can be
treated exactly, the description of the non-smooth behavior in the
the wavefunction at ri; = 0 poses a major obstacle to computa-
tional models, and is the main underlying reason for the slow
convergence of CI wavefunctions with respect to the size of the
many-body basis set expansion.

The problem can be circumvent via explicitly correlated wavefunc-
tions in which the Hamiltonian is expressed in terms of interelec-
tronic distances 1ij, such as the Hylleraas method [75]. Such meth-
ods are however only feasible for systems containing up to a few
electrons in general, due to the rapidly increasing number of inter-
electronic coordinates.
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2.5.2 The Breit Interaction

The Coulomb interaction corresponds to the first order term in the
QED description of the interaction between two charged particles
via exchange of virtual photons. The next-in-line relativistic cor-
rections are given by the retarded Breit interaction, which adds to
the electrostatic Coulomb interaction contributions from magnetic
interactions as well as retardation effects due to the finite speed
of the exchanged virtual photons. This subject is indeed quite in-
volved, but the interested reader can find a relatively simple in-
troduction in the book by Strange [49, Ch. 10.1] before moving on
to the more rigorous derivations in e.g. the book by Grant [36] or
Lindgren [51].

The retarded Breit Hamiltonian (real part) can be written as [36,
Eq. (4.9.21)],

(oci - &) cos(wyjTyij/c)

() = - S
ij
cos(wijrij/c) —1

2 2
wiTy/C

+ (& Vi)(ocj -V]') (2.21)

in which wjjc = |e; — €j] is the difference between the one-particle
energies representing the energy of the exchanged virtual photon
between electron i and j. The gradient operator V; acts on the

spatial coordinates of electron i in the expressions r{; = r{ —1j and
Ty = vyl

By taking the long-wavelength limit wi; — O one retains Breit’s
original frequency-independent form [76] known as the instanta-
neous Breit interaction [36, Eq. (4.9.22)],

(i - 7i5) (o 'Tij)}

T‘i)'

1
h?j(o) =5 {“i oG+ (2.22)
i

which neglects effects to o and higher orders, but is sufficient
in most cases since the corrections from the frequency-dependent



2.5 THE ATOMIC MANY-BODY HAMILTONIAN

part generally is very small. This is the commonly adopted form
of the Breit correction in the present work.

Adding the Breit-interaction, given by one of the forms above, to
the Coulomb interaction, gives

th = hg + h% (w), (2.23)

which together with the one-particle contributions in (2.6) is known
as the DCB Hamiltonian.

We finally would like to point out that the well-known quasi-relati-
vistic Breit-Pauli Hamiltonian, which is used to improve non-relati-
vistic one-component models, can be obtained from the DCB Hamil
tonian by decoupling of the positive and negative energy solutions
via a so-called Foldy-Wouthuysen transformation [36]. This reveals
quasi-relativistic one-electron terms like the spin-orbit interaction
and two-electron terms such as the orbit-orbit or spin-other-orbit
interactions.

2.5.3 Some Important Remarks

The DC and DCB Hamiltonians have proven to work well in atomic
structure calculations, but in using these one should be aware of
two things:

1. First of all, these Hamiltonians do not satisfy basic relativis-
tic invariance requirements, that is, invariance under Lorentz
transformations, in contrast to the initially discussed fully in-
variant Bethe-Salpeter equation. It is often claimed that cal-
culations based on these Hamiltonians are "fully" relativistic,
but this is only true up to first order in & in the DC case, or o?
in the case of the DCB Hamiltonian with the instantaneous
Breit interaction.

2. These operators suffer from another rather severe shortcom-
ing in that they are not bound from below - nothing prevents
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the electrons from "falling into the Dirac sea", take negative
energy solutions and thereby becoming positrons. Positive
energy solutions can therefore mix with and obtain contribu-
tions from negative solutions, which then has to be projected
out. This obscure phenomena came to be known as the The
Brown-Ravenhall disease [77]. In relativistic many-body perturba-
tion theory (RMBPT) the solution is to introduce projection
operators in the DCB Hamiltionian which is known as the
No-Virtual Pair Approximation (NVPA) [78]. See Heully et al.
[79] for a discussion on the importance of including negative-
energy states.

However, in self-consistent field (SCF) calculations of DHF type,
such as the method adopted in the present work, one can gen-
erally leave out the projection operators since the adopted
boundary conditions and resitriction on the one-electron so-
lutions effectively excludes the negative energy solutions [36].

2.5.4 Radiative QED corrections

Interactions between an isolated atomic system with the QED vac-
uum field should at least be treated up to the same order in « as the
Breit interaction. The dominant radiative QED contributions, of or-
der o?, are the one-loop electron self-energy and vacuum polarization
corrections.

The electron self-energy corresponds to the interaction of the atomic
electrons with their own radiation field. There is however no gen-
eralized expression, or operator for that matter, of the self-energy
for an N-electron atom, so one has to resort to values from hydro-
genic calculations. The total contribution from the self-energy can
then be obtained by summing up such one-electron contributions
[80], in the simplest picture scaled by a screened nuclear charge,
and weighted by the generalized occupation number in the many-
electron wavefunction.
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The vacuum polarization is the additional screening introduced by
the electron-positron pair-production in the field of the nucleus.
The situation is similar to the self-energy in that there is no actual
many-electron operator which can be included in the total Hamil-
tonian. The vacuum polarization is instead usually accounted for
by correcting the nuclear Coulomb potential, using e.g. the Uehling
(second-order) and the Killén-Sabry (fourth-order) potentials [81]).

It should be noted that Shabaev et al. [82] very recently suggested
a non-local QED operator, which they also made publicly avail-
able last year via the Computer Physics Communications International
Program Library (CPC-IPL) [83] as a general Fortran routine: QED-
MOD [84]. This should allow for a straightforward inclusion of
radiative one-loop corrections in general many-body eigenvalue
problems based on the DCB Hamiltonian.

2.5.5 Nuclear Motional Corrections

It is implicit in the above formalism that the nuclear mass is infinite.
There are however cases when one must include the effect of a
finite nuclear mass on the atomic energy levels, i.e. corrections to
the atomic structure due to the motion (recoil) of the nucleus.

The lowest order nuclear motional effects are usually separated into
the normal and specific mass shift, which can be written as gen-
eral operators and included in relativstic many-body calculations
[85]. Higher order corrections have been derived independently by
Shabaev [86, 87] and Palmer [88], leading to the so-called recoil
operator. In addition to the nuclear motional corrections, there is
also the field shift arising from the change in nuclear charge distri-
butions between different isotopes. Information about the charge
distribution of a certain isotope can be extracted from observations
of the field shifts in combination with a theoretical model for the
atom and for the nucleus, as demonstrated by e.g. Papoulia et al.

[89].
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These effects have however not been investigated in this thesis, and
are just briefly mentioned here for the completeness of the present
general discussion on atomic structure.

2.6 REDUCTION TO RADIAL EQUATIONS

It is conventional in atomic structure theory to attack the general
many-electron problem by assuming that all electrons move in-
dependently of each other in an average field due to the nucleus,
Vhue(T), and the other electrons, u(r). For now we assume the av-
erage electron potential to be common to all electrons in differ-
ence from e.g. HF where it is non-local. This is the well-known
independent-particle model. The situation is simplified further by ap-
plying the central-field model in which it is assumed that the average
electron field is central, u(r) — u(r), so that each individual elec-
tron moves in a total central average potential due to the nucleus
the other electrons,

Vav (1) = Viue(T) +u(r).

By adopting these approximations we may modify the one-electron
Hamiltonian (2.7) according to,

hP = coi - pi+ Bic? + Vay(ri). (2.24)

This allows for the following separation of the DC Hamiltonian,
(2.12),

Ho =Y [ hP

HPC =Ho +Hy;
Hy = ZiN<j rlT] _ZlN Vay(T1)

(2.25)

Now, assume that a set of orbitals {4, (qi)}, where a; is a quantum
label and q; = (ri, 0;) as usual, satisfy the single-particle Dirac
equation, based on the modified Dirac operator (2.24),

hPda,(qi) = €a, da,(qi) (2.26)
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with eigenvalues {eq,}. These approximations imply that the N-
electron eigenfunction of Hy can be written as a product of such
orbitals (which remains to be anti-symmetrized),

¢a1 (q1)¢a2(q2) d)aN(qN) (2-27)

with a total eigenenergy given by the sum of the corresponding
one-particle energies,

0
Egh)az...aN =€q; T €a, ...t €Eay- (2.28)

Futhermore, the central-field formulation of the average potential
results in a separation of the radial, angular and spin coordinates
such that one can write the above orbitals as products of radial and
a spin-angular functions.

The spin-angular functions, called spherical spinors, Qj11, (0, ), are
formed from products of spherical harmonics, Y1, which are eigen-
functions of the orbital angular momentum operators 12 and 1.,
and spinors, X,,, which are eigenfunctions of the spin operators s?
and s, . These functions are defined as two-component vectors with
two possible values j =1+1/2,

Qii1/21,m(0,¢) = H;ﬂ - Yim—1/2(6, ) (2.29)
\/ %Ylerl/z(e/ d))

Qrfom(@d) = Lm‘]/zY‘"‘*l/ O o)
%Ylm+1/z(er d))

for spin up and down states respectively. The spherical spinors are
eigenfunctions of o -1, and therefore also of the operator,

K=-1-0-1, (2.31)
where o is the vector of Pauli matrices (2.9), so that

KQj1m (0, d) = kQj1m (0, d) (2.32)

37



38

RELATIVISTIC ATOMIC THEORY AND METHODS

with eigenvalues k = F(j +1/2) for j = 1+ 1/2. The k quantum
number therefore collectively denotes both the orbital | and total an-
gular momentum j. This allows for the more compact, yet unique,
notation Qj11,(0,d) = Qum(0,d). The spherical spinors are or-
thonormal in k and m,

7 27
Jo sinejo Ql, (6,0)Qm (6, ) d0dd = by /Smm: (2.33)
and since the spherical harmonics are eigenfunctions of the parity
operator, P, with eigenvalues, m = (—1 ), so are also the spherical
spinors; PQgm = (—1)'Q«m. Note that the +«-spinors differ by
one unit of orbital angular momentum, and are therefore of oppo-
site parity.

Total one-electron eigenfunctions to the central-field Dirac equa-
tion (2.26) can then be defined by combining spherical spinors with
radial functions to form 4-component vectors called Dirac-orbitals,

T Pac(MQum(6,¢)
(q) = - " 2.
Orm) T\ 1Qnk(T)Q—km (6, d) (234)

where q = {r, o} and 1 is the imaginary unit. The non-degenerate

Ink) < |njl) eigenstates are usually labeled by the spectroscopic

notation,

1s1,2, 2P1,2, 29372, 3812, 3P1/2, 3932, 3d3/2, 3d5 /5 - - .,

where n is the principle radial quantum number (which together
with 1 gives the node-structure of the radial functions), the letters
correspond to orbital angular momentum (or azimuthal) quantum
numbers

s,p,d,f,gh... & 1=0,1,23,45...,

and the subscript denotes the total angular momentum quantum
number, j.

The separation into radial and spin-angular functions has the im-
portant implication that the spin and angular dependent parts can
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be treated analytically, using the earlier mentioned angular mo-
mentum framework, and what remains is the determination of the
radial functions, Py« (1) and Qq«(1). Insertion of the Dirac-orbitals
(2.34) into (2.26) leads to the coupled first-order differential equa-
tions,

d K
(Vav + CZ) Pnk + C(dr - ) Qnk = €nkPnx

T
d « 2
—c a + ; Pnk + | Vav — ¢ QnK = €nKQnK (235)

which are to be solved for each electron, in the common average
potential, V,y, under the orthonormality condition,

J[PnK(r)Pn/K(r) + Qui(MQur ()] dr = by (236)

2.6.1 Example: the Central Coulomb Field

It is instructive to consider the special case when the average field
is taken as a simple Coulomb potential, Voy = —Z/7, for which it
is possible to solve this system of equations exactly®. The resulting
spectrum of eigenenergies is given by,

oYL
= mc? 2.
Ene Yin—k?2 (2:37)
o?z? otz (13
2 676

- [ el 0 ( z )

me [ 2n? 2n3 (k In ) TOx }
where the electron mass m = 1 in the atomic units used here,
v? = k% — a?Z? where the positive square root is chosen to en-
sure particle solutions, k = || and the expansion is in powers of

aZ. The first term in the expansion over «Z is simply the rest en-
ergy of the electron, the second the non-relativistic energy in a

6 See e.g. Ch. 2.7 in the book by W. Johnson [50].

39



40

RELATIVISTIC ATOMIC THEORY AND METHODS

Coulomb-field. The third term is the leading fine-structure correc-
tion which lifts the degeneracy between e.g. 2p;y ,, and 2p3,, in
hydrogen. Note that this expression has to be shifted by —mc? to
fit with the corresponding non-relativistic energies.

Fine-structure splittings such as in 2p is predicted well by the Dirac
equation, but the fact that the energy depends on ||, and not k, im-
plies a degeneracy between +k-states of equal n (and thus also j).
The most famous example of such a degeneracy is probably the
one between the 2sq,, and 2p; ,, states in hydrogen. Their energy
separation is predicted to be zero by the Dirac equation, while its
experimental value actually is a2 0.0354 cm ™. This discrepancy is
the well-known Lamb shift, which spurred major progress in theo-
retical physics in general and QED in particular, leading to the de-
velopment of the radiative QED corrections, such as the self-energy
and vacuum polarization discussed in Sec. 2.5.4.

The importance of the discovery and evaluation of the Lamb shift
is hard underestimate. In Dirac’s own words:

"No progress was made for 20 years. Then a development
came, initiated by Lamb’s discovery and explanation of the
Lamb shift, which fundamentally changed the character of
theoretical physics."

— P. A. M. Dirac [90, p. 27]

The complete analytic form of the Dirac-Coulomb wavefunctions
can be found in text books such as Johnson’s [50, Eq. (2.151-152)],
but as an example, consider the 1s; ,, (n = 1 k = —1) ground-state
in hydrogenic systems,

1 2Z

Prq(r) =/ ;Y1/r(zy+”(221‘)ye_zr (2.38)
1— 2

Q1) =5 ey (22 (239)
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where I" is the gamma function. Notice that the ratio between the
two functions is ~ 2/aZ ~ 2 x 137/Z so that Qn«(r) is several
orders of magnitude smaller than Py« (r) for low-Z. Py« (r) and
Qnk(r) are therefore referred to as the large and small components
of the Dirac wavefunction respectively.

It can be shown that the number of nodes in the large component,
Pnk (1), is given by (n —1—1), just as in the familiar non-relativistic
case. The small component, Qn«(r), has (n—1—1) nodes for k < 0,
but one more, (n —1), for k > 0. The node structure is indispens-
able to the implementation of SCF methods such as HF, essentially
to ensure that the physical states of interest have been found.

Finally, it should be clarified that the energy spectrum E > mc?

given above is just one half of the actual energy spectrum predicted
by the Dirac-equation. As was mentioned earlier in relation to the
Brown-Ravenhall disease in section 2.5.3, it also has a corresponding
set of negative solutions, E < —mc?, referred to as Dirac’s "negative
energy sea". These solutions represent anti-particles, manifested in
the wavefunction through a sign-change in 'y, which in turn results
in a swapped relation in magnitude between the large and small
radial components.

In order to prevent particles from falling into the negative energy
sea in an attempt to minimize their energy, Dirac famously argued
that these energy states actually are filled, and that regular par-
ticles correspond to excitations in this field, leaving holes repre-
senting anti-particles. This line of argument has (arguably) mostly
been confusing to the atomic structure community, while electron
holes is an important concept in e.g. solid state physics, where for
example both negatively charged electrons and positively charged
holes can carry current in doped semi-conductors, or compound
particle-hole states represent localized quasi-particles called exci-
tons.
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2.7 THE MANY-BODY BASIS

Before turning to the MCDHF method, we introduce the configurati-
on state function (CSF) many-electron basis and argue for the advan-
tages of using angular-momentum coupled basis states of definite
total angular momentum.

2.7.1  Coupled vs. Uncoupled Basis Sets

The simplest form of an anti-symmetric N-body product wave-
function (2.27) which also obeys the Pauli exclusion principle, is
arguably the N x N Slater determinant (SD),

VP (q192...qn; araz ... an)

(ba] (q]) d)Cl] (qZ) d)a] (qN)
— L $a (q]) $ba (qZ) s ba (qN)
SN L e
¢aN(Q1) d)aN(qZ) d)aN(qN)

where ¢q,(qi) is a Dirac orbital (2.34) for the i:th electron, and
ai & nikimy < nylijymy. Once the radial orbitals are determined,
using e.g. the simplistic Coulombic mean-field model discussed
above, the determinental functions are completely known and ma-
trix elements can be evaluated using the Slater-Condon rules [91, 92],
or the extended Lowdin-rules to treat non-orthogonal orbitals [93].

As an example, consider the uncoupled determinental wavefunc-
tion of a two-electron system (here represented by a single generic
angular momentum, j, for simplicity). This function is then con-
structed from the product of two |j;m;) states that are eigenfunc-
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tions of the angular momentum operators jZ and j;, with eigenval-
ues ji(j; + 1)h? and myh,

V3P (q192; j1mijamy) (2.41)

1

There are however important advantages of instead using coupled
basis functions, which, by construction, are eigenfunctions of the
total angular momentum, ]2, its projection, J,, and parity, 7, op-
erators - and thus labeled by the tofal quantum numbers (JM).
As a simple introduction, consider again the two-electron example
above. A corresponding coupled set of states then can be formed
according to the vector-coupling expansion over the uncoupled
j1j2mym;-states corresponding to SD’s,

i1i2IM) = > Grizmimalin2IM)|iramime)  (242)

mi,mz

where the sums over m; and m; runs over all possible projections
of the associated j’s, the overlaps (j1j 2m1m2]j1j 2JM) are Clebsh-
Gordan coefficients and the coupled states are eigenfunctions of the
j%, j%, J2=(G1+j2)?and J, =j12 +j22 operators.

A coupled representation has a number of important advantages,
ranging from improved computational properties to physical inter-
pretability:

1. divide-and-conquer - a coupled basis directly breaks the inter-
action matrices into blocks of different J, which then can be
treated separately. This should speed up computations sub-
stantially.

2. labeling - the fact that the coupled functions are eigenfunc-
tions to the total angular momentum operators makes it im-
mediately apparent which | that is associated with a cer-
tain eigenstate, of e.g. the DCB Hamiltonian. This is advanta-
geous when comparing with experiments through databases
such as the NIST Atomic Spectra Database [19].
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3. coupling scheme - choosing the coupling scheme which best
represents the coupling conditions of the configuration un-
der investigation (e.g. jj- or LSJ-coupling) should give rela-
tively pure eigenvectors and it becomes possible to assign, in
addition to J, further quantum numbers to the eigenstate (e.g.
the LS-term, 25+11) .

4. basis transformation - it is also possible to transform between
different coupling representation via transformation matri-
ces. This is useful to provide insight about e.g. the above
mentioned coupling conditions, or simply because a certain
community is more familiar with a, say, LS]- than jj-labeling
of the energy levels and radiative transitions.

5. evaluation of matrix elements - the coupled basis functions can
of course be expressed in terms of the uncoupled functions,
and the coupled matrix elements could therefore be evalu-
ated as linear combinations of matrix elements between in-
dividual SD’s - cf. (2.42). The above listed advantages would
then be counter-balanced by the increased level of complexity
introduced in the determination of this linear combination.
This is luckily not the case due to the sophisticated mathe-
matical techniques of Racah [54-56] which allows for a direct
evaluation of matrix elements in the coupled representation.

6. qualitative estimates - coupled functions provide qualitative
estimates of physical observables, such as transition rates.

The abundant amount of symmetry information built into a cou-
pled basis, makes it possible to directly analyze what type of basis
states that are of importance when calculating energies or other ob-
servables. The book on non-relativistic computational atomic struc-
ture by C. F. Fischer et. al. [35] contains many good general guide-
lines.
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2.7.2  The Configuration State Function

For the reasons discussed in the previous section, we introduce
a coupled basis in the form of configuration state function’s (CSF’s)
corresponding to a general N-electron configuration consisting of
q subshells of equivalent electrons,

q
(n1K1)™1 (n2k2)™2... (ngkg)™e, Y wi =N (2.43)
k

where wy is the occupation number of the k:th subshell. The CSF’s
are explicitly anti-symmetrized products of Dirac orbitals, coupled
to total angular momentum via standard angular momentum cou-
pling techniques, in a similar fashion to the two-electron case (2.42).

The construction is however non-trivial in general due the anti-
symmetry requirement, and is done using a recursive procedure
for one subshell of equivalent electrons at a time. An antisymmet-
ric function for a subshell k of wy electrons is built from a lin-
ear combination of antisymmetrized (wy — 1)-electron functions
called parent states, coupled to a one-electron nk-state while pre-
serving antisymmetry. The (wy — 1) function is in turn determined
in exactly the same way; from a linear expansion of (wy —2) par-
ent functions coupled to a one-electron state. This iterative scheme
continues until there are no electrons left in the subshell.

The expansion coefficients in these expansions are determined via
the method of coefficients of fractional parentage?. These coefficients
are such that terms corresponding to unwanted symmetric prod-
uct states cancels in the total linear expansion, which results in a
fully anti-symmetric function for each of the individual subshells.
The coupled product of all these forms a partially anti-symmetric

The method of coefficients of fractional parentage is indeed quite complex at a
first glance. The author finds the example of p2 + p in Cowan’s book [57, Ch. 9.5]
illustrative.
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N-electron function that is anti-symmetric only with respect to co-
ordinate permutations within each subshell,

q
PYE(YJ™) = H (Quc| (ki) VR By Vi JikMi ) (2.44)
k
where Qi denotes the set of electron coordinates {q; }x belonging to
the k:th subshell, ¥y is the seniority number introduced by Racah
[55, 56] to distinguish between subshells (nk)" (or (nlj)™) up to
g", under some restrictions [52]. The supplementary label & is
necessary for subshells with j > 9/2. This is the so-called seniority
representation of \p¥; note that there is an equivalent quasi-spin rep-
resentation with advantages for the treatment of the spin-angular
part in complex systems, but which we leave out in the present
discussion (see e.g. [36] and references therein for details).

The additional anti-symmetrization required between the subshells,
is obtained via an explicit coordinate permutation scheme applied
to coordinates belonging to electrons of different subshells (Qy
Qs k # k) under the restriction that the ordering of the coordi-
nates within each subshell is in increasing order to avoid double
counting®. Finally we define the CSF as the normalized and totally
antisymmetrized N-electron function,

|
U = (@raz-.anyI™) = L ST g (ags)
’ P

where o = y]™M is a collective label as in (2.3), the square-root
pre-factor is a normalization constant corresponding to the num-
ber of unwanted permutations within each subshell, p is the parity
of permutation P, and y denotes the electron configuration, inter-
mediate coupling information (in jj-coupling, e.g. J12, J123 etc.), as
well as additional quantum numbers necessary to uniquely specify
the state. The total parity of the CSF is given by

m= (=)0 ()T (2.46)

In the non-relativistic case, see e.g. Cowan [57, Ch. 9.8], as well as the articles by
Fano [94] and Robb [95] for details.
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which is directly determined from the electron configuration (2.43).

2.7.3 Matrix Elements in CSF Representation

The general expression for the CSF is indeed quite involved. The
evaluation of matrix elements of symmetric operators may how-
ever be simplified greatly by taking advantage of the symmetry
properties built into the CSF basis. We limit the present discussion
to CSF’s belonging to the same electron configuration and note that
it is straightforward to adopt the same line of arguments for the
general case [57, Ch. 13.9].

We begin by noting that the anti-symmetry of the CSF’s implies
that the corresponding matrix elements of general one- and two-
electron operators f; and gi; are independent of the indexes i and
j, such that,

N
ST 3 RS = NS [0) @47

N
(WS 2 9y [ber) =

i<j

N(N—1
%<¢C;F‘9N71N‘¢§S/F> (2.48)

where the operators fn and gn_1,n act only on the variables qn
or qN-—1, qN by convention.

