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Features of the Nystrom Method for the Sherman-
Lauricella Equation on Piecewise Smooth Contours

Victor D. Didenko'*and Johan Helsing?

! Faculty of Science, University of Brunei Darussalam, Bandar Seri Begawan,
BE1410 Brunei

2 Numerical Analysis, Centre for Mathematical Sciences, Lund University, Box
118, SE-221 00 Lund, Sweden

Abstract. The stability of the Nystrom method for the Sherman-Lauricella equation on
contours with corner points ¢;, j =0, 1,...,m relies on the invertibility of certain oper-
ators A belonging to an algebra of Toeplitz operators. The operators A, do not depend
on the shape of the contour, but on the opening angle 6; of the corresponding corner c;
and on parameters of the approximation method mentioned. They have a complicated
structure and there is no analytic tool to verify their invertibility. To study this problem,
the original Nystrom method is applied to the Sherman-Lauricella equation on a special
model contour that has only one corner point with varying opening angle 6;. In the
interval (0.17,1.97), it is found that there are 8 values of 6; where the invertibility of
the operator A, may fail, so the corresponding original Nystrom method on any contour
with corner points of such magnitude cannot be stable and requires modification.

AMS subject classifications: 65R20, 45L05

Key words: Sherman-Lauricella equation, Nystrém method, stability.

1. Introduction

Let T be a simple closed positively oriented contour in the complex plane C. The
Sherman-Lauricella equation

1 J T—t 1 - T—t
w(t)+— | w(r)dln (ﬁ) — —f w(t)d (ﬁ) =f(t), tel. (1.1
27l r T—t 211 r T—t

where here and subsequently the bar denotes the complex conjugation and w is an un-
known function, plays an important role in various fields of applied mathematics — in-
cluding elasticity theory, theory of incompressible flows, radar imaging [11-14]. However,
at present there is no general analytic solution of Eq. (1.1) available. If the contour I is
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2 Victor D. Didenko and Johan Helsing

smooth, then the integral operators in Eq. (1.1) are compact and the corresponding approx-
imation methods for this equation can be studied without serious difficulties. On the other
hand, when the contour ' has corner points c;,c¢s,...,c,, the stability of the approxima-
tion method under consideration usually depends on the invertibility of certain operators
A A, -5 A,, , associated with the method itself and with the parameters of the corner
points at hand. As a rule, such operators have a complicated structure, so their invertibility
cannot be treated effectively. Nevertheless, apart from the approximation method each
operator A, j=0,1,...,m—1 does not depend on the shape of the contour I but on spe-
cific parameters of the corner point c;, so the invertibility of such operators can be studied
via connections with the stability of corresponding approximation methods considered on
certain special model curves.

In the present paper, we investigate this property for the Nystrém method of Ref. [3],
and find that in the interval (0.17,1.97) there are angles for which the operators AC]_ are
not invertible.

2. The Nystrom method and the operators A

Let ¥y = v(s) be a 1-periodic parametrization of I'. For the sake of simplicity, let us
assume that ¢; = y(j/m) forall j =0,1,...,m—1, the function y is two times continuously
differentiable on each interval (j/m, (j + 1)/m) and

(20

Let us now construct a mesh that will be used in the following discussion. Set n = gm for
qg=1,2,..., and for such n note that any corner of I' is always an end point of a subinterval
(y(r/n),y((r +1)/n)). Let d be a positive integer and let 0 < gy < &; <...<g4_7; <1 and
0<06y<06;<...<04_1 <1 be real numbers. Consider two sets of points on I' — viz.

l+e¢, L+,
T, =Y , tpy =Y - , 1=0,1,....,n—-1;p=0,1,...,d—1. (2.1)

, j=01,...,m—1.

n

According to [3], the approximate values w(7;,) of an exact solution w of Eq. (1.1) at the
points 7, are defined by the following system of algebraic equations:

P p
Ter) + — w T - — -
o(Tkr) Py 12_01;:0 p(Trp) ( z ) "

Tip — Erer p Ckr
-1d-1 / /
1 & 1 1 Ty~ ter T
p p r p
-— E E woo(Tp) | ———=—— — = — (2.2)
27 1=0 p=0 Tip — tir T (Tlp tkr) n
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where T;p :=y'((L +¢&,)/n) and w,, for p=0,1,...,d — 1 are positive numbers such that
wo+w;+---4+wy_; = 1. Note that the last line of equation (2.2) represents a discretization
of the correcting operator Tg; : Lo(I") — Lo(T") given by

