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Abstract

The day Faraday moved a magnet in and out of a wire loop and detected the
time-varying magnetic field, the first wireless transmitter / receiver system was
created and the world was changed forever. However, it took almost fifty years
for Heinrich Hertz to use Maxwell’s equations and Faraday’s insights in his pro-
fessorship at Karlsruhe to create the first electromagnetic wireless communication
system using a spark gap dipole transmitter and a loop antenna-based receiver.
This simple system utilized the first non-optical human designed electromagnetic
antenna, and since then, businesses, researchers, doctoral candidates, and hobby-
ists have been trying to determine the best way to design antennas for a variety
of different applications. In almost all situations, antennas are designed using ei-
ther intuition, closed-form equations, or information which can be obtained from
Maxwell’s equations and a set of boundary conditions. This thesis combines these
three design techniques into one by using the Theory of Characteristic Modes
(TCM). This theory allows for physics-based electromagnetic insights of an object
to be obtained and combined with closed-form equations for all real media, limit-
ing the overall design space, and allowing an engineer’s intuition to be focused on
an area with greater importance to antenna performance.

TCM is a unique amalgamation of many different theoretical concepts includ-
ing Maxwell’s equations, Sturm-liouville eigenvalue decomposition, Poynting’s the-
orem, and in practical applications the Method of Moments (MoM). TCM was de-
veloped first by Garbacz in 1965 and then popularized by Harrington and Mautz in
1971. Many great researchers have put years of effort and hard work into advanc-
ing and popularizing TCM, and this thesis would not exist without the advances
provided by these great women and men. The research that led to the initial idea
of this thesis was based around the development of multiple-input multiple-output
(MIMO) antennas for hand held devices, as this type of design environment is
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viii Abstract

challenging due to the electrical size of the device and the limited real-estate avail-
able. As TCM is uniquely suited for analyzing electrically compact systems which
require orthogonal modes of radiation, it was a perfect candidate for studying how
it can be better applied to this type of application.

The research contained within this thesis, as well as the articles published
during the time of this doctoral study, analyze the practical and theoretical appli-
cations of TCM and present a set of theoretical proofs, which explain some of the
shortcomings pertaining to MoM-based TCM analysis of dielectric or magnetic
objects, and provide some solutions to many of these problems. Furthermore, a
unique antenna design methodology was developed which allows for electrically
compact MIMO terminal antennas to be designed in a fundamentally new way.
As TCM provides a unique set of excitation-free attributes, as well as a set of
orthogonal surface currents and far-fields, which are determined only by the ob-
ject’s shape and material. These orthogonal attributes can be used to determine
how the object’s characteristic modes (CMs) relate to a set of closed-form equa-
tions. Using the knowledge gained from each CM, and how the CMs link to these
equations, small object alterations can be defined and used to adapt and feed the
object, creating single or multiple optimized antennas from the object.



Popular Science

The popularity and acceptance of wireless communication technologies have
grown substantially in the past twenty years. In 1996 there were 145 million
active wireless subscriptions, and in January of 2016 there were over 7.3 billion.
This considerable acceptance and integration of wireless devices into everyday life
has forced the technologies within these systems to advance at an unprecedented
rate. To support the huge demand, wireless communication technologies have
to constantly evolve. One key evolutionary step in enabling high performance
wireless communication systems was the introduction of multiple-input multiple-
output (MIMO) systems. MIMO technology utilizes complex processing, intricate
front-end systems, multiple antennas, and rich channel scattering to provide high
data rates and link reliability. To meet the ever increasing needs of the fourth
and upcoming fifth generation cellular systems, the design procedures of nearly all
components in any wireless device have substantially changed. However, this has
not been the case for one vital wireless component, i.e., integrated antennas.

In this thesis an antenna design paradigm which changes how integrated an-
tennas are designed for many modern communication systems is formulated. This
paradigm relies on the Theory of Characteristic Modes (TCM) to provide clear
physical insights into an object’s electromagnetic properties. TCM was originally
developed in the late 1960’s in an effort to fundamentally understand how an object
scatters electromagnetic energy. However, this topic did not initially excite the
electromagnetic community, and as such, the area did not advance significantly
until recently when it was observed that TCM was uniquely suited for MIMO
antenna design.

TCM calculates a set of surface currents that provide orthogonal far-fields.
These currents can then be used to determine a wide variety of different radiation-
related quantities, which can in turn be used to fully understand the electromag-
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netic properties of any object. The developed antenna design paradigm utilizes
the calculated quantities to determine the resonant characteristics of an object
and how to alter any object into resonating at a defined frequency over a required
bandwidth, without the need to define an excitation source. This is substantially
different from the traditional integrated antenna design framework, which is based
upon intuition and numerical optimization.
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Overview of Characteristic Modes

Resonant objects are encountered in our everyday lives, from the vibrating
guitar string to the receiving antenna. Even with a fundamental understand-

ing of how resonant structures function, electromagnetic antenna design, which is
based around electric waves interacting with a resonant structure, is often referred
to as a form of black magic. There are many reasons for this, but one may be
the sheer fear of the unknown, as the wave-like resonant properties of antennas
are unobservable. Additionally, many well-known antenna systems are complex,
and thus it may be difficult to determine their exact resonant properties. For
example, a modern cellular telephone has as many as seven different antennas,
each with multiple parts including matching circuits, stub-tuners, parasitic cou-
plers, and isolation elements. These types of antenna are often developed using
computationally complex optimization algorithms, where the antenna’s shape is
determined through a set of predefined requirements. As a result, the design en-
gineer has only a simplistic understanding of how these antennas truly function.
This lack of insight leads to difficulties when utilizing existing designs in new prob-
lems. Furthermore, many antenna textbooks overview how basic antennas work
by analyzing them using a set of electromagnetic equations (Maxwell’s equations),
providing little more than an intuitive set of numbers. However, there is an anal-
ysis tool which allows resonant antennas to be understood in the same way as a
resonating string played on a guitar, and that tool is the Theory of Characteristic
Modes (TCM).

TCM provides insights into the natural resonant phenomena of any electro-
magnetic object, providing a much needed link between Maxwell’s equations and
the observable world. When TCM is applied to an object, a set of currents are
found (i.e., current distributions); each current is unique in the same sense that
each string on a guitar is unique. If one string is excited (plucked) it will sound
different than any of the other strings. As such, if one of the TCM derived currents
are excited, it will resonate differently than any of other derived currents. This is
one of the many advantages of TCM.

Other major advantages of TCM are better explained in relation to other com-

5
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putational electromagnetic tools. While all computational electromagnetic solvers
have advantages in specific areas, TCM is unique as it is unlike any other. This
is due in part to TCM not requiring the placement of excitation sources when
determining the electromagnetic properties of an analyzed object. The majority
of computational electromagnetic solvers, including but not limited to Finite El-
ement Method (FEM), Finite-Difference Time-Domain (FDTD), and Method of
Moments (MoM), provide brute force solutions to antenna design based on numer-
ical approximations of Maxwell’s Equations. These solvers often require a physical
excitation, or feeding element, to excite an object before insights can be obtained.
Once solutions are obtained from these types of computational solvers, only a
single current distribution that produces a specific radiation pattern will be ob-
tained. This is not the case when analyzing an object using TCM. TCM produces
a theoretically infinite number of currents that correspond to the same number
of orthogonal radiated fields (far-field patterns). Moreover, the Characteristic
Attributes (CAs) of an object (characteristic eigenvalues, characteristic currents,
Quality Factors (Q-factors), near-fields, and far-fields) can be used to obtain many
physical insights including: proper location of an excitation element, variability
between structures, isolation between Multiple-Input Multiple-Output (MIMO)
elements, RAdio Detection And Ranging (RADAR) cross section, and more. How-
ever, even with the significant number of advantages when analyzing an object us-
ing TCM, the entire field received relatively little attention in the first few decades
following its initial introduction.

1.1 Founding Historical Concepts of TCM

The Theory of Characteristic Modes has a short but complicated history. The
notion that an object’s electromagnetic properties can be described through a
linear combination of modal field patterns, which are determined only by the
object’s shape and material makeup, was originally theorized by Garbacz in 1965
[1]. This original definition utilized a scattering matrix which is a mathematical
representation describing the interaction of an object with an exciting wave. This
definition provided a theoretical proof showing that any excitable current on an
object can be decomposed in to an infinite set of radiating currents, with the most
significant having the lowest magnitude eigenvalue (λ). In Garbacz’s scattering
definition of Characteristic Modes (CMs), each eigenvalue is defined in terms of
the radiation resistance of the corresponding current. However, this theoretical
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introduction to CMs required prior knowledge of characteristic far-field radiation
patterns and their associated eigenvalues. In this work Garbacz provided two
possible solutions to finding the unknown modes; both methods are difficult to
implement and not possible to utilize on all object geometries. With this significant
drawback there was no published research into this topic for another six years.

In May 1971, Garbacz once again introduced the subject of scattering-based
TCM to the academic community [2]. In [2], a clear definition to TCM is stated to
be “At a given frequency every perfectly conducting obstacle has associated with it a
particular set of surface currents and corresponding radiated fields which are char-
acteristic of the obstacle shape and independent of any specific excitation.” This
general definition to TCM has since remained with only one minor change, that
TCM is no longer associated with only Perfect Electric Conductors (PEC). While
[2] provides more information on the implications of the scattering eigenvalue and
how this eigenvalue could relate the phase of an incoming field to the scattered
field, this work has been relatively overlooked due to the works of Harrington et
al. published in September 1971 [3, 4]. Even though Garbacz pioneered the work
of TCM, the works in [3] and [4] are often considered to provide the mathemati-
cal basis of TCM due to the use of a MoM impedance matrix in determining the
characteristic currents and their associated eigenvalues.

In [3,4], the computational method for determining both the characteristic cur-
rents and eigenvalues is based on the Sturm-Liouville theory for weighted eigen-
value problems [5]. The Sturm-Liouville theory is also the basis for solving Greens’
function using a direct approach [6]. In this context Harrington et al. found that
the characteristic far-fields can be determined using a weighted eigenvalue prob-
lem which utilizes both the real and imaginary parts of the impedance operator.
Through this approach the currents are derived to correspond with a set of radiated
fields and the eigenvalues are directly related to the reactive power. Electromag-
netic theory states that the reactive power determines whether or not a CM is
in, or near resonance. This provided evidence to Garbacz’s prediction in [1], that
for any sufficiently small object, only a few modes are necessary to synthesize a
radiated or scattered pattern. The computational method outlined in [3,4] allowed
for TCM to be applied by anyone in the electromagnetic community.

Between 1965 and 2000 only a few electromagnetic researchers investigated
potential applications of TCM. Although relatively few papers were published
during this period, the majority of research after 2000 is based on these founding
works, and it is important to understand the significance of these contributions.
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During this period the field of electromagnetic research focused on its application in
RADAR and communication systems, particularly RADAR scattering of aircraft
and short wave communications. As such, TCM found its first applications in these
areas. The first known usage of TCM was developed to obtain a desired RADAR
scattering pattern through the reactive loading of an object [7]. To obtain the
desired results, this work derived many of the main formulations still in use today,
including: modal Q-factor, TCM-based current synthesis for maximizing platform
gain and gain over quality factor (G/Q), as well as TCM for pattern synthesis of
an arbitrarily shaped object. Additional early works in this area include [8–14].
This body of work focused more on scattering rather than antenna applications,
where quality factor is often utilized. This may be in-part due to the initial lack of
knowledge in deriving feed locations from TCM analysis. This problem was first
outlined and partially solved by Garbacz et al. in [15].

The theoretical and practical work developed in [15] found simple quadratic
equations for the self- and mutual-admittances of delta-gaps between basis func-
tions of thin wires. In this work the input impedance (admittance) of a wire
antenna was derived as a weighted summation of its characteristic currents at a
selected point on an object. This work showed many practical uses in determin-
ing the impedance of a delta gap. Furthermore, this initial idea allowed for the
derivation of antenna input impedance in terms of CMs for the first time, this has
been used extensively in TCM-based antenna synthesis. This work led to the first
antenna shape synthesis using TCM [16]. In [16], simple structures were synthe-
sized using known rotationally symmetric Transverse Electric (TE) and Transverse
Magnetic (TM) fields. While the initial results were simple ideal structures, these
concepts led to significant future work in antenna shape synthesis. Additional early
works in this area can be found in [17–20]. These published works in antenna ap-
plications focused on the mathematical aspects of TCM, but other publications
attempted to unite these mathematical concepts with real-world problems.

As TCM is comprised of a unique set of radiating currents, Borgiotti in [21]
utilized measured antenna patterns and TCM to determine the dominant CMs of
a physical antenna. This novel method of far-field modal reconstruction provided
a mathematical link between a physical structure and the set of currents derived
by TCM. This was the first TCM analysis that allowed for modal reconstruction
without knowing either an incident electric field or the actual currents on the
object. Further early research in this area was done on printed antennas in [22]. In
this work a set of functions referred to as dynamic CMs were utilized to decompose
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the CMs of entire domain systems, and shown to effectively decompose the modes
of a simple arrayed antenna structure.

Newman’s work in [23] presented an entirely new field of research within TCM,
which focuses around antenna design. The practical applications of the theoretical
work of [23] can be linked to almost one quarter of all TCM publications between
2000 and 2016. Specifically, [23] develops a TCM-based antenna design concept
for maximizing the performance of antennas located on structures (i.e., platform
antennas, small antennas with support structures, and integrated antennas). This
work points out that most antennas are developed to work well in free space, but
in reality they are often mounted on some type of support structure (airplane,
building, car, human, ship, or any other larger object). As it turns out, the
relatively many contributions of this work pointed out that a small antenna may
not be the primary radiator in such a setup, but rather the larger structure. This
is because the currents that couple from the antenna to the structure can lead to
a more efficient antenna. This work developed not only a concept, but also the
mathematical framework to properly locate a Capacitive Coupling Element (CCE)
or Inductive Coupling Element (ICE) on an integrated structure. This idea was
further expanded upon by Austin and Murray in [24].

TCM research on antennas did not only focus on the creation/synthesis of
antennas, but also on the analysis, optimization, and understanding of many com-
mon antennas. Although common antennas have well known radiation properties,
a complete understanding of these structures is still an ongoing study. Prior to
many of the developments in TCM, most antennas were derived from, and ana-
lyzed by, closed-form expressions. These expressions often provide a limited un-
derstanding of the antenna structure. Furthermore, no direct physical intuitions
into radiation, scattering, or coupling phenomena could be obtained through tradi-
tional port based electromagnetic solvers such as FDTD, FEM, or MoM. However,
Pozar et al. noted in [25] that TCM could be used to analyze known antenna types
to better understand their physical properties. This work analyzed the mutual
coupling of dipole arrays to determine side-lobe errors. The work in [25] triggered
further research into traditional antenna structures using TCM including the anal-
ysis of log-periodic structures [26], microstrip patches [27,28], wire grids [29], slots
[30], and broad band systems [31]. These works showed that TCM can provide
significant physical insights into well-known antennas.

While the theoretical foundations for these prior works were based on [1–4],
other fundamental theoretical concepts were needed for future research. The the-
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ory behind mode degeneracy was developed in [32]. Degenerate modes can produce
inaccuracies in the solution to characteristic currents and often cause problems in
modal tracking over frequency. In [32], Knorr developed mathematical concepts
for the CMs of symmetric structures. This work showed why symmetry in struc-
tures causes identical eigenvalues, and that these specific eigenvalues should not
cause degeneracy. While this work did not specifically discuss the tracking of CMs
across frequency, the degeneracy concepts gave insights into some of the problems
associated with modal tracking. Additionally, this work offered a mathematical
basis for why degeneracy occurs at points of (non-symmetric) modal crossings,
which produce inaccuracies in characteristic currents.

The first theoretical foundations for utilizing TCM in objects of any material
were outlined in [33,34]. In [33], it is shown that the MoM based Volume Integral
Equation (VIE) impedance matrix formulation could be utilized to determine the
CMs of dielectric, magnetic, composite, and lossy composite objects. Different
formulations are provided for obtaining the CMs of each type of object. One major
drawback of the VIE approach is the high computational complexity required to
form the MoM impedance matrix, even for relatively simple structures. These
theoretical concepts were later applied to a MoM Surface Integral Equation (SIE)
impedance operator [34]. The use of SIE in the computation of non-PEC materials
facilitates a reasonable computational time for simple structures. However, due
to the problems associated with the formulations in [33] and [34], further research
into the CMs of non-PEC or non-Perfect Magnetic Conductors (PMC) objects
were not further analyzed prior to 2012.

The fundamental concepts, applications, and derivations outlined in [1] - [34]
are not the only theoretical or practical works developed around this time period.
However, the outlined works are the cornerstones on which the research contained
within this thesis was built. Without a thorough understanding of these concepts,
the new theories, algorithms, and practical designs contained within this thesis
could not have been developed. Additionally, some newer results in this field that
were published between 2000 and the writing of this thesis also played a critical
role in guiding the thesis work. Some of these works will be outlined according to
their applications in Section 1.2, and many other critical works will be highlighted
throughout the thesis.
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1.2 Modern Applications and Updates to CMs

Research into both the theoretical, and practical applications of TCM grew
significantly between the years 2000 and 2016. The majority of these new works
applied the same concepts and ideas that were outlined in Section 1.1. Here,
according to the concepts which are utilized in this thesis, these newer research
outcomes are summarized in six different categories: antenna synthesis, electrically
small/compact antennas, MIMO applications, pattern synthesis and scattering
analysis, reactive loading, and new theoretical concepts.

1.2.1 Antenna Synthesis

Antennas are typically synthesized through a complex optimization procedure,
where the feeding structure, feed location, and object are all changed indepen-
dently in an effort to obtain the best antenna performance. Although an antenna’s
radiation performance is fundamentally limited by its shape and material, typical
analysis tools are not well suited for this type of optimization as feeding structures
are required. However, TCM is perfectly suited for antenna synthesis algorithms
as it only analyzes the performance of the object and does not require any ex-
citation structures [35]. Additionally, TCM-based algorithms can be developed
to synthesize or optimize an object and predict the best locations to implement
excitation structures [36–39]. After an object is optimized, other computational
analysis tools can be utilized to synthesize and optimize feeding structures in the
areas predetermined by TCM analysis.

1.2.2 Electrically Small/Compact Antennas

Electrically small objects are perfectly suited for TCM, as only a few modes
can be effectively excited on such objects. As such, the total design space is lim-
ited, allowing for a nearly complete physical understanding of the electromagnetic
properties of the object. In electrically compact antennas at most only one mode
is near resonance, which implies that when an object is excited the current will
spread across the object, as predicted by TCM [40–43]. The far-field pattern shape
is determined only by the current on the object, and as TCM provides a unique
set of currents that provide orthogonal far-field patterns, it can be used to better
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understand multiple antenna systems [44–47]. Furthermore, when an object is
analyzed, new modes can be forced into resonance through modifications to the
object’s shape [48, 49], allowing for additional modes to be excited at a given fre-
quency. TCM analysis of supporting structures, such as meta-materials, has been
shown to help better understand how these affect an object’s performance [50]. As
can be seen from these works, TCM analysis of electrically compact antennas is
highly beneficial and will continue to develop with advances in TCM research.

1.2.3 MIMO Systems

MIMO systems became a hot research topic in the early 2000’s. The technol-
ogy has since matured and is widely commercialized. MIMO is one of the main
contributing factors for TCM’s emergence as a promising research topic, since it
is perfectly suited to maximize a fundamental Figure of Merit (FoM) of MIMO,
i.e., Envelope Correlation Coefficient (ECC). In particular, a reduction in ECC
will increase system capacity and data throughput. Assuming a rich multipath
channel with uniform 3D angular power spectrum, the ECC of two antenna radi-
ation patterns is equal to the ECC of the MIMO channel. It was shown in [51,52]
that as TCM solves for an orthogonal set of radiated far-fields, if two different
CMs are excited by different antenna ports, the ECC should theoretically be zero.
This concept was further analyzed in [53, 54]. These articles presented some of
the first pattern diversity MIMO antennas designed using TCM. Later in [55–57],
the TCM concepts presented earlier in [23] was applied to the context of terminal
antenna design. For a terminal operating at frequencies where it is electrically
compact (less than λ/3, where λ is the free-space wavelength), the antenna will
couple energy into the terminal’s ground plane; this effectively provides a path
for currents to couple into other antenna ports. The unique currents solved by
TCM show that antennas must be placed in specific areas on the chassis so not to
couple to one another. This MIMO antenna design technique was taken further,
providing insights into multi-port antennas [47, 49, 58], shape-optimized antennas
[59], pattern reconfigurable antennas [46], MIMO user effects on TCM antenna
designs [60], and massive MIMO Ultra-WideBand (UWB) antennas [61]. It can
be seen from these works that MIMO systems have significantly benefited from
TCM research.
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1.2.4 Pattern Synthesis and Scattering Analysis

TCM provides a complete set of the orthogonal radiated far-field patterns that
an object can radiate, making TCM perfectly suited for pattern synthesis and
scattering analysis. Any outgoing radiation from an object due to scattering or
excitation can be expressed as a superposition of the far-fields for a set of CMs.
Often it is important to decompose an object into its orthogonal fields for a vari-
ety of purposes. A modern application to the basic scattering problem is the use
of chipless Radio-Frequency Identification (RFID) tags, which scatter an incom-
ing wave, thus passively providing information to an active RFID reader. This
passive concept resolves one of the largest challenges to the wide-spread adop-
tion of RFID systems, i.e., the significant cost of Application-Specific Integrated
Circuits (ASICs). In [62], TCM was adopted to determine three major design
factors of multi-bit RFID tags: Q-factor, resonant frequency, and RADAR Cross-
Section (RCS). Additionally, other aspects of both RFID and RADAR systems
can be determined through the knowledge of the scattering matrix. In [63] TCM
was used to determine the generalized scattering matrix of an antenna, thus creat-
ing a link between [1] and [4]. Many new scattering problems which can be better
understood through TCM analysis are emerging. One such new application uses
TCM to determine the shape of different carbon nano-tube structures based on
their CMs [64]. A scattered pattern is a representation of the currents generated
on an object by an incoming wave. A parallel but different approach to analyz-
ing the patterns produced by a scatterer is to analyze the far-field produced by
an induced current [65]. In [65], a practical approach of decomposing an excited
antenna’s currents into a set of characteristic currents through far-field decom-
position was proposed. Additionally, [42] created a multi-objective evolutionary
algorithm to synthesize a desired pattern using TCM.