In addition, starting with the one-particle matrix elements (2.47), it
can be shown that all permutations P in (2.45) results in the same
numerical value for the matrix element. It is therefore enough to
consider elements between the much simpler partially antisymmet-
ric functions of basic unpermuted ordering, ¥, given by (2.44).
The matrix elements (2.47) thus reduce to a sum over groups of
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equivalent electrons belonging to different subshells k of occupa-
tion wy [57, Ch. 9.9],

q
(W] Zf W) ZWk<¢§\f<k)!¢§/> (2.49)

where f(y) operates on the last electron coordinate of the k:th sub-
shell.

The two-particle matrix elements (2.48) can be simplified in a simi-
lar manner, with the additional consideration of the fact that per-
mutations of electron coordinates in the functions %  can result
in non-vanishing interactions either within (1), or between (2) sub-
shells:

1. The permutations are equal, ? = P’, and such that the coor-
dinates N — 1 and N of occur in the same subshell, (1 ki )"k,

2. The permutations are such that the coordinates occur in dif-
ferent subshells, (ny ki )™* and (ny/ky/)"Wx/, and:

a) they are exactly equal (P = P’) such that the coordinates
qn_1 and qn occur in the same two subshells, k and k/,
in both § , and }§, , with (=1)PFP =41,

b) or they differ only in that coordinates of subshell k and
k' are swapped in }p§_ and 1§, , thereby differing by
a single permutation such that (—1)P*+P" = —1.

This two-particle matrix element thus consists of three terms,

(WS Z gij [WET) = Z Wilw <11’p\9 i) [W8) (2.50)
1<)

+ Z WieWi! [<¢§|9(kk’J‘w§'>_<¢§}9(kk/)’¢§gex)>} :
k<k/’

The first and second terms represent interactions within and be-
tween subshells belonging to wavefunctions ¥ exactly the same
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permutation ordering. The second so-called direct term represents
interactions between two different subshells. The third term is ex-
actly the same as the second except that the last coordinate of the
k:th and k’:th subshell is exchanged in the ket-state, denoted by the
superscript (ex). This matrix element is known as the exchange in-
teraction. The g(yy) operator acts on the last electron coordinates
of the k:th and k’:th subshells.

2.8 THE MCDHF METHOD

The corner stone of the MCDHEF approach is the approximate rep-
resentation of the atomic energy eigenstate in terms of an atomic
state function (ASF), given by a linear expansion over ncsg CSF’s

(2.45),

Mcsr

W FJTSE) = Y enly™) @51
r=1

where ¢, is the expansion coefficient of the r:th CSF belonging to
the i:th atomic state function (ASF), v, is a label used to uniquely
define the r:th CSF and the T is a label usually defined from the
dominating component in the expansion (in e.g. jj- or LS-coupling).
The ASF’s form an orthonormal set so that two eigensolutions i
and j satisfy,

czc)- = 511' ’ (2-52)

where ¢; = (¢1i, €24, -+ chSFi)Jr is an eigenvector representing the
i:th eigenstate.
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The energy of an atomic state I';]J]" under the ASF approximation
is given by

E?C = <ri]?i

HTIT)

_ aTypC
=c;H "¢,
Tcsr Tesr Mcsr TMcsr
_ DC __ 2 ypC DC
= Z Z CricsiHrs = Z CriHrr + Z CricsiHrs (2-53)
T s T T#S

where HP€ is the matrix of the DC Hamiltonian (2.12) in the CSF
representation. The DC Hamiltonian may be replaced by the DCB
Hamiltonian in a straightforward manner. It is in general useful to
consider the simpler diagonal and the off-diagonal contributions
separately, but since we try to keep the discussion as compact as
possible, we will describe them together.

The CI method simply diagonalizes the Hamiltonian matrix in a
representation of CSF’s built from fixed orbitals, leading to atomic
eigenstates given by the mixing coefficients of the ASF eigenvec-
tors ¢; with corresponding energy eigenvalues, £7¢. The MCDHF
method is essentially a sequence of CI steps during which the ra-
dial Dirac orbitals used to construct the CSF’s and thus the Hamil-
tonian matrix, are adjusted by solving a set of one-electron equa-
tions similar to (2.35). This corresponds to an iterative non-linear
procedure which is continued until self-consistence is achieved
in both the mixing coefficients and the radial orbitals. The full
MCDHEF scheme will be outlined after a brief introduction to the
calculation of the energy matrix elements.

2.8.1 Energy Matrix Elements

The matrix elements HYS in (2.53) can be expressed in terms of
spin-angular coefficients (which also contains effective subshell oc-
cupations), and radial integrals. They can be obtained in a simi-
lar fashion as in the methodology leading up to (2.49) and (2.50),
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but with additional consideration to off-diagonal contributions. As
usual the elements are separated in one- and two-body terms,

HPS =(v+]"M[Hys] ™M)
:thfbl(a,b)+z Z Vs caR (ab, cd) (2.54)
ab

k abcd

where e.g. a represents subshell ngkq and k is a parameter as-
sociated to the regular Legendre expansion of the inter-electronic
Coulomb potential,

1 Tk
— = E —P 0 .

where r— = min(rq,73), T~ = max(ry,r2) and 0 the relative an-
gle between 11 and r,. The sum over k has bounded limits which
depend on the total angular momenta j, and jp of the subshells
under consideration [36, Ch. 7.3].

The parameters t3}, and Vi, .4, are spin-angular coefficients. In the
special case of diagonal elements, the former is reduced to the
occupation number t7, = w{ of subshell a in the r:th CSF, just
like in (2.49). The evaluation of these coefficients is however much
more involved in the general off-diagonal case. All of the work
presented in this thesis, and to large extent the whole computa-
tional atomic structure community, relies upon the efficient deter-
mination of t and v via the latest angular-momentum methods
developed by Gaigalas et al. and the Vilnius group [96—98]. This
approach is based on a combination of second quantization in the
coupled tensorial form, angular momentum theory in the orbital,
spin and quasispin spaces, as well as graphical techniques.
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The radial one-body integral is given from the Dirac operator (2.7)
and the Dirac orbitals (2.34),

Hmb)-émwbﬁf{Pdﬂ[wmaﬂPuﬂ

The radial two-body integral is determined from an expansion of the
inter-electronic Coulomb interaction in terms of Legendre polyno-
mials (2.55), which results in the relativistic Slater integrals,
13 =1
R¥(ab, cd) = |~ ~[PalriPe(r)
o T

+Qa(1)Qc(1)]Y*(bd; 1)dr, (257)

with relativistic Y*-functions defined by,

Ye(bdi 1) =1 [ S [Py ()P d 8
(0 =] oy [PosIPa(s) + Qul)Qul)]ds . (258)

2.8.2  The Self-consistent MCDHF Scheme

To derive the MCDHF equations we begin by requiring the ASF
eigenenergy EP¢ (2.53) to be stationary with respect to variations
in the ncs; mixing coefficients ¢; and the sets of radial functions
{P(r)} and {Q(r)}, under appropriate orthonormality constraints.
Formally we apply the variational principle [53] to an energy func-
tional formed from the just derived DC matrix element (2.53) to-
gether with Lagrange multipliers, A, introduced to ensure radial
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normalization as well as orthogonality between the Dirac orbitals
with equal k, and thus between the CSF’s [36, 52],

F[{e), (PL{QY 177 = (T H* 1)) + Y 8rpkpAabCab (2.59)
ab

representing a single eigenstate I']™", where the orthornormality
constraint between subshell a and b is defined as

Cap = j [Pa(r)Py (1) + Qa(r)Qp ()] dr — Snmy = 0. (2.60)

As was hinted earlier, the MCDHF approach consists of two fun-
damental and very distinct phases - the CI phase and the orbital-
determination phase.

The CI phase:  For a given set of radial functions {Pr« (1), Qnk (1)},
initially given by e.g. screened hydrogenic orbitals, the require-
ment that EP° should be stationary with respect to the variations
in the mixing coefficients dc; subject to (2.52) leads to the energy
eigenvalue problem,

[HPC — €P°1]cy =0. (2.61)

This gives multiple solutions {c;, Y} among which the appropri-
ate one corresponding to the desired eigenstate I'J™* has to be se-
lected, since this will define the energy functional (2.59). A subset
of eigenvectors can be solved for via e.g. the Davidson algorithm

[99].

The orbital-determination phase:  On the other hand, for a given
set of mixing coefficients, ¢, the stationary condition of energy
functional F (2.59) with respect to the coupled variations in the
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radial functions 0Py« (r) and 8Qn«(r) leads to a the set of coupled
integro-differential equations - the MCDHF equations:

e (&%)
Cc

Pa(r)
(&+5) (vt -22) || Qal)
B Py (r)

= %eabéKuKbl Qb(T) ‘| ’ (2.62)

where wq is the effective occupation number of subshell a de-
duced from the CI step (2.61). The equations are then solved for
each subshell to obtain pairs of bound state radial functions Pr (1)
and Qn«(r), under the boundary conditions,

Pa(r=0)=0, Qq(r=0)=0
Pa(r—=00) =0, Qq(r—00)=0 (2.63)
P'(r—0)>0,

where the latter is chosen by convention. Positive energy solutions
can be enforced by essentially requiring Pn (1) to be larger than
Qnk(r) [100], e.g. given by the sign of v in (2.38) and (2.39).

The energy matrix €41, = €ngyn, is determined from the above
introduced Lagrange multipliers to ensure orthogonality between
orbitals of same k. The average and central-field MCDHF potential
is defined by its action on a radial orbital,

Vg (a; 1')R‘c3L = Vnuc(r)RfL —l—Y(a;r)RfL —l—XB(a,‘r) , (2.64)

where Rg(r) is defined as P4 (r) for f = +1 and Qq(r) for p = —1.
This potential is constructed from a radial nuclear charge distribu-
tion of choice, Vpuc(r), the direct term, Y(a;r), and the non-local
exchange term, X(a;r). The expressions for the generalized direct
and exchange potentials, involving in addition to diagonal terms
also off-diagonal contributions, are quite lengthy and as such we
do not give them here but refer the reader to Eq. (43) and (44) of
Dyall et al. [101], or alternatively Eq. (7.3.10) and (7.3.11) in the
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book by Grant [36]. Note the shift of —mc? in (2.62) with respect
to the previously derived independent particle central-field equa-
tions (2.35); introduced here for the solutions to agree with the
corresponding non-relativistic eigenenergies.

The secular problem (2.61) and the MCDHEF equations (2.62) have
to be solved simultaneously in an iterative SCF procedure until
convergence in the behavior of the radial orbitals as well as the
expansion coefficients.

A small modification of the single ASF MCDHF method via the so-
called extended optimal level (EOL) scheme [36, 101] allows for a si-
multaneous optimization of up to hundreds of eigenstates. This is
accomplished by defining an alternative energy functional from a
weighted linear combination of single-state functionals (2.59), such
that a corresponding set of eigenstates are optimized, instead of just
one.

The EOL energy functional is expressed in terms of the statistical
weight of each targeted eigenstate, i, such that it takes the form of
a weighted sum over n,s; eigenenergies,

(2] +1)Ee
)

+) BraxprabCab. (2.65)
ab

Tt [{e} {PL{QY] =

The EOL method is used throughout this work, but it should be
noted that there exists numerous other similar MCDHF schemes
for determination of multiple states, such as the extended average
level scheme which only accounts for diagonal elements in the vari-
ational process [36, Ch. 7.3].

The full MCDHF SCF scheme for calculation of n,g ASF’s in a
basis of ncsz CSF’s, can now be summarized in 7 steps:

1. Define energy expression: The energy functional (2.65) is de-
termined from an estimated set of mixing-coefficients vectors,
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{c§5t/ 1 = 1/ cecy Tl'ASF}'

. Calculate the MCDHEF potential: The total average potential V

(2.64) is calculated from an estimated set of radial functions,

{Pest(r)} and {QS(r)}.

. The orbital-determination phase: Solve the MCDHF equations

(2.62) in the just determined potential resulting in a new set
of improved radial functions , {P5*" (1)} and {Q%V (r)}.

. Improve radial functions: Obtain an improved set of radial

functions according to,

PESt(T) Pl’leW(T) PQSt(T)
a T-Ma a a a
( Qs(r) ) o )< Quew ) )*” < Q) )

where 0 < nq < 1 are damping/acceleration parameters,
dynamically defined depending on the current convergence
trend.

. The Cl-phase: ~Solve the secular problem (2.61) with a Hamil-

tonian matrix obtained from the new improved radial func-
tions, {P%(r)} and {Q%*(r)}. This gives a new set of mixing-

coefficient vectors, ¢{°".

. Improve eigenvectors: The set of mixing-coefficient vectors are

improved according to

e — (1— &) e + &icf™,

where 0 < & < 1 are damping/acceleration parameters.
Note that & is typically set to zero in practical implemen-
tations of the MCDHF method.

. Check convergence: 1f the improved set of mixing-coefficient

vectors {¢$™'} and radial functions {P%(r)} and {Q%¥'(r)} all
agree with the previous sets to within a specified tolerance,
then exit the SCF loop. If not, then restart at step 1.

This SCF procedure is illustrated in Fig. 2.4.
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Figure 2.4: The MCDHF SCF procedure, divided into 7 steps as described
in the text. The iterations are continued until convergence in
both the mixing coefficients and the shape of the radial one-

electron functions.
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2.8.3 Excited States - the HUM Theorem

The MCDHF procedure applies also to excited states via an ex-
tension of the regular variational principle to multiconfigurational
wavefunctions known as the Hylleraas-Undheim-MacDonald (HUM)
theorem [35]. Consider an expansion of a certain symmetry J™, the
HUM theorem then states that an increase of the basis-size from M
to M + 1, implies an inequality relation among the energy eigen-
values,

CEML SEMPT CEM L (2.66)

of the excited states,

{fwsr g™y i=1,.0k, }M

under the requirement that state k is orthogonal to all lower states.
Thus, for a hypothetically complete basis set representing the J™
symmetry under consideration, the k:th lowest eigenvalue of the
system of size M is an upper bound to the corresponding energy
of the k:th exact excited state,

Eoact <M, (2.67)

so that the approximate energy calculated for an excited state of
a certain symmetry, will always be an upper bound to the exact
energy of the same state. Note that the k — 1 lower states do not
have to be exact solutions for the theorem to be valid.

2.9 THE ACTIVE SPACE METHOD

Before moving on the last subject of this chapter which is classi-
fication of electron correlation, we outline a systematic scheme to
generate a CSF basis set in the so-called active space method:
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1. Define the multireference: The starting point of this approach
is to first identify the zeroth-order wavefunction {(©) for the
system at hand in terms of a set of important and strongly
interacting CSF’s. By strongly interacting we mean large mix-
ing coefficients for some eigenstate i, which to first order in
some interaction H are given by,

(W (v ) [H[W = (v0] ™)
Eo—E: ’
where ¥ (y]™) is some initial reference state and r # 0.
These CSF’s form what is termed the multireference (MR) set,
and should at least include the dominating CSE’s of each
physical state of interest, say 1s%2s%] = 0 for the ground-
state of Be-like systems. Additional CSF can then be included
in the MR to improve the zeroth-order representation, for
the Be-like ground-state that would e.g. be to add the two
1s22p% ] = 0 CSF’s. The construction of the MR constitute
one of the most crucial points in multiconfigurational meth-
ods; a subject to which we will return to in the following sec-
tion during the discussion about static electron correlation.

Cri =

(2.68)

2. Define an active set of orbitals: The next step is to define an
active set (AS) of one-electron Dirac orbitals consisting of at
least the orbitals which build the CSF’s in the MR set. A sub-
set of these which build the CSF’s dominating the physical
states, are required have the expected number of nodes, as
specified by the spectroscopic notation nlj and discussed in
Sec. 2.6.1. These are referred to as spectroscopic orbitals. The
remaining orbitals are classified as correlation orbitals. The cor-
relation orbitals are different from the spectroscopic ones in
the sense that they are not restricted to take a certain node-
structure; i.e. their n quantum numbers have no real meaning
and are just labels.

3. Define a set of substitution rules: The third and last step is to
define a set of rules describing what type of orbital substi-
tutions are allowed from the CSF’s belonging to the MR, to
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orbitals within the AS defined in step 2. In some more detail,
these rules typically specify the maximum number of substi-
tutions that are allowed from each of the subshells of the ref-
erence CSF’s. If one orbital is allowed to be substituted from a
certain subshell, it is called a single (S) substitution. Double (D)
substitutions correspond to the substitution of two electrons
belonging to the same or two different subshells. Three sub-
stitutions are called triple (T), four quadruple (Q) and so one.
The fact that the DC (or DCB) Hamiltonian is a two-electron
operator suggests that on one should at least include S and D
substitutions. Higher order effects are often better captured
by expanding the set of reference CSF’s in the MR.

The active space approach for constructing a CSF basis set, can be
summarized as follows,

{d)(niKi)/ 1 :1/ ceey Tl*AS}AS
+ {0 1=1, L, MR

+ [rules|

}CSF basis

— {Il)g), i=1,..., Ncsr (2.69)

If the space of CSF’s generated from the defined MR, AS and set of
rules, consists of all possible CSF’s allowed by the Pauli principle
and the present angular momentum coupling scheme, it is called
a complete active space (CAS). The CAS expansion easily takes un-
manageable proportions for larger AS’s, and further constraints on
the generation procedure would have to be imposed. A convenient
approach to deal with this is define additional restriction on e.g.
the subshell occupation numbers. This is called the restricted ac-
tive space (RAS) method [102] and is the most commonly adopted
scheme in practice.

Expansions of RAS type have the important property of being
closed under de-excitation, i.e. that the CSF’s which are generated by
replacing one orbital from subshell nk with an orbital from a sub-
shell n’k’ where n’ < n, already exists in the original set of CSF’s.
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This implies that RAS expansions can handle general orbital rota-
tions; a result which is of fundamental importance during orthog-
onalization of two independently optimized sets of orbitals via so-
called biorthogonal transformation techniques [103]. Such transforma-
tions are often necessary during calculation of parity-breaking ra-
diative transition properties (e.g. E1, M2 and E3 multipoles), since
calculations generally are performed for states of a single parity
at a time. We will return to this subject in the section concerning
radiative transitions in the following chapter.

2.10 ELECTRON CORRELATION

The most common starting point for solving the atomic many-
electron problem is probably the well-known HF approximation
with the anti-symmetric wavefunction represented by a single Slater
determinant. In this approximation, each electron is assumed to
move independently in a field determined by the nucleus and the
other electrons; there is, so to say, no correlation in the movement
of the electrons. With this in mind, the concept of correlation energy
was coined by Lowdin in 1955 [104] as the difference between the
exact energy to the non-relativistic many-body Schrodinger equa-
tion, Eexact and the single-determinant HF energy, EL5.

However, in the relativistic many-electron approach used in the
present work, we will define correlation energy slightly different;
the contributions from correlation will first of all be defined in the
regime of a relativistic DC (or DCB) Hamiltonian, possibly includ-
ing also contributions from leading order QED effects, instead of
the regular non-relativistic Hamiltonian. Another difference is that
we make use of the angular-momentum coupled CSF basis intro-
duced earlier, which can be represented by a linear combination of
determinants. With this set-up, our notion of electron correlation
energy is defined by,

corr __ pexact DHF
E =E - ECSF ’ (2-70)

61



62

RELATIVISTIC ATOMIC THEORY AND METHODS

1000 ;
= this work

o experiment
* RMBPT?2
800 { > RMBPT® r
-+ MCDHF
RPTMP
600 -

g Mx){/
= 400 o |
o WWW
© F‘_!rr"!
200 pamaeEnly -
(=}
>-0-0-0-0 0%
0 TN I
\“—ow 0 00000000000000000000
-200
50 5 60 65 70 75 8 8 90 95

z

Figure 2.5: Estimated absolute contributions from electron correlation to

the 4f2F° fine structure separation (0Ecorr = gmethod _ ERSE
where the "method" superscript should be replaced by the
corresponding label in the legend) for experiment and other
available theory (RMBPT® [105], RMBPT® [105] (from [106]),
MCDHEF [107] and relativistic perturbation theory with a

model potential (RPTMP) [106, 108]).

where B2} is the result from a single-CSF DHF calculation.

It is useful to separate electron correlation contributions into Fermi,
static and dynamic correlation:

1. Fermi Correlation ~ The correlation energy which arises from
the Pauli antisymmetry of the wavefunction - the Fermi statis-
tics. This contribution is accounted for already at the single-
determinental level and as such it is not classified as correla-
tion energy in the definition of Lowdin, but is mentioned here
nevertheless for completeness of the discussion.

2. Static Correlation ~ The part of the electron-electron interac-
tion which corresponds to the long-range rearrangement of
the electron charge density due to strongly interacting CSF’s,
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to first-order defined by (2.68), is called static correlation®.
This type of correlation is treated by the CSF’s included in
the MR set, as defined in Sec. 2.9. Systems with an abundance
of static correlation are generally unfit to treat via pure per-
turbative methods, and best attacked with non-perturbative
multireference approaches, such as CI or MCSCF, through a
carefully designed MR set™®.

Analyzing static correlation by the means of Z-dependent per-
turbation theory [35, Ch. 4.2] reveals that the CSF’s to be in-
cluded in the MR are the ones of equal parity and which
are built from a set of orbitals nk having the same princi-
pal quantum numbers, n, as the main reference state(s) of
interest. These CSF’s are said to belong to the complex, a term
coined by Layzer [109—111], which forms the most fundamen-
tal starting point for the construction of an appropriate MR
set.

3. Dynamic Correlation ~ The remaining correlation energy not
resulting from the bulk of strongly interacting CSF’s, is called
dynamic correlation.

a) Short-range Dynamic Correlation  The part of the dy-
namic correlation which is related to the representation
of the inter-electronic Coulomb cusp, arising from the
singularity of 1/ry; close to the point of electron coa-
lescence where ri; = 0 (see the discussion in Sec. 2.5.1
for further details). Fig. 2.3 illustrates this effect in the
He-like ground-state wavefunction compared to a HF
solution. The HF wavefunction lacks the cusp and there-
fore overestimates the probability for two electrons to be
close to each other, resulting in an overestimation of the
electron-electron repulsion energy. Contributions from

9 Static correlation is also known as near-degeneracy or non-dynamical correlation.
10 Defining the MR can indeed be a complicated task for complex systems of many
electrons. It often requires a detailed analysis of the system at hand since its form
can have a huge impact on the performance of the correlation model.
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short-range dynamic correlation are especially promi-
nent for pairs of electrons with opposite spin, i.e. singlet
states in LS] coupling, since the electrons are allowed to
occupy the same region in space.

b) Long-range Dynamic Correlation — The correlation in the
movement between electrons located far away from each
other; i.e. not in a cusp-environment.

Since a DHF solution is the starting point for most relativistic meth-
ods, it is often useful to compare different models by just the corre-
lation energy. As an example of this we use a result from one of the
papers in this thesis [Ay/[] on the ground-term energy separation
and the connecting forbidden M1 transition in Ag-like ions. Fig.
2.5 shows how the electron correlation energy contribution to the
4f 2F fine-structure separation varies along Ag-like iso-electronic
sequence for a calculation made by us, compared to experiment
and some other calculations.

2.11 CORRELATION CLASSIFICATION OF THE CSF’S

The representation of the atomic eigenstates in terms of ASF’s al-
lows for an additional classification of electron correlation, given
by groups of CSF’s analyzed with respect to the zeroth-order wave-
function, (9) formed from the MR set. For the present discussion
we restrict the MR to a single-reference state, 1\ (©) (yJ™). Most fun-
damentally we distinguish between those CSF’s that are formed
from S substitutions {{)($)} and those formed from D substitutions,

W™,

In non-relativistic theory it can be convenient to further classify
the {(5)} set into groups of CSF’s representing radial correlation as
well as spin and orbital polarization [35, Ch. 4.2.2]. S substitutions
from inner ns-subshells, representing polarization of the core, are
of fundamental importance to the calculation of atomic properties
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with a strong dependence the wavefunction in the vicinity of the
nucleus, such as hyperfine interaction or nuclear recoil effects. We
will return to the treatment of hyperfine interaction in Ch. 5.

