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Summary 

Diffusion MRI provides a non-invasive probe of tissue microstructure. We recently 
proposed a novel method for diffusion-weighted imaging, so-called q-space trajectory 
encoding, that facilitates tensor-valued diffusion encoding. This method grants 
access to b-tensors with multiple shapes and enables us to probe previously 
unexplored aspects of the tissue microstructure. Specifically, we can disentangle 
diffusional heterogeneity that originates from isotropic and anisotropic tissue 
structures; we call this diffusional variance decomposition (DIVIDE). 

In Paper I, we investigated the statistical uncertainty of the total diffusional 
variance in the healthy brain. We found that the statistical power was heterogeneous 
between brain regions which needs to be taken into account when interpreting 
results. 

In Paper II, we showed how spherical tensor encoding can be used to separate the 
total diffusional variance into its isotropic and anisotropic components. We also 
performed initial validation of the parameters in phantoms, and demonstrated that 
the imaging sequence could be implemented on a high-performance clinical MRI 
system.  

In Paper III and V, we explored DIVIDE parameters in healthy brain tissue and 
tumor tissue. In healthy tissue, we found that diffusion anisotropy can be probed on 
the microscopic scale, and that metrics of anisotropy on the voxel scale are 
confounded by the orientation coherence of the microscopic structures. In 
meningioma and glioma tumors, we found a strong association between anisotropic 
variance and cell eccentricity, and between isotropic variance and variable cell density.  

In Paper IV, we developed a method to optimize waveforms for tensor-valued 
diffusion encoding, and in Paper VI we demonstrated that whole-brain DIVIDE is 
technically feasible at most MRI systems in clinically feasible scan times. 
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Populärvetenskaplig 
sammanfattning 

Diffusion är den slumpmässiga rörelse hos partiklar som drivs av deras kinetiska 
energi. Den är oftast osynlig för blotta ögat, men den utgör en viktig funktion för 
vår överlevnad. Diffusionen står bland annat för transporten av näringsämnen över 
cellmembran, och det är diffusionen som gör att ämnen i kroppen blandas så att 
livsviktiga kemiska reaktioner kan ske. 

Man kan undersöka diffusionsprocessen i det vatten som finns i kroppen med hjälp 
av magnetresonanstomografi (MRT, eng. MRI). Diffusionsprocessen i biologisk 
vävnad är dock mycket komplex. Komplexiteten härstammar från vattnets 
interaktion med vävnad, eftersom diffusionen påverkas av omgivningen där den äger 
rum. I områden med tätt packade celler blir diffusionen långsam i alla riktningar, 
medan i cellstrukturer som är extremt avlånga, exempelvis nervfibrer, kan diffusions-
hastigheten skilja sig mellan olika riktningar. Med en så kallad magnetkamera kan 
man avbilda diffusionshastigheten och därmed uttala sig om vävnadens struktur på 
mikroskopisk skala, helt utan invasiva ingrepp. Sådan information kan sedan 
användas för att undersöka friska vävnader, för diagnostik av sjuka vävnader eller 
för uppföljning av behandlingar.  

Om vävnaden uppvisar olika snabb diffusion inom ett litet område blir 
diffusionshastigheten heterogen. Denna typ av heterogenitet kan tänkas härröra från 
områden där friska celler blandas med celler som angripits av en sjukdom och ersatts 
med lös nekrotisk vävnad. Heterogeniteten kan också återspegla förekomst av 
avlånga cell-strukturer där vävnadens olika riktningar uppenbarar sig som heterogen 
diffusion. Denna avhandling beskriver en ny metodik för att mäta heterogenitet i 
diffusionsprocessen, och tolkar heterogeniteten med stöd av mikroskopi av vävnaden. 
Vi har utvecklat metoder för att särskilja dessa egenskaper, och visat att dessa kan 
bidra med ny information i både frisk hjärnvävnad och i tumörer. 
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1 Introduction 

Diffusion magnetic resonance imaging (dMRI) is widely used for examination of 
biological tissues, and related methods have applications that range from 
investigation of porous rocks to chemical compounds. The most unique feature of 
dMRI is arguably its ability to non-invasively probe the microstructure of living 
tissue. In dMRI, spatial magnetic field gradients are used to sensitize the magnetic 
resonance (MR) signal to the translational motion of hydrogen atoms bound in water 
molecules. The effects of the gradients on the signal can be related to the rate of 
diffusion, which in turn can be used to indirectly infer features of the tissue 
microstructure. Even though the diffusion process takes place on the microscopic 
scale, the geometry of the tissue has a significant effect on the diffusion process, and 
therefore also on the signal measured (Beaulieu, 2002). An early discovery that 
propelled dMRI as a clinical tool was presented by Moseley et al. (1990a), who 
showed that diffusion-weighted imaging (DWI) was sensitive tissue disruption in 
cerebral ischemia in an earlier phase than other imaging techniques (Moseley et al., 
1990a, Moseley et al., 1990b). 

Currently, one of the most popular dMRI methods in clinical research and 
neuroscience is diffusion tensor imaging (DTI) (Basser et al., 1994). The diffusion 
tensor is a mathematical object that describes the diffusion process in terms of the 
apparent diffusion coefficient (ADC) along any given direction, and can also provide 
derived parameters such as the average diffusivity and diffusion anisotropy 
(Figure 1) (Stejskal, 1965, Kingsley, 2006a). 

DTI is most frequently applied to the central nervous system. In the brain, it has 
been used to study, for example, anatomy (Assaf and Pasternak, 2008), maturation 
(Lebel et al., 2008, Löbel et al., 2009), ageing (Moseley, 2002, Sullivan and 
Pfefferbaum, 2006) and plasticity (Scholz et al., 2009, Zatorre et al., 2012). It has 
also been a powerful tool in the investigation of conditions such as ischemia (Sotak, 
2002), trauma (Huisman, 2003), and neurodegeneration (Horsfield and Jones, 2002), 
and in oncology to study tumor differentiation (Jiang et al., 2014), delineation, 
staging, treatment response (Tropine et al., 2004, Maier et al., 2010), and pre-
surgical planning (Potgieser et al., 2014). Although dMRI outside of the brain is 
more challenging – due in part to elevated subject motion (Taouli et al., 2016) – it 
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has been used to study, for example, breast tissue (Partridge et al., 2010), prostate 
tissue (Li et al., 2015), skeletal muscle (Damon et al., 2016), and even the heart 
(Mekkaoui et al., 2015). In addition to characterizing tissue on a voxel-by-voxel 
basis, DTI has been seminal in the evolution of tractography (Mori et al., 1999), 
which can be used for segmentation of white matter pathways (Catani and Thiebaut 
de Schotten, 2008) and investigations of brain connectivity (Hagmann et al., 2010, 
Lazar, 2010).  

DTI is a powerful tool because it provides several parameters with seemingly 
intuitive interpretations. For example, during brain maturation, reduced diffusivity 
and increased anisotropy in the white matter is interpreted as axon myelination 
(Lebel et al., 2008), and the anisotropy serves as a marker of healthy development. 
In white matter afflicted by neurodegenerative disease, elevated diffusivity 
perpendicular to the nerves may indicate demyelination (Song et al., 2002), whereas 
reduced diffusivity along the nerves reflects axonal damage (Sun et al., 2006). In 
both cases, the anisotropy decreases, and may therefore be interpreted as a marker 
of tissue degeneration. In tumors, changes to the average diffusivity are commonly 
interpreted as changes in tissue density (Chen et al., 2013) or in the volume fraction 
of water that is inside or outside cells (Chenevert et al., 2000). 

DTI also has several well-known limitations (Alexander et al., 2001, Alexander et 
al., 2007, Jones and Cercignani, 2010, Jones et al., 2012). For the purposes of this 
thesis, two major limitations are relevant. First, DTI is ill-suited to capture 
microscopic diffusion heterogeneity, i.e. the presence of multiple rates of diffusion 

 

Figure 1 | Schematic examples of axonal loss (left) and cell necrosis (right). The plots exemplify how 
diffusivity and anisotropy may depend on changes in the tissue microstructure. It appeals to the intuition 
that the diffusion inside a thin tube would exhibit a preferred direction of movement, since it is restricted 
along the short axis and free along the long axis of the tube. When axons are removed, or made more 
permeable, the diffusivity increases and the anisotropy decreases. Similarly, the rate of diffusion appears 
to be faster in a loosely assembled tissue compared to that in a tightly packed cell matrix. This is because 
the movement of water molecules is restricted, or hindered, by the obstacles in the tissue.  
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within a single voxel, because it only retains information about an average across 
the whole voxel. This limitation prevents accurate quantification of tissue 
heterogeneity. The presence of heterogeneous diffusion favors a description of the 
diffusion process as an intra-voxel distribution of apparent diffusion coefficients 
(DDC) rather than an average value (Callaghan and Pinder, 1983). Secondly, DTI 
conflates the effects of diffusion anisotropy and orientation coherence (Pierpaoli et 
al., 1996). An elegant example of this was demonstrated by Douaud et al. (2011) 
who showed that partial axonal degeneration in a region with crossing white matter 
pathways could cause the anisotropy to increase, which contradicts the simplistic 
interpretation. This is one of many examples that contradict the simple – but 
ultimately flawed – interpretation of voxel-scale anisotropy as a marker of white 
matter “integrity” (Jones et al., 2012). Thus, measures of voxel-scale anisotropy are 
most reliable in homogeneous tissues with high orientation coherence (Alexander et 
al., 2001), but such tissues have been estimated to make up only 10% of the brain 
volume (Jeurissen et al., 2013). Figure 2 shows six tissue models where anisotropy, 
orientation coherence, and heterogeneity cannot be accurately distinguished by DTI. 

Many alternative approaches have been proposed to overcome the shortcomings 
of DTI (Shemesh et al., 2010, Yablonskiy and Sukstanskii, 2010, Tournier et al., 
2011). The scope of this thesis is limited to diffusional kurtosis imaging as a probe 
of tissue heterogeneity, and methods based on double diffusion encoding as probes 
of microscopic anisotropy. 

Figure 2 | Multiple intra-voxel diffusion tensor distributions (top row) map onto the same voxel-scale 
diffusion tensor (bottom row). In the first example (left), the same voxel-scale tensor is observed for 
randomly oriented anisotropic tensors, homogeneous isotropic tensors, and a mixture of isotropic tensors 
that exhibit fast and slow diffusion. In the second example (right), the voxel-scale tensor cannot 
distinguish between ordered tensors with moderate anisotropy, bending tensors with high anisotropy, or 
a mixture of oblate and prolate tensors. This demonstrates that some tisse characteristics cannot be 
distinguished by DTI. 
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Diffusional kurtosis imaging (DKI) is an extension of DTI that can quantify the 
heterogeneity of diffusivities within a voxel in terms of the so-called diffusional 
kurtosis (Jensen et al., 2005, Jensen and Helpern, 2010). Similar parameters have 
also been derived from q-space analysis (Lätt et al., 2003) and statistical models 
(Yablonskiy et al., 2003). Traditionally, “diffusional kurtosis” refers to a feature of 
the so-called “diffusion propagator”. In this thesis, we will instead refer to this 
feature as “diffusional variance” and relate it to the distribution of apparent diffusion 
coefficients. For example, a mixture of dense and loose tissue contributes both low 
and high values to the DDC, which is observed as a high diffusional variance. 
Diffusional variance may therefore reflect tissue heterogeneity. Tissue heterogeneity 
has been studied in tumors by DKI, where parameters that reflect the diffusional 
variance tend to outperform DTI metrics for differentiation of tumor grades (Raab 
et al., 2010, Van Cauter et al., 2012), probably due to an association between tissue 
heterogeneity and malignancy (Hempel et al., 2016).  

A fundamental limitation of DKI is that it entangles the diffusional variance that 
is caused by anisotropic structures, and variable isotropic diffusivity, on the sub-
voxel scale. We refer to these tissue features as “microscopic anisotropy” and 
“isotropic heterogeneity”. For example, if a voxel exhibits a high diffusional variance 
and no voxel-scale anisotropy, we know that the DDC comprises multiple 
diffusivities, but we cannot say whether this is due to anisotropic structures that 
are randomly oriented (microscopic anisotropy) or isotropic structures with variable 
diffusivity (isotropic heterogeneity), or a mixture of both (Mitra, 1995). This lack 
of specificity may contribute to the limited interpretability of DKI parameters in 
terms of relevant structural features (Jensen and Helpern, 2010, Jespersen et al., 
2010, Maier et al., 2010, Chuhutin et al., 2015, Tietze et al., 2015). This is not a 
limitation of the model, but rather an inherent limitation of any method that relies 
solely on single diffusion encoding (SDE, or sPFG) (Mitra, 1995). 

Microscopic anisotropy, orientation coherence, and isotropic heterogeneity can be 
disentangled (Cheng and Cory, 1999), but it requires diffusion encoding that goes 
beyond the canonical SDE sequence proposed by Stejskal and Tanner (1965). A 
prominent example of the evolution of diffusion encoding is the double diffusion 
encoding sequence (DDE, or dPFG) (Cory et al., 1990). DDE uses two gradient 
pairs, compared to one pair in SDE, and is capable of encoding the diffusion in two 
independent directions during a single acquisition of the signal (Shemesh et al., 
2010). By doing so, it is possible to access information on the microscopic diffusion 
anisotropy even if the tissue appears isotropic on the voxel scale (Callaghan and 
Komlosh, 2002, Ozarslan and Basser, 2008, Lawrenz et al., 2010, Shemesh et al., 
2010, Jespersen et al., 2013, Jensen et al., 2014, Shemesh et al., 2016). The main 
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limitation of imaging techniques based on DDE is the low efficiency of the encoding 
and the prolonged acquisition time incurred by the extended sampling schemes 
(Jespersen et al., 2013, Hui and Jensen, 2015). Furthermore, even though DDE is 
theoretically capable of separating out the isotropic heterogeneity, we know of no 
studies that have attempted to do this. Consequently, the components of diffusional 
variance and their relation to the underlying tissue microstructure are largely 
unexplored. 

In summary, DKI provides a probe for tissue heterogeneity but it is unspecific 
and is fundamentally incapable of resolving the isotropic and anisotropic variance 
due to its reliance on SDE. More specific features of the tissue microstructure can 
be accessed by using non-conventional diffusion encoding. To date, however, non-
conventional encoding has not been systematically employed to explore the 
components of diffusional variance. 

In this thesis, we investigated two gaps in our current knowledge. First, we sought 
alternatives to the DDE technique that could facilitate improved imaging of 
diffusional variance in a clinical setting. Secondly, we investigated the link between 
dMRI parameters such as the diffusional variance and features of the tissue 
microstructure. 

Our approach was to develop and implement a custom diffusion encoding 
sequence capable of executing arbitrary gradient waveforms, or so-called q-space 
trajectory encoding (QTE), in order to yield tensor-valued diffusion encoding. The 
tissue was modeled by a diffusion tensor distribution (DTD), which allows a straight 
forward characterization of the tissue without relying on strong assumptions, making 
it applicable to a wide variety of healthy and diseased tissues. Based on QTE and 
the DTD framework, we proposed diffusional variance decomposition (DIVIDE) as 
a means of disentangling the diffusional variance into its isotropic and anisotropic 
components. Finally, we investigated the validity and interpretation of the DIVIDE 
parameters by correlating them to features of the tissue microstructure derived from 
quantitative microscopy. 
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2 Aims 

The work presented in this thesis describes how diffusion in heterogeneous tissue 
can be modeled by a distribution of diffusion tensors, and how tensor-valued 
diffusion encoding can be used to explore new aspects of diffusional variance and 
microscopic diffusion anisotropy. It also describes the theoretical background, 
practical implementation, and implications of such methods when applied to healthy 
brain tissue and tumors.  
 

The aims of this thesis were: 
 
 To develop techniques for diffusion weighting with tensor-valued encoding 

(Paper II), and to investigate the feasibility of diffusional variance 
decomposition in a clinical setting (Paper III). 

 To investigate the experimental design in terms of the encoding waveform 
(Paper IV), the imaging protocol (Paper VI), and the study design (Paper 
I) in order to optimize the quality of imaging studies aimed at quantification 
of diffusional variance. 

 Explore the metrics of diffusional variance and anisotropy in healthy tissue 
and tumor tissue (Paper III and V), and to validate their interpretation by 
investigating their association with structural features in tumors (Paper V). 
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3 Diffusion tensor distribution as 
a model of heterogeneous tissue 

Biological tissue comprises many different types of cells and tissues arranged in more 
or less coherent cell matrices. In neural tissue, structures range from axons, in which 
the water diffusion is extremely anisotropic, to approximately spherical cells that 
cause negligible diffusion anisotropy. Approximately 20% of the water is also located 
in the extracellular space, where the diffusion characteristics are defined by the 
surrounding tissue (Sykova and Nicholson, 2008, Novikov and Kiselev, 2010). 
Moreover, the voxel volume is of the order of 1–30 mm3 and may therefore contain 
many tissue types, cell types, and orientations of structures. Diffusion in biological 
tissue may therefore be considered to be quite complex.  

A potentially interesting feature of complex tissue is its heterogeneity. In this 
thesis, we consider “tissue heterogeneity” to be any structural feature that causes 
multiple rates of diffusion in a single voxel (Paper V). Two types of heterogeneity 
were identified, namely “microscopic anisotropy” and “isotropic heterogeneity”, 
which correspond to anisotropic and isotropic diffusional variance (Paper II and V). 

This chapter describes how a diffusion tensor distribution (de Swiet and Mitra, 
1996, Jian et al., 2007, Scherrer et al., 2015, Westin et al., 2016a) can be used to 
model heterogeneous tissue, and how macroscopic features of the distribution reflect 
the underlying heterogeneity. 

3.1 The diffusion tensor 

The rate of diffusion is defined from the relation between the average displacement 
of particles and the time during which they diffuse. In a medium with no restrictions, 
the mean-square displacement along the direction x is simply 〈푥〉= 2⋅퐷 ⋅푡 , 
where 퐷  and 푡 are the diffusion coefficient and diffusion time (Einstein, 1905). 
The diffusivity of freely diffusing water at body temperature is approximately 
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퐷 = 3.0  µm2/ms = 3.0⋅10−  m2/s (Mills, 1973, Holz et al., 2000). For this 
diffusivity, the mean-square displacement along x is approximately 25 µm after 푡 =
100 ms. This level of displacement is comparable to the size of individual cells, 
considering that the diameters of axons and cell bodies are roughly 1 and 10 µm 
(Yablonskiy and Sukstanskii, 2010, Caminiti et al., 2013). Whenever diffusing 
particles interact with obstacles, e.g. water in biological tissue, the movement of the 
diffusing particles may be unbounded but slowed down by obstacles (hindered 
diffusion) or confined to a finite compartment (restricted diffusion). In both 
situations, the intrinsic diffusivity may be unchanged, but the average displacement 
for a given diffusion time is reduced. In dMRI, this corresponds to a reduction in 
the observed diffusivity, and the diffusion coefficient derived from such systems is 
therefore called the apparent diffusion coefficient. Furthermore, the ADC may 
depend on the direction along which the diffusion is measured, which is referred to 
as anisotropic diffusion.  

The diffusion process can be described in three dimensions in terms of a diffusion 
tensor (Stejskal, 1965, Basser et al., 1994). The conventional, voxel-scale, diffusion 
tensor (〈퐃〉) is written as a matrix with nine elements, 

 

Figure 3 | Particle displacement (top row) and corresponding diffusion tensor glyphs (bottom row). Each 
tensor glyph reflects the mean-square displacement of the diffusion particles. The square root of the 
three eigenvalues determines the shape of the ellipsoid. Apart from the leftmost case, all tensors have 
the same mean diffusivity. 
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〈퐃〉=
⎝
⎜⎜⎛
퐷xx 퐷xy 퐷xz

퐷yx 퐷yy 퐷yz
퐷zx 퐷zy 퐷zz⎠

⎟⎟⎞ , Eq. 1

which has six degrees of freedom due to diagonal symmetry (Dij = Dji). In the 
principal axis system (PAS), the off-diagonal elements are zero and the diagonal 
elements are its three eigenvalues (λ= [λ λ λ]), which describe the diffusivity 
along three orthogonal eigenvectors (휖,휖,휖). Figure 3 shows examples of particle 
displacements and the corresponding diffusion tensor glyphs in isotropic and 
anisotropic cases.  

Throughout this thesis, boldface capital letters denote tensors or tensor 
distributions. Tensors are visualized as ellipsoids where the length of each axis 
reflects the square root of the tensor eigenvalues (Basser et al., 1994, Kindlmann, 
2004), and the color of the tensor glyph will indicate its fractional anisotropy (white 
to black indicates low to high anisotropy). 

3.2 Diffusion tensor distribution model 

Tissue heterogeneity can be captured by describing the diffusion in each segment of 
coherent tissue with a diffusion tensor. Because the tissue is normally only coherent 
on short length scales, coherent segments are referred to as “microenvironments” 
(Westin et al., 2016a). The collection of microenvironments within a voxel can be 
described by an ensemble of diffusion tensors, where each tensor in the ensemble 
represents a microenvironment. Since it is not feasible to resolve the individuals of 
the ensemble, we will consider its macroscopic observables, using an approach similar 
to statistical mechanics. 

We refer to the ensemble of tensors as a diffusion tensor distribution (Westin et 
al., 2016a), denoted 퐃. If the assumptions of the model hold (see section 3.4), the 
DTD provides a comprehensive and accurate description of the diffusion process 
within the tissue. From the DTD, it is then possible to derive invariant metrics that 
are observable on the voxel scale pertaining to the diffusivity and diffusional 
variance, as well as the diffusion anisotropy on the voxel and microscopic scales. 
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3.3 Parameterization of the DTD 

3.3.1 Tensor operators 

The voxel-scale diffusion tensor, 〈퐃〉, is the average over all individuals in the 
distribution of diffusion tensors. Assuming that the DTD is a continuous probability 
density function (푃(퐃)), the average tensor is 

〈퐃〉= 퐃⋅푃(퐃) d퐃 . Eq. 2

Throughout the thesis, diffusion tensors within averaging brackets represent the 
voxel-scale diffusion tensor, whereas the same symbol without brackets refers to the 
diffusion tensor distribution. The placeholder tensor (T) is used to describe three 
useful operators. The average across tensor eigenvalues (E [⋅]) is defined as 

E [퐓] = 1
3

λ
=

 , Eq. 3

where λ are the eigenvalues of T. The sum across eigenvalues is equal to the trace 
of the tensor (E [퐓] = Tr(퐓)/3), which can be calculated without knowing the 
eigenvalues. The population variance of tensor eigenvalues (V [⋅]) is defined as 

V [퐓] = 1
3

(λ−E [퐓])
=

 . Eq. 4

Note that Eq. 4 describes the entire population of eigenvalues, rather than a sample, 
yielding a variance that is normalized by a factor of 1/3 instead of 1/2. The variance 
can also be calculated without knowing the eigenvalues (Basser and Pierpaoli, 1996, 
Westin et al., 2016a). Finally, the double inner product (:) of two tensors (퐓 and 
퐓 ) is a scalar defined as the sum over all element-wise products, according to 

퐓 :퐓= 퐓 ⋅퐓
==

 . Eq. 5

Note that the operations in Eqs. 3 to 5 can also be applied to distributions of tensors, 
i.e. T can be exchanged for both 〈퐃〉 and 퐃. If an operation is applied to a 
distribution of tensors, the result is a distribution of scalars. 
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3.3.2 Mean and variance of the DTD 

The distribution of diffusion tensors can be parameterized in terms of the mean 
diffusivity and the variance of diffusivities using the operators from section 3.3.1. 
The voxel-scale average is called the mean diffusivity (MD), defined as  

MD = E [〈퐃〉] . Eq. 6

The same operation applied to D yields a distribution of isotropic diffusivities (퐷 ), 
according to  

퐷 = E [퐃] . Eq. 7

Thus, MD and 퐷  represent the isotropic diffusivity on the voxel and microscopic 
scales. From Eq. 6 and Eq. 7, we can see that MD is also the average across 퐷 , 
according to MD =〈퐷〉. 

The DTD also contains information on two types of diffusional variance, namely 
the isotropic and anisotropic variance (푉 and 푉 ). The isotropic variance reflects 
the difference in isotropic diffusivities across microenvironments, according to 

푉=〈E [퐃] 〉−E [〈퐃〉] , Eq. 8

which is equal to the variance of the isotropic diffusivities, according to 푉= V[퐷 ], 
where V[⋅] is the variance operator. Note that 푉 is zero for any DTD where all 
microenvironments have identical isotropic diffusivity, i.e. if there is no isotropic 
heterogeneity. 

The anisotropic variance reflects the average variance of diffusion tensor 
eigenvalues, given by (VanderHart and Gutowsky, 1968) 

푉 = 2
5
〈V [퐃]〉 . Eq. 9

Note that 푉  is independent of the orientation of each tensor in the distribution, 
and that it is only zero if all microenvironments exhibit isotropic diffusion. 

The sum of the two types of variance is the total diffusional variance (푉 ), 
according to 푉 =푉+푉  (Paper II and III). The total variance is the variance 
probed by SDE-based methods, such as DKI (Jensen et al., 2005). To comply with 
the nomenclature suggested by Jensen et al. (2005), the diffusional variance is 
normalized and scaled according to 

MK = 3⋅푉
MD

 , Eq. 10
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where the subscript “x” indicates which component of variance is intended. We will 
refer to both 푉 and MK  as the diffusional variance, and keep the abbreviation 
“MK” to retain its connection to the mean diffusional kurtosis. Figure 4 depicts 
DTDs that render variable levels of isotropic and anisotropic variance. 

3.3.3 Fractional anisotropy 

The fractional anisotropy (FA), conventionally used in DTI, is derived from the 
voxel-scale diffusion tensor eigenvalues, in terms of their variance and expected value 
according to (Basser et al., 1994, Westin et al., 2016a) 

FA = 3
2
⋅ V [〈퐃〉]
E [〈퐃〉] + V [〈퐃〉]

 . Eq. 11

The FA in is not commonly expressed in terms of eigenvalue expectancy and 
variance (Eq. 11), but this formulation is mathematically equal to the definition first 
introduced by Basser et al. (1994); see Kingsley (2006b) for a comprehensive 
description of tensor parameterization. It is apparent from Eq. 11 that V [〈퐃〉] must 
be non-zero to yield a non-zero FA. This occurs under two conditions. First, 
microenvironments that exhibit anisotropic diffusion must be present in the voxel. 
Secondly, these microenvironments must be oriented so that some anisotropy is 
retained at the voxel scale. As seen in Figure 4 (bottom right), if the anisotropic 
structures are randomly oriented within the voxel, the voxel-scale tensor will be 
isotropic, resulting in FA = 0. 

The fact that the FA is strongly modulated by orientation coherence is well 
understood and is widely considered to be a major limitation of DTI (Alexander et 
al., 2001, Jones et al., 2012). It is therefore beneficial to construct a parameter that 
probes the microscopic diffusion anisotropy, independently of the orientation 
coherence. Such a parameter can be derived from the DTD (Paper II, Westin et al., 
2014, Westin et al., 2016a). This parameter is called the microscopic fractional 
anisotropy (µFA), and it is defined according to (Paper V, Jespersen et al., 2013, 
Westin et al., 2016a) 

μFA = 3
2
⋅ 〈V [퐃]〉
〈E [퐃] 〉+〈V [퐃]〉

 . Eq. 12

The difference between FA and µFA is that FA is calculated from the diffusion 
anisotropy that is observed on the voxel-scale whereas the µFA is calculated from 
the anisotropic diffusional variance. Mathematically, the difference is determined by 
the stage at which the ensemble average is performed (Eqs. 11 and 12) (Paper V).  



35 

The µFA may be interpreted as the FA that would be observed in a sample if all 
microenvironments were perfectly ordered. However, the µFA is not mathematically 
equal to the average FA of all microenvironment tensors unless the 
microenvironments differ only with respect to their orientation. 

 
 
 

 

Figure 4 | Schematic representation of DIVIDE parameters in eight different diffusion tensor distributions. 
The parameters show the isotropic and anisotropic diffusional variance (VI and VA), and the fractional 
anisotropy on the microscopic and voxel scale (µFA and FA). For example, in a perfectly homogeneous 
tissue, all four parameters are zero (top left), and for randomly oriented anisotropic structures the µFA is 
high whereas the FA is zero (bottom right). 
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3.3.4 Order parameter 

The discrepancy between FA and µFA is caused by the orientation dispersion, and 
the difference between the two can be used to quantify the order of the underlying 
structures. We quantify the orientation coherence in terms of the order parameter 
(OP), which is a well-established parameter in the field of liquid crystal NMR, 
according to (Paper II and III) 

OP = V [〈퐃〉]
〈V [퐃]〉

 . Eq. 13

The numerator and denominator in Eq. 13 are proportional to the FA and µFA, 
respectively. When FA = µFA, the orientations of the underlying tissue are perfectly 
coherent, yielding OP = 1, i.e. the “full” microscopic anisotropy is retained on the 
voxel scale with no reduction due to orientation dispersion. Any level of orientation 
dispersion yields OP < 1 (Paper II). It is also possible to quantify asymmetric 
orientation distributions of anisotropic domains in terms of a “Saupe order tensor” 
(Topgaard, 2016b), but this was outside the scope of this thesis. 

3.4 Assumptions of the DTD model 

The DTD model is based on two main assumptions under which it accurately 
describes the diffusion in tissue. These assumptions are that: 

 
 the diffusion in each microenvironment is approximately Gaussian 
 the diffusing particles do not exchange between microenvironments during 

the encoding. 
 
The next two sections briefly describe the ramifications of these assumptions and 

how they may affect the interpretation of the model parameters. 

3.4.1 Non-Gaussian diffusion 

The diffusion is only Gaussian in a homogeneous medium that interacts only with 
itself, such as in an infinite body of pure water. Consequently, the diffusion is non-
Gaussian in biological tissue where heterogeneity and obstacles are ubiquitous (de 
Swiet and Mitra, 1996). This fact contradicts the first assumption of the DTD model 
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(Beaulieu, 2002), and we will therefore briefly discuss how the first assumption 
interacts with three aspects of non-Gaussian diffusion, namely the presence of 
multiple Gaussian components, non-Gaussian phase dispersion, and time-
dependent diffusion. 

The presence of multiple components with Gaussian diffusion is permitted by the 
DTD model since it models each component in terms of a diffusion tensor (de Swiet 
and Mitra, 1996, Yablonskiy et al., 2003). As long as the diffusion in each 
microenvironment is approximately Gaussian, the first assumption holds. 

A non-Gaussian phase distribution may occur, for example, where there is 
restricted diffusion (Callaghan et al., 1991), which in turn invalidates the simple 
exponential relation between the signal and the diffusivity assumed by the DTD 
model. However, the effects of a non-Gaussian phase distribution are small for 
moderate attenuation, i.e. if the signal is not attenuated below 10% (Topgaard and 
Söderman, 2003). This aspect of non-Gaussian diffusion should therefore be 
negligible in biological tissue at moderate encoding strengths (Nilsson et al., 2010). 

Time-dependent diffusivity is caused by an interaction between the geometry of 
the object and the time during which the diffusion is observed (Stejskal, 1965, Gore 
et al., 2010). For restricted diffusion, the ADC may therefore depend on the size of 
the restriction (푑) and the diffusion time (푡). In the regime where 푡≪푑/퐷 , the 
diffusing particles do not have time to experience the restriction, and the ADC 
approaches the intrinsic diffusivity (퐷 ) (Woessner, 1963). By contrast, when 푡≫
푑/퐷 , the restrictions have been probed by most particles and the ADC approaches 
zero. For these two regimes, the approximation of Gaussian diffusion in each 
microenvironment holds. However, in the intermediate regime the ADC will be a 
function of 푡 and 푑, and the diffusion must instead be described by a time-
dependent diffusion tensor. A similar dependency exists for hindered diffusion, where 
the apparent diffusivity transitions from 퐷  to a lower diffusivity defined by the 
tortuosity of the environment (Beck and Schultz, 1970). Several studies have 
demonstrated time-dependent diffusion in neural tissues (Stanisz et al., 1997, Assaf 
et al., 2000, Does et al., 2003, Assaf et al., 2008, Lundell et al., 2014, Burcaw et al., 
2015), but the effect is probably small for the diffusion times commonly used in 
conventional experiments in vivo (Clark et al., 2001, Ronen et al., 2006, Nilsson et 
al., 2009, De Santis et al., 2016). Note that an in-depth investigation of the time 
dependency is outside the scope of this thesis; however, preliminary investigations 
indicate that the effect is small, at least in healthy tissue (Nilsson et al., 2016). We 
therefore assume that the DTD model is sufficiently accurate to capture the 
essentials of the diffusion characteristics in tissue, and acknowledge that this 
assumption must be validated in future studies. 
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3.4.2 Exchange 

Diffusing particles may visit multiple microenvironments during the diffusion time 
by passing through permeable boundaries that separate the environments. Although 
exchange is always present to some degree, effects of exchange can be disregarded 
under three regimes. These are if the residence time (푡) is much longer, or much 
shorter, than the diffusion time, 푡≪푡 or 푡≫푡, i.e. if very few particles have 
time to exchange or if the time spent in a specific environment is very short (Quirk 
et al., 2003); or if the diffusion characteristics of the two environments are 
approximately equal, in which case both environments are accurately described by 
a single diffusion tensor.  

Effects of exchange have been investigated in the context of dMRI (Nilsson et al., 
2013b), and several studies have indicated that the exchange in healthy brain tissue 
has a negligible effect on the diffusion-weighted signal for conventional diffusion 
times (Nilsson et al., 2013a, Lampinen et al., 2016). However, such assumptions may 
not hold in diseased tissue, where effects of exchange have been demonstrated (Lätt 
et al., 2009). In a preliminary study of the exchange rate in tumors, we observed 
relatively long residence times in the tissue (Lampinen et al., 2016). We therefore 
assume that exchange has a negligible effect in both healthy tissue and tumor tissue 
when using the experiments presented in this thesis. 
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4 Tensor-valued diffusion 
encoding and the forward signal 
model 

In this chapter, we assume that the diffusion tensor distribution is known, and that 
it perfectly describes the diffusion within a sample. Based on this, the MR signal 
can be predicted for a given set of experimental parameters. This constitutes the 
“forward signal model” and we will use it to explain how tensor-valued diffusion 
encoding modulates the observed signal and how the diffusion tensor distribution 
can be interpreted in terms of its distribution of apparent diffusion coefficients. 

4.1 Tensor-valued diffusion encoding 

Conventional diffusion encoding gradients are applied along a single direction 
described by a vector (퐧= [푛 푛 푛] , |퐧| = 1) and yield a specified encoding 
strength (b) along that direction. In such experiments, the diffusion encoding tensor, 
or b-tensor (B), is given by 퐁=푏⋅퐧퐧 , where B is a tensor with one non-zero 
eigenvalue (order-two tensor of rank one). Diffusion encoding may also be applied 
in multiple directions within the same acquisition, between the excitation and 
readout, and can therefore render b-tensors with arbitrary configurations of positive 
eigenvalues, up to rank three. We refer to such encoding as “tensor-valued” to 
distinguish it from encoding that can be described with a vector. To distinguish the 
most common b-tensors, we refer to encoding with one non-zero eigenvalue as linear 
tensor encoding (LTE); two equal and non-zero eigenvalues as planar tensor 
encoding (PTE); and three equal eigenvalues as spherical tensor encoding (STE) 
(Westin et al., 2016a). STE is also known as isotropic encoding, and trace-weighted 
encoding (Mori and van Zijl, 1995, Wong et al., 1995, Eriksson et al., 2013). 
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The b-tensor can be derived for a time-dependent gradient waveform, 퐠(푡) =
[푔(푡) 푔(푡) 푔(푡)] , by first considering the spin dephasing q-vector (q), defined as 

퐪(푡) =γ 퐠(푡′) d푡′
TE

 , Eq. 14

where γ is the gyromagnetic ratio and TE is the echo time. The b-tensor is then 
calculated from the q-trajectory according to  

퐁= 퐪(푡)퐪 (푡)
TE

d푡 . Eq. 15

To simplify the analysis, only axisymmetric b-tensors are considered in this thesis. 
Axisymmetric tensors are defined by two eigenvalues and can be expressed in terms 
of the axial (푏∥) and radial (푏⊥) eigenvalues in the principal axis system, according to 

퐁PAS =
⎝
⎜⎛
푏∥ 0 0
0 푏⊥ 0
0 0 푏⊥⎠

⎟⎞ . Eq. 16

Three specific features of the b-tensor can now be defined, namely its orientation, 
size, and anisotropy. The orientation of the b-tensor is used to describe rotations of 
퐁PAS along arbitrary directions, so that the applied b-tensor is given by 

퐁=퐑 퐁PAS 퐑  , Eq. 17

where R is a rotation matrix (Kingsley, 2006b). The size of the b-tensor describes 
the diffusion encoding strength, often referred to as the b-value, and is defined as 
the trace of B, according to 

푏= Tr(퐁) . Eq. 18

The anisotropy of the b-tensor (푏 ) is described by a scalar value, according to 
(Eriksson et al., 2015) 

푏 =
푏∥−푏⊥
푏∥+ 2⋅푏⊥

 . Eq. 19

The b-tensor anisotropy can take on values between –0.5 and 1. For planar, 
spherical, and linear tensor encoding it is –0.5, 0, and 1, respectively. Examples of 
encoding tensors with variable anisotropy, along with corresponding 퐠(푡) and 퐪(푡), 
are depicted in Paper IV. 
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Previously, the b-tensor has also been used to, for example, account for cross 
terms between diffusion encoding and imaging gradients (Mattiello et al., 1997) and 
for rotating the encoding direction to match the image space (Leemans and Jones, 
2009). It was first used to describe tensor-valued diffusion encoding with a user-
defined shape by Westin et al. (2014). 

It is sometimes useful to consider the encoding tensor independently of its size. 
Thus, we construct the normalized encoding tensor (N), which only carries 
information on its orientation and anisotropy, according to 

퐍= 퐁
Tr(퐁)

 . Eq. 20

In conclusion, the temporal profile of the applied gradient renders a q-vector 
trajectory, which in turn determines the b-tensor. Several different waveform can 
yield the same b-tensor, but some waveforms are more experimentally tractable, as 
discussed in section 6.1. 

4.2 Distribution of apparent diffusion coefficients 

For a single diffusion tensor, the apparent diffusion coefficient (〈퐷〉) along a 
direction specified by N is given by 〈퐷〉=퐍:〈퐃〉. Likewise, each tensor in a DTD 
contributes a specific diffusivity to the one-dimensional distribution of apparent 
diffusion coefficients (D), according to 

퐷=퐍:퐃 . Eq. 21

Similar to the DTD in Eq. 2, the DDC can be represented by a continuous 
probability density function (푃(퐷)) such that the probability (p) of finding a 
diffusivity in the interval [푎,푏] is  

푝(푎≤퐷≤푏) = 푃(퐷|푏 ,퐑) d퐷 , Eq. 22

where 푃(퐷|푏 ,퐑) reads as the observed DDC given a b-tensor anisotropy 푏 , and 
orientation R. In the general case, the DDC depends on the rotation of the b-tensor, 
as indicated by R in Eq. 22. Rotationally invariant parameters can be derived from 
the so-called “powder sample”. Powder samples are used in X-ray diffraction and 
solid-state NMR, and are created by crushing the sample into a powder in order to 
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remove any orientation coherence in the material investigated (Edén, 2003, 
Topgaard, 2016a). The DDC in a powder sample (푃̅(퐷)) is defined as  

푃̅(퐷|푏 ) = 1
4휋

푃(퐷|푏 ,퐑(Ω)) dΩ , Eq. 23

where the integration is over the surface of the unit sphere (Edén and Levitt, 1998). 
Note that 푃̅(퐷|푏 ) is rotationally invariant, i.e. independent of R, but that it 
retains its dependency on the b-tensor anisotropy, 푏 . From this point on, we will 
assume that we have a powder sample in order to abbreviate the theory. Of course, 
in vivo experiments cannot assume a true powder sample. Instead, a powder sample 
can be approximated by performing so-called “powder averaging” (Paper II, III, and 
V), where rotation invariance is achieved by averaging the diffusion-weighted signal 
over a finite number of encoding directions, as described in section 5.3.1. 

4.3 Forward signal model 

Assuming that the distribution of apparent diffusion coefficients in a powder sample 
is known, the powder signal (푆̅) is given by 

푆̅(푏,푏 ) =푆 푃̅(퐷|푏 ) exp(−푏⋅퐷) d퐷
−

 , Eq. 24

where the signal depends on the encoding strength and anisotropy, i.e. 푏 and 푏 , 
but is independent of the orientation of the object and the b-tensor. Importantly, 
the normalized signal 푆̅(푏,푏 )/푆 is the Laplace transform of 푃̅(퐷|푏 ), which is 
central to the parameter estimation described in Chapter 5. By analogy with Eq. 
24, the signal can also be derived directly from the distribution of diffusion tensors, 
according to 

푆(퐁) =푆 푃(퐃) exp(−퐁:퐃) d퐃 , Eq. 25

but we will use the formalism in Eq. 24 to simplify the theory. 
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4.4 Effect of b-tensor anisotropy 

A central concept of this work is that the observed DDC depends on the anisotropy 
of the b-tensor. For a powder sample, the variance of the observed DDC (푉 ) will 
be the sum of isotropic and anisotropic contributions, according to  

푉 = 푉+푏 ⋅푉  , Eq. 26

where 푏  is the anisotropy of the b-tensor (Eq. 19) (Paper II and III, Eriksson et 
al., 2015, Topgaard, 2016a). When using a combination of STE and LTE, 푉  is 
equal to 푉 and 푉 , respectively (see section 3.3.2) (Paper II, III, and V). Notably, 
for methods that use only LTE, such as conventional DKI, 푉 =푉 , so that the 
two components are entangled. Therefore, the mean kurtosis from DKI is equivalent 
to MKT. 

To understand why the DDC depends on the b-tensor anisotropy, we will briefly 
explore the interaction between the diffusion tensor distribution, the properties of 
the b-tensor, and the measured signal (Figure 5). Consider a large ensemble of 
randomly oriented anisotropic diffusion tensors that differ only with respect to 
orientation. For diffusion encoding along a single direction (LTE), each diffusion 
tensor will contribute a diffusivity to the DDC depending on its orientation relative 
to the b-tensor. Thus, the observed DDC contains diffusivities between the largest 
and smallest diffusion tensor eigenvalues. Since the DDC exhibits a substantial 
variance, the signal vs. b curve will be non-monoexponential. By contrast, for 
isotropic encoding (STE), all diffusion tensors contribute the same isotropic 
diffusivity to the DDC, and the DDC becomes a narrow peak centered on the mean 
diffusivity. The DDC now exhibits a vanishing variance and the signal is mono-
exponential.  

A DTD that contains only isotropic tensors with variable diffusivities, will also 
exhibit a DDC with high variance, and therefore a non-monoexponential signal vs b 
curve. However, each tensor in the distribution is isotropic, and therefore contributes 
a diffusivity to the DDC that is independent of the orientation and anisotropy of 
the b-tensor. Thus, the DDC and the signal will be unaffected by the b-tensor 
anisotropy. The hallmark of isotropic diffusional variance is that it is independent 
of the b-tensor shape. 

Given that we use only one b-tensor anisotropy – be it conventional LTE or 
otherwise – the DDC from isotropic diffusion tensors may exactly match the DDC 
from anisotropic tensors. Therefore, it is theoretically impossible to distinguish the 
sources of diffusional variance if only one b-tensor anisotropy is used (Mitra, 1995). 
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This is also communicated by Eq. 26, where it is obvious that two observations of 
푉  with different 푏  are required to resolve 푉 and 푉 . 

In summary, the hallmarks of anisotropic and isotropic diffusional variance are 
that the former renders signal that depends on the b-tensor anisotropy, whereas the 
latter does not. The two can therefore be separated by observing the signal at 
variable b-tensor anisotropy. 

