Comparison of neuropsychological and brain imaging data in pediatric brain tumor patients surviving more than 10 years

Tonning Olsson, Ingrid; Perrin, Sean; Björkman-Burtscher, Isabella; Lundgren, Johan; Kahn, Anna; Johanson, Aki

Published in:
Neuro-Oncology

DOI:
10.1093/neuonc/nou076

2014

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
NEURO-ONCOLOGY

Abstracts

NEUROPSYCHOLOGY

NP-001. INTRUSION INTO SELF-PERCEPTION BY CNS TUMOR AND TREATMENT IN CHILDHOOD OR ADOLESCENCE: POPULATION-BASED OUTCOMES FROM ADULT SURVIVORS COMPARED WITH THE GENERAL POPULATION

Kristér K. Roman1, Lina Hörnqvist1, Jenny Rickardsson2, Birgitta Lannerling3, and Gorán Gustafsson1; 1Karolinska Institutet, Childhood Cancer Research Unit, Stockholm, Sweden; 2Stockholm University, Department of Psychology, Stockholm, Sweden; 3University of Gothenburg, Department of Clinical Sciences, Gothenburg, Sweden

BACKGROUND: Survivors of pediatric central nervous system (CNS) tumors may experience persistent tumor-related disability and social consequences which may intrude into self-perception, vital for mental health and quality of life. Within the longitudinal Swedish CNS tumor LIFE-study, we studied the long-term impact of the childhood CNS tumor and its’ treatment on self-perception in significant domains in adult survivors, by comparing outcomes with those of the general population.

METHODS: The cohort included 697 Swedish survivors diagnosed between 1982 and 2001 with a primary CNS tumor. Comparison data were collected from a stratified general population random sample. Survivors and general population individuals were compared as regards self-perception in five domains: body image, sports/physical activities, peers, work, and family, and as regards a global self-esteem index. Within the survivor group, determinants of impact on self-perception were identified.

RESULTS: The final sample included 528 survivors, 75.6% of the entire survivor group, determinants of impact on self-perception were identified. Academic performance was either in line with, or was significantly above, that expected on the basis of FSIQ. Most of these children had benign tumours treated with surgical resection only. CONCLUSIONS: These results suggest that early injury to the cerebellum has a generic effect on cognitive processing that underpins development of scholastic skills. Additional developmental difficulties are likely to occur in children with invasive tumours requiring more aggressive treatment probably because chemotherapy and radiotherapy are known to affect attentional processing which is critical for scholastic progression.

NP-002. DO SCHOLASTIC DIFFICULTIES IN CHILDREN WITH EARLY CEREBELLAR INJURY ARISE FROM SPECIFIC OR GENERAL IMPAIRMENTS?

Nicola Pitchford, Emma Davis, and David Walker; University of Nottingham, Nottinghamshire, UK

OBJECTIVE: Poor scholastic performance has been reported following early cerebellar injury, but it is currently not known if these difficulties arise from a general cognitive impairment. Hence, it is difficult to target interventions effectively. Using a case-series approach, we investigated the extent of scholastic difficulties, above and beyond general cognitive processing, following cerebellar injury sustained through tumour during the preschool years (<5 years), and the impact of tumour histology/treatment on outcome.

METHOD: Eleven children (aged 5-15 years) with varying tumour histologies underwent extensive standardised assessments of academic achievement (WIAT-II) and cognitive functioning (WISC-IV). This enabled individual performance on academic subtests of the WIAT-II to be predicted from IQ scores on the WISC-IV. RESULTS: Cognitive processing was below average (10% in all of the children and significant impairments (> -2sd) in FSIQ was shown on 7/11 children. However, IQ-achievement test discrepancy analyses revealed significantly poorer performance than expected on the basis of FSIQ in 6/11 children for Reading and Mathematics, 7/11 children for Written Language, and 3/11 children for Oral Language. Most of these children had malignant tumours treated with chemotherapy and/or radiotherapy. For the remaining children, academic performance was either in line with, or was significantly above, that expected on the basis of FSIQ. Most of these children had benign tumours treated with surgical resection only. CONCLUSIONS: These results suggest that early injury to the cerebellum has a generic effect on cognitive processing that underpins development of scholastic skills. Additional developmental difficulties are likely to occur in children with invasive tumours requiring more aggressive treatment probably because chemotherapy and radiotherapy are known to affect attentional processing which is critical for scholastic progression.