In order to classify the set of CSF’s formed from D substitutions,
{p(P)}, we first need to divide the electron configuration into core
and valence subshells. Deciding on an electron core is directly re-
lated to the definition of the substitution rules in the RAS approach
in Sec. 2.9, and as such it is one of most important decisions in
the construction of correlation models. It is generally a good idea
to define all subshells belonging to the outermost shell (all sub-
shells with same principal quantum number) as valence subshells.
This might not always be possible for heavy nuclei with many elec-
trons, in which case the choice of core becomes a delicate task.
The situation generally becomes harder at the neutral end of an
isoelectronic sequence, and worst are the negative ions where the
amount of correlation energy is as large as it can be in comparison
with the central nuclear potential. The calculation of wavefunctions
and physical properties of negative ions is indeed a complex task
which requires much insight and experience with correlation cal-
culations (see e.g. the work on isotope shifts in the S~ and CI™
electron affinities by Carette et al. [112—-114]).

Let a and b be two occupied orbitals of a CSF in a MR set. The set
of CSF’s formed from substitution of a and b with virtual orbitals
in the AS may be classified according to different correlation types:

1. Valence-Valence Correlation ~ The orbitals a and b belong to
the valence subshells. CSF’s of this type represents corre-
lation among the outer electrons, and thus termed valence-
valence correlation (VVC).

2. Core-Valence Correlation ~ One of the orbitals a and b belongs
to the valence and the other to the core subshells. This group
of CSF’s represents interactions between the core and valence
electrons, and is therefore referred to as core-valence correlation
(CVQO).
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3. Core-Core Correlation  Both a and b belong to the core. These
CSF’s represents electron correlation within the core, thus
called core-core correlation (CCC).

2.12 CHAPTER SUMMARY

This chapter has aimed at introducing and motivating relativis-
tic many-body theory and methods for atomic systems, and the
MCDHEF approach in particular.

We first argued for the need of approximate methods due to the
complexity of the atomic many-electron wavefunction. We then
motivated the need for a relativistic treatment in heavy systems, or
systems which are sensitive to the inner electrons which move at
relativistic speeds. In this discussion we introduced the important
concepts of direct relativistic effects - contraction of inner orbitals -
and indirect relativistic effects - expansion of outer orbitals due to
the increased screening of the contracted orbitals.

Next we introduced the relativistic atomic many-body Hamilto-
nian. We discussed the Coulomb interaction and its reclusive cusp
condition - the discontinuity in the derivative of the wavefunction
at ry; = 0 which is very difficult to represent, and thus one of the
major challenges to many-electron methods. The Breit interaction
which represents transverse magnetic and retardation effects was
introduced to correct for the simplistic Coulomb-interaction. And
finally we discussed radiative QED corrections from one-loop elec-
tron self-energy - self-interaction via virtual photons - and vacuum
polarization - electron-positron pair-production in the field of the
nucleus.

After that we discussed the independent particle and central field
approximations which allowed for derivation of radial differential
equations and we showed the solutions for a simple Coulomb cen-
tral field potential. This was followed by a motivation and defi-
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nition of the angular-momentum coupled and explicitly antisym-
metrized many-electron CSF basis, and the basic ideas behind eval-
uation of one- and two-electron matrix elements in this representa-
tion.

We then introduced the MCDHF approach in some detail. We out-
lined the fundamental theory and summarized the self-consistent
procedure in seven steps. In relation to this, we outlined the ac-
tive space approach for a systematic generation of CSF basis sets.
We then finally ended this chapter by introducing and defining
the concept of electron correlation as a representation of many-
electron effects.
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RADIATIVE MULTIPOLE TRANSITIONS

In the theory of QED, electrons are limited to interactions with
photons (neglecting much weaker effects').

The ground-state for the electromagnetic field is known as the QED
vacuum. Taking interactions of the atomic electrons with this field
into account will perturb the stationary states described by e.g. an
ASF. Stationary energy eigenstates are therefore never true eigen-
states of the Hamiltonian describing the actual physical system,
resulting in non-zero overlaps of an excited state with e.g. the
ground-state, to which it will decay by emission of, at least, one
photon. This is why all atomic states, with the sole exception of
the ground-state, have finite radiative lifetimes. Without the funda-
mental interaction between charged particles (electrons) and pho-
tons?, as predicted by the theory of QED, isolated atoms and ions
would stay forever in their excited states.

It can be shown with time-dependent perturbation theory [50] that
the probability for a spontaneous emission of a photon per unit
time (in atomic units) due to the transition from a stationary ex-
cited atomic eigenstate ¥; to a lower state ¥, is given by,

Aji= 27T|<‘1’1}Hint|‘1’j>|2 Pi, (3.1)

Le. contributions from e.g. the weak interaction between electrons and Z° bosons,
and electron capture in which the nucleus absorbs an inner atomic electron so that
a proton transforms to a neutron under the emission of an electron neutrino, p +
e — N+ Ve.

The coupling strength between charged particles and photons is scaled by the fine-
structure constant, « ~ 1/137, which acts as the coupling constant for the electro-
magnetic force.
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a result known as Fermi’s golden rule, where p; is the density of
final states. Hi,¢ is a suitable many-body Hamiltonian describing
the electron-photon interaction,

N
Hint =) hine(x1), (3-2)
1

where the sum runs over all N electrons, x = (ct,r) is the space-
time four-vector. The interaction of a single electron with an exter-
nal free-photon field, hin¢(x1), is given by the scalar ¢ and vector
A potentials3,

Nint(x) = e{—ca-A(r,w) +d(r, w)}e ", (3-3)

where hw is the electromagnetic energy at the space-time point
x = (ct,r) and the dot-less 1 denotes the imaginary unit v/—1.

Apart from energies, the most important physical observable for
atomic systems, is probably the "intensity" of emitted or absorbed
radiation. The interaction between light and matter is central to
our understanding of the universe, which makes the quantum the-
ory of radiative transitions a fundamental part of atomic structure
theory. As an example, in order to analyze optical spectra from, a
stellar atmosphere to obtain information on element abundances
or temperatures, a detailed knowledge about the radiative transi-
tions are required.

In the following we closely follow the work of Grant [36, 115] and
outline how transition rates can be evaluated in a relativistic many-
electron framework.

3.1 THE FREE-RADIATION FIELD ON MULTIPOLE FORM

We saw in Eq. (3.3) that, in order to fully specify the interaction
Hamiltonian we need to find a convenient representation of the

3 Note that we have left out all gauge-dependent terms for the time being.
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scalar ¢ and vector A free-photon fields. In relativistic theory, the
fields are expressed in terms of the four-potential [36, Ch. 8.1.2],

ap (6 w) = (d(x; w), —cA(x;w)),, (3.4)

where p € {0,1,2,3} is a relativistic index. The four-potential is
required to satisfy the relativistic version of Maxwell’s equations;
the wave equation (I) and Lorenz (transversality) condition* (II),

I Oa,(x;w) =0
0 Beubsw) = 65
(II)  duau(x) =0,
respectively, where 0 = 0%9,, = (9/c dt)? — V7 is the d’Alembertian
operator in Minkowski space where implicit summation over co-
variant and contravariant indices are implied.

As was hinted in (3.3), the solutions exhibit harmonic time depen-
dence e ***. Considering the spacial parts, the wave equation (I)
has scalar plane-wave solutions with of the form ¢(r; w) = etkm)
where k is the wavenumber> satisfying k|2 = w?, which is con-
veniently expressed as an expansion over multipole operators [36,

Eq. (8.1.12)],
drq(mw) = (121261 ) *(2Zk+ 1) jiclwr/c) C5(0,0) (3:6)

where CE is the q:th component of a renormalized spherical har-
monic of rank k,

[ 4n
Cz(el (p) = mYk,q (e/ (P), (37)

and jy (wr/c) are Bessel functions given by the expansion,

(wr/c)* (wr/c)?
2k + 1! {1 T22k+3) } lwr/cl < 1. (3.8)

jilwr/c) = (

The Lorenz condition is frequently called the Lorentz condition because of confusion
with Hendrik Lorentz, who gave name to Lorentz covariance/invariance.

The tilde is introduced to clearly distinguish the scalar wavenumber k| = k from
the tensor rank, k.
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The gauge parameter Gy can in theory be set to any value without
changing the field equations [36, Ch. 2.6.3]. The two most common
choices are however,

G — { (k+1)/k Babushkin (length) gauge

1 Coulomb (velocity) gauge .

The scalar solution (3.6) and the Lorenz condition (II) (3.5), which
can be expressed on the non-relativistic form,

. 1 0¢
div A + 2t =0, (3.10)
gives three independent vector potential solutions [115],

cAﬁlq(r;w), and cAE}q(r;w), cAk,q(r;w), (3.11)

representing potentials of electric (e), magnetic (m) and longitudi-
nal (1) type respectively. Both A€ and A™ are polarized perpendic-
ular to the photons propagation vector such that A¢ -k = 0, and are
therefore referred to as transverse potentials. A! is polarized in the
direction of the photon propagation, which gives its name. These
solutions are mutually orthogonal with respect to integration over
the unit sphere.

Following Grant [36, Eq. (8.1.10-11)] one can express the potentials
explicitly in terms of compound spherical tensor operators,

k

CA (1 w) = VK2 +3) e CHT| i (wr/e)
q
(3.12)
— kT (k+1)(2k—1)[e®Ck_1]:jk1(wr/c)

Ay (1 w) =41k +3) [e ®Ck+‘}2jk+1 (wr/c)
(3.13)
kTt (k+1)(2k—1)[e®ck1]ij](wr/c)
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k K]*
AL (T w) = —5(2k +1) [C®C }qjk(wr/c) (3.14)
where,
k
[e © Ck:to,q ) (3-15)
q

are compound tensors of the photon polarization vector e = 1/ [r|
(which is perpendicular to the propagation vector k), and renor-
malized spherical harmonics (3.7), coupled to total rank k, and
jx(wr/c) are the Bessel functions given by (3.8).

It can be shown [115] that the solutions to (3.10) of electric type, A€,
are independent of admixtures from the longitudinal vector poten-
tial, Al, and as such freely set by the gauge parameter according
to,

Alegq (T,LU) — A]egq (T,(.U) + GkA]lgq (T,'(,U), (316)

while Akm/q (r;w) is independent of Gy. The scalar ¢y q and vec-

. l . . .
tor potentials Ay ,, Ay . and A7’ are irreducible spherical tensor
operators of rank k.

3.2 TRANSITION OPERATORS

Considering the three vector potential solutions on multipole ex-
pansion representation, we can separate the one-electron interac-
tion operator hin (3.3) into separate operators for multipole tran-
sitions of electric (Ek) and magnetic (Mk) type.

An effective Ek operator can be expressed on a generalized form
in terms of the gauge parameter Gy,

E(k k 1(k
ai™G = 0™ + 6.0 Y, (3.17)
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where,
Q&™(0) = —ca- AY (1} w) (3.18)
QY9 = o lr) —co- AL 4 (1 w). (3.19)

The Mk operator is given by the magnetic vector potential,

QgA(k) = —Cco - Akm,q (r;w), (3.20)

and is therefore gauge-independent.
E/M(K) . . .
The Q4 operators are 4 x 4 irreducible spherical tensor op-
erators of rank k, so that it is possible to exploit Racah algebra on
the corresponding matrix elements, e.g. to extract certain symme-
try properties with the Wigner-Eckart theorem.

In relation to this, Grant [115] discuss that for the gauge-invariance
of Ek transitions to be valid, the wavefunctions must satisfy local
charge conservation at each space-point x, i.e. that physically accept-
able wave equations must have a four-current density j* = (cp,j)
which satisfies the continuity equation,

aqu‘:@—i—divj:O (3.21)
ot

where p(x) is the electron density at x and j is the associated
electron current. Grant argues that, although this is true for ex-
act wavefunctions in general, it is well-known that wavefunctions
determined with multireference SCF techniques such as DHF or
MCDHEF, or their non-relativistic equivalents, give transition prop-
erties which are sensitive to the value of Gy. This can be attributed
to the fact that the each SCF orbital is determined from non-local
potentials coupled to the other orbitals, and as such the concept
of local charge conservation becomes much more complex in SCF
methods [115]. Nevertheless, a weak dependence on the gauge pa-
rameter is generally accepted as a good indication on that effec-
tively complete wavefunctions have been obtained.



3.3 MANY-ELECTRON MATRIX ELEMENTS

3.3 MANY-ELECTRON MATRIX ELEMENTS

The operators (3.17) and (3.20) define one-electron operators while
we in the end want to determine many-electron amplitudes in a
representation given by the ASF’s obtained from MCDHEF calcu-
lations. To accomplish this we first expand the matrix element in
terms of matrix elements between CSE’s weighted by mixing coef-
ficients. These are then in turn decoupled into one-electron matrix
elements [101, Eq. (60)],

e @R
= Z CriCsj Z d¥ o (4,3 (naka|[Q"H (W) |[npke ), (3.22)
TS a,b

where the dﬁlb(i,j)’s are the generalized spin-angular coefficients
discussed in the section on the MCDHF method. Note that the
many-electron transition operator on the left-hand side is denoted
with a tilde to distinguish it from the one-electron operator.

3.4 ONE-ELECTRON AMPLITUDES

The reduced one-particle matrix element in (3.22) is energy depen-
dent through the scalar, ¥, and vector A* potentials which are
expressed in terms of spherical Bessel functions jy+1(wr/c) for
the electric and longitudinal parts, and ji (wr/c) for the magnetic.

Following [36, Ch. 8.2.1 | we express the reduced one-particle ma-
trix element as,

<naKa||Qn(k)(w)Hanb> = (a||C*|[jo )M (w; Gy), (3.23)
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where reduced matrix elements of the renormalized spherical har-
monics (3.7) are given by,

(allC*fiv)

= (12 B D F + 1) (sz N j]b/2> , G24)

and Mi’gl(w ; Gk ) is a radial matrix element which can be expressed
in terms of three fundamental integrals, If and ], given by

(@) = [ 7 (PalnPolr) + QlrIQu (1) julwr/c) dr (329
(@) = [ (PalrQolr) £ Qu(nPo (1) julwr/c) dr (326

where jy is a spherical Bessel function (3.8).

The electronic multipole amplitude resulting from the interaction
(3.17) on radial Dirac orbitals,

ME,(w; Gy) = MEy (w;0) + GeMYp (w), (3.27)

can be expressed in terms of the radial integrals (3.25) and (3.26)
as follows,

k+1

ab(w;0) :1k{ r [(Ka_ KbH{il] —kIE,J (3-28)

k _
Vg [(Ka— ko)1, +(k+1)1k+1}}

ML, (w) = lk{(2k+ N - [(Ka —kp) T — kIE_J (3.29)

- {(Ka - Kb)II_._] —(k+ ])IE_._]} }
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The magnetic multipole amplitude due to the interaction (3.20) is
given by,

2k +1
wlw) = kT W(Ka — Kb)Iz . (3.30)

These radial matrix elements determines the total many-electron
amplitude through (3.23) and (3.22).

3.5 RELATIVISTIC TRANSITION RATES

Following the work of Grant® [36, 101, 115] the rate of spontaneous
emission of photons with multipolarity Tk = electric dipole (E1),
magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole
(M2) etc., due to the transition j — i of energy hw = (&5 — &;)
between two atomic eigenstates represented by ASFE’s,

s

’rj]jj;8j> = [T €, (3-31)

~E/M,k

induced by a relativistic multipole radiation operator Q / (w),
is given by

Tk

Aj—n(w)
. TT5
= Y AWML LM gy,
Mi Mj q

Note that the derivations by Grant often use Wigner’s covariant 3jm-symbol in-
stead of the regular 3j-symbol. The relation between these notations is

: ’ 1 :
) am (covariant) —mgqm (regular)

The more well-known regular form is used in the current presentation to avoid
confusion.
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- Y () [rurmai e m))
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2
<ty 0" )7
w ‘(U?I w)|INT ]>
=2 (?) 2k 1 1)91 (5:32)

This expression is derived under the assumption that space has
no preferred spatial direction, i.e. for an atomic system in free
space, such that an appropriate total transition rate is defined by
averaging over all initial degenerate projections gy, = 2J; + 1 and
summing over all final states. In second step we apply the Wigner-
Eckart theorem and in the last step we make use of the orthogonal-
ity relation between 3j-symbols [57, Eq. (5.15)].

The lifetime of a certain eigenstate j can be expressed in terms of a
sum over transition rates for all possible decay channels,

1
Zl Tk A]n—]il )

The branching fraction,

Q(IMk); = 1A (w), (3:34)

is the fractional contribution of a certain decay channel j — i to the
total decay rate from a certain excited state j. These two properties
are often the quantities possible to measure in an experiment, from

which individual transition rates A}l‘l can be deduced.

T = (3-33)

The line strength 8% is a fundamental quantity in non-relativistic
theory due to its energy-independent nature, and as such an im-
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portant measure in the evaluation of wavefunction qualities for ra-
diative properties. The non-relativistic definition of 8'* is simply
the absolute square of the corresponding non-relativistic reduced
transition matrix element,

. 12
85 tnon-rel) = ‘<FJTI||0”“‘) e I;w (3.35)

where O'(%) is the standard non-relativistic multipole transition
operator [35, 57]. The line strength can be used to express the non-
relativistic transition rate,

Tk
w ) 2k+1 Sij (non-rel) (3.36)

Tk
Aj—>i (non-rel) — Cx (? 9y,

where 8 is completely energy-independent, and the k-dependent
prefactor is defined by,

22k + 1) (k+1)

Cy = . .
T ks 1) 637

A relativistic "line strength" equivalent to its non-relativistic coun-
terpart, can be defined by solving for 8 in the non-relativistic ex-
pression for the transition rate, and replace the rate with its rela-
tivistic counterpart (3.32), giving,

- gy, 1 2k+1 -
P =g () Al

o maEe™
‘ck<w/c> (2k+1)
(3-38)

The relativistic line-strength is different from the non-relativistic in
that it is energy dependent, although very weakly since the lowest
order (w/ c)Zk—dependence is canceled out.

2
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Another property, preferred in e.g. stellar astronomy, is the positive
and symmetric (under interchange of inital and final state) weighted
oscillator strength, or gf-value, defined by,

1c
(gf)}l‘i(w) =9J; 2 w2 A)-”ji(w)

e ) )
T w (2k+1)

2

(3-39)

Note that the representation of transition properties as simple over-
lap via the matrix element (3.22), does not include any effects of
the perturbation due to the radiation field on the wavefunction in
itself. For systems involving strong radiation fields, say an atomic
system shined upon by an intense laser, such effects have to be
considered. On the other end, for weak radiation fields, such as
the regular "free" atomic system perturbed by the vacuum field,
these effects might still be of importance if the energy separations
are small enough for the radiative width of the states to be of the
same order as other perturbations from e.g. hyperfine, Zeeman or
Stark interactions. This will be further discussed in Ch. 8 concern-
ing unexpected transitions.

36 ORBITAL RELAXATION

Computer code implementations for evaluation of radiative tran-
sition properties used to require the CSF’s representing the initial
and final eigenstates states to be constructed from the same or-
thonormal set of Dirac orbitals. This implied that orbital relaxation
effects had to be accounted for via CI, which, for RAS calculations,
could give rise to inaccuracies in the calculation of transition prop-
erties [36, Ch. 8.4].

This limitation can however be relaxed by constructing the ASF’s
for the inital and final states from separately optimized orbital
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bases, and evaluate the radiative matrix elements by first apply-
ing a so-called biorthogonal transormation so that the two sets of
orbitals become mututally orthonormal while losing their internal
orthonormallities. This technique, which is now standard proce-
dure in relativistic and non-relativistic multireference calculations,
was a major advancement when first introduced by Malmqvist in
the 1980’s [103] and has since then been adopted for transition
calculations in a MCDHF scheme by Olsen et al. and Jonsson et al.
[116, 117] and implemented in the most recent versions of GRAsr2k
[118, 119]. The possibility to perform separate calculations for ini-
tial and final wavefunctions of, say, different parity, has an addi-
tional divide-and-conquer bonus effect so that much larger expan-
sions are feasible.

3.7 THE LONG-WAVELENGTH APPROXIMATION

The relativistic expressions for the transition amplitude are indeed
quite involved, so in order to gain some insight in for example
the energy dependence and relation between the amplitudes of
different multipoles, we evaluated the amplitudes for interaction
with long wavelength photons. In this approximation it is assumed
that the value for the wavelength A of the observed photon is large
in comparison to the size of the atom, i.e. that wr/c is small.

Considering the scalar (3.6) and the electric (3.12) and longitudi-
nal (3.13) vector potentials, and keeping only the first term of the
Bessel function expansion (3.8),
k
) wr/c
ielwr/e) = 5

m, |(.UT'/C| < 1 ; (340)

gives, for the Babushkin gauge: Gy = /(k + 1)/k, the Ek operator

[120],

k
Ek N 1 k+1 w kK ok
Qg (VD) ~ Z—m 2k (c) mCq (41
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in the long-wavelength approximation. The Babushkin gauge is
especially simple since the vector potentials components in (3.17)
cancels” so that the operator is completely described by the scalar
potential (3.6). A long-wavelength form for the Ek operator in the
Coulomb gauge can be evaluated in a similar fashion.

The gauge-independent Mk operator (3.20) is completely specified
by the magnetic vector potential (3.14). Keeping the first term in
the Bessel expansion, gives,

QM* ~ (Zkl—kU” (%)k o [e@ Ck]z (3.42)

These approximate long-wavelength forms are used in some atomic
structure codes, such as Fac [121], while others, such as Grasr2k
[119], implement the full expressions for the operators (3.17) and
(3.20) up to a certain cut-off in the bessel function expansion of
the electromagnetic potentials. The present verison of Grasr2k
performs the this expansion up to (wr/c)®, after which the po-
tentials are approximated by an asymptotic sinusoidal expression.
The number of terms in the expansion and whether or not the
subsequent sinusoidal expression is included, is determined by a
specified convergence criteria.

3.8 SELECTION RULES

The representation of radiative transitions in terms of a multipole
expansion over irreducible spherical tensor operators of definite
ranks, allows for a direct prediction of whether or not a certain
multipole transition Tk between two ASF’s specified by JT* and
]]?Tj , is allowed.

This is easily seen by noting that only the lowest-order in wr/c is kept, so that the
first term o< jy1 in the electric and longitudinal vector potentials, (3.12) and (3.13),
is omitted.
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Table 3.1: Rigorous selection rules for radiative transitions j — 1 of mul-
tipole type TTk = E1, M1, E2, etc. between states coupled to a
generic total angular momentum, J.

AG) = i Jil<k<Jit); =Ji=0=J;=0)
Al]M = Mi_Mj:q:_k""’k
n(Ek) = mm=(—1)k

n(Mk) = (—1 Ihas

For the matrix element (3.22) to be non-vanishing, the ASF’s have
to satisfy certain relations depending on the parity of the transi-
tion operators discussed in Sec. 3.2. The matrix element vanishes
if the parity of the total integrand, involving the left and right
ASF’s and the operator, is of odd parity since the integration is
over all three-dimensional space. Multipole operators of magnetic
type (3.20) have parity (—1)%*1, while the the electric operators
(3.17) have parity (—1)*. This implies that, for the total transition
integrand to be of even parity, the ASF’s involved in an M1 transi-
tions have to be of same parity, while for E1 transitions they have
to differ, and so on.

Additional requirements on the involved total angular momenta
can be obtained by investigation of the geometrical dependence of
the total transition matrix element via the Wigner-Eckart theorem.
For a general irreducible spherical tensor operator, Ték), of rank k
and components q, we have the standard relation,

(M T [T My )

M [ T kO T 7T
=0 (5 ) SR e

from which it can be seen that the matrix element vanishes unless
the 3j-symbol satisfies triangular relations in its upper- and lower-
row arguments.
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We summarize these results in a set of rigorous selection rules in
Tab. 3.1. By rigorous we mean that these rules are valid indepen-
dently on the underlying coupling mechanisms in the construc-
tion of the ASF’s. As an example, for pure LSJ-coupled states,
additional selection rules such as the well-known spin condition
AS = 0, applies. This selection rule is violated by the so-called in-
tercombination transitions [122]. The long-wavelength form of the
transition operators, (3.41) and (3.42), tells us that the total tran-
sition rate decreases with (w(r)/c)? by increasing the multipole
rank one step, say from E1 to E2, so that transitions of lowest pos-
sible k generally dominate the total transition rate from one state
to another.