To oo(t) = — J((“m dv 4+ 0 d?),tel“, 2.3)
r

(f—a) 2ni a2 T Foap

where a is a fixed point in the domain bounded by the contour I". In what follows, this
correcting operator is referred to as the Parton and Perlin choice of Tg;. In addition,
another correcting operator Tg; : Lo(I") — L,(T") used below is given by

in, f ( 1 j w(z) dz) _
Tgp(t) :== —Re w(t)+ — dt, 2.4
r r

2S i Z2—T

where S is the arc length of T and n, is the outward unit normal at ¢t on I'. The operator
(2.4) is called the zero average displacement choice of Tg; [8], and the role of correcting
operators Tg; is discussed in [3,7]. After the approximate values of the solution w are
obtained at the points Tip where [ = 0,1,...,n—1and p =0,1,...,d — 1, one can use
polynomials or splines to construct an approximate solution w,, of Eq. (1.1) on the whole
curve I'. In this work, we prefer to use splines of order d from the spline space SS(F) —
cf. [3] or § 5.3 and § 5.5 of [7] for more detail.

Let P, : Ly(T") — SS(F) be the orthogonal projection on the subspace Sg(l"), and let
P,f t Lo (T) — Sr‘f(l“) be the interpolation projector on Sr‘f(l“) such that

s (1+56, [+5,
Pn(p n =(‘0 n > Z=0:1>---;n_1) P=0:1)-~’d_1>

for all Riemann integrable functions ¢. Then the Nystrom method represented by Eq. (2.2)
is equivalent to the sequence of operator equations

AgwnzP,‘?f, n=qm, qg=1,2,..., (2.5)
where AE : SS — S,‘f are the finite dimensional approximation operators described in [3].

Definition 2.1. The Nystrém method in Eq. (2.2) or Eq. (2.5) is called stable if there is an
N € N and m € R such that for all n > N the operators Al;l : Sfll - Sfll are invertible and

AT Pl <m, n=N.

As is well-known, stability plays a crucial role in numerical analysis. Here it ensures the
solvability of the algebraic system involved and convergence of the approximate solution
to the solution of the initial equation, for sufficiently large n. Let us now describe the
auxiliary operators A responsible for the stability of the above Nystrom method.
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Figure 1: Contours and corners.

Each corner point ¢; of T' can be characterized by two parameters 6; and f3;, where
B; € [0,2m) is the angle between the right semi-tangent L, to T" at the point c; and the real
line R, whereas 6; € (0,27),0; # 7 denotes the angles between the right L, and the left
L; semi-tangents to I' at the point ¢; (cf. Fig. 1). Let k = kg refer to one of the following
functions:

sinh(7t — 0)z — sinh(6 — )z

= 2.6

no () 2sinh 7tz ’ (2.:6)

my(z) = —e—10 230 (- @7
sinh 7tz ’

considered on the line L := {z € C: 2 = x +1i/2, x € R}. On the space [, of sequences (&)
of complex numbers &, k=0,1,... given by

L == 1€ : D 1ExI? < oo},

k=0

19
the function k defines bounded linear operators Ar’;jgp forr,p=0,1,...,d — 1, with the

matrix representation
k+6 1 \”
A0 = K[
’ l+ep ) l+e, )2,

where ¢,, 6, are the parameters in the Nystrom method Eq. (2.2) or Eq. (2.5). As the next
step, one has to construct an operator

5r6p d-1
A

6,€ —
B (k) : (w o

p
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which acts on the Cartesian product of d copies of the space [,. We also need an additional
operator M defined on the space [, by

M((EpZy) == E)pos
and redefined correspondingly on the Cartesian products of [, spaces.
Note that the conditions of the stability of the Nystrom method Eq. (2.2) or Eq. (2.5)

have been obtained in Ref. [3]. For the convenience of the reader, we reformulate the
corresponding result as follows.

Theorem 2.1. Let cy,cq,...,Cy,_1 be the corner points of I'. The Nystrom method Eq. (2.2)
or Eq. (2.5) is stable if and only if the operators

A ,_( I B5’f(nej))
ci _pl-6,1-¢
J B (ngj) I

0 e?PiB%* (myy_g)
+ _eiz(ﬁj—i-ej)Bl—(S,l—E(mej) 0

) M, (2.8)

are invertible for all j =0,1,...,m— 1.

Thus to have a complete information about the stability of the Nystrom method, one has to
study the operators A This is not an easy task, since the operators A, have a complicated
structure. Nevertheless, certain properties of A, can be established as follows.