NP-003. CHILDREN WITH CEREBELLAR MEDULLOBASTOMA AND WORKING MEMORY DISORDERS: A FUNCTIONAL MRI STUDY

Duc Ha Hoang1, Anne Pagnier2, Emilie Cousin1, Karine Guichard2, Isabelle Schiff2, Fanny Dubois-Teklali3, and Alexandre Kramnik4; 1Grenoble Institute of Neurosciences, Grenoble, France; 2Department of Pediatrics - Grenoble University Hospital, Grenoble, France; 3Laboratory of Psychology and Neurocognition - University Pierre Mendes, Grenoble, France; 4Department of Neuroradiology and MRI - Grenoble University Hospital, Grenoble, France

BACKGROUND AND PURPOSE: Medulloblastomas are the most common malignant brain tumors in childhood. Children treated for a cerebellar medulloblastoma demonstrated cognitive disorders in working memory (WM), especially visuospatial WM, leading to a impairment of school performance. The purpose of this study is to describe the cerebellar involvement in specific cognitive deficits observed in children treated for cerebellar medulloblastoma.

MATERIALS AND METHODS: Groups: Nine healthy volunteers (11.1±2.2 yr), were compared to 5 patients treated for cerebellar medulloblastoma (12.1±0.6 yr). All subjects were native French speakers, right-handed, with a global IQ of 70-130. Using 4 block-design 1-back tasks in the sensory modalities (visual/auditory) and the nature of information (verbal/nonverbal) during fMRI acquisitions (T2* weighted gradient-echo - EPI) and completing with an anatomic acquisitions (3D T1-weighted). Data Analysis: Using the Statistical Parametric Mapping (SPM8) and the Spatially Unbiased Infra-tentorial Template (SUIT) for viewing cerebellar topography with BOLD activations. RESULTS: In patient group: 4/5 patients had a WM deficit following a resection of the left posterior cerebellar lobe (lobule HVIII, HVI, I, and superior part of vermis; the only patient without WM deficit was the only one without cerebellar hemispheric resection (figure 1), even though this patient was also treated with radiotherapy and chemotherapy dosages like those in other patients. Greater BOLD activations were found in the left posterior cerebellar lobe for nonverbal vs. verbal contrast and they were presented in this region for visual vs. auditory contrast (figure 2). In healthy subject, greater BOLD activations were found in brain and cerebellar locations which are similar with those in the literature for all four tasks. CONCLUSION: The cerebellum plays the same role in WM in children as that has been previously described in adults. The left posterior cerebellar lobe may involve the visuospatial WM.

NP-004. THE EFFICACY OF COMPUTERIZED COGNITIVE REHABILITATION TRAINING IN THE CHILD TREATED FOR MEDULLOBLASTOMA

Martina Bürger Lazar1 and Karmen Resnik2; 1University Medical Centre Ljubljana, Division of Pediatrics, Department of Oncology and Haematology, Ljubljana, Slovenia; 2University Medical Centre Ljubljana, Division of Internal Medicine, Department of Vascular Diseases, Ljubljana, Slovenia

OBJECTIVES: Neurocognitive deficits are common after brain tumor treatments. Our study suggests that computer-based means of rehabilitation lead to better cognitive functioning. Thus there is a need to include cognitive rehabilitation in a standard protocol. The present single case study evaluates the effectiveness of computerised training software for a pediatric patient who underwent rehabilitation program targeting memory, alertness and attention.