3.9 FORBIDDEN-LINE SPECTROSCOPY

The term forbidden transitions is often encountered. That a transition
is "forbidden" does not mean that it do not occur at all, but simply
that it is E1-forbidden. Such transitions occur at much lower rates
in general, at least for low-Z systems. The importance of forbidden
transitions increase rapidly with Z along an isoelectronic sequence,
this is especially true if the transition connects two fine-structure
levels belonging to the same term [35, Sec. 9.13].

Papers A111, A1y, Ay and Ay concern the establishment of grou-
nd-state structures in highly ionized and heavy systems via a com-
bination of atomic structure calculations and experiments using
only forbidden transitions - thus termed forbidden-line spectroscopy.

As an example we show in Fig. 3.1 the energy structure of the 13
fine-structure states belonging to the ground-state configuration
4d'°4f2 of cadmium-like tungsten (W26+, Z = 74) from paper
Ay/. The levels are denoted by their dominating component in LS]J-
coupling from our MCDHF calculations and the solid (red) lines
correspond to M1 emission lines observed in this work. Fig. 3.2
presents the spectra as recorded with the Shanghai-PermEBIT, an
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Figure 3.1: Energy-level structure of the 13 strongest M1 transitions within
the 4f? ground-state configuration of Cd-like W analyzed in
paper Ay,.

electron-beam ion trap (EBIT), at electron beam energies of 780, 830,
880 and 1100 eV. The lines marked with 1, 2 and 4 are identified
as the M1 transitions 3F4 — 3F3, 3F4 — "G4 and 3Hs —3 Hy re-
spectively. The peak marked with 3 is from the W27 M1 transition
4f 2F, /2 = 4f 2T /2, which was analyzed in detail in the papers
Ary and Ay and thus provides an accurate reference point for
the present analysis. The line marked with 5 is due to a transition
in NT from the residual gas in the electron-beam ion trap (EBIT).
As can be seen from the solid red lines in Fig. 3.1, we manage to
identify a total of seven forbidden transitions. See paper Ay for
further details on the calculations (i.e. correlation model) and the
observation.

Whether or not the forbidden transitions within the ground-state
configurations of tungsten ions can be used for plasma diagnos-
tics in e.g. the ITER fusion device, remains to be seen. It is very
likely that the decay properties of the states will be completely
dominated by non-radiative collision processes. Nevertheless, the
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Figure 3.2: Spectra of Cd-like W from paper Ay recorded with the
Shanghai-PermEBIT. Details are given in the text.
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establishment of the ground term level structures of these complex
ions opens up for studies of, e.g. XUV, decays from higher-lying
states.

Another more exotic class of transitions are the so-called unex-
pected transition’s (UT’s), which occur due to mixing of states in-
duced by some symmetry-breaking perturbation, post the domi-
nating Hamiltonian. These transitions do not have to be forbidden;
the most important ones are actually of E1 type, but nevertheless
unlikely to occur in general. The unexpected transition (UT)’s are
central to the present work (papers By to By11) and will be dis-
cussed further in Ch. 8.

States which only decay through forbidden or unexpected tran-
sition channels are often long-lived, or metastable, which makes
them interesting and important for several reasons:

1. The fact that they decay through "exotic" radiative processes
makes it possible to probe the atomic models more accurately
and in new regions; for UT’s related to external magnetic
fields, hyperfine or parity-violating interactions (see for ex-
ample Beiersdorfer et al. [123]).

2. They have been proposed to be used as atomic clocks and
therefore it is essential to understand their decay properties
in great detail (see for example Safronova et al. [45]).

3. They can be used to probe extremely low densities in astro-
physical plasma, where even these low-probability, radiative
transitions are visible but sensitive to collisional rates (see for
example Brage et al. [124]).

The longest lifetime of an atomic state measured in a laboratory
environment to date, and to the best knowledge of the author, is
arguable of the first excited 1s2s 38, state of *He I which was de-
termined to 7870 4+ 510 sec by Hodgman et al. [125]. Another ex-
ample is the lifetime of the metastable 3s3p 3P, state in Mg I
which mainly decays through a forbidden M2 channel. The life-
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time of this state was measured to 2050*]‘]‘8 sec by Jensen et al.

[126]. The longest lifetime ever measured in a negatively charged
ion was recently determined by Backstrom et al. [127]. By using
a electrostatic ion storage ring they found the radiative lifetime of
the upper level in the 3p° 2P, /2 = 3p° 2P3/2 M1 decay channel of

325 to be 503 + 54 sec.

Essentially all papers included in this thesis are in one way or
another related to forbidden or unexpected radiative processes.

3.10 CHAPTER SUMMARY

In this chapter we have given an introduction to the rather com-
plex theory of radiaitve multipole transitions, in a relativistic many-
body framework. We defined basic radiative quantities such as the
transition rate, relativistic line strength, lifetime, oscillator strength.
Next we introduced the radiative transition operators as well as
the associated transition amplitudes. The chapter was ended with
a brief discussion about the long-wavelength form of the transi-
tion operators, radiative selection rules and a discussion about
forbidden-line spectroscopy which is the central topic of papers Aj,
Arr, Arrrand Apy.



ATOMIC STRUCTURE CALCULATIONS

The first implementation of the non-relativistic HF method into
general-purpose codes to treat the bound-state atomic many-body
problem were done in the late 1950’s [128]. Today, numerous rela-
tivistic many-body methods exist, where relativistic many-body per-
turbation theory, relativistic coupled cluster (RCC), RCI and MCDHEF,
and more recently combined methods such as MR-RMBPT, or RCI
and MCDHF calculations improved via perturbation theory, are
among the most common and successful ones. All these methods
have their own advantages and disadvantages, in short often re-
lated to the system at hand (e.g. number of valence electrons), what
observables that are of interest, and, in relation to this, what sort
of electron correlation the methods successfully capture.

Theoretical many-body methods which are exact within the cho-
sen many-body basis, such as RCI and MCDHF, generally treat
interactions between the valence electrons, i.e. the VVC defined in
Sec. 2.11, efficiently. This is to a large extent related to the built-
in treatment of static correlation by including strongly interacting
CSF’s in the multireference. The rapid scaling in the number of
included basis states with respect to the size of the orbital basis
of these methods does, however, imply that they often struggle
with the inclusion of interactions between the valence and the core
electrons, the CVC, and between the core-electrons themselves, the
CCC. In contrast, perturbative methods such as RMBPT generally
excel at treating systems with up to a few electrons outside a closed
shell. The methods can often include dynamic correlation to con-
vergence, but have problems with systems involving close degen-
eracies, i.e. systems with a large amount of static correlation, since
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the perturbative scheme breaks down for these strong interactions.

Many efforts have been made to combine multireference techniques
with perturbation theory in order to capture both static and dy-
namic electron correlation [34]. For our purposes, the MCDHEF and
RCI methods are conveniently combined with perturbation the-
ory in the Brillouin-Wigner form (see e.g. Kotochigova et al.[129]).
More details on this method are given shortly in the description of
the Grasr2k program suite.

4.1 PUBLICLY AVAILABLE IMPLEMENTATIONS

Some of the above mentioned methods have been implemented
in general atomic structure codes and made available to the sci-
entific community, traditionally through program libraries such as
the CPC-IPL [83] established already in 1969 at the Queen’s Uni-
versity of Belfast, and today more and more through online open-
source development platforms such as GitHub [130].

Examples of publicly available relativistic atomic structure codes
are the CI-MBPT [131] and the Grasr2k [119] programs, both pub-
lished and made available at the CPC-IPL [132, 133] and the Fac
code [121] which recently has been converted to an open-access
GitHub project, in its original form [134] as well as an actively de-
veloped C-based version [135] built around the GNU Scientific Li-
brary (GSL) [136]. Attempts are currently made to move the devel-
opment of Grasr2k in the same direction. Another widely used im-
plementation of the MCDHF method is the McprGME code [137],
which is different from Grasr2k in that it is based on uncoupled
basis functions (Slater determinants) instead of CSF’s. Finally we
mention the RaTir code [138] which functions as a set of tools
based on Grasr2k wavefunctions to calculate e.g. continuum pro-
cesses.
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Grasr2k is a very well established implementation of the MCDHF
approach employing finite-difference numerical methods, in its
original form developed by I. P. Grant and co-workers [101, 118,
119, 139—-141] and currently maintained by the Computational Atomic
Structure group (CoMPAS) - an international collaboration between
atomic theorists [142]. The GrasP2K program suite is a set of codes
and tools for large-scale calculations of atomic structure and pro-
cesses in the general case, that is, for in principle any atom or ion
in the periodic table. This work is performed with the development
version of these codes based on the latest published version [119]
available from the CPC-IPL.

4.2.1  Computational Procedure

In short, the runtime procedure follows the scheme: Start by defin-
ing the CSF basis from an AS of Dirac orbitals with the included
tools based on the active space approach described in Sec. 2.9. With
the basis at hand, all spin-angular coefficients t3§, and v, 4. in
the expression for the interaction matrix, H, (2.54) are calculated
and stored on disk. The next step is to invoke the MCDHF proce-
dure which essentially iterates the CI- and the orbital-determination
phase, as described in Sec. 2.8.2. The first phase sets up H in the pre-
defined CSF basis, by calculating the interaction integrals I(a, b)
and RX(ab,cd) from the radial orbitals, after which the secular
equation (2.61) is solved for ASF eigenstates represented by the
eigenvectors ¢ with corresponding energy eigenvalues. The sec-
ond phase generates radial Dirac spinors by solving the coupled
MCDHEF integro-differential equations (2.62).

With the variational principle as the backbone, the size of the or-
bital set, and thus the many-electron CSF basis set, is systemati-
cally enlarged until convergence of the atomic observables of in-
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terest, such as excitation energies, transition rates or hyperﬁne pa-
rameters, is reached. The accuracy of a MCDHEF calculation is es-
sentially determined by whether the necessarily finite set of CSF’s
is effectively complete for the resulting ASF’s to represent these
physical observables. The completeness depends on the choice of
correlation model, using e.g. the active space approach outlined
earlier, but also on the optimization and constraints on the Dirac
orbitals.

Finally, with a well-optimized orbital basis at hand, additional ef-
fects from the Breit interaction in Sec. 2.5.2 (fully retarded (2.21)
or instantaneous (2.22)) and the one-loop radiative QED correc-
tions explained in Sec. 2.5.4, can be included in the wavefunction
through a subsequent RCI calculation. Such a last step is often also
employed to account for further contributions from electron corre-
lation by relaxing the constraints under which the CSF space is
constructed from the set of one-electron orbitals obtained in the
MCDHEF procedure.

4.2.2  The MCDHEF Brillouin-Wigner Method

The CSF space can be enlarged even further by using a Brillouin-
Wigner perturbation theory approach [129]. The following exam-
ple illustrates the method. Say you have an interaction matrix di-
vided into three large blocks of different total angular momentum,
], and/or parity, 7, between which there is no mixing and that
you have reached the limit for the specific computational power
or time you have access to. Additional correlation contributions
can then be included via perturbation theory of Brillouin-Wigner
type, by subdividing each J™ block into a zero-order space, contain-
ing the most important correlation contributions, and a first-order
space within which no internal interaction is included (only diago-
nal elements). The CSE’s belonging to this space is only allowed to
interact with the CSF’s in the zero-order space. An interaction ma-
trix divided according to this scheme is illustrated in Fig. 4.1. Both
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Figure 4.1: Illustration of an interaction matrix containing three indepen-
dent blocks of different angular momentum and/or parity,
each of which is further divided into a zero- and first-order
space using a Brillouin-Wigner perturbation theory approach.
This method is implemented in Grasr2x and used in many of
the papers included in this thesis. See the text for more details.

of these spaces can be divided even further into different groups
of CSF’s, effectively representing different classes of many-body
interaction. For this approach to be successful it is crucial to ana-
lyze the zero-order space in great detail - omission of important
contributions could have large impact on final converged results.

This approach speeds up the MCDHF/RCI procedure substan-
tially so that, in practice, millions of CSF’s can be included for a
certain J” symmetry, which allows for an improved convergence of
e.g. core-valence and core-core correlation effects, the latter which
is of importance in calculations involving two-body operators weig-
hted at small radii, such as the isotope shift [143].
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Table 4.1: Theoretical and experimental prediction of the 4d10 4f 2F° fine-
structure separation in Ag-like W. The theoretical values are
given as a function of the size of the active set AS#. The val-
ues are from our initial investigation of Ag-like W presented in

paper Av/.
Correlation Model Energy [cm ']
DF 30 750
DF + Breit 29 239
DF + Breit + QED 29 239
ASt(n=1,2...,5 andl=s,p,...,q) 29 451
AS2(n=1,2...,6 andl=s,p,...,h) 29 533
AS3(n=1,2...,7 andl=s5s,p,...,1) 29 574
AS4(n=1,2...,8 andl=s5s,p,...,1) 29 593

ASs (n=1,2...,9 andl=s5s,p,...,1) 29 603
Experiment (SH-PermEBIT) 29 599.81 4 2.28
Other theoretical work

Safronova et al. (2010) RMBPT 29 550

Ivanova (2011) RMBPT 31 761

Ding et. al (2012) MCDHF 29 151

4.3 EVALUATION OF UNCERTAINTIES

The determination of reliable uncertainties is crucial for the pro-
duced data to be useful for the scientific community. Researchers
in, say, stellar astronomy using atomic data (e.g. oscillator strengths)
to simulate astrophysical plasmas, would not want to include data
with error bars of more than a certain percentage, or even worse,
data with no error bars at all. Many scientific journals now de-
mand rigorous evaluation of uncertainties, which can prove quite
challenging for theoretical models.

The accuracy of a multireference SCF calculation is judged from an
analysis of the convergence trends of the atomic properties of in-
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terest in different correlation models. As was described above, the
convergence trends are functions of the size of the include orbital-
basis and thus the size of the CSF expansion. In Grasr2k the calcu-
lations are performed in a layer-by-layer scheme, in which the AS of
orbitals is enlarged systematically for a specific active space model.
The previous layer of orbitals is kept fixed during the optimization
procedure, and only the new ones are optimized.

The evaluation of actual uncertainties is a complex task in general
and requires much experience with the methods. An clear exam-
ple on how a convergence analysis can be carried out for energy
separations, is taken from Paper A1y, and Ay concerning Ag-like
ions and the 4d'° 4f 2F° ground-term energy separation, observ-
able through the forbidden M1 transition connecting the two states,
just like Edléns coronal lines [23].

10

I
~ Z =56

SE [%]

Figure 4.2: The relative convergence of the 4d'0 4f 2F° energy separation
in Ag-like ions as function of the size of the active set of or-
bitals defined in Tab. 4.1 denoted by the maximum principal
quantum number, n. E is the difference in percentages of en-
ergy from the previous correlation layer. The presented values
are from paper Ay which included an additional correlation
layer Mmax =10, linax =1).
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We first note that one should always expect a smooth behavior of
calculated physical properties along the isoelectronic sequence, as
can be seen from the correlation energy trend shown in Fig. 2.5.
Isoelectronic analyses in general provides a powerful tool in the
evaluation of atomic data. The convergence of the *F energy sepa-
ration with respect to the size of the active set, is visualized for a
subset of Ag-like ions in 4.2. Within the present correlation model,
it can be seen that the energy separation for high-Z ions is con-
verged to less than 0.01% while low-Z ions reach 0.1%. Tab. 4.1
presents the convergence of the fine-structure separation as a func-
tion of active set size for the case of Ag-like W ion, as presented
in paper Ay. Including the final result of 29 619 cm ™' from the
larger correlation model used for the isoelectronic sequence anal-
ysis in paper Ay, it is clear that a very good agreement is found
with experiment (within 0.1%).

A certain representation of uncertainties in theoretical transition
data has been suggested by Fischer [144], and further discussed by
Ekman et al. [145], to provide standardized measures for quality
evaluation of such data sets.

4.4 CHAPTER SUMMARY

In this rather brief chapter, we discussed relativistic atomic struc-
ture calculations and advantages and disadvantages with respect
to the treatment of electron correlation of various many-body meth-
ods. We connected this to publicly available codes, and in particu-
lar the Grasr2k implementation of the MCDHF and RCI methods,
which has been used extensively in this work. The computational
procedure of Grasr2k was summarized and we discussed how to
enlarge the correlation models via Brillouin-Wigner perturbation
theory. The chapter was ended with a brief discussion on the eval-
uation of convergence and uncertainties in atomic data sets.
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This chapter deals with further refinements in our understanding
of atomic spectra by including the symmetry-breaking effects aris-
ing from non-spherical interactions of the atomic electrons with a
nuclei having non-zero nuclear spin - the hyperfine interaction - and
interactions with a uniform external magnetic fields - the Zeeman
interaction.

5.1 INTRODUCTION

In the previous chapter the atomic nucleus was treated as a spher-
ical charge distribution, given by e.g. the Fermi distribution. It is
however not uncommon for the nuclear charge distribution to be
non-spherical, such that its charge-current density distribution will
contribute non-spherical electromagnetic perturbations to the cen-
tral Coulomb field. The resulting interactions with the electrons
introduce a coupling between the the total electronic angular mo-
mentum J and the nuclear spin I to a new total angular momen-
tum F for the whole atom, and split the energy spectrum into what
is termed hyperfine structure (HES). It was shown already in the late
19:th century that some fine structure levels were in fact split up
into several closely spaced states, thus named hyperfine levels. In
the 1920’s Nagaoka et al. [146—148] studied the spectra of various
isotopes and showed that the hyperfine effects were only present
in some of them, from which they could that the hyperfine effects
had to depend on the nucleus (see also Inamura [149] for a histor-
ical review of the work of Nagaoka). It was suggested by Pauli in
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1924 that the nucleus has a total angular momentum, called nuclear
spin, and that hyperfine effects in atomic spectra could be due to
the magnetic interactions between the electrons and the nucleus

[150]

Hyperfine interaction can be used to extract nuclear moments from
experimentally determined hyperfine splittings, see e.g. the work
of Bieron et al. [151-155]. Or the other way around; available values
for the nuclear moments opens up for tests of fundamental atomic
structure theory, correlation studies or simulations of hyperfine-
dependent atomic data in general to e.g. analyze stellar isotope
abundances [156].

The perturbation of an external magnetic field B differs from the
hyperfine interaction in it has a definite spatial direction. The ex-
ternal field vector couples to the total angular momenta, J or F,
of the atomic system, breaks its rotational symmetry so that the
magnetic sublevels, labeled by Mj or M, become non-degenerate.
This results in the famous splitting of spectral lines, which was
first discovered by P. Zeeman already in 1896 [157, 158];

"In consequence of my measurements of Kerr’s magneto-optic-
al phenomena, the thought occurred to me whether the period
of the light emitted by a flame might be altered when the
flame was acted upon by magnetic force. It has turned out
that such an action really occurs."

— P. Zeeman [157, p. 347]

In the same way as for the hyperfine interaction, the Zeeman effect
can be used to extract information about the source of the per-
turbation, but with the magnetic field being the crucial parameter.
The energy separation between two magnetic sublevels split by the
Zeeman interaction is a function of the field strength, B, so that the
Zeeman effect becomes a natural spectroscopic probe of magnetic
fields in stellar atmospheres or laboratory plasma. An example is
the discovery by Hale [28] that sunspots are magnetized which
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was done through through observations of Zeeman splittings in
the solar spectra, just ten years after the Zeeman effect was first
observed.

A non-relativistic treatment of these perturbations is acceptable for
the light elements, but for the general case it is better to apply rel-
ativistic theory, especially if one is to compare results along an
isoelectronic sequence up to highly ionizes systems. This is partic-
ularly true for hyperfine interaction, which has strong dependence
on the inner part of the wavefunction where the overlap with the
nuclear charge distribution is largest. We saw in the previous chap-
ter that the innermost s and p;/, electrons were greatly affected
by relativistic contraction effects, which could have a large impact
on the results from hyperfine structure calculations.

Contributions to the atomic energy spectrum from hyperfine inter-
action is in the most simple fashion included via the diagonal hy-
perfine A and B constants, and for the Zeeman interaction through
Landé’s g-factor in the familiar energy expression AE ~ gugBM.
If, however, the perturbations are of the same order as the involved
energy separations in the gross model, then such a first-order treat-
ment will break down and fail to predict the observables of interest.
In these cases it becomes important to include off-diagonal hyper-
fine and/or Zeeman interaction matrix elements given by a total
Hamiltonian H = Hp + Hp s + Hmag where Hp is the DC or DCB
Hamiltonian with eigenfunctions given by the ASF’s.

Off-diagonal interactions can have interesting effects on the radia-
tive spectrum, such as additional energy shifts and intensity redis-
tributions [159, 160] as-well as induction of otherwise strictly for-
bidden decay channels - termed unexpected transition’s (UT’s). We
will return to these effects in Ch. 7 and 8, and focus for now on the
evaluation of the perturbed eigenstates and their radiative proper-
ties.
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5.2 PERTURBED EIGENSTATES - THE PSF’S

An energy eigenstate including perturbation by either a nuclear
field of higher multipole than electric monopole, an external mag-
netic field, or both, will be referred to as a perturbed state func-
tion (PSF). For our purposes these states are essentially represented
by a linear expansion of ASF’s [IJ™M;) (2.51) of equal parity, 7,
obtained via the MCDHF method outlined in the previous chapter.
For nuclei with non-zero nuclear spin, I, the basis is constructed
from ASF’s coupled to the nuclear ground state.

The eigenstates of an atomic system with zero nuclear spin under
influence of an external magnetic field, are uniquely labeled by 7
and M;. Systems with a non-zero nuclear spin are labeled by 7,
F and My in absence of an external magnetic field, and 7w and F
otherwise. In some more detail, depending on the magnetic field
strength, B, and the nuclear spin, I, PSF’s of three classes should
be considered:

B£0, [=0 IATMy) = Y & TM)

B=0,1#£0 — |AnFMg) > & (YLTJT)FME) , (5.1)
B+#£0, [#0 IATME) = Y di| (YLTJT)FiMe)

where A is a label introduced to uniquely specify the state. The M-
dependent PSFE’s are simply constructed from an expansion over
ASF’s with the information about the angular momentum projec-
tion Mj kept. For the remaining two cases the PSF’s are built from
ASF’s coupled to a nuclear state function (NSF) | YIM) representing
the ground state of a nucleus. The label Y denotes additional in-
formation such as the proton number, Z, and the nuclear magnetic
dipole and electric quadrupole moments, py and Q respectively. To
construct these coupled states, let

[YIM[, T]™My) = [YIM) ® [T]™My)

be simultaneous uncoupled eigenkets of the nuclear I?, I, and elec-
tronic J?, ], angular momentum operators, all of which obviously
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commute with each other. Angular momentum coupled ASF-NSF
basis states with definite total angular momentum quantum num-
bers, F and Mg, can then be formed through a standard unitary
transformation,

|(YI)FME) = Z (1J; MIMy [T, FME )| YIM, TT"My )

MM
= Y (=NFIMr2FERT
MM,
I ] F
YIMy, TJ™™My), .
X (MI M, _MF> | L, TJ™My) (5-2)

where the Clebsch-Gordan coefficients <U; MIM]|U; FMF> are ex-
pressed in terms of Wigner’s 3j-symbols in the second step. These
basis states are simultaneous eigenkets of the mutually commuting
operators FZ,IZ,]2 and F,. Note that [Fz,]z] # 0 and [F2,1,] #£0
even though [F?,Fz] = 0. Note also that the coupling order is im-
portant - in this work we use (I, J)F-coupling.

5.3 HYPERFINE STRUCTURE

The non-relativistic treatment of hyperfine effects in multiconfig-
urational methods is outlined in the book on MCHF theory by
Fischer et al. [35, Ch. 8]. For the present relativistic presentation of
hyperfine structure theory we rely on the one-electron formulation
by Schwartz [161] and the generalization to many-electron systems
given by Armstrong [162] and Lindgren and Rosén [163, 164].