 

Figure 5 | The relation between the diffusion tensor distributions (DTD), distribution of apparent diffusion 
coefficients (DDC), and the diffusion-weighted signal vs b. The three systems represent randomly 
oriented anisotropic diffusion tensors (top); a mixture of isotropic tensors with slow and fast diffusivity 
(middle); and a mixture of randomly oriented anisotropic tensors and isotropic tensors with 
heterogeneous diffusivity (bottom). The central column depicts the DDC (y-axis is the probability density) 
when using linear, planar, and spherical tensor encoding (LTE, PTE, and STE). The peaks in the first 
DDC are marked out in terms of corresponding axial and radial tensor components (2.8 and 0.1 µm2/ms). 
In the second DDC, the peaks are denoted slow and fast (0.3 and 1.7 µm2/ms). The right-hand column 
shows the signal observed in each case. The LTE signal is the same in the first two systems. When using 
PTE or STE in the first system, the signal exhibits less curvature, which indicates diffusion anisotropy. 
By contrast, the b-tensor anisotropy has no effect on the signal in the second system with purely isotropic 
diffusion tensors. In the third system, both types of diffusional variance are present. 
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5 Parameter estimation and the 
inverse problem 

At this point we have established that diffusion in tissue can be described by a 
distribution of diffusion tensors, which allows us to predict the MR signal for any 
b-tensor. However, the distribution of diffusion tensors is usually unknown. Instead, 
we must solve the “inverse problem”, i.e. work backwards from the observed signal 
to infer relevant characteristics of the diffusion tensor distribution and the tissue. 
This is achieved by modeling the relationship between the observed signal and the 
underlying diffusion process. The specifics of the model may be motivated by 
practical, empirical, biophysical, or statistical considerations. Regardless of this, the 
model is unlikely to capture all details of the tissue, and limited sampling of noisy 
MR signal may not retain information on subtle features of tissue (Novikov and 
Kiselev, 2010). This limitation is not unique to any specific approach or model, but 
is rather a ubiquitous fact in dMRI. This chapter describes the limitations inherent 
in the inverse problem – and how these pertain to the estimation of diffusional 
variance. 

5.1 Inverse Laplace transform 

Apart from the b-tensor, the diffusion-weighted MR signal depends on the DDC, 
according to Eq. 24. In fact, the normalized signal (푆̅(푏)/푆) is the Laplace transform 
of the underlying distribution 푃̅(퐷|푏 ). Thus, the inverse Laplace transform (ILT) 
would in theory recover the DDC directly from the signal without any prior 
assumptions (Whittall and Mackay, 1989). However, numerical ILT methods are 
mathematically ill-conditioned and sensitive to noise (Håkansson et al., 2000, 
Epstein and Schotland, 2008). Furthermore, the numerical ILT approach probably 
requires the signal to be densely sampled in a wide range of b-values (Ronen et al., 
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2006), or prior information that can be used to constrain the inversion (de Almeida 
Martins and Topgaard, 2016). 

The problematic nature of the ILT can be understood by considering that there 
exist many DDCs that render virtually identical diffusion-weighted signals for a 
given interval of b-values (Figure 6) (Provencher, 1982). We therefore conclude that 
the DDC cannot be accurately recovered from a finite number of noisy signal samples 
unless prior knowledge about the underlying tissue can be used to constrain the 
inversion. Naturally, we must consider what constraints are reasonable, and we 
explore two alternatives below. 

5.2 Truncated cumulant expansion 

The diffusion-weighted signal in Eq. 24 can be described by an expansion of the 
normalized signal in powers of b. This expansion expresses the signal as a sum of 
cumulants (c) and is equivalent to the Taylor expansion of the logarithm of the 
signal, according to 

ln 푆̅(푏)/푆 = (−푏)
푛!=
⋅푐 , Eq. 27

where 푐 is the nth cumulant of 푃̅(퐷|푏 ) according to  

 

Figure 6 | Six DDCs that yield similar diffusion-weighted signal. The signal was calculated from Eq. 24
using MD = 1.0 µm2/ms and VD between 0.20 and 0.34 µm4/ms2. All DDCs render similar signal curves
for moderate diffusion encoding strengths (b < 3 ms/µm2). At strong diffusion encoding (up to b = 10 
ms/µm2), the signal curves diverge―especially the normal distribution since it contains negative
diffusivity values (red arrow). Note that the maximal signal difference for the remaining distributions is 
approximately 2% at b = 10 ms/µm2. The DDC denoted “elliptic integral” is the distribution observed for 
randomly oriented diffusion tensors with λi = [2.3 0.35 0.35] µm2/ms (VanderHart and Gutowsky, 1968). 
The straight gray line shows monoexponential signal decay for visual reference. 
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푐=〈퐷〉 
푐=〈퐷〉−〈퐷〉 
푐= 2〈퐷〉−3〈퐷〉〈퐷〉+〈퐷〉 
푐=−6〈퐷〉+ 12〈퐷〉〈퐷〉−3〈퐷〉−4〈퐷〉〈퐷〉+〈퐷〉 
⋮ 

푐 =⋯ 

Eq. 28

where 〈퐷 〉 is the nth raw moment of 푃̅(퐷|푏 ), according to 

〈퐷 〉= 퐷 ⋅푃̅(퐷|푏 )
−

d퐷 . Eq. 29

The first four cumulants of 푃̅(퐷|푏 ) are its expected value, variance, skewness, 
and kurtosis. Although it is possible to truncate the series in Eq. 27 at an arbitrary 
cumulant and fit it to the signal, the accuracy of the parameter estimation will 
decrease rapidly as the number of cumulants increases (Kiselev, 2011), and for data 
in a limited b-interval the fit will be degenerate, meaning that multiple sets of 
parameters will yield equally good fits (Kiselev and Il'yasov, 2007). Thus, the 
expansion is commonly truncated at one or two cumulants to capture the main 
features of the signal for moderate encoding strengths, where the most prominent 
features of ln 푆̅(푏)/푆  are its initial slope and curvature. 

Although the cumulant expansion is usually considered to be “model-free”, it 
features implicit assumptions due to the truncation. For example, when Eq. 27 is 
truncated at the first cumulant, 푃̅(퐷|푏 ) is implicitly assumed to be a delta function 
described only by its expected value (푐 = 0 for 푛≥2). The normalized signal model 
has a single degree of freedom and becomes an exponential function, 푆̅(푏)/푆 ≈
exp (−푏〈퐷〉). This is the basis for the signal model used in DWI and DTI, and it 
holds in homogeneous tissues (Kiselev and Il'yasov, 2007) and at low b-values 
(Jensen, 2014). If the second cumulant is also included, 푃̅(퐷|푏 )  is implicitly 
assumed to be a normal distribution defined by its expected value and variance 
(푐 = 0 for 푛≥3). In this case, the normalized signal model has two degrees of 
freedom and is given by 푆̅(푏)/푆 ≈exp (−푏〈퐷〉+ 1/2푏푉 ), which is, in essence, the 
signal model used in DKI (Jensen et al., 2005). 

The fact that a truncation at the second cumulant assumes a Gaussian DDC has 
several implications. First, the logarithm of the signal becomes a positive quadratic 
polynomial, and is therefore not monotonically decreasing, which yields non-physical 
signal behavior where the signal increases as a function of b-value for 푏>〈퐷〉/푉  
(Figure 6) (Jensen and Helpern, 2010). Secondly, the interpretation of the cumulants 
as the mean and variance of 푃̅(퐷|푏 ) are only accurate if the contribution from 
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higher-order cumulants is negligible. It can be shown, however, that several realistic 
distributions have relatively large higher-order cumulants. For example, in 
anisotropic tissue described by randomly oriented tensors with λ≈[2.3 0.3 0.3] 
µm2/ms, the first four cumulants are 1.0, 0.34, 0.12, and –0.11 in units of (µm2/ms)n 
(see the DDC from the elliptic integral function in Figure 6). Although the signal in 
a moderate b-interval can be fitted with a second-order cumulant expansion, the 
estimated variance may be strongly biased. For example, the normal and elliptic 
integral DDCs have variances of 0.20 and 0.34 µm4/ms2, but yield virtually 
indistinguishable signal-versus-b curves for 푏< 3 ms/µm2 (Figure 6). 

In summary, the cumulant expansion is equivalent to a constrained ILT where 
the functional form of the underlying DDC is implicitly determined by the number 
of cumulants included in the model. In the next section, we consider an explicit 
selection of the DDC. 

5.3 Gamma distribution model 

The inverse Laplace transform can be constrained by assuming a specific functional 
form of 푃̅(퐷|푏 ) . We may select any probability density function that has 
appropriate features to represent the DDC. A reasonable DDC should avoid negative 
probabilities (Kiselev, 2011), negative diffusivities (Figure 6), and promote 
physically feasible functions that are defined by few shape parameters (Yablonskiy 
and Sukstanskii, 2010). 

A strong candidate that fulfills these requirements is the gamma distribution 
function. This distribution was mentioned as a plausible model for the DDC by 
Jensen and Helpern (2010), and Röding et al. (2012) showed that it was superior to 
signal models based on the log-normal distribution and the stretched exponential. 
The gamma distribution function renders a probability density function (푃 ) that 
is defined by two shape parameters, which can be interpreted in terms of its expected 
value and variance, given by 

푃 (퐷) =푘⋅퐷
〈 〉− ⋅exp −퐷⋅〈퐷〉

푉
 , Eq. 30

where 푃 (퐷< 0) = 0 , 〈퐷〉> 0 , 푉 > 0 , and k scales the function so that 
∫푃 (퐷) d퐷= 1. The Laplace transform of 푃 (퐷) defines the signal model, where 
the baseline signal, expected value, and variance are the free parameters, according 
to (Paper II, Jensen and Helpern, 2010) 
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푆(푏) =푆⋅1 +푏⋅푉
〈퐷〉

−〈 〉

 . Eq. 31

The most apparent benefit of using the gamma distribution, rather than the 
normal distribution derived from the cumulant expansion, is that 푃 (퐷) is zero for 
negative diffusivities, so that it does not predict increasing signal for high b-values 
(Figure 6). Furthermore, it can represent a wide range of plausible DDCs with only 
two degrees of freedom (Paper II, Röding et al., 2012, Röding et al., 2015). Of course, 
it is possible to select from many other plausible distributions (Yablonskiy and 
Sukstanskii, 2010), but investigation of their qualities was outside the scope of this 
thesis.  

5.3.1 Invariant parameters from the powder averaged signal 

As described in section 4.1, the shape of the DDC depends on the orientation and 
anisotropy of the b-tensor (R and 푏 ). To achieve a rotationally invariant 
parameterization of the signal, we mimic the characteristics of a powder sample by 
performing so-called powder averaging (Bak and Nielsen, 1997, Edén, 2003). The 
signal from a powder sample can be approximated by the powder-averaged signal 
(푆̅) across multiple diffusion encoding directions (Edén, 2003) 

푆̅(푏,푏 ) = 1
푛dir

푆
dir

=
(푏,푏 ,퐑 ) , Eq. 32

where 퐑  indicates the ith rotation of the b-tensor and 푛dir is the total number of 
diffusion encoding directions. The powder-averaged signal has been employed in the 
quantification of diffusion anisotropy in several studies (Jespersen et al., 2013, 
Lawrenz and Finsterbusch, 2013) and it is also referred to as the “orientational 
average” (Edén and Levitt, 1998), the “spherical mean” (Kaden et al., 2015), and 
the “directional mean”. The required directional resolution to render a rotationally 
invariant signal is discussed in more detail in section 6.2.1. 

Fitting of Eq. 31 to the powder signal at varying b-tensor anisotropy yields 

푆̅(푏,푏 ) =푆⋅ 1 +푏⋅푉+푏 ⋅푉
MD

− + ⋅
 , Eq. 33

where 〈퐷〉= MD for a powder sample. The unknown variables (푆,MD,푉,  푉 ) in 
Eq. 33 can be estimated in a joint non-linear fitting of data if two or more b-tensor 
anisotropies are used. 



50 

We refer to the disentanglement of isotropic and anisotropic diffusional variance 
by multiple b-tensors as diffusional variance decomposition, or DIVIDE. Note that 
this expression is used to refer to a set of concepts concerning the decomposition of 
variance, rather than a specific set of methods. 

5.3.2 Examples of parameter maps in phantoms and in vivo 

In Paper II, we performed initial parameter validation by quantifying the diffusional 
characteristics in a phantom where the structure was known. The phantom was 
composed of two coaxial tubes where the inner tube contained a lamellar liquid 
crystal (LC), in which the water movement is restricted between sheet-like bilayers 
(Callaghan and Soderman, 1983). The outer tube contained a yeast suspension, 
where the water was either restricted to the inside of near spherical cells or hindered 
in the extracellular space (Tanner and Stejskal, 1968). Figure 7 shows that the 
lamellar crystal exhibited a homogeneous microscopic anisotropy (MKA). The voxel-
scale anisotropy (FA) was high in regions where the crystals were ordered (Le et al., 
2001) and low where it was disordered. The yeast suspension showed negligible 
anisotropy on the voxel and microscopic scales. On the other hand, it showed a high 
isotropic diffusional variance (MKI) due to the mixture of restricted and hindered 
compartments. 

Parameter maps of a healthy brain were first reported in Paper III, and 
representative examples based on the protocols suggested in Paper VI are shown in 
Figure 8. In the white matter, the MKA predominates, which can also be seen as a 
high µFA. MKI is non-zero across the brain, and is especially high at the interface 
between brain matter and corticospinal fluid. The FA and µFA are markedly 
different in that the µFA is relatively homogeneous and high in the white matter 
whereas the FA is high only in regions that are known to contain large and well-
ordered white matter pathways. The DIVIDE parameters in brain tissue are 
discussed further in Chapter 7. 
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Figure 7 | Parameterization of diffusion characteristics in a phantom at an NMR system. The top row 
shows the powder averaged signal and the gamma model fit from four locations in the phantom (red 
crosses). The yeast suspension shows a high diffusivity and no anisotropy. Furthermore, it shows a high
degree of diffusional variance, caused exclusively by isotropic diffusional variance (MKT and MKI are 
high, and MKA is low). The liquid crystals exhibit a homogeneous MD and variable FA, where the FA is 
high close to the inner tube wall where the crystal bilayers are aligned with the surface of the glass tube 
(Le et al., 2001). Although the FA is low in the central parts of the crystal, the MKA shows that the 
microscopic anisotropy is homogeneous across the LC, and independent of orientation coherence. The 
figure was adapted, with permission, from Paper II by Lasič et al. (2014), published by Frontiers. 
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Figure 8 | Parameter maps in an axial slice of a healthy brain. The anisotropic variance is high in regions 
that contain white matter. The isotropic variance is generally low in brain tissue, and high in regions that 
interface with cerebrospinal fluid due to partial volume effects. The µFA and FA differ mostly in regions 
of crossing white matter, and in the gray matter. The data were acquired using the protocols used in 
Paper VI at a spatial resolution of 2×2×4 mm3 on a 3 T system with 80-mT/m gradients. 
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6 Waveform, protocol, and study 
design 

As described in Chapter 4, the diffusional variance components can only be 
separated if b-tensors with more than one anisotropy are used. The design and 
implementation of experiments that achieve this depend on a wide range of 
theoretical and practical considerations. In this chapter, we consider the 
experimental design at three levels. First, we describe how q-space trajectory 
encoding is implemented and consider several aspects of gradient waveform 
optimization. Secondly, we describe how to design the signal sampling protocol to 
allow for an accurate decomposition of the diffusional variance. Third, we discuss 
the statistical precision of the estimated parameters and their impact on group-
based inferential statistics. 

6.1 Waveform design 

6.1.1 Q-space trajectory encoding in a spin-echo sequence 

In order to explore non-conventional diffusion encoding waveforms, we developed an 
in-house sequence that allows us to freely specify gradient waveforms to be executed 
on the scanner. These waveforms can be designed to yield specific trajectories 
through the q-space, and we therefore refer to the method as q-space trajectory 
encoding (Paper II, Westin et al., 2016a). For simplicity, and for its clinical 
relevance, we assume that the QTE is performed within a spin-echo with echo-planar 
imaging (EPI) readout, although other sequences are also possible (Eriksson et al., 
2015, de Almeida Martins and Topgaard, 2016).  

The spin-echo sequence has three basic components: excitation, refocusing, and 
readout (Figure 9). The excitation and refocusing blocks are combinations of radio-
frequency pulses and slice selection gradients. The refocusing block also includes 
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crusher gradients. The EPI readout is centered on the echo time (TE), and can 
occupy a significant time before and after TE. The diffusion encoding gradient 
waveforms (퐠(푡) and 퐠(푡), see section 4.1) are inserted between these blocks, and 
the timing is therefore primarily determined by the TE and the duration of each 
block, as described in Figure 9. Notably, the maximal duration of the encoding after 
the refocusing pulse is often reduced by the presence of the readout block, referred 
to as “asymmetric sequence timing”. In general, it is beneficial to minimize TE to 
reduce loss of signal due to transverse relaxation. However, a shorter TE will incur 
a limitation on the maximal b-value, so there is a trade-off between SNR and 
encoding strength. 

The first implementation of QTE on a clinical MRI system was presented in Paper 
II, where it was used to yield isotropic diffusion encoding (STE) to estimate the 
µFA in a phantom. Subsequently, it was employed in vivo to investigate healthy 
tissue (Paper III) and tumor tissue (Paper V). These studies used magic-angle 
spinning of the q-vector (qMAS) (Eriksson et al., 2013) to produce STE. We have 
also used the sequence to render LTE, PTE, and STE in a study of patients with 
schizophrenia (Westin et al., 2016a). Of course, the QTE sequence can also render 
trapezoidal waveforms, such as those proposed by Cory et al. (1990), Wong et al. 
(1995), Mori and van Zijl (1995), and Moffat et al. (2004). 

 

Figure 9 | Schematic spin-echo sequence and its timing variables. The gradient waveforms g1(t) and
g2(t) are executed between the excitation pulse (RF90), the refocusing pulse (RF180), and echo-planar
readout (EPI). The timing variables show the maximal time available for encoding (Tpre and Tpost), the 
duration of each gradient waveform (δ1 and δ2), the gradient waveform separation (Δ), the duration of the 
refocusing block including the crushers (T180), the total encoding time (Tenc), and the echo time (TE). The 
balance gradient (red) is executed at the same time as the first crusher. Note that the Stejskal-Tanner 
and q-space trajectory encoding gradients are shown together for visual reference, and are not executed 
simultaneously.  
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6.1.2 Considerations for waveform design and optimization 

In conventional diffusion encoding, the optimization of the gradient waveform is 
trivial because the maximal b-value for a given encoding time is achieved by 
maximizing the duration, amplitude, and separation of two identical trapezoid 
waveforms (Stejskal and Tanner, 1965, Jones et al., 1999). The same is not true for 
QTE, where the waveform optimization must take into account the prescribed b-
tensor shape, and in the case of asymmetric waveforms, the timing asymmetry. 

In Paper IV, we presented a method that uses numerical optimization to render 
waveforms that yield specific b-tensors while respecting limitations imposed by the 
maximal gradient amplitude, slew rate, energy consumption, and heating. It also 
allows the user to specify an arbitrary timing of the encoding periods, i.e. the 
waveform can be designed so that δ=푇pre and δ=푇post, to take advantage of all 
available time for encoding (Figure 9). Several factors that influence the design and 
validity of gradient waveforms for diffusion encoding are discussed below. 

6.1.2.1 Gradient amplitude and slew rate 
The performance of the gradient system is a vital consideration for the design of a 
waveform. From Eqs. 14 and 15, we see that 푏∝|퐠| , meaning that a gradient 
system with twice the maximal gradient amplitude can produce four times as strong 
diffusion encoding. However, the system performance is also limited by the maximal 
gradient slew rate. This is especially noticeable for short encoding times, where the 
gradients may never reach their maximal amplitude due to relatively low slew rates 
compared to the maximal gradient amplitude. The slew rate limitation is most 
pronounced for PTE and STE, since these are rendered by waveforms that exhibit 
several transitions between negative and positive gradient amplitudes. 

 Figure 10 shows the maximal b-values attainable for LTE, PTE, and STE using 
various waveform designs at maximal gradient amplitudes of 40 and 80 mT/m. The 
numerically optimized waveforms, denoted “Sjölund” (Paper IV), outperform 
previous waveform designs. 

Of considerable importance is also the risk of causing peripheral nerve stimulation 
(PNS) (Ham et al., 1997). PNS can be effectively avoided by limiting the slew rate, 
but such an approach may reduce the encoding efficiency. Alternatively, the risk for 
PNS can be predicted by a model so that an appropriate waveform may be designed. 
For example, this could be achieved with the “SAFE” model suggested by Hebrank 
and Gebhardt (2000). 
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6.1.2.2 Waveform norm and rotations 
It is possible to combine multiple gradient axes to produce gradient strengths beyond 
the capacity of a single axis. This can be exploited in the design of the waveform 
where the gradient trajectory can be limited by either the “max-norm” 

or the “L2-norm” 

푔+푔+푔≤푔max , Eq. 35

where 푔max is the maximal gradient amplitude along each axis. These limitations can 
be seen as constraining the gradients within a cube with a side of 2gmax or a sphere 
with a diameter of 2gmax, respectively. 

The benefit of using the max-norm is that it takes advantage of the combined 
strength of multiple gradient axes and can therefore yield a higher encoding 
efficiency (Figure 10). The drawback is that the waveform cannot be rotated along 
arbitrary directions without violating the gradient amplitude limit. Experiments 
that demand arbitrary rotations of the b-matrix should therefore be based on 
waveforms that are constrained to the L2-norm, whereas experiments that demand 
very few, or no, rotations may benefit from the max-norm. The number of rotations 
that is required depends on the underlying tissue (Paper VI), as described in section 6.2.1. 

 

Figure 10 | Maximal b-values for LTE (black lines), PTE (red lines), and STE (dashed lines) for echo 
times between 50 and 160 ms at 40 and 80 mT/m. The optimization norm of each waveform is denoted 
in parenthesis at the end of its name where “max” indicates that the waveforms cannot be rotated 
arbitrarily without incurring a severe performance penalty (see section 6.1.2.2). The b-values are 
calculated assuming an asymmetric sequence timing (Tpost is 12 ms shorter than Tpre) with a constant 
gradient-off time of T180 = 8 ms, and a maximal slew rate of 100 T/m/s. The most efficient waveforms are 
the numerically optimized waveforms by Sjölund et al. (2015) (Paper IV). For long echo times, the 
numerically optimized LTE waveform is only marginally better than the Stejskal-Tanner sequence. The 
original waveform designs can be found in the following references: Stejskal and Tanner (1965) (SDE), 
Sjölund et al. (2015) (Paper IV), Eriksson et al. (2013) (qMAS), Topgaard (2016b), Cory et al. (1990)
(DDE), Moffat et al. (2004), and Wong et al. (1995). 

푔≤푔max ,   푔≤푔max ,   푔≤푔max , Eq. 34
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6.1.2.3 Energy consumption and heating 
The gradients produced by the MRI system are limited by the energy required by 
the amplifiers, and the heating of the hardware. Both aspects are factored into the 
duty cycle of the system, and should be considered and monitored during the design 
and execution of demanding dMRI experiments (Paper IV). The magnetic field 
gradient used for diffusion encoding is proportional to the current (I) applied 
through a coil. The dissipated power (P) is proportional to the square of the current, 
푃=퐼푅∝|퐠| , where R is the circuit resistance (Hidalgo-Tobon, 2010). This means 
that a doubling of the gradient amplitude will expend four times the energy. The 
electrical energy is stored in capacitors, which are continuously refilled by the mains 
power. However, if demanding waveforms are used in rapid succession, the capacitors 
may be depleted, or fail to recharge between acquisitions. Furthermore, it is possible 
to deposit more energy in the system than what can be removed by the cooling 
system, thereby causing net heating – which may affect the signal accuracy (Vos et 
al., 2016) or cause the system to overheat. Both energy consumption and heating 
can be mitigated by extending the encoding time so that lower gradient amplitudes 
can be used to yield a given encoding strength, albeit at a penalty to the SNR. 

Figure 11 | The top row shows gradient waveforms in a spin-echo sequence with EPI readout. The 
bottom row shows the magnitude of the squared q-vector, which is proportional to the b-value (see 
section 4.1), normalized to Stejskal-Tanner encoding to provide a visual cue that reflects their efficiency. 
Symmetric waveforms (e.g. Stejskal-Tanner and qMAS) do not take advantage of all available encoding 
time (red lines show interval where gradients are off). Waveforms that return the q-vector to the origin 
during the refocusing pulse have low efficiency (de Swiet and Mitra, 1996). Asymetric waveforms can 
use all the encoding time available, which yields superior encoding efficiency (Figure 10). Furthermore, 
the max-norm employs stronger gradient combinations than the L2-norm, which improves the encoding 
efficiency. Note that the Stejskal-Tanner waveform renders LTE, whereas the remaining waveforms 
render STE. 
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6.1.2.4 Waveform symmetry and balance 
To characterize some of the features associated with arbitrary waveforms, we use 
the concepts of waveform symmetry and balance. A waveform is “symmetric” if it 
is identical on both sides of the refocusing pulse, i.e. if 퐠(푡) =퐠(푡+Δ), where Δ 
is the time between the onset of the two encoding waveforms (Figure 9). Asymmetric 
waveforms do not adhere to this rule and can be designed to occupy all available 
time on both sides of the refocusing pulse (Paper IV). Furthermore, asymmetric 
waveforms can be designed to encode along different directions before and after the 
refocusing pulse, whereas symmetric waveforms must repeat the same trajectory 
twice, which is less effective (Figure 11). 

The balance of a waveform is determined by the 0th moment vector (훍= [μ μ μ] ) 
of the gradient waveform, according to 

훍=훾 퐠(푡)d푡−훾 퐠(푡)d푡 , Eq. 36

where the integration limits are the beginning and end of each waveform. In order 
for the accumulated phase to be zero at the time of the spin-echo, the waveform 
must be designed such that |훍| = 0 (de Swiet and Mitra, 1996). A set of gradients 
that render |훍| = 0 is called “balanced”, whereas |훍|≠0 is called “off-balance”.  

Small errors may be introduced when the waveform is resampled to match the 
prescribed duration and gradient system raster time. For symmetric waveforms, 
these errors cancel, and have no discernable effect. If the waveform is asymmetric, 
seemingly small imperfections may result in significant signal errors. However, 
timing and interpolation errors can be effectively mitigated by a balance gradient 

Figure 12 | The top row shows the signal in a 
water phantom using an asymmetrical 
waveform for LTE at b = 0.5 ms/µm2. When 
the timing is perfect, the waveform is 
balanced (left). Flawed timing is achieved by 
extending the duration of the second 
waveform by 0.1 ms (0.3% of the total 
encoding time); the waveform is off-balance 
and gross image artifacts appear (middle). 
When the balance gradient is engaged, it 
automatically restores the balance and the 
signal for perfect timing is recovered (right). 
The bottom row shows the average signal in 
a central region of the phantom (red square) 
along 64 diffusion encoding directions. 
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(Figure 9). The balance gradient automatically negates the residual 0th moment of 
the encoding gradients and restores the signal properties, as demonstrated in Figure 12.  

Generally, asymmetric waveforms are robust to any linear scaling of the gradient 
amplitude. However, non-linear distortions of the gradient waveform – for example, 
caused by concomitant fields – may result in image artifacts and signal bias 
(Bernstein et al., 1998). However, for main magnetic fields above 1.5 T and gradient 
amplitudes below 300 mT/m, the effects of concomitant fields are negligible. Thus, 
no additional corrections were implemented in this work, although it is possible to 
do so in the imaging sequence and post-processing (Meier et al., 2008, Baron et al., 2012). 

6.2 Protocol design 

The imaging protocol, i.e. the signal sampling scheme, used for diffusional variance 
decomposition is similar to a multi-shell DKI acquisition in that it uses multiple 
encoding directions and encoding strengths (Poot et al., 2009, Jensen and Helpern, 
2010). However, unlike DKI, it also uses b-tensors with varying anisotropy, and the 
analysis is based on the powder averaged signal. It therefore has many features in 
common with the protocol optimization used in DTI and DKI (Basser and Jones, 
2002, Cook et al., 2007, Merisaari and Jambor, 2014), but is different enough to 
warrant a separate investigation of the proper design of the sampling protocol. 

The initial implementation of QTE and DIVIDE was based on relatively 
inefficient waveforms that resulted in long echo times and low spatial resolution. 
The data was also over-sampled to allow closer inspection of signal characteristics, 
which limited the spatial coverage (Paper II, III, and V). In Paper VI, we explored 
the technical feasibility of whole-brain QTE and DVIDE at various MRI systems at 
clinically feasible times. The considerations pertaining to tissue characteristics and 
hardware performance are briefly described below. 

6.2.1 Impact of tissue characteristics 

The design of the protocol depends on the diffusional characteristics of the observed 
tissue. For example, the diffusivity determines the signal attenuation at a given 
encoding strength, and will therefore have an impact on the SNR (Jones and Basser, 
2004). In Paper VI, we considered how the diffusivity and anisotropy of the tissue 
affected the assumption of Gaussian phase dispersion (see section 3.4.1) and the 
accuracy of the powder averaged signal. These considerations could be expressed in 
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terms of the maximal encoding strength that was employed, and the required 
number of diffusion encoding directions. Assuming that the signal should not be 
attenuated below 10% (Topgaard and Söderman, 2003), the diffusivity of the tissue 
determined the maximal encoding strength. On the other hand, the tissue anisotropy 
determined the required number of diffusion encoding directions to render a 
rotationally invariant signal powder average. As described in sections 4.2 and 5.3.1, 
the signal powder average is calculated as the average signal across multiple 
directions. For a finite number of diffusion encoding directions, the signal average 
across all directions depends on the orientation of the object. However, if the loss of 
precision due to rotation is negligible compared to the signal uncertainty caused by 
noise, the signal may be considered to be rotationally invariant. The minimum 
number of encoding directions for a given b-tensor anisotropy and tissue is then 
related to the anisotropy (FA) and level of signal attenuation (푏⋅MD) (Paper VI, 
Szczepankiewicz et al., 2016b). As expected, increasing tissue anisotropy and 
encoding strength increases the demand on directional resolution, which is a well-
known feature in high-angular-resolution dMRI (Frank, 2001, Tournier et al., 2013). 
Moreover, the directional resolution depends on the b-tensor anisotropy, where PTE 
requires fewer directions than LTE, and STE requires only one signal acquisition 
since it yields rotationally invariant signal per definition (Mori and van Zijl, 1995, 
Wong et al., 1995, Eriksson et al., 2013).  

The practical implication of tailoring protocols to the characteristics of specific 
tissues is that different tissues require different protocols. For example, healthy 
white matter requires relatively high b-values and a high directional resolution, 
whereas weaker encoding and few directions are appropriate when investigating a 
glioma tumor (Paper V and VI). 

 

Figure 13 | The miniml number of diffusion encoding directions (nmin) required to yield a rotation invariant 
signal powder average (CV < 1%) for LTE and PTE (Paper VI). Each region is labeled with a circle that 
shows nmin for combinations of anisotropy (FA) and attenuation (b·MD). High anisotropy and attenuation 
both require more encoding directions. PTE requires fewer directions than LTE, and STE requires only 
one direction (data not shown). 



61 

6.2.2 Impact of static field strength and gradient system 
performance 

The quality of dMRI data depends on both the main magnetic field strength and 
the gradient system performance (Polders et al, 2011, Setsompop et al, 2013). Thus, 
the design of a DIVIDE protocol should consider the MRI system performance. As 
detailed in Figure 10, higher gradient amplitude will render a given b-value at a 
shorter encoding time, which benefits the SNR and the sampling rate. Assuming 
high fields and disregarding relaxation, SNR is proportional to the main magnetic 
field. However, higher magnetic fields also reduce the transversal relaxation times 
(Stanisz et al., 2005, Uludag et al., 2009, Cox and Gowland, 2010), which counteracts 
the benefit of increased SNR at sufficiently long echo times. For example, for dMRI 
based on a spin-echo sequence in the brain, a move from a 3 T to a 7 T system is 
only motivated if the echo time can be kept below approximately 100 ms 
(Szczepankiewicz et al., 2016c). 

Since the performance of gradient systems in the context of QTE is relatively 
unexplored, we investigated the feasibility of tensor-valued diffusion encoding with 
numerically optimized waveforms in systems with different gradient performance (33 
to 80 mT/m) and main magnetic field strengths (1.5 to 7 T) (Paper IV). As 
expected, the gradient system performance was crucial to yield short echo times and 
high sampling rates. The resulting echo times ranged from 90 to 140 ms, and the 
resulting SNR maps for a spatial resolution of 2×2×4 mm3 at 푏= 2 ms/µm2 can be 
seen in Figure 14. We estimate that sufficient SNR, i.e. SNR > 3 (Gudbjartsson and 
Patz, 1995), is achievable using a 1.5 T scanner with a 33 mT/m gradient system 
in the whole brain at a spatial resolution of approximately 2.5×2.5×4 mm3. For a 7 
T system with 60 mT/m gradients, it is possible to achieve echo times below 100 
ms, which indicates that DIVIDE based on QTE is also feasible at ultra-high field 
strengths (Paper VI, Szczepankiewicz et al., 2016c). 



62 

  

Figure 14 | Signal-to-noise ratio at b = 2 ms/µm2 in a single healthy volunteer scanned with multiple MRI 
systems. The red outlines indicate regions where SNR < 3. The labels in parentheses state the main 
magnetic field strength and the maximal gradient amplitude in units of T and mT/m, respectively. The 
histograms show the voxel-wise SNR distributions within the white outlines. We note that the 7 T system 
showed poor signal homogeneity, likely due to RF inhomogeneity (Moser et al., 2012). 
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6.3 Study design 

From a statistical point of view, the preparation, execution, and evaluation of a 
study may take many forms, and there are several publications to provide guidance 
on how to do so (Cohen, 1976, Strasak et al., 2007, Vandenbroucke et al., 2007). 
Here, we discuss the impact of parameter precision on the statistical power and sample 
size of a t-test, based on a hypothetical comparison of two independent samples. 

6.3.1 Statistical power 

The statistical power of a test describes the probability of correctly rejecting the 
null hypothesis. Although the analysis of statistical power is frequently overlooked, 
a strong case for its usefulness can be made by considering that it lets us predict the 
probability that a given study will yield a statistically significant result (Cohen, 
1976). Since the power depends on the sample size, a statistical power analysis may 
be used to determine how many subjects should be included in a study to avoid 
inconclusive results, and may also facilitate more realistic expectations regarding the 
outcome (Cohen, 1976, Lenth, 2001, Maxwell et al., 2008). 

In the context of dMRI, considering the statistical power may also improve 
interpretation of results. In Paper I, we investigated DKI and DTI parameters, and 
their statistical precision, in several white matter structures. Interestingly, the 
statistical power was highly heterogeneous across parameters and locations. The 
parameter variance was mainly caused by inter-subject differences, and to a lesser 
extent by measurement noise. Such information can further improve the design of a 
study by determining if time and resources are best spent on longer scans or larger 
samples. 

Generally, a study and imaging protocol should be designed so that all regions 
investigated have sufficient power, but this may lead to unfeasible requirements on 
scan time or sample size. It is worth considering that the statistical power can be 
improved without increasing the sample size. For example, the design of the study 
can strive to maximize the effect size by evaluating only regions or parameters where 
the effect is expected to be largest, and attrition can be avoided by ensuring a high 
program integrity over the course of the study (Hansen and Collins, 1994). 
Furthermore, power may be improved by finding and eliminating confounding 
factors. In Paper I, we found an interaction between dMRI parameters and the size 
of white matter structures caused by partial volume effects, and we estimated that 
its removal could reduce the required sample size by up to 60%. Similar effects have 
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been pointed out in DTI, where interactions between the structure geometry and 
the imaging raster may reduce the parameter accuracy significantly (Edden and 
Jones, 2011, Vos et al., 2011). 

6.3.2 Estimation of required group sizes 

In order to facilitate a preliminary statistical power analysis based on the parameters 
derived from DIVIDE, values for the group mean and variance are presented in 
Table 1. We have also estimated the group sizes necessary to yield a statistical power 
of 0.8 at a relative effect size of 5% using a t-test (Paper I) for several dMRI 
parameters. The analysis is based on a group of ten healthy volunteers (all male, 
mean age ± s.d. was 30 ± 4 y, in the interval 24–34 y) as described in Paper IV. 
Four ROIs were defined to represent the anterior and posterior corpus callous (ACC 
and PCC), anterior crossing region (ACR), and the corticospinal tract (CST). Each 
ROI was placed manually in a single axial slice at the level of the lateral ventricles. 

Table 1 is intended to provide ballpark figures of the parameter precision and 
power for future study design and statistical analysis. Notably, the diffusional 
variance parameters require larger sample sizes than FA and µFA. Furthermore, the 
µFA showed a high parameter precision, in agreement with previously reported 
values (Paper III). Apart from the CST, MKI showed relatively low precision, 
especially in regions close to the lateral ventricles – possibly due to partial volume 
effects with cerebrospinal fluid. 

 
Table 1 | Parameter values derived using DIVIDE in a group of ten healthy volunteers, and estimated 
group sizes (n) required to reach statistical power of 0.8 at a relative effect size of 5% for a t-test 
(independent samples, equal variance, two-tailed, significance threshold 0.05). MD is given in units 
of µm2/ms, and the remaining parameters are unitless.  

 ACC  PCC  ACR  CST 
 Mean (s.d.) n  Mean (s.d.) n  Mean (s.d.) n  Mean (s.d.) n 
MD 0.88 (0.05) 22  0.90 (0.05) 17  0.95 (0.02) 3  0.93 (0.02) 4 
MKT 2.67 (0.23) 45  3.21 (0.22) 30  2.07 (0.16) 36  2.81 (0.15) 19 
MKA 2.32 (0.20) 48  2.73 (0.22) 41  1.54 (0.10) 27  2.41 (0.14) 22 
MKI 0.34 (0.15) >200  0.48 (0.15) >200  0.53 (0.08) 140  0.40 (0.03) 46 
µFA 0.97 (0.02) 3  0.99 (0.02) 3  0.88 (0.01) 2  0.98 (0.01) 2 
FA 0.84 (0.03) 10  0.80 (0.05) 24  0.33 (0.03) 71  0.68 (0.03) 10 
ACC, anterior corpus callosum; PCC, posterior corpus callosum; ACR, anterior crossing region; CST, corticospinal 
tract; n, minimal sample size (per group); MD, mean diffusivity; MK, normalized diffusional variance; FA, 
fractional anisotropy; µFA, microscopic fractional anisotropy. 

 

 
  



65 

7 Interpretation and implications 

Diffusional variance decomposition has been performed in healthy brain (Paper III), 
meningioma and glioma tumors (Paper V), schizophrenia patients (Westin et al., 
2016a), and in several phantoms (Paper II, Eriksson et al., 2015, Westin et al., 
2016b). Here, we review the preliminary findings currently available in healthy brain 
tissue and tumor tissue, and compare them to similar methods, such as DKI (Jensen 
et al., 2005) and techniques based on DDE (Jespersen et al., 2013, Lawrenz and 
Finsterbusch, 2015). The interpretation of the parameters and the implications for 
the wider dMRI community are discussed. 

7.1 Healthy brain 

In the healthy brain, a probe of diffusion anisotropy that is independent of the 
orientation coherence of tissue is desirable because it may alleviate some of the issues 
associated with interpretation of voxel-scale anisotropy (Shemesh et al., 2010, Jones 
et al., 2012). Microscopic diffusion anisotropy has been estimated in monkey brain 
(Jespersen et al., 2013, 2014a) and human brain (Lawrenz and Finsterbusch, 2013, 
Hui and Jensen, 2015, Lawrenz et al., 2015, Lawrenz and Finsterbusch, 2015), based 
on double diffusion encoding. These studies have consistently shown that the 
diffusion anisotropy on the microscopic scale can be recovered, and that it is high 
in the white matter, even in regions of crossing pathways where conventional metrics 
of voxel-level anisotropy, such as FA, are low. Furthermore, the presence of diffusion 
anisotropy can be probed in tissues that appear isotropic on the voxel scale. For 
example, microscopic anisotropy has been detected in gray matter, which supports 
the notion that it contains incoherent anisotropic structures (Komlosh et al., 2007, 
Shemesh and Cohen, 2011, Jespersen et al., 2013).  

In Paper III, we estimated the microscopic anisotropy, based on the DIVIDE 
approach, in terms of the µFA. The µFA was high in regions of white matter, and 
relatively low in gray matter and tissues that interface with CSF. The contrast 
between the µFA and FA was most notable in regions that are known to contain 



66 

crossing white matter pathways, where the µFA was high compared to the FA. 
These findings are in agreement with those from previous studies (Jespersen et al., 
2013, Lawrenz and Finsterbusch, 2013, Lawrenz et al., 2015), and indicate that the 
different encoding techniques and methods of analysis are sensitive to similar 
features of the tissue although the mathematical modeling is somewhat different, as 
discussed by Jespersen et al. (2014b), and Hui and Jensen (2015). We also estimated 
the OP, which reflects the orientation coherence of the tissue. Note that the OP 
map bears a striking resemblance to the FA map (Figure 8), which indicates that 
the FA in white matter is primarily modulated by orientation coherence rather than 
anisotropy (Paper II and III), which is in agreement with previous results based on 
biophysical models (Zhang et al., 2012). This result is shown Figure 15, where a 
strong correlation between the FA and the OP exists in the white matter, whereas 
µFA is independent of the OP. Our observations of microscopic anisotropy in the 
gray matter in Paper III were based on data acquired at a low spatial resolution and 
were therefore sensitive to partial volume effects. In Paper VI, a higher resolution 
was afforded by the optimized waveforms and shorter echo time, and the µFA in 
gray matter regions was estimated to be between 0.5–0.6, although it should be 
noted that µFA below approximately 0.5 may be biased due to noise (Paper II). 
Although parameters of microscopic diffusion anisotropy have not been 
independently validated in healthy tissue, recent results comparing high-resolution 
FA and structural anisotropy support the interpretation of µFA as a marker for 
anisotropic tissue structures that is independent of voxel-scale orientation coherence 
(Budde and Frank, 2012, Budde and Annese, 2013, Ronen et al., 2014, Khan et al., 
2015). 

 

Figure 15 | Association between FA, µFA, and OP. Each point of data corresponds to a voxel in an axial 
slice of a healthy brain. The red markers show data taken from a region where µFA > 0.8, which 
corresponds well to the white matter (red outline in µFA map). The OP shows a strong positive correlation 
to FA, especially in the white matter, indicating that FA mainly reflects the orientation coherence of 
anisotropic tissue. On the other hand, the µFA and FA show a weak correlation, where a high µFA 
corresponds to a wide range of FA values, whereas a high FA is always associated with high µFA. This 
figure is a reproduction of Figure 6 in Paper III, and is based on data that was acquired using the protocols 
suggested in Paper VI. 
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To our knowledge, we have presented the first studies that isolate and investigate 
the isotropic variance component in vivo (Paper III and V, Westin et al., 2016a). 
Westin et al. (2016a) suggested that an elevated VI in the white matter of 
schizophrenia patients agreed with an increasing free water fraction. However, no 
independent investigation of what it represents in healthy tissue has been performed. 
Regardless, it may aid in the interpretation of data. For example, Kaden et al. 
(2015) proposed that the microscopic anisotropy can be derived from what is 
effectively the total diffusional variance, but this assumes that all variance is due to 
anisotropy and it neglects the presence of the isotropic component – an assumption 
that may introduce a significant bias (Paper III and VI). 

7.2 Meningiomas and gliomas 

Tumors frequently exhibit both macroscopic and microscopic heterogeneity, caused 
by factors such as oxygenation, nutrition, metabolism, and interaction with other 
tissues (Heppner, 1984, Marusyk and Polyak, 2010). Tumor heterogeneity may also 
be caused by mixtures of divergent cell clones, where clonal diversity may have a 
strong influence on the malignancy and response to treatment (Shackleton et al., 
2009, Marusyk and Polyak, 2010, Magee et al., 2012).  

Methods such as DWI and DTI are useful for mapping the macroscopic 
heterogeneity and geometric extent of tumors (Maier et al., 2010, Ryu et al., 2014, 
Sternberg et al., 2014, Rozenberg et al., 2016), and also their gross response to 
treatment (Chenevert et al., 2000, Moffat et al., 2005). On the microscopic scale the 
heterogeneity may be probed in terms of the diffusional variance. Several studies 
have shown that the diffusional variance, in terms of the mean kurtosis normalized 
to normal-appearing white matter (MK /MKNAWM), is superior in differentiating 
low- and high-grade gliomas (Raab et al., 2010, Van Cauter et al., 2012, Van Cauter 
et al., 2014, Tietze et al., 2015). These findings presumably reflect a higher degree 
of tissue heterogeneity in higher-grade tumors. Recently, Hempel et al. (2016) 
reported an association between MK /MKNAWM  and the molecular profile of 
gliomas of variable origin, which suggests that a probe of tumor heterogeneity may 
facilitate more specific diagnosis of tumor subtypes. 

