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Features of the Nyström Method for the Sherman-

Lauricella Equation on Piecewise Smooth Contours

Victor D. Didenko1,∗and Johan Helsing2

1 Faculty of Science, University of Brunei Darussalam, Bandar Seri Begawan,

BE1410 Brunei
2 Numerical Analysis, Centre for Mathematical Sciences, Lund University, Box

118, SE-221 00 Lund, Sweden

Abstract. The stability of the Nyström method for the Sherman-Lauricella equation on

contours with corner points c j , j = 0, 1, . . . , m relies on the invertibility of certain oper-

ators Ac j
belonging to an algebra of Toeplitz operators. The operators Ac j

do not depend

on the shape of the contour, but on the opening angle θ j of the corresponding corner c j

and on parameters of the approximation method mentioned. They have a complicated

structure and there is no analytic tool to verify their invertibility. To study this problem,

the original Nyström method is applied to the Sherman-Lauricella equation on a special

model contour that has only one corner point with varying opening angle θ j . In the

interval (0.1π, 1.9π), it is found that there are 8 values of θ j where the invertibility of

the operator Ac j
may fail, so the corresponding original Nyström method on any contour

with corner points of such magnitude cannot be stable and requires modification.

AMS subject classifications: 65R20, 45L05
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1. Introduction

Let Γ be a simple closed positively oriented contour in the complex plane C. The

Sherman–Lauricella equation

ω(t) +
1

2πi

∫

Γ

ω(τ) d ln

�
τ− t

τ− t

�
−

1

2πi

∫

Γ

ω(τ) d

�
τ− t

τ− t

�
= f (t), t ∈ Γ. (1.1)

where here and subsequently the bar denotes the complex conjugation and ω is an un-

known function, plays an important role in various fields of applied mathematics — in-

cluding elasticity theory, theory of incompressible flows, radar imaging [11–14]. However,

at present there is no general analytic solution of Eq. (1.1) available. If the contour Γ is

∗Corresponding author. Email addresses: diviol@gmail.com (V. D. Didenko), helsing@maths.lth.se

(J. Helsing)
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smooth, then the integral operators in Eq. (1.1) are compact and the corresponding approx-

imation methods for this equation can be studied without serious difficulties. On the other

hand, when the contour Γ has corner points c1, c2, . . . , cm the stability of the approxima-

tion method under consideration usually depends on the invertibility of certain operators

Ac0
, Ac1

, . . . , Acm−1
associated with the method itself and with the parameters of the corner

points at hand. As a rule, such operators have a complicated structure, so their invertibility

cannot be treated effectively. Nevertheless, apart from the approximation method each

operator Ac j
, j = 0, 1, . . . , m−1 does not depend on the shape of the contour Γ but on spe-

cific parameters of the corner point c j , so the invertibility of such operators can be studied

via connections with the stability of corresponding approximation methods considered on

certain special model curves.

In the present paper, we investigate this property for the Nyström method of Ref. [3],

and find that in the interval (0.1π, 1.9π) there are angles for which the operators Ac j
are

not invertible.

2. The Nyström method and the operators Ac j

Let γ = γ(s) be a 1-periodic parametrization of Γ. For the sake of simplicity, let us

assume that c j = γ( j/m) for all j = 0, 1, . . . , m−1, the function γ is two times continuously

differentiable on each interval ( j/m, ( j + 1)/m) and
����γ
′
�

j

m
+ 0

�����=
����γ
′
�

j

m
− 0

����� , j = 0, 1, . . . , m− 1.

Let us now construct a mesh that will be used in the following discussion. Set n = qm for

q = 1, 2, . . . , and for such n note that any corner of Γ is always an end point of a subinterval

(γ(r/n),γ((r+1)/n)). Let d be a positive integer and let 0< ε0 < ε1 < . . .< εd−1 < 1 and

0< δ0 < δ1 < . . .< δd−1 < 1 be real numbers. Consider two sets of points on Γ— viz.