The magnetic dipole moment of the nucleus can be related to its
spin I through the nuclear g-factor, gy,

ur = giunI/h,  with z-projection, up = grunlz/h, (5.3)

where g7 is positive if uy lies along I. The nuclear magneton py
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can be related to the Bohr magneton ug through the electron and
proton masses, M. and mp,

iy = T e 32 % 10 8 VT = 76 MHZ T, (5.4)
2mp myp
so that, un = up/1836.15, which implies that HFS is small com-
pared to electronic fine structure separations in general.

An effective scalar Hamiltonian operator representing the hyper-
fine interactions can be obtained from a multipole expansion of the
nuclear electromagnetic field [162, 163], where each term is formed
from a tensor product of an electronic and nuclear tensor oper-
ator, which for equal-rank tensors as in this case is conveniently
expressed as a scalar product [57, Ch. 11-8]

thf=Z— V2TV (k) (5-5)
(0)
—Z 2k+1 [T(k)@@M(k)]o

- Z S narImyd = 3 T
k 4 k

where Tt¢) and M%) are spherical irreducible tensor operators of
rank k acting in the spaces spanned by electronic [I'J"Mj) and nu-
clear states |YIMy), respectively. To illustrate why the scalar prod-
uct of two irreducible tensor operators take this form, consider the
k = 1 case which reduces to the regular scalar product of two
Cartesian vectors [57, (11.42)],

T .MM = M) 7D )
= TuMy + TyMy + T2 M, .

The absence of parity-violating effects means that the nucleus has
no E1 moment, M2 moments, and so on, such that terms with even
k represent the electric moments (Ek) while terms with odd k cor-
respond to magnetic moments (Mk). In the present work we limit
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the expansion to the M1 and E2 multipoles. Expressions for electric
octupole (E3) and magnetic hexadecapole (M4) can be found in [161—
164]. Note that the range of multipoles in the expansion is limited
by the nuclear spin through k < 2I, such that the electromagnetic
field of a nucleus with I = 1/2 only has an M1 component.

To construct the interaction matrix elements in the basis given for
FMEg-dependent PSE’s in (5.1), we note that hyperfine Hamiltonian
(5.5) is a composite tensor operator built from a scalar product
of two irreducible tensor operators acting on separate subspaces.
This implies that one can decouple the nuclear and electronic parts
of the matrix elements using Racah algebra techniques, with the

result [57, Eq. (11.47)],

(OrL T T)FME[TH) - MO (Y1, ) FME) (5.6)
— o {0 e e e,

where we have used that the matrix element is diagonal in FMF,
that the nuclear space is spanned by the single ground state ket
|YI) and write the reduced elements in the Fano-Racah definition
as usual. Note that the electronic matrix element only couples basis
states which differ by at most k units of J.

The relativistic electronic M1 and E2 hyperfine operators can be
expressed as sum of one-electron operators,

N
M1) TM :Zt(”(l) = ZOLZTL (OCLC ))U) (5.7)
1

N
=Y 2= —Zr;3c(2)(1) (5.8)
1 1

where the index 1 runs over all N electrons, « is the fine-structure
constant, &; the Dirac matrix and C(*) (1) re-normalized spherical
harmonic operators acting on the coordinates of the l:th electron.
All quantities are in Hartree atomic units as usual.
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The reduced nuclear matrix elements in (5.6) are evaluated by as-
sociation to the conventional nuclear magnetic dipole moment piy
and electric quadrupole moment, Q,

111
wr = (vimyY|rin) = (1 . 1) (1| MM vy (5.9)

_ (2) (1 21
Q= 2(YII|My™|YII) = (—1 o

> 1M1y (5.10)

for maximum projection nuclear states, |[YIM| = I>, by definition.
Analytical evaluation of the 3j-symbol [165] gives

(1M O yr) =y [ D (511

1T [(I+1)(21+1)(21+3)
2 1(21—-1) :

(1M1 = Q (5:12)
Tables with recommended values for uy and Q have been prepared
and made available by the Nuclear Data Section of the IAEA, Vi-
enna [166].

The fact that the hyperfine interaction correpsonds to a single-
particle operator implies that it will only have a non-vanishing
direct overlap between CSF’s that differ by, at most, single substi-
tutions. Particularly important important single substitutions for
hyperfine interaction calculations, are those from the inner core
shells, which represents what is called spin and orbital polarization
[34, 35], which corresponds to deviations from the spherical sym-
metry of a core of closed subshells which normally would have no
contribution to the hyperfine structure.

Even a very tiny fraction of CSF’s describing spin and orbital po-
larization in the ASF wavefunction, can have a large impact on the
hyperfine interaction matrix elements and thus the F-dependent
energy spectrum. See Godefroid et al. [167, Sec. 3.1.1.] for an illus-
trative analysis in Chipmans’ single-excitation picture [168] with
just a few CSF’s in the basis set .
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The relativistic Zeeman interaction for an atomic system of zero
nuclear spin in a homogeneous magnetic field, is given by a scalar
product between the first M1 term of a multipole expansion of the
electronic electromagnetic field', and the external magnetic field
on tensor form B(") = (0,B,,0) [162, Ch. 6, Sec. 1] [171, Sec. B],

Hmag = (N(” +AN(‘>) B =ND.BD =NVB,, (513

where the many-electron operator can be decomposed into a sum
over N one-electron terms,

N N (1)
N =Y ahy Z (€M) 1)
1 1
N
AN =3 all (5.15)

where the second term AN(') represents the QED correction due
to the deviation of the electron gs-factor from 2 [171, Eq. 18]. The

index 1 runs over all N electrons, « is the fine-structure constant,

o the Dirac matrix (2.8), C(®) (1) re-normalized spherical harmonic
operators acting on the coordinates of the l:th electron, 3 is the the
Dirac-f3 matrix (2.10) and X is the spin matrix

&=<£_?> (5.16)

where ¢ is the Pauli matrix (2.9). Note the similarity between N (M
and the electronic hyperfine M1 operator, T (5.7).

The k = 2 term in the multipole expansion, which is ignored here, is the so-called
diamagnetic term [169, 170]
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Eigenstates of the total Hamiltonian H = Hg + Hyqg are repre-
sented in terms of PSF’s of the form (5.1),

[ATTM) = Z di |l JTMy), (5.17)

which are definitely labeled by 7 and M;j. Interaction matrix el-
ements between basis states in this representation can be deter-
mined from reduced matrix elements between ASF’s,

(M NGV B2 [T 7My )

. 1 1 j s 7T
— B, (—1))t M) ({\AIM&) (rITIINVIBIT - (5.18)

where we have used that only the elements which are diagonal in
7 and M; are non-zero.

5.5 EXTERNAL MAGNETIC FIELDS: HYPERFINE STRUCTURE

Atomic systems with non-zero nuclear spin under influence of an
external magnetic field can represented by the total Hamiltonian,

H=Hp+ thf + Hmag ’ (5-19)

where Hypr and Hymag are given by (5.13) and (5.5) respectively.
The corresponding PSF eigensolutions (5.1) are of the type,

ATME) = 3 di| (YL TT)FiME), (5.20)

where M and 7 are the only two good quantum numbers. The
matrix elements of the hyperfine operator, Hy,,, are diagonal in F
and treated in the previous section. In the following we evaluate
contributions from Hy,qg on isolated atomic systems with hyper-
fine structure.
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In addition to the electronic interaction, the external magnetic field
also couples to nuclear momenta such that the Zeeman interaction
splits up into two parts,

Himag = H1]nag + H¥nag (5.21)

where the latter is the interaction between an external homoge-
neous magnetic field and the nuclear magnetic dipole moment |
(5.3), which can be represented by,

Mg = 1 B0 = B — grutlUB,. (sa2)
The nuclear interaction is smaller than the electronic by a factor of
UB/UN = mMp/me ~ 1836 which means that it should be negligible
in most cases. This is however the only effect that separates two
neighboring magnetic sub-levels belonging to states with a total
electronic angular momentum ] equal to zero, in which case it
becomes important for interpretational reasons since it removes
the degeneracy. The same is true for any case when the electronic
Zeeman effect is zero, i.e. when the g ] factor is zero. It can also be
of importance in situations requiring very high accuracy, such as in
the level-crossing studies of 3He (I1=1/2) by Wu and Drake [172].

5.5.1 The Electronic Zeeman Effect

The dominating electronic part of the Zeeman interaction on hy-
perfine states can be simplified considerably by decoupling the nu-
clear degrees of freedom, such that the interaction given by (5.13)
can be written in terms of purely electronic reduced matrix ele-
ments according to [57, Eq. (11.39)],

<(Y1'ri]?)FiMF|Hlnag | (YI/ r']?)Fj MF> (5.23)
= (—1)HIFIRMET SR 4 1)(2F; +1)

Fi 1 FJ IIl Fy R (M| 77
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which is diagonal in 7t and M. Formally these matrix elements are
diagonal also in I since the operator only acts at on electronic part
of the wavefunction. This delta function is however left out since
the current model is limited to a single nuclear ket representing
the nuclear ground state, Y1.

5.5.2  The Nuclear Zeeman Effect

The nuclear Zeeman effect can be evaluated in a similar manner as
the electronic interaction® [57, Eq. (11.38)],

<(YI,Fi]{T)FiMF\HTInag (YL T ];T)F]- Mp) (5.24)
= by, ()T mMET JOF 4 1)(2F; +1)

Fio Fj IJiF (1)
8 (—MF 0 MF> {Fj 1 I}WIHI |[YT) grunBs,

where g1 = pp/I with pj in units of nuclear magnetons, py. The
reduced matrix element of the nuclear spin operator can be evalu-
ated analytically according to, [57, Eq. (11.20)],

(L] IV ry) = 81,1, /(21 + DI + DI (5.25)

56 MATRIX ELEMENTS

The evaluation of the hyperfine (5.6) and Zeeman matrix elements,
(5.18) and (5.23), is essentially reduced to the determination of
the electronic reduced matrix elements in the ASF representation
(2.51). These are expressed as a linear combination of matrix ele-

Note that there is a distinct difference in that it now is the first angular momentum
which is acted upon in the representation (I]J)F which gives a slightly different
expression for the decoupling compared to the electronic operator.
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ments between CSF’s which in turn can be decoupled into a sum
over one-particle matrix elements,

(PR

TMcsk Mesr
= Z Z CriCsj <Yr]r’|F(k) | ‘Vs]s>
S T

Ticsk Mesr

= Z Z CriCsj Z dab,-k<nal<a}|f(k) |Inbkp), (5.26)
s T ab

where the spin-angular coefficients dqp. (Which also include sub-
shell occupation) are determined in the same fashion as in the
MCDHF procedure described in Sec. 2.8.2, f(¥) = t(¥) for hyper-
fine interaction and f(¥) = n(*) for interaction with external mag-
netic fields.

5.7 EVALUATION OF PSF EIGENSTATES

To simplify the present discussion, let AxQy and I'7Q« act generic
labels for any of the three possible PSF eigen- and basis states
(5.1) respectively, where Q denotes the appropriate "good" quan-
tum number (My, F or Mg).

With the matrix elements in ASF representation at hand, it is pos-
sible to determine PSF eigenstates by setting up the interaction
matrices in a representation of the basis (5.1) and solve the regular
energy eigenvalue problem3,

[(Ho+Hy) —&q1]a™ =0, (5.27)

where Hy = H"“ (2.12) (or HP?) is diagonal, and the interaction
matrices Hy = Hynpr, Himag or Hppr + Himag depending on B
and L. Or, alternatively, if the perturbations are weak enough in

It is clear from the indexes that the mixing coefficients d{* are different from the
spin-angular coefficients dqp.x, appearing in e.g. (5.26)
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relation to the fine-structure separations, approximate PSF’s can
be determined to first order in the symmetry-breaking interaction,

AaQa) ™ = M0Qa) + Y dF|i2a), (5.28)
i

where the sum runs over all basis states in the appropriate PSF
expansion (5.1). The first-order coefficients are given by,

x _ ([1Qa[H1[M0Q4)

where Ey and E; are energies of the reference basis state and per-
turbing basis states (corresponding to the ASF eigenenergies) re-
spectively.

Care has to be taken when deciding for an appropriate expansion
such that no important contributions are left out. Depending on
the physical quantity to be determined, a rough estimate can often
be found by limiting the expansion to the perturbing states belong-
ing to the same configuration as the reference state, or even just
the same multiplet.

58 RADIATIVE TRANSITIONS BETWEEN PSF’S

When the symmetry-breaking perturbations due to an external
magnetic field and/or hyperfine interaction, is applied, the ASF’s
mix and form new eigenstates, in our approach represented by
the PSE’s (5.1). The transition amplitude between two PSE’s can be
expressed as weighted linear combination of the transition matrix
elements determined in the unperturbed regime. Using the generic
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labels for the perturbed states introduced in the previous section,
we can write the total radiative interaction matrix element as,

(Aamaa] Q™ (@0)] | Ap7625)

= Y afdP (NimaQa|Q ™ (@)]mp Q) (5:30)

D]

for a transition of multipole TTk, where the mixing coefficients are
determined through e.g. perturbation theory (5.29) or by solving
the full eigenvalue problem (5.27). Note that additional decoupling
of the nuclear degrees of freedom is necessary for atomic systems
with non-zero nuclear spin.

This works well in the non-relativistic formalism# where the en-
ergy dependence w/c can be factorized out and where the matrix
element (5.30) can be expressed in terms of "unperturbed" matrix
elements of the energy-independent operator, O''(¥), used in e.g.
the definition of the non-relativistic line strength (3.35).

In relativistic theory, however, we saw in Ch. 3 that the radiative
transition rate (3.32) is constructed from matrix elements with com-
plex dependencies on the photon energy through Bessel function
expansions of the free-radiation fields. Formally we therefore have
to evaluate all of the involved transition matrix elements on the
right-hand side of (5.30) with the energy, w, of the observed pho-
ton; and this has to be done for each of the transitions under inves-
tigation, which quickly becomes unpractical in general code imple-
mentations.

A convenient approach is to use the standard non-relativistic defini-
tion for the transition rate (3.36), but with the line strength (3.38)
replaced by the weakly energy dependent relativistic line strength
defined in (3.38). Equalizing the relativistic and non-relativistic ex-

Assuming that the effect of the free-radiation field on the wavefunction itself is
small - if this does not apply, then one should include the radiation field on equal
footing with the other perturbations via e.g. radiation damping methods.
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pressions for the line strength, provides a definition of the appro-
priate transition operator,

M), _ [ 2 1 W\ ~k ~11(K)
0 = /= (=) QO , .
= (T) adM W) (531)

where the (w/c)~¥ factor cancels the lowest order energy depen-
dence of the regular relativistic transition operator QM) (), given
by (3.17) or (3.20) for Ek and Mk multipoles respectively. The k-
dependent factor, Cy, is defined by (3.37).

For atomic systems with hyperfine structure in absence of an exter-
nal magnetic field, the total transition rate is derived by noting that
the radiative transition operators only act on the electronic coordi-
nates so that the nuclear spin can be decoupled [57, Eq. (11.39)],
leading to,

AT (AqmoFo, AgmpFp) (5.32)
"
B grs
:& <£)2k+l

grs

2k+1 2
($)7 [(AamaFul [0 (w)[|AgmaFg)|
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2
X

> afdP(RmaliFo|0" ) ()| |y 1TiFp)
i

e (w>2k+1

grp N C

Y axdb (—1)1l etk {I Ji Foc}
1 ) .
- k Fg Jj
2

x \/(ZF(X +1)(2Fp + D(Nima i | [0 (w)|[ T T;)

where gr, = 2Fg 4+ 1 and where 0" (w) is defined by (5.31).
Note how the dependence on w/c is factored out. In the first step
we insert the basis expansion (5.30), and in the second step we
decouple the nuclear degrees of freedom to obtain matrix element
in ASF representation.
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When the atomic system is perturbed by an external magnetic field,
one should remove the summation and averaging over magnetic
sublevels used to construct the total transition rate. The expression
for photon transitions between two magnetic sublevels is given
by the component transition rate, az[gk). For atomic systems with
zero nuclear spin the component rate can be related to the reduced
matrix elements in ASF representation through the Wigner-Eckart
theorem,

a™ (Agma M, AgmigMP) (5.33)
k
w 2k+1 B
—o(7) X | Xy

q=—kl 1ij

2
x (N JiM§F |0 ) ()T J;MP )

e (%)Zlﬁ—] i

q=—k

Y agdP (-l M

D]

2

ik Jj
- (—IJ\/[f‘ q ;\1{?) (Fema i [|OT0) () [Tymp]5)

If the atomic system has non-zero nuclear spin and is perturbed
by an external magnetic field, additional decoupling of the nuclear
angular momentum has to be employed in a similar fashion as in
the evaluation of the hyperfine interaction matrix elements (5.6),
so that

A (A QmaME, AggMP)

:Ck(%)2k+1 i Zdixdjﬁ

a=—k| ij

2
x (NI FME|OT ) (w) [ I FME)
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k
_c (g>2k+1 Z Z dcxdﬁ (_‘I)I-l—]j-!-ZFi—M%-O-k
= Lk c = - 1
Fo k F O\ JIJiF
X A/ (2F; +1)(2F; +1) t ) vt
\/ i ) —M& g ME ) Kk F J;

2

X <ri7'[oc]i||on(k)(w)||rj7'[[3]j> : (5-34)

In all these three expressions, the indexes o and (3 describes pre-
served quantities forming "good" labels of the perturbed eigen-
states, while i and j represents the basis states. For example, in
the case when there is just hyperfine interaction (5.32), the F quan-
tum number is indexed by « or 3, while in the last expression
(5.34) the additional perturbation from the external magnetic field
introduces off-diagonal contributions in F so that it is denoted by
the summation indexes i or j.
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Computer software is of fundamental importance to modern scien-
tific research. A major part of the thesis work has been related to
the improvement and development of scientific codes. As a mem-
ber of the ComMPAS team [142] I have been taking part in the con-
tinuous development of the Grasr2k program suite which in its
present form makes up about 335,000 rows of code. In addition,
much of the theory and the new codes which have been developed
over the years have materialized into a single code named Ruyze
[173], used to calculate eigenstates and radiative transitions of any
atom or ion in the periodic table perturbed by external magnetic
tields and/or non-spherical nuclei in a basis constructed from rel-
ativistic MCDHF wavefunctions.

6.1 BASIC PROGRAMMING GUIDELINES

During the development of the scientific codes, and the Ruyze
code in particular, it has been useful to adopt certain program-
ming guidelines (see e.g. [174] for a review on good practices in
scientific computing):

* Programs should be written for people, not computers. Make
naming of variables, methods and modules consistent, distinc-
tive, and meaningful. The code formatting should be consistent
through out the project.

* Let the computer do the work. L.e. use available tools such as GNU
MAKE [175] for compilation of the codes, or GpB [176] for debug-
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ging. Choose and comfortable with an advanced editor such as
Vim?! [177] or GNU Emacs [178].

Develop the code incrementally. Try to work in as small steps as
possible. Make use of a version control system, such as Git [179],
for everything that has been manually created by you (e.g. do
not track files automatically generated during compilation).

Use unit tests. Make it a habit to test features or results of a piece
of code. Programs rely on such tests to prevent that a change
to one part of the code does not break other parts. Unit tests
are essential in large libraries and programs, but are usually not
utilized for smaller projects. In the case of RuYZE, error messages
should be handled by the intrinsic Fortran routine error stop,
and follow a certain specified format:

error stop "main module namelprocedure name: message"

Restric global datastructures to constants/parameters. All variable
datastructures should be sent as arguments to subroutines or
functions to prevent e.g. accidental re-definitions.

Write the code in an object-oriented, or at least modularized, fashion.
Put related methods (subroutines and functions) into modules.
In addition, it can be useful to define classes containing custom
datastructures with member methods in a logical manner. As an
example, the class in Ruyze which contains information about
the eigenstates (the PSF’s) and relevant methods, is declared as
follows:

type eigenstates

integer(ik) tion ! no of eigenstates
character(len=1), allocatable :: p(:) ! parity

real(rk), allocatable :: GQN(:) ! good quantum number
integer(ik), allocatable :: iE(:) ! energy ordered index
real(rk), allocatable :: E(:) ! eigenenergies
real(rk), allocatable :: w(:) ! rad. decay width
real(rk), allocatable :: c(:,:) ! eigenvectors

1 If you are planning to work with the ComPAS team, you better learn Vim.
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contains
procedure, public :: init_eigenstates
procedure, public :: kill_eigenstates
procedure, public :: calc_eigenstates
procedure, private :: sort_eigenstates
procedure, private :: define_eigenstates

end type eigenstates

The procedures (or methods) are subroutines or functions cor-
responding to operations one would like to perform on the set
of PSF’s. Fundamentally one would like to allocate all dynamic
arrays, which is done by the init_eigenstates procedure, the
calc_eigenstates procedure is a large routine for calculation of
the eigenvectors and eigenenergies and the sort_eigenstates
procedure sorts the states according to some specified param-
eters. In addition to these one could add procedures for print-
ing information about quantum numbers and energies or for
adding/removing a subsection of the set, and so on.

These are just a few general guidelines, in particular targeting
scientific coding with modern Fortran, and many more could be
added.

6.2 THE RHYZE CODE

The development of Ruyze [173] started from the Matlab® tools
provided with the original HrszeemAN package developed by An-
dersson and Jonsson [180]. RuYZE is a general code written in mod-
ern object-oriented Fortran [181, 182] used to determine Mj-, F-
or Mg-dependent eigenstates and corresponding radiative transi-
tions of any multipole. The interaction matrices (hyperfine, Zee-
man and radiative) are represented in terms of basis states built
from J-dependent wavefunctions, obtained with Grasr2k, coupled
to a nuclear wavefunction representing the nuclear ground state
for atomic systems with non-zero nuclear spin. Ruyze essentially
implements all of the theory presented in Ch. 5.
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Comparatively little work as been done on hyperfine- and magnetic-
field-induced spectral effects, and M-dependent effects in partic-
ular, which could be attributed to a lack of general-purpose tools.

To resolve this, Ruyze was been developed with the general case

in mind as a module to be used together with Grasr2x and HE-
SZEEMAN.

/\ O\ /\_2\ /\_2\ /\ N\ /\ N\

/i N\ /:/——/— |:i:b—L -\:\ \ /::\ \ A Relativistic HYperfine ZEeman
ZiiN\CCN/ NN\ i o\ /o /i code for calculation of F, MJ or
\;iie/ NN/ /uia/——/\ityi/——/\:\:\/ / MF dependent quantum mechanical

|:\/——/ /:/ [/ \/__/ \:\_-\ \:\/ / states and transition properites

N \/__/ \/__/ \/__/ of atoms and ions.

RHYZE (c) 2016 Jon Grumer & the CompAS team jon.grumer@teorfys.lu.se v1.0

Basic Program Info: The code is written in modern Fortran (For-
tran 2008) and consists of 4352 number of lines. The size of all
integer, real and complex variables are defined by kind parame-
ters from the intrinsic Fortran routine iso_fortran_env, and thus
easily adopted to any required precision. By default most of the
code makes use of 64-bit words as defined by the kind parameters
int64 and real64.

External Dependencies: GrasP2k [119], HFszEEMAN [180] (an
updated version is provided with RuvzE), Larack [183].

Availablilty:  Currently via a GitHub [130] repository? together
with an updated version of the original HrFszEEMAN code, or di-
rectly from the author. The code is planned to be submitted for
publication in Computer Physics Communications.

Nature of Problem: Rigorous theoretical calculations of atomic

This repository is currently restricted to the members of the ComrAS collaboration
[142] , ask the author for permissions if you need access. The plan is to eventually
make this repository open.
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properties for atoms or ions with or without nuclear spin under
the influence of external magnetic fields, are of general interest in
science and technology. RuyzE [173] has been developed with the
aim of fully generalize the procedure of evaluation of hyperfine
and/or magnetic-field perturbed eigenstates and associated tran-
sition rates and lifetimes in atoms or ions. Exotic spectral features
such as intensity redistributions and unexpected transitions due to
the perturbations, are of particular interest.