Lemma 2.1. The operator A is invertible (Fredholm) if and only if the operator

o~

ch =
I B%¢(ny,) 0 e?PiB*¢ (myy_g.)
_Bl—é,l—s(nej) I _ei2([5j+6j)B1—5,1—s(mej) 0
0 —e’izﬁfB‘S’g(mgj) I B5’€(n9j)
e—iZ(ﬁj+9j)Bl—5,1—8(mzn_ej) 0 _Bl—ﬁ,l—s(nej) I
(2.9)

is invertible (Fredholm).

Proof. The proof follows from Lemma 1.4.6 of Ref. [7] and Egs. (23) of Ref. [6].

Next, let T, denote the smallest closed C*-subalgebra of the algebra of bounded linear
operators B(l,) containing all Toeplitz operators T (a) with piecewise constant generating
functions a; and recall that on the finitely supported sequences (&) the operator T(a) is
defined by

o0

T(@)(ED) =), nj=. a1k

k=0
where a;, are the Fourier coefficients of the function a.
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Lemma 2.2. Let k refer to the function defined by Eq. (2.6) or Eq. (2.7). Then for any corner

point c; the entries of the operator B%#(k) belong to the algebra <, and the symbol .o/ sr (1)

of the operator Ar,;j p(k) is
A 5.6, (2)=k(z), 2z€L. (2.10)
Arp T (k)

The proof of this result is lengthy. It can be obtained from considerations found in §5.4 of
Ref. [7], but is beyond the main purpose of this paper and so omitted here.
Now let us consider the matrix

-1
Ayoeol) 1= (w 5 (k)(z)) L

It follows from Eq. (2.10) that
"dBE’E(k)(Z) - (W ® k)(z), P L s

where W := (w, )d =0 and W®k denotes the tensor product of W and k. From Lemma 2.1,
Lemma 2.2 and the representations (2.9) and (2.10), we obtain the following result.

Theorem 2.2. 1. The operator A, is Fredholm if and only if the determinant

det., (2)=
<
I we nej 0 eizﬁJW® mzﬂ_gj
4 -Wen, I —e2PHWemy 0
et 0 —e 2w e mg, I Weng (2)
e_iz(ﬁi+9f)W® mz,t_@j 0 -We nej I

#0 forallze L. (2.11)

2. The operator A s invertible if and only if

(a) the winding number of the function det.«/, (2), z € L is equal to zero, and
G

(b) the dimension of the kernel dim kerACj =0.

Corollary 2.1. For any corner point c; € I', the Fredholmness of the operator A _ 1s indepen-
dent of the parameters {¢;} and {0;}.

Proof. The symbol ﬂch of the operator A depends only on the parameters {w,}, 6;
and f3;, hence the result.

Despite Corollary 2.1, the parameters {w,}, 0; and f3; can still influence the invertibility of
the operators A,. Note also that similar properties of local operators have been established
earlier in other spline approximation methods for Cauchy singular integral equations with
conjugation [4].
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3. Numerical simulations

Formula (2.11) allows us to study the Fredholm properties of the operator A and to
compute the index of the operator A, but on the other hand as yet we do not know of
any reliable analytic approach to verify condition (2b) in Theorem 2.2. Surprisingly, the
numerical approach is more fruitful. One only needs to use the connections between the
invertibility of the operators ch and the stability of the Nystrom method. In particular,
let us consider this approximation method on a model contour I', parameterized by the
parameter s as

y(s) = sin(ms)exp(if(s — 0.5))exp(ia) s<[0,1], 3.1)

where 8 € (0,27) and a € (6/2 — 27, 6/2). This contour has only one corner, located at
the origin, with the opening angle 6 (cf. Fig. 2).

Figure 2: The shape of the curve T, given by Eq. (3.1) for 6 =0.37 and 6 =1.37w and a =0.

Double application of Theorem 2.1 leads to the following result.

Corollary 3.1. Let c; be a corner point of the contour T', and let 6 =6; and a=f3;+0;/2—2m.
The operator A is invertible if and only if the sequence (Ag"Pn) is stable.

. o . r . .
Notice that the stability of the corresponding operator sequence (A,°P,) is directly con-
nected to the condition numbers of the corresponding approximation method, so it can be
verified numerically.