In Paper V, we performed diffusional variance decomposition in meningiomas and 
gliomas. Both tumor types exhibited elevated diffusional variance (MKT > 0), 
indicating that both contained heterogeneous tissue. What is remarkable is that the 
dominant components in the two tumor types were different. In the meningiomas, 
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the anisotropic diffusional variance was dominant (MKA > MKI), whereas the 
opposite was observed in the gliomas (MKI > MKA). Examples of diffusional 
variance parameter maps in a meningioma and glioma are shown in Figure 16. 

To determine whether the diffusional variance could be interpreted as tissue 
heterogeneity, an independent analysis of the same tumor tissue by quantitative 
microscopy was performed. The link between diffusional variance and tissue 
microstructure was formulated in two hypotheses, which stated that (i) there is a 
correlation between anisotropic variance and structure anisotropy, and (ii) there is 
a correlation between isotropic variance and the variance in cell density (Paper V). 
The tissue anisotropy (HA) was quantified by “structure tensor analysis” (Bigun, 
1987, Knutsson, 1989), which has been used in several studies that show a strong 
correlation between diffusion and structure anisotropy (Budde and Frank, 2012, 
Budde and Annese, 2013, Khan et al., 2015). The cell density variance (HI) was 
quantified by segmenting and counting cell nuclei in histological images (Malpica et 
al., 1997, Al-Kofahi et al., 2010). We are not aware of any previous investigations 
of cell density variance, but the second hypothesis is made plausible by the 
correlation between diffusivity and cell density that has been reported in several 
studies (Sugahara et al., 1999, Anderson et al., 2000, Chenevert et al., 2000, Lyng 
et al., 2000, Kono et al., 2001, Moffat et al., 2004, Kinoshita et al., 2008, Padhani 

 

Figure 16 | Examples of diffusional variance parameters in meningioma and glioma tumors (white line 
shows outline of tumor). The total diffusional variance (MKT) is high in both tumor types, indicating 
heterogeneous tissue. However, the tumors differ markedly regarding the source of diffusional variance, 
where the meningioma and glioma exhibit mostly anisotropic and isotropic diffusional variance, 
respectively. This is seen in the column on the far right, where the anisotropic (MKA, blue) and isotropic 
variance (MKI, red) are superimposed on a high-resolution FLAIR image. The figure was adapted, with 
permission, from Paper V by Szczepankiewicz et al. (2016a), published by Elsevier. 
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et al., 2009, Ginat et al., 2012, Chen et al., 2013), although there are exceptions. 
Examples of quantitative parameter maps derived from histological images are given 
in Figure 17. 

We found strong correlations between parameters derived from dMRI and 
microscopy, which provides evidence for a link between diffusional variance and 
structure heterogeneity. Specifically, the anisotropic diffusional variance correlated 
with structure tensor anisotropy (MKA vs. HA, r = 0.95), and the isotropic diffusional 
variance correlated with the cell density variance (MKI vs. HI, r = 0.83) (Paper V). 

We would expect diffusional variance decomposition in tumors to have two 
relevant implications. First, probing of more specific components of the diffusional 
variance may facilitate a better understanding and interpretation of tissue 
heterogeneity and its role in tumor diagnosis and treatment. This also applies to the 
interpretation of the anisotropic diffusional variance in terms of the µFA. For 
example, the fact that µFA is not affected by orientation coherence of tissue may 
be beneficial in determining the presence of anisotropic structures in meningioma 
tumors for the purpose of predicting their subtype and toughness (Kashimura et al., 
2007, Tropine et al., 2007, Jolapara et al., 2010, Sanverdi et al., 2012). Secondly, 
there may be a purely statistical benefit in separating the two components of 
diffusional variance, and in treating one as a nuisance parameter (Paper V), as this 
may remove unwanted variance and therefore improve the statistical power (Paper I). 
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Figure 17 | Quantitative microscopic analysis of tumor tissue. The top row shows the hematoxylin- and 
eosin-stained section (H&E). The magnifications show a 250×250 µm2 region of the tissue. The 
parameter maps show the fractional anisotropy derived from the structure tensor analysis (FAST), the 
orientation of the tensor field (Ori), and the cell density (ρୡ in units of 103/mm2). The meningioma is a 
grade-I fibroblastic subtype (Riemenschneider et al., 2006, Louis et al., 2007), the cell density is relatively 
homogeneous (ρୡ exhibits low spatial variance), and the tissue mainly contains anisotropic cells and cell 
structures (high FAST). The orientation coherence varies across the tumor, and some regions are
coherent on the mm length scale (saturated regions in the Ori map). The glioma is a grade-IV 
glioblastoma multiforme. It is surrounded by normal-appearing cortical gray matter and contains regions 
of necrotic tissue at its core. The tissue exhibits vanishing levels of structure anisotropy and orientation 
coherence (low FAST). However, the cell density varies across the tumor, where necrotic tissue can be 
seen as regions of low cell density. The figure was adapted, with permission, from Paper V by 
Szczepankiewicz et al. (2016a) published by Elsevier. 
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8 Conclusions 

This thesis describes initial efforts to probe specific components of diffusional 
variance, and tissue heterogeneity. The work spanned the development and 
implementation of novel techniques for diffusion encoding (QTE), tissue modeling 
(DTD), and parameterization (DIVIDE). We studied healthy and tumor tissues in 
vivo, and demonstrated that diffusional variance can be decomposed into isotropic 
and anisotropic components. In the tumors, parameters from DIVIDE were 
compared to similar parameters from quantitative microscopy. Parameters from the 
two independent methods showed a strong correlation, which supported the 
interpretation of isotropic and anisotropic diffusional variance as probes of variable 
cell density and anisotropic structures, respectively. Although other features of the 
tissue may affect the diffusional variance, the current results suggest that DIVIDE 
enables a more specific characterization of tissue heterogeneity than what is possible 
with previous methods. 

Our ability to disentangle anisotropic and isotropic diffusional variance was 
enabled by the use of b-tensors with variable anisotropy, which require non-
conventional diffusion encoding gradient waveforms. To achieve clinically feasible 
scan times at a wide range of MRI systems, we also worked to developed waveforms 
with superior efficiency compared to previous designs. 

The conclusions of each individual publication were: 
 
I. The diffusional variance and its statistical power is heterogeneous between 

subjects, across brain regions, and even along specific white matter 
structures. Studies should take the region-specific statistical power into 
account when designing studies and interpreting statistical tests. 

II. Tensor-valued diffusion encoding by q-space trajectory encoding enables 
DIVIDE, and is feasible on clinical systems. Diffusional variance in 
phantoms was caused by isotropic and anisotropic heterogeneity on the 
microscopic scale. 

III. DIVIDE parameters were estimated in healthy volunteers in vivo. 
Microscopic diffusion anisotropy was probed in terms of the µFA. The µFA 
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is independent of orientation coherence and may provide a more robust 
biomarker for structural anisotropy than the conventional FA metric. 

IV. Numerical optimization of waveforms for tensor-valued encoding gives 
superior encoding efficiency. Optimized waveforms provide a significant 
reduction in the echo time and facilitate higher-data quality with shorter 
acquisition times. 

V. In meningiomas and gliomas, the two variance components estimated by 
DIVIDE showed a clear association with specific tissue features derived from 
quantitative microscopy. Tensor-valued diffusion encoding at high b-values 
improves the interpretation of dMRI in tumors. 

VI. Whole-brain DIVIDE is possible in a wide range of MRI systems, and at 
acquisition times below 8 minutes. Furthermore, the imaging protocol can 
be tailored to a specific MRI system and tissue to render data of sufficient 
quality. 

8.1 Future work 

Future efforts will investigate the assumptions of the DTD model in various tissues 
in order to establish the impact of time-dependent diffusion and exchange on the 
accuracy and interpretation of the parameters (Nilsson et al., 2013b, Fieremans et 
al., 2016). Our investigations of exchange have already yielded preliminary results 
in healthy brain and tumors (Lampinen et al., 2016), and we expect that the 
combination of multiple dMRI sequences for specialized measurements will prove 
valuable in exploring the characteristics of both healthy and diseased tissues. 

The interpretation of dMRI parameters should also be informed and substantiated 
by independent validation. Tools such as microscopy (light, confocal, electron), 
micro-X-ray, and tissue clearing may contribute valuable information to the 
continued exploration of tissue microstructure (Chung et al, 2013, Khan et al., 2015, 
Walton et al., 2015). The challenge remains to investigate large samples at sufficient 
resolution, and to create a feasible link between tissue microstructure and the 
diffusion process. 
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Diffusion kurtosis imaging (DKI) is an emerging technique with the potential to quantify properties of tissue
microstructure that may not be observable using diffusion tensor imaging (DTI). In order to help design DKI
studies and improve interpretation of DKI results, we employed statistical power analysis to characterize
three aspects of variability in four DKI parameters; the mean diffusivity, fractional anisotropy, mean kurtosis,
and radial kurtosis. First, we quantified the variability in terms of the group size required to obtain a statis-
tical power of 0.9. Second, we investigated the relative contribution of imaging and post-processing noise
to the total variance, in order to estimate the benefits of longer scan times versus the inclusion of more sub-
jects. Third, we evaluated the potential benefit of including additional covariates such as the size of the struc-
ture when testing for differences in group means. The analysis was performed in three major white matter
structures of the brain: the superior cingulum, the corticospinal tract, and the mid-sagittal corpus callosum,
extracted using diffusion tensor tractography and DKI data acquired in a healthy cohort. The results showed
heterogeneous variability across and within the white matter structures. Thus, the statistical power varies
depending on parameter and location, which is important to consider if a pathogenesis pattern is inferred
from DKI data. In the data presented, inter-subject differences contributed more than imaging noise to the
total variability, making it more efficient to include more subjects rather than extending the scan-time per
subject. Finally, strong correlations between DKI parameters and the structure size were found for the cingu-
lum and corpus callosum. Structure size should thus be considered when quantifying DKI parameters, either
to control for its potentially confounding effect, or as a means of reducing unexplained variance.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Diffusion kurtosis imaging (DKI) is a technique that has been sug-
gested to show higher sensitivity and specificity than diffusion tensor
imaging (DTI) in detecting and differentiating alterations of tissue mi-
crostructure (Cauter et al., 2012; Cheung et al., 2009; Grossman et al.,
2012; Wang et al., 2011; Wu and Cheung, 2010). Being an extension
of DTI, DKI provides conventional DTI-based parameters, such as the
mean diffusivity (MD) and the fractional anisotropy (FA), and unique
parameters that describe the degree to which the water diffusion is
non-Gaussian. This information is most commonly represented by
the mean diffusional kurtosis (MK) and radial diffusional kurtosis
(RK) (Jensen and Helpern, 2010; Jensen et al., 2005), that can be

related to properties of the tissue microstructure, for example, the
axonal water fraction and the tortuosity of the extracellular space in
white matter (WM) (Fieremans et al., 2011). In its application to clin-
ical research, DKI has rendered promising results in studies of, for ex-
ample, reactive astrogliosis (Zhuo et al., 2012), age-related diffusional
changes (Falangola et al., 2008), and has been reported to outperform
conventional DTI in the detection of Parkinson's disease (Wang et al.,
2011) and in the grading of gliomas (Cauter et al., 2012). DKI has also
been performed outside of the brain, for example, in the spinal cord
(Hori et al., 2012; Szczepankiewicz et al., 2011).

In light of the emerging popularity of DKI, it is interesting to eluci-
date the statistical characteristics of the extracted parameters. Using a
statistical power analysis, the variability of any parameter can be
evaluated in terms of, for example, the minimal group size required
to detect a true difference in means (effect size) at a predefined prob-
ability (statistical power) (Cohen, 1976; Lenth, 2001; Maxwell et al.,
2008). It may also inform better interpretation of experimental re-
sults by complementing statistical significance tests with information
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about the probability at which the test successfully rejects a false null
hypothesis (Cohen, 1976).

A prerequisite to perform a power analysis is knowledge of the pa-
rameter variance and relevant effect size. Several studies have been
dedicated to analyzing variability in DTI parameters. Heiervang et al.
(2006) performed a statistical power analysis for several WM struc-
tures and various tracking methods, showing that inter-subject coef-
ficients of variation (CV) for MD and FA were below 8% and 10%,
respectively. Variations in the mean and standard deviation of DTI pa-
rameters have also been demonstrated within WM structures (Colby
et al., 2012; Corouge et al., 2006; Wakana et al., 2007). Wakana
et al. (2007) investigated the reproducibility in FA and structure
size in several WM structures, and found that a 10% difference in
fiber-bundle volume required a group size 10 times larger than that
required to detect a 10% difference in FA, indicating a higher variance
in the size parameter compared to FA. Variability is also introduced by
the hardware and the post-processing of data. Pfefferbaum et al.
(2003) compared within- and between-scanner reliability on two
similar but not identical scanners, and reported a systematic mean
bias across scanners with CVs of 7.5% and 4.5% for MD and FA, respec-
tively. Few studies have analyzed the variability of DKI-specific pa-
rameters, however, data reported by Lätt et al. (2012), on the mean
and standard deviations in 21 manually segmented structures, can
be used to calculate CVs for the most frequently used DKI parameters.
The CV, averaged across all structures, was the lowest for MD andMK,
with values of 5% and 8%, respectively, and the highest in FA and RK
with values of 10% and 14%, respectively. These values indicate that
the variability in MK and RK is larger but comparable to that found
for MD and FA. However, more detailed information could improve
study design and aid the interpretation of experimental results.

The aim of this study was, therefore, to evaluate three aspects of
DKI parameter variability: the global and along-tract variability, the
inter- and intra-subject variability, and the amount of variability
explained by the WM structure size. The results were used to esti-
mate the minimal group sizes required to find a physiologically rele-
vant effect size, to quantify the advantage of increasing group size
versus extending scan time per subject, and to estimate whether
the introduction of additional covariates, such as the structure size,
may lower demands on group size. The study was based on three
major WM structures in the brain, defined using tractography-based
segmentation.

Theory

Statistical power and group size

The power of a statistical test (π) represents its probability to cor-
rectly reject the null-hypothesis, i.e., “there is no significant difference
in means between two groups”. For a t-test, π can be estimated from
the t statistic and the number of samples in each group, here referred
to as the group size (n), given a predefined significance level (α) and
an effect size defined as the absolute (Δμ) or relative (Δμ/μ) differ-
ence in group means, respectively. The t statistic used for testing
whether the means of two groups are significantly different is given
by

t ¼ Δμ
SE Δμð Þ ¼

Δμffiffiffiffiffiffiffiffiffiffiffiffi
2V=n

p ; ð1Þ

where SE(Δμ) is the standard error of the difference in group mean
values, given by SE(Δμ) = (2V/n)1/2 if the two groups are equal in
size and have equal variance (V) (Vittinghoff et al., 2005).

Statistical power analysis may also be used to predict how amodifi-
cation to an experimental protocol will influence the minimal group
size. Below, we analyzed the influence on group size requirements

from study-design alterations such as extending the acquisition time
or correcting for hidden covariates.

Parameter variance

Since the statistical power is related to the variance of the param-
eter under investigation, reducing the variance will reduce the re-
quired group size. The measured parameters can be modeled by a
stochastic variable Y, described by the population mean (μ), the
group-dependent deviation from the mean, that is the effect size
(Δμ), and a stochastic error term (Etotal), according to

Y ¼ μ þ Δμ·Gþ Etotal; ð2Þ

where G = [0,1] is a discrete index of group affiliation (G = 0 for
controls and G = 1 for the experimental or patient group)
(Vittinghoff et al., 2005). The error term can be described by a
two-level random-effects model, where Etotal is the sum of two inde-
pendent error terms Etotal = Einter + Enoise (Clayden et al., 2006; Laird
and Ware, 1982). Here, Einter and Enoise represent the inter-subject var-
iability and the variability introduced by imaging and post-processing
noise, with variances Vinter and Vnoise, respectively. The total variance
is thus the sum of the inter-subject and noise variances, according to

V total ¼ V inter þ Vnoise: ð3Þ

Estimating the total variance in a new acquisition protocol (V′total)
is possible by studying how the noise component is modified,
according to

V ′total gð Þ ¼ V inter þ
Vnoise

g2
: ð4Þ

Two important factors affecting g are the signal-to-noise ratio per
signal acquisition (SNR), and the acquisition time (T) of the new and
the old protocol: g ∝ (T′/T)1/2 ∙ (SNR′/SNR), assuming that T is pro-
portional to the total number of acquired images. The factor g, and
the new group size (n′) both have an effect on the denominator in
Eq. (1), according to

SE Δμ ′ð Þ ¼ SE Δμð Þ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−RVnoise· 1− 1

g2

� �� �
·
n
n′

s
; ð5Þ

where RVnoise = Vnoise/Vtotal is the relative variance contribution
from noise in the old protocol. Assuming large groups, the new and
old protocol will have equal power if SE(Δμ′) = SE(Δμ), and the
new group size will be given by

n′ ≈ n· 1−RVnoise· 1− 1
g2

� �� �
: ð6Þ

Eq. (6) shows that an increase in g has the strongest effect on n′
when RVnoise is relatively large, that is whenmost of the total variance
is due to noise. In other words, for a fixed statistical power, an in-
crease in SNR or T can reduce the demand on group size n′. Likewise,
a reduction in total scan time would increase the demand on the
group size.

Parameter covariance

DKI parameters are influenced by properties of the tissue micro-
structure (Fieremans et al., 2011), butmay also be affected by other fac-
tors, such as the partial volume effect (PVE) (Cao and Gold, 2008; Vos
et al., 2011), image distortions, subject motion and post-processing,
amongmany others (Jones and Cercignani, 2010). Some of these effects
may be corrected for by expanding the model in Eq. (2) to include
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additional predictors. The addition of one predictor (x) to Eq. (2)
results in

Y ¼ μ ′þ Δμ ′·Gþ k·xþ E′total; ð7Þ

where k denotes the regression coefficient of the predictor, and E′total is
the new error term (Vittinghoff et al., 2005). Identifying significant pre-
dictors means that their contribution to the variance of the error factor
can be removed, resulting in a modified residual variance, according to

V ′total ¼ V total·
1−R2

Y; G;x½ �
1−R2

Y;G

·
2n−2
2n−3

; ð8Þ

where R2
Y,G is the coefficient of determination for regression of Y on the

group term G, and R2
Y,[G,x] is the coefficient of determination for regres-

sion of Y on G and the predictor x. The effect on the standard error of the
estimated effect size is

SE Δμ ′ð Þ ¼ SE Δμð Þ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ′total
V total

·
n
n′

·
1

1−R2
G;x

s
; ð9Þ

where the term (1 − R2
G,x)−1 is commonly referred to as the variance

inflation factor, since it inflates the standard error of Δμ in cases where
correlation betweenG and x exists, andmay even outweigh the benefits
of an additional predictor (Vittinghoff et al., 2005). However, if the
groups are matched with respect to x, i.e., the two groups have equal
mean values of x, the value of R2

G,x is zero, resulting in no inflation
and a guaranteed reduction in the standard error of the estimated effect
size. Assuming that the compared groups are large (2n − 2 ≈ 2n − 3,
in Eq. (8)) andmatchedwith respect to x (RG,x = 0, in Eq. (9)), themin-
imal group size after accounting for the additional covariate is given by

n′ ≈ n·
1−R2

Y ; G;x½ �
1−R2

Y ;G

: ð10Þ

In analogy with the improvements arising from increased SNR or
extended acquisition times, Eqs. (9) and (10) show that reducing
the standard error of Δμ, by accounting for covariates, can be translat-
ed into increased statistical power or reduced demands on group size.

Methods

Data acquisition and post-processing

In order to assess the variability characteristics of DKI parameters,
DKI was performed on 31 healthy volunteers (12 male, 19 female, age
36 ± 13 years). The study was approved by the local ethics commit-
tee and informed consent was obtained from all volunteers. Imaging
was performed on a Philips Achieva 3 TMRI scanner, with amaximum
gradient amplitude of 80 mT/m, using an 8-channel head coil. The DKI
protocol consisted of one volume acquired with b = 0 s/mm2,
followed by 60 diffusion-weighted volumes in which the diffusion
encoding was applied in 15 non-collinear encoding directions with
b-values of 500, 1000, 2500 and 2750 s/mm2. The selection of
b-values was based on the protocol optimized by Poot et al. (2010).
The image volume consisted of 35 contiguous axial slices at a spatial
resolution of 2 × 2 × 2 mm3, covering the CG, CC and CST (from the
cerebral peduncle to the centrum semiovale). The echo time (TE)
was 76 ms, repetition time (TR) was 7855 ms, half-scan factor was
0.78, SENSE factor was 2, and bandwidth was 2970 Hz, resulting in a
scan time of 8:15 min. Motion and eddy current distortions were
corrected in ExploreDTI (Leemans et al., 2009) where ElastiX (Klein
et al., 2010) was used to register the images. The images were
inspected for motion, ensuring that no image volume was rotated
more than 2.5° during the acquisition. Parameter maps, including

MD, FA, MK and RK, were calculated using in-house developed soft-
ware, implemented in Matlab (The Mathworks, Natick, MA, USA). In
this procedure, the diffusion-weighted images were modulated with
the Jacobian determinant (Jones and Cercignani, 2010). In order to
mitigate the potential effects of Gibbs ringing artifacts, all image
volumes were smoothed using an isotropic 3D Gaussian kernel with
a full width at half maximum of 2 mm (Veraart et al., in press). This
kernel size has little effect on sensitivity and specificity (Van Hecke
et al., 2009), thus, it is not expected to significantly influence the
parameter precision.

Bootstrapping

To estimate the variance component caused by noise, one
oversampled set of data was acquired to facilitate a bootstrap analysis
(Jones and Pierpaoli, 2005). This data was acquired in an extended
imaging session for one of the volunteers, in which the DKI protocol
was repeated in seven subsequent acquisitions with a total scan time
of approximately 65 min. The subject was not repositioned between
acquisitions. By randomly selecting one out of the seven image
volumes for every combination of encoding strength and direction,
200 bootstrapped data sets were created, each with a composition
corresponding to those acquired in the control group. This number of
bootstraps, given the seven original data sets with 60 direction
and b-value combinations in each, is expected to generate a reliable
distribution of parameters (O'Goreman and Jones, 2006), where the
CV of the relative noise contribution is given by CV(RVnoise) = (2/N)1/2,
i.e., 10% for N = 200. Individual post-processing and parameter calcula-
tion was performed on all of the simulated sets of data in a way identical
to that performed in the control group. The bootstrapping generated
unique noise realizations, allowing the resulting parameter variance to
be attributed to imaging andpost-processing noise only and thereby pro-
vide an estimate of Vnoise in Eq. (3).

Structure definition

Three majorWM structures were investigated: the superior cingu-
lum bundle (CG), the medial motor corticospinal tract (CST) and the
mid-sagittal corpus callosum (CC). These structures were selected to
represent some of the structures most commonly investigated with
diffusion tensor tractography, which also offer a variety of features,
such as proximity to CSF and gray matter (GM), and varying geomet-
rical configurations. The structures were defined in native space using
manually defined geometrical inclusion criteria (AND-gates, com-
monly referred to as ROIs) as shown in Fig. 1. The structures were
segmented from a whole-brain tractography (diffusion tensor was
fit to b = 0, 500 and 1000 s/mm2), generated in TrackVis (Wang
et al., 2007), using a deterministic interpolated streamline algorithm.
Track termination was based on a FA threshold of 0.2 and an angle
threshold of 30°.

The CG was delineated using three AND-gates, combined in gate
pairs, and positioned to include the superior CG bundle (Fig. 1A).
Gates were defined in coronal projections and the mid-sagittal CC was
employed as an anatomical reference. The gates were aligned with the
anterior (Ant), central (Cent) and posterior (Post) part of the mid-
sagittal CC body, and landmarks were placed at the center of each
gate. The CST was delineated using two AND-gates (Fig. 1D), defined
in axial projections and placed around the peduncle (Inf) and themedi-
al motor area of the cortex (Sup). Landmarks were defined at each gate
and at the level of the ventricles (Cent). The CCwas extracted using two
AND-gates, separated by 12 mm and centered on the mid-sagittal
plane, that excluded the tracts outside of the intersections so that a
truncated mid-sagittal segment was selected (Fig. 1G). The landmarks
were placed at the inferior edges of the genu (Ant) and splenium
(Post), as well as at the boundary between the body and the genu
(PreA) and the splenium (PreP), respectively.
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The sub-segments of each structure were defined by the intervals
between landmarks, creating two sub-segments in the CG and CST,
and three sub-segments in the CC. Tractography and parameter ex-
traction were performed independently on all of the bootstrapped
data sets.

Parameter evaluation

Diffusion parameters were calculated as a function of position to re-
tain spatial information along the tract, employing an evaluationmeth-
od resembling that presented by Colby et al. (2012). The evaluationwas
performed in three steps. First, a singlemean trackwas created to repre-
sent the geometrical features of the track bundle. Second, diffusion pa-
rameters were projected onto the mean track to create parameter
vectors. In the final step, the parameter vectors were normalized across
subjects using anatomical landmarks as points of reference. Fig. 1 shows
representative tractographies of the CG, CST and CC (Figs. 1A, D, G),
along with the point cloud that makes up the tracts and constituted
the cross-sections selected along the mean track (Figs. 1B, E, H).
All calculations were performed using in-house developed software,
implemented in Matlab, and details on the three steps are given below.

The first step was to calculate the mean track, which was repre-
sented by a number of consecutive points in 3D-space (mi), with
each point placed at the center of mass of the cross section of the
track bundle. Note that the mean track in the CG and CST is directed

along the WM fibers, while in the CC it runs perpendicular to the
WM fibers (Fig. 1).

In the second step, projection of the diffusion parameters to the
mean track was performed by averaging the parameter values from
all points in the cross section associated with mi. The cross section in-
cluded at most one point per track, with the point selected being the
one closest to a plane with normal n = mi + 1 − mi, with its origin in
mi. Only points within 1 mm distance from each plane were included
in the cross section, resulting in a cross section thickness of 2 mm.
The calculation of the apparent structure size (AS) was performed
by determining the apparent radius (in the case of the CG and CST)
or thickness (in the case of the CC) of the tract bundle mask at each
cross section. The area of the mask was calculated by representing
each point in the cross-section by a circle with radius 0.5 mm
(Figs. 1C, F, I). Only non-overlapping parts of the circles contributed
to the AS.

In the third step, the individual parameter vectors were normal-
ized in order to align them with respect to the anatomical landmarks.
Each landmark was first associated with the point on the mean track
closest to the landmark, which allowed the calculation of average in-
terval lengths, i.e., the mean path track lengths between two land-
marks. Next, the mean tracks and their associated parameter vectors
were linearly interpolated so that the interval lengths of the individ-
ual mean tracks conformed to the average interval lengths. Further,
the mean tracks were resampled to contain 100 equidistant elements

Fig. 1. The left column shows tractographies of the left hand side CG (A) and CST (D), as well as the mid-sagittal truncation of the CC (G), superimposed on a color FA-map. The
AND-gates, used for structure delineation, are shown as red lines, and the anatomical landmarks are shown as black triangles (note that landmarks that coincide with
AND-gates are not shown, and that the gates defining the CC are not displayed). The middle column (B, E and H) shows the mean track (black line), the point cloud that defines
the tracts in 3D-space (red to blue dots), the landmarks (black triangles), and the selected cross section (dashed line) for display in the right column. Every other interval of the
point cloud is omitted in order to visualize the path of the mean track (note that only points between the outermost landmarks were used in the evaluation and that the figures
are not to scale). The parametric information contained within each sub-interval of the point cloud is projected onto the mean track, thus creating parameter vectors of MD, FA,
MK and RK, that can be normalized across subjects with respect to the anatomical landmarks. The right column (C, F and I) shows cross sections of the point cloud, in a plane
that is perpendicular to the mean track. Each point is the center of a circle with a radius of 0.5 mm. The area of the cross section, created in each interval, was used to quantify
the apparent size (AS) of the structures. In the CG (C) and CST (F) the AS was defined as the radius of a circle with the same area as the structure. In the CC (I) the AS was defined
as the thickness of the point cloud.
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per DKI parameter and WM structure, on which the final analysis was
performed. To simplify the presentation of results for bilateral struc-
tures, the CG and CST estimates were evaluated as the average of
both sides for each individual subject.

Statistical analysis

The statistical analysis comprised three aspects, all performed to
improve the design of future DKI studies: first, calculating the group
size required to find a subtle difference in group means, second, an-
swering the question of whether to scan longer per subject or more
subjects by analyzing the relative contribution of noise to the total
variance, and third, analyzing the potential reduction in group size re-
quirement resulting from the addition of relevant covariates.

The group sizes required to obtain a statistical power of π = 0.9 at a
relative effect size of 5% (i.e., absolute effect size was Δμ = 0.05 ∙ μ)
were calculated for whole structures and sub-segments. We assumed
that the difference in group mean values was tested using a two-tailed

Student's t-test at a significance level of α = 0.05, assuming that the
control and experimental groups were of equal sizes. Furthermore, the
analysis assumed equal variance in both groups, with a value given by
that observed in the groupof healthy volunteers. Even at amoderate de-
parture from the assumption of equal group size and variance, the anal-
ysis is expected to produce robust estimates of the t-statistic and the
statistical power of the study (Cohen, 1976). The effect size was chosen
to represent a subtle but physiologically relevant change in DKI param-
eters, according to a survey of relevant DTI and DKI studies of the brain
(Table 1). In this compilation, the approximate span of relative effect
sizes is between 1 and 30%. However, it should be noted that the relative
effect size can bemuch higher for more severe tissue alterations such as
tumors and edema (Cauter et al., 2012; Harris et al., 2008; Jensen et al.,
2011). Required group sizes were calculated by iteratively adjusting n
until the desired statistical power was reached.

The total variance, measured in the control group, was separated
into inter-subject variance and imaging noise variance in order to de-
termine the effect of increasing scan time or group size (Eq. (6)). The

Table 1
Relative effect sizes (Δμ/μ) of various conditions as observed in DTI and DKI parameters, and group sizes investigated (n, reported as size of control group + patient group). The
values of Δμ/μ are reported in regions where significant differences in group means were found. The coefficient of variation (CV) is the value reported for the control group specified
for each parameter separately. In cases where the variability was not reported it is marked with a dash (–).

Source Condition Region Parameter CV [%] Δμ/μ [%] n

Wang et al. (2011) PD Caudate, putamen, globus palidus, substantia nigra MK 13 15–30 30 + 30
Grossman et al. (2012) mTBI Thalamus, internal capsule, splenium of the CC,

centum semiovale
MK 1–2 2–3 14 + 22
FA 2 3
MD 1–4 1–2

Kim et al. (2006) PTSD CG bundle FA 11–18 12–26 21 + 21
Zhang et al. (2011) MDD Right uncinate FA 7 7 21 + 21

RD 7 5
Ito et al. (2008) PSP Anterior CC MD 17 15–34 19 + 7

FA 8 12–17
Bozzali et al. (2012) AD Cingulum MD 6 17 14 + 31

FA 8 12
Stenset et al. (2011) MCI Cingulum, genu CC FA 10–15 7–13 26 + 12

RD 17–29 11–22
Tang et al. (2010) EOS Right anterior cingulum FA – 14 38 + 38

AD Alzheimer's disease, EOS early-onset schizophrenia, MDD major depressive disorder, mTBI mild traumatic brain injury, NAWM normal appearing white matter, PD Parkinson's
disease, PSP progressive supranuclear palsy, PTSD posttraumatic stress disorder, RD radial diffusivity.

Fig. 2. The image depicts transversal (Tra), coronal (Cor), and sagittal (Sag) projections of the DKI parameter maps (MD, FA, MK and RK, respectively). The FA map displays the
highest contrast between WM and GM, followed by RK and MK, in descending order. MD displays a high contrast when comparing CSF to WM and GM, but is low when comparing
WM to GM.
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Fig. 3. The tractographies (top row) show a representative right-hand side CG (green tracts), CST (blue tracts), and a mid-sagittal truncation of the CC (red tracts) together with the
AND-gates (red) used to segment the structures from the whole-brain tractography (not shown for the CC). The figure also shows a transparent representation of the same struc-
tures (blue) containing the mean track (red tract), and the landmarks (black triangles) used to normalize data. The plots show the group mean values (bold black line) of the ap-
parent size (AS, bottom row) and the DKI parameters (MD, FA, MK and RK) as a function of anatomical position along the structures. The parameter variability is visualized by thin
black lines, where the solid lines show two standard deviations from the mean (2Vtot

1/2), and the dashed lines show two standard deviations from the mean after the contribution
from noise has been removed (2Vinter

1/2 , Eq. (3)). The red field visualizes the variability contributed by noise. In the CG, MD displays a high inter-subject variability in the anterior
regions, whereas MK has its highest variability in the central region. Both FA and RK peak at the center, tapering off towards the anterior and posterior endpoints. Parameter var-
iations along the CST are most prominent for the FA, probably due to the crossing-fiber region in the superior segment. The variability of all parameters, except the FA and AS,
is elevated in the inferior parts of the structure. Similarly to the CST, the CC displays significant parameter variation along the structure. In the thinnest region, the isthmus
(black arrows), MD and FA are strongly elevated and reduced, respectively, probably due to the PVE at the WM/CSF interface. The CC also displays a much smaller relative depen-
dence on noise (red area) compared with the CG and CST. It is also notable how the AS and the FA both follow the same trend, which showcases the modulating effect of PVE on
diffusion parameters due to tract morphology.
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noise component (Vnoise) was estimated from the bootstrapped data,
by assuming that the variance in the simulated data was due to noise.
To obtain Vinter, the noise component was subtracted from the total
variance according to Eq. (3).

DKI parameter correlation with the apparent structure size
was assessed using Pearson's correlation coefficient (r). The effects
of correlation on the statistical power were calculated according to
Eq. (9), assuming that the two groups were matched with respect to AS,
i.e., that there was no inflation due to predictor covariance (R2

G,AS = 0).

Results

Fig. 2 shows axial projections of the DKI parametermaps in one rep-
resentative subject. Visually, the MK and RK maps are similar to the FA
maps, with the highest values found in the WM. MK and RK maps are
similar, since MK is partly determined by RK just as RD is partly deter-
mined by MD. The numerical values of the MK, RK, and FA maps are
the lowest in the ventricles, as expected, due to the nearly unrestricted
water diffusion in the ventricular cerebrospinal fluid (CSF).

Fig. 3 shows the DKI parameters and AS, and their variability, as a
function of anatomical position along eachWM structure. The variabil-
ity is represented by two components: the blue area shows two stan-
dard deviations from the mean of the inter-subject variability and the
blue and red areas together show the total variability. The evaluation
of parameters along structures allowed within-structure details to be
resolved. For example, FA was reduced in the superior parts of the CST
where the tract intersects with the CC. In the CC, MD was elevated
and FA was reduced at the thinnest part (isthmus), probably due to
stronger PVE with CSF at this location. This mode of visualization also
supplies insight into the parameter covariance; MK generally showed
inverse correlationwithMD,whereas the variation of RK exhibited sim-
ilar patterns to FA andMK. The influence of noise and inter-subject var-
iability was also dependent on position. For example, DKI parameters
were more affected by noise and inter-subject variability in the inferior
parts of the CST than in its superior parts (Fig. 3, center column). Table 2
presents these results in a condensed format, showing average param-
eter valueswith coefficients of variation in the sub-segments, compared
with values from whole tract averages. Table 2 also shows the relative
variability induced by imaging and post-processing noise, as calculated
from the bootstrapped noise simulations. In most of the structures and
parameters, less than 30% of the total variance was attributed to the in-
fluence of noise. The magnitude of the noise component was heteroge-
neous along the structures, indicated by a varying thickness of the red
area in Fig. 3. The value of RVnoise was found to be at its highest in the
inferior segment of the CST, where it contributed with as much as 54%
of the total variance in MD and approximately 35% of the variance in
other DKI parameters (Fig. 3 and Table 2). The lowest relative noise con-
tribution was found in the CC.

Table 3 shows the group size requirements in whole structures and
in structure sub-segments, as calculated from the parameter variance.
The most precise parameters, requiring the smallest group sizes, were
MD (n = 10–40), followed by FA (n = 10–50). The kurtosis and struc-
ture size parameters generally demanded larger group sizes, where MK
was the most precise (n = 10–70). The parameters RK and AS tended
to require more than twice the number of subjects compared to any
of the other parameters (n = 30–200, and n = 80–180, respectively).
The worst case was found in the anterior CC where 200 subjects were
required for detecting subtle group-wise differences in RK. Note that
RK, in this case, correlated strongly with MK (r = 0.93), suggesting
that RK may not add substantially to the information already provided
by the more precise MK. Evaluating whole structures, without dividing
them into sub-segments, generally resulted in a lower group size
requirement, although some combinations of structure segments and
parameters exhibited behavior contrary to this generalization, for ex-
ample, the MK in the posterior sub-segment of the CC. This indicates
that sub-structures may exhibit smaller inter-subject variability com-
pared to whole structures, despite having a smaller volume, thus in-
creasing the statistical power when evaluated as a sub-structure.

Correlations between the investigated DKI parameters and the ap-
parent structure size are shown in Table 4. Significant correlations be-
tween AS and several DKI parameters were found in the CG and
CC. The most prominent correlation was found for FA in the CG (r =
0.80, p b 10−7, for whole structure, Fig. 4) and for MD in the CC
(r = −0.53, p b 10−3, for posterior sub-segment). Adding the AS as a
covariate could reduce the group size requirement by 30–60% in the

Table 2
DKI parameter values in the group of healthy volunteers (n = 31), calculated in the cingulum (CG), corticospinal tract (CST) and corpus callosum (CC). The mean value (μ) is
presented along with the coefficient of variation (CV in %) and the relative noise contribution to variance (RVnoise in %). Average whole-structure CVs were 4.2, 4.7, 4.9 and 8.8%
for MD, FA, MK and RK, respectively. The most prominent contributor to variance was generally the inter-subject variability (reflected by a low RVnoise).

MD [μm2/ms] FA MK RK

μ CV RVnoise μ CV RVnoise μ CV RVnoise μ CV RVnoise

CG Ant 0.84 4.6 20 0.56 6.6 8 0.98 4.7 20 1.47 8.4 25
Post 0.84 4.2 47 0.57 7.6 5 1.02 4.2 28 1.53 8.2 25
Whole 0.84 3.7 42 0.56 6.1 6 1.00 4.1 22 1.50 7.2 28

CST Inf 0.85 4.2 54 0.64 4.1 35 1.15 3.8 36 1.72 7.9 35
Sup 0.82 3.6 24 0.50 6.4 16 1.10 3.1 9 1.46 5.7 8
Whole 0.83 3.6 42 0.57 4.1 33 1.13 3.2 25 1.60 6.4 25

CC Ant 1.01 5.9 12 0.69 5.5 6 0.94 8.6 5 1.59 15.2 6
Cent 1.09 6.3 5 0.67 4.2 5 0.98 8.8 5 1.75 14.5 4
Post 0.93 6.5 17 0.76 3.6 19 1.17 4.8 35 2.27 13.0 14
Whole 1.04 5.3 8 0.69 3.6 8 1.00 7.4 5 1.80 12.6 4

Table 3
Calculated group sizes (n) for DKI parameters (MD, FA, MK and RK) and apparent
structure size (AS), required in order to generate a statistical power of π = 0.9 at an
effect size of 5% and a significance level of α = 0.05. The group sizes show the number
of subjects needed in each group and were estimated for whole structures as well as
sub-structures. The values of n mainly reflects the total parameter variability, meaning
that a low Vtotal makes it easier to detect the proposed 5% change, making the required
group size comparatively small.

MD FA MK RK AS

CG Ant 21 39 21 63 183
Post 18 51 18 59 147
Whole 14 34 17 47 148

CST Inf 17 17 15 55 109
Sup 13 38 11 30 108
Whole 13 17 11 37 106

CC Ant 32 28 65 199 100
Cent 36 18 68 181 122
Post 38 13 22 146 101
Whole 26 14 48 137 85
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CG and 20–30% in the CC (Eq. (10)). No correlations between DKI pa-
rameters and AS were found in the CST.

Discussion

In this study, we investigated the group sizes required to find subtle
differences in group means of DKI parameters in three WM structures
with a statistical power of 0.9. The results, with respect to group sizes
required, not only showed a large heterogeneity between the various
DKI parameters and between the three WM structures investigated,
but also heterogeneity between different sub-segments within the
structures (Table 3). A similar heterogeneity in group size requirement
has been found for DTI by Heiervang et al. (2006) when comparing the
CG, CST and CC. The heterogeneity in variability implies that, for a fixed
relative effect size, the statistical power varies between structures and
their sub-segments, as well as between parameters. For example, in
the data presented, finding a difference in MK between two groups is
more likely in the posterior CC than in its anterior part even if the rela-
tive effect size in these sub-structures is equal. Knowledge of this spatial
and parameter-specific variation is expected to benefit studies aiming
at early diagnosis, and it is critical when a pathogenesis pattern is in-
ferred from the observation of significant alterations in one part of the
brain before another. In other words, the conclusion that a disease did
not have its origin in a given part of the brain must be accompanied

by the knowledge that an effect was likely to have been discovered if,
in fact, it was there. Thus, awareness of statistical power is crucial
both for study design and for interpretation of results from DTI and
DKI studies. Knowledge of these characteristics allows studies to be
designed in a way that ensures sufficient power in all structures inves-
tigated, since the structure with the lowest statistical power defines the
lower limit of the required group size. Such a procedure could result in
some structures becoming overpowered, a potential downside for a
study (Ferguson, 2009), hence all statistically significant group-wise
differences should be scrutinized with respect to the effect size, consid-
ering its practical or physiological relevance using similar studies as a
guideline (Table 1).

The analysis of the variations in variability along the structures
could also be used to reduce group size demands, by sampling only
those parts of a structure where the variability is expected to be
low, assuming, of course, that homogeneous whole-structure alter-
ations are expected. This conclusion is somewhat contra-intuitive,
since inclusion of larger volumes normally reduces the standard
error of the mean. It should also be pointed out that the segment
exhibiting minimal variability might vary depending on the evaluated
parameter. An example of high group-wise variability can be seen in
the superior part of the CST, where the group size for FA is three
times larger than compared to the inferior part, which is likely due
to the presence of crossing fibers in this region (Jeurissen et al.,
2013; Vos et al., 2012). By contrast, group size demands for RK are a
factor of two smaller in the superior part of CST. Thus, some WM
structures could benefit from being subsampled, avoiding regions
where variability is known to be high, resulting in favorable reduc-
tions in group size demands.

Two other strategies may also increase the power of a study or re-
duce the group size demands; first, to discern whether to prioritize
longer scan times or to include more subjects when designing the
study, and second, to incorporate hidden covariates in the data analy-
sis (Vos et al., 2011). The first strategy was investigated by determin-
ing the portion of variability that could be attributed to effects other
than the true differences between subjects, i.e., variability introduced
by imaging and post-processing noise. This investigation was
performed under the assumption that the variance of the noise com-
ponent can be reduced by increasing the scan time dedicated to each
subject (Eq. (5)). In most structures, imaging and post-processing
noise contributed with 5 to 25% of the total variance. In segments
with RVnoise ≤25%, doubling the scan time for each subject would re-
sult in group size reductions of only 10%. In segments with higher
values of RVnoise, such as the posterior CG, inferior CST and posterior
CC, the corresponding reduction is 20%. The values of RVnoise reported
herein are lower than those reported for a similar selection of WM
structures by Clayden et al. (2009) for DTI performed at 1.5 T. In that
study, the noise component was generally dominant for both MD
and FA, indicating that scan time extension could provide a viable
power improvement at that field strength. By contrast, our study sug-
gests that the gain in statistical power resulting frommeasuring twice
as long per subject, for the DKI protocol employed here, is comparable
with increasing the group size by no more than 5–20%. Therefore, it
could be more profitable to invest resources in the inclusion of more
patients rather than extending the individual scan time, provided
that it is practically feasible.