METHODS: The pediatric patient (age 7.5) diagnosed with medulloblastoma underwent surgery, craniospinal irradiation (23.4 Gy, with additional boost to the tumor bed up to 54 Gy) and 8 courses of maintenance chemotherapy (CCNU, Vincristin, Cisplatin) in 6 weeks intervals. Postoperative MRI did not reveal any tumor remnant. Neuropsychological tests (WISC III, CCT, CCCT) showed below average performance in all areas of cognitive functioning. He started CogniPlus computer training targeting alertness (ALERT), mental rotation (ROTATE), working memory (VISP, NACK, DATEUP), and attention (SELECT, FOCUS, SPACE). He participated in 35 rehabilitation sessions (11 hours). After a year, the neuropsychological battery was repeated. RESULTS: Regression analysis revealed significant improvements in alertness, mental rotation, visuospatial working memory,
Spatial working memory, visuospatial attention (at p ≤ 0.001) and selective attention (p ≤ 0.05). Reliable change index (RC) confirmed improvements on neuropsychological tests. CONCLUSIONS: Computer-based cognitive rehabilitation training shows positive improvements one year after brain surgery. Following up the patient will reveal long-term effects of the rehabilitation program. Our goal is to extend these findings to a larger population and develop a cognitive rehabilitation program that will be protocol include and rehabilitate our brain cancer patients in the future.

NP-005. COMPARISON OF NEUropsychological AND BRAIN IMAGING DATA IN PEDIATRIC BRAIN TUMOR PATIENTS SURVIVING MORE THAN 10 YEARS

Ingrid Tönnies Olsson1, Sean Perrin2, Isabell Björkman Burtscher2, Johan Landgren3, Anna Keise3, Alena Johnson1; 1Department of Psychology, Lund University, Lund, Sweden; 2Department of Clinical Sciences, Lund University, Lund, Sweden; 3Skåne University Hospital, Department of Paediatrics, Lund, Sweden; 4Department of Psychology, Institute of Psychiatry, King’s college, London, UK

AIM: To explore the relationship between neuropsychological outcome and magnetic resonance imaging (MRI) findings in paediatric brain tumour patients surviving more than 10 years. BACKGROUND: Cognitive late sequelae after paediatric brain tumour have a multifactorial origin. Low age at diagnosis, cranial radiation therapy, intrathecal methotrexate treatment and increased intracranial pressure are known to predict cognitive sequelae. Cognitive sequelae have been related to MRI findings, but the relation between neuroimaging findings and neuropsychological impairment needs to be explored further. METHOD: Sixteen paediatric brain tumour survivors completed an extensive neuropsychological test battery and MRI 10 to 13 years after diagnosis. Patients were first separately classified as positive or negative regarding neuropsychological impairment and MRI findings and then coded as congruent or incongruent, depending on whether neuropsychological outcome was in agreement with MRI also considering clinical data such as type and location of the brain tumour, post-operative status, treatments or premorbidity. RESULTS: Ten patients were classified as either positive or negative for both MRI and cognitive impairment if blinded for the second parameter and clinical data, and were also congruent for the two parameters when not blinded for clinical data and the second parameter. In five out of six initially incongruent patients the neuropsychological profile was in accordance with MRI findings when evaluating all data with the multidisciplinary holistic approach. CONCLUSIONS: Cognitive outcome in survivors of paediatric brain tumours depends on many different detrimental processes and shows high individual variation. Congruity between neuropsychological impairment and MRI findings might at first seem low. However, in the perspective of a clinical holistic evaluation of MRI findings and neuropsychological outcome considering the knowledge of clinical data such as type and location of the brain tumour, type of MRI findings (atrophy, gliosis, post-operative lesion), undergone treatments and radiation field also as pre-morbidity cognitive impairment congruity increases.