1.2.5 Reactive Loading

Reactive loading has been used almost since the introduction of the antenna, as
lumped elements can force out-of-resonant objects into resonance. Previously this
technology has been used in loading monopole and dipole type antenna structures,
and more recently in compact small antennas, MIMO antenna systems, reflectors,
and terminal antennas. TCM, and all tools based around MoM, are uniquely
suited to utilize reactive loading as the impedance matrix provides valuable insights
into how to modify a structure using reactive components. This is because the
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resonant properties of a PEC object can be represented by a set of discrete reactive
components (i.e., an equivalent circuit) [10], and as such the addition of a reactive
component will change the current distribution of the structure. While there are
several ways to analyze the location where reactive elements should be placed, the
use of TCM offers many advantages over traditional methods. TCM provides a set
of characteristic currents that provide critical insights into the optimal placement
of reactive elements. This method has been used for analyzing a loaded electrically
small dipole antenna [66], matching wide-band antennas [67,68], as well as enabling
pattern reconfigurability [46, 69], and frequency reconfigurability [70]. Reactive
loading will remain a key component of antenna design, and as such TCM is
expected to remain as a beneficial tool in determining the proper loading of a
variety of structures.

1.2.6 Theoretical and Mathematical Concepts

While the basic theoretical concepts of TCM have not changed since 1971, many
of the methods, approaches, and derivations have been expanded upon in recent
years. The most important extensions include theoretical developments on TCM
for dielectrics [71], modal weighting factor [71], quality factor [72], degenerated
modes [73,74], and sub-structure decomposition [75].

The calculation of CMs for dielectric and magnetic objects has not been a
topic of significant interest since its introduction in [33, 34]. In [71], the original
theoretical derivations were reviewed and observations were made on different
problems associated with the previously developed theories. In [71], an attempt
was made to develop a new theoretical approach to determining the CMs using an
Integral Equation (IE)-based formulation. The observations in [76] showed that
only the VIE method satisfied field orthogonality, and the SIE method did not.
Additionally, not all of the solved CMs found using the SIE formulation radiate
unitary power.

Contributions into the further development of determining the proper modal
weighting factor of an object’s CMs has not seen wide-spread interest in the last
decade, with only one major publication in this area [65]. In [65], it was proven
that the ECC between an excited antenna and a modal pattern would directly
determine the percentage of a mode which contributes to an excited pattern. This
is significantly different than other approaches which utilize either a single elec-
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tric field quantity [16] or the excited currents to describe the amount a mode
contributes to an excited antenna pattern [21].

Unlike dielectrics and modal weighting factors, theoretical research into modal
quality factor has seen significant interest in recent years [72, 77, 78]. In [72], it
was shown that the quality factor as determined by Vandenbosch [79] matches
the modal quality factor that was described in [7]. This led to a new formula for
the evaluation of the modal radiation quality factor, which was calculated using
eigenmodes associated with a set of CAs. With these theoretical developments in
the quality factor, different CM-based Genetic Algorithms (GAs) were developed
in [59], and applications which minimized the antenna quality factor using TCM
were demonstrated in [36].

In contrast to these previous developments in traditional TCM concepts,
[75] utilizes (in TCM) a method of isolating a specific substructure in the MoM
impedance matrix. This method was developed outside the context of TCM
in [80]. This substructure concept was applied in [75] to remove the dielectric
component from a solution space, so that only the solution relating to the PEC
object is explicitly calculated. To utilize this method, an SIE impedance matrix
must be properly formulated so that the sub-structure object is located in the
appropriate section of the impedance matrix.

1.3 Thesis Overview

The work contained within this thesis began in 2012, with the initial stud-
ies focused around addressing the fundamental challenges in designing multiple
antennas in compact MIMO terminals. The ideas presented in [1, 3, 4] were the
foundation of how to address these challenges, as these led to the initial studies
of TCM at Lund University [55]. [55] exploited TCM to determine the effects of
ground plane coupling on multi-antenna systems. This work proved that anten-
nas which use cellular operating bands below 1 GHz radiated not only from the
antenna structure, but also forced the entire terminal structure into resonance.
This demonstrated that the idea of platform coupling developed in [23] applied to
MIMO systems. Furthermore, the work in [57] developed the first TCM optimized
MIMO terminal at 2.5 GHz. From these works it was apparent that TCM could
be beneficial in the development of MIMO terminal systems. Moreover, these
works showed that many fundamental aspects of TCM antenna theory were either
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missing or incomplete. For wide-spread adoption of TCM in both academic and
industrial applications these areas would need to be further developed. Therefore,
the Ph.D. work contained within this thesis was completed in an effort to mature
the topic of TCM through providing critical insights, development of new theoret-
ical concepts, and improvements in practical antenna design methodologies using
TCM.

In an effort to effectively overview the completed Ph.D. work, this thesis
presents the mathematics, mechanics, and developments of TCM in a progressive
fashion. Each chapter is carefully constructed to utilize the information contained
in previous chapters. As such, the thesis is constructed in the following manner.

Chapter 1 introduces TCM as the main focus of this doctoral work, starting
by describing the topic from the perspective of objects encountered in everyday
life, and then moving into a more technical overview. Additionally, this chapter
provides a historical introduction into TCM, and the many important research
contributions which define this field.

Chapter 2 overviews the mathematics needed to solve and understand TCM.
First, electromagnetic theory is introduced, as this is the building block of all com-
putational electromagnetics. Second, a short introduction into MoM is provided,
while this is not the focus of this doctoral work, the impedance matrix from MoM
was utilized to solve for CMs throughout this work. Most importantly, this sec-
tion provides a full derivation of TCM for both PEC and non-PEC (dielectric and
magnetic) materials.

Chapter 3 introduces to the reader the eight most common Characteristic At-
tributes (CAs). A complete overview of each attribute, as well as several examples
relating these to traditional concepts is presented. Understanding these attributes
is important to fully comprehend the work completed during this doctoral study.

Chapter 4 presents the topic of characteristic eigenvalue (or modal) tracking.
Within this chapter several different traditional, and novel tracking categories are
overviewed, and examples into their performance are provided. A new modal
tracking approach is one of the main contributions of this doctoral work.

Chapter 5 further examines the problems associated with analyzing dielectric
and magnetic materials using TCM. This chapter details why it is difficult to
solve for the CMs of objects which contain these materials. Some of the main
contributions of this doctoral work are related to solving for the CMs of objects
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containing dielectric and magnetic materials.

Chapter 6 examines how to utilize TCM for antenna design. This chapter
presents several techniques for systematically designing antennas using the con-
cepts from Chapters 3 - 5. A systematic TCM antenna design paradigm is one of
the main contributions of this doctoral work.

Chapter 7 concludes the overview part of the thesis (Part I), and summarizes
each of the doctoral candidate’s contributions to this field of research. Possible
future work is also discussed.
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Mathematics of Characteristic Modes

The word electromagnetic refers to the phenomenon of an electric and magnetic
field’s association to, and reliance on, one another. The relationship between

these two fields can be defined by Maxwell’s equations. These equations, and
their associated boundary conditions, can be solved using the Method of Moments
(MoM) for both radiation and scattering problems. This solution can then be used
to define a unique set of currents for a predefined object. This is the case when
directly solving for Characteristic Modes (CMs) using [3]. To fully understand how
to solve for CMs of different objects, a basic understanding of Maxwell’s equations
(Section 2.1) and the quantities within these equations (Section 2.1.1) is required.
From these equations the amount of radiated and reactive energy can be found for
any object. Based on the knowledge of both the object and the amount of radiated
and reactive energy, CMs can be fully defined and understood. Moreover, once
the characteristic currents are found, different associated Characteristic Attributes
(CAs) can be derived. Herein, the basic electromagnetic concepts of the Theory
of Characteristic Modes (TCM) will be overviewed.

2.1 Maxwell’s Equations

Electromagnetic theory can be described by four equations, often referred to
as Maxwell’s equations. These are comprised of different theoretical laws: Gauss’
law for electricity, Gauss’ law for magnetism, Faraday’s law of induction, and
generalized Ampére’s law. The rotationally symmetric form of these equations
are often described by (2.1) - (2.4) and referred to as the rotationally symmetric
integral form of Maxwell’s equations [81–83].

‹
S

D · dS =

˚
V

ρedV (2.1)

‹
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B · dS =
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ρmdV (2.2)
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˛
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¨
S
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However, it is possible to invoke Stokes’ and Gauss’ theorems on these inte-
gral equations, to derive the rotationally symmetric differential form of Maxwell’s
equations (2.5) - (2.8) [81–83].

∇×D = ρe (2.5)

∇×B = ρm (2.6)

∇× E = −∂B

∂t
−M (2.7)

∇×H = −∂D

∂t
+ J (2.8)

These equations describe the relationships between six vector field quantities,
and their associated charge densities. The six vector field quantities are defined
as follows:

E is defined as the electric field intensity (volts per meter)
H is defined as the magnetic field intensity (amperes per meter)
D is defined as the electric flux density (coulombs per square meter)
B is defined as the magnetic flux density (weber per square meter)
J is defined as the electric current density (amperes per square meter)
and
M is defined as the magnetic current density (volts per square meter).

These quantities are valid for all media, and can be related to one another
through a set of constitutive relationships [84]. Additionally, these relationships de-
fine how polarization, as well as electric conduction impact electromagnetic waves
within different media types. These constitutive relationships are defined by (2.9).

D = D (E ,H )

B = B (E ,H )

J = J (E ,H )

(2.9)
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The constitutive relationships are valid under every condition. However, when
objects are made up of simple media, these relationships can be simplified to the
constitutive relationships as defined by (2.10).

D = εE

B = µH

J = σE

(2.10)

In (2.10), ε is the permittivity, µ is the permeability, and σ is the conductivity.
With these constitutive relationships in place, both the integral and differential
form of Maxwell’s equations can be described in terms of free charges and currents.
While the asymmetric form of (2.1) - (2.8) are often described in common texts
(e.g. [85]), the presented rotationally symmetric form utilizes a set of non-existent
magnetic currents [86]. These magnetic currents are a mathematical tool that
simplifies the analysis of dielectric problems through forcing Maxwell’s equations
into rotational symmetry. In the traditional form, E and B are only rotationally
symmetric when both µ = µ0 and ε = ε0. This is due to the electric charge
density ρe, which breaks the symmetry in simple media. In an effort to force
symmetry, the fictional magnetic current density was introduced. Additionally,
when a magnetic current density (M ) is introduced a magnetic charge density ρm
must also be introduced. With these additions, if Maxwell’s equations are rotated,
the resulting sources and fields are also swapped (i.e., electrons would have a
fictional magnetic charge, and no longer contain an electric charge). Although,
this magnetic current density is strictly fictional, it is utilized in this thesis as
many of the key contributions require the analysis of simple media, and as such
M is required.

In addition to Maxwell’s equations, the free charges and currents must satisfy
two additional continuity equations [83,86]. When these are paired with Maxwell’s
equations, the resulting set of equations are not independent for time-varying fields.
This is because Faraday’s and Ampére’s circuital law can be derived from Gauss’
law. In these, there are more unknowns than equations, and thus a unique solution
cannot be found without more information. Therefore, a specified set of boundary
conditions are required to reduce the number of unknowns, thus allowing Maxwell’s
equations to be solved in any continuous medium.

It is often advantageous to solve these problems at a single frequency as it
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greatly reduces the dimensionality of the overreaching problem. Furthermore, this
eliminates the time variability in these equations, and allows for three unknown
spatial variables to be solved. When applied, all derivatives can be represented
by a single complex number (jω), where ω = 2πf , f is the single frequency for
which the equations are solved, and j =

√
−1. In the time-harmonic version of

Maxwell’s equations E , H , D , B, J , and M are defined as E, H, D, B, J and
M respectively.

Through utilization of the constitutive relationships, the time harmonic version
of Maxwell’s equations, continuity equations, and the different boundary condi-
tions, Maxwell’s equations can be used to solve electromagnetic problems. This
includes, the current induced on an object from an incoming wave, as well as the
radiation produced from a known current source.

2.1.1 Radiation and Scattering - Helmholtz Equation

If a lossless object encounters an incident electromagnetic plane wave, a set of
currents will be induced across the object’s surface. Correspondingly, if a set of
time-varying currents are present on an object’s surface, the currents will radiate
electromagnetic energy into free space. If these two scenarios are combined, the
total power flow across the surface must be equal to zero. This analysis can be
simplified if the object is composed of only Perfect Electric Conducting (PEC)
materials, as depicted by Fig. 2.1 and characterized by (2.11).

Figure 2.1: Electric-field interaction with a cross-sectional 2-D cut of
an arbitrary object. An incoming electric-field will induce tangential
currents on a PEC object, these currents are then radiated as a scattered
electric-field.
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(
Ei +Es

)
tan

= 0 (2.11)

Using (2.11) it is possible to characterize an object’s scattered electric field (Es)
through knowledge of an incident electric field (Ei). Additionally, it can be shown
that the currents of an object can be determined using the energy radiated by the
object. This problem can be solved through relating the electric and magnetic
fields to the electric and magnetic currents, derived from Maxwell’s equations and
the boundary conditions. Through combining Faraday’s law (2.7) and Ampére’s
law (2.8) with the proper constitutive relationships (2.10), (2.12) and (2.13) can
be constructed using complex phasors in a time harmonic system.

∇×E = −jωµH −M (2.12)

∇×H = jωεE + σE (2.13)

To analyze the described system, J is defined as the currents which are im-
pressed (or induced) on the object by means of an incident wave, and M = 0 as
the object is comprised of only PEC materials. This set of equations can now be
used to solve for the complex wave equation, often referred to as the Helmholtz
equation [81]. This is done through setting the divergence of H to be zero (2.14).

∇ ·H = 0 (2.14)

As (2.14) is now a divergenceless system, H can again be redefined through
the curl of the magnetic vector potential A (2.15). Through substitution of (2.15)
with (2.12), (2.16) can be obtained.

H = ∇×A (2.15)

∇× (E + jωµA) = 0 (2.16)

Finally, any curl free vector can be defined as a gradient of a scalar, as such
the electric scalar potential (Φ) can be introduced, thus solving for the Helmholtz
equation (2.17).

E = −L(J) = −jωµA(J)−∇Φ(J) = −jωµA+
1

jωε
∇ (∇ ·A) (2.17)
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This equation provides a link, using the linear operator (L), between a defined
set of currents on an object (J), and a scattered field from the object (Es) [3,81].
If the object in Fig. 2.1 is analyzed, the boundary condition n̂ ×Es = Es

tan = 0

shows that any tangential electric field impressed on a PEC object (Ei
tan) must

be transformed in to a current. Therefore, (2.11) and (2.17) can be combined to
express an incident field as a function of a set of electric currents (2.18). In (2.18)
and (2.19), the subscript tan denotes the tangential component of an electric field
interacting with the object, and the linear operator L (·) can be determined using
(2.17).

(
L (J)−Ei

)
tan

= 0 (2.18)

(
L (J)

)
tan

= −Es
tan (2.19)

Equation (2.17) is critical to the development of TCM as it relates a current
to a scattered electric field. Whereas the Helmholtz equation can relate a set of
currents to a field quantity, further knowledge into the different types of power in
the electromagnetic system is necessary to fully understand the theoretical basis
of TCM.

2.1.2 Complex Power - Poynting’s Theorem

The entire theoretical basis for TCM is defined by an object’s radiated far-
field power. This is because each characteristic current has associated to it a
far-field radiated pattern which is orthogonal to the other characteristic currents’
far-field patterns. Moreover, the eigenvalues associated to each CM are defined
by a relationship between the radiated and stored power. Both the radiated (far-
field) and stored powers can be found using Maxwell’s equations [83, 87], and the
theoretical method for finding these is defined by Poynting’s theorem. Starting
from the time-harmonic differential version of Maxwell’s equations, it is possible
to derive the complex Poynting’s theorem.

As described in [87], Poynting’s theorem can be derived by taking the dot
product between (2.12) and the complex conjugate of the magnetic field intensity
(H∗), and second taking the dot product between the complex conjugate of (2.13)
and the electric field intensity (E). Finally, through subtracting these two modified
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equations with one another, the time-harmonic derivative form (point form) of
Poynting’s theorem is found as (2.20).

∇ · (E ×H∗) = −jω |H|2 + jε |E|2 − σ |E|2 −H∗ ·M −E · J∗ (2.20)

By integrating over a known volume and using Gauss’ theorem, the integral
form of Pointing’s theorem can be found, and arranged in a manner in which TCM
can be derived, as in (2.21).

−1

2

˚
V

(E · J∗ +H∗ ·M) dV =
1

2

‹
S

(E ×H∗) · dS +

1

2

˚
V

σ |E|2 dV + 2jω

(
1

4

˚
V

ε |E|2 dV − 1

4

˚
V

µ |H|2 dV
) (2.21)

Poynting’s theorem expressed as (2.21) can be broken down into five distinct
quantities relating to different physical meanings (i.e., (2.22) - (2.26)).

Ps = −1

2

˚
V

(E · J∗ +H∗ ·M) dV (2.22)

Pe =
1

2

‹
S

(E ×H∗) · dS (2.23)

P̄d =
1

2

˚
V

σ |E|2 dV (2.24)

W̄m =
1

4

˚
V

ε |E|2 dV (2.25)

W̄e =
1

4

˚
V

µ |H|2 dV (2.26)

For any power or energy to be radiated or stored by an object, first power
must be supplied to the object, this quantity is defined as the supplied power, and
is denoted by (Ps). When power is supplied to an object, the object can either
radiate the power into free space (Pe), dissipate the power into heat (P̄d), or store
magnetic (W̄m) or electric (W̄e) energy. In (2.21), stored magnetic and electric
energies are quantified as reactive power through taking the time derivative (2jω)
of these quantities. The reactive power is defined as the time rate of change for
the difference of the two stored energy quantities.
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The supplied power, radiated power, and dissipated power have convenient
physical meanings. However, the physical interpretation of stored energy is not
as intuitive, and its computation is not straightforward as the integrals (2.25)
and (2.26) can go to infinity [88]. Based on Maxwell’s equations the electric and
magnetic fields have a constant phase difference and dependence on one another.
When electric (magnetic) energy is maximized over a given frequency cycle, the
magnetic (electric) energy must be at its minimum value, for the reactive power
to be efficiently transitioned into radiated power. This transfer of energy can be
directly related to the energy stored by an ideal Inductive Capacitive Resonant
Circuit (LC). However, if the total reactive power is not zero

(
i.e. an object stores

more electric (magnetic) than magnetic (electric) energy (W̄m − W̄e 6= 0)
)
, some

reactive power must be stored to convert between the different types of energy
over time. If an object stores any reactive power, it is not considered to be in
perfect resonance, as it must maintain some energy for the next radiation cycle.
The TCM eigenvalue is a mathematical relationship between the imaginary part
(reactive power) and the real part of Poynting’s theorem (radiated and lost power).

Maxwell’s equations, the Helmholtz equation, and Poynting’s theorem are the
only theoretical electromagnetic concepts needed to derive and understand TCM.
However, to solve for the CMs of any object, a computational method of solving
Maxwell’s equations is necessary. TCM traditionally uses the MoM, which is a
method for solving the integral form of Maxwell’s equations using matrix formu-
lations.

2.2 Solving Maxwell’s Equations Using MoM

The Method of Moments (MoM) or method of weighted residuals, is a compu-
tational technique which is used to solve a set of Integral Equations (IEs), such
as Maxwell’s equations described by (2.1) - (2.4). These types of IEs are solved
through reducing them into a set of linear equations, such as the Electric Field
Integral Equation (EFIE) defined by (2.19) [82, 86]. This technique is generally
applied to an EFIE or Magnetic Field Integral Equation (MFIE) in electromag-
netic problems, and the EFIE and MFIE can be combined to create a Combined
Field Integral Equation (CFIE) when necessary (Section 2.3.3).

The MoM for PEC can be summarized in four steps. First, an integro-
differential equation (inhomogeneous equation) for the electromagnetic problem
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must be defined. Second, the global currents on the object are discretized to
represent local currents. This is often referred to as meshing. Throughout this
thesis triangular elements will be the primary meshing element, but tetrahedrons
will be used in some instances. Third, each meshed element is expanded into
a set of basis functions that realize these local currents. The triangle elements,
from step two, can be expanded into basis functions in many different ways, but
the popular Rao-Wilton-Glisson (RWG) basis functions [89] will be applied to the
problems solved in this thesis, these represent a rooftop-like current distribution.
Finally, a set of linearly independent weighting functions (often referred to as
testing functions) are defined for each basis. This testing function (testing
current) is defined on each element and the voltage distribution throughout the
object is calculated, this is then repeated for all other elements. These testing
functions ensure that the boundary conditions are enforced. The summation of
the induced currents is then normalized across all elements; this normalization is
done through setting the sum of the induced voltage across the structure to zero.
When this specific solution is found, the unique electromagnetic properties of the
meshed object have been determined. Herein, these four steps will be overviewed
in further detail for PEC objects.

2.2.1 The Integral Equation

All MoM problems begin with an inhomogeneous equation which must be
solved. This equation takes the form of (2.27) in electromagnetic problems [82].

L (f) = g (2.27)

In this integro-differential equation, L is the linear operator, often defined by
an integral operator, g is a known function and can be defined by an incident
electric-field in electromagnetic problems, and f is the unknown function to be
determined, in electromagnetic problems this is the currents throughout the object.
The inhomogeneous EFIE, derived in Section 2.1.1 and described by (2.19), must
be rewritten to be used within a MoM problem. An example of the EFIE for a PEC
object utilizing the Green’s function and excited by a known incident electric-field
is described by (2.28).

n̂×Ei(r) = n̂×
¨
S

[
jωµJsG

(
r, r′

)
+

1

jωε

(
∇′s · Js

)
∇′G

(
r, r′

)]
dS (2.28)
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To determine the type of expansion that should be used in an integro-
differential equation, either the Surface Equivalence Principle (SEP) or Volume
Equivalence Principle (VEP) must be applied to the electromagnetic problem.
Throughout the majority of this thesis work, the SEP will be applied to objects
consisting of homogeneous media. However, a prominent issue with applying an
SEP to solving Maxwell’s equations using MoM, is that internal resonances can
form in closed objects, these internal resonances are dependent upon how the IE
solution is formed [90]. The problems associated with these internal resonances,
and various solutions to the internal resonance problem in TCM, will be outlined
in later sections.