Solution Method: The starting point for the method is to repre-
sent the perturbed eigenstates in terms of the perturbed state func-
tion’s (PSF’s) defined by (5.1). These are obtained through a CI
model in which the eigenvalue problem (5.27) is solved in a ba-
sis of J-dependent ASF’s, coupled to NSF’s for cases with non-
zero nuclear spin. The input set of ASF’s are determined by the
MCDHF+RCI approach with the Grasr2k program package, and
the M1 and E2 hyperfine and M1 magnetic-field interaction matrix
elements are calculated from the same set of ASF’s with the Hr-
SZEEMAN code [180]. The perturbed eigenstates can then be used
to evaluate Mj-, F- or Mg-dependent transition rates of any mul-
tipole (E/MKk) according to (5.33), (5.32) or (5.34). The rates are
determined from weakly energy dependent transition matrix ele-
ments, defined by the operator (5.31), calculated with the transition
routines of Grasr2k, preferably using the same set of ASF’s as for
the calculation of the interaction matrices.

The perturbed eigenstates and transitions properties are evaluated
using three different methods of increasing sophistication:

1. Diagonal treatment of the states in which there is no inclusion
of mixing due to the magnetic-field or hyperfine perturba-
tions - equivalent to A and B constants in the hyperfine case
- and the transition rates are determined to first order as ma-
trix elements between the eigenstates.

2. Full diagonalization of the magnetic-field and/or hyperfine in-
teraction matrix to determine the perturbed eigenstates (mix-
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ing between unperturbed states is included to all orders) and
the transition rates are determined from matrix elements be-
tween the new eigenstates.

3. Radiation damping (under development) effects are included
in the energy eigenvalue problem (5.27) through a complex
non-local optical potential, as suggested by Robicheaux et
al. [184]. In this method the perturbations and the interac-
tion with the radiation field are treated on an equal foot-
ing, which is important for systems involving levels which
have fine-structure separations and natural radiative widths
of similar orders of magnitudes. The inclusion of effects due
to the radiation field in the total interaction Hamiltonian re-
sults in a complex non-hermitian eigenvalue problem. Much
of the basic structure have been implemented in Ruyze while
the high-level routines remains to be written. A diagonal ver-
sion of this method was employed by Indelicato et al. [185]
and Marques et al. [186] to treat pure hyperfine interactions
in He- and Be-like systems respectively. Later Johnson et al.
[187] adopted Robicheaux” optical potential to treat also off-
diagonal effects in He-like systems.

The diagonal method is useful to investigate the impact of off-
diagonal matrix elements, and in comparisons with previous di-
agonal calculations.

Restrictions: The complexity of the cases that can be handled by
RuyzE is essentially determined by the limitations of the Grasr2x
package. In addition, for cases when the fine-structure separations
are of the same order as the natural level widths the perturba-
tive treatment of the radiation field breaks down and techniques
such as the above mentioned radiation damping method should be
adopted. The implementation of this method in Ruyze is ongoing.
It should be made clear that there are no methods implemented in
RuyzE to treat perturbations from external electric fields.
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Installation: =~ The compilation of the code is done through a
Makefile by typing make in the command prompt while standing
in the root directory of Ruvze. If successful, exectuables will be put
in the created bin directory. A few things should be noted before
proceeding with the actual installation:

1. Check the external library dependences. The code is depen-
dent on Larack [183] for diagonalization, so make sure you
have this libary installed. Larack is usually bundled with
modern distributions of GNU/Linux [188], such as Ubuntu
[189], CentOS [190] or OpenSuse [191], so this should not
pose a problem for most users. It might be that the Lapack li-
braries can not be located during the compilation even though
you have them installed. In that case, either set up the correct
linking manually, or it might help to install the LArAck devel-
opment package. E.g. for Debian-type distributions, such as
Ubuntu, you just type sudo apt-get install liblapack-dev
in the command prompt.

2. The compilation is performed with gcc/gfortran [192] per
default. If you would like to use another compiler, please
modify the Makefiles in the src sub-directories. Further in-
structions are found in this file.

3. The installation of HFsZEEMAN is dependent on some GRrAsP2k
library routines, so make sure you have compiled these be-
forehand,

4. The installation may be cleaned up, i.e. remove redundant
files, in a standard fashion by running make clean.

5. To completely clean up the installation, i.e. remove also the
binaries and the bin folder, run instead make cleanall.

Input files:  The following files are required to initiate a Ruyze
calculation:

¢ isodata - Contains fundamental information about the nucleus
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(I, 1, Q). Identical to the Grasr2k isodata file.

* <name>.hzm - One or more output files from HFSZEEMAN contain-

ing reduced Hyperfine and Zeeman interaction matrix elements
as-well as information about the unperturbed basis states (the
ASF’s). If more than one file is included, then make sure that no
state is duplicated. The ASF basis set and corresponding fine-
structure energies provided in the top of the .hzm files are used
by RuyzE to construct the perturbed basis set. The fine-structure
energies given in these files can have a large impact on the final
results and it is often a good idea to replace the ab-inito energies
from the Grasrzk calculation with experimental energies when
available.

It is preferable to use the version of HrszeEeMAN included in this
package since this version among other things provides higher
accuracy for the matrix elements. If however the original ver-
sion [180] from CPC-IPL is used, then make sure you run RuyzE
with non-default options and select the Brink and Satchler defi-
nition for the reduced matrix elements. Additional non-default
settings such as energy units used in the .hzm files can also be
selected, which can be useful in the re-scaling from ab-initio to
experimental fine-structure energies.

<case-id>.grasptransdata.rhyze.inp - A file with concatenat-
ed Grasr2k transition files containing information about the un-
perturbed transitions - e.g. say that filel contains E1 and M2
transitions while file2 contains M1 and E2 transitions, then cre-
ate the input file to RiyzEe by running the terminal command

cat filel.ct file2.ct > <case-id>.grasptransdata.rhyze.inp

The states involved in the transitions should match the states
in the .hzm files. These have to be calculated using a modified
version of the GrasP2k transition code which, in addition to the
oscillator strength (gf), transition rate (A) and line strength (S),
also prints the reduced transition matrix elements of the weakly
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energy dependent operator (5.31), including the necessary phase
information.

® <case-id>.caseinfo.rhyze.inp (optional) - input parameters
which will be read automatically during the execution (see out-
put files for additional info).

Note that <name> should be replaced by the label given to the files
during the Grasr2k calculation, and <case-id> is a identifier de-
fined while running RuyzE.

Output files:  The following files are produced after a successful
run of RHYZE:

® <case-id>.asfdata.rhyze.out - collected information about the
unperturbed states (ASE’s) to be used in the construction of the
perturbed basis set, as well as hyperfine, zeeman and radiative
transition interaction matrices in this representation.

® <case-id>.caseinfo.rhyze.out - input parameters given by the
user, rename to <case-id>.caseinfo.rhyze.inp for the code to
read this information automatically during the next execution.

* <case-id>.eigenstates.rhyze.out - information about the per-
turbed basis states and resulting eigenstates, including complete
eigenvectors.

® <case-id>.transitions.rhyze.out (optional) - radiative transi-
tion data (transition energies, rates, lifetimes, widths).

* <case-id>.fieldscan.rhyze.out (optional) - scan of eigenen-
ergy structure from the field-free limit up to the given magnetic
field (to produce level-crossing diagrams and provide identifica-
tion level crossings/anti-crossings).
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6.3 RHYZE IN PRACTICE

Ruyze calculations including hyperfine interaction and/or an ex-
ternal magnetic field can result in hundreds or even thousands of
eigenstates. To provide some insight in the complete calculational
procedure, we start by considering the energy structure of the rel-
atively simple example of the hyperfine structure of the 1s2p 3P
excited states of 3He, perturbed by an external magnetic field. Af-
ter this we turn to the evaluation of radiative transition properties
using the example of F-dependent states in He-like '?F and M-
dependent states in Ne-like Fe.

6.3.1 Eigenstates and Structure

3He has a nuclear spin I = 1/2, a nuclear magnetic dipole moment
up = —2.127624 py, and thus no electric quadrupole moment (Q =
0 b) [166]. This results in 5 hyperfine states which will split up
into a total of 18 magnetic sublevels in the presence of an external
magnetic field.

For the purpose of this test calculation, relatively accurate ASF’s
are obtained from a three-block (] = 0,1 and 2) single-reference
(1s2p) CAS calculation, starting from a DHF model after which
five subsequent layers of correlation orbitals are added in succeed-
ing MCDHEF calculations. For each layer only the new orbitals are
varied. Note that both the 3P; and 'P; states are optimized in an
EOL scheme. Details on the MCDHF procedure can be found in
Sec. 2.8.2. The largest active set of orbitals is defined by,

AS:{15...73,2p...7p,3d...7d,4f...8f,59...9g, 6h...10h}

using a simplified non-relativistic nl notation (i.e. 2p denotes both
2p* and 2p"). In LSJ-coupling, provided by a basis transformation
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Table 6.1: Comparison of our energies of the 3P hyperfine states in 3He
with the results of Johnson et al. [187]. The energies are given
relative to the unperturbed 3P, level and we use the dominating
LSJ-term to label the states.

Term  F  Ergve IMHz]  Ejghneon [MHz]  Diff

"3p," 5/2 -2137 -2152 15
Pyt 3/2 -358 372 14
"SPy" 1/2 4128 4138  -10
"SSPyt 3/2 4778 4806  -28
"SPy" 1/2 32228 32232 -4

from jj-coupling with the jj21sj program by Gaigalas et al. [193],
the ASF’s are given by the CSF expansions,
"Ts2p3P"] = 0) = —0.998335|1s 2p *Py)
—0.040643]15 3p 3Py ) + 0.029508| 15 4p 3Py ) . ..
"Ts2p3P"] = 1) = +0.998334|1s 2p *Py)
+0.040670[1s 3p 3Py ) — 0.029529|1s 4p 3Py ) . ..
"s2p TP"] = 1) = +0.997550|1s 2p ' Py )
—0.055064|1s3p 'P1) +0.036304[1s4p 'Py) ...
"s2p3P"] = 2) = +0.998334|1s 2p *P;)
+0.040661|1s 3p 3P2 ) — 0.029519[1s4p 3P,) ...

where the quotation marks are used to clarify that e.g. "1s2p 3P"
is just a label, here given by the dominating CSF component.

This set of ASF’s is then used to determine the hyperfine and
Zeeman interaction matrices through an updated version of Hr-
sZzEEMAN [180]. To provide a better comparison of the calculated
perturbed energy structure with the accurate Hylleraas-type calcu-
lations of Wu and Drake [172], we use their fine-structure energies
as input. This is easily done in a RuyzE calculation by replacing
the ab-inito energies in the top of the <name>-hzm file(s). By default
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Number of ASFs

3
iEJ J p E [MHz]
1 2.0 - 0.000000000E+00
1 1.0 - 2.292163590E+03
1 0.0 - 3.190883978E+04

Zeeman M1 reduced interaction matrix [a.u]

4.11098172112262E+00 -7.92349196336495E-01 0.00000000000000E+00
7.92349196336495E-01 1.83848487044697E+00 7.08700341369519E-01
0.00000000000000E+00 -7.08700341369519E-01 0.00000000000000E+00
Hyperfine M1 reduced interaction matrix [a.u]

2.11934007968182E-01 -1.21198605331839E-01 0.00000000000000E+00
1.21198605331839E-01 9.56088032198982E-02 1.07815420391209E-01
0.00000000000000E+00 -1.07815420391209E-01 0.00000000000000E+00
Hyperfine E2 reduced interaction matrix [a.u]

5.88012270121575E-02 6.66743404918974E-02 -4.44456762824776E-02
-6.66743404918973E-02 -3.84941911761749E-02 0.00000000000000E+00
-4.44456762824776E-02 -0.00000000000000E+00 0.00000000000000E+00

Figure 6.1: The <name>.hzm Ruyze input file for the 3P states of 3He with
information about the included ASF basis set including ener-
gies, followed by the reduced Zeeman and hyperfine interac-
tion matrices.

Rryze assumes Hartree atomic units, but you can also provide the
energies in cm ™! or MHz and choose the appropriate unit via the
non-default options at runtime. In general, for accurate predictions
of perturbed eigenstates and associated radiative properties, it can
be advantageous to replace the ab-initio MCDHF energies from
a Grasr2k calculation with experimental values. The <name>.hzm
file for the 1s2p 3P states of 3He is shown in Fig. 6.1. In this file
iEJ is an energy ordered index within the set of states with same |
quantum number (here it is always equal to one since we limit the
present calculation to 3P 1 7)

A Mj-, F or, as in this case, Mg-dependent set of basis states are
constructed from the provided set of ASF’s in the <name>.hzm file,
the information about the nucleus given in the isodata file and
the fact whether or not an external magnetic field is present, the
strength of which is given at run time of Ruyze. Before moving
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Basis states of the perturbed system

id iJ iEJ p J F MF Total ASF-energy [a.u] Level [cm-1]
1 1 1- 2.0 2.5 2.5 0.00000000000000E+00 0.0000
2 1 1- 2.0 2.5 1.5 0.00000000000000E+00 0.0000
3 1 1- 2.0 1.5 1.5 0.00000000000000E+00 0.0000
4 2 1- 1.0 1.5 1.5 3.48369863601714E-07 0.0765
5 1 1- 2.0 2.5 0.5 0.00000000000000E+00 0.0000
6 1 1- 2.0 1.5 0.5 0.00000000000000E+00 0.0000
7 2 1- 1.0 1.5 0.5 3.48369863601714E-07 0.0765
8 2 1- 1.0 0.5 0.5 3.48369863601714E-07 0.0765
9 3 1- 0.0 0.5 0.5 4.84960070491632E-06 1.0644
16 1 1- 2.0 2.5-0.5 0.00000000000000E+00 0.0000
11 1 1- 2.0 1.5 -0.5 0.00000000000000E+00 0.0000
12 2 1- 1.0 1.5 -0.5 3.48369863601714E-07 0.0765
13 2 1- 1.0 0.5 -0.5 3.48369863601714E-07 0.0765
14 3 1- 0.0 0.5 -0.5 4.84960070491632E-06 1.0644
15 1 1- 2.0 2.5-1.5 0.00000000000000E+00 0.0000
16 1 1- 2.0 1.5 -1.5 0.00000000000000E+00 0.0000
17 2 1- 1.6 1.5 -1.5 3.48369863601714E-07 0.0765
18 1 1- 2.0 2.5-2.5 0.00000000000000E+00 0.0000

Figure 6.2: The perturbed basis states for the 3Py;, states
of 3He set up by Ruvze, extracted from the
<case-id>.eigenstates.rhyze.out file.

on to the inclusion of an external magnetic field, we compare the
resulting hyperfine eigenergies in the field-free limit with the ac-
curate results of Johnson et al. [187]. It is clear from Tab. 6.1 that,
even with this limited correlation model, the hyperfine structure is
predicted to within 28 MHz (~ 0.00093 cm ™).

Fig. 6.2 shows a list the Mr-dependent basis states as extracted
from the <case-id>.eigenstates. rhyze.out file. The id index enu-
merates the basis states and are later used to identify the compo-
nents in the eigenvectors, iJ is an index which connects the basis
state to the corresponding ASF in the <name>. hzm file(s). The Level
energies are relative to the lowest unperturbed energy (*P; in this
case) and the states are sorted into blocks with equal M quantum
number.
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From this set of basis states, RiHYzE sets up the total interaction
matrix including both hyperfine and Zeeman interactions (we use
a magnetic field strength of B = 1 T). Diagonalization results in
the eigenstates listed in Fig. 6.3, which is also provided in the
<case-id>.eigenstates.rhyze.out file. Similar to the iEJ index
of the basis states, iE is an energy ordered index within a block
of states with equal Mf quantum number. The Level energies are
given relative to the lowest unperturbed level just like before and
Diff is the energy separation to the adjacent lower state. Note that
the output has been slightly modified to fit in the present format.
This output file also list the top three eigenvector components (only
two are included in this extraction), where the c’s are mixing coef-
ficients and the id index provides identification of the basis states
in the list shown in Fig. 6.2. Complete eigenvectors are given in the
end of the <case-id>.eigenstates.rhyze.out file.

6.3.2 Level-Crossing Information

In addition, Ruyze also has the optional feature of giving infor-
mation about the variation of the energy levels with increasing
magnetic field strength, starting from the field-free limit up to the
strength given at runtime. The plots in Fig. 6.4 shows a level cross-
ing diagram, which illustrates how the 2+2+1 hyperfine states of
3P split up into 18 M-dependent sublevels and their dependence
of the magnetic field strength. The upper plot shows a scan up to
10000 gauss while the lower plot is limited to the structure of 3P, 2
in the region up to 2000 gauss. The level information between the
parentheses is defined by the dominating eigenvector component
at the maximum field strength (use the c(1) coefficient in Fig. 6.3
with the basis index, id, from Fig 6.2).

The points in B where the various sublevels cross provide an im-
portant test of atomic structure models in magnetic field environ-
ments. Tab. 6.2 presents a comparison between the level crossings
from our calculation and the result of Wu and Drake [172]. Their
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Eigenstates

Label Eigenenergies Level Diff Top eigenvector components
iE MF p Total [a.u] [cm-1] [MHz] c(1) id c(2) id
1 -2.5 - -6.71361429810649E-06 -1.4735 1.000E+00 18
1 -1.5 - -6.10965449401825E-06 -1.3409 3973.86 -8.502E-01 16 -5.219E-01 15
2 -1.5 - -4.42294280978807E-06 -0.9707 11098.03 -6.640E-01 15 -6.583E-01 17
1 -0.5 - -3.82277398650742E-06 -0.8390 3948.92 5.697E-01 10 5.257E-01 11
2 -0.5 - -1.97879315262595E-06 -0.4343 12132.81 5.795E-01 12 -5.200E-01 11
3 -1.5 - -1.89557361275730E-06 -0.4160 547.56 7.495E-01 17 -5.353E-01 15
3 -0.5 - -1.53795679851898E-06 -0.3375 2353.01 -5.505E-01 13  5.269E-01 10
1 0.5 - -1.11079527386941E-06 -0.2438 2810.59 6.021E-01 5 6.002E-01 7
2 0.5 - 9.06413540637642E-07 0.1989 13272.60 -5.894E-01 7 5.556E-01 5
4 -0.5 - 1.14346063181049E-06 0.2510 1559.69 -5.533E-01 11 5.140E-01 10
1 1.5 - 2.23870361223110E-06 0.4913 7206.35 7.299E-01 2 6.355E-01 4
3 0.5 - 2.34233285105821E-066 0.5141 681.85 -6.183E-01 8 -5.907E-01 6
2 1.5 - 4.12766201210881E-06 0.9059 11746.90 7.682E-01 4 -5.655E-01 2
4 0.5 - 4.71217267500296E-06 1.0342 3845.90 -6.406E-01 8 5.497E-01 6
5 0.5 - 5.41124797510566E-06 1.1876 4599.69 8.934E-01 9 3.882E-01 7
5 -0.5 - 5.67985357742587E-06 1.2466 1767.34 9.212E-01 14 2.752E-01 12
1 2.5 - 6.06397430572534E-06 1.3309 2527.39 1.000E+00 1
3 1.5 - 6.75570383652871E-06 1.4827 4551.36 9.202E-01 3 -3.838E-01 2

Figure 6.3: Resulting eigenstates from a Ruyze calculation on the 3Py 1 »
states of 3He including hyperfine interaction and an exter-
nal field strength of 1 T = 10000 gauss, extracted from the
<case-id>.eigenstates.rhyze.out output file.

results differ from available experimental level crossings to within
0.15 gauss, and should therefore provide a very good benchmark.
It is clear that there is a very good agreement between the results,
and we also find one level-crossing which is not reported by Wu
and Drake, that is crossing # 16 at 1244 gauss.

The differences between the results are attributed to their accu-
rate representation of both correlation and the interaction matrix
elements via the Hylleraas method, which is possible to use for
few-electron atoms such as He. The present approach is designed
for the general many-electron case, and as such one can not ex-
pect the results to compete with e.g. Hylleraas-type methods for
few-electron systems. It should be noted that we use (], F) labels
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Figure 6.4: The hyperfine structure of 3Py 1, in 3He scanned from the
field-free limit up to 10000 gauss in the upper plot. The lower
plot is limited to the levels belonging to 3Py ; up to 2000 gauss.
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defined by the dominating eigenvector components at maximum
field strength, while Wu and Drake use the low-field limit labels. In
addition, approaching levels with equal "good" quantum number
will interact and push each other away; the point where the states
would have coincided if they were non-interacting, are referred to
as anti-crossings. We leave these results out for the present discus-
sion.

6.3.3 Transition Properties

Finally we turn to the evaluation of transition properties between
perturbed eigenstates. As a test example we use '’F and compare
the hyperfine-dependent transition properties of the 3Py state with
the results of Johnson et al. [187]. A correlation model equal to the
one for 3He ise utilized to obtain the necessary ASF’s. The '°F
isotope has a nuclear spin I = 1/2 and a nuclear magnetic dipole
moment p; = 2.6289 pn [166]. For an easier comparison and to
test the code we use the values for the hyperfine interaction matrix
elements and fine-structure separations of the 'P and 3P states
reported by Johnson. Starting with the energy structure, Tab. 6.3
shows the resulting hyperfine energies and it is clear that a good
agreement is found.

To determine an accurate value for the transition rate of normally
strictly forbidden E1 transition from 1s 2p 3Py F = 1/2 to the ground
state 1sZ 1Sy F = 1/2, we note that is crucial to include inter-
actions with the 'P; state. This state has a resonant E1 decay
channel to the ground state, so that even a small admixture of
this state in the total wavefunction can have a large impact on
the resulting transition rate. Grasr2xk transition calculations pro-
vides radiaitve interaction matrix elements (or line strengths if you
like) for required set of multipoles (limited to E1 for now). The
<case-id>.grasptransdata.rhyze.inp file is created acording to
the description of the input files above. An extraction from the out-
put file <case-id>.transitions.rhyze.out is presented in Fig. 6.5
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Table 6.2: Comparison between the M-dependent level-crossings in 3He

obtained with RaYZE and the results of Wu and Drake [172]. The
magnetic field strengths are given in units of gauss and we scan
from the field-free limit up to up to 10000 gauss with a step size
of 0.05 gauss. The level-crossings are obtained from linear inter-
polations. The # enumerates the crossings and the (], F) labels
are defined by the dominating eigenvector component at 10000
gauss as given in Fig. 6.3.