τl p = γ

�
l + εp

n

�
, t l p = γ

�
l +δp

n

�
, l = 0, 1, . . . , n− 1; p = 0, 1, . . . , d − 1. (2.1)

According to [3], the approximate values ω(τl p) of an exact solution ω of Eq. (1.1) at the

points τl p are defined by the following system of algebraic equations:

ω(τkr) +
1

2πi

n−1∑

l=0

d−1∑

p=0

wpω(τl p)

 
τ′

l p

τl p − tkr

−
τ′ l p

τl p − tkr

!
1

n

−
1

2πi

n−1∑

l=0

d−1∑

p=0

wpω(τl p)

 
1

τl p − tkr

τ′
l p

n
−
τl p − tkr

(τl p − tkr)
2

τ′ l p

n

!
(2.2)

+
1

(tkr − a)

1

2πi

n−1∑

l=0

d−1∑

p=0

wp

 
ωl p

(τl p − a)2

τ′
l p

n
+
ω(τl p)

(τl p − a)2

τ′ l p

n

!
= f (tkr)

(k = 0, 1, . . . , n− 1; r = 0, 1, . . . , d − 1)
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where τ′
l p

:= γ′((l + εp)/n) and wp for p = 0, 1, . . . , d − 1 are positive numbers such that

w0+w1+· · ·+wd−1 = 1. Note that the last line of equation (2.2) represents a discretization

of the correcting operator TSL : L2(Γ) 7→ L2(Γ) given by

TSLω(t) :=
1

(t − a)

1

2πi

∫

Γ

 
ω(τ)

(τ− a)2
dτ+

ω(τ)

(τ− a)2
dτ

!
, t ∈ Γ , (2.3)

where a is a fixed point in the domain bounded by the contour Γ. In what follows, this

correcting operator is referred to as the Parton and Perlin choice of TSL . In addition,

another correcting operator TSL : L2(Γ) 7→ L2(Γ) used below is given by

TSLω(t) :=
int

2S
Re

∫

Γ

�
ω(τ) +

1

πi

∫

Γ

ω(z) dz

z−τ

�
dτ̄ , (2.4)

where S is the arc length of Γ and nt is the outward unit normal at t on Γ. The operator

(2.4) is called the zero average displacement choice of TSL [8], and the role of correcting

operators TSL is discussed in [3, 7]. After the approximate values of the solution ω are

obtained at the points τl,p where l = 0, 1, . . . , n− 1 and p = 0, 1, . . . , d − 1, one can use

polynomials or splines to construct an approximate solution ωn of Eq. (1.1) on the whole

curve Γ. In this work, we prefer to use splines of order d from the spline space Sd
n (Γ) —

cf. [3] or § 5.3 and § 5.5 of [7] for more detail.

Let Pn : L2(Γ) → Sd
n (Γ) be the orthogonal projection on the subspace Sd

n (Γ), and let

Pδn : L∞(Γ)→ Sd
n (Γ) be the interpolation projector on Sd

n (Γ) such that

Pδn ϕ

�
l +δp

n

�
= ϕ

�
l +δp

n

�
, l = 0, 1, . . . , n− 1, p = 0, 1, . . . , d − 1,

for all Riemann integrable functions ϕ. Then the Nyström method represented by Eq. (2.2)

is equivalent to the sequence of operator equations

AΓnωn = Pδn f , n= qm, q = 1, 2, . . . , (2.5)

where AΓn : Sd
n → Sd

n are the finite dimensional approximation operators described in [3].

Definition 2.1. The Nyström method in Eq. (2.2) or Eq. (2.5) is called stable if there is an

N ∈ N and m ∈ R such that for all n≥ N the operators AΓn : Sd
n → Sd

n are invertible and

||(AΓn)
−1Pn|| ≤ m, n≥ N .

As is well-known, stability plays a crucial role in numerical analysis. Here it ensures the

solvability of the algebraic system involved and convergence of the approximate solution

to the solution of the initial equation, for sufficiently large n. Let us now describe the

auxiliary operators Ac j
responsible for the stability of the above Nyström method.
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θj

cj+1

cj

βj

Lr

Ll

Γ

R

Figure 1: Contours and corners.

Each corner point c j of Γ can be characterized by two parameters θ j and β j , where

β j ∈ [0, 2π) is the angle between the right semi-tangent Lr to Γ at the point c j and the real

line R, whereas θ j ∈ (0, 2π),θ j 6= π denotes the angles between the right Lr and the left

Ll semi-tangents to Γ at the point c j (cf. Fig. 1). Let k = kθ refer to one of the following

functions:

nθ (z) =
sinh(π− θ)z− sinh(θ −π)z

2 sinhπz
, (2.6)

mθ (z) =−e−iθ
z sinθ

sinhπz
e−(θ−π)z , (2.7)

considered on the line L := {z ∈ C : z = x+ i/2, x ∈ R}. On the space l2 of sequences (ξk)

of complex numbers ξk, k = 0, 1, . . . given by

l2 := {(ξk)
∞
k=0 :

∞∑

k=0

|ξk|
2 <∞},

the function k defines bounded linear operators A
δr ,εp

r,p for r, p = 0, 1, . . . , d − 1, with the

matrix representation

A
δr ,εp

r,p (k) =

�
k

�
k+δr

l + εP

�
1

l + εp

�∞

k,l=0

where εr ,δr are the parameters in the Nyström method Eq. (2.2) or Eq. (2.5). As the next

step, one has to construct an operator

Bδ,ε(k) :=
�

wpA
δr ,εp

rp

�d−1

r,p=0
,
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which acts on the Cartesian product of d copies of the space l2. We also need an additional

operator M defined on the space l2 by

M((ξk)
∞
k=0) := (ξk)

∞
k=0,

and redefined correspondingly on the Cartesian products of l2 spaces.