The second strategy to increase the statistical power described in
this report is to include hidden covariates in the analysis. The potential
efficacy of this strategy was investigated by using the structure size as
a covariate, which showed that correcting for correlations with AS
could lower group size requirements by up to 60% for FA in the CG,
and 30% for MD in the CC. We expected the correlation between AS
and DKI parameters to be the highest for structures and parameters
showing a high contrast to the surrounding tissue, as the probable
mechanism responsible for the correlation is the variable amounts of
partial volume effects induced by variations in structure size (Vos

Table 4
Pearson's correlation coefficient (r) describing the association of DKI parameters (MD,
FA, MK and RK) with the apparent structure size (AS). As expected, AS correlated with
DKI parameters in the CG and CC which means that structure size may account for
some of the measured variability. No significant correlation was found in the CST, as
was expected due to the high AS dependence on AND-gate definition. No correction
for multiple comparisons was done; however, no more than 5 significant correlations
are expected on the 5% level for 40 independent comparisons.

MD FA MK RK

CG Ant −0.23 0.57‡ 0.33 0.17
Post −0.31 0.69‡ 0.37† 0.48‡

Whole −0.32 0.80‡ 0.40† 0.45†

CST Inf −0.12 0.06 −0.10 0.01
Sup −0.11 0.17 0.02 0.29
Whole −0.12 0.17 −0.07 0.13

CC Ant −0.48‡ 0.26 0.11 −0.14
Cent −0.44† 0.42† 0.18 0.15
Post −0.58‡ −0.12 −0.24 −0.44†

Whole −0.53‡ 0.32 0.05 −0.09

† p b 0.05.
‡ p b 0.01.

Fig. 4. Correlation between the mean FA and mean AS in the CG, for the 31 healthy sub-
jects. The regression line (black line) shows that a CG bundle with a high AS is likely to
exhibit a high FA. Note that the correlation coefficient value of r = 0.8 indicates that
64% of the variance in FA can be explained by its association to AS. If AS is known,
this variance contribution can be removed (Eq. (10)).
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et al., 2011). Further, we expected this mechanism to be stronger for
small structures, in which surrounding tissue comprises a larger par-
tial volume fraction. In the data presented, the CG demonstrated
these effects in accordance with our predictions in that FA, which
exhibited the highest contrast between theWMof the CG and the sur-
rounding GM (Fig. 1, coronal projections), had the strongest correla-
tion to the size of the structure, followed by RK and MK. Further, MD
did not correlate significantlywith AS, again explained by the low con-
trast between theWM of the CG and the GM surrounding it. In the CC,
MD was strongly correlated to AS, probably due to the large interface
with the CSF-filled lateral ventricles. As expected, correlations with
size were absent in the CST, since its AS is highly dependent on the in-
clusion gate geometry rather than the structure size itself (Wakana
et al., 2007). Although the strength and direction of correlation with
volume may vary across the brain (Fjell et al., 2008), the presence of
an association implies that any measured difference in diffusion pa-
rameters may be due to either alterations in tissue microstructure or
in the amount of PVE. Disentangling these effects requires a correction
for size, as described by Vos et al. (2011). For example, our results in-
dicate that a 4% difference in FAmay be induced by a radius difference
of 10% in the CG, even if the microstructure is otherwise equal. There-
fore, the search and correction for hidden covariates such as structure
size, has the potential not only to increase the power of a given study,
but also to allow for better interpretations of the results (Bendlin et al.,
2010; Cao and Gold, 2008; Vos et al., 2011). Similarly the effects of age
can be easily included by expanding the currently used methods.
However, since the effects of aging are well documented elsewhere
(Lebel et al., 2008; Löbel et al., 2009; Sullivan and Pfefferbaum,
2006), age was only considered as a possible confounder in the associ-
ation between diffusion parameters and the structure size, and was
found to have no significant correlation (α = 0.05) with AS in any
WM structure or sub-structure.

Finally, investigating group-wise AS differences would require
much larger group sizes than for the DKI parameters, as it exhibits a
large inter-subject variation (CV = 10–15% in all evaluated struc-
tures). This result is in agreement with multiple studies of the vol-
umes of the healthy brain and individual structures, in which the
CVs have been reported to be in the range of 10–20% (Choo et al.,
2010; Flashman et al., 1997; Kristo et al., 2012; Pitel et al., 2010;
Teipel et al., 2003). This indicates that a 5% effect in AS, as used in
this study, may be regarded to be small (Cohen, 1976) compared to
the effect in diffusion parameters. The group size requirements in
DKI as compared to DTI are expected to be higher, since diffusional
kurtosis can only be probed at relatively high b-values with higher
signal attenuation. Higher b-values also demands longer echo times.
Taking this into account, DKI may still be preferable to DTI in tissue
where the DTI model is invalid, for example, in regions with complex
fiber organization. An example of this may be found in Alzheimer's
disease, where the FA unexpectedly increases in areas of crossing fi-
bers, probably due to the removal of one fiber population (Douaud
et al., 2011). Notably, the MK maps are smooth in regions where the
FA shows the characteristic reduction due to fiber crossings (Fig. 2).

A limiting factor in the study is the bootstrapping procedure used
to estimate the influence from noise since it is not exactly equivalent
to repeated measurements. Although it is capable of assessing the
contribution of specific sources of error (Jones and Pierpaoli, 2005),
we believe that the reported magnitude of the noise component is
slightly overestimated. This conclusion is supported by the observa-
tion that the variability between the seven repeated scans (data not
shown), used as the base for bootstrapping, was generally lower
than that found in the bootstrapped data and that it cannot be entire-
ly explained by the expected precision in the estimation of the contri-
bution from bootstrapping noise. For example, the seven repeated
scans exhibited less of the elevated variance otherwise found in the
inferior CST and posterior CG. The overestimation of variance in the
bootstrapped parameter maps could be due to the large temporal

spacing between images, resulting in exaggerated movement com-
pared to a normal acquisition. However, the conclusion derived
from this evaluation, i.e., that increased group sizes improve the sta-
tistical power more than extended scan times, is still valid.

Conclusion

The variability in DKI parameters varies across the brain, and was
seen to vary even within single WM structures. This implies that the
statistical power is dependent on location, which could be a serious
confound in studies aiming at early diagnosis of disease. Such studies
typically focus on finding the region from which the alteration of ce-
rebral microstructure originates. Lack of attention to the risk of being
underpowered in some of the evaluated regions may lead to an incor-
rect interpretation of the results, i.e., the absence of significance may
be interpreted as the absence of true effect. Although this study was
based on the DKI model it should be noted that, since DKI includes
the DTI model, these conclusions are also valid for conventional DTI.

An increase in statistical power can be achieved by extending the
scan time per subject, although this was shown to be less potent than
spending that time on scanning more subjects. Another strategy that
may enhance the statistical power is to correct for hidden covariates,
such as the size of the structure. In WM structures where the DKI
parameters correlated significantly with the size of the structure,
such a correction could reduce the group size requirements to ap-
proximately half of their initial size. In order to disentangle effects
of variable PVE and alterations of underlying microstructure on
group-wise differences in DTI and DKI parameters, correction for
structure size should be performed in group comparisons, at least in
the corpus callosum and cingulum.

Acknowledgments

This research project was supported by the Swedish Research
Council, grants no. 2010-36861-78981-35 and 13514, and the Swedish
Cancer Society grant no. CAN 2009/1076.

Conflict of interest statement

The authors declare that there is no conflict of interest.

References

Bendlin, B.B., Fitzgerald, M.E., Ries, M.L., Xu, G., Kastman, E.K., Thiel, B.W., Rowley, H.A.,
Lazar, M., Alexander, A.L., Johnson, S.C., 2010. White matter in aging and cognition:
a cross-sectional study of microstructure in adults aged eighteen to eighty-three.
Dev. Neuropsychol. 35, 257–277.

Bozzali, M., Giulietti, G., Basile, B., Serra, L., Spanò, B., Perri, R., Giubilei, F., Marra, C.,
Caltagirone, C., Cercignani, M., 2012. Damage to the cingulum contributes to
Alzheimer's disease pathophysiology by deafferentation mechanism. Hum. Brain
Mapp. 33, 1295–1308.

Cao, N., Gold, B., 2008. Partial volume effect of cingulum tract in diffusion-tensor MRI.
Proc. SPIE 6916, 1U.

Cauter, S., Veraart, J., Sijbers, J., Peeters, R.R., Himmelreich, U., Keyzer, F., Gool, S.W.,
Calenbergh, F., Vleeschouwer, S., Hecke, W., Sunaert, S., 2012. Gliomas: diffusion
kurtosis MR imaging in grading. Radiology 263, 492–501.

Cheung, M.M., Hui, E.S., Chan, K.C., Helpern, J.A., Qi, L., Wu, E.X., 2009. Does diffusion
kurtosis imaging lead to better neural tissue characterization? A rodent brain
maturation study. NeuroImage 45, 386–392.

Choo, I.H., Lee, D.Y., Oh, J.S., Lee, J.S., Lee, D.S., Song, I.C., Youn, J.C., Kim, S.G., Kim, K.W.,
Jhoo, J.H., Woo, J.I., 2010. Posterior cingulate cortex atrophy and regional cingulum
disruption in mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging
31, 772–779.

Clayden, J.D., Bastin, M.E., Storkey, A.J., 2006. Improved segmentation reproducibility in
group tractography using a quantitative tract similarity measure. NeuroImage 33,
482–492.

Clayden, J.D., Storkey, A.J., Maniega, S.M., Bastin, M.E., 2009. Reproducibility of tract
segmentation between sessions using an unsupervised modelling-based approach.
NeuroImage 45, 377–385.

Cohen, J., 1976. Statistical Power Analysis for the Behavioral Sciences, 2nd edition. Law-
rence Erlbaum Associates, Publishers.

Colby, J.B., Soderberg, L., Lebel, C., Dinov, I.D., Thompson, P.M., Sowell, E.R., 2012. Along-
tract statistics allow for enhanced tractography analysis. NeuroImage 59, 3227–3242.

153F. Szczepankiewicz et al. / NeuroImage 76 (2013) 145–154



Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G., 2006. Fiber tract-oriented statis-
tics for quantitative diffusion tensor MRI analysis. Med. Image Anal. 10, 786–798.

Douaud, G., Jbabdi, S., Behrens, T.E.J., Menke, R.A., Gass, A., Monsch, A.U., Rao, A.,
Whitcher, B., Kindlmann, G., Matthews, P.M., Smith, S., 2011. DTI measures in
crossing-fibre areas: increased diffusion anisotropy reveals early white matter
alteration in MCI and mild Alzheimer's disease. NeuroImage 55, 880–890.

Falangola, M.F., Jensen, J.H., Babb, J.S., Hu, C., Castellanos, F.X., Martino, A., Ferris, S.H.,
Helpern, J.A., 2008. Age-related non-Gaussian diffusion patterns in the prefrontal
brain. J. Magn. Reson. Imaging 28, 1345–1350.

Ferguson, C., 2009. An effect size primer: a guide for clinicians and researchers. Prof.
Psychol.-Res. Pr. 40, 532–538.

Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White matter characterization with dif-
fusional kurtosis imaging. NeuroImage 58, 177–188.

Fjell, A.M., Westlye, L.T., Greve, D.N., Fischl, B., Benner, T., Van Der Kouwe, A.J.W.,
Kouwe, A.J., Salat, D., Bjørnerud, A., Due-Tønnessen, P., Walhovd, K.B., 2008. The
relationship between diffusion tensor imaging and volumetry as measures of
white matter properties. NeuroImage 42, 1654–1668.

Flashman, L., Andreasen, N., Flaum, M., Swayze, V., 1997. Intelligence and regional brain
volumes in normal controls. Intelligence 25, 149–160.

Grossman, E.J., Ge, Y., Jensen, J.H., Babb, J.S., Miles, L., Reaume, J., Silver, J.M., Grossman,
R.I., Inglese, M., Ge, Y., Jensen, J.H., Babb, J.S., Miles, L., Reaume, J., Silver, J.M.,
Grossman, R.I., 2012. Thalamus and cognitive impairment in mild traumatic brain
injury: a diffusional kurtosis imaging study. J. Neurotrauma 29, 2318–2327.

Harris, G.J., Jaffin, S.K., Hodge, S.M., Kennedy, D., Caviness, V.S., Marinkovic, K.,
Papadimitriou, G.M., Makris, N., Oscar-Berman, M., 2008. Frontal white matter
and cingulum diffusion tensor imaging deficits in alcoholism. Alcohol. Clin. Exp.
Res. 32, 1001–1013.

Heiervang, E., Behrens, T.E., Mackay, C.E., Robson, M.D., Johansen-Berg, H., 2006.
Between session reproducibility and between subject variability of diffusion MR
and tractography measures. NeuroImage 33, 867–877.

Hori, M., Fukunaga, I., Masutani, Y., Nakanishi, A., Shimoji, K., Kamagata, K., Asahi, K.,
Hamasaki, N., Suzuki, Y., Aoki, S., 2012. New diffusion metrics for spondylotic
myelopathy at an early clinical stage. Eur. Radiol. 22, 1797–1802.

Ito, S., Makino, T., Shirai, W., Hattori, T., 2008. Diffusion tensor analysis of corpus
callosum in progressive supranuclear palsy. Neuroradiology 50, 981–985.

Jensen, J.H., Helpern, J.A., 2010. MRI quantification of non-Gaussian water diffusion by
kurtosis analysis. NMR Biomed. 23, 698–710.

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional kurtosis
imaging: the quantification of non-Gaussian water diffusion by means of magnetic
resonance imaging. Magn. Reson. Med. 53, 1432–1440.

Jensen, J.H., Falangola, M.F., Hu, C., Tabesh, A., Rapalino, O., Lo, C., Helpern, J.A., 2011.
Preliminary observations of increased diffusional kurtosis in human brain follow-
ing recent cerebral infarction. NMR Biomed. 24, 452–457.

Jeurissen, B., Leemans, A., Tournier, J., Jones, D.K., Sijbers, J., 2013. Investigating
the prevalence of complex fiber configurations in white matter tissue with diffu-
sion magnetic resonance imaging. Hum. Brain Mapp. http://dx.doi.org/10.1002/
hbm.22099.

Jones, D.K., Cercignani, M., 2010. Twenty-five pitfalls in the analysis of diffusion MRI
data. NMR Biomed. 23, 803–820.

Jones, D.K., Pierpaoli, C., 2005. Confidence mapping in diffusion tensor magnetic reso-
nance imaging tractography using a bootstrap approach. Magn. Reson. Med. 53,
1143–1149.

Kim, S.J., Jeong, D., Sim, M.E., Bae, S.C., Chung, A., Kim, M.J., Chang, K.H., Ryu, J., Renshaw,
P.F., Lyoo, I.K., 2006. Asymmetrically altered integrity of cingulum bundle in
posttraumatic stress disorder. Neuropsychobiology 54, 120–125.

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P., 2010. ElastiX: a toolbox for
intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205.

Kristo, G., Leemans, A., Gelder, B., Raemaekers, M., Rutten, G., Ramsey, N., 2012. Reliability
of the corticospinal tract and arcuate fasciculus reconstructed with DTI-based
tractography: implications for clinical practice. Eur. Radiol. http://dx.doi.org/10.1007/
s00330-012-2589-9.

Laird, N.M., Ware, J.H., 1982. Random-effects models for longitudinal data. Biometrics
38, 963–974.

Lätt, J., Nilsson, M., Wirestam, R., Ståhlberg, F., Karlsson, N., Johansson, M., Sundgren,
P.C., Van Westen, D., 2012. Regional values of diffusional kurtosis estimates in
the healthy brain. J. Magn. Reson. Imaging. http://dx.doi.org/10.1002/jmri.23857.

Lebel, C., Walker, L., Leemans, A., Phillips, L., Beaulieu, C., 2008. Microstructural
maturation of the human brain from childhood to adulthood. NeuroImage 40,
1044–1055.

Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.K., 2009. ExploreDTI: a graphical toolbox
for processing, analyzing, and visualizing diffusion MR data. Proc. Int. Soc. Magn.
Reson. Med. 17, 3536.

Lenth, R., 2001. Some practical guidelines for effective sample size determination. Am.
Stat. 55, 187–193.

Löbel, U., Sedlacik, J., Güllmar, D., Kaiser, W.A., Reichenbach, J.R., Mentzel, H.-J., 2009.
Diffusion tensor imaging: The normal evolution of ADC, RA, FA and eigenvalues
studied in multiple anatomical regions of the brain. Neuroradiology. 51, 253–263.

Maxwell, S.E., Kelley, K., Rausch, J.R., 2008. Sample size planning for statistical power
and accuracy in parameter estimation. Annu. Rev. Psychol. 59, 537–563.

O'Goreman, R.L., Jones, D.K., 2006. Just how much data need to be collected for reliable
bootstrap DT-MRI? Magn. Reson. Med. 56, 884–890.

Pfefferbaum, A., Adalsteinsson, E., Sullivan, E.V., 2003. Replicability of diffusion tensor
imaging measurements of fractional anisotropy and trace in brain. J. Magn.
Reson. Imaging 18, 427–433.

Pitel, A., Chanraud, S., Sullivan, E.V., Pfefferbaum, A., Chanraud, S., 2010. Callosal micro-
structural abnormalities in Alzheimer's disease and alcoholism: same phenotype,
different mechanisms. Psychiatry Res. Neuroimaging 184, 49–56.

Poot, D.H., Dekker, A.J., Achten, E., Verhoye, M., Sijbers, J., 2010. Optimal experimental
design for diffusion kurtosis imaging. IEEE Trans. Med. Imaging 29, 819–829.

Stenset, V., Bjørnerud, A., Fjell, A.M., Walhovd, K.B., Hofoss, D., Due-Tønnessen, P.,
Gjerstad, L., Fladby, T., 2011. Cingulum fiber diffusivity and CSF T-tau in patients
with subjective and mild cognitive impairment. Neurobiol. Aging 32, 581–589.

Sullivan, E.V., Pfefferbaum, A., 2006. Diffusion tensor imaging and aging. Neurosci.
Biobehav. Rev. 30, 749–761.

Szczepankiewicz, F., Nilsson, M., Mårtensson, J., Westen, D., Ståhlberg, F., Lätt, J., 2011.
Automated quantification of diffusion tensor imaging (DTI) and diffusion kurtosis
imaging (DKI) parameters along the cervical spine using tractography-based
voxel selection. Proc. Eur. Soc. Magn. Reson. Med. Biol. 27, 262–263.

Tang, J., Liao, Y., Zhou, B., Tan, C., Liu, T., Hao, W., Hu, D., Chen, X., 2010. Abnormal
anterior cingulum integrity in first episode, early-onset schizophrenia: a diffusion
tensor imaging study. Brain Res. 1343, 199–205.

Teipel, S.J., Schapiro, M.B., Alexander, G.E., Krasuski, J.S., Horwitz, B., Hoehne, C., Möller,
H., Rapoport, S.I., Hampel, H., 2003. Relation of corpus callosum and hippocampal
size to age in nondemented adults with Down's syndrome. Am. J. Psychiatry 160,
1870–1878.

Van Hecke, W., Leemans, A., De Backer, S., Jeurissen, Parizel, P.M., Sijbers, J., 2009.
Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: a
simulation study. Hum. Brain Mapp. 31, 98–114.

Veraart, J., Rajan, J., Peeters, R.R., Leemans, A., Sunaert, S., Sijbers, J., in press. Compre-
hensive framework for accurate diffusion MRI parameter estimation. Magn Reson
Med. 2012 Nov 6. http://dx.doi.org/10.1002/mrm.24529 [Epub ahead of print]
PubMed PMID: 23132517.

Vittinghoff, E., Glidden, D.V., Shiboski, S.C., Mcculloch, C.E., 2005. Regression Methods
in Biostatistics. Springer, New York.

Vos, S.B., Jones, D.K., Viergever, M.A., Leemans, A., 2011. Partial volume effect as a
hidden covariate in DTI analyses. NeuroImage 55, 1566–1576.

Vos, S.B., Jones, D.K., Jeurissen, B., Viergever, M.A., Leemans, A., 2012. The influence of
complex white matter architecture on the mean diffusivity in diffusion tensor
MRI of the human brain. NeuroImage 59, 2208–2216.

Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K.,
Zhang, J., Jiang, H., Dubey, P., Blitz, A., Zijl, P., Mori, S., 2007. Reproducibility of
quantitative tractography methods applied to cerebral white matter. NeuroImage
36, 630–644.

Wang, R., Benner, T., Sorensen, A., 2007. Diffusion toolkit: a software package for diffu-
sion imaging data processing and tractography. Proc. Int. Soc. Magn. Reson. Med.
15, 3720.

Wang, J., Lin, W., Lu, C., Weng, Y., Ng, S., Wang, C., Liu, H., Hsieh, R., Wan, Y., Wai, Y.,
2011. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology
261, 210–217.

Wu, E.X., Cheung, M.M., 2010. MR diffusion kurtosis imaging for neural tissue charac-
terization. NMR Biomed. 23, 836–848.

Zhang, A., Leow, A., Ajilore, O., Lamar, M., Yang, S., Joseph, J., Medina, J., Zhan, L., An,
Kumar, Kumar, A., 2011. Quantitative tract-specific measures of uncinate and cingu-
lum in major depression using diffusion tensor imaging. Neuropsychopharmacology
37, 959–967.

Zhuo, J., Xu, S., Proctor, J.L., Mullins, R.J., Simon, J.Z., Fiskum, G., Gullapalli, R.P., 2012. Dif-
fusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic
brain injury. NeuroImage 59, 467–477.

154 F. Szczepankiewicz et al. / NeuroImage 76 (2013) 145–154

http://dx.doi.org/10.1002/hbm.22099
http://dx.doi.org/10.1002/hbm.22099
http://dx.doi.org/10.1007/s00330-012-2589-9
http://dx.doi.org/10.1007/s00330-012-2589-9
http://dx.doi.org/10.1002/jmri.23857


Paper II





ORIGINAL RESEARCH ARTICLE
published: 27 February 2014

doi: 10.3389/fphy.2014.00011

Microanisotropy imaging: quantification of microscopic
diffusion anisotropy and orientational order parameter by
diffusion MRI with magic-angle spinning of the q-vector
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Diffusion tensor imaging (DTI) is the method of choice for non-invasive investigations of
the structure of human brain white matter (WM). The results are conventionally reported
as maps of the fractional anisotropy (FA), which is a parameter related to microstructural
features such as axon density, diameter, and myelination. The interpretation of FA in terms
of microstructure becomes ambiguous when there is a distribution of axon orientations
within the image voxel. In this paper, we propose a procedure for resolving this ambiguity
by determining a new parameter, the microscopic fractional anisotropy (μFA), which
corresponds to the FA without the confounding influence of orientation dispersion. In
addition, we suggest a method for measuring the orientational order parameter (OP) for
the anisotropic objects. The experimental protocol is capitalizing on a recently developed
diffusion nuclear magnetic resonance (NMR) pulse sequence based on magic-angle
spinning of the q-vector. Proof-of-principle experiments are carried out on microimaging
and clinical MRI equipment using lyotropic liquid crystals and plant tissues as model
materials with high μFA and low FA on account of orientation dispersion. We expect
the presented method to be especially fruitful in combination with DTI and high angular
resolution acquisition protocols for neuroimaging studies of gray and white matter.

Keywords: microscopic diffusion anisotropy, single shot isotropic diffusion weighting, q-MAS, fractional

anisotropy, microscopic fractional anisotropy, order parameter, orientation dispersion, diffusion distribution

INTRODUCTION
Molecular self-diffusion measured with nuclear magnetic reso-
nance (NMR) [1, 2] can be used to non-invasively probe the
microstructure of porous materials [3–5] and tissues [6]. The
apparent self-diffusion coefficient, as measured in a pulsed gra-
dient spin echo (PGSE) experiment, reflects the average dif-
fusivity, which is a sum of contributions from different water
compartments in a complex system. The diffusion is influ-
enced by several properties of the medium, e.g., pore size and
shape [7, 8], pore size distribution, pore interconnectivity [9,
10], permeability of cell membranes [11], and anisotropy [12].
The anisotropy of the tissue morphology renders the water
self-diffusion anisotropic, a feature that is the basis for non-
invasive mapping of muscle and nerve fiber orientations by
diffusion tensor imaging (DTI) [13, 14]. DTI is commonly
used to study the white matter (WM) of the brain, where the
nerve fibers have a dominant direction on macroscopic length
scales. Because of the limited spatial resolution in DTI, a major-
ity of the voxels in WM contain fiber bundles with different
orientations, thus making the interpretation of the DTI data
ambiguous [15]. Due to the significance of accurate quan-
tification of the level of anisotropy in the brain, techniques
for detecting fiber orientation dispersion are being developed
[16, 17].

The degree of the macroscopic diffusion anisotropy is often
quantified by the dimensionless fractional anisotropy (FA) [12].
The FA parameter is sensitive to alterations in several tis-
sue properties, e.g., axonal diameter, axonal packing density,
and degree of myelination. Changes in these properties may
be associated with normal brain development, learning, and
healthy ageing, but also with disorders such as Alzheimer’s dis-
ease, autism, schizophrenia, mild cognitive impairment, mul-
tiple sclerosis, amyotrophic lateral sclerosis, epilepsy, Tourette’s
syndrome, Parkinson’s disease, and Huntington’s disease [16,
18, 19]. Because fiber orientation dispersion and several other
tissue properties are inherently entangled in the echo atten-
uation of the PGSE experiment, changes in FA are not spe-
cific to any particular tissue characteristics [16]. This fact is
known to confound the use of FA as a diagnostic parameter
in regions of dispersing or crossing WM fibers [17], and also
detracts from the usability of FA in macroscopically isotropic
tissues such as the gray matter (GM) of the nervous system
[20].

Despite several experimental approaches attempting to assess
the microscopic diffusion anisotropy in the nervous system [21],
disentangling underlying tissue properties from the effects of
orientation dispersion remains challenging and has inspired the
development of analytical models extending beyond the standard
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DTI approach [22, 23]. For materials consisting of randomly ori-
ented anisotropic microcrystallites, e.g., lyotropic liquid crystals,
the presence of microscopic anisotropy can be inferred from the
characteristic functional form of the PGSE signal attenuation [24,
25]. This approach becomes ambiguous for more complex mate-
rials where several mechanisms could give the same signal atten-
uation. More recently, the microscopic anisotropy is detected in
double-PGSE experiments by diffusion encoding in two separate
time periods [26], giving characteristic signal modulations for
data obtained with collinear and orthogonal displacement encod-
ing [27–29] or when systematically varying the angle between the
directions of displacement encoding [26, 30, 31]. A double-PGSE
scheme to quantify microscopic anisotropy in terms of compart-
ment eccentricity, independent of the macroscopic anisotropy,
has recently been suggested [32]. A two-dimensional correlation
approach [33] gives the currently most complete separation of the
underlying diffusion components, albeit at the expense of being
far too time consuming for clinical use.

We have recently shown that microscopic anisotropy can be
efficiently detected with an acquisition protocol including single-
shot isotropic diffusion weighting (DW) using magic-angle spin-
ning of the q-vector (q-MAS) [34]. Comparisons between the
q-MAS and other single-shot DW approaches [35, 36] can be
found in [37]. Here we implement a numerically optimized ver-
sion of the q-MAS pulse sequence [37] on a high-performance
microimaging system, limited to specimens with maximum
10 mm diameter, and on a standard whole-body clinical scanner.
The efficiency of the q-MAS sequence is demonstrated using two
materials with pronounced water diffusion anisotropy: lyotropic
liquid crystals [24, 25, 27, 34, 38–40] and pureed asparagus
[41–44]. For contrast, a yeast cells suspension is used, exhibiting
two isotropic diffusion components [34, 45–47].

We introduce a new parameter, the microscopic frac-
tional anisotropy (μFA), for quantification of the microscopic
anisotropy, and suggest a method to estimate the value of μFA
by analysis of a set of diffusion MRI data acquired with both
isotropic and conventional DW. The new μFA and the standard
FA parameters have the same dependence on the size, shape, and
density of the underlying anisotropic compartments, but differ
in their sensitivity to the distribution of compartment orienta-
tions in the image voxel. The information from FA and μFA can
be combined to quantify the orientation dispersion. In the liter-
ature, there are previous definitions of an orientation dispersion
index based on a specific model of the orientation distribution
function [23, 48, 49]. We quantify orientation dispersion with the
order parameter (OP), a well-established measure of the orienta-
tional order in the field of liquid crystals [50]. A wide range of
experimental techniques have been used to estimate OP for liquid
crystalline systems, e.g., NMR spectroscopy, fluorescence polar-
ization, and X-ray scattering. We derive an expression that relates
OP to FA and μFA. The analysis presented here allows disentan-
gling the two contributions to FA, i.e., the microscopic anisotropy
and the orientational order of the micro-domains.

Figure 1 illustrates idealized scenarios of microstructural orga-
nization and the corresponding μFA, OP, and FA parameters. For
a purely isotropic system, FA and μFA are both zero regardless
of compartment size polydispersity. For anisotropic systems on

FIGURE 1 | Idealized tissue geometries with corresponding structure

parameters. Consecutive rows show values of the microscopic fractional
anisotropy, μFA; orientational order parameter, OP; fractional anisotropy,
FA; and diffusion tensors. Decreasing values of OP from left to right in
columns 1–3 leads to a reduction of FA while μFA remains constant. For
isotropic structures (column 4), both FA and μFA vanish.

the other hand, μFA reflects anisotropy of the underlying micro-
scopic structures but not their organization on the voxel level.
For identical micro-domains with identical μFA values, a reduced
FA is expected for increased orientation dispersion reflected by
a reduced OP. Both FA and μFA are reduced in the presence of
isotropic structures. Because of its insensitivity to orientation dis-
persion, μFA could potentially be used as a relevant biomarker
in clinical applications. It can provide additional information
about the microstructure in tissue where conventional anisotropy
measures are confounded by the voxel-scale tissue organization,
thus improving the diagnostic specificity. Further, μFA and OP
may generate novel diagnostic information in tissue that appears
isotropic on a macroscopic scale but has sub-voxel anisotropic
components, such as that found in cortical GM [20].

THEORY
DIFFUSION DISPERSION
In complex systems like tissue, the MRI signal attenuation often
reflects multiple diffusion processes, including restricted, hin-
dered, and free diffusion. Restricted diffusion may give rise to
both isotropic and anisotropic contributions. Although restricted
diffusion is fundamentally a non-Gaussian process, at a low DW
and at the experimental times typical for diffusion NMR/MRI,
it can be characterized by the apparent diffusion coefficient, Dg,
along the applied gradient direction g. For a multi-component
system, the echo attenuation intensity is given by the sum over all
the different contributions,

Sg =
∑

i

S0ie
−bDgi , (1)

where S0i is the relaxation weighted intensity of component i.
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Equation (1) can be expressed as the Laplace transform of the
probability distribution of apparent diffusivities, P(D) [25, 51,
52]. For a macroscopically anisotropic system, the distribution
P(D) depends on the diffusion encoding direction, as indicated
by the subscript g in Equation (1). The arithmetic average of
the signal intensity over all directions, also known as the powder
average, mimics a uniform orientation dispersion of anisotropic
micro-domains and thus, yields P(D) independent of the orien-
tation dispersion. Provided that P(D) is normalized to unity, the
distribution is well described by the mean value,

D =
∫ ∞

0
DP (D) dD (2)

and by the central moments

μm =
∫ ∞

0

(
D − D

)m
P (D) dD. (3)

While the mean diffusivity, D, gives the initial slope of the echo
attenuation, the second central moment, μ2, represents the initial
deviation from mono-exponential attenuation, corresponding to
the second term in the cumulant expansion [53] of the normal-
ized signal intensity, E = S(b)/S0, according to

ln E(b) = −Db + μ2

2
b2 − .... (4)

The second central moment, μ2, is often expressed in terms of the

kurtosis coefficient K as μ2 = D
2
K/3 [42]. For Gaussian diffu-

sion in each component, as assumed in Equation (1), the value of
μ2 corresponds to the variance of apparent diffusion coefficients.
For brevity, we refer to μ2 as the variance. In the case of a two-
component isotropic system, e.g., intra and extracellular diffusion
in a yeast cell suspensions [34], the value of μ2 increases with the
difference between the two diffusivities and is maximized when
the two contributions are represented with equal probabilities.

MICROSCOPIC FRACTIONAL ANISOTROPY (µFA)
The anisotropy of a medium is reflected by the diffusion tensor,
D = R�R−1, where � is the diagonal representation of D in the
principal axis system given by the eigenvalues λ1, λ2, and λ3 and
R is the Euler rotation matrix. In DTI, the diffusion tensor can
be constructed based on measurements of signal intensity along
several non-collinear gradient directions, ĝ, using the expression

Sg = S0 exp
[
−b ĝ · D · ĝT

]
. (5)

The anisotropy on a voxel level is quantified in terms of FA
and expressed as an invariant of the three independent diffusion
tensor eigenvalue [12],

FA =
√

3

2

√√√√(
λ1 − D

)2 + (
λ2 − D

)2 + (
λ3 − D

)2

λ2
1 + λ2

2 + λ2
3

, (6)

where the mean diffusivity is given by

D = λ1 + λ2 + λ3

3
. (7)

The diffusion tensor eigenvalues can be combined in several ways to
represent different invariant measures characterizing the diffusion
tensor shape. To quantify the degree to which the diffusion tensor
reflects the planar geometry, we use the planar measure Cp [54],

Cp = λ2 − λ3

λ1
, (8)

assuming a descending order of the eigenvalues, λ1 ≥ λ2 ≥ λ3.
For randomly oriented anisotropic domains represented by a

single set of diffusion tensor eigenvalues, corresponding to the
powder average, the variance of the observed P(D) is given by [55]

μ2 = 4

45

[
(λ1 − λ3)

2 + (λ2 − λ1) (λ2 − λ3)
]
. (9)

For axially symmetric diffusion tensors, FA is given by

FA =
∣∣D|| − D⊥

∣∣√
D2|| + 2D2⊥

, (10)

where D|| is the axial diffusivity and D⊥ is the radial diffusiv-
ity. For macroscopically isotropic systems, with axially symmet-
ric anisotropic micro-domains, the signal attenuation and the
corresponding P(D) can be expressed in a compact form (see
Equations 34 and 35 in [34]).

The mean diffusivity and the variance are given by the axial
and radial diffusivities as

D = D||+2D⊥
3

μ2 = 4
45

(
D|| − D⊥

)2
.

(11)

For a diffusion tensor with oblate shape, where D|| < D⊥, the

upper limit of the variance is given by μ2 max = D
2
/5, while for

a prolate shape, where D|| > D⊥, μ2 max = 4D
2
/5. For randomly

oriented axially symmetric micro-domains, the FA in Equation
(10) can be expressed in terms of D and μ2 using the relations in
Equation (11) as

FA =
√

3

2

(
1 + 2

5
· 1

μ̃2

)−1/2
, (12)

where the ratio μ̃2 = μ2/D
2

represents the scaled variance.
Isotropic DW can be achieved with q-MAS if the water

molecules stay within an anisotropic micro-domain throughout
the duration of the diffusion encoding [34]. In a system consist-
ing of a single type of micro-domain, the variance μ2, observed
in the powder-averaged DW experiment, is a consequence of
domain anisotropy and independent of orientation dispersion.
In such a case, the isotropic DW yields μiso

2 = 0. Since the dif-
ference �μ2 = μ2–μiso

2 is expected to vanish when all diffusion
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contributions are isotropic, and it is maximized for systems where
the deviation from mono-exponential echo decay is purely due to
microscopic anisotropy, the difference �μ2 can be used to quan-
tify microscopic anisotropy. In case of macroscopically isotropic
systems, or equivalently, for an isotropically averaged intensity,
the mean diffusivity is expected to be identical for both isotropic
and powder-averaged DW data. This can be implemented as an
advantageous constraint in data analysis.

Substituting the μ̃2 in Equation (12) with its “bias-corrected”
counterpart, here named the difference in scaled variance,

�μ̃2 = μ2 − μiso
2

D
2

. (13)

suggests a definition for the microscopic fractional anisotropy,
μFA, according to

μFA =
√

3

2

(
1 + 2

5
· 1

�μ̃2

)−1/2
. (14)

Equation (14) is the key equation to quantify microscopic
anisotropy, since �μ̃2 is the measurable difference in curva-
ture between powder-averaged and isotropic signal-vs.-b data,
while μFA is the desired microstructural parameter. The relation
between �μ̃2 and μFA is shown in Figure 2A.

The values of μFA are equal to the FA when diffusion is
locally purely anisotropic and determined by coherently ori-
ented axially symmetric diffusion tensors. For two-dimensional
diffusion between parallel planes, μFA = FA = √

1/2 and for
one-dimensional diffusion within narrow tubes, μFA = FA = 1.

ORDER PARAMETER (OP)
The OP is well-established for characterization of the orienta-
tional order in liquid crystals [50]. Here we use the OP to quan-
tify the orientation dispersion of anisotropic micro-domains.
Consider a typical macroscopic voxel consisting of an ensemble
of anisotropic micro-domains characterized by axially symmetric
diffusion tensors with axial and radial diffusivities, D|| and D⊥,
respectively, and varying orientation of the domain’s symmetry
axis d. Further, assume that the distribution of sub-voxel domain
orientations is also axially symmetric around the voxel symmetry
axis u, where u · d = cos θ.

The diffusivity along the voxel symmetry axis is given by the
contributions from all the micro-domains with different polar
angles θ. Each micro-domain contributes

D (θ) = D|| cos2 θ + D⊥ sin2 θ. (15)

Note the similarity with the expression describing the chemical
shift anisotropy (see Equation 23 in [56]). The above expression
can be rewritten as

D (θ) = D + 2

3

(
D|| − D⊥

)
P2 (cos θ) , (16)

where P2(x) = (3x2–1)/2 is the second Legendre polynomial. The
axial and radial diffusivities observed on a voxel level are given by

FIGURE 2 | Random and systematic errors in estimating the

microscopic fractional anisotropy. (A) Relation between microscopic
fractional anisotropy (μFA) and the difference in variance,

�μ̃2 =
(
μ2 − μiso

2

) /
D

2
, calculated with Equation (14).

(B) Powder-averaged signal attenuation, S(b)/S0, for an axially symmetric
anisotropic system corresponding to different μFA values (solid lines with
circles), calculated based on Equation 35 in [34] using the relations in

(Continued)
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FIGURE 2 | Continued

Equations (11) and (14). The dashed line corresponds to the isotropic DW
with μiso

2 = 0. (C) Relation between true μFA values and their estimation
from fitting Equation (25) to data generated in the same way as the data
shown in panel (B). Shown are the mean values (solid lines) and standard
deviations (error bars) resulting from 1000 fitting iterations with synthetic
noise corresponding to different SNRs [66]. (D) Relative systematic
(δr , dashed line) and random errors (εr , solid lines) calculated from data
shown in panel (C). In panel (B), the red, green, and blue colors correspond
to different μFA values, while in panels (C,D), the colors correspond to
different SNR levels.

the ensemble averages

〈
D||

〉 = D + 2

3

(
D|| − D⊥

) 〈P2 (cos θ)〉,

〈D⊥〉 = D + 2

3

(
D|| − D⊥

)
P2

(
cos

π

2

)
〈P2 (cos θ)〉

= D − 1

3

(
D|| − D⊥

) 〈P2 (cos θ)〉. (17)

The OP (see [50]) is defined by

OP = 〈P2 (cos θ)〉. (18)

As we see from Equation (17), the OP can be determined by the
relation between the micro-domain diffusivities and the ensemble
average diffusivities,

OP =
〈
D||

〉 − 〈D⊥〉
D|| − D⊥

. (19)

For randomly oriented domains, the OP = 0, while for completely
aligned domains, the OP = 1. The OP defined here is similar
to the one calculated from motionally averaged chemical shift
anisotropy or dipolar powder patterns in [50].

The definition of OP in Equation (19) is suitable for purely
anisotropic systems with axial symmetry, for which μiso

2 = 0, and
it can be determined from DW experiments performed in several
non-collinear directions using multiple b-values. The ensemble
average diffusivities,

〈
D||

〉
and 〈D⊥〉 , are the diffusion tensor’s

eigenvalues, while the difference of the micro-domain diffusivi-
ties, D|| − D⊥, is related to the variance μ2 in Equation (11) and
can be determined by analyzing the powder-averaged signal atten-
uation (4). If the FA is converted into the corresponding scaled
variance according to Equation (12),

μ̃FA
2 = 4

5

(
3

FA2
− 2

)−1

, (20)

the OP in Equation (19) can be rewritten as OP =
√

μ̃FA
2 /μ̃2.

However, the FA is not only reduced due to orientation dispersion
but also due to isotropic contributions, characterized by μiso

2 > 0.
To account for the isotropic contributions in the calculation of
the OP, the difference in variance should be used, suggesting the

definition

OP =
√

μ̃FA
2

�μ̃2
=

√
3μFA−2 − 2

3FA−2 − 2
. (21)

Equation (21) provides the link between the FA and μFA and
allows quantifying the orientation dispersion of anisotropic struc-
tures. Since the ratio FA

/
μFA < 1, the OP is always in the range

0–1. The macroscopic parameter, FA, can be interpreted in terms
of two underlying mechanism, i.e., the anisotropy of micro-
domains, given by μFA, and the domain organization, given by
the OP. Inverting Equation (21) gives

FA = OP

[
μFA−2 + 2

3

(
OP2 − 1

)]−1/2

. (22)

The above equation quantifies the relation between the anisotropy
of microscopic structures and their macroscopic organization.
For large FA, both the OP and the μFA need to be large, while
a reduction of either OP or μFA gives reduced FA (see Figure 1).

ESTIMATING MICROSCOPIC FRACTIONAL ANISOTROPY
In the case of high signal-to-noise and a well-sampled echo
attenuation signal, the variance μ2 could be estimated by regress-
ing Equation (4) onto the isotropic and powder-averaged DW
data. However, it can be shown that the convergence of the
cumulant expansion is very slow in the case of randomly ori-
ented anisotropic domains, for which the echo intensity can be
expressed in a simple analytical form (see Equation 35 in [34]).
The problem of analyzing the echo intensity data can instead be
considered from the perspective of finding a suitable approxi-
mation to the P(D) or its first two moments, see Equations (2)
and (3). A convenient functional form to approximate P(D) for
complex systems with both isotropic and anisotropic components
should have a simple analytical Laplace transform and it should
be able to capture a wide range of diffusion distributions with
only a few parameters. The gamma distribution function,

P (D) = Dα−1 e−D/ β

� (α) βα
(23)

proves to be an efficient and physically plausible model for
describing complex polydisperse systems such as polymer solu-
tions [57]. The mean and the dispersion value of the gamma
distribution are given by the so-called shape parameter α and the
scale parameter β, where D = α · β and μ2 = α · β2, respectively.
The Laplace transform of the gamma distribution takes a simple
analytical form,

E (b) = (1 + bβ)−α , (24)

which can expressed as

S (b) = S0

(
1 + b

μ2

D

)− D2

μ2
(25)

for data-fitting purposes.
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Figure 2 summarizes the key aspects of the microscopic
anisotropy analysis, which are discussed in more detail through-
out the Results and Discussion section. The functional form of
Equation (14) is shown in Figure 2A. The expected signal atten-
uation for an axially symmetric anisotropic system with varying
μFA values is depicted in Figure 2B, illustrating that only rather
large μFA values give rise to a detectable deviation from mono-
exponential decay. The systematic and random errors of μFA
estimation resulting from fitting Equation (25) to the synthetic
data in Figure 2B are presented in Figures 2C,D.

MATERIALS AND METHODS
LIQUID CRYSTAL/YEAST PHANTOM
A liquid crystalline sample was prepared by mixing the non-
ionic surfactant triethylene glycol monodecyl ether C10E3 (Nikko
Chemical Co., Tokyo, Japan) with water containing 95 wt% D2O
(Sigma Aldrich, Steinheim, Germany) and 5 wt% H2O (MilliQ
purified) in an NMR tube with 5 mm outer diameter, giving 40
wt% surfactant concentration and 0.5 ml sample volume. A water
bath was used to heat the sample to 50◦C where it separates
into two phases: nearly pure water and a concentrated surfactant
solution with reverse micelles [58], both phases having low vis-
cosity. After removing the tube from the water bath and exposing
it to room temperature air, it was held horizontally and rotated
manually about its long axis until, after approximately 2 min, the
sample turned viscous. The temperature decrease leads to a phase
transition into the lamellar liquid crystalline phase [58], while the
rotation aligns the lamellae with respect to the inner surface of the
tube [59]. The preferential orientation of the lamellae extends less
than a millimeter from the glass surface, thus leaving the interior
of the sample randomly oriented (see Figure 3). The sample was
equilibrated at room temperature (21◦C) for 24 h with the tube
in the vertical direction.