In all numerical examples we use adaptively refined meshes on I',. The meshes are
constructed from an initial uniform mesh with 20 quadrature panels (subintervals) that
are equi-sized in the parameter s. The four panels closest to the corner point (two on each
side) are then subdivided up to 60 times with respect to s. Note that the stability of the
approximation methods constructed on such sequences of adaptive meshes is connected
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with the invertibility of additional operators associated with the breakpoints of the mesh
[5], but all of these additional operators always seem to be invertible in the present case.
The integer d is taken as 16 or 24, and the two sets of points {e,} and {6,} of Eq. (2.1)
are both chosen to coincide with the zeros of the Legendre polynomial P;g(x) and Pou(x)
on the canonical interval x € [—1,1], scaled and shifted to the interval x € [0,1]. This
corresponds to composite 16- or 24-point Gauss-Legendre quadrature.

The Parton and Perlin choice of TSL The "zero average displacement” choice of TSL
16 16
10 10
1014 i 101A
1012 5 n 1012 5
& 10" ] g 0%l
£ £
2 2
8 8
510 R 510
g . g .
S 10 g 3 10
o o
10 b \) u 1 10* |
10° w E 10° v
10° i i 10° ; .
0 0.5 1 15 2 0 0.5 1 15 2
e/m e/m

Figure 3: Condition number of the operator AT for different angles 6 when d = 16. There are 1280
discretization points on T,. Left: Tg; as in Eq. (2.3). Right: T, as in Eq. (2.4).

The Parton and Perlin choice of TSL The “zero average displacement" choice of TSL
10% 10
104k | o4k
*  9=0.3m *  0=0.37
102F 0 6=0.4541m 1 102 o 6=0.4541T
+  9=0.6m + 0=0.6T
& o0 o 6=08m S o 6=0.81
9 10" - | 9 10 .
g 0 6=1.2m g ¢ 6=1.2m
c ° €
c 10° g c 10°
=] k=]
g 2
G 10° 0 %0, 0000000000000 S 10° o
O Ooooo 0000000000000 00000CO00000COOOO000 o
0,
o° ©0000000000000C0000O0000CACO00000000000AC0000!
10" | 5 10°F o0
o
T
10° | ++++~0—H—H—F+++++WH—O—H—F++++++H—H—}W b 10 . .
: e
o o
10 . . . . . . . . 10 : . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of discretization points Number of discretization points

Figure 4: Condition number of AT for five distinct angles 6 under mesh refinement for d = 16. Left:
results with the Parton and Perlin correcting operator Tg; of Eq. (2.3). Right: results with the “zero
average displacement choice” Ts, of Eq. (2.4).

Fig. 3 shows that for d = 16 there are eight points in the interval [0.17,1.97t], sym-
metrically located with respect to 8 = &, for which A does not seem to be invertible. Note
that the invertibility of the operators ch does not depend on the choice of the correcting
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operator Tg; and it is also confirmed by the results of simulations presented in Fig. 3. The
right image in Fig. 3 shows that the condition numbers of AF{’ generally decrease somewhat
when the correcting operator Tg; of (2.3) is replaced with the operator (2.4). However,
the peak points remain the same. To take a closer look at the behaviour of the sequences of
condition numbers for fixed angles 6, in Fig. 4 we see that the sequence (Al,;") is stable un-
der mesh refinement for an angle 6 that does not belong to the above set of 8 irreversibility
points.

On the other hand, additional numerical simulations show that the inclination angle f3;
does not influence the invertibility ofACj. Thus if one fixes 6; and rotates the corresponding
curve T', around the origin, the associated condition numbers either remain unchanged or
vary very modestly — cf. Table 1. The only notable changes are for the case 6 = 0.4541m,
close to an instability point, and we are not sure of the accuracy of the built-in Matlab
function cond for ill-conditioned matrices.

Table 1: Condition number of the operator AT for four fixed angles 6, with 8 uniformly distributed in
the interval [0,27) and 14 digits shown. Here d = 16, there are 1280 discretization points on T',, and
the operator T, is as in Eq. (2.3).

B 60 =031 0 =0.4541n 6 =0.6mr 6 =0.87

0 2489.1166235746 | 474643.61824413 | 116.23440645457 | 37.512548716057
0.2 | 2489.1166235746 | 474643.61811463 | 116.23440645457 | 37.512548716057
0.4 | 2489.1166235748 | 474643.61830215 | 116.23440645457 | 37.512548716057
0.6 | 2489.1166235748 | 474643.61827922 | 116.23440645457 | 37.512548716057
0.87 | 2489.1166235749 | 474643.61827176 | 116.23440645457 | 37.512548716057

I 2489.1166235748 | 474643.61824181 | 116.23440645457 | 37.512548716057
1.27 | 2489.1166235745 | 474643.61810759 | 116.23440645456 | 37.512548716057
1.4m | 2489.1166235747 | 474643.61823107 | 116.23440645457 | 37.512548716057
1.6 | 2489.1166235747 | 474643.61827487 | 116.23440645457 | 37.512548716057
1.8 | 2489.1166235747 | 474643.61826967 | 116.23440645457 | 37.512548716057

Note that a different effect is observed in the case d = 24 (cf. Fig. 5). Although the
number of irreversibility points remains the same, their positions are different. Thus for

d = 16 the peaks are located at the points (to three significant digits)

0.122,0.166,0.246,0.454,1.546,1.754,1.834,1.878,

whereas for d = 24 the corresponding peak points are

0.125,0.168,0.247,0.454,1.546,1.753,1.832,1.875.