# (]/ F) Mg (]/ F) Mg Bruyze  Bwu&Drake
1 (1,1/2) 1/2 - (1,3/2) -3/2 156 160.84
2 (2,5/2) 5/2 - (2,5/2) -3/2 249 249.26
3 (25/2) 3/2 - (2,5/2) -3/2 328 32837
4 (2,5/2) 5/2 - (1,3/2) -1/2 343 343.10
5 (2,5/2) 1/2 - (2,5/2) -3/2 480 480.96
6 (2,5/2) 3/2 - (1,3/2) ~-1/2 518 518.28
7 (5/2) 5/2 - (1,3/2) 1/2 544 544.79
8 (1,1/2) 1/2 - (2,3/2) -1/2 633 647.71
9 (2,5/2) -1/2 - (2,5/2) -3/2 899 900.72
10 (1,3/2) 3/2 - (1,1/2) -1/2 919 925.31
11 (1,3/2) 3/2 - (1,3/2) -3/2 939 947-44
12 (2,5/2) 5/2 - (1,1/2) -1/2 994 998.99
13 (2,5/2) 5/2 - (1,3/2) -3/2 1007 1013.50
14 (2,5/2) 1/2 - (1,3/2) -1/2 1111 1111.98
15 (2,5/2) 5/2 - (1,3/2) 3/2 1233 1233.58
16 (2,5/2) 3/2 - (1,3/2) 1/2 1244 -----
17 (2,5/2) 3/2 - (1,1/2) -1/2 1427 1434.06
18 (2,5/2) 3/2 - (1,3/2) -3/2 1430 1438.82
19 (1,3/2) 1/2 - (1,1/2) -1/2 1510 1520.68
20 (1,3/2) 1/2 - (1,3/2) -3/2 1511 1523.77
21 (1,1/2) -1/2 - (1,3/2) -3/2 1524 1595.70
22 (2,5/2) 5/2 - (2,3/2) -1/2 1634 1644.20
23 (2,5/2) 5/2 - (1,1/2) 1/2 1754 1763.79
24 (1,3/2) 3/2 - (2,3/2) -1/2 1892 1907.10
25 (1,3/2) 3/2 - (1,1/2) 1/2 2187 2205.30
26 (2,5/2) 1/2 - (1,3/2) -3/2 2842 2859.49
27 (2,5/2) 1/2 - (1,1/2) -1/2 2988 3001.28
28 (2,5/2) 3/2 - (2,3/2) -1/2 3821 3841.22
29 (2,5/2) 5/2 - (2,3/2) 1/2 4115 4137.72
30 (2,3/2) 3/2 - (0,1/2) 1/2 7442 7436.79
31 (2,3/2) 3/2 - (o,1/2) -1/2 7906 7903.91
32 (2,5/2) 5/2 - (o,1/2) 1/2 8742 8747.23
33 (2,5/2) 5/2 - (o,1/2) ~-1/2 9253 9262.14
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Transition Rates

i iEp F j iEp Energy[cm-] <Fi||T||Fj> A(i,j)

1 1+ 85 3 1- 1.5 5.900756E+06  4.171642E-03  1.811105E+09
1 1+ 05 4 2- 1.5 5.901697E+06 -9.797182E-05  9.994008E+05
1 1+ 85 5 3- 1.5 5.951171E+06  2.285411E-01  5.576256E+12
1 1+ 05 6 1- 0.5 5.900599E+06  2.566778E-04  1.371203E+07
1 1+ 85 7 2- 0.5 5.900743E+06 -2.994333E-03  1.866194E+09
1 1+ 05 8 3- 0.5 5.951171E+06 -1.616020E-01 5.576186E+12

Figure 6.5: Extraction from the <case-id>.transitions.rhyze.out RHYZE

output file, listing resulting E1 transition rates between the
1s2p 3P and 1s? 'S hyperfine states in He-like '?F*?. Note
that a column giving the transition wavelengths has been re-
moved from this extraction.

Multipole contribution printed for branching ratios (BR) > 1.0E-03

i iE p MJ Level [cm-1] Lifetime [s] BR [Ek/MK]-1i(BR)
1 1+ 0.0 0.000000E+00
2 1- 2.0 5.849493E+06 5.385133E-06  M2-1(1.000)
3 1- 1.0 5.849492E+06 5.373705E-06 M2-1(0.998) E1-1(0.002)
4 2- 1.0 5.864761E+06 1.276162E-12 E1-1(1.000)
5 3- 1.0 5.961023E+06 1.542055E-12 E1-1(1.000)
6 1- 0.0 5.849490E+06 5.369913E-06 M2-1(0.997) E1-1(0.003)
7 2- 0.0 5.864760E+06 1.276170E-12 E1-1(1.000)
8 3 - 0.0 5.951478E+06 4.899211E-05 M1-4(0.262) M1-7(0.262)
... M1-11(0.262) E1-1(0.214)
9 4- 0.0 5.961022E+06 1.542045E-12 E1-1(1.000)
10 1 - -1.0 5.849488E+06 5.373723E-06 M2-1(0.998) E1-1(0.002)
11 2 - -1.0 5.864759E+06  1.276177E-12  E1-1(1.000)
12 3 - -1.0 5.961021E+06 1.542036E-12 E1-1(1.000)
13 1 - -2.0 5.840487E+06 5.385166E-06 M2-1(1.000)
Figure 6.6: Extraction from the <case-id>.transitions.rhyze.out RHYZE

output file, listing eigenvalues, lifetimes and branching ratios
for the 252 2p® 1S and 2s? 2p> 3s 3P states of Ne-like Fe un-
der the perturbation of an external magnetic field at 2.5 T. The
extraction has been slightly modified to fit the present format.
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Table 6.3: Comparison of our energies of the 3P hyperfine states in '7F+?

with the results of Johnson et al. [187]. The energies are given
relative to the unperturbed 3Py level and we use the dominating
LSJ-term to label the states.

Term F ERuvzs [em '] Ejohnson [em~']  Diff

Py 1/2 -0.86 -0.87  o0.01
"SPyt 1/2 143.28 14322  0.06
"SSPt 3/2 155.64 155.66  -0.02
"SSPy 3/2 1096.94 1096.82  0.12
"P,"  5/2 1117.39 1117.42  -0.03

which shows the resulting transition properties as determined by
Ruyze. The 3Py F = 1/2 state is the lowest lying state with F =1/2
so that its identifier is given by "iE p F' ="1 - 0.5" and the re-
sulting transition rate is 1.37 x 107 s~1, which agrees well with the
value of 1.39 x 107 s~! reported by Johnson et al. [187]. We clar-
ify again that these are smaller test calculations, and that a closer
agreement would be expected for large-scale calculations.

The <case-id>.transitions.rhyze.out file from a RHYZE calcula-
tion also gives the total lifetime of the perturbed eigenstates and
branching ratios, including all possible transition channels; limited
only by the content in the <case-id>.grasptransdata.rhyze.out
file and the included ASF’s in the <name>.hznm files. Fig. 6.6 shows
an example from a test calculation on the 252 2p® 'S and 252 2p° 3s
1.3P states of Ne-like Fe under the perturbation of an external mag-
netic field at 2.5 T. The radiative decay of the 3P state is normally
dominated by an M1 transition to the 3Py state, but the introduc-
tion of the external magnetic field causes the 3Py state to mix with
the 13P; states which opens up an additional E1 channel. This is
clear from the branching ratios of the 3P, Mj = 0 state (i = 8) in
Fig. 6.6, which shows a ratio of 21% for the E1 decay to the ground
state (1 = 1).



SPECTRAL INTENSITY REDISTRIBUTIONS

In this chapter we discuss effects on radiative spectra due to per-
turbations from the symmetry-breaking interactions outlined in
Ch. 5, with a focus on pure hyperfine interaction. The diagonal
part of the perturbation gives the well known hyperfine spectral
features. The effect of the off-diagonal part of the perturbation is
often small, but can in some cases shift line positions and intro-
duce intensity redistributions among the hyperfine components in
what is termed hyperfine-induced intensity redistributions. Although
the present work only consider such effects for the case of pure
hyperfine perturbations, an external magnetic field could just as
well induce similar effects.

Two papers included in this work directly address hyperfine-indu-
ced intensity redistributions in atomic spectra. In paper B; we ana-
lyze the hyperfine structure and resulting spectra of In II in detail
and compare with high-resolution laboratory spectra [194]. During
this work, codes and methods were developed which ultimately
lead to the RryzE program presented in Ch. 6. Paper By concerns
the more complex system of Mn I and the impact of an accurate
treatment of hyperfine interaction on abundance analyses in stars,
which is illustrated by stellar atmosphere modeling with and with-
out off-diagonal effects. Results from these papers will be briefly
discussed in the following after a general introduction.
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7.1 INTRODUCTION

The determination of chemical abundances and many other quan-
tities in astrophysics, rely upon laboratory measurements and the-
oretical calculations of atomic properties, mainly wavelengths and
oscillator strengths. Precise knowledge of the wavelengths is of
fundamental importance for the identification of features in stellar
spectra in general, and of faint lines in particular.

It is often satisfactory to consider unperturbed atomic systems de-
scribed by fine-structure states, i.e. excluding broadening effects
(or splittings depending on the spectral resolution) and energy
shifts due to perturbations from e.g. hyperfine interaction and ex-
ternal magnetic fields. Paper A1;, which concerns calculations of
spectroscopic data for the astrophysically important Te V ion, rep-
resents such an example.

However, it has been shown, for example in 1952 by Abt [195] in
a study of the solar spectrum, that hyperfine interaction can have a
significant impact on the measured linewidths and wavelengths,
leading to erroneous spectral identifications as-well as inaccurate
derivations of abundances and turbulent velocities. The resolution
of solar, stellar, and interstellar observations is now in general high
enough for isotope and hyperfine effects to be important to con-
sider [156, 196].

The impact of hyperfine interaction on atomic spectra can be de-
scribed by the hyperfine A and B parameters, corresponding to
diagonal M1 and E2 hyperfine interaction matrix elements (5.6) re-
spectively. This representation is a good approximation if the split-
ting of the fine structure levels is much larger than the hyperfine
separations. The parameters can be determined from ab-inito calcu-
lations, but also from a fit of the line profiles, assuming a Doppler
lineshape and theoretical relative intensities, to an observed high-
resolution spectrum [194, 197].



7.2 HYPERFINE-INDUCED REDISTRIBUTIONS IN INDIUM

If however the perturbation from the hyperfine interaction is of the
same order as the fine-structure separations, it could introduce in-
terference effects among hyperfine states "belonging" to different
fine-structure states which then will share their decay properties.
The resulting intensity redistrubutions in the radiative spectrum
can be large, which was illustrated by e.g. Aboussaid et al. for the
3d%4s — 3d4sdp transitions in Sc I [198]. In addition, completely
new decay channels, called unexpected transition’s, could be opened
[199]. We will return to the topic of UT’s in Ch. 8 (see also pa-
per By for an overview). Off-diagonal contributions typically af-
fect transitions involving eigenstates with orbitals of high n and 1,
which gives small fine-structure separations, as well as open s sub-
shells, which has shown to give large contributions from hyperfine
interaction due spin-polarization effects [167].

Hyperfine-induced intensity redistributions in atomic spectra has
been studied earlier by Andersson and Jénsson who carried out
a theoretical MCDHF-based investigation of the radiative transi-
tions between the hyperfine levels of 4s4f3F, 3 and 4s4d3D; in
Ga II [159]. The obtained theoretical spectra were compared to ex-
perimental Fourier transform spectra showing good agreements,
which showed the importance of hyperfine-induced interference
effects for the 4s4d3D, —4s4f3F, transitions. A similar study
was performed for Al II [160], where it was shown that a descrip-
tion of the hyperfine structure with only the diagonal A and B
constants is not sufficient for a large number of transitions.

7.2 HYPERFINE-INDUCED REDISTRIBUTIONS IN INDIUM

In 2001 Karlsson and Litzén [194] investigated the hyperfine struc-
ture of singly ionized indium (In II) by using a Fourier transform
spectrometer in an attempt to experimentally determine A and B
hyperfine constants, which failed for the 5s5d3D, — 5s4f 3F2,3
transitions. The open s shell together with the high nl of the other
valence electron, indicate that this could be attributed to off-diagon-
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al effects. In II might not be the most interesting ion in terms of
applications, but, together with the detailed experimental spectra
of Karlsson and Litzén, it makes up an excellent model system for
investigating off-diagonal hyperfine interaction and provides a ex-
cellent laboratory for the development of general methods. This
work was the starting point for the methodology which eventually
was implemented in the Ruyze code outline in Ch. 6. Paper B
presents a detailed analysis of this system.

It turns out that it is hard to determine accurate values of the di-
agonal matrix elements of the magnetic dipole hyperfine interac-
tion from ab-initio wavefunctions, represented by the hyperfine
constants A("3F"3) and A("TF'3) (where the LS term is used as a
label for the fine-structure states). The latter constant is important
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Figure 7.1: Comparison of our adjusted synthetic spectrum (solid
lines) with the observed spectrum of In II by Karlsson
and Litzén [194] (dotted lines). The upper panel shows
5s5d3D, — 5s4f3F, and the lower the 5s4f3F3 transitions.
See the text and paper B; for details.
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since the interaction with "1F'3 comes in as an off-diagonal effect
when evaluating the hyperfine eigenstates and decay properties
of the 3F states. A comparison with available experimental values
[194] shows that our ab-inito value for A("F"3) is significantly too
low. The sum of A("3F"3) and A("'F"3) does however converge
just as nicely as the other two constants, A("3F";) and A("3F").
The underlying reason to all this is that the values of A("3F"3) and
A("TF"3) are sensitive to the mixing coefficients of the 5s4f TF; and
5s4f 'F3 CSF’s in the ASF’s describing the "5s4f 3F'3 and "5s4f 'F'3
eigenstates, i.e. it is very hard to determine the fine-structure sep-
arations accurate enough to predict the hyperfine structure. If pos-
sible, one should use experimental values for the J-dependent en-
ergies.
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Figure 7.2: Comparison of our ab-initio synthetic spectrum (solid
lines) with the observed spectrum of In II by Karlsson
and Litzén [194] (dotted lines). The upper panel shows
5s5d3D, — 5s4f3F, and the lower the 5s4f3F; transitions.
See the text and paper B; for details.
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Figure 7.3: The = synthetic  spectral components due to the
5s5d3D,; — 5s4f3F, (upper panel) and 5s4f3F3 transi-
tions (lower panel) of In II, generated via a diagonal (dotted
lines) and a complete matrix approach (solid lines). See the
text and paper B; for details.

To obtain better expansion coefficients for the CSF’s of the two
] = 3 ASF’s, we employ a semi-empirical fitting of some of the M1
hyperfine interaction matrix elements. We start with a re-scaling
of all the diagonal elements of the ] = 3 states by using the ex-
perimental value for A("'F"3). This changes the wave functions of
the states of interest which makes it possible to also shift the off-
diagonal elements. In a third and final step we re-scale the matrix
elements of the lower 5s5d 3D, state as well, even though this has
much less impact on the spectrum. See Sec. 5.1 of paper B; for
details on the adjustment procedure.

The final synthetic and semi-empirically adjusted spectrum is shown
in Fig. 7.1 where it is compared with the observed spectrum of
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Karlsson and Litzén. Based on this investigation it was realized
that an enlarged correlation model had to be used to determine
the ASF’s. A completely ab-initio spectrum (except for minor scal-
ing of the transition energy to align the experimental and synthetic
lines) is presented in Fig. 7.2. Both the adjusted and fully ab-initio
results show an excellent agreement with the experiment.

The importance of including off-diagonal effects in the treatment
of this system is further illustrated in Fig. 7.3. These plots show a
comparison between spectral distributions generated from a sim-
ple diagonal approach (corresponding to using the hyperfine A
and B parameters) and complete diagonalization; it is clear that
the impact from the off-diagonal elements is significant. The cal-
culated transition properties, which are tabulated in the paper, re-
veal that an inclusion of off-diagonal hyperfine interaction reduces
some of the oscillator strengths by two orders of magnitude, while
others are increased by up to more than a factor of 6.

1

1 o o
> o o

Intensity [arb. unitd

o
)

0.4 18 2021
15

23fi2s 3
22 *
102 5 8 19 27
3 4 [ 9 104213 16 6
T | TR | | 1 I

- T—— P—— n n FEE—— M—— FIE—— P—— P—
21467 21468 21 469 21470 21471 21472 21473 21474
Energy [cm™ ’]

24

Intensity [arb. units]

S
o
T

=)

Figure 7.4: The observed spectrum due to the 5s5d 3D, — 5s4f3F; 3 hy-
perfine transitions of In II by Karlsson and Litzén [194] (upper
plot), compared to our synthetic spectrum (lower plot) for line-
identification purposes. Note that each of the synthetic lines
are plotted separately. See paper By for a table with labels of
the enumerated lines.
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Finally, we mentioned in the introduction to this chapter the prob-
lem of inaccurate spectral identifications if hyperfine interactions
are not correctly accounted for in atomic spectra. In Fig. 7.4 we
illustrate how a synthetically generated spectrum can be used to
identify hyperfine components; particularly in the case of overlap-
ping lines, as can be seen from the spectral features in the right
part of the plot.

7.3 MANGANESE IN STELLAR ATMOSPHERES

Chemically peculiar stars are stars which have distinctly unusual
metal abundances. Jomaron et al. [200] estimated that the abun-
dance of manganese in HgMn peculiar stars, which have unusu-
ally high abundances of mercury and manganese, can be overes-
timated by several orders of magnitude if hyperfine interaction is
not taken into account. Even if a crude estimate of the hyperfine
structure through the diagonal hyperfine A and B parameters is
performed, the resulting abundance could be overestimated by up
to a factor of four.

Neutral manganese (Mn I) is responsible for three near infrared
lines at 17325, 17339 and 17349 A which are among the 25 strongest
lines in the H band (1.5 to 1.8 um). These are all significantly broad-
ened by hyperfine interaction, which most importantly decrease
the peak intensities. Omission of such effects will introduce er-
rors in the measurements of wavelengths and derived abundances.
Prochaska and McWilliam analyzed the impact of hyperfine in-
teraction on stellar abundance analyses of Mn and Sc and illus-
trated how incorrect hyperfine splittings can lead to spurious abun-
dances [201].

In paper Bj; we analyze the hyperfine structure and radiative de-
cay of the transitions 3d%4s(7S)4d e®D — 3d°4s(”S)4f wOF in
detail through a comparison with laboratory spectra in a similar
fashion as in the project on In II. In contrast to Mn II, which seems
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Figure 7.5: Comparison between observed (solid lines) and synthetic spec-
tra of Mn I from a full matrix approach including off-diagonal
effects (dashed lines). The left and right panels show the spec-
tral hyperfine features at 17349 and 17339 A, respectively, and
the inset plots show spectra generated by a diagonal calcula-
tion. See the text and paper By for details.

to be well-described by diagonal hyperfine A and B parameters
[202, 203], Mn I shows strong effects from off-diagonal hyperfine
interaction. Fig. 7.5 presents the hyperfine features due to transi-
tions from w °F to e6D5/2 and €6D7/2 (the lines at 17349 and
17339 A respectively), as predicted with a synthetic spectrum ob-
tained using a similar method as for In II including semi-empirical
adjustments, and a laboratory spectra recorded with the NIST 2m
Fourier transform spectrometer [204]. The reason for why a treat-
ment with the hyperfine A and B parameters fails in these cases,
as suggested by Jomaron et al. [200], becomes obvious by com-
paring the full matrix approach with the corresponding spectra
generated by a diagonal calculation shown in the inset plots. A di-
agonal treatment clearly fails to predict the separation of the single
fine-structure line into hyperfine components.

As a test of our results, we use the newly calculated hyperfine-
dependent energies and oscillator strengths to model the spectra
of the Sun and of the red giant star Arcturus in the relevant spectral
region of 1.73-1.74 pm with the MaRrcs code’ [206] using atomic
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Figure 7.6: The wavelength region of the solar spectrum relevant to our
new Mnl hyperfine data. The observed spectrum [205] is
shown in black, synthetic spectra with and without our new
Mn I hyperfine data are shown in red and blue respectively.
The green line shows a spectrum generated with the new data
but excluding contributions from the Hydrogen Bracket 10 line.
The enlargement in the lower left corner highlights a spectral
region with interesting Mn I features. See text and paper Bjg
for further details.

data from the VALD database [207]. Fig. 7.6 shows a comparison of
synthetic spectra, with and without our new Mn I data, for the Sun
with the spectra from the solar atlas [205]. The plot demonstrates
that a few of the Mn I lines are almost absent in the spectrum
generated from the old atomic data, and for some other lines the

1 We are in dept to P. Barklem and K. Eriksson for valuable help and discussions
concerning the modeling of the Hydrogen Bracket 10 line and the running of the
MARCs code.



7.3 MANGANESE IN STELLAR ATMOSPHERES

residuals between the observed and synthetic spectra are reduced
by half when using the new hyperfine data. These redistributions
will have a significant impact on a calculation of the abundances.
Vinicius et al. [208] performed an elemental-abundance analysis
based on data acquired with the Space Telescope Imaging Spectro-
graph on the Hubble Space Telescope. In their comparison between
observations and simulations, they used our new hyperfine data to
update existing line lists of Mn I.

In conclusion, it is clear that the spectral features at 17325, 17339
and 17349 A in Mn I are not suitable to represent by hyperfine
A and B parameters, but should instead be treated in terms of
individual hyperfine components due to the large impact from off-
diagonal interactions. The new hyperfine data presented in this
work should be of use in the analysis of stellar spectra, in particular
of HgMn peculiar stars, in the near infrared H band region.
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In addition to the spectral intensity redistributions discussed in the

previous chapter, the symmetry-breaking perturbations on an atom-
ic system due to hyperfine and/or Zeeman interactions can spawn

other interesting effects in atomic spectra. The mixing of states due

to the perturbations cause the regular selection rules (see Tab. 3.1)

to break down, which could give rise to new lines in the spec-
trum. This "exotic" class of radiation, termed unexpected transition’s

(UT’s), is defined as transitions which are induced by weak per-
turbations not included in the gross structure model of the atomic

system under investigation [199]. The appearance of an UT is a

drastic effect in a spectrum, but these transitions also introduce

some more indirect effects. For example, the introduction of new

decay channels from a set of states will affect their lifetimes which

might show up as deviations from expected trends along an iso-
electronic sequence. The discussions presented in this chapter is to

a large extent based on the proceeding By/.

In Byj; we analyze UT’s induced by hyperfine interactions - so-
called hyperfine-induced transition’s (HIT’s) - in Ne-like ions and
compare the results with competing forbidden transitions. In By
and By we investigate the impact of transitions induced by ex-
ternal magnetic fields - termed magnetic-field-induced transition’s
(MIT’s) - in Ne- as well as Be-like ions. The rate of a MIT in Ne-
like Ar was measured by Beiersdorfer et al. [209]. Their determined
value did however not agree with the theoretical analysis. In paper
By we present a careful analysis and resolve the discrepancy. In
the work on Be-like ions we investigate the impact of MIT’s on
storage-ring measurements of E1M1 two-photon transition rates.
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Finally, in papers By and By we outline a novel approach to the
challenging measurements of magnetic fields in the solar corona
by using a certain MIT in Fe X which has a rate with an enhanced
response to the magnetic-field strength. Some of the results pre-
sented in these papers will be discussed briefly after a short in-
troduction to UT’s in general through a simplistic model for the
rate.

8.1 INTRODUCTION - A SIMPLE MODEL

Effects due to UT’s are generally significant for atomic systems
with metastable excited states which only have slow and/or for-
bidden decay channels, and which in turn are accidentally near-
degenerate with other states having fast decay channels (e.g. E1
transitions). A symmetry-breaking perturbation introduced by hy-
perfine interactions and/or interactions with an external magnetic
field, could then mix the states so that the slow-decaying state would
obtain properties of the fast-decaying state, hence opening up a
faster, seemingly unexpected, E1 transition channel from the for-
mer.

The theory presented in Ch. 5 which is implemented in Ruyzg,
can be used to determine properties of radiative transitions in a
perturbed atomic system of any class, including HIT’s, MIT’s as
well as those induced by both an external magnetic field and hy-
perfine interactions (Mf-dependent transitions). Before continuing
with some examples from the publications included in this work,
we first present a simple model for unexpected transitions induced
by a general perturbation.

Assume that a system is well described by a Hamiltonian, Hp, with
eigenfunctions |®?) and energies EY . We represent the symmetry-
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Figure 8.1: A schematic level diagram of a simple three-level system, il-
lustrating the induction of a general unexpected transition. The
solid line represents a fast transition and the dashed line an
unexpected transition. The thick double-headed arrow depicts
the symmetry-breaking interaction of the [i) and |j) states in-
ducing the unexpected transition.

breaking perturbation by a Hamiltonian, Hy, which will cause a
"mixing" of zero-order states and form new eigenstates

Wi=) d,o%. (8.1)
n

The admixture of a certain state j is, to first order, given by

(@0 H|0?)
dj ~ TE) (8.2)
where @Y is the reference state for the new eigenstate ¥;. Con-
sidering the decay of the first excited state shown in Fig. 8.1, and
assuming that state [i) is not expected to decay to a lower state [k),
we can predict an induced transition rate according to first-order
perturbation theory by,

2
Alj—k), (83)

2 OO |Hq| @9
Al )~ | 2P0

Arli—= k)~ £0 0
1 )

d;

where it is assumed that the difference in transition energies for
i — k and j — k is neglected. Note that the notation assumes the
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perturbation to be weak enough for us to use the labeling of the
unperturbed eigenstates (i and j) also for the perturbed eigenstates
giving Ay (i = k). The UT will therefore typically occur (i.e. that
Ay (i — k) is significantly non-zero) in cases where the metastable
state [i) is close in energy to an interacting state [j) relative to the
interaction strength, and where |j) has a fast decay to the lower
state |k) (i.e. that A(j — k) is comparatively large).