Fresh baker’s yeast was purchased at a local supermarket. A cell
suspension was prepared by shaking equal volumes of the yeast
with tap water in a glass tube. The suspension was allowed to

FIGURE 3 | Illustration of the liquid crystal/yeast MRI phantom. A
5 mm NMR tube, containing 40 wt% of the surfactant C10E3 in water, is
inserted into a 10 mm NMR tube with yeast cells in water. The black
horizontal line in the left schematic indicates the slice of the 2D MR image.
The top view of the phantom is depicted on the right. The anisotropic
liquid crystal domains are mostly randomly oriented, while a narrow layer of
aligned domains is formed near the tube walls.

sediment overnight at room temperature. The clear supernatant
was discarded and 1 ml of the loosely packed cell sediment was
transferred to a 10 mm NMR tube using a syringe with a 1 mm
diameter needle.

The 5 mm NMR tube with the liquid crystal was inserted into
the 10 mm NMR tube with the yeast sediment, creating an MRI
phantom with an inner cylindrical compartment with water dif-
fusion anisotropy and an outer cylindrical shell having a broad
distribution of isotropic water diffusivities (see Figure 3). Before
the MRI measurements, the sample was equilibrated for 2 h at
25◦C within the magnet of the microimaging equipment.

PUREED ASPARAGUS PHANTOM
Fresh asparagus (Asparagus officinalis), obtained from a local
supermarket, was prepared in a plastic container that consisted of
two cylindrical compartments with a diameter of approximately
8 cm. The first compartment contained water and intact aspara-
gus stems cut to an appropriate length. The second compartment
was filled with water and asparagus which was processed in a
kitchen blender, resulting in a grainy puree with particle sizes well
below one imaging voxel. The pureed asparagus was compressed
to the bottom of the container in order to decrease the free water
component in the puree. Measurements were performed at room
temperature on the whole-body MR scanner.

MICROIMAGING
The liquid crystal/yeast phantom was measured on an 11.7 T
Bruker AVII-500 spectrometer equipped with a Bruker MIC-5
microimaging probe having a maximum gradient strength of
3 Tm−1 and a 10 mm saddle coil radio frequency (RF) insert.
Images were acquired with a TopSpin 2.1 implementation of the
pulse sequence shown in Figure 4 using a single-shot RARE [60]
signal read-out with 9 × 9 mm field-of-view, 64 × 32 acquisition
matrix (read × phase), 10 mm slice thickness, and 65 ms duration
of the echo train. The spin-echo DW block with total duration
of 45 ms included two identical gradient waveforms bracketing
the 180◦ RF pulse. Isotropic DW was achieved with the opti-
mized q-MAS gradient modulation scheme [37]. Directional DW
employed a gradient waveform giving the same time-dependence
of the magnitude of the q-vector as the q-MAS modulation.
The q-MAS gradient waveform was executed with duration τ =
20 ms and amplitude G = 0.405 Tm−1, yielding a b-value of
5200 s/mm2 according to the equation b = NCγ2G2τ3, where γ =
2.675.108 radT−1s−1 is the 1H gyromagnetic ratio, C = 0.0278 is
a constant specific for the optimized q-MAS modulation [37], and
N = 2 is the number of repetitions of the q-MAS modulation.
Images were acquired for 16 b-values and 15 non-collinear gradi-
ent directions, as well as 15 repetitions of the isotropic DW, giving
a total data set of 480 images. The b-values were incremented by
linear steps in the gradient amplitude, while the gradient direc-
tions were chosen according to the electrostatic repulsion scheme
[61, 62]. Each image was recorded as the sum of four transients
with phase cycling of the RF pulses and the receiver [63]. A 1 s
recycle delay gave a total experiment time of 30 min.

Image processing was performed with in-house Matlab code.
Before Fourier transformation, the acquired data was zero-filled

Frontiers in Physics | Biophysics February 2014 | Volume 2 | Article 11 | 6

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive
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FIGURE 4 | Schematic of the diffusion MRI pulse sequence with

isotropic or directional diffusion weighting. The 90 and 180◦ RF pulses
produce a spin echo, which is acquired with a single-shot RARE sequence
at the high field spectrometer or EPI sequence at the clinical scanner.
Identical DW blocks are inserted on each side of the 180◦ pulse. Isotropic
DW is achieved with a numerically optimized q-MAS gradient modulation
scheme [37] as shown with the green (Gx ), blue (Gy ), and red (Gz ) lines.
The black line indicates the directional gradient waveform that yields the
same magnitude of dephasing [34] as the q-MAS modulation.

to 128 × 128 points [64] and multiplied with a 2D Gaussian
function giving 0.2 mm × 0.2 mm image smoothing.

WHOLE-BODY SCANNER
Experiments on the pureed asparagus phantom were performed
on a whole-body Philips Achieva 3 T scanner equipped with an
eight-channel head coil. The gradient system delivered a maxi-
mum gradient strength of 80 mTm−1 at the maximal slew rate
of 100 mTm−1s−1. DW images were recorded with an echo pla-
nar read-out [65] using an echo time of 160 ms, half-scan factor
of 0.8, SENSE factor of 2, and a slice thickness of 10 mm. The
field of view was 288 × 288 mm with an acquisition matrix of
96 × 96, resulting in a spatial resolution of 3 × 3 × 10 mm3.
Isotropic and directional DW were achieved during τ = 62.9 ms,
before and after the 180◦ RF pulse, using the same waveform
as in the microimagning experiment. Images were acquired for
16 b-values, between 50 and 2800 s/mm2. The directional DW
was performed in 15 non-collinear gradient directions spread out
according to the repulsion scheme [61, 62]. The isotropic encod-
ing was repeated 15 times for each b-value in order to generate an
equal amount of acquisitions with the isotropic and directional
DW. The repetition time was 2 s, resulting in acquisition times of
8:06 min for both the directional and isotropic data.

One high resolution T2-weighted volume was acquired to visu-
alize the different components of the phantom, and reconstructed
at a spatial resolution of 0.45 × 0.45 × 8.00 mm3.

The standard scanner reconstruction software was used to con-
vert the raw data into two series of 240 images each, which were
exported to Matlab for further analysis.

DATA ANALYSIS
Maps of the eigenvalues and eigenvectors of the diffusion tensor,
as well as the D and FA values were obtained by non-linear least
squares fitting of directional DW data using Equation (5) with S0,
λ1, λ2, λ3 and three Euler angles as adjustable parameters.

The images with directional DW (16 b-values and 15 direc-
tions) were converted to a powder-averaged series of images (16
b-values) by arithmetic averaging over the gradient directions.

The multiple acquisitions of images with isotropic DW (16 b-
values and 15 repetitions) were averaged to a single series (16
b-values). Equation (25) was regressed onto the isotropic and
powder-averaged DW data, using S0, D, μ2, and μiso

2 as fit
parameters. S0 and D were constrained to be identical for both
datasets, while μ2 and μiso

2 correspond to the powder-averaged
and isotropic data, respectively. The values of μ2 and μiso

2 were

constrained to be in the physically reasonable range from 0 to D
2
.

The standard deviations of the fit parameters were estimated by a
Monte Carlo error analysis [66]. Finally, the μFA and OP indexes
were calculated with Equations (14) and (21).

RESULTS AND DISCUSSION
Phantoms, constructed to exhibit varied degree of microscopic
and macroscopic anisotropy, were probed by directional and
isotropic DW as well as with DTI. Results are presented and
discussed in three sections; the microimaging experiments are fol-
lowed by the experiments on a whole-body scanner and finally the
significance of the novel microstructural measures is discussed.
The microimaging section discusses the liquid crystal/yeast phan-
tom and its micro-/macro-structural features, which are com-
pared to the results of the μFA and DTI analysis. The difference
between diffusion variance in directional and isotropic DW is
thoroughly discussed in relation to the microstructural properties
of the phantom. The meaning of the newly introduced parameters
μFA and OP is demonstrated and the limitations of the q-MAS
DW experiment and its analysis are discussed. The following sec-
tion presents the results on the asparagus phantom obtained at
a whole-body scanner. In the third section, the potential of μFA
and OP as novel biomarkers and the key aspects of the q-MAS
DW implementation in a clinical setting are considered.

MICROIMAGING
Experimental results for the liquid crystal/yeast phantom are
shown in Figure 5 as parametric images and histograms. We reca-
pitulate that the concentric phantom is designed to have an outer
compartment with a broad distribution of isotropic diffusivities
and an inner compartment with microscopic diffusion anisotropy
as well as varying degrees of voxel-scale anisotropy on account of
the alignment of the underlying anisotropic objects with respect
to the glass wall separating the two compartments (see Figure 3).

The map of the mean diffusivity D in Figure 5A shows clear
differences between the surfactant/water mixture and the yeast
suspension, with values of 0.51 and 1.5 μm2/ms, respectively, at
the maxima of the narrow distributions in the histogram. A ref-
erence experiment with pure H2O (data not shown) gives D =
2.3 μm2/ms, in good agreement with the literature value [67]. A
wide range of microscopic mechanisms could cause the observed
reduction of D from the value for pure H2O: from confinement
of the water in more or less impermeable micrometer-scale pores
[68] to the presence of colloidal obstacles at high concentrations
[69]. The values of D are by themselves not sufficient to make any
detailed inferences on microstructure.

Diffusion tensor
The FA map in Figure 5B shows that the water diffusion is essen-
tially isotropic in the yeast suspension (FA < 0.05). A closer look
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FIGURE 5 | Parameter maps and histograms for the liquid crystal/yeast

phantom. The panels show (A) mean diffusivity D, (B) fractional anisotropy
FA, (C) planar index Cp , (D) scaled variance μ̃2, (E) scaled isotropic variance
μ̃iso

2 , and (F) the difference in scaled variance �μ̃2. The red crosses,
numbered with roman numerals in panel (A), point out pixels for which the
acquired signal is shown in detail in Figure 6. The colors in the Cp map
indicate the direction of the vector corresponding to the minimum
eigenvalue of the diffusion tensor (red: x, green: y, blue: z). Pixels with
signal below a threshold value are shown in black in the parameter maps
and excluded from the calculation of the histograms.

at the FA histogram reveals that the values for the yeast have
an approximately Gaussian distribution with mean value 0.04
and standard deviation 0.02. The positive bias at low values of
FA originates from the fact that any deviation from the equality
λ1 = λ2 = λ3 gives a positive value of FA according to Equation
(6). In the surfactant/water mixture, the values of FA cover the
range from 0 to 0.6, with the highest values concentrated in a
0.5 mm wide band along the outer edge of the compartment.
Information about the shape and orientation of the diffusion ten-
sor can be obtained from the planar index, Cp, color-coded with
the direction of the eigenvector v3, corresponding to the mini-
mum eigenvalue λ3. In Figure 5C, values of Cp above 0.7 can be
observed at the rim of the interior compartment, indicating an
essentially planar diffusion tensor. The radial orientation of v3

verifies that the lamellar planes have the same orientation as the
adjacent glass surface. A perfectly oriented lamellar liquid crys-
tal, with D|| << D⊥, would give FA = √

1/2 ≈ 0.71 and Cp = 1.
The values observed experimentally, FA ≈ 0.6 and Cp = 0.7, are
smaller than the ideal ones, indicating that there is a distribu-
tion of lamellar domain orientations within the voxels and/or
that D|| is not negligible in comparison to D⊥. The values of FA
and Cp are by themselves not sufficient to distinguish between
the two cases. The interior of the tube with the surfactant/water
mixture contains extensive regions where FA and Cp are close
to zero. From the conventional DTI parameters, one could be
tempted to draw the conclusion that these regions contain an
isotropic phase, e.g., a sponge phase or cubic liquid crystalline
phase, rather than the lamellar liquid crystalline phase that is

expected from the sample composition and the equilibrium phase
diagram [58].

Diffusion variance in directional and isotropic DW
Figure 5D shows the scaled variance of the distribution of appar-

ent diffusivities P(D), μ̃2 = μ2/D
2
, for the powder-averaged data

acquired with directional DW. We reiterate that μ̃2 is a measure
of the width of the P(D) and the curvature of logS(b), and is
closely related to the diffusional kurtosis [43]. Non-zero values
of μ̃2 can result from diffusion anisotropy and/or the presence
of more than one microscopic environment for the water. As
shown in Figure 2A, diffusion anisotropy can by itself give a
maximum μ̃2 value of 0.8. Both the liquid crystal and the yeast
suspension display μ̃2 values being substantially different from
zero. The histogram in Figure 5D features two overlapping dis-
tributions with maxima at 0.35 and 0.23 for the surfactant/water
mixture and the yeast suspension, respectively. Since FA for the
yeast is zero within experimental noise, it seems safe to assume
that the non-zero values of μ̃2 originate from the presence of
multiple microenvironments. In the case of a yeast suspension,
these microenvironments correspond to the intra- and extracel-
lular spaces [70]. Conversely, comparison between Figures 5B,D
shows that, for the surfactant/water mixture, high values of μ̃2

occur for regions with both high and low values of FA, thus mak-
ing the interpretation of μ̃2 in terms of either diffusion anisotropy
or multiple environments highly ambiguous. The crucial infor-
mation needed for discriminating between the two cases can
be found in Figure 5E, displaying the scaled variance for data

acquired with isotropic DW, μ̃iso
2 = μiso

2 /D
2
. This parameter is

insensitive to diffusion anisotropy and is non-zero only if there
are multiple environments with distinct isotropic diffusivities.
While the surfactant/water mixture has values close to zero, the
values for the yeast suspension are, within experimental noise,
identical in Figures 5D,E, confirming the presence of a distri-
bution of environments with different isotropic diffusivity. On
account of the limited spatial resolution, the voxels at the border
between the surfactant/water mixture and the yeast suspension
contain signal from both compartments, leading to exceptionally
high values of μ̃iso

2 which can be observed as a thin bright circle
in Figure 5E.

As shown in Figure 5F, taking the difference �μ̃2 = (μ2 −
μiso

2 )/D
2

isolates the effect of diffusion anisotropy. Non-zero
values of �μ̃2 are expected when the microscopic structure is
anisotropic on the length scale of the molecular displacements
during the diffusion time, typically tens of micrometers. If dur-
ing the diffusion encoding, molecules would have enough time to
migrate between anisotropic domains with different orientations,
this would affect the diffusion variance in both isotropic and
directional DW. In the limit of long diffusion times, the variance
observed in a directional DW vanishes [38], while in isotropic
DW the variance is expected to increase due to incoherent aver-
aging across microdomains. The dependence of the q-MAS DW
on diffusion time can be viewed in analogy to the effects of the
MAS in solid-state NMR spectroscopy. The broadening of P(D)
in isotropic DW corresponds to the broadening of the sidebands
at low frequencies of sample MAS when the rates of spinning
and reorientation are similar [71]. The �μ̃2 values for the yeast
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suspension are close to zero, consistent with isotropic diffusion.
Detailed inspection of the histogram in Figure 5F reveals that
the yeast data can be described with an approximately Gaussian
distribution with mean 0.03 and standard deviation 0.03, thus
spanning both positive and negative values. The data for the sur-
factant/water mixture is centered at �μ̃2 = 0.25 and, as for the
yeast, has a standard deviation of 0.03. Assuming that the true
value is homogeneous in both the liquid crystal and the yeast
compartments, the observed standard deviation of 0.03 can be
interpreted as the precision in the estimation of �μ̃2 at the cur-
rent experimental settings. The observation of �μ̃2 values well
above zero for the surfactant/water mixture is a strong indica-
tion that the water resides in an anisotropic microenvironment, in
agreement with the presence of a lamellar liquid crystalline phase.
In contrast to FA, the values of �μ̃2 do not depend on the details
of the orientation distribution of the anisotropic objects within
the voxel, and is consequently better suited for detecting diffusion
anisotropy.

Taken together, the parameters shown in Figure 5 give a rather
complete description of the nature of the water environments
within each voxel. Whereas the yeast suspension contains multi-
ple water environments (μ̃iso

2 > 0) that are isotropic (�μ̃2 = 0),
the surfactant/water mixture consists of a single type of environ-
ment (μ̃iso

2 = 0) with diffusion anisotropy on the microscopic
scale (�μ̃2 > 0) and varying degrees of orientation coherence on
the voxel scale, from random orientations (FA = 0) to preferential
alignment with the lamellae following the curvature of the glass
surface (FA > 0, radial orientation of v3).

Fractional microscopic anisotropy
The information about microscopic diffusion anisotropy lies
in the difference between S(b) data acquired with isotropic or
powder-averaged directional DW. We believe that it is good prac-
tice to inspect the raw data to make sure that the fitted parameters
are consistent with the features that can be observed visually.
Figure 2B illustrates that very small deviations from a mono-
exponential form of S(b) correspond to relatively large μFA val-
ues, potentially leading to erroneous conclusion when noisy data
is used to estimate μFA. Data for four representative voxels can
be found in Figure 6. Plotting the data as a function of bD rather
than b emphasizes the deviation from mono-exponential decay
and facilitates the comparison of data from voxels having differ-
ent values of D [72]. The data for voxels i and ii originate from
lamellar liquid crystalline phases that are coherently oriented
(FA = 0.54) and randomly oriented (FA = 0.08), respectively. The
mono-exponential decay of the isotropic data shows that there is a
single type of water environment within the voxel, while the pro-
nounced multi-exponential decay of the powder-averaged data
proves that this environment is anisotropic. The similarity of the
data for the voxels i and ii verifies that there is no influence from
the voxel-scale orientation distribution of the anisotropic objects.
Completely different behavior can be observed in the data from
the yeast suspension in voxel iii. In this case both the isotropic
and the powder-averaged data feature pronounced and identi-
cal signal attenuation, consistent with the presence of multiple
isotropic water environments. Voxel iv is located at the border
between the liquid crystal and yeast suspension compartments

FIGURE 6 | Normalized signal S(b)/S0 vs. normalized diffusion

weighting bD for selected pixels in Figure 5. The roman numerals of the
panels correspond to the pixel labels in Figure 5A. Powder-averaged
directional and isotropic data is shown with open blue and solid red circles,
respectively. The solid lines indicate fits of Equation (25) to the data using
S0, D, μ2, and μiso

2 as adjustable parameters. The dashed lines show the
single-exponential decay S/S0 = exp(–bD). The inserts illustrate the
microstructure, with water occupying the white space between the black
barriers: (i) single-orientation anisotropic, (ii) randomly oriented anisotropic
domains, (iii) water inside and between spherical compartments, and (iv)
mixed case with spherical compartments and anisotropic domains. The
panels are labeled with the characteristic relations between μ2 and μiso

2 .

and shows signs of both multiple environments (the isotropic
data) and diffusion anisotropy (pronounced multi-exponentiality
for the powder-averaged data). For now, we refrain from try-
ing to disentangle the contributions from multiple environments
with varying degrees of anisotropy, but we conjecture that our
approach with isotropic DW could add sufficient information
to make such deconvolution feasible in a manner analogous to
the separation of isotropic and anisotropic contributions to the
chemical shift in solid-state NMR spectroscopy [73].

The parameter �μ̃2 is in itself an adequate measure of diffu-
sion anisotropy. The values of �μ̃2 are related to the eigenvalues
of the diffusion tensor through Equation (11), covering the range
from 0, for isotropic diffusion, to 0.4 when D|| << D⊥ and 0.8
if D|| >> D⊥. The FA index has been adopted as the standard
measure for voxel-scale diffusion anisotropy, and it is thus desir-
able to convert �μ̃2 to a parameter that is directly comparable
with FA. As described in the theory section, we define the micro-
scopic fractional anisotropy, μFA, as the value of FA that would
be observed if all the anisotropic objects had the same orienta-
tion throughout the voxel. The value of μFA can be calculated
from �μ̃2 using Equation (14), which is also shown as a graph
in Figure 2A. A comparison of FA and μFA data for the liq-
uid crystal/yeast phantom is shown in Figure 7. Because of the
highly non-linear relation between μFA and �μ̃2, even moder-
ate fit errors in �μ̃2 get greatly amplified in the conversion to
μFA when the values of �μ̃2 are smaller than approximately 0.1
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FIGURE 7 | Diffusion anisotropy and orientation dispersion in the

liquid crystal. The analysis is performed on the data from Figure 6 fulfilling
the conditions D < 1μm2/ms and �μ̃2 > 0.15, thus excluding pixels
dominated by signal from the yeast suspension. (A) Parametric map with
brightness given by the fractional anisotropy (FA) and color-coding according
to Dxx /λ1 (red), Dyy /λ1 (green), and Dzz /λ1 (blue), where Dxx , Dyy , and Dzz

are elements of the laboratory-frame diffusion tensor and λ1 is its largest
eigenvalue. (B) As in panel (A), but with brightness given by the
microscopic fractional anisotropy (μFA) calculated from �μ̃2 in Figure 5F

using Equation (14). Bright pixels with weak color saturation are observed
when μFA >> FA. (C) Scatter plot showing the correlation between μFA
and FA. The solid and dashed lines indicate μFA = FA and μFA = √

1/2,
respectively, the latter being expected for a liquid crystal with ideal lamellar
geometry. (D) Parametric map and histogram of the order parameter (OP)
calculated with Equation (21). The color-scale is given by the bar above the
histogram. Pixels not included in the analysis are shown in black.

(see Figures 2C,D). Consequently, we select the pixels for which
the conversion can be reliably performed by applying a thresh-
old value of 0.15. With this threshold, only the pixels from the
liquid crystal are included in the analysis. The histograms in
Figures 7A,B show that FA covers the range from 0 to 0.6 while
the values of μFA are centered at 0.76 with a standard deviation
of 0.03. No correlation between μFA and FA can be discerned in
the scatter plot in Figure 7C, indicating that the observed spread
in μFA can be attributed to the precision of the experiment rather
than any true inhomogeneity of the liquid crystal sample. Even
when taking into account the spread of the data, the experimental
values are consistently located above the line μFA = 0.71 which
is the theoretical maximum for oblate diffusion tensors. This dis-
crepancy originates from our procedure for estimating the values
of μ2 from the experimental data using Equation (25) as a fitting
function. A positive bias of μFA, visible in Figures 2C,D, arises
due to the interplay between the functional form of Equation (25)
and the rather extended range of b-values used for the fit. When
the gamma distribution is used to approximate the diffusion dis-
persion due to the orientation dispersion in purely anisotropic
systems, the attenuation data can be described accurately by the
function in Equation (25) only for a limited range of b-values. In
the case of anisotropy with axial symmetry, for which the echo
attenuation can be calculated analytically (see Equation 35 in
[34]) and the exact values for D and μ2 are given by Eq. (11),
the function in Eq (25) increasingly underestimates the signal

intensity at bD > 1. Thus, the μ2 value tends to be overestimated
when Equation (25) is regressed onto the dataset with too high b-
values resulting in an overestimation of the μFA. The bias could
be reduced by limiting the range of b-values, but unfortunately
at the expense of a severe loss in precision of the fitted parame-
ters. Finding the optimal fitting function and b-values could be
decisive for the success of transferring our approach to in vivo
measurements. Still, we choose to postpone further investigations
of this subject.

In the FA and μFA parameter maps in Figures 7A,B, the RGB
levels are based on the three diagonal elements of the diffusion
tensor in the laboratory frame of reference. The alignment of the
lamellar planes at the glass surface gives rise to an intensely col-
ored band at the outer edge of the liquid crystal compartment in
both the FA and μFA maps. In stark contrast to the FA map, the
brightness of the μFA map is constant on account of the nearly
uniform values of μFA. Weakly colored bright pixels can be found
in the interior of the compartment where there is no preferential
orientation of the lamellar microcrystallites. The corresponding
pixels in the FA map are nearly black because of the absence of
voxel-scale anisotropy.

Order parameter
While the μFA parameter contains information about the micro-
scopic diffusion anisotropy, the value of FA additionally includes
the effect of voxel-scale alignment of the underlying anisotropic
objects. Consequently, it seems logical to use the values of FA and
μFA to define a parameter quantifying the orientational order or,
alternatively, disorder. In the field of liquid crystals, the orienta-
tional ordering is conventionally described with an OP, defined as
an ensemble average in Equation (18). In cases of lower than uni-
axial symmetry, the scalar OP is generalized to an order matrix.
Complete alignment of the anisotropic objects gives OP = 1,
while random orientations correspond to OP = 0. Equations (19)
and (21) describe how OP can be calculated from the measured
diffusion tensor eigenvalues and the variances of the diffusion dis-
tribution, respectively. The eigenvalues and variances correspond
to the information contained in the FA and μFA parameters,
respectively. The resulting OP map for the liquid crystal is shown
in Figure 7D. In line with the previous results, a highly ordered
region can be found next to the glass surface, while the inte-
rior of the liquid crystal displays low order. Since the values of
μFA are nearly constant, and there is a monotonous, albeit non-
linear, relation between FA and OP, as described by Equations
(21) and (22), the corresponding histograms in Figures 7A,D
have similar shapes. The benefit of using OP, rather than some
more directly calculated measure such as the ratio FA/μFA, is
that it has a simple geometrical definition through Equation
(18), and that it is a well-established parameter in other fields of
science.

WHOLE-BODY SCANNER
Measurements of μFA were also successfully implemented on
a clinical system. The highly efficient single-shot isotropic
DW protocol, based on the optimized q-MAS gradient mod-
ulation [37], allows to achieve high DW even at a stan-
dard clinical scanner with significant gradient amplitude and
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energy constrains. It is worth noting that, although the clini-
cal scanner was equipped with gradients capable of 80 mT/m
on axis, the maximum b-value of 2800 ms/mm2 for a total
diffusion encoding time of 125.8 ms was mainly restricted by
the power available to the gradient amplifiers. The results for
the whole-body scanner imaging experiments are shown in
Figure 8 as parametric maps, histograms and signal curves.
The measurements were performed on a phantom consisting
of one compartment that contained coherent micro domains
(intact asparagus stems) and another compartment that con-
tained small domains with high orientation dispersion (pureed
asparagus).

The FA map for the intact asparagus phantom indicates a
high degree of voxel scale anisotropy, as seen in Figure 8B.
However, when the coherent geometry of the asparagus stem
is distorted, as in the pureeing process, the anisotropy on the
voxel scale is strongly suppressed (see Figure 8G). By contrast,
the microscopic anisotropy is visible in the μFA both before
and after the pureeing process, as seen in Figures 8C,H. The
effects on FA and μFA were quantified using two ROIs placed
in specific regions of the phantom in order to reduce the influ-
ence from the free water. The first ROI was placed over several
intact asparagus stems and the second included the central parts
of the asparagus puree. Notice that several stems of asparagus
exhibited hyperintensity in the T2 map, and were also found to
have lower values of FA and μFA, suggesting that the micro-
architecture of these stems was compromised, possibly due to
mechanical damage or natural degradation. In order to avoid
such damaged tissue, these stems were excluded from the ROIs.
The mean parameter value in the two ROIs was FAintact = 0.50
and FApuree = 0.06, and μFAintact = 0.75 and μFApuree = 0.50,
respectively. The FA value of intact asparagus is in agreement
with other experiments that have employed similar diffusion
times [41]. The distributions of parameter values are presented
in histograms in Figures 8D,I. The histogram visualizes the high
contrast between the FA and the μFA in the pureed tissue,
demonstrating how the μFA is still sensitive to the anisotropic
diffusion at the scale of each asparagus fragment even if the dif-
fusion is approximately isotropic on the voxel scale. The fact
that the μFA is decreased in the pureed tissue can be attributed
to the loss of anisotropy in the tissue microstructure and the
relatively large water component introduced in the pureeing
process.

The fitted lines for the representative voxels, resulting
from regression of Equation (25), are shown in
Figures 8E,J. The fit parameters in the intact asparagus
were D = 1.55 ± 0.05 μm2/ms, μiso

2 = 0.60 ± 0.12 μm4/ms2

(μiso
2 /D

2 ≈ 0.25) and μ2 = 1.24 ± 0.18 μm4/ms2 (μ2/D
2 ≈

0.52) resulting in a μFA value of 0.77 ± 0.03. The corresponding
values in the pureed asparagus were D = 1.96 ± 0.02 μm2/ms,

μiso
2 = 0.17 ± 0.06 μm4/ms2 (μiso

2 /D
2 ≈ 0.04) and μ2 = 0.64 ±

0.06 μm4/ms2 (μ2/D
2 ≈ 0.17) result in a μFA value of 0.60 ±

0.02. The standard deviations were estimated by a Monte
Carlo error analysis [66]. The high apparent diffusivity in the
pureed asparagus tissue further supports the notion that the
calculation of μFA in the pureed tissue was affected by a free
water component.

FIGURE 8 | Results of the whole-body scanner experiment on water in

intact and pureed asparagus. The left column (A–E) shows the resulting
images in the intact asparagus, and the right column (F–J) shows
corresponding images for the pureed asparagus. The top row shows high
resolution T2-weighted images. The second and third rows show FA and μFA
maps, respectively. A high FA is only observed in the intact asparagus while
μFA can be observed in both intact and pureed asparagus. The histograms
show the distribution of FA and μFA in the ROIs (blue outline superimposed
on FA and μFA maps). The bottom row shows normalized signal intensity vs.
diffusion weighting, S(b)/S0, for representative voxels found in the ROIs
(signal from isotropic DW: empty blue circles; powder-averaged directional
DW: filled black circles). The bottom left plot (E) includes the signal from a
region consisting of unobstructed water measured by directional (crosses)
and isotropic DW (circles). The fitted regression lines, according to Equation
(25), correspond to μFA values of 0.77 and 0.47 in the intact and pureed
asparagus, respectively.

Parts of the phantom with intact asparagus consist purely
of unobstructed water and thus serve as a reference to validate
that in these regions the isotropic and directional DW indeed
yield identical signal attenuation. The signal from one such
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Lasič et al. Microanisotropy MRI with q-MAS

region with unobstructed water (ROI not shown), is depicted
by circles and crosses in Figure 8E. The data coincide and show
mono-exponential attenuation, thus verifying that the isotropic
and directional experiments give the same DW for an isotropic
liquid.

SIGNIFICANCE AND IMPLEMENTATION OF MICROSCOPIC
ANISOTROPY BIOMARKERS
Biophysical modeling of WM is a field that has attracted much
activity lately [74], and the need to disentangle orientation dis-
persion from dispersion in compartment size is now obvious
[23, 75, 76]. Isotropic q-MAS DW could be an important tool
to help disentangle the two phenomena. We suggest that the
implementation of the isotropic DW in combination with the
standard high b-value directional DW may generate new valuable
biomarkers, such as the μFA and OP, that would allow identify-
ing more specific mechanisms in cases where confounders would
otherwise lower the specificity of parameters such as FA. This
could be particularly helpful in selective WM atrophy in cross-
ing geometries where the removal of one fiber population would
cause the FA to increase, creating an opposite effect size as com-
pared to unidirectional geometries [17]. Unlike the FA, the μFA
is not restricted to macroscopically anisotropic tissue and it is
thus suited for diagnosing also macroscopically isotropic tissue
such as GM, where it could detect changes in the anisotropic
diffusion, a feature that is useful in the mapping of GM deteri-
oration. The μFA could also assist in the pre-surgical planning
of tumor removal by differentiating different types of tissue
consistency [77].

The application of the method for in vivo quantification of
microscopic anisotropy should be straight forward, but was out-
side the scope of this paper. Previous studies employing non-
conventional diffusion encoding have produced promising results
in the human brain despite the long echo times required by
the signal preparation [78–80]. For accurate μFA quantifica-
tion, especially in tissue close to cerebrospinal fluid, such as
the cortical GM, the partial volume effect needs to be con-
sidered. Ignoring this problem is known to bias the results of
conventional DTI and non-conventional diffusion MRI such as
filter-exchange imaging [78, 81]. The most straightforward means
of mitigating the partial volume effect would be to include an
isotropic component with high-diffusivity and zero anisotropy in
addition to Equation (25) for the tissue signal. Once a suitable
signal model is constructed, the experiment design can be opti-
mized to minimize the influence of noise on parameter estimates
[82]. Finally, the noise-induced variance should be compared
to the biological variance in μFA, to aid the design of clinical
studies [83].

CONCLUSION
We demonstrated that the microscopic anisotropy can be quan-
tified based on the comparison between isotropic and powder-
averaged directional DW data. Proof-of-principle experiments
were carried out on selected phantoms at a high-field spectrom-
eter as well as on a standard clinical scanner. The spin-echo
implementation of the optimized single-shot q-MAS DW pro-
vides efficient diffusion encoding. On the clinical scanner, q-MAS

DW using echo-time of 160 ms yields b-values comparable to DKI
experiments.

While adding the isotropic DW experiment to the standard
DTI requires only minor additional experimental time, it adds
valuable information to the powder-averaged directional DW
data. In addition to FA, available from the DTI, the experi-
ment with isotropic DW allows disentangling the contributions
of microscopic anisotropy and orientation dispersion of micro-
domains, which can be quantified by the herein introduced μFA
and OP parameters. The μFA is not affected by the orientation
dispersion of microscopic structures and it corresponds to the val-
ues of FA in the absence of orientation dispersion. Since the μFA
is not sensitive to the macroscopic organization of anisotropic
structures, like crossing fibers of the WM, the μFA could provide
a valuable new biomarker to characterize tissue.
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11. Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D. Apparent exchange
rate mapping with diffusion MRI. Magn Reson Med. (2011) 66:356–65. doi:
10.1002/mrm.22782

12. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues
elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B (1996)
111:209–19. doi: 10.1006/jmrb.1996.0086

13. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and
imaging. Biophys J. (1994) 66:259–67. doi: 10.1016/S0006-3495(94)80775-1

14. Moseley ME, Kucharczyk J, Asgari HS, Norman D. Anisotropy in
diffusion-weighted MRI. Magn Reson Med. (1991) 19:321–6. doi:
10.1002/mrm.1910190222

15. Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J. Investigating the
prevalence of complex fiber configurations in white matter tissue with diffu-
sion magnetic resonance imaging. Hum Brain Mapp. (2013) 34:2747–66. doi:
10.1002/hbm.22099

16. Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and
other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage (2013)
73:239–54. doi: 10.1016/j.neuroimage.2012.06.081

17. Douaud G, Jbabdi S, Behrens TEJ, Menke RA, Gass A, Monsch AU, et al.
DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals
early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage
(2011) 55:880–90. doi: 10.1016/j.neuroimage.2010.12.008

18. Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh
R. Diffusion tensor imaging of the brain: review of clinical applications.
Neuroradiology (2004) 46:339–50. doi: 10.1007/s00234-003-1114-x

19. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter
mapping in brain research: a review. J Mol Neurosci. (2008) 34:51–61. doi:
10.1007/s12031-007-0029-0

20. McNab JA, Jbabdi S, Deoni SCL, Douaud G, Behrens TEJ, Miller KL. High
resolution diffusion-weighted imaging in fixed human brain using diffusion-
weighted steady state free precession. Neuroimage (2009) 46:775–85. doi:
10.1016/j.neuroimage.2009.01.008

21. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a
technical review. NMR Biomed. (2002) 15:435–55. doi: 10.1002/nbm.782

22. Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion
(CHARMED) MR imaging of the human brain. Neuroimage (2005) 27:48–58.
doi: 10.1016/j.neuroimage.2005.03.042

23. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: prac-
tical in vivo neurite orientation dispersion and density imaging of the human
brain. Neuroimage (2012) 61:1000–16. doi: 10.1016/j.neuroimage.2012.03.072

24. Callaghan PT, Söderman O. Examination of the lamellar phase of Aerosol
OT/water using pulsed field gradient nuclear magnetic resonance. J Phys
Chem. (1983) 87:1737–44. doi: 10.1021/j100233a019

25. Topgaard D, Söderman O. Self-diffusion in two- and three-dimensional pow-
ders of anisotropic domains: an NMR study of the diffusion of water in
cellulose and starch. J Phys Chem B (2002) 106:11887–92. doi: 10.1021/jp02
0130p

26. Mitra P. Multiple wave-vector extensions of the NMR pulsed-field-gradient
spin-echo diffusion measurement. Phys Rev B (1995) 51:15074–8. doi:
10.1103/PhysRevB.51.15074

27. Callaghan PT, Komlosh ME. Locally anisotropic motion in a macroscop-
ically isotropic system: displacement correlations measured using double
pulsed gradient spin-echo NMR. Magn Reson Chem. (2002) 40:S15–S19. doi:
10.1002/mrc.1122

28. Komlosh ME, Horkay F, Freidlin RZ, Nevo U, Assaf Y, Basser PJ. Detection of
microscopic anisotropy in gray matter and in a novel tissue phantom using
double Pulsed Gradient Spin Echo MR. J Magn Reson. (2007) 189:38–45. doi:
10.1016/j.jmr.2007.07.003

29. Komlosh ME, Lizak MJ, Horkay F, Freidlin RZ, Basser PJ. Observation
of microscopic diffusion anisotropy in the spinal cord using double-
pulsed gradient spin echo MRI. Magn Reson Med. (2008) 59:803–9. doi:
10.1002/mrm.21528

30. Shemesh N, Adiri T, Cohen Y. Probing microscopic architecture of opaque het-
erogeneous systems using double-pulsed-field-gradient NMR. J Am Chem Soc.
(2011) 133:6028–35. doi: 10.1021/ja200303h

31. Shemesh N, Cohen Y. Microscopic and compartment shape anisotropies
in gray and white matter revealed by angular bipolar double-
PFG MR. Magn Reson Med. (2011) 65:1216–27. doi: 10.1002/mrm.
22738

32. Jespersen SN, Lundell H, Sønderby CK, Dyrby TB. Orientationally invari-
ant metrics of apparent compartment eccentricity from double pulsed
field gradient diffusion experiments. NMR Biomed. (2013) 26:1647–62. doi:
10.1002/nbm.2999

33. Bernin D, Topgaard D. NMR diffusion and relaxation correlation methods:
new insights in heterogeneous materials. Curr Opin Colloid Interface Sci.
(2013) 18:166–72. doi: 10.1016/j.cocis.2013.03.007
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The anisotropy of water diffusion in brain tissue is affected by both disease and development. This change can be
detected using diffusionMRI and is often quantified by the fractional anisotropy (FA) derived from diffusion ten-
sor imaging (DTI). Although FA is sensitive to anisotropic cell structures, such as axons, it is also sensitive to their
orientation dispersion. This is amajor limitation to the use of FA as a biomarker for “tissue integrity”, especially in
regions of complex microarchitecture. In this work, we seek to circumvent this limitation by disentangling the
effects of microscopic diffusion anisotropy from the orientation dispersion.
Themicroscopic fractional anisotropy (μFA) and the order parameter (OP) were calculated from the contrast be-
tween signal preparedwith directional and isotropic diffusion encoding, where the latter was achieved bymagic
angle spinning of the q-vector (qMAS). These parameters were quantified in healthy volunteers and in two pa-
tients; one patient withmeningioma and onewith glioblastoma. Finally, we used simulations to elucidate the re-
lation between FA and μFA in various micro-architectures.
Generally, μFA was high in the white matter and low in the gray matter. In the white matter, the largest differ-
ences between μFA and FA were found in crossing white matter and in interfaces between large white matter
tracts, where μFA was high while FA was low. Both tumor types exhibited a low FA, in contrast to the μFA
which was high in the meningioma and low in the glioblastoma, indicating that the meningioma contained dis-
ordered anisotropic structures, while the glioblastoma did not. This interpretation was confirmed by histological
examination.
We conclude that FA from DTI reflects both the amount of diffusion anisotropy and orientation dispersion. We
suggest that the μFA and OP may complement FA by independently quantifying the microscopic anisotropy
and the level of orientation coherence.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

The most established technique for non-invasive investigations
of the microstructure of the central nervous system is diffusion ten-
sor imaging (DTI) (Basser et al., 1994). DTI provides a means of esti-
mating the rate of diffusion and the diffusional anisotropy in tissue,

frequently expressed in terms of the mean diffusivity (MD) and the
fractional anisotropy (FA), respectively. The diffusion anisotropy
has been shown to correlate with the progression of a wide variety
of conditions (Kubicki et al., 2002). For example, reduced FA is ob-
served during aging (Hsu et al., 2010; Sullivan and Pfefferbaum,
2006), and in neurodegenerative diseases such as dementia
(Englund et al., 2004; Santillo et al., 2013), Parkinson's disease
(Surova et al., 2013), Alzheimer's disease (Sjobeck et al., 2010), and
multiple sclerosis (Rovaris et al., 2005). By contrast, the value of FA
tends to increase during white matter (WM) maturation (Lebel
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et al., 2008; Löbel et al., 2009) and after specific forms of training,
such as juggling (Scholz et al., 2009).

While FA is clearly sensitive to microstructural alterations, such as
demyelination, it also reflects a wide variety of non-specific and possi-
bly confounding effects. One of the most prominent confounders of FA
is the partial volume effect (PVE). Partial volume effects are especially
relevant for diffusion-MRI (dMRI) where voxel volumes are typically
on the scale of ~10mm3, resulting in a high probability for theMR signal
to originate from water residing in different types of tissue. This in-
cludes voxels that are located at the interface between nerve bundles
with different orientation, and at the interface between brain tissue
and cerebrospinal fluid (CSF). Thus, the signal from individual voxels
frequently reflects an average of different diffusion profiles. This invari-
ably leads to less pronounced diffusion directionality, i.e., lower FA
(Oouchi et al., 2007; Westin et al., 2002). Consequently, FA correlates
with structure size since smaller structures include a larger fraction of
voxels that interface with surrounding tissue than larger structures
(Szczepankiewicz et al., 2013; Vos et al., 2011). Another aspect of PVE
is the presence of crossing, kissing, fanning, and other irregularWM ge-
ometries within a voxel, which reduce the FA by inducing a higher de-
gree of orientation dispersion (Alexander et al., 2001; Nilsson et al.,
2012). Thus, the utility of FA as a biomarker in regions of complex
WM architecture is impeded because it entangles multiple effects into
a single value. Although frequently overlooked, this is not an idle theo-
retical issue but has practical consequences. For example, elevated
values of FA have been found in crossing fibers in patients with
Alzheimer's disease (Douaud et al., 2011; Teipel et al., 2014). This seem-
ingly counter-intuitive result is explained by the selective damage to
oneof thefiber populations in the region (Douaud et al., 2011), resulting
in reduced orientation dispersion and thus elevated FA. It is also worth
noting that FA is an intrinsically poor biomarker in gray matter (GM)
due to the high orientation dispersion of neurites in the cortex
(Shemesh and Cohen, 2011). Thus, reliable use of FA may be confined
to regions of highly coherentWM (De Santis et al., 2013), which is esti-
mated to account for less than 10% of the total white matter of the
human brain (Vos et al., 2012). This has prompted the search for
methods that accurately model microscopic changes in complex neural
tissue.

It has been shown that the effects of orientation and restriction can
be disentangled by extending the conventional single pulsed-field-
gradient (sPFG) experiment (Stejskal and Tanner, 1965) to include dou-
ble, or multiple, pulsed-field-gradients (dPFG and mPFG, respectively)
(Mitra, 1995). In dPFG experiments information can be derived from
the dependence of the signal amplitude on the angle between two suc-
cessive encoding blocks. Several methods have been proposed for the
quantification of microscopic anisotropy from such data. To this end,
Lawrenz and Finsterbusch (2013) used a fourth-order tensor parame-
terization suggested by Lawrenz et al. (2010) to map the microscopic
diffusion anisotropy in human white matter in vivo. Jespersen et al.
(2013) developed a rotationally invariant dPFG encoding scheme and
mapped the microscopic anisotropy in an excised monkey brain in
terms of the fractional eccentricity.

Recently, Lasič et al. (2014) formulated a framework for the quanti-
fication of microscopic diffusion anisotropy and orientation dispersion
in terms of the microscopic fractional anisotropy (μFA) and order pa-
rameter (OP), respectively. These parameters were derived from the
contrast between the signal acquired in diffusion weighting (DW) ex-
periments that used conventional diffusion encoding aswell as isotropic
encoding based on magic angle spinning of the q-vector (qMAS)
(Eriksson et al., 2013). Briefly, magic angle spinning is an established
NMR spectroscopy method where a sample is rotated around its own
axis at a specific angle relative to the B0-field to minimize the influence
of chemical shift anisotropy on the observed NMR spectrum. In qMAS,
harmonic gradient modulation is used to create a q-vector that per-
forms a precession at the magic angle in order to exert equal diffusion
encoding in all spatial directions while the sample remains stationary.