NP-006. NEW APPROACH TO ASSESSMENT OF NEUROPSYCHOSOCIAL LATE EFFECTS IN CHILDHOOD BRAIN TUMOR SURVIVORS. CHALLENGES AND BENEFITS OF THE NEW METHODOLOGY

Joanna Kowrońska, Bożena Dmętrowska-Bąginska, and Marta Perk-Polńok; The Children’s Memorial Health Institute, Pediatric Oncology Department, Warsaw, Poland

PURPOSE: The purpose of the study was to analyze the usefulness of standard psychological and neuropsychological assessment tools used in evaluating neuropsychosocial consequences of childhood brain tumors. The hypothesis was that in this specific group of patients standard tests are not sufficient to evaluate long term effects of childhood brain tumors. METHOD: The base of the study was psychological repeated testing performed in 350 childhood brain tumor survivors (various tumors types and localizations). Age at psychological diagnosis: 6 to 26 years. Full psychological evaluation included assessment of problems with: memory, visual-motor skills, attention, flexibility, problem solving, semantic memory and fluency, motor skills, processing speed. The patients were examined by using standardized psychological and neuropsychological methods, mainly: Wechsler Intelligence Scales; Benton Visual Retention Test; L Bender – E. Koppitz Visual Motor Test; Rey – Osterrieth Complex Figure Test; Auditory Verbal Learning Test. Meta-analysis of results to verify the accuracy, relevance and reliability of the standard tests used to assess cognitive status of these patients was performed. RESULTS: Our results showed that standard tests used in childhood brain tumor survivors and available neuropsychological tests is insufficient. Their specific cognitive and emotional functioning is the cause of non-standard results. For example some scales based on sense of humor and understanding of the absurdities are difficult to understand for patients with brain tumors. Some factors in cognitive assessment of WISC-R contain items of structural thinking, disordered in patients with brain damage; most tests are time limited, which reduces patients outcomes. CONCLUSIONS: Reliable assessment of neuropsychological functioning in brain tumors survivors requires a specific method and special tests. This new tool is designed for screening, diagnosis, prognosis of neuropsychological consequences, planning and evaluation of rehabilitation process, Proposal of this tool specific for brain tumor survivors and draft recommendations for diagnosis of specific neuropsychological consequences will be presented and discussed.

NP-007. LONG-TERM NEUROCOGNITIVE FUNCTIONING IN A CASE SERIES OF MEDULLOBLASTOMA SURVIVORS: THE IMPACT OF CEREBELLAR MUTISM SYNDROME

Karen Walsh, Anthony Goosa, Elizabeth Wells, and Roger Packer; Children’s National Medical Center, Washington, DC, USA

OBJECTIVE: About 25% of pediatric patients with medulloblastoma develop Cerebellar Mutism Syndrome (CMS). To date, no prospective study has examined long term neurocognitive outcomes. METHODS: Sixteen pediatric medulloblastoma patients treated at King’s College London on August 27, 2014 http://neuro-oncology.oxfordjournals.org/Downloaded from

OBJECTIVE: About 25% of pediatric patients with medulloblastoma develop Cerebellar Mutism Syndrome (CMS). To date, no prospective study has examined long term neurocognitive outcomes. METHODS: Sixteen pediatric medulloblastoma patients treated at King’s College London on August 27, 2014.
score (ES) as a measure of the recall of rich contextual details. RESULTS: For FR, QM and ES were significantly lower in patients than in controls (QM: p < 0.01; ES: p < 0.001). For CR, QM did not differ significantly between patients and controls (p = 0.97), whereas ES was lower (p = 0.03).

DISCUSSION: Patients showed episodic memory impairments characterized by a lower amount of memories retrieved and poorer details. However, patients were sensitive to semantic cues recall. Episodic memory impairment may be more associated with retrieval strategies than with consolidation impairments. Thus, investigating daily memories is relevant to capture memory deficits and their impact on quality of life of children treated for brain tumors. These findings also suggest new potential rehabilitation perspectives.