The SEP transforms the electromagnetic fields (E1,H1) which result from an
impressed field into two sets of currents. The first is a current which is induced
on the outer surface (S+) of the object from the electromagnetic field, and the
second is the current induced on the inner surface (S−) of the object from the same
electromagnetic field. In SEP problems the two equivalent surface current densities
are depicted in the cross-sectional cut of an arbitrary object as shown in Fig.
2.2(b) and (c), where Fig. 2.2(a) is the standard electromagnetic representation
of the same cross-sectional cut of the object. The currents which are impressed
on the object are dependent on the object’s shape, as well as the electromagnetic
permittivity and permeability characteristics outside (ε1, µ1) and inside (ε2, µ2)
the object. The EFIE for PEC objects is a special case of a SEP, as no fields can
be excited by an incident field inside the PEC object.

(a) (b) (c)

Figure 2.2: Cross-sectional view of an SIE equivalent problem: (a)
standard representation of a body in a homogeneous environment, (b)
external equivalent problem, (c) internal equivalent problem
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The equivalent electric and magnetic surface current densities which represent
the field outside (Fig. 2.2(b)) and inside (Fig. 2.2(c)) the object can be mathe-
matically described by a Surface Integral Equation (SIE) [91]. Using the SEP, a
set of equivalent currents can be found on an object which radiate the same field
as the original problem in Fig. 2.2(a). However, as the currents (J) now cover the
continuous surface of an object in an infinite number of locations, the object must
first be discretized into a finite set of currents, which allows for computational
methods to be applied. In a surface problem, an object can be discretized by a set
of triangular elements, as described by Fig. 2.3(a). However, when solving inho-
mogeneous non-PEC objects a VEP method can be applied which requires the use
of a Volume Integral Equation (VIE). In this type of problem, the volume currents
must pertain not to a 2-D surface mesh, but rather to a Three-Dimensional (3-D)
volume mesh. When volume currents are utilized in this thesis (for objects consist-
ing of real media), the mesh will be defined by a set of 3-D tetrahedral elements,
as described by Fig. 2.3(b).

(a) 2-D Triangular Element (b) 3-D Tetrahedral Element

Figure 2.3: 2-D and 3-D meshing elements used to discretize objects

2.2.2 Solving L (f) = g

The first step in solving an integro-differential equation using MoM is to expand
the current (J) into a finite sum of basis functions. Once the object has been
split into a set of discrete mesh elements, the original unknown f from (2.27),
corresponding to the current J of (2.28), must be expanded into a series of basis
functions. The most commonly used set of basis functions for SIE problems are the
RWG basis functions [89]. RWG elements describe how two triangles which share
a common edge can be defined in terms of current flow. Figure 2.4 shows a visual
description of this type of basis function, and (2.29) provides a mathematical
description of Fig. 2.4. In these representations, T+

n and T−n are two triangles
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connected by the common edge n, where n has the length ln. Each triangle has
an area of A±n , and the position vectors (ρ±n ) connect the respective centroids to
the non-common vertices of the two separate triangles.

Figure 2.4: An RWG basis function defined over a set of two connected
triangles.

fn (r) =





ln
2A±n

ρ±n , r ∈ T±n
0, r /∈ T±n

(2.29)

Once a type of basis functions has been determined, such as those in (2.29),
the object’s unknowns (currents) can be expanded as a finite sum of N weighted
basis functions, as shown by (2.30).

f(r) =

N∑

n=1

anfn(r) (2.30)

In (2.30), fn (r) are the basis functions, and an are the unknown coefficients. As
the integro-differential equation operator (L) is a linear operator, the substitution
of (2.30) into (2.27) results in (2.31). The difference between the approximate
value of g and the actual value of g is called the weighted residual.

g ≈
N∑

n=1

anL (fn) (2.31)

To solve for the unknowns of the object, boundary conditions must be enforced.
This is done by defining an inner product between the basis function at the location
r′, and a testing function at location r. The moment (or inner product) of the basis
function and the testing function is defined by (2.32). The residual is integrated
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into the testing function resulting in (2.33).

〈wm,fn〉 =

¨
s

wm (r) · fn
(
r′
)
dS (2.32)

N∑

n=1

an〈wm,L (fn)〉 = 〈wm,g〉 (2.33)

Applying this method directly to the EFIE in (2.28) results in the linear matrix
equation described by (2.34).

[Z] [J ] = [Es] (2.34)

When solving for surface currents of a PEC object using the EFIE and proper
boundary conditions, the impedance matrix ([Z]) can be found using (2.35), where
G
(
r, r′

)
is the free space Green’s function defined by (2.36), and λ is the free space

wavelength. The voltage ([Es]) on each basis function is defined by (2.37).

[Z]m,n =

(
jωµ

4π

)¨
S

(
fm (r) · fn

(
r′
)
G(r, r′)

)
dSdS′−

(
j

4πωε

)¨
S

((
∇ · fm(r)

)(
∇′ · fn(r′)

)
G(r, r′)

)
dSdS′

(2.35)

G
(
r, r′

)
=
exp

(
−j 2π

λ

∣∣r − r′
∣∣
)

|r − r′| (2.36)

[Es]m =
〈
fm (r) ,Ei (r)

〉
=

¨
S

fm (r) ·Ei (r) dS (2.37)

This solution, which utilizes MoM, makes it possible to find an impedance
matrix ([Z]) for any discretized PEC object. Through the use of different sets
of IEs, the impedance matrix of any object can be found, not just PEC objects
as previously described. As will be shown in Section 2.3, finding the impedance
matrix of an object is a critical first step in solving for the CMs of any object.
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2.3 The Theory of Characteristic Modes

The most traditional method for deriving TCM builds upon the concepts pre-
sented in Section 2.1 and 2.2. This TCM derivation was first described by Har-
rington et al. in [3] and [4]. These articles describe how the electric field of the
EFIE in (2.19) can solve for the impedance matrix and currents, as shown in
(2.34). This insight allows for a weighted eigenvalue equation to be found, relat-
ing the unknown characteristic currents to a previously-solved impedance matrix.
Furthermore, Harrington et al. describe how Poynting’s theorem can be used to
define how the currents relate to a set of orthogonal far-field patterns, and how
the eigenvalues relate to an object’s reactive power. This is done through the
use of a weighted inner product, where the currents are weighted by the complex
impedance matrix. This derivation is only applicable to PEC objects, whereas the
derivation for objects consisting of simple media are presented [33, 34]. However,
none of these works fully detail the underlying theoretical concepts behind these
derivations. A more complete coverage of the PEC TCM derivation is given in
[86], but the information is spread over several chapters. In the following sections,
these insights will be condensed and explained in a simple and logical manner.

2.3.1 Solving for TCM in PEC Objects (EFIE)

TCM is a unique amalgamation of three separate theories: Poynting’s theorem,
the Helmholtz equation, and the Sturm-Liouville theory. Without understanding
these three theoretical concepts it is difficult to fully understand why TCM pro-
vides a comprehensive understanding of an object’s electromagnetic properties. As
described in Section 2.1.2, Poynting’s theorem (2.21) has fundamental importance
in electromagnetic problems, as it establishes the total amount of power stored,
lost, and radiated by an object. Furthermore, the Helmholtz equation (2.17) re-
lates an incident (2.18) or scattered (2.19) electric-field to an integro-differential
linear operator which operates on the currents of the structure (2.28). It is ap-
parent that these equations cannot be unified into a single equation. However,
as (2.19) takes the form of a second-order differential equation, this equation can
be related to the well-known Sturm-Liouville problem [5, 86, 92]. This theory has
many unique sub-theorems, but the main theorem states that any second-order
differential equation can be described by a weighted eigenvalue problem, and the
first sub-theorem states that for any second-order operator, “it is always possi-
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ble to define a weighted inner product for which L is formally self-adjoint” [86].
Additionally, the weighting variable in the first sub-theorem must be Hermitian,
i.e. ξ(x)∗ = ξ(x), where (·)∗ is the Hermitian transpose operator. The classical
Sturm-Liouville equation is described by (2.38), and the weighted inner product
is defined by (2.39)

L1

(
fn
)

= − 1

w

d

dx

(
p(x)

dfn
dx

)
− q(x)fn = νnξ(x)fn (2.38)

〈
f1,ξf2

〉
=

ˆ
ξ(x)f1(x)f2(x)dx = δ (2.39)

Through applying the Sturm-Liouville problem to (2.19), the eigenvalue prob-
lem (2.40) is obtained.

L1 (Jn) = L (Jn)tan = Ei
tan = −jωµA+

1

jωε
∇ (∇ ·A) = νnξ (Jn) (2.40)

Additionally, as L1 operates on the currents (Jn), L1 must transform the sur-
face current density J

(
A
m

)
into an electric-field E

(
V
m

)
, and as such L1 is required

to maintain the unit of ohms (Ω), and can be defined to be the impedance operator
Z (Ω); this substitution is shown by (2.41).

Z (Jn) = Ei
tan = νnξ (Jn) (2.41)

Although any Hermitian weighted variable can be used to find a set of orthog-
onal currents with respect to the chosen weighting variable (ξ), the appropriate
weighting factor matters as it defines the orthogonality of the eigenvalue problem.
When the problem space is limited to PEC objects, where P̄d = 0 and no mag-
netic currents exist, Poynting’s theorem can be related to the first sub-theorem
of the Sturm-Liouville problem (2.39), providing insight into the proper weighting
variable. For PEC, the magnetic current density (M) must be zero for Maxwell’s
equations to remain symmetric, and as such Poynting’s theorem (2.21) can be
re-defined as (2.42).

−1

2

〈
J∗n,Z

(
Jn
)〉

= −1

2

˚
V

(E · J∗) dV =
1

2

‹
S

(E ×H∗) · dS +

0 + 2jω

(
1

4

˚
V

ε |E|2 dV − 1

4

˚
V

µ |H|2 dV
) (2.42)
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Equation (2.42) takes the same form as (2.39), with two major differences.
First, while Z is symmetric for EFIE problems, it is not Hermitian-symmetric,
whereas ξ must be. Second (2.42) applies the complex conjugate operator to one
of the two J ’s, but this operation will not have any effect if a proper weighting
is found for (2.41). This is because the second sub-theorem of a Sturm-Liouville
problem (described by Theorem 1.2 of [93]) states that when fn is solved through
an eigenvalue decomposition of (2.38), the fn’s are required to be real valued (i.e.
fn = f∗n). As such J must be real valued (i.e., 〈Z (Jn) ,J∗n〉 = 〈Z (Jn) ,Jn〉).

Due to the non-Hermitian properties of the complex impedance operator, the
left-hand-side of (2.42) cannot be directly substituted into (2.39). However, it can
be shown that the power radiated by the scalar wave equation can be expressed in
Hermitian form when the field satisfies the Helmholtz equation, as is the case with
(2.17) [81]. Furthermore, if a boundary condition is defined by the radiated-field
over the sphere at infinity, the radiated power is described by (2.43). This equation
is identical to the real part of Poynting’s theorem (2.42) [86].

P = Re

˚
V

(E · J∗) dV = Re
〈
Z (Jn) ,J∗n

〉
=
〈

Re(Z)Jn,J
∗
n

〉
(2.43)

As Z is a symmetric complex operator, it can be expressed by its real and
imaginary parts (2.44), where R and X are both Hermitian-symmetric operators.
As such (2.43) can be equated to (2.39), and R can be used as the Sturm-Liouville
weighting operator. This is an advantageous choice for a weighting operator, as
(2.43) is the radiated power of the object. Furthermore, (2.39) states the cur-
rents must be orthogonal to the weighted inner product. This means that the
set of currents found through an eigenvalue decomposition of (2.41) using R as
the weighting variable, will correspond to an orthogonal set of radiated far-field
patterns.

Z = R+ jX (2.44)

When R is utilized as the weighting variable, (2.41) can be re-written as (2.45).

Z (Jn) = νnR (Jn) (2.45)

In this representation the left-hand-side of (2.45) is composed of the complex
operator (Z). The right-hand-side is composed of an eigenvalue (νn) and the real
operator R. For this reason, the eigenvalue must be composed of both a real part
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and an imaginary part as described by (2.46).

νn = 1 + jλn (2.46)

When (2.46) is used as the eigenvalue in (2.45), the combined Sturm-Liouville
problem is simplified to (2.47), which is the base equation for TCM.

X (Jn) = λnR (Jn) (2.47)

Furthermore, as the real part of νn is a constant, it only affects the R opera-
tor, as such λn is directly linked to the imaginary part of the eigenvalue equation,
and therefore the eigenvalue pertains to the imaginary part of Poynting’s theo-
rem, i.e., the object’s reactive power. The TCM eigenvalue can now be defined
mathematically by (2.48), using the definitions of W̄m and W̄e given in (2.25) and
(2.26).

λn = 2ω
(
W̄m − W̄e

)
(2.48)

The TCM eigenvalue equation in (2.47) is unique in the sense that bothX and
R are real and symmetric operators. This allows for all of the Sturm-Liouville sub-
theorems to remain true, and as such the following properties are guaranteed for
the generalized PEC TCM problem:

(a) The orthogonality relationships (2.49) - (2.51) must apply to the character-
istic currents for m 6= n. 〈

Jm,R (Jn)
〉

= 0 (2.49)
〈
Jm,X (Jn)

〉
= 0 (2.50)

〈
Jm,Z (Jn)

〉
= 0 (2.51)

(b) The radiated power orthogonality relationships (2.52) - (2.54) must apply to
the characteristic currents for m 6= n as Jn is a real value.

〈
J∗m,R (Jn)

〉
= 0 (2.52)

〈
J∗m,X (Jn)

〉
= 0 (2.53)

〈
J∗m,Z (Jn)

〉
= 0 (2.54)
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(c) The characteristic currents of all external resonances can be normalized ac-
cording to the Sturm-Liouville normalization function (2.55).

〈
J∗n,R (Jn)

〉
= 1 (2.55)

(d) The orthogonality relationships (2.49) - (2.54) can be combined with the
normalization function (2.55) to produce (2.56) - (2.58).

〈
J∗m,R (Jn)

〉
=
〈
Jm,R (Jn)

〉
= δmn (2.56)

〈
J∗m,X (Jn)

〉
=
〈
Jm,X (Jn)

〉
= λnδmn (2.57)

〈
J∗m,Z (Jn)

〉
=
〈
Jm,Z (Jn)

〉
= (1 + jλn) δmn (2.58)

When applying properties (a) and (b) to the normalization function (2.55),
the solution to both inner products of (2.47) can be defined by (2.56) and (2.57).
Furthermore, (2.57) is equal to the reactive power of the object [3]. Therefore, as
the real part of Poynting’s theorem is equal to Pe, and the imaginary part is equal
to 2ω

(
W̄m − W̄e

)
, the characteristic eigenvalue can be found using (2.59).

λn =

〈
J∗m,X (Jn)

〉
〈
J∗m,R (Jn)

〉 =
2ω
(
W̄m − W̄e

)

Pe
(2.59)

The base eigenvalue equation for TCM as shown by (2.47) can be solved
through discretization of the operators using MoM, as described in Section 2.2,
where Z is decomposed into a discrete set of RWG basis functions and (2.35)
defines the matrix elements. When properly carried out the MoM reduces the
operators Z, R, and X in to a set of N × N matrices defined by [Z], [R], and
[X]. Additionally, the eigenvector Jn is transformed into the N × 1 matrix [Jn].
This transforms the TCM operator equation (2.47) into the TCM matrix equation
(2.60). Throughout the remainder of this thesis the discretized version of the TCM
base equation will be applied.

[X] [Jn] = λn [R] [Jn] (2.60)

The derivation of TCM throughout this section is only applicable for PEC
objects. Moreover, (2.60) is only valid for the EFIE SIE formulation of MoM.
However, an object consisting of real materials also has a set of CMs which describe
the object’s resonant and scattering properties. To determine these CMs other
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matrix solutions must be applied, and as such some of the theoretical concepts
described in this section are no longer valid.

2.3.2 Solving for TCM in Real Media (VIE)

The VIE uses the VEP to transform a standard representation of a body in
an electromagnetic environment, as described by Fig. 2.5(a), into an equivalent
problem which makes use of volume polarization currents to represent the field in
and around the object, as described by Fig. 2.5(b).

(a) Standard representation (b) VIE representation

Figure 2.5: Representations of the cross-sectional cut of an object in an
electromagnetic field: (a) the standard representation of this problem,
and (b) the VIE equivalent model.

As this current is continuous throughout the object, the object must first be
discretized into a set of 3-D volumetric tetrahedrons, such as the one shown in
Fig. 2.3(b). The MoM unknown currents can be found from the scattered electric
or magnetic field induced by an incident field. When this is applied to volumetric
currents the electric or magnetic field must be represented by the sum of both
an incident field (Ei or M i) on a volumetric element, as well as the scattered
fields from other volumetric elements (Es or M s). This constitutive relationship
is defined by (2.61) for dielectric structures and (2.62) for magnetic structures.

J =
(
ω
(
ε′′2 − ε′′1

)
+ jω

(
ε′2 − ε′1

))(
Ei +Es

)
(2.61)

M =
(
ω
(
µ′′2 − µ′′1

)
+ jω

(
µ′2 − µ′1

))(
Hi +Hs

)
(2.62)
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In (2.61) and (2.62), ε1 and µ1 are the permittivity and permeability outside
a given basis tetrahedral, and ε2 and µ2 are respectively the permittivity and
permeability of a basis tetrahedral. The real part of the permittivity (ε′) and
permeability (µ′) are associated with the stored energy within the medium, and
the imaginary part of the permittivity (ε′′) and permeability (µ′′) are associated
to the energy lost within the medium. These equations can be expressed in terms
of the impedance operators Zv and Zm, as described by (2.63) and (2.64). It can
be seen that these relationships are different than those in the traditional MoM
SIE formulation.

Zv (J) = −Es (2.63)

Zm (J) =
(
ω
(
ε′′2 − ε′′1

)
+ jω

(
ε′2 − ε′1

) )−1
(J) (2.64)

From the theoretical concepts presented in Section 2.3.1, the induced current
from a given incident field which interacts with the volume of an object can be
described by (2.65).

(Zv +Zm) (J) = Z (J) = Ei (2.65)

In (2.65), the matrix representation of the impedance operator (Z) is different
for dielectric, magnetic, and mixed material objects. In dielectric and magnetic
structures, the impedance matrix is a linear operator which operates on only elec-
tric or magnetic currents. However, in mixed material objects the matrix is formed
using both electric and magnetic currents, this system of equations (in operator
form) can be represented by (2.66) - (2.69) as defined in [33,81].

J =
(
ω
(
ε′′2 − ε′′1

)
+ jω

(
ε′2 − ε′1

) )(
Ei +Es

)
(2.66)

M =
(
ω
(
µ′′2 − µ′′1

)
+ jω

(
µ′2 − µ′1

) )(
Hi +Hs

)
(2.67)

Es = −jωA (J)−∇φ (J)− 1

ε0
∇×A (M) (2.68)

Hs = −jωA (M)−∇φ (M) +
1

µ0
∇×A (J) (2.69)

In these equations φ is the scalar potential integral, and A is the potential
integral. When these equations are linked together they form a single operator
matrix equation. The impedance operator matrix in this equation is not symmetric
as shown by (2.70), where Y and N are defined in [33].
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[
Z −N
N Y

][
J

M

]
=

[
Ei

Hi

]
(2.70)

This implies that the Sturm-Liouville problem cannot be effectively utilized. To
allow for mixed material to be applied to the Sturm-Liouville problem, Harrington
et al. found that it was possible to force this matrix into symmetry in the method
shown by (2.71) [33].

[
Z −j(−N)

jN Y

][
J

jM

]
=

[
Ei

jHi

]
(2.71)

Using (2.65) and the symmetric forms of the impedance operator matrix, the
same concepts which were applied in Section 2.3.1 for solving the Sturm-Liouville
problem can again be implemented. This is because the weighted inner product of
the system of equations remains related to the radiated power of the object. For
lossless materials, this operation will perfectly diagonalize the impedance matrix,
but for lossy objects this is not the case. The Sturm-Liouville problem for the
VIE matrix for lossy objects can be mathematically described by (2.72), where
the common terms are canceled in (2.73).

(Zv +Zm) (Jn) = (1 + jλn) Re (Zv) (Jn) (2.72)
(

Im (Zv)− jZm
)

(Jn) = (1 + jλn) Re (Zv) (Jn) (2.73)

There are two issues pertaining to the eigenvalue that arise when using this
system of equations. The first issue pertains to the eigenvalue solution when ana-
lyzing lossy structures, and the second pertains to the direct interpretation of the
eigenvalue when a non-zero magnetic current is introduced. When (2.73) is used to
solve for the eigenvalue and characteristic currents of lossless objects, the non-zero
magnetic current forces the left-hand side of (2.73) to utilize a non-Hermitian-
symmetric operator, introducing several problems into the original theory. One
such problem is the eigenvalue solution will be complex as the first sub-theorem
of the Sturm-Liouville problem is not satisfied. Second, mathematically obtaining
the impedance matrix for a VIE problem can be found in many different ways,
but the method used throughout this thesis does not allow for the matrix to be
split into the separate sub-matrices: Zv and Zm [90, 91]. In this type of solu-
tion Z = Zv + Zm, and as such only a single matrix is obtained. This matrix
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relates the objects individual basis elements to both the incident field as well as
the scattered fields from other volumetric basis elements. However, it is possible
to utilize this single linked VIE impedance matrix to obtain a set of non-complex
eigenvalues. This is done by utilizing only the real values and the imaginary values
of the obtainable single impedance matrix in the eigenvalue equation, as described
by (2.74). This equation is equal to (2.73) for lossless objects.

(
Im (Zv) + Im (Zm)

)
(J) = λn

(
Re (Zv) + Re (Zm)

)
(Jn) (2.74)

While this solves the issue pertaining to complex eigenvalues, the single linked
impedance matrix introduces a new problem, which again only pertains to lossy
objects. This problem stems from eigenvalue decomposition of (2.74). Equa-
tion (2.74) maintains mode-to-mode current orthogonality as described by (2.49) -
(2.51), but the radiated far-field energy (scattering matrix) is not perfectly diago-
nalized for all objects. As such, the far-fields are not guaranteed to be orthogonal
to one another. This new VIE orthogonality relationship is described by (2.75),
where the orthogonality offset between different CMs is determined by the size
of
〈
J∗m,Re (Zm) (Jn)

〉
, and as (2.76) shows, this offset is directly related to the

dissipated power of the object. However, as described by (2.73) a lossless structure
will maintain perfect far-field orthogonality.