Although isotropic encoding can be achieved by combining multiple
trapezoidal encoding blocks (Butts et al., 1997; Wong et al., 1995), the
qMAS technique offers a time efficient gradient modulation scheme
(Topgaard, 2013). The qMAS-encoded signal attenuation becomes inde-
pendent of contributions from anisotropic diffusion, and is sensitive
only to the rate of isotropic diffusion (Eriksson et al., 2013). As a
proof-of-principle, Lasič et al. (2014) implemented the qMAS technique
on a NMR spectrometer and a clinical scanner, showing that microscop-
ic anisotropy could be detected in phantoms that contained ordered and
disordered anisotropic micro-domains.

In this work we performed the first in vivo experiments using qMAS
diffusion encoding, and we parameterize the microscopic anisotropy of
the human brain based on the framework presented by Lasič et al.
(2014).We also demonstrated the feasibility of quantifyingmicroscopic
anisotropy in a clinical setting by using it to infer information on tissue
structure in two types of brain tumors. Finally, we compared the results
to simulated data to elucidate how the measures of anisotropy respond
to various changes inmicro-architecture, and expanded on the possibil-
ities to use this novel method in clinical research to access information
that is unavailable when using conventional methods.

Theory

In conventional DTI, the diffusion on the voxel scale is assumed to be
Gaussian and is described by a rank-2 tensor (D) (Basser et al., 1994).
The same description can be employed at a sub-voxel scale; meaning
that each coherent segment of the underlying microgeometry can be
considered as a domain in which the diffusion is Gaussian and de-
scribed by a domain diffusion tensor (Dk). The voxel scale tensor
can be described as the average of all domain tensors, according to
Eq. (1)

D ¼ Dkh i; ð1Þ

where D = Dk only when the voxel contains identical domains that
are perfectly aligned. In all other cases Dwill depend on the distribu-
tion of domain tensor eigenvalues, and their orientation (Fig. 1).
Here, we denote objects pertaining to microscopic domains by a sub-
script ‘k’. Consider three common parameterizations of D: the mean
diffusivity (MD), the variance of the diffusion tensor eigenvalues
(Vλ), and the fractional anisotropy (FA), defined in Eqs. (2), (3),
and (4) respectively (Basser and Pierpaoli, 1996)

ð2Þ

ð3Þ

ð4Þ

Note that , and yield the correspond-
ing parameters for a single domain, denoted MDk, Vλ,k and FAk, re-
spectively. From Eq. (1) to Eq. (4), it is clear that the FA represents
the amount of microscopic anisotropy that persists to the voxel
scale and is determined by the coherence of the domain orientations
(Westin et al., 2002). To circumvent this dependency, Lasič et al.
(2014) suggested a method to measure the microscopic anisotropy
in terms of the microscopic fractional anisotropy (μFA). Conceptual-
ly, in a system of identical and parallel domains the diffusion
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anisotropy of each domain will persists to the voxel scale, rendering
FA = μFA = FAk (Fig. 1A). By contrast, randomly oriented domains
exhibit isotropic voxel scale diffusion, rendering FA = 0, however,
the microscopic anisotropy is unaffected by the orientation disper-
sion and thus μFA = FAk (Fig. 1C).

It should be clear that individual domains cannot be probed directly
using conventional DTI. Instead, the microscopic anisotropy can be in-
ferred from the amount bywhich the diffusionweighted signal deviates
from monoexponential attenuation, commonly referred to as the diffu-
sional kurtosis (Jensen et al., 2005). However, kurtosis is not specific to
microscopic anisotropy since it is also sensitive to the presence of mul-
tiple diffusion coefficients. Further, Mitra (1995) showed that these two
effects cannot be distinguished in a conventional sPFG experiment, but
that it could be done using dPFG experiments. Here, we separate the
two effects by using the contrast between conventional and isotropic
diffusion encoding (Lasič et al., 2014). The concept is understood by
considering theMR signal (S) as a function of themagnitude of diffusion
encoding (b), and the distribution of diffusion coefficients (P), according
to Eq. (5)

SN bð Þ ¼ S0

Z∞
0

P DjNð Þ � e−bDdD; ð5Þ

where P(D|N) reads as the probability distribution of diffusion coeffi-
cients when employing the encoding tensor N, and D = N : D, where ‘:’
denotes the double inner product. The encoding tensor is introduced
to facilitate the analysis of both conventional and isotropic encoding
(Westin et al., 2014). Conventional diffusion encoding is anisotropic,
i.e., the diffusion sensitizing gradient is employed in one specific direc-
tion n, where n = [nx ny nz]T and |n| = 1. The corresponding encoding
tensor is defined asN=nnT (3 × 3matrixwith a single non-zero eigen-
value), and the b-matrix is given by B = b ⋅ N (Basser et al., 1994).

For low to moderately high b-values, the signal described in
Eq. (5) mainly depends on the expected value and the variance of
the distribution of diffusion coefficients. The expected value, or
first moment, of P is reflected in the initial slope of the signal atten-
uation, and is equal to the apparent diffusion coefficient in the

direction defined by N, according to ADC = E[P(D|N)]. The variance,
or second centralmoment, of P is reflected in the departure of the signal
attenuation from monoexponentiality, and is related to the apparent
diffusional kurtosis (K) mapped in DKI, such that Var(P(D|N)) =
K ⋅ ADC2/3 (Jensen et al., 2005).

The dependence of the distribution of diffusion coefficients on N is
essential to understanding the calculation of the microscopic anisotro-
py. We highlight this dependence by considering an ideal system that
contains an ensemble of anisotropic domains that are randomly orient-
ed and axially symmetric, i.e., the system is rotationally invariant and all
domain tensors are defined by two eigenvalues. This system is aniso-
tropic on the microscopic scale, but isotropic on the voxel scale, hence
FA = 0. However, the microscopic anisotropy can be recovered from
the variance of the distribution of diffusion coefficients reflected in the
departure from monoexponential signal attenuation. In the ideal sys-
tem, the average variance of the domain tensor eigenvalues (〈Vλ,k〉) is
related to the variance of the distribution of diffusion coefficients (Va)
according to Eq. (6)(Lasič et al., 2014)

Vλ;k

D E
¼ 5

2
Va; ð6Þ

where Va = Var(P(D|N)). The subscript ‘a’ indicates that the variance is
induced only by the presence of anisotropy. The microscopic fractional
anisotropy is defined by substituting Vλ in Eq. (4) with the right hand
side of Eq. (6), according to Eq. (7)(Lasič et al., 2014; Topgaard and
Lasič, 2013)

ð7Þ

The definition in Eq. (7) was originally suggested by Topgaard and
Lasič (2013), but an analogous parameter, the fractional eccentricity
(FE), was independently developed by Jespersen et al. (2013). Note
that the μFA and FE differ only by a constant factor such that μ FA ¼ffiffiffiffiffiffiffiffi
3=2

p � FE (Jespersen et al., 2014a,b; Lasič et al., 2014).

Fig. 1. Schematic examples showing the effects of tensor averaging. The top row shows individual domain tensors (Dk) in the voxel volume, and the bottom row shows the corresponding
voxel tensors (D) in tissue containing coherent, bending, random and isotropic domains. In this example, the domains in panels A, B and C have FAk = 0.8, while FAk = 0.0 in panel D.
Effects of averaging across multiple orientations are seen in the shape of the voxel scale tensors. Note that FA cannot distinguish between randomly oriented anisotropic domains
(C) and isotropic domains (D) since it is zero in both cases.
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Applying Eq. (7) to an ideal system is able to perfectly describe the
μFA as an analog to FA that is not sensitive to the effects of orientation
dispersion (Fig. 1). However, assumptions made in the ideal system
may not be valid in biological tissue. In such cases, the μFA can still be
quantified by relaxing the demands of the ideal system and compensat-
ing for the introduced error. Here we consider departure from rotation
invariance, and the presence of multiple sources of variance.

Rotation invariance can be achieved by constructing the powder av-
erage of the signal and is required in systems that exhibit residual an-
isotropy (FA N 0). The powder average is the arithmetic average of the
signal across multiple rotations of the diffusion encoding gradients,
and will render a signal that is insensitive to rotations of the object.
Here we denote the powder averaged signal and distribution function
as S and P, respectively. Note that the expected value of the powder av-
eraged distribution yields the mean diffusivity, i.e., P DjNð Þ� � ¼ MD.

Variance in the distribution of diffusion coefficients can be a conse-
quence of both anisotropy and presence of multiple isotropic compo-
nents. This is relevant for the evaluation of Eq. (7) where only the
variance arisingdue to thepresence ofmicroscopic anisotropy is consid-
ered. Thus, in cases where all domains cannot be assumed to have equal
isotropic diffusivity, i.e., the domains have different MDk, the contribu-
tion to total variance (Vt) from isotropic components (Vi) must be quan-
tified and removed, according to Eq. (8)

Va ¼ V t−V i: ð8Þ

To calculate Va according to Eq. (8) we must find an independent
means of measuring Vt and Vi. We know from DKI that Vt can be quan-
tified by performing a conventional diffusion experiment, according to
V t ¼ Var P DjNð Þ� �

. Since P is affected not only by the underlying micro-
environment, but also by the shape of the encoding tensor, Vi can be
quantified by employing isotropic diffusion encoding that is designed
to exert equal encoding strength in all spatial directions in a single prep-
aration of the signal. We define the isotropic encoding tensor (I, 3 × 3
matrix) as one-third of the identity matrix so that all its eigenvalues
are equal, and Tr(I) = 1. This mode of encoding is insensitive to the do-
main orientations, and if the diffusion is approximately Gaussian, it is
rotationally invariant and independent of microscopic anisotropy.
Note that when isotropic encoding is used, P and P are interchangeable
since I has no defined direction. For isotropic encoding the signal in
Eq. (5) is a function of P(D|I) which denotes the distribution of domain
mean diffusivities since I:Dk = MDk. The remaining variance is due to
heterogeneous domain mean diffusivities, and is defined as Vi =

Var(P(D|I)). In summary, anisotropic and isotropic diffusion encoding
at sufficiently high b-values can be used to quantifyVt andVi, respective-
ly. The μFA can then be calculated according to Eqs. (7) and (8).

Finally, we note that the interpretation of Va in Eq. (8) is valid if the
two probability distribution functions are related in terms of a convolu-
tion, according to P DjNð Þ ¼ R Dð Þ⊗P DjIð Þ (see Fig. 2), where R(D) is the
anisotropy response function and Va = Var(R(D)), according to proba-
bility theory and the arithmetic of random variables. Thus, the analysis
assumes that the variance of the anisotropy response function is equal
for all domains. This assumption may be invalid, for example, in mix-
tures of WM and CSF where the anisotropy response functions are ex-
pected to be markedly different. The effects of such unfavorable
conditions on the validity of μFA calculations are investigated in the
Simulation experiments.

Methods

Imaging protocols

Data was acquired using a Philips Achieva 3T system, equipped with
80mT/mgradients with amaximum slew rate of 100 mT/m/ms on axis,
and an eight channel head coil.

The in vivo experiment was designed to evaluate the validity of
the μFA model and was therefore acquired using a high b-value sam-
pling rate, employing ten equidistant b-values between 100 and
2800 s/mm2. Thereby, the sequence was limited to five image slices.
Each set of data (one set per subject) contained images prepared with
both the isotropic qMAS and harmonically modulated anisotropic
encoding (Fig. 3). Harmonic modulation is preferred to trapezoidal
encoding to ensure equal diffusion times for both types of encoding
(Eriksson et al., 2013). All DW data were acquired using an echo time
of 160 ms, repetition time of 2000 ms, 96 × 96 acquisition matrix, spa-
tial resolution of 3 × 3×3mm3, partial Fourier factor of 0.8, and a SENSE
factor of 2. Regardless of encoding technique, each encoding block, be-
fore and after the 180°-pulse, lasted 62.5 ms. Anisotropic encoding
was performed in 15 directions for each b-value using harmonically
modulated gradients according to Lasič et al. (2014). The directions
were distributed using an electrostatic repulsion scheme (Jones et al.,
1999). The isotropic encoding was repeated 15 times per b-value. This
resulted in equal amounts of images and scan time for both techniques.
The combined scan time for the isotropic and anisotropic encoding se-
quences was 10:12 min.

Fig. 2. Schematic exampleof thedistribution of diffusion coefficientswhenemploying encoding that is isotropic (left,P DjIð Þ) and anisotropic (right,P DjNð Þ). The convolution visualizes how
the variance of P DjIð Þ is added to the variance of the anisotropy response function R(D), rendering the total variance in P DjNð Þ. This example depicts a system that contains axially sym-
metric and randomly oriented domainswhereMDk= 0.70± 0.05 μm2/ms, and the axial and radial domain diffusion is ADk=MDk+ 1.0 μm2/ms and RDk=MDk− 0.5 μm2/ms, respec-
tively (middle panel). Thus, the variance of the anisotropy response function is equal for all domains. The fact that the systemcontains anisotropic domains is reflected in thewidth ofR(D),
indicating that there is a difference between the eigenvalues of the domain tensors. The prolate symmetry of the domain tensors can be discerned from the shape of R(D), where the slow
diffusion (RDk) is themost probable while the fast diffusion (ADk) is the least probable (Eriksson et al., 2013). Note that the area under each distribution equals unity, and that the y-axes
have been adjusted to improve legibility.
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Additionally, two whole-brain morphological sequences were ac-
quired. One T1-weighted (T1W) 3D turbo-field-echo, reconstructed at
a spatial resolution of 1 × 1 × 1 mm3; and one T2-weighted (T2W)
FLAIR, reconstructed at a spatial resolution of 0.5 × 0.5 × 6 mm3. The
scan time for the T1W and T2W images was 6:28 and 4:48 min,
respectively.

Post-processing and parameterization

Motion correction and eddy-current correction was applied to DWI
data using ElastiX (Klein et al., 2010). The first moment, and the second
central moment of the distribution of diffusion coefficients was estimat-
ed by regressing the inverse Laplace transform of the gamma distribu-
tion function onto the acquired signal (Lasič et al., 2014; Roding et al.,
2012). The signal was modeled, according to Eq. (9)

S bð Þ ¼ S0 1þ b � V
MD

� �−MD2
V

; ð9Þ

whereMD and Vwere the fitting variables representing the initial slope
and curvature of the signal attenuation function, respectively. Note that
V in Eq. (9) corresponds to Vt and Vi when the model is regressed onto
data from the powder averaged anisotropic and isotropic diffusion
encoding experiments, respectively. Three constraints were introduced
in the fitting procedure to eliminate non-physical results. First, the MD
was constrained to be equal in the two acquisitions by assuming that
P DjNð Þ� � ¼ P DjIð Þ� � ¼ MD. This assumption is reasonable since the
choice of encoding technique should not affect themean diffusivity un-
less the diffusion time and the time required for the diffusingmedium to
probe the relevant restrictions are at the same scale, which is rarely the
case for DWI in vivo (Nilsson et al., 2009, 2013). Second, Vi was
constrained to the range between the total variance and zero
(Vt ≥ Vi ≥ 0). Finally, signal that was attenuated below 5%
�S bð Þ b 0:05 � S0
� �

was excluded from the fitting procedure. This was
done to avoid detection of false variance in regions where a strong dif-
fusion weighting rendered a signal that was elevated due to the noise
floor. This is expected to affect only voxels where MD N 1.1 μm2/ms.

FA was calculated through conventional DTI analysis from the
data employing anisotropic encoding for encoding strengths
b ≤ 1000 s/mm2. The μFA was calculated according to Eq. (8). Finally,

the orientation coherence of the domains was quantified by the order
parameter which is a well-established parameter for describing the
order in liquid crystals. It is defined as OP = 〈(3 cos2(θk) − 1)/2〉,
where θk is the angle between the domain and voxel scale symmetry
axes. Thus, the OP provides a measure of orientation dispersion that
has a simple geometric interpretation where OP= 1 indicates perfectly
coherent alignment and OP = 0 indicates randomly oriented domain
orientations. The OP can also be calculated from the microscopic and
voxel scale variance, according to Eq. (10)(Lasič et al., 2014)

OP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vλ

Vλ;k

D E
vuut : ð10Þ

Note that OP is not equivalent to the orientation dispersion index
used in NODDI (Zhang et al., 2012), and that it can be calculated for
any given orientation distribution function.

In vivo experiments

Imaging was performed on eight healthy volunteers (age 32 ±
4 years, all male) and two patients with brain tumors (one female,
62 years, with meningioma, WHO grade I; and one male, 46 years,
with glioblastoma, WHO grade IV). Written consent was obtained
fromall subjects and the studywas approved by theRegional Ethical Re-
view Board at Lund University.

Analysis of diffusion parameters was performed at the group level,
as well as in a single representative subject. Three regions of interest
(ROI) were selected in the WM; the splenium of the corpus callosum
(CC), the corticospinal tract (CST), and the anterior crossing region
(CR) where frontal projection fibers from the genu of the corpus
callosum and thalamic radiation of the internal capsule intersect (see
Assaf and Pasternak,2008). One ROI was also placed in the superior
part of the thalamus (THA), which contains a mixture of WM and GM.
The ROIs were delineated manually, using MD, FA and μFA maps for
guidance; the operator was instructed to avoid voxels that contained
GM or CSF.

The healthy individual was investigated with respect to the signal
parameterization and parameter distribution in all four ROIs. One addi-
tional ROI was placed in the lateral ventricles to investigate the signal
attenuation in the isotropic and rapidly diffusing CSF. The analysis of

Fig. 3. Schematic comparison of sequences (left) and qMASq-vector trajectory (right). The sequences showa spin-echo experimentwhere different types of diffusion encodingblocks (red
lines) have been inserted on both sides of the 180°-pulse. The first two rows show examples of anisotropic diffusion encoding that use trapezoidal and harmonic gradient modulation,
respectively. The bottom row shows the harmonic gradient modulation in isotropic qMAS. The q-vector trajectory in the qMAS experiment (right) follows the surface of a cone with
an aperture of twice themagic angle resulting in the same encoding strength in all directions for each encoding block. Note that the speed of the qMAS q-vector along the trajectory varies
as a function of its magnitude (low magnitude entails low speed), and that the magnitude of the qMAS encoding is zero during the 180°-pulse.
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the parameter distribution was based on the ROIs while the signal and
model fit was inspected in a single voxel in each ROI. Further, the
voxel-wise correlation between combinations of FA, μFA and OP were
evaluated. This analysis was performed in one axial slice of the image
volume and the parameter maps were masked to remove interference
from irrelevant regions of the head. The strength of the association
was quantified by the coefficient of determination (r2, Pearson's linear
correlation coefficient squared).

The healthy volunteer group was investigated with respect to the
parameter distribution in the CC, CST, CR and THA. In order to elucidate
if the threeWM regions were different with respect to parameter mean
values, F-tests (one-way ANOVA, assuming independent samples) were
performed on the distributions of MD, FA, μFA, OP, Vi and Va in the CC,
CST and CR. The threshold for significance was set at α = 0.05/6
(Bonferroni correction for six tests).

The tumorswere comparedwith respect to their FA and μFA by plac-
ing ROIs in one axial slice through each tumor. The ROIs were defined
manually and the inclusion of WM, GM and CSF was avoided. Both tu-
mors were resected one day after the MRI procedure and histological
evaluation of the tumors was performed, in accordance with local clin-
ical routine. Each tumor specimen was fixed in 4% buffered formalde-
hyde solution, embedded in paraffin, and sectioned at 4 μm. The
sections were stained with hematoxylin–eosin in order to visualize
the tissue structure and cell morphology. Microscopy was performed
on an Olympus BX50. The cell shape and presence of tissue fascicles
was investigated qualitatively and compared to corresponding diffusion
parameters. Finally, structure tensor analysis (Peyré, 2011) was per-
formed on the microphotos to enhance the visibility of cell structure
orientations.

Simulation experiments

Simulation experiments were performed to investigate the qualita-
tive behavior of FA and μFA in scenarios where the underlying system
contained complex diffusion profiles. These scenarios were designed
to mimic a range of effects that may be found in experimental data.
The results were evaluated in terms of the value, effect size, effect direc-
tion, and accuracy of the FA and μFA.

The simulations included three types of model components (C) with
varying water fractions (f). The first component was designed to repre-
sent the anisotropic diffusion in WM (Ca). For simplicity, all anisotropic
domains were assumed to be axially symmetric and were described by
their radial (RDk) and axial diffusivity (ADk). These were set to ADk =
1.7 and RDk = 0.2 μm2/ms. The orientation dispersion was modeled
with the Watson distribution (Sra and Karp, 2013; Zhang et al., 2011)
where the concentration parameter (κ) is related to the order parame-
ter according to Eq. (11)

ð11Þ

where is the confluent hypergeometric function. The order parame-
ter could be varied to produce geometries between fully coherent
(OP= 1) and fully dispersed (OP= 0) orientations. The two remaining
environments were designed to represent diffusion in damaged neural
tissue (Ci) and CSF (CCSF). The diffusion in these environments was as-
sumed to be isotropic, with a domain mean diffusivity of MDk = 1.7
and 3.0 μm2/ms in Ci and CCSF, respectively.

DamagedWMwas simulated by gradually replacing Ca with Ci. This
was done in four geometries; thefirst three included one, two and three
coherent (OP = 1) and orthogonal Ca components, and the last
contained one Ca component with randomly oriented domains (OP =
0). The isotropic component replaced one anisotropic component
while the remaining anisotropic componentswere unaltered. For exam-
ple, in the case of two crossing fibers (Ca1 and Ca2), the damaged aniso-
tropic component Ca1, had a volume fraction fa1. Initially, fa1 made up
half the volume, but was gradually reduced to zero, and the fraction
lost in Ca1 was replaced by Ci, i.e., fa1= 1/2→ 0, and fi = 1/2− fa1. Dur-
ing this process the fraction of Ca2 was constant (fa2 = 1/2).

The response to increasing radial diffusivity, mimicking demyelin-
ation, was simulated in a coherent Ca component (OP = 1), where the
radial diffusivity was increased from its starting value until it exhibited
no anisotropy (RDk = 0.2→ 1.7 μm2/ms). Effects of orientation disper-
sion were investigated using a single Ca component with variable
amount of dispersion, from dispersed to coherent (OP=0→ 1). The ef-
fect of the crossing angle between two coherent Ca components was
simulated by varying the angle from a parallel to a perpendicular geom-
etry (φ=0→ 90°). Finally, the effects of CSF contamination were sim-
ulated by gradually replacing a coherent Ca component (OP = 1) with
CCSF (fa = 1 → 0, and fCSF = 1 − fa). In all cases, the effects of noise
were simulated for five equidistant points along each process by adding
Rice-distributed noise to the signal (Sijbers and den Dekker, 2004). The
signalwas generated in accordancewith the imaging protocol, i.e., using
the same b-values, number of directions and parameterization, at a S0
signal-to-noise ratio (SNR) of 20. The model was regressed onto 1000
realizations of the noisy signal to render a reliable median and inter-
quartile range of the parameters.

Results

In vivo experiments

Maps of FA, μFA andOP for one healthy volunteer are shown in Fig. 4.
As expected, the μFA is high in regions comprised of WM and lower in
GM. Most notably, the FA and μFA maps differ in regions where a high
orientation dispersion is expected, for example, in crossing WM and

Fig. 4. T1W, μFA, FA and OP maps from one healthy volunteer. The μFA is similar to the FA map in that it highlights the WM of the brain, but does so regardless of the local orientation
dispersion. The μFA exhibits high values in areaswhere FA values are low due to crossing, bending and fanning fibers. Thus, the μFAmap exhibits strong resemblance to theWMmorphol-
ogy in the T1W image, although the latter is not quantitative. The GM is visible in the μFA-map at a slightly lower intensity, indicating that the microscopic anisotropy is lower in GM as
compared to WM. The OP displays similar contrast to the FA, in regions of WM.
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the interface between WM pathways, in accordance with Lawrenz and
Finsterbusch (2014). Another prominent difference can be seen in the
GM where FA is close to zero, whereas μFA indicates that the GM con-
tains detectablemicroscopic anisotropy. Fig. 5 shows the parameter dis-
tribution in the CC, CST, CR, THA and CSF, and the powder averaged
signal originating from a single voxel in each region. As expected for
WM tissue, the departure from monoexponential attenuation was
smaller for the isotropic encoding than the anisotropic encoding. The
THA exhibited a relatively high isotropic variance, but the presence of
microscopic anisotropy is clearly visible from the separation of the
two signal curves. In the CSF, the signal was attenuated below 5% of its
initial value, and it is apparent that the fitting would detect a false
variance if high b-value data was not excluded. The resulting param-
eterization of the signal seen in Fig. 5 was: μFA = 0.98, 1.03, 0.96,
0.76, and 0.00; MD = 0.91, 0.84, 0.89, 1.60, and 2.95 μm2/m; Vi =
0.07, 0.00, 0.01, 1.66, and 0.01 μm4/ms2; and Va = 0.57, 0.66, 0.51,
0.65, and 0.00 μm4/ms2 in the CC, CST, CR, THA and CSF, respectively.

The voxel-wise correlation between μFA, OP and FA is presented in
Fig. 6. The relation between FA and μFA resembles the relation between
the corresponding parameters reported by Jespersen et al. (2013) in
that high FA entails high μFA, although not vice versa. The correlation
between μFA and FA was found to exhibit two distinct modes, which
were separated by introducing an arbitrary threshold at the shoulder
of the distribution (μFA = 0.8). The interval containing high values of
μFAwas found to correspondwell to regions ofWM (μFA N 0.8, red out-
line in Fig. 6) and the low μFAwas found in amixture of peripheralWM,
GM and CSF (μFA b 0.8, white outline in Fig. 6). In the WM region, a
strong correlation was found between OP and FA (r2 = 0.9), while
only weak correlations were found between μFA and OP (r2 = 0.1),
and between μFA and FA (r2 = 0.4). No relevant correlations were
found in the peripheral region (all r2 b 0.3).

The investigation of the parameter distribution in the group of
healthy volunteers is summarized in Table 1. All parameter mean
values, except the MD and Vi, were found to have significantly different
mean values in the three WM ROIs. This was expected for the FA since
the ROIs include both coherent and crossing WM tissue. The μFA was
also found to differ significantly between the three regions, albeit at a
much smaller effect size compared to the FA. The group level variability
detected inMD and Vi indicated that the absence of significance is likely
due to a small effect size and large variance, respectively.

The anisotropy parameters measured in the two tumor types are
presented in Fig. 7, and corresponding microphotos of the excised tu-
mors are presented in Fig. 8. The meningioma tissue exhibited a low
voxel scale anisotropy (mean ± standard deviation, FA = 0.19 ±
0.06) and high microscopic anisotropy (μFA = 0.88 ± 0.08). Likewise,
the glioblastoma tissue exhibited low voxel scale anisotropy (FA =
0.07 ± 0.05). However, it exhibited markedly lower microscopic

Fig. 5. Signal vs. b curves and parameter distributions in the corpus callosum(CC), corticospinal tract (CST), anterior crossing region (CR), thalamus (THA) and the cerebrospinalfluid in the
lateral ventricles (CSF) in one healthy volunteer. The ROIs are shown in the FA map (right, black–white outline). The signal plots show the powder averaged signal from a single voxel in
each region as measured with isotropic and anisotropic diffusion encoding (white and black circles), as well as the model fit (dashed and solid lines). The red lines are a visual reference
showingmonoexponential attenuation at the estimatedmeandiffusivity. The signal attenuation in all threeWMregions is similar,where the isotropic encoding shows little deviation from
monoexponential attenuation,while the anisotropic encoding exhibits a curvature in the signal attenuation, indicating that all regions containmicroscopic anisotropy. In the THA, both the
isotropic and anisotropic encoding shows a strong deviation from monoexponential attenuation, although the presence of microscopic anisotropy is made clear by the separation of the
two curves. Note that the signal from the CSF was fitted only for signal values above 5% of the signal at b= 0 s/mm2, and that the y-axis in the CSF plot has a larger range than the other
plots. The inserted histograms show the parameter distribution in each ROI where black and white bars represent FA and μFA, respectively. The histograms show that the μFA is similar in
the three WM ROIs and that the largest difference between FA and μFA can be found in the CR and THA.

Fig. 6. Voxel-wise parameter dependency between FA, μFA and OP in one healthy volun-
teer. The strongest correlation was found for the OP and FA (top left, see text for details).
Separating the distribution at a threshold of μFA=0.8 (red and black dots show μFA above
and below 0.8, respectively) revealed a clear spatial dependencywhere high values of μFA
are associated with the WM of the brain (voxels within red outline). The correlation be-
tween OP and FA in the WM indicates that FA is strongly dependent on the OP, i.e., the
FA is strongly dependent on the coherence of WM fibers.

Table 1
Diffusion parameters (group mean ± standard deviation) in four ROIs in the group of
healthy volunteers (n = 8). The ANOVA indicated significantly different mean values in
the CC, CST and CR for all parameters except MD and Vi. Note that the number of voxels
in each ROI (#Vox) is shown but was not included in any tests.

THA CC CST CR

MD [μm2/ms] 1.09 ± 0.20 0.98 ± 0.11 0.96 ± 0.05 1.00 ± 0.06
FA 0.31 ± 0.04 0.86 ± 0.03 0.64 ± 0.04 0.38 ± 0.04 †

μFA 0.82 ± 0.09 1.02 ± 0.02 0.97 ± 0.01 0.93 ± 0.01 †

OP 0.26 ± 0.02 0.64 ± 0.04 0.47 ± 0.03 0.27 ± 0.03 †

Va [μm4/ms2] 0.50 ± 0.12 0.96 ± 0.19 0.65 ± 0.07 0.57 ± 0.07 †

Vi [μm4/ms2] 0.54 ± 0.40 0.30 ± 0.21 0.17 ± 0.05 0.22 ± 0.11
#Vox 12 ± 3 5 ± 3 32 ± 5 24 ± 5

† ANOVA shows significant difference between parametermean values (p ≪ 0.05/6) in
the CC, CST and CR.
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anisotropy compared to the meningioma (μFA = 0.39 ± 0.22). Al-
though both tumors exhibited low FA values, the FA in themeningioma
was elevated compared to the glioblastoma, indicating that the tissue is
organized enough to create a weak but detectable diffusion anisotropy
on the voxel scale. The high vs. low microscopic anisotropy in the me-
ningioma and glioblastomawas corroborated by the histological exam-
ination of the two tumors, shown in Fig. 8. The histological examination
of the meningioma demonstrated a dense fascicular pattern of growth
with elongated tumor cells, consistent with low FA and high μFA; and
a more loose assemblage of rounded cells of variable size along with

patchy areas of necrosis in the glioma, consistent with both low FA
and low μFA.

Simulation experiment

Figs. 9 and 10 showcase how the FA and μFA are altered when the
underlying diffusion profiles are manipulated.

When a coherent anisotropic component was replaced by an isotro-
pic component (Fig. 9A), the FA decreased approximately linearly as a
function of the isotropic tissue fraction. In the same system, the μFA

Fig. 7. Parameter maps from the meningioma (top row) and glioblastoma (bottom row). The ROIs used for quantitative evaluation of diffusion parameters are shown in the FA maps
(white–black outline). Both tumors exhibited low FA, while the μFA was high in the meningioma and low in the glioblastoma (histogram).

Fig. 8.Microphotos of excisedmeningioma (top row) and glioblastoma (bottom row) tissue. Themeningioma exhibited a dense fascicular pattern of growthwith elongated tumor cells in
a mostly monomorph structure. As seen in the upper left image, the fascicles in the meningioma could stretch for distances comparable to the voxel size (~1 mm). The glioblastoma ex-
hibited a loose assemblage of rounded cells of variable size, along with patchy areas of necrosis. Blood vessels had thickened walls with endothelial cell proliferation and multiple small
bleedingswere included. The images on the right showmagnified areas of the tumor tissue as well as structure tensors (black ellipses) that illustrate the local orientation of the tissue. The
structure tensors in the meningioma showcase the presence of locally ordered structures, while few such structures are appear in the glioblastoma.
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followed a similar pattern, but had a less pronounced initial slope indi-
cating that the μFA is overestimated when the distribution of diffusion
coefficients contains both isotropic and anisotropic components. In the
absence of noise, both parameters approached zero for purely isotropic
systems. In the crossing geometry, where one anisotropic component
was replaced by an isotropic component (Fig. 9B), the FA first decreased
due to the relatively rapid increase of the isotropic component. Howev-
er, when a majority of the receding component had been removed
(fi N 1/2), the FA instead increased due to the dominance of the remain-
ing anisotropic component. By contrast, μFA decreased strictly. This
demonstrates a case where μFA may exhibit superior sensitivity and
specificity over FA, since the direction of the effect is constant. Further,
the effect size is larger for μFA since it is not confounded by the same
counteracting mechanisms. Similar results are shown for a triple cross-
ing geometry (Fig. 9C). In this case the FA started at a low value because
the tissue was macroscopically isotropic with its three orthogonal fiber
populations, and increased as one of the fiber populations was replaced
by isotropic tissue. Again, the positive direction of the effect, caused by
the reduction in orientation dispersion, may be confounding. By con-
trast, μFA reflected only the presence of microscopic anisotropy and
responded as expected to the simulated damage. In the case of damage
in randomly oriented microdomains (Fig. 9D), the macroscopic

anisotropy is zero, rendering FA insensitive to any changes in tissue mi-
crostructure while the μFA reflects the amount of microscopic anisotro-
py that is lost.

The effect of gradually increasing domain radial diffusivity, resulted
in similar effects for FA and μFA (Fig. 10A). However, as the system ap-
proaches isotropic conditions, the uncertainty in the μFA increases con-
siderably. Fig. 10B shows how dispersion influences the FA, while the
μFA is constant. A similar pattern is seenwhen simulating crossingfibers
with varying crossing angles (Fig. 10C). As expected the FA was highest
when the two fiber structures were parallel and had its lowest value
when they were perpendicular. These results show the potential bene-
fits of quantifying a measure for anisotropy that is not sensitive to con-
founds such as crossing, bending, fanning, and kissing fiber geometries.
Finally, the effects of CSF contamination exhibit similar effects as the
simulated damage in a single coherent WM system (compare Figs. 9A
and 10D). This simulation highlights the overestimation of μFA due to
multiple isotropic components. Generally, the μFA is increasingly sus-
ceptible to noise as the simulated systems approach zero microscopic
anisotropy, resulting in reduced accuracy.

Fig. 9. Response in FA and μFA in four geometries where one anisotropic component is replaced by an isotropic component to mimic tissue damage. The solid and broken lines show the
noise free FA and μFA, respectively. The circular markers show themedian parameter value when the SNR is 20, using the imaging protocol and parameterization detailed in theMethods
section. The error bars show the influence of noise as the interquartile range. The geometries and processes are illustrated with graphics below the plots showing the anisotropic (black
lines) and isotropic components (circles). Generally, the FA and μFA differ in all processes. In the single damagedWMcomponent (A), the FA and μFA should be equal, but a positive bias in
the μFA is induced due to the increasing presence of the isotropic component. In the double crossing (B), the FA can both increase and decrease due to the selective removal of anisotropic
domains, whereas the μFA is strictly decreasing as a function of the reduction of anisotropy. In the triple crossing (C), the FA and μFA exhibit opposing effects, where FA increases and μFA
decreases. The randomly oriented domains (D) illustrate that FA has no sensitivity to any changes in this case, while the μFA still reflects the presence of microscopic anisotropy.

Fig. 10. Response in FA and μFA due to changes inmicrostructure geometry. The plot objects are described in the caption of Fig. 9. The response to increasing radial diffusivity (A) is equiv-
alent for FA and μFA, however, the quantification of μFA displays a higher uncertainty. Both the effects of dispersion (B) and angle of crossing (C) have no effect on the μFA, while the FA is
stronglymodulated. The effect of CSF contamination (D) shows a positive bias in μFA compared to FA, similar to that found in Fig. 9A. Note that the values of FA and μFA in the simulation of
CSF contamination are expected to be lower than the corresponding values in Fig. 9A. The similarity arises from themodelfitting,where the bias is positive in both cases, butmore so in the
case of CSF since the model violation is larger. The varying degree of bias works to counteract the underlying difference between the two environments. Generally, in environments with
low levels of microscopic anisotropy, μFA exhibits a higher level of statistical uncertainty as compared to FA. Note that the noise prevents both FA and μFA from assuming values close to
zero.
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Discussion

In this study we present the first implementation of qMAS for the
purpose of probing the microscopic anisotropy in vivo on a clinical
MRI system. The parameters μFA and OP, as well as conventional DTI
parameters FA and MD, were quantified in healthy subjects and in
two different types of tumor tissue. Unlike the voxel scale anisotropy,
measured in terms of the FA, the microscopic anisotropy measured by
μFAwas relatively homogeneous in large portions of theWM. This find-
ing is in agreementwith other studies that have aimed to remove effects
of orientation dispersion from the quantification of local anisotropy
(Jensen et al., 2014; Jespersen et al., 2013; Lawrenz and Finsterbusch,
2013, 2014). The notion that FA is sensitive to local orientation disper-
sion is supported by the strong correlation found between the FA and
OP (Fig. 6). However, the threeWM regions chosen for analysis exhibit-
ed small but statistically significant differences also in μFA (Table 1), in-
dicating that orientation dispersion is not the only difference between
these regions. This could possibly be explained by varying levels of do-
main anisotropy, for example, caused by variable axonal packing
density.

In the tumor tissue, FA was generally low, which indicated that the
meningioma and the glioblastoma were approximately isotropic on
the voxel scale. By contrast, the μFAwas able to reliably differentiate be-
tween the two tumors, and indicated that microscopic diffusion anisot-
ropy was more pronounced in the meningioma than the glioblastoma.
Thus, the information provided by both FA and μFA was instrumental
in predicting the tumor cell structures which were later confirmed by
the histological exam (Fig. 8).

To elucidate some of the underlying mechanisms that affect FA and
μFA, simulations of different micro-environments visualized the param-
eters as a function of several relevant processes. For example, in the case
of increased radial diffusivity of parallel fibers, the responses in FA and
μFA are approximately equal, meaning that the two representations of
anisotropy share a common interpretation. On the other hand, scenarios
that include any form of orientation dispersion demonstrate prominent
differences between FA and μFA. For example, the combination of two
and three orthogonal anisotropic components (Figs. 9B and C) were
used to reproduce the effects of selective atrophy in a crossingWM ge-
ometry, as reported by Douaud et al. (2011), where the effect direction
in FAwas found to be positive in a damaged region of crossingWM. The
simulations also illuminated the bias that arises when μFA is quantified
in systems that violate the assumptions used in the parameterization,
e.g., in complex mixtures of anisotropic and isotropic tissue. Although
these scenarios invalidate the μFA as a direct metric of the microscopic
anisotropy, it is worth noting that it retains sensitivity to the relevant ef-
fect and does so in a more consistent manner than the FA.

Although the comparison between FA and μFA showcases the effects
of orientation dispersion as a confounder for FA, it does not invalidate
previous studies that employ FA as a biomarker. Instead, the origin of
the effect can be better understood, possibly allowing an improved in-
terpretation of the FA and its relation to the microstructural integrity.
We expect that μFAmay not only contribute to the investigation of com-
plex WM geometries, but also in detecting microscopic anisotropy in
tissues that are approximately isotropic on the voxel scale, for example,
in GM (McNab et al., 2013; Truong et al., 2014). Further, the μFA and OP
may provide complementing information to the FA and tensor shape
analysis previously used in the differentiation of classic and atypicalme-
ningioma (Toh et al., 2008), detection of fibroblastic meningioma
(Tropine et al., 2007), and in the preoperative estimation of tumor con-
sistency (Kashimura et al., 2007), by removing the confounding effects
of orientation dispersion which are otherwise ignored.

It is important to stress that the signal acquired with conventional
anisotropic encoding used in this study is identical to that needed for
DKI analysis. However, because DKI makes no effort to distinguish be-
tween the origins of the diffusional kurtosis (herein referred to as vari-
ance in diffusion coefficients) it is not directly associated tomicroscopic

anisotropy. The framework presented here is also related to the dPFG-
methods employed by Jespersen et al. (2013) and Lawrenz and
Finsterbusch (2014). In terms of the analysis presented here, dPFG
encoding can be describedwith an encoding tensorwhich renders a sig-
nal that is sensitive to aweighted sumof Vi and Va, where theweighting
depends on the direction of the encoding blocks (Westin et al., 2014). It
appears that the framework based on qMAS combined with anisotropic
encoding probes the μFA more directly and may therefore provide a
faster technique for measuring microscopic anisotropy compared to
the dPFG methods. Finally, we note that the implementation and use
of qMAS is nomore complicated than a similar DKI protocol. Other tech-
niques that take orientation dispersion into account include, for exam-
ple, NODDI which quantifies the magnitude of fiber dispersion and the
neurite density (Zhang et al., 2012). From this information it is possible
to calculate a parameter analogous to the μFA. However, like DTI and
DKI, theNODDI technique cannot distinguish between randomly orient-
ed anisotropic domains and multiple isotropic components. Another
drawback of model-based approaches, such as NODDI, is the demand
for a priori assumptions about the tissue that is investigated, which
may limit their use in abnormal tissues such as tumors.

In the present study, several factors affected the accuracy, i.e., the
trueness and precision, of the estimated μFA. The imaging protocol fea-
tures a long echo time which impacted the SNR and thus also the preci-
sion of μFA. Sufficient SNR for a robust signal parameterization was
achieved by increasing the voxel size. Consequently, this increased the
amount of PVE, especially in tissue interfacing with CSF, thereby reduc-
ing the trueness in such regions. Note that the present protocol was de-
signed to test the validity of the suggestedmodel by acquiring a densely
sampled signal. However, the experimental design can be adjusted to
allow whole brain coverage at feasible acquisition times by optimizing
the acquisition protocol (Alexander, 2008). Further, a relatively low
number of encoding directionswere acquired, whichmay have reduced
the trueness by introducing a weak directional dependency in the pow-
der averaged signal, although simulations (data not shown) indicate a
negligible μFA bias even for highly anisotropic tissue. A further limita-
tion of μFA is that it may suffer from low accuracy when the model as-
sumptions are violated or when investigating tissue with little or no
microscopic anisotropy. The effects of such unfavorable conditions are
demonstrated in the simulations (Figs. 9 and 10). The reduced accuracy
in tissue with low anisotropy (μFA b 0.4) can be understood by consid-
ering Eq. (7) for Va approaching zero; where the restriction on Va to be
positive may reduce trueness, and low levels of variance in Va will ren-
der a poor precision in μFA. Thus, it is likely that the μFA calculated in the
glioblastoma exhibited a positive bias since the histological exam of the
glioblastoma found few anisotropic structures (Fig. 8). Although the ac-
curacy of the estimated μFA in the glioblastomamay bepoor, the tumors
could be reliably differentiated based on the difference in their micro-
scopic anisotropy. Finally, a limitation may be that the assumption of
Gaussian diffusion is not valid, i.e., that the signal attenuation may be
dependent on diffusion time. We do not expect this to be the case in
white matter for the current diffusion time regime (Nilsson et al.,
2009, 2013). However, tumor tissue may contain larger cell structures,
which could make μFA dependent on experimental parameters. This is
a topic that deserves further attention, especially since qMAS exhibits
an anisotropic time dependency due to the varying speed of the q-
vector through q-space (Fig. 3).

Conclusion

This study demonstrates the feasibility of mapping the microscopic
anisotropy of the brain in vivo in terms of the μFA. The Results suggest
that the contrast found in conventional FA maps is strongly modulated
by the orientation dispersion of the anisotropic domains contained
within each imaging voxel. By contrast, our analysis quantifies the mi-
croscopic anisotropy and orientation dispersion separately in terms of
the μFA and OP. Unlike the conventional FA derived from DTI, μFA may
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therefore provide a robust biomarker that probes the relevant diffusion
anisotropy even in complexWMconfigurations. The potential benefit of
μFA was demonstrated in two brain tumors. Although both tumors ap-
peared isotropic on the voxel scale, the μFA could be used to distinguish
between thembased on theirmicroscopic anisotropy. Additionally, sim-
ulations of complex tissuemicrostructures suggested that μFA exhibits a
more intuitive interpretation than FA.