Note that the conditions of the stability of the Nyström method Eq. (2.2) or Eq. (2.5)

have been obtained in Ref. [3]. For the convenience of the reader, we reformulate the

corresponding result as follows.

Theorem 2.1. Let c0, c1, . . . , cm−1 be the corner points of Γ. The Nyström method Eq. (2.2)

or Eq. (2.5) is stable if and only if the operators

Ac j
:=

�
I Bδ,ε(nθ j

)

−B1−δ,1−ε(nθ j
) I

�

+

�
0 ei2β j Bδ,ε(m2π−θ j

)

−ei2(β j+θ j)B1−δ,1−ε(mθ j
) 0

�
M , (2.8)

are invertible for all j = 0, 1, . . . , m− 1.

Thus to have a complete information about the stability of the Nyström method, one has to

study the operators Ac j
. This is not an easy task, since the operators Ac j

have a complicated

structure. Nevertheless, certain properties of Ac j
can be established as follows.

Lemma 2.1. The operator Ac j
is invertible (Fredholm) if and only if the operator

bAc j
=




I Bδ,ε(nθ j
) 0 ei2β j Bδ,ε(m2π−θ j

)

−B1−δ,1−ε(nθ j
) I −ei2(β j+θ j)B1−δ,1−ε(mθ j

) 0

0 −e−i2β j Bδ,ε(mθ j
) I Bδ,ε(nθ j

)

e−i2(β j+θ j)B1−δ,1−ε(m2π−θ j
) 0 −B1−δ,1−ε(nθ j

) I




(2.9)

is invertible (Fredholm).

Proof. The proof follows from Lemma 1.4.6 of Ref. [7] and Eqs. (23) of Ref. [6].

Next, let T2 denote the smallest closed C∗-subalgebra of the algebra of bounded linear

operators B(l2) containing all Toeplitz operators T (a) with piecewise constant generating

functions a; and recall that on the finitely supported sequences (ξk) the operator T (a) is

defined by

T (a)(ξk) = (η j), η j =

∞∑

k=0

a j−kξk,

where ak are the Fourier coefficients of the function a.
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Lemma 2.2. Let k refer to the function defined by Eq. (2.6) or Eq. (2.7). Then for any corner

point c j the entries of the operator Bδ,ε(k) belong to the algebra T2 and the symbolA
A
δr ,εp
r,p (k)

of the operator A
δr ,εp

r,p (k) is

A
A
δr ,εp
r,p (k)

(z) = k(z), z ∈ L. (2.10)

The proof of this result is lengthy. It can be obtained from considerations found in §5.4 of

Ref. [7], but is beyond the main purpose of this paper and so omitted here.

Now let us consider the matrix

ABδ,ε(k)(z) :=

�
wpAA

δr ,εp
rp (k)

(z)

�d−1

r,p=0
.

It follows from Eq. (2.10) that

ABδ,ε(k)(z) = (W⊗ k)(z), z ∈ L ,

where W := (wp)
d−1
r,p=0 and W⊗k denotes the tensor product of W and k. From Lemma 2.1,

Lemma 2.2 and the representations (2.9) and (2.10), we obtain the following result.

Theorem 2.2. 1. The operator Ac j
is Fredholm if and only if the determinant

detAAc j
(z) =

det




I W⊗ nθ j
0 ei2β j W⊗m2π−θ j

−W⊗ nθ j
I −ei2(β j+θ j)W⊗mθ j

0

0 −e−i2β j W⊗mθ j
I W⊗ nθ j

e−i2(β j+θ j)W⊗m2π−θ j
0 −W⊗ nθ j

I



(z)

6= 0 for all z ∈ L. (2.11)

2. The operator Ac j
is invertible if and only if

(a) the winding number of the function detAAc j
(z), z ∈ L is equal to zero, and

(b) the dimension of the kernel dim ker Ac j
= 0.

Corollary 2.1. For any corner point c j ∈ Γ, the Fredholmness of the operator Ac j
is indepen-

dent of the parameters {ε j} and {δ j}.

Proof. The symbol AAc j
of the operator Ac j

depends only on the parameters {wp},θ j

and β j , hence the result.