〈
J∗m,Re (Zv) (Jn)

〉
+
〈
J∗m,Re (Zm) (Jn)

〉
= δmn (2.75)

P̄d = Re
〈
J∗,Ei +Es

〉
= Re

〈
J∗,Zm (J)

〉
(2.76)

The second issue concerns how the eigenvalue associated with (2.72) and (2.73)
is related to Poynting’s theorem. As seen in PEC problems, an object’s eigenvalue
is directly related to the reactive power as defined by Poynting’s theorem. This
allows the eigenvalue to provide insights into what type of energy is stored by an
object, and defines when that object is in resonance. This is not the case with the
VIE CM decomposition. In the described VIE CM problem, the eigenvalue has no
apparent relationship to the resonant properties of the structure and is defined by
(2.77). As can be seen, (2.77) is not related to the imaginary part of Poynting’s
theorem as described by (2.21).
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λn = Im
〈
J∗m, (Z)Jn

〉
= 2jω

(
1

4

˚
V

ε |E|2 dV
)
−

2jω

(
1

4

˚
V

µ |H|2 dV
)
− 1

ω

˚
V

J∗ (Zm)
−1
JdV

(2.77)

Although there are many problems associated with the original theoretical
derivation of TCM in VIE MoM solutions, as is fully described in [33], there are
many ways that the VIE TCM solution can be effectively utilized. Further insights
and a more in-depth analysis of VIE CMs will be further explored in Chapter 5.

2.3.3 Solving for TCM in Real Media (SIE)

If the problem depicted in Fig. 2.5(a) is analyzed not by a set of volumetric
currents, but rather through the use of equivalent surface currents, the eigenvalue
problem must be redefined. This can be accomplished through solving a set of SIEs.
There are three main types of SIE formulations: EFIE, MFIE, and CFIE. The
standard EFIE and MFIE MoM solutions do not allow for an operator equation
to be found that can be utilized on objects containing a homogeneous mixture of
materials. However, CFIE does allow for this type of operator to be found. In
a CFIE, both the electric and magnetic operators are utilized, unlike a EFIE or
a MFIE. This allows for the electromagnetic properties of a variety of different
materials to be analyzed. Whereas there are several different CFIE formulations,
the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation described
in [94] will be applied throughout this thesis.

This particular SIE, like the EFIE in Section 2.2.2, uses the SEP to transform
a standard representation of a body in an electromagnetic environment into a
surface equivalent representation of that body, as described by Fig. 2.2(a). This
equivalent problem makes use of surface currents which represent the field in and
around the object, as depicted by Fig. 2.2(b) and (c). To allow for proper field
interaction between an object and the surrounding media, equivalent electric and
magnetic surface current densities Js and Ms must be fully integrated into the
SIE. This can be accomplished by properly applying SEP to the homogeneous
body, since SEP allows for an object to be depicted by two different spaces, the
space inside and outside the object. The inside media and the outside media must
be composed of real materials, with the material’s electromagnetic properties being
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described by (2.78) and (2.79).

εi = ε0εr,i − j
σi
ω

= ε0εr,i (1− j tan δi) (2.78)

µi = µ0µr,i − j
σi
ω

= µ0µr,i (1− j tan δi) (2.79)

In these equations (·)i defines the material, εi is the materials complex permit-
tivity, µi is the materials complex permeability, ε0 is the free-space permittivity,
µ0 is the free-space permeability, εr,i is the relative permittivity, µr,i is the rela-
tive permeability, σi is the conductivity, and tan δi is the loss angle or dissipation
factor.

When an exterior field interacts with either a single or a combination of mate-
rials, the SEP states that the electric and magnetic fields scattered by the object
must be replaced by an equivalent electric and magnetic surface current, which can
be described by (2.80) and (2.81). These equivalent electric and magnetic surface
currents are utilized to account for the discontinuities between the different field
components of the interacting exterior field on the object.

Js = n̂×H1(S+) = n̂×H2(S−) (2.80)

Ms = −n̂×E1(S+) = −n̂×E2(S−) (2.81)

The SEP has two distinct field conditions. The first states that the sum of the
fields incident on the exterior of the object create a set of currents which force the
field in the volume of S− to be zero. This allows a representation of the system
where the exterior field and currents are not extended into the interior. Therefore,
the objects interior electromagnetic properties will not disturb the exterior field or
current. The second condition is similar. As the currents on S+ produce a null-
field inside the volume of S−, the negative currents of S+ will produce a null-field
in the volume outside the object, and as such the interior medium parameters may
be extended to the exterior. These two conditions can be visualized in Fig. 2.2(b)
and (c).

Applying these two separate conditions allows for the medium parameters to
be extended into the null-field regions. This is possible as materials cannot create
a field without a source, and as such the null-field region will not be effected by any
real material placed therein. This allows the interior and exterior surface currents
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to reside in a homogeneous media. With this realization the entire system can
be comprised of the same media, allowing for the homogeneous medium Green’s
function to be used when representing the corresponding field [95]. Through the
application of these conditions (equivalence principle and extinction theorem) the
null field conditions can be written in terms of the incident and scattered fields
produced by the equivalent electric and magnetic currents, as described mathe-
matically by (2.82) - (2.85) [96].

Es(J ,M) +Ei = 0, r ∈ V − (2.82)

Hs(J ,M) +Hi = 0, r ∈ V − (2.83)

Es(−J ,−M) = 0, r ∈ V + (2.84)

Hs(−J ,−M) = 0, r ∈ V + (2.85)

Any weighted combination of (2.82) and (2.83) to (2.84) and (2.85) will form a
valid set of integral equations for the unknowns J and M . However, it should be
noted that not all combinations of these equations form a unique solution at all
frequencies, but the PMCHWT is one particular formulation which forms a unique
and well-conditioned solution. The PMCHWT produces two equations from these
four by weighting all the equations by a unitary value, and setting (2.82) to be
equal to (2.84) and (2.83) to be equal to (2.85). This equation set can now be
utilized to determine the fields using: the homogeneous Green’s function, a proper
set of integral equations, boundary conditions, and bases.

As the surface currents, described by (2.82) - (2.85), are continuous across the
object, the object’s surface must be discretized into a set of 2D surface triangles, as
shown in Fig. 2.3(a), before MoM can be used to solve for the unknown currents.
Using this discretization and the set of basis described by (2.86) and (2.87), the
coupled system can be described by (2.88).

J (r) = n̂×H =
N∑

n=1

Infn (r) (2.86)

M (r) = E × n̂ =
N∑

n=1

Vnfn (r) (2.87)
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[[
Z+ + Z−

] [
−β+ − β−

]
[
β+ + β−

] [
Y + + Y −

]
]

︸ ︷︷ ︸
[Z]

[
[Jn]

[Mn]

]
=

[
[Ein]

[Hi
n]

]
(2.88)

In (2.88), the elements of the impedance ([Z±]), admittance ([Y ±]), and linking
([β±]) sub-matrices are defined by (2.89), (2.90), and (2.91).

[
Z±
]
mn

= jω
[
L±
]
mn

+
1

jω

[
S±
]
mn

(2.89)

[
Y ±
]
mn

=

[
Z±
]
mn

(η±)
2 (2.90)

[
β±
]
mn

=

ˆ
S

ˆ
S′
fm(r) ·

(
fn(r′)×∇G±(r, r′)

)
dS′dS (2.91)

In these equations [L±]mn and [S±]mn is defined by (2.92) and (2.93), with the
homogeneous Green’s function (G±

(
r, r′

)
) defined by (2.94).

[
L±
]
mn

= µ±〈fm;G±; fn〉 (2.92)

[
S±
]
mn

=
1

ε±
〈∇ · fm, G±,∇ · fn〉 (2.93)

G±
(
r, r′

)
=
e(−jk

±|r−r′|)

4π|r − r′| (2.94)

It can be shown that each of the individual sub-matrices of the impedance
matrix in (2.88) is symmetric for this specific SIE MoM problem. However, due to
the sign difference between the two linking matrices, the full impedance matrix of
(2.88) is not symmetric. As such, the Sturm-Liouville theory used to derive TCM
for PEC materials in Section 2.3 cannot be applied. To allow for any material to
be analyzed using TCM through the application of a PMCHWT SIE impedance
matrix, the weighting factor of the SIEs (2.82) - (2.85) must be altered to force
the operator matrix into symmetry. This is accomplished through a complex
weighting of these equations, as described by Harrington in [34]. The complex
weighting results in the new matrix equation (2.95), which presents a symmetric
impedance matrix.
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[[
(Z+ + Z−)/η0

]
−j
[
−β+ − β−

]

j
[
β+ + β−

] [
η0(Y + + Y −)

]
]

︸ ︷︷ ︸
[Z]

[
η0[Jn]

j[Mn]

]
=

[
[Ein]

jη0[Hi
n]

]
(2.95)

As with the VIE TCM analysis, several problems associated with the eigenvec-
tor and eigenvalue solutions arise when the SIE impedance matrix ([Z]) of (2.95)
is applied to the Sturm-Liouville theory. As the original derivation for TCM, de-
scribed in Section 2.3, was developed using an impedance operator which operated
only on the electric current density, the derivation is not perfectly suited for use
on an SIE impedance operator which operates on both the electric and magnetic
current densities. As such, the theoretical concepts of Section 2.3 are not per-
fectly suited for this specific problem. However, as the PMCHWT MoM problem
is computationally efficient, and can be utilized for all real media, significant re-
search into solving the problems associated with this method have ensued. These
problems and their associated solutions will be further discussed in Chapter 5.

2.3.4 Solving for TCM in Mixed Media (SIE)

Solving for the CMs of an object composed of multiple media types is nearly
identical to solving for the CMs of an object composed of a single media type as
described in Section 2.3.3. As previously outlined, the PMCHWT SIE utilizes an
asymmetric impedance operator. This type of operator does not form a suitably
weighted Sturm-Liouville eigenvalue equation. Therefore, a method of forcing this
specific SIE solution into symmetry was described in (2.95).

When the PMCHWT MoM solution is applied to solve an object comprised of
separate homogeneous media types, an individual MoM matrix is created for all
basis functions of each media type (i.e., two objects would create two individual
PMCHWT matrices). Additionally, a new set of linking matrices must be created
to describe the interactions between these media types. The simplest example
of such a system can be describe by a single object comprised of PEC

(
(·)m1

)
,

and a real material
(
(·)m2

)
. The PMCHWT impedance matrix for these two

interacting media can be described by (2.96). In (2.96),
[
Z+ + Z−

]
,
[
Y + + Y −

]
,

and
[
β+ + β−

]
are removed and replaced by the single sub-matrices [Z], [Y ], and

[C] respectively, with relevant indices.
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[Zm1]
[
Cm1,1

] [
Cm1,2

]
[
−Cm1,1

]
[Zm2]

[
Cm2,2

]
[
−Cm1,2

] [
−Cm2,2

]
[Ym2]




︸ ︷︷ ︸
[Z]




[Jm1,n]

[Jm2,n]

[Jm2,n]


 =




[Eim1,n]

[Eim2,n]

[Hi
m2,n]


 (2.96)

As was shown with the single material analysis, the weighting factor of the
SIEs (2.82) - (2.85) can be altered to force the impedance matrix into symmetry.
Using the same complex weighting of these equations, as described in Section
2.3.3, the multiple media object’s impedance matrix is also forced into symmetry.
When applied to (2.96), the resulting symmetric system of equations is described
by (2.97).




[(Zm1)/η0] −j
[
Cm1,1

]
−j
[
Cm1,2

]

j
[
−Cm1,1

]
[(Zm2)/η0] −j

[
Cm2,2

]

j
[
−Cm1,2

]
j
[
−Cm2,2

]
[η0(Ym2)]




︸ ︷︷ ︸
[Z]



η0[Jm1,n]

η0[Jm2,n]

j[Mm2,n]


 =




[Eim1,n]

[Eim2,n]

η0j[H
i
m2,n]


 (2.97)

2.4 Summary

Within this chapter, the mathematical foundations required to solve for the
CMs of an object were overviewed. Although a full understanding of each topic
within this chapter is not necessary to apply TCM to complex antenna problems,
the theoretical foundations are crucial to fully understand how to solve for the CMs
of an object. Furthermore, the practical methods which are applied to form some
of these theoretical formulations are not perfect, and as such the resulting CMs of
some media types do not adhere to all the original TCM requirements for CMs.
Therefore, some knowledge into these practical implementations is introduced to
provide an understanding into the weaknesses that exist in different TCM solution
types.

To provide the necessary insights into the foundations of TCM, this chapter
began by providing an overview of the important theoretical concepts which are
used, these include: Maxwell’s equations and their associated quantities (Section
2.1), electromagnetic radiation and scattering (Section 2.1.1), and complex elec-
tromagnetic power flow (Section 2.1.2). The equations within these sections are
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often solved using MoM, which is a computationally efficient approximation to
Maxwell’s equations. The EFIE MoM is detailed in Section 2.2. The MoM equa-
tions solve for the electromagnetic characteristics of an object, where part of the
MoM solution solves for a matrix which approximates the impedance of an object.
This impedance matrix can then be used to solve for the CMs of any PEC object,
as described by Section 2.3. Finally, this chapter concludes by detailing how the
impedance operator changes when solving for dielectric and magnetic media. This
change is caused by the introduction of magnetic currents in the MoM solution,
changing the mathematical and physical nature of TCM .

The mathematical concepts presented do not only solve for the CMs of an
object, but also allow many CAs to be obtained. These CAs provide a physical
understanding of the electromagnetic properties of an object. To fully utilize these
CAs for antenna design, they must first be understood. Chapter 3 details the eight
most important CAs, and provides examples of how they can be used to design or
understand basic antenna structures.
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THE Theory of Characteristic Modes (TCM) weighted eigenvalue equation
(2.47) solves for two distinct physical quantities, the characteristic currents

(Jn) and the characteristic eigenvalues (λn). Whereas these are the only two quan-
tities solved in the base equation, many more physical insights into the electromag-
netic properties of an object can be obtained through applying these quantities to
different formulations. Collectively, these insights may be referred to as an object’s
Characteristic Attributes (CAs). A good understanding of these CAs is important
to fully utilize all the benefits provided by Characteristic Mode Analysis (CMA).
While there are many different CAs, the eight main attributes are defined as the
characteristic eigenvalue, modal significance, characteristic current, characteris-
tic angle, modal scattering angle, modal Quality Factor (Q-factor), characteristic
near-field, and characteristic far-field. In this chapter, these eight attributes will
be overviewed. Additionally, illustrations of these attributes will be given with
respect to a long thin (λ/50) Two-Dimensional (2-D) Perfect Electric Conducting
(PEC) wire strip.

3.1 Characteristic Eigenvalues

As overviewed in Section 2.3.1, the characteristic eigenvalue (λn) is directly
obtained in the process of solving the TCM weighted eigenvalue equation (2.47).
When relating this solution to Poynting’s theorem (2.21), it was shown that the
eigenvalue is equal to the imaginary part, i.e. the reactive power.

The characteristic eigenvalue is one of the most important quantities of TCM,
and is as important as the characteristic current. This is due to the eigenvalue’s
relationship to the stored energies W̄m and W̄e. The information provided by
these quantities is essential for proper analysis of different objects. The difference
between the stored energies defines when an object is in a resonant, capacitive,
or inductive state. These energy states are akin to a simple Resistive, Inductive,
Capacitive (RLC) circuit where the electric and magnetic energies are stored by a

53
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capacitor or inductor, and power is dissipated in the circuit by means of a resistor.
When analyzing a lossless object using TCM, the resistor represents the power
dissipated by the antenna through far-field radiation.

Electromagnetic theory indicates that a radiated field is composed of equal
amounts of electric and magnetic energy, this allows for a time-space transfor-
mation between the two quantities (Section 2.1). As such, if a Characteristic
Mode (CM) is made up of more magnetic than electric energy, the total amount
of supplied power cannot be transformed into radiated power, and some energy
must be stored. When λn = 0, the stored energies are equal, as defined by (3.1),
and thus the mode is in resonance (i.e. no energy is stored by the object over a
full frequency cycle). When λn < 0, there is more electric energy than magnetic
energy stored over any given frequency cycle (3.2), and the CM is defined to be
capacitive. Finally, when λn > 0, more magnetic energy than electric energy is
stored as defined by (3.3), and the CM is inductive.

˚
V

ε |En|2 dV =

˚
V

µ |Hn|2 dV (3.1)

˚
V

ε |En|2 dV >

˚
V

µ |Hn|2 dV (3.2)

˚
V

ε |En|2 dV <

˚
V

µ |Hn|2 dV (3.3)

When characteristic eigenvalues are plotted, the eigenvalues are traditionally
ordered with respect to the frequency at which each eigenvalue crosses resonance.
However, as some eigenvalues never become resonant the ordering of non-resonant
eigenvalues depends on their importance to the problem being solved. Further-
more, as the impedance matrix changes across frequency, the ordering of the eigen-
values does not remain constant. To combat the randomness of plotting eigenvalues
across frequency, many different eigenvalue tracking algorithms have been devel-
oped, and these will be detailed in Chapter 4.

3.1.1 CM Eigenvalue Example

The usefulness of characteristic eigenvalues can be effectively demonstrated by
analyzing the CMs of a thin wire object. The first three eigenvalues of this object
are plotted in Fig. 3.1.
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Figure 3.1: Characteristic eigenvalues of a 2-D PEC object with vari-
able length and λ/50 width.

In general, an eigenvalue plot provides a significant amount of information into
the resonant and scattering properties of an object. For this specific object, the
plotted CMs are capacitive at frequencies below the respective resonances (e.g.,
below ≈ 0.5λ for λ1). In this region the CM will store more electric than magnetic
energy. At the point of resonance, a CM stores equal amounts of energy, and the
object is a perfect radiator. Above the resonance point, a CM will store more
magnetic than electric energy, and is considered to be an inductive mode.

The properties of these modes allow for significant insights to be obtained with-
out applying excitation sources to the object. For example, if the 2-D wire object’s
first two resonant locations, as defined by the zero crossings of the eigenvalue, are
compared to the resonant properties of a λ/2 and λ dipole, the resonances closely
align. Additionally, it is well known that a dipole antenna stores electric energy
below resonance (capacitive antenna), and magnetic energy above resonance (in-
ductive antenna) [97], as do the first two CMs λ1 and λ2.

The insights obtained through knowledge of the CM eigenvalues allow for a
fundamental understanding of an object’s electromagnetic properties, without an-
alyzing the object’s shape, currents, or fields. However, the eigenvalues can provide
other insights beyond the type of energy stored.
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3.2 Modal Significance (Modal Solutions)

As described in Section 3.3 and 2.3.1, the characteristic far-fields and the char-
acteristic weighted currents are orthogonal. This implies that each characteristic
current radiates power independently of the other characteristic currents. These
unique features allow for a modal solution to be formed for any induced current
(J) on the object. This is accomplished through expanding the set of weighted
characteristic currents (with weighting coefficients αn), as is described by (3.4).

J =
N∑

n=1

αnJn (3.4)

The weighting coefficients can be found through substituting (3.4) into the
linear operator (L) of the incident field equation (2.18) and obtaining a weighted
set of currents that correspond to an incident electric field (3.5) [3].




N∑

n=1

αnL (Jn)−Ei



tan

= 0 (3.5)

As overviewed in Section 2.3.1, L1 can be equated to the impedance operator
(Z). Through taking the inner product of (3.5) with respect to the characteris-
tic current (Jn), the characteristic far-fields can be related to the characteristic
eigenvalue as shown in (3.6), where V in is defined by (3.7) [86].

αn (1 + jλn) = V in (3.6)

V in = 〈Jn,Ei〉 =

¨
S

Jn ·EidS (3.7)

Equation (3.7), is referred to as the modal excitation coefficient, and defines
a characteristic current’s relationship to the position, magnitude, phase, and po-
larization of an applied excitation. Furthermore, this relationship can be used to
define a modal solution for any induced currents on an object using (3.8).

J =
N∑

n=1

V inJn
1 + jλn

(3.8)
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Formulation (3.8) shows the key factors influencing the significance each CM
has to a radiated field. Apart from the modal excitation coefficients (V in) which
represent the influence of an excitation source, the weighting factor of (3.8) is
inversely related to the CM eigenvalues. This inverse dependence is defined as
the Modal Significance (MS), as it represents the amplitude each characteristic
current contributes to the total radiated field. The MSn can be mathematically
defined by (3.9).

MSn =

∣∣∣∣
1

1 + jλn

∣∣∣∣ (3.9)

The MS is able to determine both the modal resonance (when λn = 0), as well
as the modal radiation bandwidth, i.e., the modal bandwidth (BWn). When a
mode is in resonance the MSn = 1, and modes which do not contribute to the
radiated field are defined by MSn = 0. The most significant CM, at any given
frequency, is defined by the CM with the maximum valued modal significance
(MSn). Moreover, as the MS is defined by the weighting factor of a radiated field,
the half-power radiating bandwidth can be approximated using (3.10).

BWn ≈
fH

(
MSn = 1/

√
2
)
− fL

(
MSn = 1/

√
2
)

fres
(
MSn = 1

) (3.10)

In (3.10), fH and fL are the high and low frequency band edges of any local
maximum, at which the MS is equal to or greater than 1/

√
2. fres is the resonant

frequency whereMSn = 1 or the location of maximum MS. The modal bandwidth
is often an important Figure of Merit (FoM) in many TCM antenna and scattering
problems, as it helps to determine the radiating performance of a specific CM.
However, it is important to understand that the modal bandwidth corresponds to
the radiated pattern’s half-power bandwidth (for single mode excitation), and not
the impedance bandwidth of an excited structure.

The MS and modal bandwidth is often utilized as a metric to determine what
modes are relevant in CM problems. Often these problems are presented using the
MS rather than the characteristic eigenvalue. This is due to the MS being more
intuitive, and easier to plot than the eigenvalue, as the eigenvalue ranges from
[−∞,+∞], whereas the MS has a range between [0, 1]. Nevertheless, MS suffers
from the drawback that, in presenting an absolute value, it does not indicate if a
mode is capacitive or inductive, and the MS does not provide characteristic current
phase information.
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3.2.1 Modal Significance Example

When the 2-D thin wire object is analyzed using MS, other insights beyond
those found in the eigenvalue solution can be obtained. The first three MS curves
and the first two modal bandwidths (highlighted in red) are plotted in Fig. 3.2.
The resonant frequencies are determined by MS = 1 (for this specific example),
and the larger the MS value the more significant is the mode. As such, the most
significant modes of a 0.25λ to 1.25λ 2-D thin wire object are found to be λ1 and λ2

(λ is the free space wavelength, and λn is the characteristic eigenvalue), which have
the corresponding resonant frequencies of ≈ 0.5λ and ≈ 1λ. Furthermore, these
MS curves provide evidence that within the modal bandwidth of each significant
CM, no other CMs substantially contribute to the radiated or scattered fields.