NP-009. PREOPERATIVE NEUROPSYCHOLOGICAL AND BEHAVIORAL EVALUATION OF CHILDREN WITH THALAMIC TUMORS

Daniela Cheffo, Giampiero Tamburrini, Massimo Caldarrelli, and Concetto Di Rico; Child Neurology and Psychiatry Catholic University of Sacred Heart, Rome, Italy

INTRODUCTION: Functional involvement of the thalamus in cognitive processing has been only anecdotally reported in the literature and mostly related to thalamic haemorrhages; there is no available information on cognitive development in children with thalamic tumors. **CLINICAL MATERIALS AND METHODS:** All the children admitted with a diagnosis of thalamic tumor at our Institution between January 2008 and January 2011 were considered for the present study. Exclusion criteria were: age under 18 months and the presence of severe neurological deficits, both preventing a reliable neuropsychological evaluation. A complete preoperative neuropsychological evaluation was performed. RESULT: Twenty children were selected (mean age 102.4 months). Total IQ was in the normal range in all patients (mean: 99.1; SD: 13.87) with a significant difference between VIQ (mean 97.70 SD 17.77) and PIQ (84.82 SD 17.01). A significant correlation was found between global cognition and an histological finding of low grade tumors (p = 0.001). Children with mesial thalamic tumor had higher working memory deficit and delayed recall disorders (p = 0.001). Naming disorders were related to the presence of a bilateral (p = 0.001) stromal-thalamic tumor (p = 0.001) without a significant difference between the involvement of the left or right hemisphere. A significant correlation was also found between the presence of neurolinguistic disorders and mesially located tumors (p = 0.01). Children with right sided tumors had more frequently constructional praxia and executive function disorders (p = 0.0005). CONCLUSION: The present study suggests that differently located thalamic tumors might have specific neuropsychological profiles.

NP-010. NEUROCOGNITIVE DEFICITS IN CHILDREN WITH BRAIN TUMOR AT DIAGNOSIS

Katja Margelsch1, Martina Studer1, Maja Steinlin1, Kurt Leibundgut2, and Theda Heinig1,1Department of Pediatric Neurology, University Children’s Hospital, Berne, Switzerland; 2Department of Pediatric Hematology and Oncology, University Children’s Hospital, Berne, Switzerland; 3Center for Cognition, Learning and Memory (CCLM), Berne, Switzerland

Survivors of brain tumors are faced with a high risk for a wide range of cognitive problems and learning difficulties. These problems are caused by the lesion itself and its surgical removal as well as by the treatments to follow (chemo- and/or radiation therapy). A few recent studies have indicated that children with brain tumors (BT) might exhibit cognitive problems already at diagnosis, i.e. before the start of any medical treatment. The aim of the present study was to investigate the "baseline" neuropsychological profile in children with BT in comparison to children with an oncological diagnosis not involving the central nervous system (CNS). 20 children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1 to 16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient’s age. Furthermore, the child and its parents completed self-report questionnaires about emotional functioning and quality of life. In both groups, tests were administered in the areas of perceptual reasoning, processing speed and an oral and written language. We compared the results with norms for children of the same age and gender. We compared children with BT and children with a CNS lesion regarding age, gender, cognitive status, and social and educational status. We observed significant differences in verbal fluency, language in general, and memory skills, with children with BT performing worse than children with a CNS lesion. Children with BT showed worse results in tests of processing speed, visual-motor coordination and reaction time. All children with BT performed worse than children with a CNS lesion in tests of long-term memory, verbal fluency and reading skills. These findings suggest that children with brain tumors may have specific neuropsychological deficits.

NP-011. ASSESSMENT OF EXECUTIVE FUNCTIONING IN CHILDREN WITH BRAIN TUMORS TREATED FOR FRONTAL LOBE TUMOURS USING ECOLOGICALLY VALID TESTS

Audrey Longaoud-Vales1, Mathilde Chevignard2, Christelle Dufour3, Jacques Grill3, Stephanie Pujet4, Christian Sainte-Rose4, Dominique Valacre-Couvance5, and Maurice Laharie; 1Institut de Cancérologie Gustave Roussy, Villejuif, France; 2Hôpital National de Saint Maurice, Saint Maurice, France; 3Université Pierre et Marie Curie, Paris, France; 4Hôpital Necker Enfants Malades, Paris, France; 5INSERM 669, Université Paris Descartes, Paris, France