We predict that the combination of FA, μFA and OP can be useful
in clinical and research applications, by enabling detection of micro-
structural degeneration in complex neural tissue, detection of fi-
brous tissue in tumors for pre-surgical classification of consistency,
and quantification of microscopic anisotropy in macroscopically iso-
tropic tissue.
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a b s t r a c t

Diffusion MRI is a useful probe of tissue microstructure. The conventional diffusion encoding sequence,
the single pulsed field gradient, has recently been challenged as more general gradient waveforms have
been introduced. Out of these, we focus on q-space trajectory imaging, which generalizes the scalar
b-value to a tensor valued entity. To take full advantage of its capabilities, it is imperative to respect
the constraints imposed by the hardware, while at the same time maximizing the diffusion encoding
strength. We provide a tool that achieves this by solving a constrained optimization problem that accom-
modates constraints on maximum gradient amplitude, slew rate, coil heating and positioning of radio
frequency pulses. The method’s efficacy and flexibility is demonstrated both experimentally and by
comparison with previous work on optimization of isotropic diffusion sequences.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Diffusion MRI probes the structure of biological tissue structure
on a microscopic scale using the random translational motion of
water molecules [1–3]. In the brain, tissue components—such as
cell membranes, nerve fibers and macromolecules—impede the
diffusion, making its characteristics different from that of freely
diffusing water. In particular, the organization of white matter
tracts into fiber bundles with preferential directions makes the dif-
fusion anisotropic [4]. In diffusion tensor imaging (DTI), the diffu-
sion in a voxel is described by a tensor with six degrees of freedom
[5,6]. Consequently, it requires the acquisition of at least six
diffusion-weighted images. The trace of the diffusion tensor, which
relates to the mean diffusivity (MD), is a useful biomarker e.g.
when studying tumor cellularity [7] or diagnosing stroke [8]. In
fact, the mean diffusivity can be determined by single-shot isotro-
pic diffusion weighting [9], i.e. without doing full DTI. Although a
good idea this has rarely been done in practice—until recently.

The recent revival has been spurred by advancements on both
the methodological and the technical sides. On the methodological
side, isotropic diffusion weighting has been shown useful when
studying microscopic diffusion anisotropy [10] and, in combination
with directional diffusion weighting, it can be used to distinguish
between microscopic anisotropy and orientational order [11,12].
On the technical side, the limited gradient amplitudes achievable
in clinical scanners have made it challenging to obtain sufficient
diffusion weighting when using isotropic encoding. Rapid progress
is being made on the hardware side [13,14] but in the numerical
optimization of gradient waveforms there is still room for
improvement, although there has been some promising research
in this direction [15,16]. A gradient waveform that yields isotropic
diffusion encoding can—in theory—easily be remapped to achieve a
general diffusion encoding [17], which can be tuned to maximize
sensitivity to the microstructure parameters of interest [18,19].

In some of the earlier work [15,16] the numerical optimization
was strongly model driven, with constraints implicitly incorpo-
rated into a parametrization of the pulse sequence which was then
optimized with respect to the parameters. This makes the obtained
optimization less transparent and less adaptable to a new setting.
Remapping a waveform with isotropic diffusion encoding into a
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generalized diffusion measurement [17] does not take the inherent
constraints into account. Subsequently adjusting the remapped
gradient waveform to make it feasible comes at the cost of
efficiency.

In this work, we propose a new optimization framework for
these gradient waveforms that makes far less modeling assump-
tions than previous work while it is at the same time easily adapt-
able to hardware constraints on maximum gradient amplitude,
slew rate, heating and positioning of RF pulses. Taking gradient
heating into account is of particular interest for diffusion imaging
where the power dissipation can otherwise hinder operation at a
high duty cycle [13,14]. A further generalization of our approach
is that it allows arbitrary positioning of time intervals with zero
gradients (or slice-selective gradients), during which an RF pulse
can be applied, and not requiring a mirror-symmetric gradient
waveform.

2. Optimization

The most common pulse sequence in diffusion MRI is single dif-
fusion encoding (SDE) by a pair of short gradient pulses separated
by a diffusion time [20]. Each repetition of such a measurement
probes the diffusion in one direction. In this work we consider
more general scenarios with time-varying gradients that probe tra-
jectories in so-called q-space [17]. The q-space trajectory is deter-

mined by gradient waveforms gðtÞ ¼ ðgxðtÞ; gyðtÞ; gzðtÞÞT according
to

qðtÞ ¼ c
Z t

0
gðt0Þdt0; ð1Þ

where c is the gyromagnetic ratio. It is the q-space trajectories qðtÞ
that constitute the degrees of freedom that we consider in the
optimization.

Restricted diffusion does not follow the Gaussian behavior that
is characteristic of free diffusion [1]. Nevertheless, the model of dif-
fusion—on the voxel scale—as a mixture of Gaussians has found
widespread use [21–23] and captures relevant information about
the tissue microstructure [2].

Under the Gaussian approximation, the geometry of the diffu-
sion encoding is captured by the measurement tensor [1,17]

B ¼
Z s

0
qðtÞqðtÞTdt; ð2Þ

where s is the echo time. The measurement tensor extends the
conventional b-value to a matrix-valued entity (the conventional
b-value is given by the trace of B). The rank of the measurement
tensor depends on the q-space trajectory: it is one in the case of
SDE, two for double diffusion encoding (DDE) [24], and three in
the isotropic encoding case. Fig. 1 shows the correspondence
between the graphical- and the matrix representations of measure-
ment tensors used in this work.

By definition, isotropic diffusion encoding corresponds to a
measurement tensor

Biso ¼ b

1=3 0 0
0 1=3 0
0 0 1=3

0
B@

1
CA: ð3Þ

There is a direct link between the diffusion tensor in a voxel,

D ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
B@

1
CA; ð4Þ

Fig. 1. Measurement tensors: the top row is the graphical representation of the
corresponding matrix representations in the bottom row. In the graphical repre-
sentation, the magnitudes of the eigenvalues are mapped to red–green–blue. Note
that in this case the b-value of the rightmost tensor is three times as high as that of
the leftmost one. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. An example of a naïve gradient waveform used for comparison throughout this work. From left to right: the x–y–z gradients in red–green–blue; gradient trajectory; q-
space trajectory and the resulting measurement tensor (isotropic in case). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Efficiency j for sequences with diagonal, axially symmetric, measurement
tensors as the eigenvalue along the symmetry axis is varied.
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and the measurement tensor B; the normalized echo amplitude
EðqÞ in a diffusion experiment is [1]

� log EðqÞð Þ ¼
Z s

0
qðt0ÞTDqðt0Þdt0 ¼

X
a;b

Dab

Z s

0
qaðt0Þqbðt0Þdt0

¼ TrðDBÞ; ð5Þ
where a;b 2 fx; y; zg. From the basics of the trace operator it follows
that the attenuation is directly related to the sum of the eigenvalues
of the matrix product DB. In particular B ¼ Biso gives
TrðDBÞ ¼ bðk1 þ k2 þ k3Þ=3 ¼ b�D, where �D is usually referred to as
the mean diffusivity.

It is convenient to define a general measurement tensor as

B ¼ bB̂, where TrðB̂Þ ¼ 1, because then b is the conventional

b-value and TrðDBÞ ¼ b � TrðDB̂Þ. Combining this with Eq. (5) it is

evident that—independent of the choice of B̂—maximizing the dif-
fusion weighting amounts to maximizing b. However, the hard-
ware imposes a multitude of constraints that prevents a
universally optimal formula. It might seem a bit backwards to opti-
mize b for a given echo time, instead of the converse, but in prac-
tice it is not an issue: using bisection the minimum echo time for a
given b can be found in a small number of optimization runs. In
return, the problem can be formulated as a constrained optimiza-
tion problem in a more natural way.

2.1. Constraints

A pulse sequence optimization needs to respect a number of
hardware dependent and sequence dependent constraints. We will
describe these constraints in an idealized, continuous, scenario;
implementation details can be found in Appendix A. To facilitate
the numerical treatment, we phrase the optimization problem in
terms of qðtÞ, rather than working directly with the gradient wave-
forms gðtÞ. Converting in between is straightforward: it follows
from Eq. (1) that gðtÞ ¼ 1

c
dq
dt .

2.1.1. Sequence dependent constraints
There are three constraints specific to the sequence desired.

First, we want to achieve a given diffusion encoding as described

by a (normalized) measurement tensor B̂, i.e.

Z s

0
qðtÞqðtÞTdt ¼ bB̂: ð6Þ

Second, in order for the sequence to produce an echo at the
desired echo time, s, it must hold that

qð0Þ ¼ qðsÞ ¼ 0: ð7Þ
Third, it may be desirable to enforce the gradients to be zero (or

active only in the slice encoding direction) during certain time
intervals, It , to allow for RF pulses. Since the gradients are found
by differentiating qðtÞ this is to say

dq
dt

����
t2It

¼ 0: ð8Þ

In particular, we will impose throughout that the gradients are
zero at the start and end of the pulse sequence.

2.1.2. Hardware constraints
The hardware constraints considered are the maximum

gradient strength, slew rate and heating. The gradient amplitude,
Gmax, is one of the most severe factors limiting the diffusion
encoding strength [2,14] and it is therefore important to account
for it explicitly in the optimization. This is done through the
constraint

dq
dt

����
���� 6 cGmax; ð9Þ

where the norm is either the max-norm,
kðx1; x2; x3Þk1 ¼ maxðjx1j; jx2j; jx3jÞ, or the Euclidean norm,

kðx1; x2; x3Þk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q
. The first corresponds to the actual

scanner constraints whereas the latter can be used to obtain a rota-
tionally invariant waveform (more on that in Section 4.1).

A similar, but often not as severe, constraint is the maximum
slew rate (rate of change), Rmax, of the gradients, which translates
into

d2q

dt2

�����
�����
1
6 cRmax: ð10Þ

An additional—at times overlooked—part of an efficient pulse
sequence is the ability to perform at a high duty-cycle without
inactive cool-down periods. An intense diffusion encoding block
often requires a rather long idle time, which reduces the number
of samples per unit of time and thereby the effective signal-to-
noise ratio. This means that there is much to gain by accounting
for the heat dissipation when optimizing the pulse sequence.
Assuming resistive heating [13], the heat dissipation in gradient

coil a is proportional to the time integral of gaðtÞ2. This can be cap-
tured by the constraintZ s

0

dqa
dt

� �2

dt 6 gc2G2
maxs; a ¼ x; y; z; ð11Þ

where g 2 ½0;1� is a dimensionless scalar. Varying the parameter g
allows us to balance heat dissipation against diffusion encoding.

2.2. The optimization problem

Taken together, we arrive at the optimization problem

maximize
q; b

b

subject to
Z s

0
qðtÞqðtÞTdt ¼ bB̂

qð0Þ ¼ qðsÞ ¼ 0
dq
dt

����
t2It

¼ 0

dq
dt

����
���� 6 cGmax;

d2q

dt2

�����
�����
1
6 cRmax

Z s

0

dqa
dt

� �2

dt 6 gc2G2
maxs; a ¼ x; y; z:

ð12Þ

To solve this problem we discretize qðtÞ and replace the derivatives
and integrals with finite difference approximations (see Appendix
A). To achieve better convergence, we also relax the equality in
the measurement tensor constraint by allowing a small violation
� in Frobenius norm. These steps turn the problem into a form in
which it can be solved efficiently using sequential quadratic pro-
gramming. This is a deterministic algorithm, meaning that it always
returns the same solution for a given initial guess. Our experience is
that a random initialization works best and, with large1 probability,
results in one out of a number of different but equally good (same

1 Running 100 optimizations with random initial guesses, isotropic diffusion
encoding, and the remaining settings as in Sections 4.1 and 4.2 (the only difference
being max-norm or Euclidean norm in the gradient amplitude constraint) the best
objective function value was found in 54 and 86 cases, respectively. In all the
remaining cases the objective function value was within 1% of the best one.
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objective function value) solutions. To further increase this probabil-
ity, it is of course possible to run the optimization multiple times,
with different initial guesses, and choose the best solution. The
numerical results presented in Sections 4.1 and 4.2 all use the same
random initial guess, i.e. a single starting configuration.

Incidentally, note that this optimization problem does not
impose any particular shape on qðtÞ, only that its diffusion
encoding matches the desired measurement tensor. The shape
can be important when considering restricted diffusion. However,
if a particular shape is desired it is straightforward to check which
constraint will be the limiting one and set the magnitude
accordingly.

2.3. Evaluation

The performance of the different gradient waveforms can be
compared with respect to their diffusion weighting and the
amount of dissipated heat. In general, the b-value of any gradient
waveform can be expressed as

b ¼ j
c2G2

maxs3

4
; ð13Þ

where j is a dimensionless efficiency factor that depends on the
gradient waveform. For a single coil, the maximum efficiency,
j ¼ 1=3, results from applying maximum gradient in one direction
for half the echo time and in the opposite direction for the other half
of the time. It thus requires an infinite slew rate. Only by applying
this gradient sequence in the three coils simultaneously is it possi-
ble to attain j ¼ 1.

To capture the slew rate limitation we introduce another
dimensionless parameter, n 2 ½0;1�, as

n ¼ Gmax

Rmaxs
: ð14Þ

In other words, n is the fraction of the echo time it takes to increase
the gradient amplitude from zero to max.

2.4. Heat dissipation and repetition times

The signal-to-noise ratio (SNR) of a measurement can be
increased by repeating the measurement n times and averaging
the results. A short repetition time TR allows more repetitions in
a given time. A short and intense gradient sequence suffers less
from transverse relaxation but dissipates more heat—and may
therefore require longer TR—than a more gentle gradient sequence.
A relevant question is therefore: provided a set amount of time,
how to choose s and TR to maximize the SNR?

We will answer this question by considering two gradient
sequences referred to as A and B. Gradient sequence A, with corre-
sponding sA and gA, is held fixed while we change gradient
sequence B and record the ratio of their SNRs. In general, for a
repeated spin echo experiment

SNR / ffiffiffi
n

p
expð�s=T2Þ 1� exp � TR � s=2

T1

� �� �
: ð15Þ

To proceed we make the following two assumptions: first, that
Eq. (13), with j ¼ jðgÞ (as will be shown in Fig. 5), holds as s and g
are varied. This is a reasonable approximation as long as the slew
rate is not a major limitation (n small). Second, that the average
heat dissipation per unit time is sufficient to represent the thermal

dynamics and that the system adjusts TðAÞ
R so that the average heat

dissipation is precisely as high as acceptable. If this is not the case,
it is best to simply use the most intense gradient sequence possi-
ble. As shown in Appendix B, the resulting ratio of the pulse
sequences SNRs is

SNRB

SNRA
¼ gA

gB

� �1=2

W�1=2 exp 1�Wð Þ sA
T2

� �

�
1� exp W sA

2T1

� �
exp �W gB

gA

TðAÞR
T1

� �

1� exp sA
2T1

� �
exp � TðAÞ

R
T1

� � ; ð16Þ

where W ¼ ðjðgAÞ=jðgBÞÞ1=3. The highest SNR can be found by max-

imizing the ratio with respect to gB, which in turn yields sB and TðBÞ
R .

3. Experiments

We performed two types of experiments: the first, detailed in
Appendix C, aimed to verify that optimized waveforms achieve iso-
tropic diffusion encoding when intended to; the second, detailed
below, considers the implementation of optimized waveforms on
a clinical MRI scanner.

3.1. In vivo experiments

To demonstrate that the optimized waveforms could be imple-
mented on a clinical scanner system, MRI data was acquired in 10
healthy volunteers (all male, mean age (standard deviation) was 30
(4) y, interval ½24;34� y), using a Siemens Skyra 3 T system,
equipped with 43 mT/m gradients with a maximum slew rate of
200 mT/m/ms, and a 20-channel receiver head coil. Written con-
sent was received from all volunteers prior to scanning. The diffu-
sion experiments were based on those reported by
Szczepankiewicz et al. [12], although using another sequence
implementation. Briefly, the experiment combines equal amounts
of images acquired with directional and isotropic diffusion encod-
ing at b-values 100, 500, 1000, 1500 and 2000 s/mm2. The direc-
tional encoding in each shell was performed in 6, 6, 12, 20 and
48 directions, respectively, and the isotropic encoding was
repeated the same number of times for each shell. The directions
were optimized across all b-shells simultaneously using a charged
container model [25]. All images were acquired in 11 contiguous
axial slices using an echo time (s) of 130 ms, repetition time (TR)
of 2500 ms, 128 � 128 acquisition matrix, spatial resolution of
2� 2� 4 mm3, partial Fourier factor of 6/8, bandwidth of
1500 Hz/voxel, and a GRAPPA factor of 2. The diffusion encoding
was performed during 55.44 ms and 48.16 ms before and
after the refocusing pulse, respectively; the duration of the refo-
cusing pulse and slice-selection gradients was 7.76 ms. The wave-
form was optimized to this timing using 2-norm,
g ¼ 0:6; Gmax ¼ 43 mT=m; Rmax ¼ 130 T=m=s and N ¼ 200 dis-
cretization points. The maximum slew rate was limited to avoid
peripheral nerve stimulation. Total scan time for the isotropic
and anisotropic encoding sequences was 8:00 min. All data was
smoothed with a 3D Gaussian kernel (FWHM 2mm) to mitigate
Gibbs ringing artefacts [26], and corrected for motion and eddy-
current distortions using ElastiX [27] with extrapolated references
[28]. Parameter maps of the mean diffusivity (MD) and micro-
scopic fractional anisotropy (lFA), were calculated according to
the framework suggested by Lasič et al. [11,12]. The conventional
fractional anisotropy (FA) was calculated from the directionally
encoded data, using standard diffusion tensor analysis [29,12].
The potential benefit of using optimized waveforms was evaluated
by comparing the maximal b-values that could be achieved by the
qMAS waveforms, used in Szczepankiewicz et al. [12], to the opti-
mized waveforms.

In addition to this, a separate investigation of the SNR was
performed in a single volunteer where optimized waveforms
were compared to qMAS. To this end, the in vivo protocol was
modified to contain only isotropic encoding at a single b-value of
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Fig. 4. Optimized gradient waveforms and trajectories. Columns from left to right: gradients, gradient trajectory, q-space trajectory and measurement tensor. The trajectories
are color coded according to rate of change: from slow (red), through intermediate (green) to fast (blue). The fourth column shows the resulting measurement tensor; the
magnitudes of the eigenvalues are mapped to red–green–blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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2000 s/mm2. The echo time was minimized and the repetition time
was set to 4000 ms to not incur restrictions on the maximal echo
time. This measurement was repeated 20 times and the SNR was
calculated in each voxel as the mean signal divided by the signal’s
standard deviation across all repetitions.

4. Results

We first present results from numerical studies and then exper-
imental results. The numerical studies consider, in turn, varying
the measurement tensor, varying the heat dissipation and the heat
dissipation’s effect on the total SNR. Then, the results of the in vivo
experiments follow. The result of the experiment aimed to verify
the isotropic encoding of an optimized waveform is presented in
Appendix C.

4.1. Optimization of axisymmetric measurement tensors

Axially symmetric tensors are of particular interest since they
can be used to distinguish between prolate and oblate microscopic
diffusion tensors with unknown orientation distribution [30].

Often, it is desirable to use a pulse sequence that can be rotated
to achieve arbitrary directional encoding. This means that the total
gradient magnitude can never exceed what a single gradient coil
can generate, i.e. kgðtÞk2 6 Gmax. Geometrically, the gradient trajec-
tory is then constrained to lie inside a sphere of radius Gmax. In
what follows we will only consider diagonal measurement tensors;
provided that the rotational dependence of the slew rate constraint
can be neglected, this assumption incurs no loss of generality.

For comparison we consider a naïve approach: consecutive
application of a conventional SDE sequence in each gradient direc-
tion as shown in Fig. 2. Assuming infinite slew rate and
sx ¼ as; sy ¼ sz ¼ ð1� aÞs=2, where a 2 ½0;1�, this gives

kaxial ¼ ða3c2G2
maxs3Þ=12 and a resulting efficiency

jna€ıve ¼ 1
3

a3 þ ð1� aÞ3
4

 !
: ð17Þ

Fig. 3 compares the efficiency of this approach compared to an
optimization, as proposed in this work, for axially symmetric mea-
surement tensors

B̂ðkaxialÞ ¼ diag kaxial;
1� kaxial

2
;
1� kaxial

2

� �
; ð18Þ

where kaxial 2 ½0;1�. These optimizations were done using
Gmax ¼ 80 mT=m; Rmax ¼ 100 T/m/s (n ¼ 0:016), g ¼ 1; s ¼ 50 ms,
� ¼ 10�4 and N ¼ 100 discretization points. Fig. 4 shows five of
the optimized trajectories. To achieve the same b-value, it follows
from Eq. (13) that the optimized waveforms allow reductions in
echo time by 16% and 22% in the double diffusion encoding
(kaxial ¼ 0) and triple diffusion encoding (kaxial ¼ 1=3) cases,
respectively.

4.2. The trade-off between heat dissipation and efficiency

We explored the trade-off between heat dissipation and effi-
ciency by fixing the measurement tensor to be isotropic and vary-
ing the heat dissipation g. Again, we used the settings
Gmax ¼ 80 mT=m; s ¼ 50 ms, � ¼ 10�4 and N ¼ 100. However, to
investigate the influence of the slew rate, we repeated the experi-
ment twice: first with Rmax ¼ 100 T/m/s (n ¼ 0:016) and then with
Rmax ¼ 20 T/m/s (n ¼ 0:08). The resulting efficiencies as a function
of the heat dissipation are shown in Fig. 5, which also shows the
results from previous work and compares with a naïve sequence
defined as in Section 4.1 but with the gradient magnitudes scaled
to meet the heat dissipation requirement. Fig. 6 shows five trajec-
tories optimized with n ¼ 0:016 and different values of g. As the
allowable heat dissipation is varied from low to high, the gradient
waveforms transition from smooth, almost sinusoidal, to
rectangular.

The fact that the gradient amplitude and slew rate apply to each
coil separately means that the gradients are constrained by a cube
with its sides at �Gmax. The strongest diffusion encoding is
achieved in the corners of this cube (recall that the b-value scales
quadratically with the gradient). So, whenever heat dissipation can
be neglected, this is where we expect to find the gradients. The
slew rate then limits how fast the gradient trajectory transitions
between corners. This behavior is clearly visible in Fig. 6e.

4.3. Heat dissipation and repetition times

To illustrate the heat dissipation’s effect on SNR, as described
in Section 2.4, we consider the optimized sequences from
Section 4.2 with n ¼ 0:016 that are shown in Fig. 5 and the
corresponding naïve sequences. Fig. 7 shows the ratio of SNRs,

for T ðAÞ
R 2 f1000 ms;2500 msg, when gradient sequence A is taken

to be the most intense one. Here, we used T1 ¼ 1331 ms and
T2 ¼ 110 ms for gray matter (GM); T1 ¼ 832 ms and T2 ¼ 80 ms
for white matter (WM) [31].

4.4. In vivo experiments

All volunteers were successfully scanned. A qualitative exami-
nation of the diffusion weighted images showed that the image
quality was good, and that no prominent artefacts were introduced
by the optimized waveforms. Parameter maps of a subject are
shown in Fig. 8.

The maximal b-value achievable for isotropic encoding with
s ¼ 130 ms (see Section 3.1) was 3000 s/mm2 for the optimized
waveforms, and 1050 s/mm2 for the qMAS waveforms, respec-
tively. Thus, to achieve a b-value of 3000 s/mm2 the echo time
could be reduced from 180 ms to 130 ms when employing the
optimized waveforms.

A b-value of 2000 s/mm2 was achievable with an echo time of
116 and 170 ms for the optimized waveform and qMAS wave-
forms, respectively. Due to transverse relaxation effects, the signal
at b ¼ 2000 s/mm2 is thus expected to increase by 63% and 96% for
gray matter (T2 ¼ 110 ms) and white matter (T2 ¼ 80 ms), respec-
tively. To make these statements more tangible, Fig. 9 shows an

Fig. 5. Sequence efficiency factor j and relative heat dissipation g for isotropically
encoding sequences optimized in this work and in previous work. The larger g is the
more heat is generated by the sequence. Two sets of optimizations were done using
different slew rates, as specified by the dimensionless constant n.

162 J. Sjölund et al. / Journal of Magnetic Resonance 261 (2015) 157–168



Fig. 6. Gradient waveforms optimized with n ¼ 0:016 and different values of g. Columns from left to right: gradients, gradient trajectory, q-space trajectory and measurement
tensor. Color coding as in Fig. 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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example of raw diffusion weighted images acquired with the dif-
ferent methods together with a histogram of the voxelwise SNR.
As expected, the shorter echo time, facilitated by the optimized
waveform, rendered a markedly higher SNR in the images.

5. Discussion

In optimization, a good practice is to formulate a problem that
is a caricature of the real problem—capturing all the essential char-
acteristics and ignoring the rest. This often makes solving the prob-
lem more reliable, thereby producing a better end result than a too
detailed model. In addition, the problem formulation will be easier
to adapt to a different setting.

An example of this is the model of the signal as a mixture of
Gaussians, from which our objective function derives. This is not
a physically well-founded model for restricted diffusion but it
has found widespread use. With this work, we do not attempt to
answer whether this is the most appropriate way of modeling
the signal; instead our hope is to provide a tool that researchers
in the field will find useful. Consequently, we have assumed that
the object of interest is the measurement tensor, but we have left
its application undetermined. On the other hand, we have placed
virtually no other restrictions on the shape of the gradient wave-
forms other than those imposed by the hardware. This makes the
model much more flexible than if deciding upon particular basis
functions or similar. This means our formulation can, without
modifications, be used for a range of experiments—be it in NMR

or in vivo diffusion MRI. Another example of this flexibility is the
possibility to impose zero-gradient intervals, or intervals with
specified slice encoding gradients, at arbitrary points in time, i.e.
not requiring the gradient waveform to be symmetric. This was
taken advantage of in our in vivo experiments and was one of
the reasons why it was possible to reduce the echo time from
180 ms to 130 ms. It can, however, be expected that the slice selec-
tion gradient will perturb the obtained measurement tensor, but
only by a little.

The importance of explicitly taking the hardware constraints
into account can be appreciated from the q-space trajectories in
Fig. 4, where the total gradient magnitude is limited by what a sin-
gle gradient coil can generate (in order to allow arbitrary rotation
of the resulting waveforms). The lack of dynamics in the color cod-
ing reflects that this constraint is active throughout almost the
entire trajectory—an indication of the solutions high quality and
a feat that would otherwise be very difficult to accomplish.

As another example, a more intense gradient sequence may
reduce the echo time at the cost of prolonging the repetition time
(to allow for cooling). A general procedure to maximize the SNR
using the methods we have presented would be as follows. First,
given a desired b-value, use bisection to find—with no concern
for heat dissipation (g ¼ 1)—the shortest echo time possible. Then,
test what the minimum repetition time allowed by the scanner is.
If it appears that cooling is not a limitation then stop, else maxi-
mize Eq. (16) with respect to gB either numerically or graphically.
Fig. 7 suggests that beyond a certain value of the repetition time it

Fig. 7. Comparison of signal-to-noise ratio in gray matter (GM) and white matter (WM) as the heat dissipation of the gradient sequences from Section 4.2 is varied. The
baseline, gradient sequence A, is the most intense gradient sequence and is assumed to require a repetition time T ðAÞ

R to reach a sustainable average heat dissipation. The naïve
gradient sequence consists of consecutive SDE sequences in each gradient direction and the resulting heat dissipation can thus be at most gB ¼ 1=3.

Fig. 8. Parameter maps in axial slice through the corpus callosum in a healthy volunteer. Data quality for all volunteers was qualitatively good, and no additional artefacts
were observed as a result of employing the optimized waveforms. As previously reported by Szczepankiewicz et al. [12], the lFA map is homogeneous in regions of white
matter, and the difference between the lFA and FA maps is most prominent in regions where complex white matter architecture is expected, such as in crossing white matter
pathways.
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becomes more efficient to decrease the pulse’s heat dissipation
than to use the most intense one. Incidentally, the figure also
shows that compared with a naïve sequence for isotropic diffusion
encoding, the optimized sequences can increase the SNR by about
60%.

Our experiments have shown that the optimized waveforms
can achieve the expected isotropic encoding and that it is possible
to implement optimized waveforms on a clinical MRI scanner with
a drastically reduced echo time yet no prominent artefacts. The lat-
ter finding is in line with our theoretical comparison with naïve
double diffusion encoding (DDE) and triple diffusion encoding
(TDE), that showed that reductions in echo time by 16% and 22%,
respectively, are possible.

6. Conclusions

We have proposed a new framework for optimization of gradi-
ent waveforms that maximizes the b-value for a given measure-
ment tensor and echo time. From this it is straightforward to
obtain gradient waveforms that minimize the echo time for a given
b. The formulation as a constrained optimization problem allows
explicit control of hardware requirements, including maximum
gradient amplitude, slew rate, heating and positioning of RF pulses.

Based on two reasonable assumptions, we have derived an
expression for the signal-to-noise ratio’s dependence on the heat
dissipation and outlined how this can be used to strike a balance
between gradient intensity and heat dissipation that maximizes
the signal-to-noise ratio.

We have verified by experiments on a water/surfactant mixture
that the method can achieve the desired diffusion encoding. By
in vivo experiments and numerical comparisons with previous
work, we have shown that substantial gains in terms of reduced
echo times and better signal-to-noise ratio’s can be achieved, in
particular as compared with naïve double diffusion encoding
(DDE) and triple diffusion encoding (TDE).
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Appendix A. Explicit problem formulation

In summary, we strive to find the q-space trajectory qðtÞ that
maximizes b, everything else is considered fixed parameters. This
is done by discretizing qðtÞ into N time steps of length Dt ¼ s=N,
forming the N � 3 matrix

Q ¼
qx;1 qy;1 qz;1

..

. ..
. ..

.

qx;N qy;N qz;N

0
BB@

1
CCA; ðA:1Þ

where we have used the notation qa;k ¼ qaððk� 1=2ÞDtÞ. To dis-
cretize the measurement tensor constraint in Eq. (6), we first intro-
duce a diagonal ‘‘integration matrix” corresponding to the trapezoid
rule

H ¼ Dt

1=2
1

. .
.

1
1=2

0
BBBBBB@

1
CCCCCCA
; ðA:2Þ

so that the discretized version of Eq. (6) reads

Q THQ ¼ bB̂: ðA:3Þ
However, because nonlinear equality constraints should be

avoided, we relax this and instead require

kQ THQ � bB̂k2F 6 ðb�Þ2; ðA:4Þ
where we have introduced a tolerance � on the isotropy violation.

Many of the remaining constraints involve the gradients; these
are easily implemented through a finite difference scheme. We
used a central difference scheme shifted by half a time step,

dqa
dt

����
kþ1=2

� qa;kþ1 � qa;k
Dt

; ðA:5Þ

which can also be interpreted as the average value over the bin cen-
tered at kDt. The boundary constraints on the gradients, which are of
Dirichlet type, were implemented using ghost points. The ðN � 1Þ
internal derivatives were thus approximated using the ðN � 1Þ � N-
matrix

A1 ¼ 1
Dt

�1 1
. .
. . .

.

�1 1

0
B@

1
CA: ðA:6Þ

Fig. 9. Raw diffusion weighted images in an axial slice through the corpus callosum in a healthy volunteer. The encoding strength is b ¼ 2000 s/mm2 in both images. The
measured signal is markedly higher in the images encoded with the optimized waveform (A, echo time 116 ms) compared to the qMAS waveform (B, echo time 170 ms)
suggested by Topgaard et al. [15]. The histogram shows the distribution of voxelwise SNR from brain tissue located within the imaging slab. There is a clear tendency towards
higher SNR for the optimized waveform, due to the shorter echo time.
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Similarly, the second derivatives were approximated using the
N � N-matrix

A2 ¼ 1

ðDtÞ2

�2 1
1 �2 1

. .
. . .

. . .
.

1 �2 1
1 �2

0
BBBBBB@

1
CCCCCCA
: ðA:7Þ

In Euclidean norm, a constraint on the gradient amplitude can
thus be written as the nonlinear inequality constraints (interpreted
componentwise)

ðA1qxÞ2 þ ðA1qyÞ2 þ ðA1qzÞ2 6 c2G2
max: ðA:8Þ

In contrast, max-norm constraints on the gradient amplitude
and slew rate can be translated into linear inequality constraints

� cGmax 6 A1qa 6 cGmax; a ¼ x; y; z ðA:9Þ
� cRmax 6 A2qa 6 cRmax; a ¼ x; y; z: ðA:10Þ

Similarly, a constraint on the gradients being zero during an
interval It can be written

A1qa;k ¼ 0 if kDt 2 It; a ¼ x; y; z: ðA:11Þ
The heat dissipation constraint, Eq. (11), can be approximated

asZ s

0

dqa
dt

� �2

dt � Dt � qT
aA

T
1A1qa; a ¼ x; y; z: ðA:12Þ

In conclusion, following the discretization scheme above, the
explicit formulation of the constrained optimization problem in
Eq. (12) is:

minimize
Q ; b

� b

subject to kQ THQ � bB̂k2F 6 ðb�Þ2
A1qa;k ¼ 0 if kDt 2 It
qa;1 ¼ qa;N ¼ 0

� cGmax 6 A1qa 6 cGmax

� cRmax 6 A2qa 6 cRmax

qT
aA

T
1A1qa 6 gG2

maxs=Dt;

ðA:13Þ

where the constraints are understood to apply to each coil sepa-
rately (a ¼ x; y; z). If the Euclidean version of the gradient constraint
is desired, one just has to replace the corresponding max-norm
expression with that in Eq. (A.8). In addition to that nonlinear
inequality, there are two more: the measurement tensor constraint,
Eq. (A.4), and the heat dissipation constraint, Eq. (A.12). The cross-
terms in the measurement tensor constraint make the problem
non-convex. Nevertheless, Sequential Quadratic Programming
(SQP) [32] seems to produce a good local optimum reasonably
fast—typical computation times on a modern laptop are about
30 s for N ¼ 100 and 15 min for N ¼ 200.

Appendix B. Derivation of the ratio of SNRs

Here we will show how the assumptions in Section 2.4 lead to
Eq. (16) for the ratio of the SNRs of pulse sequences A and B.

Requiring equal b-values and using the first assumption gives

sB ¼ sA
jðgAÞ
jðgBÞ
� �1=3

, sAW; ðB:1Þ

where we for convenience have introduced the function

W ¼ ðjðgAÞ=jðgBÞÞ1=3.

From the second assumption and Eq. (11) it follows that the
maximum heat dissipation per unit time is

w ¼ gAc2G
2
maxsA

T ðAÞ
R

: ðB:2Þ

For gradient sequence B to have the same heat dissipation per
unit time it must hold that

gBsB
TðBÞ
R

¼ gAsA
T ðAÞ
R

: ðB:3Þ

Of course, T ðBÞ
R P sB, which means that

gB

gA
P

sA
TðAÞ
R

: ðB:4Þ

The number of repetitions n (neglecting round-off) is

nA ¼ T total

TðAÞ
R

; nB ¼ Ttotal

TðBÞ
R

¼ gAsA
gBsB

T total

TðAÞ
R

; ðB:5Þ

where we used Eq. (B.3) in the second expression. The ratio is

nB

nA
¼ gAsA
gBsB

¼ gA

gB
W�1: ðB:6Þ

From Eq. (15) it follows that

SNRB

SNRA
¼

ffiffiffiffiffi
nB

nA

r
exp �ðsB � sAÞ

T2

� �1� exp sB
2T1

� �
exp � TðBÞ

R
T1

� �

1� exp sA
2T1

� �
exp � TðAÞ

R
T1

� � ðB:7Þ

¼ gA

gB

� �1=2

W�1=2 exp 1�Wð Þ sA
T2

� �
� ðB:8Þ

1� exp W sA
2T1

� �
exp �W gB

gA

TðAÞ
R
T1

� �

1� exp sA
2T1

� �
exp � TðAÞR

T1

� � : ðB:9Þ

Appendix C. Experimental verification of isotropic encoding

To experimentally verify that the optimization produces a
waveform that achieves isotropic diffusion encoding we prepared
a sample consisting of a nonionic surfactant mixed with water,
as in [33]. This sample is characterized by the formation of concen-
tric cylindrical layers throughout the test tube, which in this case
had an inner diameter of 4 mm. The mean diffusivity in each
domain is expected to be the same, but the orientations different.

In Section 2 we saw that, under the assumption of Gaussian dif-
fusion, the normalized echo amplitude EðqÞ ¼ TrðBDÞ. Consequently,
an isotropically encoding pulse results in log EisoðbÞð Þ ¼ �b�D, where
�D is the mean diffusivity. A conventional SDE sequence applied in
the direction n̂ corresponds to a measurement tensor Bn̂ ¼ b n̂n̂T .
So, it gives rise to a normalized echo amplitude

log En̂ðbÞð Þ ¼ Trðb n̂n̂TDÞ ¼ �bTrðn̂TDn̂Þ ¼ �b n̂TDn̂: ðC:1Þ

For a system consisting of multiple non-interacting compart-
ments, the total signal is the sum of the signals from each compart-
ment. Assuming that the experimental conditions are such that the
diffusion in each compartment can be approximated as Gaussian,
the resulting echo amplitudes using SDE and an isotropically
encoding pulse are,

En̂ðbÞ ¼
XN
i¼1

pie
�b n̂TDi n̂; Eiso ¼

XN
i¼1

pie
�b�Di ; ðC:2Þ
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where pi is the fraction of protons in compartment i. If the mean
diffusivity in every compartment is the same, then

Eiso ¼ e�b�DPN
i¼1pi ¼ e�b�D. To derive a rotationally invariant quantity

from SDE measurements one may average the signal over all direc-
tions. This is sometimes referred to as the powder average and can
be approximated as [11]

log EðbÞ ¼ � 3
�K
log 1þ

�K
3
b�D

� �
ðC:3Þ

� �b�Dþ
�K
6
ðb�DÞ2 ðC:4Þ

where �K is the kurtosis of the powder-averaged data [34]. The
approximation (C.4), which coincides with the cumulant expansion
[35], follows from a Taylor expansion of the logarithm.

Experiments were performed on a 11.74 T Bruker AVII-500
spectrometer equipped with a MIC-5 probe capable of delivering
3 T/m gradients in three orthogonal directions. We optimized an
isotropically encoding waveform with Gmax ¼ 0:3 T/m,
Rmax ¼ 1000 T/m/s, echo time s ¼ 20 ms, no heating constraint
(g ¼ 1), max norm constraint on the gradients and used N ¼ 200
discretization points. The pulse sequence was the same as in
Fig. 4 of [11], i.e. spin-echo diffusion encoding with RARE image
read-out, wherein the optimized gradient waveform was inserted
before and after the first 180� RF pulse. The directional measure-
ments were done with a waveform for which the magnitude of
qðtÞ was the same as for the isotropic waveform [10]. The opti-
mized waveform and resulting measurements, in a representative
pixel, are shown in Fig. C.10 together with powder averaged mea-
surements. The expected behavior is clearly visible: a straight line

for the optimized isotropic waveform (Eiso ¼ e�b�D) and a curved line
for the powder average, corresponding to Eq. (C.3).
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The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of
apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heteroge-
neity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by
microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density
in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DI-
VIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in
terms of the total mean kurtosis (MKT), and DIVIDEwas used to decomposeMKT into components caused bymi-
croscopic anisotropy (MKA) and isotropic heterogeneity (MKI). Diffusion anisotropy was evaluated in terms of
the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was per-
formed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure
tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they
were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement
between the DIVIDE parameters and correspondingmicroscopy parameters; MKA correlated with cell eccentric-
ity (r=0.95, p b 10−7) andMKI with the cell density variance (r=0.83, p b 10−3). The diffusion anisotropy cor-
related with structure tensor anisotropy on the voxel-scale (FA, r = 0.80, p b 10−3) and microscopic scale (μFA,
r = 0.93, p b 10−6). A multiple regression analysis showed that the conventional MKT parameter reflects both
variable cell eccentricity and cell density, and therefore lacks specificity in termsofmicrostructure characteristics.
However, specificitywas obtainedbydecomposing the two contributions;MKAwas associated only to cell eccen-
tricity, and MKI only to cell density variance. The variance in meningiomas was caused primarily by microscopic
anisotropy (mean ± s.d.) MKA = 1.11 ± 0.33 vs MKI = 0.44 ± 0.20 (p b 10−3), whereas in the gliomas, it was
mostly caused by isotropic heterogeneity MKI = 0.57 ± 0.30 vs MKA = 0.26 ± 0.11 (p b 0.05). In conclusion,
DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These re-
sults constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and pa-
rameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an
improved interpretation of tumor heterogeneity aswell as diffusion anisotropyonboth themicroscopic andmac-
roscopic scale.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Tumors exhibit structural heterogeneity on themacroscopic andmi-
croscopic scale. The cellmorphology and cytoarchitecture is determined
by the tumor origin, and depends on factors such as local oxygen gradi-
ents, nutritional and growth factors, metabolites, genetically divergent
clones, and interactions with other tissues (Marusyk and Polyak,
2010). Although histopathological examination of the excised tissue is
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the gold standard for the clinical diagnosis, valuable information on the
tissue microstructure and its heterogeneity can be probed non-
invasively by diffusion MRI (dMRI) (Le Bihan, 2013; Padhani et al.,
2009). For example, gross tumor heterogeneity can be estimated from
the distribution of apparent diffusion coefficients (ADC) across the
whole tumor (Ryu et al., 2014; Wang et al., 2012), where the ADC in
each imaging voxel reflects characteristics such as the average tumor
cellularity (Chenevert et al., 2000; Padhani et al., 2009), extent of infil-
tration (Sternberg et al., 2014), and treatment response (Moffat et al.,
2005). However, theADC is an averagemetric that does not capture het-
erogeneitywithin individual voxels. Hence, the ADCmay be equal in ho-
mogeneous tissue and in tissue with densely packed cells interspersed
with loose necrotic regions. In previous studies, heterogeneity has
been probed by assigning a distribution of apparent diffusivities to
each voxel and relating the variance of the distribution to the tissue het-
erogeneity. For example, diffusional kurtosis imaging (DKI) (Jensen
et al., 2005) probes heterogeneity in terms of a normalized variance
metric called the diffusional kurtosis. The kurtosis has been used to dif-
ferentiate low and high grade gliomas, where increased heterogeneity
was related to higher malignancy (Raab et al., 2010; Tietze et al.,
2015; Van Cauter et al., 2012). However, the interpretation of diffusional
variance parameters, such as the mean kurtosis, is challenging, and its
link to relevant features of the underlying microstructure remain un-
clear (Jespersen et al., 2010; Le Bihan, 2013; Maier et al., 2010; Tietze
et al., 2015; Wu and Cheung, 2010).

We argue that the link between dMRI parameters and tissue hetero-
geneity can be better understood by considering two separate compo-
nents of the diffusional variance. The anisotropic variance component
reflects the diffusion anisotropy on themicroscopic scale, e.g., due to ec-
centric cells and cell structures (microscopic anisotropy), whereas the
isotropic variance component reflects heterogeneous isotropic diffusiv-
ity, e.g., due to variable cell density or tissuemixtures (isotropic hetero-
geneity) (Szczepankiewicz et al., 2015; Westin et al., 2016). Although
these two sources of diffusional variance originate from markedly dif-
ferent microstructural features, they cannot be separated by techniques
based on conventional single diffusion encoding (SDE), i.e., encoding
along a single direction for each signal acquisition, because such
encoding conflates the effects of microscopic anisotropy and isotropic
heterogeneity (Mitra, 1995). Instead, these features can be separated
by performing experiments with varying ‘shapes’ of the diffusion
encoding tensor (Westin et al., 2016). In this work, we exploit the con-
trast between conventional and isotropic diffusion encoding to separate
the effects of microscopic anisotropy and isotropic heterogeneity, as re-
cently proposed by Lasič et al. (2014). The conventional and isotropic
encoding will be denoted ‘linear’ and ‘spherical’ tensor encoding (LTE
and STE) to comply with the nomenclature proposed by Westin et al.
(2016), and we will refer to methods aimed at separating the two
sources of variance as ‘diffusional variance decomposition’ (DIVIDE).