As described, MS is able to define the radiating bandwidth of a CM. This is
important, as it can help determine feed positions when designing excitation struc-
tures. Using the thin wire example, it is apparent from Fig. 3.2 that the radiation
bandwidths of the two modes do not overlap. Therefore, any designed excita-
tion source cannot substantially excite both radiation modes over a continuous
bandwidth.

Figure 3.2: Modal Significance of a 2-D PEC object with variable
length and a fixed width of λ/50.
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3.3 Characteristic Currents

Section 2.3.1 described how the characteristic current (Jn) is directly obtained
in the process of solving the TCMweighted eigenvalue equation (2.47). However, as
this problem is designed to guarantee that the radiated current maintains far-field
orthogonality, it is not obvious that the characteristic currents are also orthogonal
to one another. The first sub-theorem of the Sturm-Liouville problem states the
weighted inner product must be self-adjoint, as this applies to the currents J the
orthogonality properties described by (2.56) - (2.58) are guaranteed.

The characteristic currents are unique because they provide many view-points
in understanding the radiation properties of an object. Through analysis of these
currents, an object can be transformed into an antenna with known characteristics,
through applying a proper excitation source in a location of significant character-
istic currents. Furthermore, as each CM maintains polarization orthogonality, any
given CMs can be excited or dampened through applying specific excitation struc-
tures, allowing for the design of excitation sources which are able to control the
polarization purity of an object.

3.3.1 CM Currents Example

The first two characteristic currents and their corresponding eigenvalues of the
previous long and thin 2-D PEC object are plotted in Fig. 3.3. As the currents
on the object are real, they can be utilized in many different ways. First, at the
location of highest current, an excitation source can be placed to transform this
object into an antenna. Often this is realistically implemented through splitting
the object and placing a voltage source between the two sections. If this is applied
to the λ1 currents in Fig. 3.3, the object will turn into a λ/2 dipole antenna.
Second, if the object is modified in areas of high current, there will be a greater
impact on the resonant properties of the CM than if areas of low current density
are modified. Finally, currents corresponding to different CMs can be analyzed to
determine if feeding one mode will excite a different mode.
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Figure 3.3: Characteristic currents of a 2-D PEC object of variable
length (in λ) and a fixed width of λ/50. The currents are normalized
to the maximum value in each case. The aspect ratio of the presented
currents is skewed, allowing for better visualization.

3.4 Characteristic Phase

The CAs overviewed in Sections 3.1 - 3.3 provide evidence that the eigenvalues
and the characteristic currents are able to yield insights into the phase charac-
teristics of an object. There are three unique properties which allow for phase
information to be obtained from a CM solution:

1. The characteristic eigenvalues are directly related to the amount and type of
stored energy in a given CM. This excess stored energy will produce a time
lag between an incident and scattered, or excited and radiated field.

2. The MS derivation (3.8) relates any current to a set of characteristic currents,
with the significance of each current directly related to the characteristic
eigenvalue.

3. The characteristic currents are defined to be equiphase across the object, i.e.
(Jn = J∗n).

Using these insights Garbacz et al. in [2] and Harrington et al. in [3] were
able to relate the eigenvalue to a perturbation (3.11) and scattering (3.12) matri-
ces. The perturbation matrix provides the phase information of individual CMs,
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whereas the scattering matrix describes the scattered field’s phase lag relative to
the incident field for each CM.

[P ] =




−1
1+jλ1

0 0 ...

0 −1
1+jλ2

0 ...

... ... ... ...


 (3.11)

[S] =



− 1−jλ1

1+jλ1
0 0 ...

0 − 1−jλ2

1+jλ2
0 ...

... ... ... ...


 (3.12)

Furthermore, these matrix elements are linked to individual characteristic cur-
rents, and as such Garbacz discovered that any single perturbation matrix element
must be contained within the half unit circle, due to the equiphase response of the
incident wave [2]. This allows for a phase response to be attributed to each CM.

The angle of a (diagonal) perturbation matrix element (the angle of the complex
number in the half-unit circle) is determined by the negative angle of (3.11) and
an additional phase offset defined by the boundary condition associated with the
incident field ((Ei)tan). This angle is often referred to as the characteristic angle
(αn), and can be mathematically described by (3.13). The difference between αn
and αm accounts for the phase difference, or phase lag, between two characteristic
currents.

αn = 180◦ − angle(Pn) = 180◦ − arctan(λn) (3.13)

The angle of a (diagonal) scattering matrix element defines the phase rela-
tionship between an incident wave and the scattered wave produced by a CM.
This relationship is determined by the angle of each diagonal element (Sn) in the
scattering matrix (3.12), referred to as the modal scattering angle (φn), and is
determined using (3.14).

φn = angle(Sn) = arctan

(
Im(Sn)

Re(Sn)

)
(3.14)
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3.4.1 Characteristic Phase Example

The characteristic angle and the modal scattering angle can be effectively uti-
lized in many antenna problems, including the analysis of the λ/50 2-D PEC wire
strip. The characteristic angle provides values ranging from 90◦ to 270◦ and is
often used to describe the CMs of an object; as all the modes lie on a well-defined
scale. The first three characteristic angles of the example wire strip are plotted in
Fig. 3.4. In this figure λ1 is in resonance at nearly 0.5λ, when the characteristic
angle is 180◦.

Figure 3.4: Characteristic angle of a λ/50 2-D PEC wire strip.

Figure 3.4 shows how the phase of each characteristic current is different from
the other characteristic currents and also describes how the phase of a single
current changes over frequency. This unique perspective of each mode can be
utilized to design antennas which require specific phase characteristics, such as
Circularly Polarized (CP) antennas. When designing a CP antenna using vertically
and horizontally polarized currents, a phase lag of 90◦ between the two currents is
required. As is shown in this figure, a phase difference can be found and attributed
to different wire lengths. If a phase shift of 90◦ is needed, the lengths which
are attributed to these phase shifts can be found. By analyzing the CAs of the
different wire lengths, a high CP axial ratio with a single feed cross dipole antenna
can be designed. The currents, feed position, and lengths for this CP antenna are
described in Fig. 3.5(a). Additionally, this antenna maintains the typical cross
dipole bidirectional pattern (Fig. 3.5(b)), and an axial ratio of better than −0.5dB

for both the Right Hand Circular Polarized (RHCP) (Fig. 3.5(c)) and Left Hand
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Circular Polarized (LHCP) patterns.

(a) CP Currents (b) 3-D far-field (c) RHCP pattern

Figure 3.5: CP antenna designed using the 2-D thin wire object. The
length of the object is determined using the characteristic angle. Nor-
malized (a) currents of the single cross wire object, (b) 3-D far-field
pattern, and (c) 3-D RHCP pattern.

It appears that the modal scattering angle has not been utilized in designing
antennas for specific applications, since no previous publication in this area could
be found. However, this unique attribute provides insights into the phase char-
acteristics of scattering objects; thus defining how a CM re-radiates an incident
wave. This attribute can be effectively utilized in many scattering applications
ranging from RADAR systems to reflector/director antenna designs. The modal
scattering angle ranges from −180◦ to +180◦, corresponding to the phase lag be-
tween an incident wave and a CM produced scattered wave. The first three modal
scattering angles for the λ/50 thin wire are plotted in Fig. 3.6.

Figure 3.6 describes the phase lag of each mode relative to the field which
excited the mode. While there are many uses of the reflected phase characteristics,
one obvious advantage is reducing the number of unknowns for a director antenna
system. When designing these types of coupled systems, many unknowns must
be solved; such as coupling characteristics, resonances, phase relationships, and
the distances between the director and exciter elements. Using the previously
described CAs and the modal scattering angle, these unknowns can be reduced to
one. For example, the phase can be defined and the wire length determined, or
vice-versa. If a phase shift of 49◦ is required for the director, this can be found
from the modal scattering angle (Fig. 3.6) corresponding to a wire length of 0.4λ.
From this information, a separation length between the exciter and the director is
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found to be 0.31λ. This results in constructive interference in the forward direction
and destructive interference in the reverse direction (Fig. 3.7(a)). It should be
noted, that this phase relationship only predicts far-field phase differences, and as
such the front-to-back ratio is only 4.1dB (Fig. 3.7(b)). This is because near-field
coupling has an impact on the phase and coupling relationships of this specific
example.

Figure 3.6: Characteristic modal scattering angles of a λ/50 2-D PEC
wire strip.

(a) 2-D representation (b) 3-D representation

Figure 3.7: 2-element director antenna system (Yagi): (a) 2-D time
domain representation of the single coupled element system, and (b) the
3-D radiation pattern of the designed antenna system evaluated using a
single excitation and a MoM solver.
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3.5 Modal Quality Factor

The concept of Q-factor is important in most electromagnetic problems, as
this dimensionless parameter relates the amount of energy lost (i.e., radiated and
dissipated energy) to the amount of energy stored within any object. As such, the
larger the Q-factor the less energy lost per frequency cycle. Often this concept
is utilized in antenna problems, as this quantity is inversely proportional to an
antenna’s bandwidth. Antennas with low Q-factors either have low bandwidths or
high losses. Likewise, high Q-factor antennas have either narrow bandwidths or
low losses [98,99].

The Q-factor for an object is defined by the maximum amount of energy stored
by an object, and the efficiency at which the object radiates or loses energy (by
means of radiation or heat dissipation), as represented by (3.15). Furthermore,
this quantity can be used to define a set of physical bounds for a known object
[100], thus determining the maximum antenna performance of that object.

Q =
2ωmax

{
W̄e, W̄m

}

Pe + P̄d
(3.15)

In TCM problems, (3.15) is not useful in determining the Q-factor of a given
CM, as the individual quantities W̄e and W̄m are not known. However, there are
multiple other methods of determining the Q-factor of a CM, some of which are
described in [77, 101]. The most traditional approach to determining the modal
Q-factor is through the use of the characteristic eigenvalue. As the eigenvalue is
defined as 2ω times the difference in stored energy of a CM (ω = 2πf , f is the
frequency), it was shown in [7] that it can be used to approximate the Q-factor
using (3.16).

Qn ≈ ω
∂λn
∂ω

(3.16)

One caveat to this approximation is that it is only valid at resonance, and thus
should not be used at any frequency, or for all CMs. This is also true when the
modal bandwidth, as described by (3.10), is utilized to define the modal Q-factor.

Traditionally non-resonant modes are difficult to analyze as the modal band-
width is only defined in resonance. However, many solutions to this problem have
been investigated, such as the approach outlined in [102]. In [102], a useful approx-
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imation of the Q-factor is defined through forcing a set of currents into resonance
using a single circuit element. This is done using an object’s impedance matrix
to determine the proper circuit element which will force the mode into resonance.
This theoretical concept uses the partial derivative with respect to the angular fre-
quency (ω) of the imaginary part of the MoM impedance matrix, the real part of
the impedance matrix, and the object’s surface currents. When applied to TCM,
the Q-factor for any CM can be defined for any frequency using (3.17).

Qn =
ω[Jn]∗ (∂[Z]/∂ω) [Jn] + |[Jn]∗X[Jn]|

2[Jn]∗[R][Jn]
(3.17)

The Q-factor of individual CMs is important in TCM analysis, as the informa-
tion provided by this quantity allows insights into any CM’s maximum obtainable
bandwidth, thus providing knowledge into the radiation performance of the object.

3.5.1 Modal Quality Factor Example

The modal Q-factor can be effectively utilized in many antenna problems in-
cluding the analysis of the thin wire strip. The first three modal Q-factors for the
two separate formulations, as defined in Section 3.5, are plotted in Fig. 3.2. In this
figure the solid lines were calculated using (3.17), and the dotted lines calculated
using (3.16). It is apparent that these two calculations are significantly different,
and as discussed (3.17) should be more accurate than (3.16). However, in many
situations, e.g., when using commercially available TCM software packages, the
more accurate solution is not possible to obtain, as access to the TCM currents at
two different but closely related frequencies, as well as the full impedance matrices
at those frequencies are required.

As the modal bandwidth can be determined by the modal Q-factor, it is possible
to plot the maximum obtainable modal bandwidth which corresponds to each of
the CMs. The bandwidths of the first three CMs are presented in Fig. 3.9. This
figure shows that the resonant bandwidth of a λ/2 thin wire is approximately 20%
(when calculated using either the MS or the currents), this is closely related to
the ideal half-power radiation bandwidth of a λ/2 dipole. As can be expected, the
bandwidth, as predicted from the inverse of the eigenvalue slope obtained from
(3.16), does not agree well with that obtained from the other two methods.
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Figure 3.8: Modal Q-factor of a λ/50 2-D PEC wire strip.

Figure 3.9: Modal half-power bandwidth of a 2-D PEC wire strip with
a width of λ/50. Calculated using the MS bandwidth obtained using
(3.10), and the inverse of the quality factors (3.16) and (3.17).

3.6 Characteristic Fields

The Theory of Characteristic Modes is designed to create a set of orthogonal
far-fields (i.e., when evaluated over a closed surface at infinity). While these fields
are known to be orthogonal, they are not directly available from the solution to
the TCM eigenvalue problem. In many practical situations it may be important
to determine the near-fields (i.e. the field close to the object) or far-fields of



68 Part I: Thesis Overview

an object’s characteristic currents. Unlike the far-fields, the near-fields are not
guaranteed to be orthogonal, but can be helpful in describing the electromagnetic
characteristics of an object. Additionally, the near-fields can be used for coupling
applications such as Radio-Frequency Identification (RFID) or when exciting an
object. Furthermore, the exact far-field solution is also useful in applications
including modal decomposition, modal tracking, Multiple-Input Multiple-Output
(MIMO) antenna design, and scattering problems.

There are several different ways to calculate the fields radiated by a set of
currents. The most traditional approach directly uses the currents to determine
the radiated fields, this is often referred to as the direct approach [83, 103]. More
details on how to utilize this method to solve for the near-fields or far-fields defined
by a set of currents can be found in Sections 6.8.1 and 6.8.2 of [83], respectively.

However, it is also possible to calculate the near- or far-fields of a set of currents
on an object using the dipole method as specified in [103–105]. This method is
more easily implemented, and is used in many commercial electromagnetic MoM
solvers. The dipole method for calculating the fields produced by the currents of
an object uses the individual currents of each basis function, and places Hertzian
dipoles with the corresponding current at these locations. This dipole is located
at the center of the mesh element, with the dipole oriented along the dotted line
in Fig. 2.4. This is a unique way of determining the fields, as the analytical
expression for the fields, both E and H, are known for a Hertzian dipole. Once
the fields of each current element are calculated, the total fields at any location
can be computed by summing the contributions of all the individual dipoles (one
dipole for each mesh element). This method is fully outlined in Section 3 of [106].

3.6.1 Near- and Far-Field Example

Calculation and visualization of the characteristic fields is important in many
applications, as these computations provide significant insights into the electro-
magnetic characteristics of an object. The first three electric characteristic near-
fields for λ1, λ2, and λ3 of the thin wire at resonance are plotted in Fig. 3.10.
The plotted fields are calculated over the same 2-D dimensions as the wire, but
at a distance of λ/15 away in the 3rd dimension. Such an offset is required for
field calculations using the dipole method, as the fields of each Hertzian dipole
are only valid at a distance greater than the length of the Hertzian dipole. For



Chapter 3. Characteristic Attributes 69

a Rao-Wilton-Glisson (RWG) meshed object, the Hertzian dipoles are made up
of individual meshing elements, and this specific object is meshed with triangles
≈ λ/40 in length at the λ1 resonance point. Therefore, an offset of greater than
λ/40 is required to analyze this object with this mesh [105,106].

The near-fields of Fig. 3.10 provide information into the strength of the electric
field (in volts per meter) over the calculated dimensions. For the first CM (λ1) the
amplitude is smallest in the center and largest on the two edges. This produces a
half-wave near-field distribution across the object, nearly identical to that of a λ/2
dipole. The second CM (λ2), produces a full-wave near-field distribution nearly
identical to that of a full wave dipole. In areas of strong electric (magnetic) field, a
Capacitive Coupling Element (CCE) (Inductive Coupling Element (ICE)) can be
used to efficiently couple energy into the object, providing insights into alternative
methods of exciting the object.

Figure 3.10: Normalized electric near-fields and the corresponding tri-
angular mesh for a 2-D PEC wire strip of width of λ/50. The near-fields
are computed at λ/15 away from the object’s 2-D axis. The width of
each figure is skewed to allow for better visualization.

The normalized far-fields for the first three CMs of the object at their respec-
tive resonant frequencies are plotted in Fig. 3.11. These far-fields are orthogonal
to one another. One unique characteristic of this property, is that the far-fields of
an antenna (such as a dipole), can be compared to the characteristic far-fields of
a similar object, providing knowledge into which characteristic modes are excited
[65]. This property provides evidence that if the modes of a λ/2 dipole are re-
constructed using the characteristic far-fields, the dipole’s far-fields can be almost
completely reconstructed from the far-fields of the first CM (λ1). Additionally, the
far-fields of a λ and 3λ/2 dipole antenna can be almost fully reconstructed using



70 Part I: Thesis Overview

the far-fields of the second and third CMs, respectively. Furthermore, far-field
analysis can be used for far-field coupling calculation, and modal tracking.

Figure 3.11: Normalized far-fields of the first three CMs at resonance
for a 2-D PEC wire strip with a width of λ/50.
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Eigenvalue Tracking

THE Theory of Characteristic Modes (TCM) provides insights into the electro-
magnetic characteristics of an object when calculated at a single frequency.

However, it is often useful to analyze these Characteristic Modes (CMs) over a
wide frequency range in an effort to determine resonance characteristics, phase
variations, modal bandwidths, and mode-to-mode interactions. As outlined in
Section 2.3, the eigenvalues are determined from the decomposition of the Method
of Moments (MoM) impedance matrix. This impedance matrix is numerically cal-
culated in the frequency domain, and as such varies across frequency. This causes
the solution to the Sturm-Liouville problem to change, resulting in the eigenvalues
not maintaining a constant order across frequency. These disordered characteristic
solutions are a significant problem, as many of the insights and Characteristic At-
tributes (CAs) that can be obtained from a TCM solution require the eigenvalues
to be accurately tracked.

To combat this problem, many different eigenvalue tracking methods have been
developed. These are often designed in an effort to link the eigenvalues together
across frequency in a meaningful manner. Often this is done through utilizing a
variety of different CAs, e.g., attempting to guarantee the current does not vary
significantly over frequency for a single CM. While there are many benefits to
correctly tracking the CMs, accurate tracking can be extremely difficult to apply
in practice. One classic problem is that different tracking methods can provide
conflicting solutions to the same object, and it can be difficult to determine which
of these solutions is correct.

Most eigenvalue tracking methods consist of an algorithm that can be described
by a flowchart, with the centerpiece being the calculation of a correlation quantity.
A generalized form of a flowchart for eigenvalue tracking is outlined in Fig. 4.1. In
this chart the impedance matrix of an object is solved at two different frequencies
(fa and fb). These impedance matrices are then used to solve the TCM eigen-
value equation for the corresponding frequencies, and the resulting eigenvalues are
preconditioned to reduce the problem space. Finally, a correlation matrix is built
and reordered until the correlation for each diagonal element is above a required
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threshold. This reorder matrix, or linking matrix, is then saved and subsequent
frequencies are solved in the same manner.

Figure 4.1: A generalized TCM tracking flowchart.

To demonstrate the difficulties of tracking TCM eigenvalues across frequency, a
simple two-part structure (Fig. 4.2) can be analyzed using TCM [107]. This unique
object has many special characteristics that make tracking its modes difficult.
These difficulties arise from the object being symmetric, as well as having multiple
resonant modes that intersect one another, high modal Quality Factors (Q-factors),
high currents limited to small regions of the object, anti-resonant modes [108], and
degenerated modes [74]. Each one of these issues provides a degree of difficulty for
existing tracking methods.

When solving the TCM eigenvalue equation, the modes are typically sorted
during the solution process, with the order determined by the smallest |λn| at
each frequency. Often, there is limited value to this simple type of sorting, as the
modes are not electromagnetically related. This is evident when the characteristic
angles are plotted for the first 30 CMs of the two-part chassis (Fig. 4.3).

Whereas many different tracking approaches exist, four distinct tracking cate-
gories will be briefly overviewed in the following sections in an effort to represent
the more significant research publications in this field. There are often many differ-
ent algorithms in each tracking category, but they operate with similar principles.
In fact, many of the main theoretical concepts are similar even across different
categories. In particular, all four categories attempt to link the modes across fre-
quency through electromagnetically associating each mode at a given frequency
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Figure 4.2: Two-part chassis comprised of a thin metal bezel and a flat
plate. The CMs of this object are difficult to track due to its unique
resonant properties around 2.6 GHz. c©2015 IEEE

Figure 4.3: Characteristic angle of the first 30 modes of the two-part
chassis tracked by eigenvalue sorting.

to a corresponding mode at a different frequency. Therefore, some amount of
electromagnetic insights can be obtained from the linked modes. However, as or-
thogonality relationships do not strictly hold across frequency, none of the four
tracking categories works perfectly and further analyses may be needed to deter-
mine if the modes are properly linked when using any type of tracking.
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4.1 Eigenvector Correlation Tracking

Eigenvector tracking is one of the most computationally efficient methods for
tracking the CMs of an object, and it was one of the first CM tracking categories
developed [109]. This type of tracking is easily computed as it only requires access
to the eigenvectors (i.e., discretized characteristic current distributions, [Jn]) over
the frequencies of interest. The most basic form of this tracking method builds a
correlation matrix using the matrix elements described by (4.1).

ρn,m(fa, fb) =
[Jm(fb)]

T [Jn(fa)]∗∣∣[Jn(fa)]
∣∣∣∣[Jm(fb)]

∣∣ (4.1)

In (4.1), ρn,m is the correlation of CM n to CM m, where CMs n and m

are evaluated at frequencies fa and fb, respectively. The matrix will then be
reordered as depicted in the generic tracking flowchart of Fig. 4.1. Whereas the
exact reordering of the correlation matrix is dependent on the specific algorithm
and object used, the most closely related modes will maintain a value of ρn,m ≈ 1,
and modes which do not have a strong eigenvector correlation will produce values
of ρn,m < 1.