The first aim of the study was to evaluate executive functions in children and adolescents treated for benign and malignant frontal lobe tumours. To measure and to evaluate executive functioning in our population, both ecological valid tests and a classical evaluation of executive functions was performed. For ecological neuropsychological tests, the BADS-C (Behavioral Assessment of the Dysexecutive Syndrome for Children) an ecological battery and the BRIEF questionnaire were performed for parents and teachers. Child or adolescents, who had previously no comparison group. Classical tests of executive functions such as the Wisconsin Card Sorting test and the Tower of London. To our knowledge, no study to date has directly measured ecological measures and classical tests measures in our population. The third aim of the study was to identify and to determine specific factors (medical factors, social factors) influencing performances in our population. METHOD: Between September 2010 and June 2012, 21 patients treated for frontal benign/malignant lobe tumour were included aged 8-21 years at time of evaluation. Age at surgery was 8.3 years old. A comparison group of 42 patients were matched on gender, age and level education, on classical tests and on the BADS-C battery. RESULTS: Statistical analysis of our study revealed executive functions disturbances in children and adolescents. Working memory disabilities, planning difficulties, disorganisation and impaired self-regulation were found, in both classical and ecological tests in our population. Significant and strong correlations were found between IQ measures and EF measures. Medical factors were identified on performances based in our population, such as epilepsy in our population, for medical factors, and socioeconomic status for social factors.

NP-012. IQ CHANGE OVER TIME IN PEDIATRIC BRAIN TUMOR PATIENTS TREATED WITH PROTON BEAM RADIATION THERAPY VERSUS PHOTON RADIATION THERAPY

Lisa Kalahely1, David Grosshans2, Arnold Paulino3, M. Douglas Rus4, Murali Chintagumpala3, Fatih Okcu1, Bartlett Moore4, Heather Stancel1, Charles Minard1, Danielle Gaffey3, and Anita Mahajan2; 1Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA; 2MD Anderson Cancer Center, Houston, TX, USA; 3Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA

BACKGROUND: Cranial radiation therapy (RT) is associated with neurocognitive toxicity. Compared to photon radiation (XRT), proton therapy (PT) reduces the volume of normal tissue receiving radiation dose, which may lead to better neurocognitive outcomes. We examined change in IQ over time between patients treated with PT versus XRT. **METHOIDS:** We abstracted IQ scores of pediatric brain tumor patients treated with PT or XRT. A general linear mixed model examined change in IQ over time by RT type (PT vs. XRT), controlling for age-at-RT, total-RT-dose, cranioplasty, and presence of shunt. Complete IQ data were available for 99 patients (55 PT, 44 XRT). Median RT dose was 34.0 Gy. Mean first-last evaluation intervals were: PT = 2.3 years, XRT = 3.3 years. Tumor histologies included: 40.4% medulloblastoma/PNET, 19.2% glioma, 14.1% germ cell, 12.1% ependymoma, and 14.1% other. CSI was administered to 52.7% of PB and 54.5% of XRT patients. Mean IQ declined significantly in both groups (p < 0.001). IQ was significantly lower in the XRT group (by 6.9 points on average) compared to the PT group (by 2.0 point). The rate of IQ decline did not differ significantly between groups (XRT = 1.4 points/year, PT = 1.1 points/year, p = 0.604). IQ was also significantly lower among patients with shunts (p < 0.01). CSI nearness significance (p = 0.057), while age-at-RT (p = 0.495), total-RT-dose (p = 0.508), and tumor location (p = 0.601) were not significantly associated with IQ, after controlling for all other variables in the model.

NEURO-ONCOLOGY • JUNE 2014

i101
NP-014. LONG-TERM OUTCOME IN SUBGROUPS OF MEDULLOBLASTOMA
Iska Meeussen-Emre1, Nadia Scantlebury1, Michael D. Taylor1, Eric Bouffet2, David Malkin1, Suzanne Laughlin1, Nicole Law1, Toshihiro Kumabe2, Laura Janzen1, Fang Liu1, Lexa Decker1, and Donald Mabbott1; 1The Hospital for Sick Children, Toronto, ON, Canada; 2University of California San Francisco, San Francisco, CA, USA; 3University of Southern California Keck School of Medicine, Los Angeles, CA, USA