This shows that, in addition to the angle 6;, the invertibility of the operators A also de-
pends on the choice of the approximation space.

The original Nystrom method, based entirely on composite d-point Gauss-Legendre
quadrature as outlined in (2.2), was analyzed in Ref. [3]. From a purely practical view-
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The Parton and Perlin choice of TSL The "zero average displacement” choice of TSL
16 16
10 10
1014 ] 1014
10" ] 1012
3 10} E 2 10°}
€ €
2 2
8 8
5 10 R é 10
I 2.0
o B o
3 10 8 10
10° w \J E 10° b
102 | w E 10° | \/k/
10D L L 100 L L L
0 0.5 1 15 2 0 0.5 1 1.5 2
o/mt o/t

Figure 5: Condition number of the operator AT for different angles 6 when d = 24. There are 1440
discretization points on T,. Left: Tg; as in Eq. (2.3). Right: Ty, as in Eq. (2.4).

point, however, there may be even better approximation strategies to solve the Sherman-
Lauricella equation (1.1) on piecewise smooth contours. A problem with composite Gauss—
Legendre quadrature and adaptive mesh refinement is that it may require very many dis-
cretization points if high accuracy is sought. In addition, inefficiencies occur for discretiza-
tion points 7;,, p =0,...,d — 1 that lie close to a corner point c; when ¢, falls close to but
on the opposite side of that corner point. The kernel of the integral operator in Eq. (1.1) is
not smooth at the point (t,t) = (c;, c;), and the Gauss-Legendre quadrature is not optimal
for integrating non-smooth functions.

The Parton and Perlin choice of TSL The "zero average displacement" choice of TSL
16 16
10 10
1014 i 1014
10127 ] 10127
3 10} E 2 10°}
€ €
2 2
8 8
g1 1 510
= g
o B o
3 10 8 10
10° E 10° 1
102 L J 102 L \/ i
10D L L L 100 L L L
0 0.5 1 15 2 0 0.5 1 1.5 2
o/mt o/

Figure 6: Same as in Fig. 3, but polynomial product integration rather than Gauss—Legendre quadrature
is used for interaction on the four panels closest to the corner point.

An interesting option for more accurate discretization within the Nystrom method is to
use polynomial product integration of degree d — 1 rather than Gauss-Legendre quadra-
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ture, when 7;, and t;, are placed on quadrature panels close to but on opposing sides
of the same corner point. Reference may be made to p. 116 of Ref. [1] for general ideas
— and to §10.4 of Ref. [9] for an example where polynomial product integration on a
few panels within a Nystrom scheme, otherwise relying on Gauss-Legendre quadrature,
improves the convergence rate of the solution to an integral equation for a biharmonic
problem on a non-smooth domain. Fig. 6 shows that polynomial product integration is
efficient in the present context, too. The sequence (Ag") now seems to be stable for any
angle 0 € [0.17,1.97].

4. Summary and discussion

The stability of the Nystrom method for the Sherman-Lauricella equation on piecewise
smooth contours is linked to the invertibility of certain operators A belonging to an
algebra of Toeplitz operators. To study the invertibility of the operators A, we used a
numerical approach and a special model contour which has only one corner point with
varying opening angle 6;. For the original Nystrom method based on Gauss-Legendre
quadrature, we found there are several values of 6; where the invertibility of the operator
ch may fail. As a consequence, the original Nystrom method on any contour I' that has
corner points with such opening angles is not going to be stable and requires modification.
In certain situations, one modification suggested is to replace Gauss-Legendre quadrature
with polynomial product integration.

While the focus of the paper is on stability, we end by remarking that improved com-
putational economy of the Nystrom method for integral equations on piecewise smooth
contours can be obtained with a recently developed scheme [10]. That scheme, in addi-
tion to using polynomial product integration, employs a compression technique to restrict
integral operators to low-dimensional subspaces — thereby greatly reducing the number of
discretization points needed to reach a given accuracy.
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