Often this method requires the difference between fa and fb to be very small,
as the eigenvectors will most likely not vary significantly between two different
impedance matrices that contain only small differences between them. More-
over, as the eigenvectors are not guaranteed to be mathematically orthogonal at
the same frequency, unlike the weighted characteristic currents and characteristic
far-fields, this tracking method is more susceptible to errors than other tracking
methods.

These problems become apparent when the eigenvalues of the two-part chassis
(Fig. 4.2) are tracked using an eigenvector correlation algorithm. This algorithm
reorders the correlation matrix by determining the λm(fb) which has the highest
correlation to λn(fa). The tracked solution for the first 30 eigenvalues is shown in
Fig. 4.4.

Eigenvector correlation based tracking is always superior to unconditioned and
unsorted modes, as the eigenvector of each mode is, to some degree, related to
the eigenvector at a subsequent frequency. However, as the eigenvectors are not
mathematically orthogonal, this method does not resolve many of the outlined
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Figure 4.4: Characteristic angle of the first 30 modes of the two-part
chassis tracked by eigenvector correlation.

tracking issues. Therefore, other tracking categories have been developed which
rely on orthogonal CAs.

4.2 Weighted Current Correlation Tracking

Weighted current tracking is considered to be an exceptionally robust tracking
method, when compared to the previously overviewed categories [74,110]. This is
because the characteristic currents are perfectly orthogonal at any single frequency
when properly weighted, according to the orthogonality relationships (2.56)-(2.58)
as outlined in Section 2.3.1. Therefore, it would be reasonable to assume that the
orthogonality relationship will be preserved to a large extent at a nearby frequency,
since the impedance matrix is expected to vary only slightly between closely-spaced
frequencies.

The weighted current correlation is determined using (4.2), where ρn,m(fa, fb)

is used to determine the correct reordering of the correlation matrix. If
ρn,m(fa, fb) ≈ 1 then the modes are highly correlated, but if ρn,m(fa, fb) does not
meet a predefined threshold the modes are not tracked to one another.

ρn,m(fa, fb) =
〈

[Jm(fb)],[R(fa)][Jn(fa)]
〉

(4.2)
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The current vectors and the real impedance matrix in (4.2) are calculated
when the TCM eigenvalue equation is solved. Therefore, most algorithms within
this category are not significantly more computationally complex than eigenvector
tracking. However, problems within this category often arise as weighted cur-
rents are only orthogonal at a single frequency, and often vary significantly across
frequency. Therefore, this method requires the difference between fa and fb to
remain small for it to work well.

Figure 4.5: Characteristic angle of the first 30 modes of the two-part
chassis tracked by weighted current correlation. c©2015 IEEE

In general, this method is extremely robust in electrically compact objects,
or when an object maintains slowly varying characteristic currents. However, this
category often fails in objects which have areas of high current density, intersecting
resonant modes, anti-resonant modes, modes of high Q-factor, and degenerated
modes. Although there are disadvantages, this category is superior to many others
for most objects. The advantages of this method are obvious when it is used
to track the modes of the two-part chassis shown in Fig. 4.2, with the results
illustrated in Fig. 4.5.

4.3 Far-Field Correlation Tracking

Far-field correlation is able to track an object’s CMs through analyzing the
characteristic far-fields, rather than relying on any precomputed CAs. As outlined
in Section 2.3.1, the characteristic electric (and magnetic) far-field patterns, are
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mutually orthogonal to one another at a given frequency. This tracking method
exploits an almost identical set of tracking concepts as are used in weighted cur-
rent tracking, but far-field tracking has the distinct advantage of not relying on
the discretization of the object. Although the variability in characteristic current
distributions increases with structural complexity, these large variations in cur-
rents are often confined to only a few discretization (mesh) elements. However,
these localized variations can significantly affect current-based tracking. On the
other hand, far-field discretization is not done over the discretization elements,
but rather post-processing of the characteristic currents is applied to determine
the characteristic far-field at any defined point in space (Section 3.6). As each com-
puted far-field point is composed of the radiation from every individual current
element, small shifts between currents across frequency tend to be averaged out.
Consequently, far-fields remain more orthogonal between frequencies and objects
than current-based methods [111–113].

The first step in the algorithm for far-field tracking is to sort the eigenvalues in
ascending order from the lowest to the highest |λn|. Second, the far-field patterns
must be individually cross-correlated with the far-field patterns at subsequent
frequency steps, using (4.3).

ECCn,m(fa, fb) ≈

∣∣∣∣˛
4π

[
Eφ,m(fb,Ω)E∗

φ,n(fa,Ω) + Eθ,m(fb,Ω)E∗
θ,n(fa,Ω)

]
dΩ

∣∣∣∣2∣∣∣∣˛
4π

[Eφ,m(fb,Ω) + Eθ,m(fb,Ω)]

∣∣∣∣ ∣∣∣∣˛
4π

[Eφ,n(fa,Ω) + Eθ,n(fa,Ω)]

∣∣∣∣
(4.3)

In (4.3), dΩ = sin(θ)dφdθ, and Eθ,m(fb,Ω), Eφ,m(fb,Ω), Eθ,n(fa,Ω),
Eφ,n(fa,Ω) are the θ- and φ- polarized electric far-fields of CMs n and m

evaluated at frequencies fa and fb. Modes which are highly correlated have
ECCn,m(fa, fb) ≈ 1, while uncorrelated modes have ECCn,m(fa, fb) ≈ 0.
When ECCn,m(fa, fb) is larger than any other mode combination and meets
a predetermined threshold criterion, the correlation matrix (linking matrix) is
reordered to track those two modes across frequency.

The far-field patterns are not calculated in the process of solving the TCM
eigenvalue equation. As such, this correlation method adds some computational
complexity, beyond that of other tracking methods. The main advantage of this
tracking category is due to the slow evolution of far-field patterns over frequency,
when compared to the much faster localized evolution of characteristic currents.
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This allows for larger frequency step sizes to be taken while reducing the track-
ing errors caused by current changes in localized mesh elements. Additionally,
this method is able to average out the small variations caused by mirrored image
currents of symmetric structures, and some intersecting resonant modes. These
advantages are obvious when calculating the modes of the two-part chassis, as
described by Fig. 4.6.

The far-field tracking category is fundamentally different from current based
categories, and as such it is often able to produce fewer degenerated modes and
mode swapping. However, far-field tracking requires that the fields be computed
at a discretization that is much less than the 3dB beam-width of the pattern with
the highest directivity, which can significantly increase the computational time.
Additionally, problems can arise in a far-field tracking algorithm when the CMs
contain anti-resonances, high Q-factors, and degenerated modes [111].

Figure 4.6: Characteristic angle of the first 30 modes of the two-part
chassis tracked by far-field correlation. c©2015 IEEE

4.4 Hybrid Tracking

At the time of writing this thesis, there is no tracking category or algorithm
that completely solves the CM tracking problem. However, recently many hybrid
solutions have been developed which often significantly improve the CM tracking
results. Many of these methods utilize image processing algorithms to effectively
sort the eigenvalues, and this is then paired with one or more of the correlation
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tracking types previously overviewed. Often, the threshold of ρn,m(fa, fb) is signif-
icantly increased in hybrid algorithms in an effort to limit mode swapping. Using
both image processing and the combined correlation results, the linking matrix is
reordered to achieve better tracking results than using any individual method.

A nearly unlimited number of hybrid methods can be developed to aid in CM
tracking. However, when a simple two-part hybrid solution, which consists of
a bounded linear weighted current correlation function and the extrapolation of
eigenvalues using Pearson’s correlation function [107] is created; the results are
superior to those of the original weighted current correlation tracking, as was
presented in Section 4.2. This hybrid tracking solution for the two-part chassis
example, is given in Fig. 4.7.

Figure 4.7: Characteristic angle of the first 30 modes of the two-part
chassis tracked by weighted current correlation and Pearson’s correlation
function [107]. c©2015 IEEE
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TCM in Real Media

IN [33] and [34], Harrington et al. proposed two methods for solving the Char-
acteristic Modes (CMs) of objects consisting of real materials, which includes

dielectric and magnetic materials as well as materials with losses. These methods
are based on the eigenvalue decomposition of an object’s Volume Integral Equa-
tion (VIE) [33] or Surface Integral Equation (SIE) [34] Method of Moments (MoM)
impedance matrix. The mathematics of solving for the CMs of real objects using
these impedance matrices was overviewed in Section 2.3.2 - 2.3.4. However, there
are many problems associated with these methods, such as:

• Computational complexity of solving the VIE Theory of Characteristic
Modes (TCM) eigenvalue problem

• Significant tetrahedral mesh density required for obtaining an accurate VIE
TCM solution.

• Possible non-orthogonal characteristic far-fields when analyzing lossy struc-
tures using a VIE or SIE impedance matrix.

• Incorrect eigenvalues which may not be equal to the reactive power, for either
a VIE or SIE TCM solution.

• Internal resonant modes found in SIE TCM solutions.

In this chapter, these problems will be further examined, and some existing
solutions will be briefly overviewed. Furthermore, computational examples will be
introduced to better explain the problems.

5.1 Analyzing VIE TCM Solutions

In [33], it was shown that the eigenvalue decomposition of a VIE MoM
impedance matrix provides a complete set of CMs for an object composed of
any real media. However, this method is rarely applied for a number of different
reasons. Most often, it is avoided due to the computational complexity required
to solve for the impedance matrix and the associated Sturm-Liouville problem.

85
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However, as it is now possible (although not efficient) to solve for this impedance
matrix and the TCM problem using modern computers, many other issues
exist which deter the use of this method. The most prevailing issue is that the
eigenvalues do not have a clear relationship with the object’s reactive energy,
as was detailed in Section 2.3.2. However, if the eigenvalues are not needed for
the specific problem, another problem exists which contradicts the foundational
mathematics of TCM, i.e. non-orthogonal characteristic far-fields exist in the CM
solution of lossy objects.

5.1.1 Computational Limitations of VIE

Computing CMs using the VIE is computationally prohibitive due to the large
number of basis functions required. The number of unknowns in this method are
proportional to the square of that required for a well-conditioned SIE [90]. When
applying the VIE impedance matrix to solve the CMs of an object, the total
solution time increases relative to the cube of the computational time required for
calculating the same object using an SIE formulation [114]. This increase in time
is mainly due to matrix inversions which are required when solving for both the
impedance matrix and the associated Sturm-Liouville problem.

To combat this significant increase in computational time, solutions are often
critically under-meshed (e.g., sparse meshing was required in [115]). This reduces
the total number of basis functions and allows for the CMs of electrically compact
simple geometric objects to be solved on a high-end desktop computer. However,
sparse meshing should be avoided as the accuracy of the VIE solution depends
significantly on the quality of the tetrahedral mesh used. If the system is under-
meshed, the solution accuracy degrades significantly. This type of inaccuracy
produces surface singularities throughout the object [90], caused by large edge
elements in the tetrahedral expansion functions. These surface singularities result
in the impedance matrix overestimating the amount of stored energy within a
given tetrahedral. This causes the calculated eigenvectors to be different from a
correctly meshed solution. A sufficient tetrahedral density depends on the shape
and material of the object, but the maximum edge length of a basis tetrahedral
(of a dielectric object) can, to some degree, be estimated using (5.1) for VIE TCM
problems [90,91,116].
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ln <
(c/fmax)

10 εr
(5.1)

The effect of inaccuracies in poorly-meshed VIE objects can be observed
through solving the CMs over a variety of different mesh densities. This is effec-
tively demonstrated by solving for the CMs of a dielectric cube measuring 2.54cm
× 2.54cm × 2.54cm, made of a lossless dielectric with a relative permittivity of 9.4
(εr = 9.4). The CMs of this object are solved over three different mesh densities
consisting of 928, 1640, and 6256 basis elements (Fig. 5.1). As the number of
mesh elements increase, the values converge in a nearly exponential fashion (by
observation). These discrepancies are discernible in Fig. 5.1, where the maximum
mesh density has an edge length approximately equal to the upper limit of (5.1)
at f = 2.5 GHz.

Figure 5.1: Eigenvalues of a dielectric cube with different mesh densi-
ties. c©2015 IEEE

5.1.2 Non-Orthogonal Far-Fields

Harrington et al. proved in [33] that, when losses are added to the VIE CM
formulation, the scattering and perturbation matrices will not be perfectly diago-
nalized. If an eigenvalue decomposition is applied to a symmetric VIE impedance
matrix, a set of characteristic currents with the orthogonal relationships of (2.49)
- (2.54), will be computed, but the far-fields which are defined by those currents,
will not correspond to an orthogonal set of far-field patterns.
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As was detailed in Section 2.3.2, if TCM is applied to volumetric objects, the
electric field must be represented as the sum of both an incident electric field
(Ei) on a volumetric element, as well as the scattered fields from other elements
(Es). However, as the impedance operator (Z) cannot be easily split into the
two separate operators Zv and Zm, the VIE TCM equation must be defined by
(2.74), and not by (2.73). This additional operator forces the TCM far-fields to
no longer be directly related to the real part of Poynting’s theorem, but rather
equal to the real part of Poynting’s theorem plus an unknown quantity. This
quantity is equal to

〈
J∗m,Re (Zm)Jn

〉
, which disturbs the orthogonality between

the characteristic far-fields. Furthermore, (2.64) shows that Re(Zm) is related to
the losses of the structure, and thus the offset from perfect far-field orthogonality
will increase at a rate proportional to the currents and losses in each tetrahedral
element. However, because Zm is not easily separable from the VIE impedance
matrix, this quantity cannot be directly evaluated. It is possible to numerically
solve for this quantity by determining the Envelope Correlation Coefficient (ECC)
between all the characteristic far-field patterns for the object. However, as the
characteristic currents are unique to the shape of an object, it is not possible
to determine how much a known loss will affect this quantity across objects of
different shapes.

To demonstrate these problems, the characteristic far-fields of two different
objects were analyzed across different losses. The first object characterized is a
dielectric sphere with a radius of 150 cm and a dielectric constant of εr = 10. The
characteristic far-fields were computed at 250 MHz. The second object is a dielec-
tric cylinder with a radius of 135 cm, height of 300 cm, and a dielectric constant
of εr = 10. The characteristic far-fields of this object were computed at 350 MHz.
Both objects have a complex natural resonance near their respective evaluation
frequencies. The first twelve CMs of each structure were analyzed, across four
different loss values, and the mode-to-mode far-field ECCs were computed. These
results are displayed in Fig. 5.2.

These figures show that the modal correlation is zero for lossless objects, and
as such

〈
J∗m,Re (Zm)Jn

〉
must also equal zero. However, two problems exist when

losses are introduced into the objects. The first problem is that objects of different
shape, but with the same loss behave very differently, thus no generalization can
be made. The second problem is that many modes are correlated. Additionally, as
the loss of an object increases, the non-orthogonality in the characteristic far-fields
becomes more apparent. These results demonstrate that lossy VIE objects do not
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(a) tan δ = 0.00 (b) tan δ = 0.01

(c) tan δ = 0.05 (d) tan δ = 0.10

Figure 5.2: Far-field ECC of four different VIE objects, with different
losses (a), (b), (c), and (d). The dielectric sphere is represented by the
left-lower triangle in each plot, while the dielectric cylinder is represented
by the right-upper triangle in each plot.

adhere to the TCM theoretical foundations, and as such VIE CMs should only be
used in lossless objects where the correct eigenvalues are not required.

5.2 Analyzing SIE TCM Solutions

In [34], it was shown that the eigenvalue decomposition of an SIE MoM
impedance matrix can be used to solve for the CMs of objects composed of real
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materials. When compared to VIE methods, the SIE TCM solution is computa-
tionally efficient, and thus it is preferred when solving complex TCM problems.
However, as was discovered in VIE TCM, an SIE eigenvalue decomposition also
leads to some significant issues in the TCM solution [76, 117]. However, recently
methods have been developed which solve many of the problems associated with
some SIE TCM methods.

5.2.1 Problems with SIE TCM Solutions

As was overviewed in Section 2.3.3, the Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) impedance matrix must be forced into symmetry, in order for it
to be used in a Sturm-Liouville problem. However, when this is done the weight-
ing factors of the SIEs (2.82) - (2.85) must be altered. The resulting impedance
matrix is often referred to as the forced symmetric PMCHWT impedance matrix.
However, the forced symmetry is problematic, since the weighting factors associ-
ated to (2.82) - (2.85) are no longer identical to the PMCHWT SIE weightings.
Furthermore, as with the VIE solution, it can be shown that the eigenvalues of
the forced-symmetric PMCHWT SIE TCM are not related to the reactive power
of the object’s characteristic currents.

Internal Resonances Due to Forced Symmetry

As previously overviewed, there are three main types of SIE formulations: Elec-
tric Field Integral Equation (EFIE), Magnetic Field Integral Equation (MFIE),
and Combined Field Integral Equation (CFIE). The standard EFIE and MFIE
suffer from what is known as the internal resonance problem [90]. The existence
of these internal resonances can be easily understood in some cases (objects made
of Perfect Electric Conductors (PEC) and Perfect Magnetic Conductors (PMC)),
whereas it is less understood in other cases (dielectric and magnetic objects). For
a closed PEC object, the internal resonances can be related to non-radiating reso-
nant cavity modes. However, this is not as easily explained for dielectric objects,
but can be proved, or observed, through different Gedanken experiments (thought
experiments) [118]. These internal resonances can be eliminated through proper
combination of the EFIE, MFIE, Electric Combined Integral Equation (ECIE),
and Magnetic Combined Integral Equation (MCIE).

Equations (2.82) - (2.85) provide four equations and two unknowns. In order
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to reduce the equation space so that there are the same number of equations as
unknowns, the number must be reduced to two. This is done through a linear
combination of these equations as shown by (5.2) and (5.3), where ai, bi, ci, and
di are the weighting coefficients within the full domain described by Fig. 2.2(a)
[119].

Combined Equation 1: aiECIE + biEFIE (5.2)

Combined Equation 2: ciMCIE + diMFIE (5.3)

There are several ways of combining (2.82) - (2.85) using (5.2) and (5.3) to
obtain a unique solution free from internal resonances. A computationally efficient
way is to use a linear combination which forces two of the integral equations to
zero; this can be done by setting ai = ci = 0 or bi = di = 0. The two most used SIE
formulations utilize this method, and are referred to as the NMüller and PMCHWT
MoM SIE formulations [90]. The NMüller formulation, the most popular variant of
the Müller formulation, sets ai = µi and ci = εi. The PMCHWT formulation is the
most widely implemented SIE solution and sets ai = ci = 0 and bi = di = 1. The
method in which the weighting coefficients are chosen is important, as the choice
of these weighting coefficients will determine if a solution is free from internal
resonances. A simple method for determining if a particular solution is free of
internal resonances can be found by calculating aic∗i and bid∗i ; if both these terms
yield real and positive numbers, the solution is unique (i.e., free of the internal
resonance problem). However, these expressions no longer result in a real number
for the forced symmetric PMCHWT equation, described by (2.95). Therefore, the
SIE TCM solution is not guaranteed to be free of internal resonances.

It was proven in [34] that the external resonant modes of an SIE TCM so-
lution will form an orthogonal set of far-fields. However, as internal resonances
do not radiate far-field energy, they are not required to be contained within this
orthogonal set. Furthermore, as (2.95) is not guaranteed to be free from internal
resonances, if any are found in a solved object using (2.95), this specific SIE so-
lution can be determined as not being free from the internal resonance problem,
i.e. through a Gedanken experiment. This theoretical concept can be confirmed
by analyzing an object, and calculating the ECC between the individual charac-
teristic far-fields. Furthermore, if any two CMs are not-orthogonal to one another
(excluding rounding errors), and additionally one or more of these modes do not
radiate unity far-field energy, each non-radiating mode must correspond to an
internal resonance. For lossless objects, the internal resonances within the SIE
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solution will not be present in the VIE solution. However, as the eigenvalues of
both the VIE and SIE solutions do not directly reflect the reactive power, this
comparison does not necessarily prove the existence of internal resonant modes,
contradictory to [119].

If the CMs of the cube structure from Section 5.1.1 are computed using the
impedance matrix as defined by (2.95), a set of orthogonal CMs would be ex-
pected. However, the computed far-field ECCs among these CMs indicate that
some modes are significantly correlated with each other. This is not the case with
the characteristic weighted currents, as these remain orthogonal in the sense of
(2.49) due to them being solved directly by the Sturm-Liouville problem. Fur-
thermore, when the characteristic far-fields, ECC are computed for the VIE CMs,
no correlated modes can be found. These characteristic far-field ECC results for
the two different methods are depicted by Fig. 5.3. Moreover, the number of low
valued eigenvalues in the SIE solution significantly outnumbers those in the VIE
solution (Fig. 5.4).

Figure 5.3: ECC of characteristic far-fields obtained from the VIE and
forced symmetric PMCHWT SIE solutions for a lossless dielectric cube
of dimensions 2.54cm × 2.54cm × 2.54cm and relative permittivity of
9.4.
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Figure 5.4: Eigenvalues of the VIE TCM and the forced symmetric
PMCHWT SIE TCM for a lossless dielectric cube of dimensions 2.54cm
× 2.54cm × 2.54cm and relative permittivity of 9.4.

Eigenvalue’s Relationship to Poynting’s Theorem

In [33] it was proved that the eigenvalues of a VIE impedance matrix do not
directly correspond to the reactive power of the solved object. Additionally, a
similar problem can be found with the eigenvalues’ relationship to an object’s
reactive power in SIE problems, but this was not conveyed in the original SIE
TCM proof [34]. In SIE MoM formulations which solve for the CMs of objects
consisting of complex media, the Sturm-Liouville theorem states that the inner
product must be orthonormal with respect to the weighting vector (Section 2.3.1).
As was overviewed in Section 2.1.2, this orthonormal relationship can be used to
relate the real part of the SIE TCM solution to the radiated and dissipated power
as described by the Poynting’s theorem derivation. Although this remains true
for SIE formulations, the imaginary part of Poynting’s theorem can no longer be
related to the imaginary part of the TCM solution (the eigenvalue). This can
be proven by applying the second sub-theorem of the Sturm-Liouville problem to
Poynting’s theorem. This sub-theorem states that the eigenvector solution must be
composed of only real values, i.e., the characteristic currents must be real. Using
(2.95) as the SIE formulation for TCM, the electric currents (J) for this specific
formulation must be real, whereas the magnetic currents (M) must be imaginary,
as indicated in Poynting’s theorem given by (5.4). Equation (5.4) can be expanded
into its real and imaginary parts as described in (5.5), where (·)R indicates real-
valued variables, and (·)I indicates imaginary-valued variables. This specific form
of Poynting’s theorem can be split up into its real and imaginary components
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which can be associated to the radiated / dissipated and reactive power (5.6).