Microscopic diffusion anisotropy has been previously estimated by
employing double diffusion encoding (DDE) (Callaghan and Komlosh,
2002; Jensen et al., 2014; Jespersen et al., 2013; Lawrenz et al., 2010;
Ozarslan andBasser, 2008; Shemesh et al., 2010), however, the isotropic
component has so far only been reported in a limited number of studies
(Lasič et al., 2014; Szczepankiewicz et al., 2015;Westin et al., 2016). The
link between dMRI and the underlying tissue microstructure has been
studied by comparing several dMRI parameters to corresponding fea-
tures observed by qualitative and quantitative microscopy. Human
studies are scarce due to the invasive nature of resection and biopsies
but initial studies have shown a relation between diffusion anisotropy
and tissue microstructure in brain (Ronen et al., 2014), tumor
(Szczepankiewicz et al., 2015) and prostate tissue (Bourne et al.,
2012). In animals, the investigated features range across structure
eccentricity and orientation (Budde and Frank, 2012; Khan et al.,
2015; Schilling et al., 2016), neurodegeneration (Jelescu et al.,
2016; Jespersen et al., 2010; Kamagata et al., 2016), and axonal di-
ameter (Barazany et al., 2009). However, the link between

microscopic tissue heterogeneity and diffusional variance has not
yet been studied.

The purpose of this study was therefore to investigate the link be-
tween diffusional variance and tissue heterogeneity in tumors. We use
DIVIDE to assess the presence of microscopic anisotropy and isotropic
heterogeneity, and we correlate these measures to cell eccentricity
and density derived from quantitative microscopy. The study was per-
formed in meningiomas and gliomas because these tumors exhibit a
wide range of microstructural features that contribute to relevant as-
pects of the diffusional variance (Szczepankiewicz et al., 2015). We ob-
served a strong correlation between microscopic anisotropy and cell
eccentricity, as well as between isotropic heterogeneity and cell density
variance.

Theory

Themicroscopic anisotropy and isotropic heterogeneity of tissue can
be quantified by considering that each imaging voxel contains an en-
semble of microenvironments. We model the diffusion within each mi-
croenvironment by a microscopic diffusion tensor, and the ensemble is
therefore modelled by a distribution of microscopic diffusion tensors
(D) (Jespersen et al., 2013; Lasič et al., 2014; Topgaard, 2016; Westin
et al., 2016). This representation assumes Gaussian diffusion in eachmi-
croenvironment, which is accurate for moderate signal attenuation,
i.e., for encoding strengths where at least 10% of the initial signal re-
mains, for diffusion times that are long relative to the size of the restric-
tions (Topgaard and Söderman, 2003). Averaging across the distribution
of microscopic tensors in a voxel yields a single voxel-scale tensor, 〈D〉,
equivalent to the tensor derived from diffusion tensor imaging (DTI)
(Basser et al., 1994), where the averaging operation is denoted by 〈⋅〉. Al-
though the voxel scale diffusion tensor is useful in a plethora of applica-
tions (Alexander et al., 2007), it does not retain information on the
heterogeneity of the underlying distribution of diffusion tensors. To re-
tain such information, the distribution of diffusion tensors can be pa-
rameterized in terms of its mean diffusivity and two components of
diffusional variance. The mean diffusivity (MD) is defined from the dis-
tribution of isotropic diffusivities (DI=Eλ[D]) averaged across allmicro-
environments in a voxel, according to

MD ¼ DIh i ¼ Eλ D½ �h i ¼ Eλ Dh i½ �; ð1Þ

where the average over tensor eigenvalues is denoted Eλ[⋅]. We note
that MD in Eq. 1 is not affected by the order in which the averaging is
applied, i.e., across eigenvalues or microenvironment tensors first. Un-
like DKI, where specific sources of diffusional variance are not consid-
ered (Jensen et al., 2005), diffusional variance decomposition is used
to separate the diffusional variance into two components: the aniso-
tropic and isotropic variance (VA and VI), where the total variance (VT)
is simply the sum of its components (VT=VI+VA) (Lasič et al., 2014;
Szczepankiewicz et al., 2015). The isotropic heterogeneity is related to
the isotropic variance, according to

V I ¼ V DI½ � ¼ V Eλ D½ �½ �; ð2Þ

where V[⋅] is the variance operator. We note that VI is zero for tissues
where all microenvironments exhibit identical isotropic diffusivity.
The value of VI for the voxel-scale tensor, 〈D〉, is zero by definition
since the isotropic diffusion of 〈D〉 is defined by a scalar MD, and will
therefore not be considered beyond this point. The anisotropic variance
is related to the microscopic anisotropy, according to

VA ¼ 2
5

Vλ; D½ �h i; ð3Þ

where the factor 2/5 relates the eigenvalue population variance, denot-
ed by the operator Vλ[⋅], to the variance of the distribution of diffusiv-
ities in the powder sample (Topgaard, 2016). We note that VA is zero
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for tissue that comprises only isotropic microenvironments, and that
the voxel-scale counterpart is closely related to the voxel-scale anisot-
ropy, as described below.

An inherent limitation of conventional dMRI, performed with so-
called single diffusion encoding, here referred to as linear tensor
encoding, is that it cannot be used to distinguish the two sources of var-
iance (Mitra, 1995). To disentangle the two sources of variance, DIVIDE
employs diffusion encoding tensors (B) with multiple shapes, namely
linear and spherical encoding tensors, i.e., LTE and STE. Linear tensor
encoding yields a ‘stick’ shape (B has one non-zero eigenvalue), for
which the signal is sensitive to the total variance since both isotropic
heterogeneity and microscopic anisotropy contribute to the variance
of the underlying distribution of diffusivities. Spherical tensor encoding
yields a ‘sphere’ shape (B has three equal eigenvalues), which removes
the effects of microscopic anisotropymaking the signal sensitive only to
the variance due to isotropic heterogeneity (Eriksson et al., 2013; Lasič
et al., 2014; Szczepankiewicz et al., 2015). The benefit of introducing
multiple tensor shapes is visualized in Fig. 1, where three radically dif-
ferent microstructures are indistinguishable by LTE alone, but can be
separated when both STE and LTE are employed. Notably, DIVIDE is
compatible with arbitrary tensor shapes, enabled by techniques such
as free gradient waveforms modulation or double diffusion encoding,
as long as more than one shape is employed (Eriksson et al., 2015;
Topgaard, 2016;Westin et al., 2016). In summary, LTE probesVT, where-
as STE probes VI, as exemplified in Fig. 1, and VA is recovered by simply
subtracting the isotropic variance from the total variance (VA=VT−VI)
(Lasič et al., 2014; Szczepankiewicz et al., 2015).

We emphasize that the term ‘diffusional variance’ refers to the same
phenomenon as intended by ‘diffusional kurtosis’ (from DKI), and in
keeping with the formalism presented by Jensen et al. (2005), we nor-
malize and scale the diffusional variance, according to

MKx ¼ 3 � Vx

MD2 ; ð4Þ

where the subscript ‘x’ denotes the specific component that it reflects.
For example, MKI denotes the normalized variance due to isotropic
heterogeneity.

The macroscopic and microscopic fractional anisotropy, i.e., FA
(Basser et al., 1994; Basser and Pierpaoli, 1996) and μFA (Lasič et al.,
2014;Westin et al., 2016), can also bewritten in terms of the eigenvalue
expectance and variance, according to

FA2 ¼ 3
2
� Vλ Dh i½ �
Eλ Dh i½ �2 þ Vλ Dh i½ �

; ð5Þ

μFA2 ¼ 3
2
� Vλ D½ �h i

Eλ D½ �2
D E

þ Vλ D½ �h i
: ð6Þ

The distinction between macroscopic and microscopic anisotropy is
defined by the stage at which the averaging operation is applied. Aver-
aging over tensors first, as denoted by 〈D〉, probes the macroscopic an-
isotropy, whereas averaging over variance and expectancy first, as
denoted by 〈Vλ[D]〉 and 〈Eλ[D]2〉, probes the microscopic anisotropy.
Note that the order of averaging across eigenvalues is no longer arbi-
trary since the expected value is squared, i.e., Eλ[〈D〉]2≠〈Eλ[D]2〉 unless
VI=0, since (Westin et al., 2016)

V I ¼ Eλ D½ �2
D E

−Eλ Dh i½ �2: ð7Þ

The impact of averaging over microenvironment tensors is deter-
mined by the size of the averaging volume, i.e., the voxel size, where
larger voxels tend to reduce the macroscopic anisotropy in tissues that
are not perfectly coherent (De Santis et al., 2013; Szczepankiewicz
et al., 2015; Vos et al., 2011). Assuming that a voxel contains only one

type of tissue, i.e., that themicroenvironments differ only in orientation,
the μFA is independent of the voxel size and may be interpreted as the
FA that would be observed if the tissue exhibited complete orientation
coherence, i.e., that all anisotropic structures were parallel (Jespersen
et al., 2013; Lasič et al., 2014; Szczepankiewicz et al., 2015).

Materials and methods

Patient population

Patients were recruited and scanned between October 2013 and Oc-
tober 2014. The study was approved by the Regional Ethical Review

Fig. 1. Simulated tissue models that contain variable levels of microscopic anisotropy and
isotropic heterogeneity. The first model contains randomly oriented anisotropic
microenvironments, designed to mimic eccentric and disordered cells. The second
model contains microenvironments with slow and fast isotropic diffusion, designed to
mimic a mixture of high and low cell density. The third model is a mixture of the
previous two. The right column shows the signal vs b curves in each case, where linear
and spherical tensor encoding (LTE and STE) are shown as solid and broken lines,
respectively. The dotted line shows mono-exponential signal decay for visual reference.
The light blue and red fields accentuate the effect of microscopic anisotropy and
isotropic heterogeneity, respectively. The inset plots show the distributions of apparent
diffusion coefficients when using LTE (solid line) and STE (broken line), where the y-
axis is the unitless probability density (PD). All three models have MD = 1.0 µm2/ms,
and MKT = 0.6, and would thus be indistinguishable with LTE, i.e., conventional diffusion
encoding. By adding isotropic encoding the three environments can be distinguished and
the measured diffusional variance can be attributed to the appropriate microstructural
feature.
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Board at LundUniversity, andwritten consentwas obtained from all pa-
tients prior to participation. Patients with suspectedmeningioma or gli-
oma based on radiological findings, who were scheduled for surgical
treatment, were considered for inclusion. The sample size was deter-
mined by the number of participating patients who were histologically
confirmed to have a meningioma or glioma. In total, 14 patients were
included. One patient had both a meningioma and a glioma and was
therefore included in both groups. The meningioma group comprised
7 patients (6 women, 1 man; mean age ± s.d., 66 ± 11 years), and
the glioma group 8 patients (5 women, 3 men; 54 ± 14 years). One pa-
tient from each group was analyzed and presented in a preliminary
study (Szczepankiewicz et al., 2015), and several were also included
in an independent study on water exchange (Lampinen et al., 2016).
The tumors were graded according to the World Health Organization
guidelines (Louis et al., 2007), resulting in 6 grade I, and 1 grade II me-
ningiomas; and 1 grade II, 3 grade III, and 4 grade IV gliomas. Of theme-
ningiomas, four were fibroblastic, two were transitional, and one was
atypical (Riemenschneider et al., 2006). Due to the small number of sub-
jects, associations between parameters and tumor grade were not
investigated.

MRI data acquisition and analysis

MRI data was acquired using a Philips Achieva 3T system, equipped
with 80 mT/m gradients with a maximum slew rate of 100 mT/m/ms,
and an eight-channel receiver head-coil. The dMRI sequence was iden-
tical to that reported by Szczepankiewicz et al. (2015). Briefly, we used
linear and spherical tensor encoding at ten equidistant b-values be-
tween 100 and 2800 s/mm2. The LTE was performed in 15 directions,
distributed on the half-sphere using electrostatic repulsion (Jones
et al., 1999). The STE was achieved by magic angle spinning of the q-
vector (qMAS) (Eriksson et al., 2013), and was repeated 15 times per
b-value without rotation since it is assumed to be independent of rota-
tion. The sequence had an echo time of 160 ms where the diffusion
encoding lasted 62.5 ms before and after the refocusing pulse, and
were separated by approximately 9 ms. The b-value was adjusted by
modulating the gradient amplitude. We note that significantly shorter
encoding and echo times are possible by using optimized waveforms,
rather than repeating the qMAS waveform before and after the
refocusing pulse (Sjölund et al., 2015). All images were acquired using
a repetition time of 2000 ms, 96 × 96 acquisition matrix, spatial resolu-
tion of 3 × 3 × 3mm3, partial Fourier factor of 0.8, and a SENSE factor of
2. The image volume contained five axial slices centered on the tumor.
In the patient with bothmeningioma and glioma, the slices were placed
slightly off the axial plane to include both tumors. Total scan time for
LTE and STE was approximately 10 min. All data was corrected for mo-
tion and eddy-currents in ElastiX (Klein et al., 2010) using extrapolated
reference images (Nilsson et al., 2015). Whole-brain morphological T1-
weighted, and T2-weightedfluid-attenuated inversion recovery (FLAIR)
sequenceswere acquired, as well as gadolinium-enhanced T1-weighted
images as part of clinical routine.

Diffusional variance decomposition was used to estimate MD, VT,
VA and VI (Lasič et al., 2014). In this method the inverse Laplace
transform of the gamma distribution function (Röding et al., 2012)
is fitted to the powder average of the diffusion weighted signal (S),
according to

S bð Þ ¼ S0 1þ b
V
MD

� �−MD2
V

; ð8Þ

where S0 is the signal at b=0 s/mm2, and V is the observed variance.
The powder average is used to remove the effects of orientation co-
herence, and is calculated by averaging the signal across all diffusion
directions at each b-value (Edén, 2003; Lasič et al., 2014;
Szczepankiewicz et al., 2016b). As described in the theory, the

observed variance in Eq. 8 depends on the shape of the encoding ten-
sor, according to

V ¼ V I þ f � VA ; ð9Þ

where f is the encoding shape factor; for linear and spherical tensor
encoding, f=1 and 0, respectively (Topgaard, 2016). Other encoding
shapes can also be used, for example, DDE that renders axially sym-
metric prolate encoding tensors, i.e., planar tensor encoding (PTE),
where f = 1/4 (Topgaard, 2016). The fitting was weighted to sup-
press the effect of signal attenuated below 10% of its initial value in
order to alleviate effects of non-Gaussian phase distribution
(Topgaard and Söderman, 2003) and the noise floor (Gudbjartsson
and Patz, 1995). The fitting software is available online at https://
github.com/markus-nilsson/md-dmri. The normalized variance was
calculated according to Eq. 4, and we note that MKT and the mean
kurtosis, derived from conventional DKI, are representations of the
same phenomenon although their numerical values are expected to
differ due to differences in signal parameterization (Lätt et al.,
2007). To elucidate the connection between diffusional anisotropy
on the voxel- and microscopic scale, we also interpret the diffusional
variance in terms of the fractional anisotropy, i.e., FA and μFA, re-
spectively. The FA was calculated from Eq. 5, where the voxel scale
tensor 〈D〉 was estimated through conventional DTI analysis
(Basser et al., 1994) based on LTE at b ≤ 1000 s/mm2. The μFA was cal-
culated from Eq. 6 by substituting the eigenvalue mean and variance
for the expressions in Eqs. 1, 3 and 7, according to

μFA ¼
ffiffiffi
3
2

r
1þMD2 þ V I

5
2VA

 !−1
2

: ð10Þ

Note that the μFA in Eq. 10 is defined according to Westin et al.
(2016), and differs slightly from the definition used by Lasič et al.
(2014) and Szczepankiewicz et al. (2015).

The solid part of each tumor was manually defined in a region of in-
terest (ROI) by an experienced neuroradiologist using anatomical,
contrast-enhanced, and diffusion-weighted images for guidance. The
operator was instructed to avoid including edema, confluent necroses,
corticospinal fluid, and brain tissue that appeared healthy. The parame-
ter mean across all included voxels was calculated for each tumor.

Histological preparation and quantitative microscopy

All tumors were resected 1 day after the MRI procedure and the
preparation of tissue was performed according to clinical routine. Each
tumor was fixed in 4% buffered formaldehyde solution and embedded
in paraffin. The tissue specimens were sectioned at 4 μm through the
bulk of the tumor, and stained with hematoxylin and eosin (H&E). Au-
tomated microscopy was performed on an Aperio ScanScope AT
Turbo. All samples were scanned at ×20magnification at a spatial reso-
lution of 1.0 μm/pixel and a complete image was stitched together by
vendor software. Tumor specimens ranged in size between 8 and
28 mm across, resulting in at most 780 megapixels per image.

The presence of anisotropic tissue structures was quantified with
structure tensor analysis of histological images (Bigun, 1987; Budde
and Annese, 2013; Budde and Frank, 2012; Khan et al., 2015). Briefly,
the two-dimensional structure tensors (S) were calculated for each
pixel from the spatial derivative of the image in a given neighborhood
defined by the size of a discrete Gaussian derivative filter (Bigun,
1987). We assume that the structure tensors reflect the local diffusion
anisotropy and orientation, in accordance with similar studies of neural
tissue (Budde and Frank, 2012; Khan et al., 2015). Thus, analogues to
MKA, μFA and FA can be calculated from the structure tensors. The stan-
dard deviation of the Gaussian derivative filter was set to 1 μm. To visu-
alize coherent structures spanning the distance of diffusing water
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during one imaging experiment, the structure tensor field was con-
volved with another Gaussian kernel with a standard deviation of
20 μm. This is adjusted to approximately match the root mean square
displacement of water molecules in the tissue assuming a diffusivity of
2 μm2/ms and diffusion time of 100 ms. The normalized variance of
structure tensor eigenvalues (HA) was calculated from Eq. 3 and Eq. 4,
wherewe hypothesize that HA across an appropriate length scale is pro-
portional to MKA, according to

HA ¼ 3 � Vλ S½ �h i
Eλ S½ �h i2

∝MKA: ð11Þ

The structure tensor analogues to FA and μFA (FAST and μFAST) were
calculated by inserting S into Eq. 5 and Eq. 6, respectively,where the fac-
tor 3/2 was replaced by 2 to scale the parameters to the interval 0 to 1.
We note that the relation between parameters derived from 2D and 3D
tensors are not straight forward (see Kingsley (2006) for a comprehen-
sive review), however, we may assume that D and S are both sensitive
to tissue anisotropy and should therefore be correlated (Budde and
Frank, 2012). Note that in contrast to dMRI, we can access the structure
tensor field at the resolution of a single microenvironment, and must
therefore construct the macroscopic structure tensor S by averaging
the tensor field across an appropriate area in order to allow comparison
with D and its parameters. Unless stated otherwise, all structure tensor
anisotropy parameters were calculated from an averaged structure ten-
sor field with spatial resolution 3 × 3 mm2, to mimic the resolution of
the dMRI data.

The analogue to MKI was calculated by assuming that the isotropic
diffusivity of a microenvironment is related to the local cell density.
This assumption is based on previous observations where cell density
has been negatively correlated to the apparent diffusivity (Chenevert
et al., 2000; Kinoshita et al., 2008; Padhani et al., 2009; Sugahara et al.,
1999). Thus, we hypothesize that the distribution of isotropic diffusiv-
ities within a voxel is determined by the cell density distribution (ρc),
and that the normalized variance of cell densities from microscopy
(HI) across an appropriate length scale, is proportional toMKI, according
to

HI ¼ 3 � V ρc½ �
ρch i2

∝MKI: ð12Þ

The local density of cells was calculated as the number of cell nuclei
per unit area. The cell nuclei were automatically segmented and count-
ed in tissue sub-sections of 300 × 300 μm2, as described by Al-Kofahi
et al. (2010). The detection of red blood cells was suppressed by using
only the red channel of the original H&E stained image, and the detec-
tion of psammoma grains was suppressed by removing features with
areas above 900 μm2. Clustered nuclei were separated using the water-
shed algorithm (Malpica et al., 1997). Maps of HI were calculated from
the distribution of cell densities across 10 × 10 subsections, which
yielded a spatial resolution of 3 × 3 mm2.

Themean parameter values in each tumor were calculated across all
tumor tissue in each section. To avoid the inclusion of empty space, and
artefacts due to edge effects, hemorrhage, knife scoring, and folding, the
parameter maps were masked based on manually adjusted image in-
tensity thresholding.

Statistical analysis

The associations between parameters derived from dMRI and their
corresponding variants derived from microscopy, i.e., MKA vs HA, MKI

vs HI, FA vs FAST, and μFA vs μFAST, were estimated using linear correla-
tion. Pearson's correlation coefficient (r) was used to describe the
strength of the correlation and the threshold for significance was set
to α = 0.05. For simplicity, the measurement uncertainty in the inde-
pendent variables (from microscopy) was assumed to be negligible.

We note that MKA and μFA are closely related and are expected to ren-
der similar correlations. Nevertheless, the μFA is presented in addition
to the MKA to provide a straightforward microscopic analogue to the
FA. A multiple linear regression analysis was used to investigate which
histological features were significant predictors for the outcome of the
variancedetected through dMRI. The analysiswas performed separately
for MKT, MKA andMKI where the regressionmodel was defined accord-
ing to MKx=m+βAHA+βIHI. The threshold for considering HA and/or
HI to be significant predictors was set toα=0.05. The intercept,m, was
not interpreted.

The diffusional variance, and its components, were explored be-
tween and within tumor groups. The dominant source of variance was
established by comparingMKA andMKIwithin each group. The variance
parameter that best distinguished between tumor types was
established by estimating the 95% confidence interval of the absolute ef-
fect (CI95%), and Cohen's d (d, normalized by the pooled standard devi-
ation). Thus, a total of five t-tests were performed (two tails,
independent samples, not assuming equal variance, significance thresh-
old α=0.05). The fact that one patient appeared in both tumor groups
was assumed to have a negligible effect on the statistical analysis. Thus,
samples taken from this patient were considered to be independent
throughout the analysis. All statistical analysis was performed in
MATLAB (R2013b, The Mathworks, Natick, MA).

Results

We performed dMRI in vivo in 7 meningiomas and 8 gliomas, and
DIVIDEwas used to probe themicroscopic anisotropy and isotropic het-
erogeneity of the tumor tissue. Fig. 2 shows DIVIDE parameter maps
(MKT, MKA andMKI) in ameningioma and a glioma. Both tumors exhib-
ited elevatedMKT,which indicated that both tumors are heterogeneous,
although the specific source of heterogeneity cannot be established
from MKT. By contrast, the source of tumor heterogeneity was distin-
guishable based on the MKA and MKI, where the diffusional variance
in the meningioma was dominated by the anisotropic component, and
primarily due to isotropic heterogeneity in the glioma. The difference
between tumors was also clearly discernible from the signal vs b curves
in the two tumor ROIs. In the meningioma, the signal from linear and
spherical encoding diverges, which indicates microscopic anisotropy
(compare to first model in Fig. 1); whereas both types of encoding ex-
hibit similar divergence from mono-exponential decay in the glioma,
which indicates isotropic heterogeneity (compare to second model in
Fig. 1). Overall, the DIVIDE parameters showed that the meningiomas
comprised a microstructure that yielded prominent microscopic diffu-
sion anisotropy, whereas the gliomas did not. The estimated mean
[min, max] signal-to-noise ratio of the STE signal across all tumor ROIs
was 39 [19, 75] at b = 0 s/mm2, and 5.5 [3.0, 10] at the highest b-
value where at least 10% signal remained, indicating that the data qual-
ity was sufficient for the analysis (Gudbjartsson and Patz, 1995). Fur-
thermore, using 15 diffusion encoding directions was sufficient to
render a rotationally invariant powder average since all tumors exhibit-
ed a relatively low voxel scale anisotropy (all tumors had a mean FA
below 0.5) (Szczepankiewicz et al., 2016b).

All tumors were resected, and quantitative microscopy was used to
measure the cell eccentricity and cell density in sections through the
bulk of the tumor tissue. Fig. 3 shows quantitative microscopy parame-
ter maps derived from structure tensor analysis and cell nuclei segmen-
tation at the nominal resolution (1 × 1 μm2) in a meningioma and a
glioma. Fig. 3 also presents the structure tensors, orientation field, and
cell nuclei outlines in magnified subsections of each tumor. Overall,
the meningiomas comprised prominently eccentric cells and cell struc-
tures, while gliomas contained few, or no, such structures. Themeningi-
omas exhibited variable anisotropy within and between tumors, where
patches of coherent fascicles were mixed with highly disordered tissue
(Fig. 3). By contrast, the gliomas exhibited low and relatively homoge-
neous structural anisotropy throughout the section, as well as regions
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of heterogeneous cell density, especially in necrotic regions (Fig. 3). The
spatial heterogeneity of cell eccentricity and density within each tumor
in Fig. 3 visualizes the need to analyze large tissue sections because
small sub-sections may inadvertently sample regions of tissue that are
not representative, leading to a large sampling error.

The parameters derived from dMRI were validated by correlating
them to corresponding parameters from quantitative microscopy. All
tests showed strong positive correlations, which indicates that the two

components of diffusional variance indeed reflect specific features of
the underlying microstructure. Fig. 4 shows scatterplots of the variance
parameters where the strength of the correlation was r=0.95 for MKA

(p b 10−7) and r=0.83 for MKI (p b 10−3). Similarly, Fig. 5 shows that
both voxel-scale and microscopic parameters were correlated, where
r=0.80 for FA (p b 10−3) and r=0.93 for μFA (p b 10−6). Furthermore,
the regression analysis showed that bothHA andHIwere significant pre-
dictors for MKT, where the estimated coefficients ± s.d. were βA =

Fig. 2. Examples of DIVIDE parameter maps in a meningioma and a glioma. MKT is elevated in both tumors but cannot distinguish between the isotropic and anisotropic components. By
contrast, MKA and MKI are markedly different in the two tumors. These parameter maps were superimposed on a high resolution morphological image (FLAIR +MKA,I), where MKA and
MKI are coded in blue and red, respectively. The meningioma exhibited highMKA and lowMKI (blue), whereas the opposite is true in the glioma (red). In the white matter the diffusional
variance is mostly due to microscopic anisotropy, whereas the isotropic heterogeneity dominates in gray matter and voxels that contain both tissue and cerebrospinal fluid. The powder
averaged signal vs b curves are shown in the rightmost column. Thewhite-black outline shows theROIs used for analysis. Note that the signal characteristics in themeningiomaand glioma
resemble the first and second models in Fig. 1, respectively.

Fig. 3.Quantitativemicroscopy in ameningioma and a glioma. The full-section images show the structure tensor fractional anisotropy (FAST), orientation (Ori), cell density (ρc, 103/mm2),
and the hematoxylin and eosin stain (H&E) in a meningioma and a glioma. Along with eachmapwe visualize the tensor field, orientation field, cell outlines and H&E stain in a magnified
sub-section (300 × 300 μm2) of the tissue. The meningioma is grade I, fibroblastic subtype, with abundant anisotropic structures organized in large fascicles that render anisotropic
diffusion. It has a high cell density and low density variance, i.e., the cell density map is uniform. The glioma is grade IV glioblastoma with few structures that are anisotropic, however,
weakly coherent regions are observed in the normal-appearing cortex. The tumor tissue has a relatively low cell density and comprises large necrotic regionswhich exhibit highly variable
cell density, i.e., the cell density map is non-uniform. The glioma is surrounded by cortical gray matter wherein the cortical layers can be partially distinguished in the cell-density map.
Note that the anisotropy and orientation maps are calculated at 1 × 1 μm2 resolution, whereas the cell density is calculated at 300 × 300 μm2. Furthermore, the orientation map and ori-
entation field are color coded to indicate local direction and anisotropy (color shows direction, saturation shows local FAST).
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2.7 ± 0.4 (p b 10−4) and βI = 1.4 ± 0.4 (p b 10−2), respectively. This
supports the notion that MKT is not specific to either type of heteroge-
neity because it composes them into a single value. A more specific
link between parameters was achieved by DIVIDE, where each variance
component was significantly predicted by the corresponding micro-
structural features; the only significant predictor for MKA was HA,
where βA = 2.5 ± 0.3 (p b 10−6) and βI = 0.0 ± 0.3 (p = 0.9); the
only significant predictor for MKI was HI, where βI = 1.4 ± 0.3
(p b 10−3) and βA = 0.1 ± 0.3 (p = 0.6).

The comparison of diffusional variance within and between tumor
groups is shown in Fig. 6 and Table 1. Themicroscopic anisotropy dom-
inated in the meningiomas (MKA = 1.11 ± 0.33 vs MKI = 0.44 ± 0.20,
p b 10−3), whereas isotropic heterogeneity dominated in the gliomas
(MKI = 0.57 ± 0.30 vs MKA = 0.26 ± 0.11, p = 0.02). Between
tumor groups, MKT and MKA were found to be significantly higher in
meningiomas (both p b 10−3), while MKI was not significantly different
(p=0.3). The largest effect sizewas found forMKAwhere d=3.6, com-
pared to d=2.2 forMKT (see Table 1 for details). These findings suggest
that the most prominent difference between the meningioma and glio-
ma groups is driven by the presence or absence ofmicroscopic anisotro-
py. To facilitate future comparisons we also report remaining
parameters derived from dMRI and microscopy in Table 2.

Discussion

In this study, we used DIVIDE to decompose the anisotropic and iso-
tropic components of the diffusional variance in meningioma and glio-
ma tumors, and we pinpointed the source of these components
through an independent analysis of the underlying microstructure.
The MKA parameter was shown to capture the structural anisotropy
on the microscopic scale, where the diffusion anisotropy in the menin-
giomas was likely caused by an abundance of eccentric cells and cell
structures. In agreement with preliminary results reported by
Szczepankiewicz et al. (2015), such structures were absent in the glio-
mas. TheMKI parameter was shown to capture heterogeneous cell den-
sity which was caused by local patches of high and low cell density due
to aggressive cell growth or necrosis. The strong correlations between
parameters derived from dMRI and microscopy provide compelling ev-
idence thatMKA, μFA andMKI can be interpreted in terms of specific and
intuitive features of tissue microstructure (Fig. 4). Furthermore, the re-
gression analysis confirmed that MKT conflates the effects of cell eccen-
tricity and variable density (Mitra, 1995), and therefore lacks specificity,
whereas MKA and MKI were specific to either of the two. Thus, the lack
of specificity exhibited by MKT can be recovered by decomposing MKT

into MKA and MKI. The FA and μFA also exhibited strong correlations

Fig. 4. Correlation between variance parameters derived from dMRI and microscopy in meningiomas (triangles) and gliomas (circles). The anisotropic and isotropic components of
diffusional variance (MKA and MKI) exhibit strong positive correlations to structural anisotropy and cell density variance (HA and HI), respectively. Note that HA and HI are derived
from structure tensor analysis and cell nuclei segmentation, respectively.

Fig. 5. Correlation between anisotropy parameters derived from dMRI and microscopy inmeningiomas (triangles) and gliomas (circles). The diffusion anisotropy exhibits strong positive
correlations with structure tensor anisotropy on the voxel (FA) andmicroscopic scale (μFA). Gliomas exhibit low FA and μFA, in agreement with the structure tensor analysis. By contrast,
meningiomas exhibit a wide range of FA values, and relatively high μFA values. This suggests that the FA observed in meningiomas is strongly dependent on the orientation coherence of
the tissue. The FA in meningiomas and gliomas may therefore overlap, impeding the ability of FA to differentiate the two tumor types despite their obvious difference in microscopic
anisotropy. By contrast, the μFA clearly distinguishes the two tumor types. Moreover, the μFA stratified the fibroblastic meningiomas from the other subtypes, i.e., the fibroblastic tumors
had the four highest μFA values, whereas the same stratification was not observed for FA. It may therefore be possible to use μFA for pre-surgical toughness estimation in meningiomas
(Kashimura et al., 2007; Tropine et al., 2007). We emphasize that the tissue with the highest μFA is not necessarily mapped to the highest FA due to variable orientation coherence
(black arrows point to the same tumor sample).
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with their structure tensor analogues (Fig. 5). This result is in accor-
dance with similar studies performed in animals where voxel-scale dif-
fusion anisotropy parameters, at high resolution, correlate with
structure tensor anisotropy (Budde and Frank, 2012; Khan et al.,
2015). However, herewe show that the correlation also extends tomea-
sures of microscopic anisotropy and isotropic heterogeneity, which to
our knowledge, have not been investigated previously.

The difference between the FA and μFA in the meningiomas is likely
explained by the interaction between orientation coherence and voxel
size (Oouchi et al., 2007). Fig. 7 utilizes the high-resolution microscopy
images to demonstrate how larger voxels cause the FA in complex tissue
to decrease due to a decreasing orientation coherence. It also highlights
that this limitation can be mitigated by methods, such as DIVIDE, that
recover the microscopic anisotropy (Jespersen et al., 2013; Lasič et al.,
2014; Lawrenz and Finsterbusch, 2015; Westin et al., 2016). Thus,
when interpreting voxel-scale anisotropy parameters such as the FA,
the orientation coherence of the tissue is a potential confounder (De
Santis et al., 2013).

Probing MKA and MKI separately revealed that the variance in me-
ningioma tumors arises mainly due to the presence of anisotropic cell
structures, whereas it was mainly due to isotropic heterogeneity in
the gliomas (Fig. 6 and Table 1). Furthermore, MKA exhibited the largest

effect size between meningioma and glioma groups. This indicates that
the primary difference between meningiomas and gliomas is the pres-
ence of structures that yield anisotropic diffusion at the microscopic
scale, while the difference in isotropic heterogeneity is secondary
(Table 1). In a statistical sense, MKA should therefore be a superior bio-
marker compared to MKT whenever the difference between tissues is
predominately due to microscopic anisotropy. In such circumstances
theMKImay be considered a nuisance parameter; removing it increases
the separation between groups resulting in a higher statistical power
(Szczepankiewicz et al., 2013). Although removing one component of
variance may improve the statistical power of studies aimed to find a
specific effect, we stress that this is contextual. For example, a similar
analysis applied to the white matter in schizophrenia patients consid-
ered the isotropic variance as the relevant component (Westin et al.,
2016).

We expect that the improved specificity gained from decomposing
the two sources of diffusional variance may be used to infer additional
information about the underlying tissue microstructure, andmay facili-
tate an improved interpretation of parameters that reflect diffusional

Fig. 6.Diffusional variance parameter distributions in themeningioma and glioma groups.
Each data point shows themean parameter value across all voxels in the tumor ROI. In the
comparison between tumor groups, MKT and MKA were significantly different, whereas
MKI was not (* indicates statistical significance, n.s. indicates no significance; see Table 1
for details). Most notably, MKA exhibits a distinct separation between the meningioma
and glioma groups, indicating that the presence of anisotropic microstructures can be
used to effectively differentiate the tumors. The comparison of MKA and MKI within
tumor groups revealed that MKA is dominant in the meningiomas, and MKI is dominant
in the gliomas.

Table 1
DIVIDE parameters in meningiomas and gliomas. Values are presented as group mean ±
one standard deviation. For t-tests performed within and between groups we present
the corresponding Cohen's d (d), 95% confidence interval (CI99%), and p-value (p). Forme-
ningiomas the dominant componentwasMKA,whereas in gliomas theMKIwas dominant.
Between tumor groups MKT and MKA differed significantly, where the MKA exhibited the
largest effect size. No significant difference between tumor types was found for MKI.

Meningioma Glioma Meningioma vs Glioma

(n = 7) (n = 8) CI95% d p

MKT 1.55 ± 0.29 0.83 ± 0.35 [0.37 1.08] 2.2 b10−3

MKA 1.11 ± 0.33 0.26 ± 0.11 [0.55 1.16] 3.6 b10−3

MKI 0.44 ± 0.20 0.57 ± 0.30 [−0.42 0.15] −0.5 0.3

MKA vs MKI CI95% [0.35 1.00] [−0.57 −0.06]
d 2.5 −1.4
p b10−3 0.02

MKT, total mean kurtosis; MKA, anisotropic kurtosis; MKI, isotropic kurtosis.

Table 2
Parameters derived from DTI, DIVIDE and quantitative microscopy in meningiomas and
gliomas. Values are presented as group mean ± one standard deviation. The MD is in
μm2/ms, the ρc is in 103/mm2, remaining parameters are unitless.

Meningioma Glioma

(n = 7) (n = 8)

MD 1.08 ± 0.13 1.60 ± 0.22
FA 0.26 ± 0.12 0.10 ± 0.04
μFA 0.80 ± 0.09 0.41 ± 0.07
bρcN 3.4 ± 1.8 2.2 ± 2.4
HA 0.36 ± 0.17 0.08 ± 0.02
HI 0.14 ± 0.09 0.11 ± 0.11
FAST 0.15 ± 0.06 0.07 ± 0.02
μFAST 0.43 ± 0.09 0.21 ± 0.03

MD, mean diffusivity; FA, fractional anisotropy; μFA, microscopic FA; bρcN, cell density;
HA, normalized variance of structure tensor eigenvalues; HI, normalized variance of cell
density; subscript ‘ST’ denotes parameters derived from structure tensor analysis.

Fig. 7. Effect of spatial resolution and orientation coherence on anisotropy. The image
array shows FAST and μFAST maps in a fibroblastic meningioma derived from the
structure tensor field at spatial resolutions between 50 × 50 and 3000 × 3000 μm2. The
plotted lines show the average parameter values across the tumor section for the same
interval of spatial resolutions. This showcases the interaction between the spatial
resolution and the orientation coherence, where conventional anisotropy parameters,
such as the FA from DTI, are reduced as the resolution decreases, in accordance with
similar effects shown by Budde and Annese (2013). By contrast, the microscopic
anisotropy, i.e., the μFA, remains stable and is independent of the spatial resolution. This
demonstrates the inherent limitation of FA, and the advantage of μFA,when estimating an-
isotropy in complex tissue.
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variance and kurtosis, as well as diffusion anisotropy. The method pre-
sented here is applicable to a wide variety of inquiries as it requires
few assumptions about the investigated tissue and is implemented as
a straight-forward modification to the conventional diffusion encoding
sequence (Lasič et al., 2014; Szczepankiewicz et al., 2015). This is espe-
cially true if diffusion anisotropy parameters are intended to differenti-
ate tumor subtypes (Jolapara et al., 2010; Sanverdi et al., 2012; Wang
et al., 2012), preoperative estimation of tumor consistency
(Kashimura et al., 2007; Tropine et al., 2007), delineation for biopsies
(Kinoshita et al., 2008), and tumor proliferation (Beppu et al., 2005).
Such cases warrant the use of MKA or μFA, since conventional measures
of anisotropy ignore the interaction between orientation coherence and
voxel size, and may therefore be strongly biased (Fig. 7). This also ex-
tends to tissues outside of the central nervous system, such as the pros-
tate where the stromal tissue is anisotropic and highly disordered on
the sub-voxel scale (Bourne et al., 2012). Moreover, the ability to isolate
the effects of isotropic heterogeneity may improve the characterization
of tissue. For example, tumor infiltration in white matter may be better
detected and delineated by removing the dominant effects of white
matter anisotropy and instead characterizing the subtle changes in the
isotropic heterogeneity (Sternberg et al., 2014).

We stress that the use ofmultiple encoding tensor shapes is required
to probe the microscopic anisotropy and isotropic heterogeneity sepa-
rately. As illustrated in Fig. 1, conventional encoding (LTE, solid lines)
is theoretically incapable of distinguishing the three environments
since all signal curves are virtually identical regardless of their aniso-
tropic content (Mitra, 1995). Therefore, themicroscopic anisotropy can-
not be isolated by conventional encoding alone. This stands in contrast
to Kaden et al. (2016) who claim that microscopic diffusion coefficients
can be probed using only conventional SDE.Methods that attempt to es-
timate microscopic anisotropy and microscopic diffusion coefficients
based only on SDE must either ignore the presence of isotropic diffu-
sional variance, or assign values to it based on prior assumptions,
e.g., assume that the system is composed of a mixture of specific micro-
environments. However, since the isotropic variance exhibits consider-
able variation within individual subjects as well as between patients
and controls (Szczepankiewicz et al., 2015), ignoring itwill likely render
an unpredictable bias that erroneously interprets isotropic heterogene-
ity as the presence of anisotropic structures,which impairs the interpre-
tation of parameters such as the microscopic diffusion coefficients
(Kaden et al., 2016).

We have identified three limiting aspects of the current study,
pertaining to the generalization of the findings, the accuracy of the
quantitative microscopy, and the clinical feasibility of the method. The
generalization is limited because the present study comprises only
two tumor types and a small number of tumors. Furthermore, the
DIVIDE parameters may depend on features that are not included in
the current models. For example, intra-voxel incoherent motion of
blood may affect the diffusion weighted signal (Le Bihan et al., 1986).
This may become relevant in well vascularized tumors, particularly
since eachwaveformmay contribute different levels of flow compensa-
tion (Ahlgren et al., 2016). The effects of water exchange across micro-
environments could also affect the parameterization (Nilsson et al.,
2013b). However, a preliminary study of the apparent exchange rate
(Nilsson et al., 2013a) in meningiomas and gliomas reported residence
times that were markedly longer than the diffusion times used in the
current study (Lampinen et al., 2016), which suggests that the effects
are negligible in these tumors. Restricted diffusionmay yield an interac-
tion between the diffusion time and the size distribution of restrictions
(Gore et al., 2010). This may be especially relevant in diseased tissue
where such features are unpredictable, and for non-conventional wave-
form shapes where the effective diffusion time is not well-defined
(Nilsson et al., 2016). Although variable diffusion times normally have
a limited influence in neural tissues (Nilsson et al., 2013b), integrating
a model of restricted diffusion and DIVIDE may improve parameter ac-
curacy (Ianus et al., 2016).

Several limitations pertain specifically to the quantitative microsco-
py. In the current implementation structural information is investigated
in a two dimensional plane, whereas the diffusion takes place in three
dimensions. This likely introduces a negative bias in structure anisotro-
py since through-plane anisotropy cannot be captured (Khan et al.,
2015). Furthermore, 2D structure tensors cannot distinguish between
structures that render oblate and prolate diffusion tensors which may
impede the correlation between diffusion and structure tensors
(Kingsley, 2006). More elaborate techniques based on confocal micros-
copy are able to reconstruct microscopic images in thin three dimen-
sional slabs (Khan et al., 2015), however, these techniques were
outside the scope of the present work. Although these limitations may
impact the parameter accuracy, they may be partially mitigated by de-
signing themicroscopy-basedmetrics to bemathematically proportion-
al to their dMRI analogues, and quantifying their association based on
the strength of the correlation rather than the correspondence of abso-
lute values.

The dMRI acquisition protocol reported in the present studywas de-
signed to oversample the directions and b-values for validation pur-
poses (Szczepankiewicz et al., 2015) and therefore featured a
relatively low spatial resolution and a long acquisition time at a limited
slice coverage. A clinically feasible protocols can be achieved by reduc-
ing the number of b-values and by tailoring their distribution to the tis-
sue of interest (Alexander, 2008; Knutsson and Westin, 2013;
Szczepankiewicz et al., 2016b). For example, whole brain acquisition is
possible at a resolution of 2 × 2 × 3 mm3 in less than 8 min by using
only two non-zero b-values and optimized asymmetric waveforms
(Sjölund et al., 2015), which can reduce the TE from 160 ms (presented
herein) to below 100ms (Szczepankiewicz et al., 2016a). Simultaneous
multi-slice acquisitions could potentially reduce it below 4 min
(Setsompop et al., 2012). The design of clinical protocols with respect
to tissue characteristics and hardware capabilities will be addressed in
future works.

Conclusions

We found an excellent agreement between DIVIDE parameters and
tissue microstructure in meningiomas and gliomas. This constitutes
compelling evidence that a link exists between diffusional variance
and structural heterogeneity. The diffusional variance due tomicroscop-
ic anisotropy and isotropic heterogeneity could be disentangled and
linked specifically to cell eccentricity and cell density variance, where
MKA and μFA reflect cell eccentricity independent of orientation coher-
ence, andMKI reflects variable cell density. The separation of cell eccen-
tricity from variable cell density relies on diffusion encoding tensors
with multiple shapes and is therefore not accessible by methods based
on conventional diffusion encoding, such as DKI. Thus, DIVIDE provides
amore comprehensive and specific description of the tissuemicrostruc-
ture and heterogeneity, which can be used to improve the interpreta-
tion of diffusional variance and diffusional anisotropy.
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