Despite Corollary 2.1, the parameters {wp},θ j and β j can still influence the invertibility of

the operators Ac j
. Note also that similar properties of local operators have been established

earlier in other spline approximation methods for Cauchy singular integral equations with

conjugation [4].



Features of the Nyström Method for the Sherman-Lauricella Equation 7

3. Numerical simulations

Formula (2.11) allows us to study the Fredholm properties of the operator Ac j
and to

compute the index of the operator Ac j
, but on the other hand as yet we do not know of

any reliable analytic approach to verify condition (2b) in Theorem 2.2. Surprisingly, the

numerical approach is more fruitful. One only needs to use the connections between the

invertibility of the operators Ac j
and the stability of the Nyström method. In particular,

let us consider this approximation method on a model contour Γ◦ parameterized by the

parameter s as

γ(s) = sin(πs)exp(iθ(s− 0.5))exp (iα) s ∈ [0, 1] , (3.1)

where θ ∈ (0, 2π) and α ∈ (θ/2− 2π,θ/2). This contour has only one corner, located at

the origin, with the opening angle θ (cf. Fig. 2).

Rθ = 0.3π

θ = 1.3π

Figure 2: The shape of the curve Γ◦ given by Eq. (3.1) for θ = 0.3π and θ = 1.3π and α= 0.

Double application of Theorem 2.1 leads to the following result.

Corollary 3.1. Let c j be a corner point of the contour Γ, and let θ=θ j and α=β j+θ j/2−2π.

The operator Ac j
is invertible if and only if the sequence (A

Γ◦
n Pn) is stable.

Notice that the stability of the corresponding operator sequence (A
Γ◦
n Pn) is directly con-

nected to the condition numbers of the corresponding approximation method, so it can be

verified numerically.

In all numerical examples we use adaptively refined meshes on Γ◦. The meshes are

constructed from an initial uniform mesh with 20 quadrature panels (subintervals) that

are equi-sized in the parameter s. The four panels closest to the corner point (two on each

side) are then subdivided up to 60 times with respect to s. Note that the stability of the

approximation methods constructed on such sequences of adaptive meshes is connected
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with the invertibility of additional operators associated with the breakpoints of the mesh

[5], but all of these additional operators always seem to be invertible in the present case.

The integer d is taken as 16 or 24, and the two sets of points {εp} and {δp} of Eq. (2.1)

are both chosen to coincide with the zeros of the Legendre polynomial P16(x) and P24(x)

on the canonical interval x ∈ [−1, 1], scaled and shifted to the interval x ∈ [0, 1]. This

corresponds to composite 16- or 24-point Gauss–Legendre quadrature.
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Figure 3: Condition number of the operator AΓ◦
n

for different angles θ when d = 16. There are 1280
discretization points on Γ◦. Left: TSL as in Eq. (2.3). Right: TSL as in Eq. (2.4).
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Figure 4: Condition number of AΓ◦
n

for five distinct angles θ under mesh refinement for d = 16. Left:
results with the Parton and Perlin correcting operator TSL of Eq. (2.3). Right: results with the “zero
average displacement choice” TSL of Eq. (2.4).

Fig. 3 shows that for d = 16 there are eight points in the interval [0.1π, 1.9π], sym-

metrically located with respect to θ = π, for which Ac j
does not seem to be invertible. Note

that the invertibility of the operators Ac j
does not depend on the choice of the correcting



Features of the Nyström Method for the Sherman-Lauricella Equation 9

operator TSL and it is also confirmed by the results of simulations presented in Fig. 3. The

right image in Fig. 3 shows that the condition numbers of A
Γ◦
n generally decrease somewhat

when the correcting operator TSL of (2.3) is replaced with the operator (2.4). However,

the peak points remain the same. To take a closer look at the behaviour of the sequences of

condition numbers for fixed angles θ , in Fig. 4 we see that the sequence (A
Γ◦
n ) is stable un-

der mesh refinement for an angle θ that does not belong to the above set of 8 irreversibility

points.

On the other hand, additional numerical simulations show that the inclination angle β j

does not influence the invertibility of Ac j
. Thus if one fixes θ j and rotates the corresponding

curve Γ◦ around the origin, the associated condition numbers either remain unchanged or

vary very modestly — cf. Table 1. The only notable changes are for the case θ = 0.4541π,

close to an instability point, and we are not sure of the accuracy of the built-in Matlab

function cond for ill-conditioned matrices.

Table 1: Condition number of the operator AΓ◦
n

for four fixed angles θ , with β uniformly distributed in
the interval [0, 2π) and 14 digits shown. Here d = 16, there are 1280 discretization points on Γ◦, and
the operator TSL is as in Eq. (2.3).