Ps =

¨
S

(
J∗︸︷︷︸

Im{}=0

·E + M︸︷︷︸
Re{}=0

·H∗
)
dS (5.4)

Ps =

¨
S

(
JR ·

(
ER + jEI

)
+
(
− jMI

)
·
(
HI + jHI

))
dS (5.5)

Ps =

¨
S

(
JR ·ER +MI ·HI

)
dS

︸ ︷︷ ︸
Pe+P̄d

+j

¨
S

(
JR ·EI +MI ·HR

)
dS

︸ ︷︷ ︸
∆Pstored=2ω(W̄m−W̄e)

(5.6)

Using the original TCM (Section 2.3.1), it is possible to link Poynting’s the-
orem, as described by (5.6), to the SIE TCM solution using the Sturm-Liouville
relationships (2.54). When this is applied to the SIE solution, which requires
the use of magnetic currents, the Sturm-Liouville relationship is defined by (5.7).
When the right hand side of (5.7) is expanded into its real and imaginary com-
ponents (5.8), it can be seen that the real part of (5.9) is equivalent to the real
part of Poynting’s theorem, whereas the imaginary part is no longer equivalent.
Therefore, the SIE TCM derived eigenvalues are not directly related to the reac-
tive power, and as such cannot be used to directly obtain information pertaining
to an object’s stored energy, or resonance behavior.

〈
[Jn,Mn]

∗
,Z [Jn,Mn]

〉
=

¨
S

(
J∗n︸︷︷︸

Im{}=0

·En + M∗
n︸︷︷︸

Re{}=0

·Hn

)
dS (5.7)

Ps 6=
¨
S

(
Jn,R ·

(
En,R + jEn,I

)
+
(
− jMn,I

)
·
(
Hn,R + jHn,I

))
dS (5.8)

Ps 6=
¨
S

(
Jn,R ·En,R +Mn,I ·Hn,I

)
dS

︸ ︷︷ ︸
Pe+P̄d

+j

¨
S

(
Jn,R ·En,I +Mn,I ·Hn,R

)
dS

︸ ︷︷ ︸
Unknown

(5.9)

5.2.2 Removal of SIE TCM Internal Resonances

Solutions to many of the problems related to SIE TCM can be solved using
the unique properties of TCM. Unlike other MoM solutions, TCM is able to pro-
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vide an independent solution to each current an object is capable of supporting
(both internal and external currents). As these different currents are separated
in the TCM solution, if the internal resonant modes can be identified, they can
be removed. Furthermore, it can be argued that as internal resonances should
radiate no far-field power, if the total far-field power is calculated for each char-
acteristic current (Section 3.6), the modes which radiate no far-field power can
be attributed to internal resonant modes, and removed [76]. However, due to the
use of approximate expansion functions and characteristic current normalization,
the radiated power of internal resonances can be greater than zero. Furthermore,
when losses are included in the SIE solution, through the introduction of complex
permeability and permittivity, some external resonances will radiate less power
than some normalized internal resonances.

Another simple, and intuitive, solution for removing these internal resonances
is through the use of a MoM mesh perturbation, thus altering the individual basis
functions [120]. When the MoM mesh is varied, the expansion functions must also
change. This will relate to a change in the amount of far-field power radiated by the
internal resonant modes. If the same mode under two different mesh perturbations
radiate different amounts of far-field power, the mode can be associated with an
internal resonance. However, it is not yet understood how much the mesh should
be perturbed to guarantee that every internal resonant mode provides significant
enough radiated power difference to be detected and identified.

A more robust solution for determining which CMs correspond to internal
resonant modes of an object containing lossy real media is to define the maximum
amount of loss which a mode can incur [119]. This maximum loss can be calculated
through determining the Quality Factor (Q-factor) associated to individual CMs,
and utilizing the information to bound the object’s losses. The Q-factor relates
the energy stored by an object to the power loss of that object, which can be used
to lower bound the radiation efficiency [121, 122]. This theoretical concept can
be applied to the CMs of an object. Any CMs found with a radiation efficiency
(calculated from the characteristic far-field pattern) less than the lower radiation
efficiency bound of that mode can be associated to an internal resonance. This
concept can be applied through calculating the minimum efficiency of a mode
using (5.10) - (5.14) [122–124]. In these equations, (·)tot, (·)rad, (·)sw, (·)d, and
(·)c are, respectively, the quality factors and radiated power associated with the
total structure, radiation, surface wave, dielectric, and conductor.
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1

Qtot
=

1

Qrad
+

1

Qsw
+

1

Qd
+

1

Qc
(5.10)

ηtot =
Prad

Prad + Pc + P̄d + Psw
(5.11)

ηrad ≥
Qcom

Qcom +Qrad
(5.12)

Qcom = Qsw +Qd +Qc (5.13)

1

Qd
= tan δd + tan δm =

ε′′

ε′
+
µ′′

µ′
(5.14)

Using (5.12) and the associated Q-factors, computed using (3.17) for Qrad and
(5.14) for Qd (in most objects Qc and Qsw can be neglected [119]), it is possible
to determine if a mode is related to an internal or external resonance. The modes
which do not adhere to (5.12) can be associated to internal resonances, whereas all
other modes can be associated to external resonances. This method is referred to as
the physical bounds method [119], and it can be applied to SIE TCM solutions to
remove internal resonances. However, the physical bounds method is not perfect;
this is due, in part, to the required Q-factor calculation. Calculating the Q-factor
of a set of SIE currents is not fully characterized, and as such the Q-factor may
not correctly compute the stored energy of the object [80, 125]. Furthermore, as
the SIE TCM eigenvalue is not related to the stored energy, in its current form
it cannot be used to calculate the Q-factor. Even though this problem exists, the
physical bounds method is the most robust of the three internal resonance removal
methods overviewed in this subsection.

5.2.3 Deriving the Correct TCM Eigenvalue

As stated in Section 3.1, TCM eigenvalues are one of the most important Char-
acteristic Attributes (CAs), and in many circumstances the eigenvalues are critical
for a principal understanding of an object. However, this fundamental TCM quan-
tity is not valid for objects solved using an SIE MoM impedance matrix (Section
5.2.1). However, through the relationship between the real and imaginary parts of
the simplified version of Poynting’s theorem (5.6), the valid SIE TCM eigenvalues
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can be derived. This is possible as the eigenvalues are defined as the difference
in the time rate of change of the stored magnetic and electric energy quantities,
divided by the sum of radiated and dissipated powers. This eigenvalue solution
is described for PEC objects by (2.59). Using this information, the eigenvalues
can be derived from Poynting’s theorem in (2.59) for PEC problems where no
magnetic currents exist; additionally, this can be applied to TCM problems which
require magnetic currents. Using these insights, (5.15) and (5.16) can be used
to determine the correct eigenvalues for symmetric and forced-symmetric MoM
impedance matrices, respectively.

λPECn,MR
=

˜
S

(
Jn,R ·En,I −Mn,R ·Hn,I

)
dS˜

S

(
Jn,R ·En,R −Mn,R ·Hn,R

)
dS

=
2ω
(
W̄m − W̄e

)

Prad + P̄d
(5.15)

λPECn,MI
=

˜
S

(
Jn,R ·En,I +Mn,I ·Hn,R

)
dS˜

S

(
Jn,R ·En,R +Mn,I ·Hn,I

)
dS

=
2ω
(
W̄m − W̄e

)

Prad + P̄d
(5.16)

Equations (5.15) and (5.16) are equivalent to the PEC definition of the eigen-
value, as described by Harrington et al. in [4]. Additionally, these eigenvalues can
be used to determine modal resonances as well as the Q-factor of real objects.
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Correlation Based TCM Antenna Design
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Systematic TCM Antenna Design

THE Theory of Characteristic Modes (TCM) is different from other compu-
tational electromagnetic methods. Finite-Difference Time-Domain (FDTD)

[126], Finite Element Method (FEM) [127], and traditional Method of Moments
(MoM) [86] solvers require a predefined excitation to simulate the electromagnetic
properties of an object; this is not required when analyzing an object using TCM
[23]. When TCM analysis is used to develop an integrated antenna, it is not bur-
dened by the need for an optimized excitation as is the case with classical methods.
For this reason, TCM analysis methods can effectively quantify an object’s elec-
tromagnetic properties, and using the insights gained, the object can be adapted
to meet a set of radiation requirements.

Typically, when an engineer designs an antenna, the antenna must be enclosed
within, mounted on, or developed around a preexisting object. In this type of
design, the object’s electromagnetic properties will greatly affect the final antenna
structure. As such, the electromagnetic characteristics of the object should be
fully understood before the implementation of excitation elements. However, this
is not often done in practice. For example, the design of a mobile phone typically
starts with a general size or outline, and components are then added (screens,
batteries, microphones, etc.). Finally, the antenna structures are implemented
without taking into account the electromagnetic properties of the object (e.g.,
the components in the mobile phone). This same development procedure is often
applied to cars, ships, planes, and many other objects. The problem with this
approach is that once an object is built, it is difficult to determine the best way
to adapt it to meet a set of antenna related goals. Unlike other electromagnetic
solvers, TCM can be utilized to understand the radiation properties of an object
before, during, or after any geometrical or material alterations are made. As
such, extensive antenna optimization and semi-random excitation placement is
not required. Instead, the insights gained from TCM analysis provide an engineer
with the knowledge necessary to correctly optimize an object before implementing
the excitation for each antenna.

101
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6.1 Characteristic Attribute Analysis

The first step in understanding the radiation properties of an object is to cal-
culate and analyze the Characteristic Mode (CM) eigenvalues. If the required
number of modes are resonant in the band of interest (as defined by the eigen-
values’ zero crossings), the maximum obtainable bandwidth of each mode should
be calculated. However, if the required number of modes is not met, additional
non-resonant modes should be analyzed. Traditionally, these modes are difficult
to directly analyze (Section 3.5), but it is possible to determine the Quality Fac-
tor (Q-factor) and modal bandwidth using (3.17). Through the use of this equa-
tion, it is computationally possible to determine the maximum obtainable band-
width for a given reflection coefficient (Γ) [102] of a CM. If the required bandwidth
is not met by any single CM, this means that the structure may not support the
intended application or multiple mode excitations may be required. However, if
any near-resonant mode (e.g., |λ| < 15) supports the requirements, the resonant
properties of that mode should be further analyzed to determine if the structure
can be optimized to force that mode into resonance.

Understanding the mechanics of forcing a CM into resonance is only possi-
ble if insights beyond those provided by the characteristic eigenvalue or modal
Q-factor are obtained. There are several methods of utilizing Characteristic At-
tributes (CAs) to determine what acceptable structural modifications will force
a CM into resonance, with some being less trivial than others [128, 129]. One of
the most intuitive methods of understanding an object’s CMs is to link a CM
to a well-understood antenna. This can be accomplished through identifying a
CM’s far-field pattern and correlating this pattern to a set of known fundamental
sources (antennas) with orthogonal far-fields. When these fundamental source far-
fields are used to describe a characteristic far-field, the relationship a specific CM
has to a fundamental source can be used to better understand the object. This
can be accomplished through discretization of the far-field patterns for both the
fundamental source and the CM. These discretized far-fields can then be corre-
lated against one another using (6.1), providing the percentage contribution each
fundamental source has to the CM’s radiated far-field (using the same method
as [65], although in [65] the intention is to decompose an antenna’s far-field into
orthogonal characteristic far-fields).
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ECCn,a ≈
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˛

4π

[
Eφ,a(Ω) + Eθ,a(Ω)

]
dΩ

∣∣∣∣
(6.1)

In (6.1), (·)a corresponds to the fundamental source pattern, and (·)n corre-
sponds to the CM of interest. This equation is best applied using closed-form
orthogonal fundamental sources, namely, x, y, and z oriented dipole and loop
elements across multiple resonances (λ/2, λ, 3λ/2, etc.). Once a specific CM is
broken down into its fundamental source types, generalized antenna theory can be
effectively applied, and the insights gained can be used to optimize the object’s
currents, forcing a mode into resonance.

This method of forcing a mode into resonance, with the help of expressing the
mode in terms of fundamental sources, can be effectively demonstrated through
analyzing the fundamental mode (λ1) of a thin wire with an electrical length of
≈ λ/4. This object’s CMs are described in Fig. 3.1, where λ1 is not near a
resonance point at this electrical length. When this λ/4 thin wire object is broken
down into its fundamental source elements, it can be found that the radiated
field matches that of a fundamental dipole element with a correlation of 0.98
(i.e., 98% similarity to the object’s fundamental mode λ1). As a dipole is a well-
known antenna element, antenna theory defines how the currents should behave
for this structure to support the calculated far-field pattern. Additionally, it is well
understood that a small dipole can be forced into resonance through capacitively
loading the ends of the dipole, or adding series inductance to the areas of high
current density [97]. Therefore, the resonant frequency of this mode can be reduced
through the addition of parallel capacitance or series inductance to the object.

This method requires an elevated understanding of basic antenna theory, and
how to adapt these fundamental antenna types. However, with this knowledge,
most CMs can be better understood. This approach to understanding a specific
object’s CMs works best for small objects. This is because, as the electrical size
of the object becomes large, the number and types of source elements required to
decompose the object will rapidly increase and array elements may be required,
thus complicating the analysis. If the required number of CMs can be optimized
for a given application over a specific frequency range, the bandwidth as defined by
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the Q-factor of the CMs should be re-calculated. If the maximum obtainable modal
bandwidth is lower than the required bandwidth for a specified application, the CM
may need to be adjusted or should not be used for the application. However, if the
mode is capable of supporting the required bandwidth, or multiple mode excitation
can be implemented, then proper excitation of the CM must be determined.

6.2 CM Excitation Analysis and Optimization

In traditional antenna design, excitation types and positions are found through
visual analysis of excited currents of similar antennas, or by means of trial-and-
error excitation placement. However, as the currents are predefined prior to source
excitation in Characteristic Mode Analysis (CMA), the placement and type of ex-
citation can be determined through either visual analysis of the individual CAs
[129], or through computational analysis of various CAs (i.e. characteristic cur-
rents, near-fields and far-fields). Visual analysis is simple and effective for most
applications, and is widely utilized for single-mode excitation characterization.
However, to achieve a full understanding into region-specific differences, a compu-
tational method should be implemented, which also allows for multi-mode excita-
tion analysis.

6.2.1 Visual Analysis

Visual analysis is quick, intuitive, and can be used to design excitation struc-
tures for most applications. Multiple CAs can be used to visually determine the
most effective type of excitation. For simple single-purpose antenna systems, cur-
rent feed implementations are often applied, as regions of high current density can
be exploited to excite an object. This is often implemented through introducing
a discontinuity (e.g. a slot) in the region of high current density, and inserting an
excitation source (often a voltage source) across the discontinuity. For example,
at resonance, the fundamental mode (λ1) of a thin Two-Dimensional (2-D) wire
object has high currents in the middle of the wire, as shown by Fig. 3.3. If a dis-
continuity is introduced in the middle of the wire, and a voltage source is placed
at this location, a dipole antenna is created. However, many integrated objects do
not allow for such discontinuities due to application requirements. Additionally,
some objects have areas of high current where it is not possible to introduce a
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discontinuity. In these types of objects and applications, the characteristic near-
fields can be exploited to determine if a Capacitive Coupling Element (CCE) or
Inductive Coupling Element (ICE) can be implemented to excite the structure.
The magnetic and electric near-fields provide the x, y, and z spatial components
of the electric or magnetic fields at any point in space outside the structure (Sec-
tion 3.6). These fields can be used to determine the location and type of Coupling
Element (CE) which will effectively excite the structure. In areas of high electric
(magnetic) field density a CCE (ICE) can be used to excite the structure. When
the CE method of object excitation is applied to the fundamental mode (λ1) of the
thin wire object, a CCE can be used to excite the structure if it is placed at either
end of the object where high fields exist (Fig. 3.10). However, in general, it is not
easy to determine near-field excitation through visual analysis, examples include:
single-mode excitation with limited to no coupling into other CMs, multi-mode
excitation for extended bandwidth, and single excitation of multiple resonances.
As such, computational tools exist which can be applied to determine a feasible
excitation for a specific application.

6.2.2 Computation of CM Interdependence

The ability to uniquely excite a single CM, or a specific set of CMs, is im-
portant in many applications. Single-mode excitation is a sufficient requirement
to maintain far-field orthogonality relationships, which is vital for many applica-
tions, including Multiple-Input Multiple-Output (MIMO). If more than one CM
is excited the orthogonality between different excitations is no longer guaranteed.
In order to excite one mode without coupling into another, the location where a
voltage source or CE should be placed can be determined through the analysis
of different CAs. CM interdependence calculates the dependencies between two
different characteristic currents or near-fields over a surface (region) of interest
[130]. In the case of characteristic near-fields, the CM interdependence matrix for
a given component (x, y, or z) is defined by (6.2).

[⊥⊥Υ ] =

∣∣∣∣∣ [Fm]

max
([
|[Fx,m]|, |[Fy,m]|, |[Fz,m]|

]) ∣∣∣∣∣ ◦
∣∣∣∣∣ [Fn]

max
([
|[Fx,n]|, |[Fy,n]|, |[Fz,n]|

]) ∣∣∣∣∣
 1

2

(6.2)

In (6.2), Fm and Fn are the CA matrices of the CMs m and n for the given
component over the surface being analyzed, and normalized by the maximum near-
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field value over the surface and over all components (x, y, and z), and (◦) is the
Hadamard product. The CM interdependence of the characteristic current can be
defined as in (6.2), with the exception that the normalization is performed with
respect to the maximum current over the surface (i.e., only one current component
exists). If the interdependence of two CMs at the same frequency (f1 = f2) are
calculated, the dependence of the currents or near-fields is obtained. For example,
the λ1 and λ2 of the thin wire object have current distributions matching those of
a half-wave dipole and a full-wave dipole, respectively. When the interdependence
of these two CMs is calculated, there is significant dependence in the areas around
a quarter of the length from each end of the wire, corresponding to the high current
areas of a full wave dipole (Fig. 6.1(a)). On the other hand, the interdependence of
the electric fields of these first two modes (Fig. 6.1(b)) shows that the dependence
is maximum at the two edges of the thin wire. It should be noted that the CM
interdependence concept can be extended to more than two modes, by adding to
(6.1) more terms relating to additional CMs.

(a) Current Interdependence λ1,2

(b) Electric Filed Interdependence λ1,2

(c) Linear color scale for (a) and (b)

Figure 6.1: Calculated interdependence of the 2-D thin wire object for
the length corresponding to the resonance of λ1 and width of λ/50. (a)
λ1 current to λ2 current interdependence, (b) λ1 electric near-field to λ2

electric near-field interdependence. The thin wire sizes are skewed for
visualization purposes.

6.2.3 Point Excitation Analysis

The interdependence information can be used to determine which excitation
locations can be exploited to excite a single CM. Mathematically, this can be de-
termined in many ways, but the simplest version is through defining a thresholding
inverse function (using an if-else statement) applied to the interdependence of the
CM to be excited. This analysis will provide the optimal locations for placing a
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single-source. In equation form, the matrix function providing the optimal source
locations to excite mode n is described by (6.3).

[⊥⊥F,n] =

(([
if
(
[⊥⊥

Υ
] > β, [⊥⊥

Υ
] = 0

)
, else

(
[⊥⊥

Υ
] = 1

)])
◦

∣∣∣∣∣
[F ]n

max
([
|[F ]x,n|, |[F ]y,n|, |[F ]z,n|

])
∣∣∣∣∣

) (6.3)

To excite one mode with zero coupling into another, β should be equal to zero.
However, it has been found through experimentation, that any β < 0.15 yields
low enough coupling for most practical purposes. When (6.3) is used to compare
λ1 to the interdependence of λ1,2 for the thin wire object, a potential voltage
excitation placement can be found in the center of the thin wire, where the half
wave dipole mode (λ1) has the highest currents, and the full-wave dipole (λ2)
has zero current. If an excitation source is placed at this location, as described
by the center of Fig. 6.2(a), λ2 will not be excited. If only specific bandwidths
must maintain low coupling to another CM, the Modal Significance (MS) can be
used to weight this equation. When the reverse comparison is applied (excitation
of λ2 without exciting λ1), there is no single excitation location which can solve
this problem, as illustrated in Fig. 6.2(b). However, this equation can be further
extended through the use of near-field phase information, and applied to provide
possible locations which can be used to excite modes using two separate excitation
points. For example, it is possible to excite λ2 of the thin wire without exciting
λ1, through the placement of two excitation sources with a 180◦ phase difference
at two locations a quarter of the length from each end of the wire.

(a) Single Current Excitation λ1,2

(b) Single Current Excitation λ2,1

(c) Linear color scale for (a) and (b)

Figure 6.2: Visualization of possible excitation location(s) based on
(6.3) for single-mode excitation for: (a) excitation of λ1, (b) excitation
of λ2.
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It is often necessary to excite multiple CMs either to extend an object’s band-
width, or to allow the object to obtain a multi-resonant behavior. In these cases,
the previously described excitation analysis cannot be directly applied. However,
(6.2) can be applied to two different modes at two separate frequencies. When
this is effectively applied, locations of large ⊥⊥

Υ
describe which modes (at two

frequencies) have common high current or field densities. These specific locations
can be exploited to allow for a single excitation source to excite multiple CMs at
separate frequencies.

6.2.4 CM Regional Frequency Evolution

In their basic forms, visual and computational based excitation analysis only
apply to the specific frequency for which the CMs were calculated. However, as
Chapter 4 overviewed, characteristic currents, near-fields, and far-fields constantly
evolve over frequency, and thus the performance of a chosen excitation type and
location will be influenced due to CA variation over frequency. Therefore, it is
often necessary to determine how the effect of an excitation will change over the
bandwidth to which it will be applied. To achieve a more complete understand-
ing into region-specific differences of an object’s CAs over frequency, an analysis
technique was developed to effectively quantify the frequency evolution of region-
specific changes in the CAs [130]. This is referred to as CM regional frequency
evolution, and it mathematically describes the locations where two CAs differ from
one another, as defined by the matrix quantity in (6.4).