In cases where the state [i) has an expected but slow rate, A (i — k)
(such as a forbidden transition or multi-photon channel) we can
express the total rate as,

Al—k) =Ac(i— k) +Au(i— k) (8.4)
(@9 1r100) [

=Ac.(1—k)+ £0 0
i j

AG—XK)

2
0 0
Ae (i— k) <(Dj |H1|<D1>

— A=k
=¥\ 2550 E0

From this we can predict that an extra unexpected channel has a
significant contribution to the decay of [i), induced through the
perturbation Hy, if the ratios,

2

Aei k) 8.5)

A(j—k)

(@9 [Hy] @)
0 0
By — Ej

are of comparable size, or if the right ratio is larger than the left.

Classic examples of UT’s are the spin-forbidden intercombination
(IC) transitions in atomic systems well described by non-relativistic
models, which are E1 transitions violating the AS = 0 spin con-
dition in LSJ-coupling. These transitions occur due to mixing of
states with same total angular momentum ], but different total
spin, S, due to perturbations from relativistic effects.

Of more importance to the present work, are UT’s violating the
AJ selection rules (see Tab. 3.1), such as |/ = 0 - ] = 0. In ab-
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sence of any symmetry-breaking perturbations, such one-photon
transitions are strictly forbidden. Mixing of states with different
] quantum numbers will also mix their decay properties, and E1
UT’s such as "3Pg" — "1SE" or "3P" — "1SE" could then occur.

8.2 REDUCED TRANSITION RATES

Assume, as is often the case, that the lower state involved in an
UT can be represented by a single basis state in the expression
for the PSF’s (5.1), and that an upper state « is well-described by
first-order mixing coefficients d{* (8.2). These approximations pro-
vide so-called reduced transition rates, which are useful since they
are approximately independent of the parameters which scale the
perturbations.

For MIT’s, the d{*’s then depend linearly on B so that we can de-

fine reduced coefficients df"k from d* = Bdf"R and hence also a
reduced transition rate, AE/UT,

which is independent of the magnetic field strength to first order.
These rates can then conveniently be tabulated and scaled to the
desired magnetic-field strength.

Of more importance are the reduced rates for HIT’s. In isoele-
cotronic analysis we strive for smooth trends to evaluate the accu-
racy of theoretical models or experiments, see e.g. the discussion
on the correlation energy of Ag-like ions in Fig 2.5. Factoring out
the dependence on the nuclear parameters I, i and Q provides re-
duced hyperfine-induced transition rates with a smooth behavior
along an isoelectronic sequence. The nuclear part of the hyperfine-
dependent transition rate (5.32) can be extracted for specific transi-
tions and under some appropriate approximations with regards to
the evaluation of the mixing coefficients. In the case of Be-like ions
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and the hyperfine-induced 2s 2p 3‘Po — 2g2 130 transition, we can
define a reduced rate AE{IT(3P0 —1Sp) by [210, 211],

Anit(PPo =1 So) = uf (1 1/DAJT(Po —' So), (8.7)

where we have limited the hyperfine interaction to the nuclear
magnetic dipole moment. See the appendix of Brage et al. [210]
for how to derive this expression.

In a similar fashion, reduced rates for MIT’s in atomic systems
with hyperfine transitions could be derived from a careful analysis
of the M dependent transition rate (5.34).

8.3 MIT’S IN BERYLLIUM-LIKE IONS

Be-like ions are interesting since, in absence of any external per-
turbations, the lowest-order decay channel from the first excited
state is the 2s2p 3Py — 252 'Sy E1M1 two-photon transition. The
construction of theoretical models to determine two-photon rates
in atomic systems with more than two electrons is an active area of
research; see for example the recent work by Amaro et al. [212]. In
order to extract the rate of this transition from experiments, Schip-
pers et al. recently proposed to measure the lifetime of the 2s2p 3P,
level through storage-ring experiments [213—215]. Such measure-
ments however involve external magnetic fields due to the dipole
bending-magnets in the ring, which will open up a MIT decay
channel from the same state. To support this type of experiments,
we have carried out a careful theoretical analysis of the competition
between the MIT and the E1M1 decay channels along the Be-like
isoelectronic sequence for ions without nuclear spin. See paper By,.

Since the ground state 2s2 'S, is well-separated in energy from
other even states, it is well represented as a pure, unmixed state.
The |252p 3Py Mj = 0) state will however be mixed with other
Mj = 0 states of similar energies; foremost the [2s 2p 3P, My =0)
state which is closest in energy. The 3Py level decays through a
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Figure 8.2: Schematic energy structures of Be- and Ne-like ions in the LS-
coupled low-Z region of the two isoelectronic sequences. The
unexpected transitions (dashed orange lines labeled by UT)
may be a MIT (induced by an external magnetic field) or a
HIT (induced by hyperfine interaction).

spin-induced (IC) E1 transition to the ground state, a property
which will be partly shared with the 3P state under the pertur-
bation from the external magnetic field. This will give rise to a
magnetic-field induced |"2s 2p 3P”0> — |"2s2 ]S"o> transition, which
will have dramatic effects on the total lifetime of the upper state.
We show in this work that this MIT will be sensitive to, not only
the mixing of |>Py My = 0) with 13P; Mj = 0), but also with
I"P1 Mj = 0). The left panel of Fig. 8.2 shows a schematic energy
level diagram of Be-like ions at the neutral end of the isoelectronic
sequence, including also relevant decay processes.

We show that the MIT rate, with a typical storage-ring field strength,
is at least of the same order of magnitude as the E1M1 rate for in-
termediately charged ions and completely dominating for ions at

the neutral end. Measurements of two-photon rates should there-

fore be carefully aided by an analysis of the perturbation due to

the magnetic field for higher nuclear charges.
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Figure 8.3: Rates associated with different transition channels from the ex-
cited |25 2p 3Py) state to the [2s% 1Sy) ground state in Be-like
ions. The E1Ma1 transition rates by Laughlin [216] are given in
units of s~ while the reduced MIT (8.6) and HIT (8.7) rates are
given in s7'T~2 and s uﬁz respectively, where py is the nu-
clear magneton. The HIT rates are from Andersson et al. [211].
See the text and paper By for details.

In some more detail, in Fig. 8.3 we compare the reduced MIT rates
(8.6) (corresponding to B = 1 T) obtained in this work, with the
corresponding reduced hyperfine induced transition (HIT) rates, to
be discussed in Sec. 8.5, as well as the E1M1 rates calculated using
the analytical expression by [216]. The uncertainty in Laughlin’s
prediction of the E1Ma1 rates is expected to be large for highly
charged ions. The recent theoretical work by Amaro et al. [212]
suggests that Be-like Xe®°" and U838+ have E1M1 rates of 5 x 1073
and 8 x 1072 s, respectively. These values are orders of magni-
tude smaller than the rates predicted by Laughlin, which should
further complicate the storage-ring measurements.
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Figure 8.4: Rates associated with different transition channels from the ex-
cited |2p° 3s 3Py) state to the [2p® 'Sy) ground state in Ne-like
ions. The M1 transition rate is given in units of s~*, while the
reduced MIT (8.6) and HIT (8.7) rates are given in s 'T~2 and
s uﬁz respectively, where ny is the nuclear magneton. See
the text and papers By and By for details.

8.4 MIT’S IN NEON-LIKE IONS

Paper By concerns what is arguably the first, experimental mea-
surement of a MIT: the EBIT observation of the unexpected transi-
tion 2p°3s 3Py — 2p°® 'S, in Ne-like Ar by Beiersdorfer [209]. The
right panel of Fig. 8.2 shows a schematic energy level diagram of
Ne-like ions, which highlights the similarities to Be-like ions, but
also the importance of the reversed fine structure of the 3P-term.
Some theoretical predictions for the MIT were also presented by
Beiersdorfer et al., but the deduced transition rates did not seem
to agree with the experiment. The authors also discussed how the
MIT’s can be used as a diagnostic tool of magnetic field strength
for high temperature plasmas, in e.g. fusion devices.
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Motivated by the discrepancy between theory and experiment, we
carried out large-scale calculations to predict the MIT’s for all iso-
topes without nuclear spin in the isoelectronic sequence between
Ne I and Zn XXI. In analogy to the Be-like case, we find that it
is crucial to include both perturber states, \3P1> and |'P4 ), which
was not the case in the original prediction by Beiersdorfer et al., in
order to accurately represent the MIT rates.

The MIT decay channel competes with the M1 transition 3Py —
3Py, as shown in Fig. 8.2. A comparison along the isoelectronic
sequence of the M1 and reduced MIT rates (8.6) (corresponding
to B = 1 T) rates is shown in Fig. 8.4. From this plot it is clear
that the MIT channel, at this field strength, dominates over the
M1 channel for Z < 20. The influence of the magnetic field on
the 3Py level has a direct visible impact on the spectrum. The M1
transition will become weaker with increasing field strength, while
a new line will appear in a different part of the spectrum, between
the resonant and IC E1 transitions. The corresponding branching
ratio is therefore an especially interesting parameter to investigate
along the isoelectronic sequence. See paper By for further details.

Finally, it is encouraging to see that a recent EBIT measurement
by the same group confirms our theoretical prediction of the MIT
rate in Ne-like Fe [123]. Our ab-inito prediction of the M1 rate is
1.588 x 10% s~1, which gives a zero-field limit value of T = 63.0
us for the lifetime of the 3P, state. We determine the reduced MIT
rate to 850 s~ T~2, which together with our theoretical value for
the M1 decay, gives a total lifetime of the 3P, state to 42.4 us at
B = 3 T, which agrees to within 3.5% with the new experimental
value of 44.00 + 0.42 ps'. The authors suggest that the remaining
difference could be partly explained by unmeasured drifts of the
magnetic field away from its nominal value in the EBIT.

1 The uncertainty given here is from the fit of their measured decay curve.
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Figure 8.5: Schematic energy structure of the splitting of the 2p>3s3P,
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Figure 8.6: Lifetimes of the different magnetic sublevels of 2p®3s3P; in
Ne-like ions, relative to the My = +2 levels, for an external
magnetic field of 1 T.
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8.4.1  My-dependent Lifetimes

From Fig. 8.2 it is clear that Ne-like ions also have other MIT candi-
dates - the 2p> 3s 3P, — 2p® 'S, transitions. A closer look at these
transitions, see Fig. 8.5, reveals that the 3P, M;j-sublevels have dif-
ferent decay modes. The My = £2 sublevels decay by M2 transi-
tions, while the others have an additional MIT channel. This extra
branch will affect the lifetimes and introduce an M;j-dependence
due to the external magnetic field. This is illustrated in Fig. 8.6,
where the lifetimes of the different sublevels are plotted relative to
the lifetime of the Mj = £2 levels, for a magnetic field B =1T (i.e.
the reduced rate defined in (8.6)). It is clear that the lifetimes of the
Mj = 0,41 levels are substantially decreased for low Z. However,
the M2 rate increases faster than the MIT rate with Z and domi-
nates already for Z = 20. This will make the lifetimes for higher Z
independent of M.

8.4.2 Mg-dependent Radiative Properties

As a rare example on the theory side, Li et al. [217] analyzed the
hyperfine-induced 2s2p 3Py — 252 'S, transition rates of Be-like
#’Ti in an external magnetic field, by using an approach similar
to the one described in the present work, to investigate the effect
of the external magnetic field on the extraction of the hyperfine-
induced transition rate in a storage-ring experiment [218]. Note
that the authors chose to neglect mixing of states with different
F due to a comparatively weak magnetic field. A more recent ex-
periment was carried out to extract the rate of the same hyperfine-
induced transition in Be-like S [219] which remains to be verified
by theory. The development of general-purpose tools such as the
RryzE code outlined in Ch. 6, should open up for future systematic
studies of M-dependent effects.
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8.4.3 Radiative Angular Distributions

An external magnetic field introduces a preferred direction in space
which opens up for measurements of the angular distribution of
the emitted radiation. The 2p®3s 3P, — 2p® 'S, decay in Ne-
like ions reveals measurable properties depending on the magnetic
quantum numbers, Mj. The fact that the competing M2 channels
are between the same levels and do have different angular distribu-
tion with respect to the magnetic field direction, results in possible
M;j-dependent interference effects. This particular case was investi-
gated by Li et al. [220] who illustrated that the interference term
has a major impact on the distribution of the radiation. Systematic
studies of angular distributions of radiation and associated inter-
ference effects requires implementation of the methods in general-
purpose codes, such as RHYZE.

8.5 HIT'S IN NEON-LIKE IONS

In Sec. 8.4 we investigated the magnetic-field induced decay from
12p° 3s 3Py) in Ne-like ions, we now turn to hyperfine-induced
effects of the same system.

It is clear from the level diagram in Fig. 8.2 that, in absence of a
nuclear spin (or a magnetic field), the decay from [3Py) is dom-
inated by a forbidden M1 transition to |3Py). If however the ion
under investigation has a non-zero nuclear spin, the hyperfine in-
teraction will open up a hyperfine-induced E1 channel down to the
ground state |2p6 1So). We show in paper By that this does not
only significantly lower the lifetime of the state, but also change
the spectra of the ion dramatically by decreasing the intensity of
the 3Py — 3P; line and introducing a 2p°3s 3Py — 2p° 1S,
line.

Fig. 8.4 illustrates how the reduced HIT rate varies along the Ne-
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like isoelectronic sequence in relation to the M1 and reduced MIT
rates. If we disregard the MIT, it is clear that the HIT is likely to
be the dominating transition channel for low Z ions, whereas the
M1 channel dominates in the higher end of the sequence. The HIT
and M1 rates are likely to be of the same order of magnitude in
the intermediate region around Z = 20.

For the special case of 21Ne I (I = 3/2) the HIT rate is predicted to
be 1.388 s, that is three orders of magnitude faster than the M1
rate at 24016 x 1073 s~!. This value for the HIT rate confirms the
elaborate theoretical investigation of hyperfine induced effects in
Ne I by Li et al. [221] in which they predicted the rate to 1.484 s,

which is within 5% from our result.

8.6 MIT'S TO PROBE CORONAL MAGNETIC FIELDS

As a final topic of this thesis, lets return to the subject of measur-
ing magnetic fields in the solar corona introduced in Sec. 1.2.2 of
the introductory chapter. We discussed that in order to do space-
weather forecasts it is necessary to follow the evolution of the solar
activity, in particular active regions which might spawn flares or
CME’s. This requires continuous observations of the magnetic field
which dictates much of the solar structure and dynamics through
e.g. magnetic reconnection processes [26, 27].

Measurement of the coronal magnetic fields is however very com-
plicated and so far no direct space-based methods to probe the
corona magnetic fields exist. The reason is that the coronal plasma
is both hot and dilute. The extremely high temperatures (millions
of °C) gives highly-charged ions with strong internal magnetic
fields, while the low particle densities results in weak external
fields (current estimates range from o to 2000 gauss). This com-
bination means that it is very hard to find observable quantities in
atomic spectra which are affected by the external fields. So far one
has only been able to estimate the fields through extrapolations
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of the stronger photospheric fields. These are easier to determine
since the plasma here is much colder (~ 6000 °C) - giving lower
charge-state ions with relatively weak internal fields - and denser
- giving stronger external fields. Schrijver et al. carried out a non-
linear force-free field modeling using vector-magnetographic data
observed by the Hinode satellite [222]. On the ground-based side
there are infrared or radio measurements; the former is limited by
optical thickness while the latter only refer to specific portions of
the corona. It is clear that the demand for alternative approaches
is great.

In paper By/11 we outline a novel approach to directly measure the
coronal fields, based on our previous works on MIT’s outlined in
papers Byy, By and By/1. The suggested method is based on an ex-
otic type of radiative transition in Fe X (Fe?*), in the XUV spectral
region at 257.26A, which has a transition rate that is sensitive to the
surrounding magnetic field - namely a MIT. This MIT makes up a
truly unique case since it is emitted by an ion with high abundance
at the temperatures in the solar corona?, and that also happens to
fulfill the rather extreme requirements necessary for production of
an MIT with a pronounced magnetic field response. Fig. 1.4 in Ch.
1 shows an example XUV spectrum of the Solar corona recorded
by the Hinode mission [37]. The Fe X MIT belongs to the blended
structure at 257.26 A.

The Fe X system can be represented by the schematic energy level-
diagram system shown in Fig. 8.7, from where it is clear that the
‘D /,2 and D5 /2 states have very different decay modes. The for-
mer can only decay via forbidden M2 transitions, while the latter
has a fast E1 channel. Similar to the previous analyzed Be- and
Ne-like systems, the perturbation from the external magnetic field
causes the two excited states to mix such that the metastable 4D /2

state gains properties of the resonant 4Dj /,2 state and thereby

The M1 transition connecting the two states in the ground configuration of Fe X
is Edléns’ famous coronal red line at 6374 A used for temperature determinations

[23-25].
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Figure 8.7: Schematic energy level diagram for the ground and first ex-
cited states in Cl-like Fe (Fe X) with some relevant decay chan-
nels indicated, most importantly the MIT from *D- /2-
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Figure 8.8: A plot of the AE energy separation between the 4D ,2 and
4Ds /2 states in Fe X along the Cl-like isoelectronic sequence.
The blue curve with unfilled squares represents energies from
an (uncorrelated) DHF calculation including the Breit inter-
action and leading QED effects. The green curve with filled
squares corresponds to inclusion of electron correlation from a
MCDHEF calculation. See the text and paper By/11 for details.
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speeding up its decay in proportion to the field strength via an
magnetic-field induced E1 transition. By knowing its dependence
on the field strength one can use the intensity of this magnetic-field

induced transition to determine properties about the surrounding
field.

To predict the sensitivity of this line on the magnetic field we out-
line in this work a theoretical model based on MCDHF wavefunc-
tions in combination with the theory for MIT rates discussed in
this chapter, but also in more detail in Ch. 5 and 6, see in partic-
ular expression (5.33). The theoretical investigation of the Cl-like
isoelectronic sequence shows that two of the 4D levels undergo
a fine-structure inversion around Fe X, resulting in an acciden-
tal quasi-degeneracy between the resonant D5 /2 and metastable
4Dy, states. Fig. 8.8 shows the trend of the energy separation
between these two states along the sequence.

A simple first order treatment of the MIT rate in Fe X gives an
approximate dependence on some important parameters,
B2
AMIT X NIAE2 (8.8)

where B is the magnitude of the external magnetic field, A is the
transition wavelength and AE is the energy separation between
the metastable and the resonant state. This implies that an accu-
rate value for AE is crucial to the prediction of the MIT rate. It is
believed that the level of degeneracy lies within 20 cm~'. Our lat-
est investigations, presented in paper By 11, suggests a separation
of ~ 3.5 cm ™! with an upper limit of 8.4 cm~'. An very recent anal-
ysis, based on SkyLab data, points towards an even smaller value
of 3.6+ 2.7 cm~ ! [223].

In Fig. 8.9 we present the MIT rate along the Cl-like isoelectronic
sequence for AE = 5 and 20 cm™! respectively, showing the res-
onant behavior of the rate at Fe X (Z = 26) as well as its strong
dependence on the magnetic field strength3. Using the new value

3 Iam grateful to Wenxian Li for providing the plots shown in Fig. 8.9, 8.11 and 8.12.
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Figure 8.9: Theoretical prediction of the 4D, /2 — 2p, s2 MIT rate along
the Cl-like isoelectronic sequence for AE = 20 (a) and 5 cm ™!
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of AE =3.6 cm™! for the quasi-degeneracy would further enhance
this behavior. A comparison between the rate of the MIT and the
rate of the competing forbidden M2 decay channel is shown in Fig.
8.10 for B up to 2000 gauss, which is the maximum field expected
in the solar corona.

Finally, Fig. 8.11 shows results from a collisional-radiative (CR)
modeling [224] of the line ratio between the blended MIT+M2 transi-
tion and the allowed E1 transition from D5 /2, as a function of the
magnetic field strength, B. This simulation was performed with the
CR model implemented in the Fac code [121] for a fixed electron
density of 10'" ecm™', which is typical for an EBIT plasma envi-
ronment. It is clear that the line ratio shows a strong dependence
on the magnetic field strength. While this electron density is typi-
cal for EBIT’s, it also happens to be in the range for the densities
expected in the solar corona. However, due to the high resolution
power required to resolve the lines from 4D /,2 and D5 /2 respec-
tively, it is more realistic to make use of line-ratios of the MIT+M2
line with one of the E1 transition from D5 /2 Or 4D, /2- The line
from 4Dj /2 is however blended by a He II line at 256.317 A in
the corona. In Fig. 8.12 we present a CR model of the line ratio be-
tween the MIT+M2 and the E1 transition from 4D /2, for typical
quiet sun (QS) [225] and active region (AR) [226] coronal plasma
environments. A spectroscopic measurement of this line ratio is
less sensitive to the magnetic-field strength than the direct mea-
surement of the ratio between the lines from #D- ,2 and “Ds /2,
but on the other hand it would require less spectral resolution.

In conclusion, the origin of the extreme temperatures in the corona
as well as violent events such as flares or CME’s remains unex-
plained. These processes are believed to be related to energy con-
tained in the solar magnetic fields. Space-based direct measure-
ments of the coronal magnetic fields are currently inaccessible and
have so far only been estimated by numerical simulations/extrap-
olations. In this work, outlined in papers By/ 11 and By 11, we pro-
pose an alternative method based on line ratios involving an en-
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hanced MIT in Fe X at 257A and discuss how it can be applied
in measurements of fields in the solar corona. The MIT was found
from systematic theoretical investigations of various isoelectronic
sequences, and the Cl-like sequence in particular. MIT’s are ex-
tremely rare so it is almost a "God-given" coincidence that Fe X
also happens to be abundant in the Solar corona.
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SOME CONCLUDING WORDS

Motivated by spectroscopic analysis of astrophysical and labora-
tory plasma (Ch. 1), this thesis has been concerned with the fun-
damental structure (Ch. 2) and spectral properties (Ch. 3) of atoms
and their ions, possibly including also the effects of non-spherical
interactions with nuclei of non-zero spin, as well as interactions
with external magnetic fields (Ch. 5). A theoretical framework has
been outlined and used in scientific computer codes (Ch. 4) to pre-
dict the emission or absorption of radiation, of atomic systems in
general, and of heavy and highly charged ions in particular. In
ab-inito theoretical models, such as the multiconfiguration Dirac-
Hartree-Fock method employed in the present work, one obtain, not
only energy levels, but also wavefunctions representing the corre-
sponding quantum states. These wavefunctions can then be used
to determine any desired physical observable, at least in principle.
The most important of these observables, for our purposes, are the
strengths of spectral lines.

The first set of publications, paper A; to Ay1, concerns ab-initio
predictions of atomic structure and radiative transition rates, with
a particular focus on relativistic and electron-correlation effects. De-
tailed understanding of atomic properties are of fundamental im-
portance to analyze astrophysical spectra for determination of e.g.
element abundances in stars, but also in the diagnostics of labo-
ratory plasma such as in the fusion reactors. Systematic and large-
scale multiconfiguration Dirac-Hartree-Fock calculations has been car-
ried out, often in combination with electron-beam ion trap experi-
ments.
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The second set of publications, By to By, presents a rigorous
treatment of effects from non-spherical nuclear charge distribu-
tions - hyperfine interaction - and external magnetic fields - Zeeman
interaction - on atomic spectra. In relation to this, a general method-
ology has been developed and implemented in a general-purpose
computer code (Ch. 6) to include these symmetry-breaking pertur-
bations in the wavefunctions and to determine their impact on the
resulting spectra. In particular, these publications concern intensity
redistributions (Ch. 7) and unexpected transitions (Ch. 8) in atomic
spectra, and their applications to abundance analyses in stellar
atmospheres, to the impact of magnetic fields in storage ring ex-
periments, as well as to coronal magnetic field measurements and,
ultimately, space-weather meteorology.
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