β θ = 0.3π θ = 0.4541π θ = 0.6π θ = 0.8π

0 2489.1166235746 474643.61824413 116.23440645457 37.512548716057

0.2π 2489.1166235746 474643.61811463 116.23440645457 37.512548716057

0.4π 2489.1166235748 474643.61830215 116.23440645457 37.512548716057

0.6π 2489.1166235748 474643.61827922 116.23440645457 37.512548716057

0.8π 2489.1166235749 474643.61827176 116.23440645457 37.512548716057

π 2489.1166235748 474643.61824181 116.23440645457 37.512548716057

1.2π 2489.1166235745 474643.61810759 116.23440645456 37.512548716057

1.4π 2489.1166235747 474643.61823107 116.23440645457 37.512548716057

1.6π 2489.1166235747 474643.61827487 116.23440645457 37.512548716057

1.8π 2489.1166235747 474643.61826967 116.23440645457 37.512548716057

Note that a different effect is observed in the case d = 24 (cf. Fig. 5). Although the

number of irreversibility points remains the same, their positions are different. Thus for

d = 16 the peaks are located at the points (to three significant digits)

0.122, 0.166, 0.246, 0.454, 1.546, 1.754, 1.834, 1.878,

whereas for d = 24 the corresponding peak points are

0.125, 0.168, 0.247, 0.454, 1.546, 1.753, 1.832, 1.875.

This shows that, in addition to the angle θ j , the invertibility of the operators Ac j
also de-

pends on the choice of the approximation space.

The original Nyström method, based entirely on composite d-point Gauss–Legendre

quadrature as outlined in (2.2), was analyzed in Ref. [3]. From a purely practical view-
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Figure 5: Condition number of the operator AΓ◦
n

for different angles θ when d = 24. There are 1440
discretization points on Γ◦. Left: TSL as in Eq. (2.3). Right: TSL as in Eq. (2.4).

point, however, there may be even better approximation strategies to solve the Sherman–

Lauricella equation (1.1) on piecewise smooth contours. A problem with composite Gauss–

Legendre quadrature and adaptive mesh refinement is that it may require very many dis-

cretization points if high accuracy is sought. In addition, inefficiencies occur for discretiza-

tion points τl p, p = 0, . . . , d−1 that lie close to a corner point c j when tkr falls close to but

on the opposite side of that corner point. The kernel of the integral operator in Eq. (1.1) is

not smooth at the point (t, t) = (c j , c j), and the Gauss–Legendre quadrature is not optimal

for integrating non-smooth functions.
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Figure 6: Same as in Fig. 3, but polynomial product integration rather than Gauss–Legendre quadrature
is used for interaction on the four panels closest to the corner point.

An interesting option for more accurate discretization within the Nyström method is to

use polynomial product integration of degree d − 1 rather than Gauss–Legendre quadra-
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ture, when τl p and tkr are placed on quadrature panels close to but on opposing sides

of the same corner point. Reference may be made to p. 116 of Ref. [1] for general ideas

— and to §10.4 of Ref. [9] for an example where polynomial product integration on a

few panels within a Nyström scheme, otherwise relying on Gauss–Legendre quadrature,

improves the convergence rate of the solution to an integral equation for a biharmonic

problem on a non-smooth domain. Fig. 6 shows that polynomial product integration is

efficient in the present context, too. The sequence (A
Γ◦
n ) now seems to be stable for any

angle θ ∈ [0.1π, 1.9π].

4. Summary and discussion

The stability of the Nyström method for the Sherman–Lauricella equation on piecewise

smooth contours is linked to the invertibility of certain operators Ac j
, belonging to an

algebra of Toeplitz operators. To study the invertibility of the operators Ac j
, we used a

numerical approach and a special model contour which has only one corner point with

varying opening angle θ j . For the original Nyström method based on Gauss–Legendre

quadrature, we found there are several values of θ j where the invertibility of the operator

Ac j
may fail. As a consequence, the original Nyström method on any contour Γ that has

corner points with such opening angles is not going to be stable and requires modification.

In certain situations, one modification suggested is to replace Gauss–Legendre quadrature

with polynomial product integration.

While the focus of the paper is on stability, we end by remarking that improved com-

putational economy of the Nyström method for integral equations on piecewise smooth

contours can be obtained with a recently developed scheme [10]. That scheme, in addi-

tion to using polynomial product integration, employs a compression technique to restrict

integral operators to low-dimensional subspaces – thereby greatly reducing the number of

discretization points needed to reach a given accuracy.
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