[Fα] =

∣∣∣∣∣∣∣
[Fn(f1)]

max
([∣∣[Fx,n(f1)]

∣∣,
∣∣[Fy,n(f1)]

∣∣,
∣∣[Fz,n(f1)]

∣∣
])

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣
[Fn(f2)]

max
([∣∣[Fx,n(f2)]

∣∣,
∣∣[Fy,n(f2)]

∣∣,
∣∣[Fz,n(f2)]

∣∣
])

∣∣∣∣∣∣∣

(6.4)

When (6.4) was used to compare the CMs of the thin wire object, relatively
little changes were found in any single CM across its usable bandwidth (e.g., as
defined by the modal bandwidth). This is in part due to the small bandwidth
which this object’s CMs are able to support. However, if the CMs of an object
have wider bandwidths, the frequency evolution often becomes more relevant. For
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example, if a bow-tie type object’s CMs are computed across the full bandwidth of
the fundamental resonance, the advantages of (6.4) become apparent. The bow-tie
object is made of Perfect Electric Conductors (PEC), and its dimensions are 100
mm × 40 mm. The characteristic currents for the fundamental mode at resonance
are illustrated in Fig. 6.3 (a). The electric near-fields at the lower and upper edges
of the modal bandwidth as calculated by the MS Q-factor are presented in Fig.
6.3 (b) and (c). If (6.4) is applied to this object’s near-fields (at 10mm above the
bow-tie) and currents, the near-fields change significantly (Fig. 6.3 (d)), whereas
the location of maximum currents do not change. This indicates that the object
can be more effectively excited across the entire modal bandwidth if it is fed using
a voltage source rather than a CCE.

(a) (b) (c) (d)

Figure 6.3: (a) Currents and structure mesh, (b) near-fields of the
lowest bandwidth frequency, (c) near-fields of the highest bandwidth
frequency, and (d) the calculated near-field CM frequency evolution be-
tween the two separate near-fields, for the fundamental mode λ1.
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Contributions, Conclusions, and Future Work

During the time period of this doctoral research, over twenty new works were
published in the field of Characteristic Modes. Some of the main contribu-

tions from these publications will be overviewed in this chapter. The six papers
included in this thesis (found in Part II) will be summarized, and my contribu-
tions to these works will be detailed. Additionally, a carefully selected set of
non-included publications will be outlined in this chapter. The non-included pa-
pers were selected from those considered as they are significant to both the field
and this thesis. Furthermore, an overall conclusion and a discussion on the possi-
ble direction and future work in the area of Characteristic Modes (CMs) will be
provided.

7.1 Overview of Included Papers

The included papers in this thesis were chosen as they represent the doctoral
work’s most significant contributions. In addition, the publications complement
the thesis structure by providing further insights, and additional theoretical con-
cepts.

7.1.1 Paper I: Wide Band Characteristic Mode Tracking
Utilizing Far-Field Patterns

I (Zachary Thomas Miers) was the main contributing author, and the lead
researcher for the entirety of this scientific work. I was the main researcher involved
in all parts of the scientific process, including but not limited to: implementation
of all analysis codes (Matlab, C, and Python), numerical analysis, figure creation,
as well as the manuscript writing. This manuscript was edited by both Buon Kiong
Lau and myself.

In this letter, a method for tracking the CMs of complex objects through

113
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characteristic far-field pattern analysis is presented. As overviewed in Chapter 4,
the tracking of characteristic modes over frequency remains a challenge, especially
for materials containing both perfect electric conductors and dielectrics. This
work provides a new approach to tracking characteristic modes by means of cross-
correlating far-field patterns, this method effectively eliminates many of the mode
mapping ambiguities found in other CM tracking algorithms. In this context, the
significant contributions of this work are:

• The first research publication providing a CM tracking solution which is
based on characteristic far-field patterns.

• The first analysis of CMs with anti-resonances, and how these unique modes
effect CM tracking algorithms.

• The first tracking algorithm which helps to prevent mode swapping and false
mode detection.

• The first study into the effect that mirrored currents of symmetric structures
have on CM tracking.

7.1.2 Paper II: Computational Analysis and Verifications of
Characteristic Modes in Real Materials

I (Zachary Thomas Miers) was the main contributing author, and the lead
researcher for the entirety of this scientific work. I was the main researcher involved
in all parts of the scientific process, including but not limited to: implementation of
all analysis codes (Matlab, C, and Python), numerical analysis, prototype creation,
measurements, figure creation, as well as manuscript writing. This manuscript was
edited by both Buon Kiong Lau and myself.

This transaction proposes a new and practical post-processing method that
yields the correct CMs in real materials. This paper utilizes the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) Surface Integral Equation (SIE) formu-
lation of Method of Moments (MoM) to analyze an object, showing that when this
solution is forced into symmetry, the CM solution is susceptible to the MoM in-
ternal resonance problem. Furthermore, this transaction provides a proof that the
internal resonances do not correspond to radiating structural resonances, and can
be found in any object which uses the forced symmetric PMCHWT formulation.
Additionally, a radiation efficiency threshold derived from the object’s physical
bounds was used to isolate the internal resonances in the CM solution. In an
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effort to demonstrate the effectiveness of this method, the SIE CMs of different
homogeneous dielectric and magnetic composite objects were compared against
the Volume Integral Equation (VIE) CMs for these same objects. The results
show that the proposed method correctly removes all the internal resonances. The
main contributions of this work are:

• An explanation of the appearance of internal resonant modes when the CMs
of an object are computed by means of the forced symmetric PMCHWT SIE
MoM formulation.

• An effective method for isolating and removing the non-real CMs of an object
that are found using a MoM SIE formulation.

• CMs are verified to be real through multiple means: VIE formulation, full-
wave time-domain analysis, and measured physical prototypes.

7.1.3 Paper III: On Characteristic Eigenvalues of Complex
Media in Surface Integral Formulations

I (Zachary Thomas Miers) was the main contributing author, and the lead
researcher for the entirety of this scientific work. I was the main researcher involved
in all parts of the scientific process, including but not limited to: implementation of
all analysis codes (Matlab, C, and Python), numerical analysis, simulation, figure
creation, as well as manuscript writing. This manuscript was edited by both Buon
Kiong Lau and myself.

This letter provides details on how and why all SIE implementations, symmetric
and asymmetric, improperly solved for the Theory of Characteristic Modes (TCM)
characteristic eigenvalues. It is shown that the resulting eigenvalues do not pertain
to any physical quantity, and cannot be related to the traditional definition of CM
eigenvalues. Additionally, this letter provides a method of solving for the correct
eigenvalues of both symmetric and forced symmetric MoM impedance matrices.
Throughout this letter, no simplification was made on the method used to solve
for the MoM impedance matrix, thus allowing the paper to be generalized for use
across all TCM implementations. Furthermore, it is shown that once the correct
eigenvalues are solved, they can be used to approximate the quality factor for any
CM of a given object. The main contributions of this work are:

• Insight into why the solved eigenvalues of SIE TCMs problems, which utilize
magnetic currents, are not directly related to the objects reactive power, and
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hence do not have a clear physical meaning.

• An effective solution proposed to solve for the correct eigenvalues of any
object based on SIE formulations.

• The resonances of the corrected eigenvalues are verified to be nearly the same
as to the complex natural resonances of the specific object analyzed.

7.1.4 Paper IV: Antenna Analysis and Design Using Char-
acteristic Modes

I (Zachary Thomas Miers) was the main contributing author, and the lead
researcher for the entirety of this scientific work. I was the main researcher involved
in all parts of the scientific process, including but not limited to: implementation of
all analysis codes (Matlab, C, and Python), numerical analysis, prototype creation,
measurements, figure creation, as well as manuscript writing. This manuscript was
edited by both Buon Kiong Lau and myself.

In this transaction, a set of equations were developed which allow for a sys-
tematic method to design antennas with different features (including narrow-band,
wide-band, multi-band, and Multiple-Input Multiple-Output (MIMO)) in a fully
integrated system. This technique does not solely rely on the initial intuition of an
engineer, but rather it decomposes the CMs into fundamental sources to enable the
engineer to better understand the fundamental physical properties of the object.
This understanding provides valuable information on achievable performance for a
given object and how to adapt the object to improve performance. Furthermore,
to design the antenna feed, the method provides an effective way to analyze the
characteristic near-fields and currents, identifying a suitable excitation location
and type. In this context, the main contributions of this work are:

• The development of an easy-to-follow CM antenna design methodology al-
lowing for the creation of one or more antennas in an integrated system.

• A method was developed to decompose CMs into their fundamental source
types, allowing for insight into appropriate structural adaptations.

• An equation developed to analyze the mutual reliance of individual orthog-
onal CMs (interdependence) in the near-fields and currents, allowing for
antenna feed design as well as wide-band and multi-band performance to be
obtained.
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• A numerical approach was derived to quantify the change of various char-
acteristic attributes over frequency, which can impact the final excitation
performance.

• A modal tracking algorithm is applied to track the CMs across different
structures, allowing for an in-depth understanding of the differences between
the structures from an electromagnetic viewpoint.

• The first fully integrated antenna system designed using TCM, with the
performance verified in simulations and measurements.

7.1.5 Paper V: Orthogonal Multi-band Antennas Designed
Using Characteristic Modes

I (Zachary Thomas Miers) was the main contributing author, and the lead
researcher for the entirety of this scientific work. I was the main researcher involved
in all parts of the scientific process, including but not limited to: implementation of
all analysis codes (Matlab, C, and Python), numerical analysis, prototype creation,
measurements, figure creation, as well as manuscript writing. This manuscript was
edited by Buon Kiong Lau, Hui Li, and myself.

In this letter, a novel procedure for exploiting TCM for the analysis and syn-
thesis of objects is proposed. The procedure enables the CMs to be used in the
design of dual-band, multi-element antennas which require high isolation and suf-
ficient bandwidth. This was accomplished through manipulating the object (i.e.,
a mobile terminal) in an industry-acceptable manner, thus demonstrating that it
is possible to perturb the characteristic currents of an object in such a way that
multiple orthogonal modes are excitable, even when an object is electrically com-
pact. Furthermore, this letter showed that once low frequency modes are realized
and excited with suitable antenna feeds, it is possible to track the CMs across fre-
quency, and through further object modification excite additional modes at higher
frequencies using the same feeds. The main contributions of this work are:

• The first multi-band MIMO chassis antenna which was implemented using
a clearly defined CM design methodology.

• A method for designing terminal antennas with wide-band and multi-band
resonances was developed through tracking characteristic near-fields and cur-
rents over frequency.
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7.1.6 Paper VI: Design of MIMO Terminal Antennas with
User Proximity Using Characteristic Modes

I (Zachary Thomas Miers) was the main contributing author, and the lead
researcher for the entirety of this scientific work. I was the main researcher involved
in all parts of the scientific process, including but not limited to: implementation of
all analysis codes (Matlab, C, and Python), numerical analysis, prototype creation,
measurements, figure creation, as well as manuscript writing. This manuscript was
edited by both Buon Kiong Lau and myself.

In this paper, the SIE TCM formulations of Paper II and III were used to design
a MIMO terminal antenna in the presence of human tissue (i.e. lossy dielectrics).
Using the described methods, it is possible to analyze a terminal chassis for optimal
excitation design and feed implementation in the presence of lossy dielectrics prior
to designing and implementing the excitation structures. This design technique
presents optimal locations to excite specific CMs of the terminal chassis, which
can be chosen based on the total amount of current that is excited within a lossy
dielectric. This technique minimizes the effect of human body tissue when it is in
close proximity to a terminal antenna structure, allowing for decreased Envelope
Correlation Coefficient (ECC) while maintaining high total efficiencies. The main
contributions of this work are:

• The Theory of Characteristic Modes utilized to design efficient antennas in
the presence of user effects.

• The design procedure in Paper II optimized to allow for the analysis of
current density in objects which should not be excited.

7.2 Not-Included, Notable Publications

Although many different contributions were published in the time frame of
this doctoral work, only six papers were chosen to be included in this thesis.
Here, other publications that are considered to contain significant contributions
are briefly overviewed.
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Design of Orthogonal MIMO Handset Antennas Based on Characteris-
tic Mode Manipulation at Frequency Bands below 1 GHz
Hui Li, Zachary T. Miers, and Buon Kiong Lau
In IEEE Transactions on Antennas and Propagation, Vol. 62, no.5, pp. 2756-2766,
May. 2014.

In this transaction, a novel and practical approach to design dual antennas
for MIMO mobile handset with very low correlation was proposed for frequencies
where the antenna is electrically compact. Through manipulating the chassis in a
reasonable manner, two orthogonal resonant modes of the chassis can be created.
This was demonstrated using two example modifications of a chassis, in the forms
of a bezel loaded chassis and a T-strip loaded chassis. Due to its larger bandwidth,
the T-strip loaded chassis was chosen for dual-antenna design, where a coupling
feed is used to excite the new mode attributed to the T-strip loading. On the
other hand, a coupled monopole is used to excite the chassis’ fundamental dipole
mode. The T-strip antenna covers Long Term Evolution (LTE) Band 8, whereas
the coupled monopole covers both LTE Band 8 and LTE Band 5. The envelope
correlation coefficient between the two antennas in free space was below 0.1 over
the common operating band. The influence of the user on the performance of the
proposed dual-antenna system was studied with respect to a one-hand scenario and
a two-hand scenario. The results show that the S parameters and the envelope
correlations were only marginally influenced by the hands. However, the efficiencies
were more notably decreased by the absorption loss in the hand tissue. Moreover, it
was found the capacity of the proposed design is higher than that of a conventional
dual-monopole design by 1 - 1.7 bits/s/Hz at a reference Signal to Noise Ratio
(SNR) of 20 dB, depending on the user scenario.

Design of Bezel Antennas for Multi-band MIMO Terminals Using Char-
acteristic Modes
Zachary T. Miers, Hui Li, and Buon Kiong Lau
In Proceedings of the 8th European Conference on Antennas and Propagation, The
Hague, The Netherlands, 2014, pp. 2556-2560.

In this article, the framework as described in Paper V was used to design a
multi-band MIMO antenna for a bezel-loaded mobile phone chassis with low an-
tenna correlation and sufficient bandwidth for LTE operation. Through examining
the characteristic currents and near-fields of the initial bezel structure, minor ad-
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justments to the position and size of the ground plane were found to facilitate
simultaneous excitation of multiple CMs at frequencies below 1 GHz. Charac-
teristic Mode Analysis (CMA) at the high frequency band provided insights into
creating a slot antenna in the structure to support multi-band operation at higher
frequencies. The final chassis was capable of supporting multiple efficient and un-
correlated antennas that can simultaneously cover LTE bands 2, 5, 6, 7, 15, 16,
19, and 25.

Effects of Dielectrics and Internal Resonances on Modal Analysis of
Terminal Chassis
Zachary T. Miers, and Buon Kiong Lau
In Proceedings of the 10th European Conference on Antennas and Propagation,
Davos, Switzerland, 2016, pp. 1-5.

In this article, the CMs of a structure are shown to be highly dependent on
the materials used to form the structure. Dielectric and magnetic materials load
resonant Perfect Electric Conductors (PEC) structures differently, and dielectric
objects have the ability to become self-resonant. To determine the influence of
mixed-material objects on the inherent CMs symmetry must be forced on the SIE
impedance matrix utilized to solve the problem. As described in Section 2.3.4,
the symmetric PMCHWT mixed-material SIE impedance matrix is not free from
the internal resonance problem, and as such non-real CMs (internal resonances)
are found in the solution set. When the CMs of a mixed-material objects were
analyzed the modes attributed to non-real CMs, as determined by post-processing,
could not be excited or reconstructed using full-wave analysis. These non-excitable
modes were thus considered to be non-real CMs and they should be removed before
performing traditional CM analysis.

Effects of Internal Components on Designing MIMO Terminal Antennas
Using Characteristic Modes
Zachary T. Miers, and Buon Kiong Lau
In Proceedings of the 10th European Conference on Antennas and Propagation,
Davos, Switzerland, 2016, pp. 1-4.

This article analyzed the impact internal components have on the CMs of a
MIMO terminal antenna which has been designed using TCM. It was shown that
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the internal components, while physical and electrically small, can have significant
impact on the resonant frequencies and excitability of the CMs. Consequently, it
is important for these components to be included in TCM-based terminal antenna
design.

Post-processing Removal of Non-real Characteristic Modes Via Basis
Function Perturbation
Zachary T. Miers, and Buon Kiong Lau
In Proceedings of the 2016 IEEE Antennas and Propagation Society International
Symposium, Fajardo, Puerto Rico, USA, 2016, pp. 419-420.

In this article, the external fields of the non-real CMs computed using the
forced symmetric PMCHWTs MoM impedance matrix are shown to depend on
the distribution of the basis functions used. Therefore, it is proposed in this
article that mesh perturbation can be utilized to vary the basis functions, and an
analysis can be performed in post-processing to determine real CMs from non-real
CMs. This is done by analyzing the external fields of a single mode under two
different basis function perturbations. If the far-field energy changes across these
perturbations, the mode can be attributed to a non-real CM. As an additional
criterion, if the correlation of the far-field patterns of a given mode (before and
after perturbation) falls below a chosen threshold, the mode can also be considered
to be a non-real CM.

Far-Field Orthogonality of Volume-Based Characteristic Modes for Real
Materials
Zachary T. Miers, and Buon Kiong Lau
In Proceedings of the 2016 International Symposium on Antennas and Propaga-
tion, Okinawa, Japan, 2016, pp. 1-2.

In this article, the problem associated with the non-perfect diagonalization of
the VIE perturbation and scattering matrix is investigated. When an eigenvalue
decomposition is used to define a set of orthogonal characteristic currents for a
given lossy VIE impedance matrix, the far-fields as defined by those currents do
not provide a perfectly orthogonal set of far-fields. The extent of this problem was
studied in this article via two different dielectric resonant structures which were
analyzed over six different values of loss. It was found that VIE TCM should only
be used for analyzing lossless objects.
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7.3 Conclusions

Not all new research, designs, and applications are conceived randomly or
miraculously inspired, but rather many are based upon experiences and accumu-
lated knowledge. This is the case for the research contained in this thesis, as
well as any new antenna design or application. Often engineers have a predefined
knowledge base. Also, when designing antennas some engineers have only a ba-
sic understanding of many common antenna topologies, whereas others have what
seems to be an uncanny ability to understand complex antenna topologies and how
such antennas radiate. However, no matter what an engineer’s knowledge base is,
it is neither possible nor practical to completely understand how all objects ra-
diate, or how to adapt a preexisting object to radiate efficiently over a defined
bandwidth for a specific application. Engineers typically start the antenna design
process hypothesizing where to place the initial excitation. This placement often
begins with adapting an object to fit within a set of known antenna topologies.
However, this ad-hoc approach significantly limits the overall design space, and it
also hinders the development of new antenna topologies.

The main goal of this doctoral work has been to demonstrate that TCM is
an effective initial design tool which can help an engineer understand the under-
lying electromagnetic properties of any object. This allows the initial excitation
hypothesis and geometrical structure of the object to be guided by physics rather
than intuition. Furthermore, this work attempted to create a new antenna design
procedure which can be used to systematically shape and excite an object, in or-
der to help design antennas in a truly innovative manner. Furthermore, unlike
previous work in this area, the tools created allow TCM to be applied to objects
consisting of any material in a computationally efficient manner. Prior to this doc-
toral work TCM could only be efficiently and accurately computed for arbitrarily
shaped conducting bodies.

In this context, Paper I developed a computationally efficient, electromagnet-
ically based, TCM tracking algorithm. This algorithm allows for the real CMs
of any object, consisting of any material, to be tracked across a wide frequency
range. This tracking allows some Characteristic Attributes (CAs) such as modal
quality factor to be obtained, and the tracked modes can then be used in an an-
tenna design process. Paper II, rigorously shows many of the problems associated
with deriving the CMs of objects consisting of real materials. Furthermore, this
paper presents a method by which the real CMs of dielectric and magnetic object
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can be determined using the computationally efficient PMCHWT SIE impedance
matrix. However, although this paper proposed a reliable method to solve for the
real CMs of any object, many CAs cannot be determined using this approach,
because the characteristic eigenvalues are no longer directly related to the object’s
reactive power. This problem was solved in Paper III, where it was shown that
the electric and magnetic current densities could be used to correctly solve for
any object’s characteristic eigenvalues. Paper IV utilizes the insights from Papers
I-III to develop a complete systematic CM design methodology which utilizes a
set of CM design tools to assist in understanding the electromagnetic properties
of any object. Paper V utilizes many of the developed antenna design techniques
from Papers I-IV to design a multi-band milti-element MIMO terminal antenna.
Paper VI takes the design process one step further by designing a high efficiency
MIMO antenna in the presence of a Cellular Telecommunications Industry Asso-
ciation (CTIA) phantom hand.

7.4 Future Work

While TCM had its humble beginnings as far back as fifty years ago, there is
a growing consensus that this field is still in its infancy. The number of barriers
which previously existed in TCM analysis has been significantly reduced in recent
years. Less than ten years ago, the first overview paper on how to effectively
design antennas using CMs was published [129], and only a year later TCM was
used to develop a compact MIMO terminal [51]. In the past ten years this field
has exploded with interest, as is indicated by the percentage of TCM articles pub-
lished before 2012 (< 40%) and after (> 60%) within the IEEEXplorer database.
This interest has propelled considerable advances in both practical and theoretical
aspects of TCM. However, this is just the beginning of a surge in TCM related
research, and as such many more updates to this fields should be expected.

TCM’s capabilities have matured in many areas, but the area of TCM object-
to-object electromagnetic interactions is currently of growing interest throughout
the TCM community. Now that it is possible to solve for the CMs of objects
containing simple media, antennas can be designed with real components, in real
environments. This allows for many object-to-object electromagnetic insights to
be obtained, and could provide many new breakthroughs in the area of efficient
MIMO terminal antenna design. Other possible new applications for TCM include:



124 Part I: Thesis Overview

modeling of optical systems, analysis of electrically large objects, phased array
design, and development of specialized materials.

New SIE formulations may be found which do not have the internal resonant
problem (rather than relying on post-processing removal). However, the internal
resonances found using the current SIE formulations could provide insights into
why internal resonances form in simple media, and possible applications might be
found for these resonances. Furthermore, it is believed that TCM design can be
effectively linked with traditional simulation tools and optimization algorithms, to
aid in the development of extremely complex systems, which may not be solvable
using other analysis techniques. Even though the exact future of TCM cannot be
predicted, it is clear that it has several unexplored applications and the potential
to solve many problems that plague the field of electromagnetics today.
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