PURPOSE: Given the neuropsychological deficits associated with irradiation in young children diagnosed with malignant CNS tumors, the Head Start II protocol employed high-dose myeloablative chemotherapy followed by autologous hematopoietic cell transplantation to avoid or delay craniospinal irradiation. This research examined long-term neuropsychological functioning of patients treated on the Head Start II protocol between 1997 and 2003. METHODS: Patients completed baseline testing prior to autologous transplantation and biannually thereafter. Assessments were completed for 49/51 (96%) patients at baseline (T1 mean age = 3.4 years; SD = 2). Twenty patients passed away between T1 and T2. 27/31 (87%) completed assessments at T2. 16/31 (52%) at T3, 6/31 (19%) at T4, and one at T5. Analyses compare neuropsychological functioning at baseline to most recent follow up assessment (T2 to T5); mean length of follow up = 7.39 years, SD = 3.21) and examine outcomes for patients who received intravenous methotrexate (IVMTX) compared to those who did not receive IVMTX.

RESULTS: Independent samples t-tests comparing performance at baseline and most recent follow-up revealed no significant change over time on FSIQ, PIQ, VIQ, reading, spelling, math, general memory, verbal or visual delayed memory. For the entire group, Full Scale IQ significantly correlated with only a subset of most recent treatment group means did not reveal any significant differences, with the exception of lower visual delayed memory for those who received IVMTX (p = 0.03). CONCLUSIONS: These analyses include neuropsychological outcome data for children up to 12-years post-diagnosis of a malignant CNS tumor, indicating that children treated with a protocol aimed to reduce late effects on neurocognitive development continue to display broadly stable neuropsychological functioning over extended follow-up.

NP-015. WHITE MATTER DAMAGE DISRUPTS NEURAL PHASE SYNCHRONY AND IMPAIRS COGNITIVE PERFORMANCE IN CHILDREN TREATED WITH CRANIAL RADIATION FOR BRAIN TUMOURS OF THE POSTERIOR FOSSA
Colleen Dockstader, Jovanka Skocic, Eric Bouffet, Suzanne Laughlin, Uri Tabori, and Donald Mabbott; The Hospital for Sick Children, Toronto, ON, Canada

Cognitive impairments are consistently reported in children treated with cranial radiation (CRT) for brain tumours. These deficits are, at least in part, relatively attributed to white matter damage. We investigated how white matter damage and poor task performance related to neural functioning by comparing functional measures obtained with Magnetoencephalography and structural measures obtained with Diffusion Tensor Imaging to visual-motor task performance in eighteen healthy children (12M/6F: 11.3 yrs +/- 3.5) and 20 pediatric Posterior Fossa (PF) brain tumour patients (13M/ 7F: 12.07 yrs +/- 2.58) who had been treated with CRT (15 medulloblastoma, 3 ependymoma, all received CRT treatment of either focal (PF only) or whole-brain boost, chemotherapy, or PF boost). White matter health/size measures predicted reaction times in both groups. White matter structure predicted faster reaction times on task performance in both healthy children (r = -0.72, p < 0.001) and patients (r = -0.52, p < 0.05). Functionally, phase synchrony of the visual cortex in response to the visual cue was the best predictor of performance. Phase synchrony is the temporal consistency of the neural response from trial to trial and reflects the coordination of neural communication arising from downstream neural targets. In healthy children, phase synchrony was correlated with increased white matter health (r = 0.45, p < .01) and faster reaction times (r = -.51, p < .05). In patients, decreased phase synchrony was correlated with decreased white matter health (r = -0.53, p < 0.05) with no relationship to reaction time. We propose that the condition of white matter influences reaction time on a visual-motor task through the temporal coordination of information arriving at the visual cortex. The phase synchrony of the neural response may be a biomarker of white matter injury and cognitive impairment in children treated for brain tumours.
CHILDREN diagnosed and treated for a brain tumor often experience cognitive problems. Identification of factors associated with the tumor and its treatment having an impact on cognitive functioning is relevant. However, most studies investigating these factors are retrospective, making it difficult to disentangle the effects of the tumor, the acute (e.g., hydrocephalus) and treatment (e.g., radiotherapy) phase. The aim of the present study is to investigate intellectual functioning after a diagnosis of a brain tumor and to identify predictive factors for intellectual functioning in these children. A total of 68 children diagnosed with a brain tumor at the UZLeuven between 1996 and 2013 enrolled the study and were tested with the age-appropriate Wechsler scale. This test was conducted as soon as possible after diagnosis and before initiation of further treatment with cheemo- or radiotherapy. Mean age at testing was 10.21 years. The participation was 66% of the cases infratentorial, 56% received surgery and 18% received ventricular drainage before testing. Binomial distribution analyses demonstrated that the proportion of children showing below average intellectual performance exceed normative expectations (p < 0.001). A linear regression model was used to investigate the impact of potential predictive factors (age at diagnosis, tumor type, localization, grade of tumor, surgery before testing, ventricular drainage and age at diagnosis) on IQ scores. Significant predictors for cognitive outcome. Our results demonstrate a discrepant intelligence profile in newly diagnosed children. Younger age at diagnosis and tumor type (embryonal tumours worse outcome) significantly predict intellectual outcome after diagnosis. More specific neuropsychological testing after diagnosis is recommended to refine the cognitive profile. Longitudinal follow-up of these children is required to investigate the additional effects of treatment. Therefore a systematized protocol with extensive (neuro)psychological testing has been incorporated in the follow-up of these children at UZLeuven.

OBJECTIVES: The hippocampus is critical for learning and memory. Children treated for medulloblastoma exhibit lower memory performance and smaller hippocampal volumes as compared to healthy controls (Riggs et al., epub ahead of press). However, it is not clear how hippocampal volumes change over time, and how such changes may devrate from normal development. The current study is the first to examine longitudinal changes in hippocampal volume in both a medulloblastoma (MB) and healthy control (HC) group. PARTICIPANTS AND METHODS: 16 MB (age = 9.02 ± 2.47) and 20 HC participants (age = 9.70 ± 2.21) were included. 110.21 years. These scanned annually over 4 years using a 1.5 T Siemens, 1.5T GE or a 3T GE scanner. For the MB group, the first scan occurred at around the time of diagnosis (i.e. baseline). All participants had at least two scans. The hippocampus was defined using an automated segmentation program (Chakravarti et al., 2013) and volumes were corrected for intra-cranial volume, scanner type and age. RESULTS: A mix model regression was used to examine changes in hippocampal volume over time. This revealed a significant decline in hippocampal volume in the MB group (p < 0.01), but not in the HC group (p = 0.89). In the MB group, there was an estimated 2.89% decrease in hippocampal volume each year (baseline = 3568.14 mm³, 3 year follow-up = 3275.04 mm³). CONCLUSIONS: The current results show that treatment for MB is associated with atypical development of the hippocampus in children. Future work will examine the impact of clinical factors such as radiation dose and the occurrence of hydrocephalus on hippocampal volume and its developmental trajectory.

OBJECTIVES: The hippocampus is critical for learning and memory. Children treated for medulloblastoma exhibit lower memory performance and smaller hippocampal volumes as compared to healthy controls (Riggs et al., epub ahead of press). However, it is not clear how hippocampal volumes change over time, and how such changes may devrate from normal development. The current study is the first to examine longitudinal changes in hippocampal volume in both a medulloblastoma (MB) and healthy control (HC) group. PARTICIPANTS AND METHODS: 16 MB (age = 9.02 ± 2.47) and 20 HC participants (age = 9.70 ± 2.21) were included. 110.21 years. These scanned annually over 4 years using a 1.5 T Siemens, 1.5T GE or a 3T GE scanner. For the MB group, the first scan occurred at around the time of diagnosis (i.e. baseline). All participants had at least two scans. The hippocampus was defined using an automated segmentation program (Chakravarti et al., 2013) and volumes were corrected for intra-cranial volume, scanner type and age. RESULTS: A mix model regression was used to examine changes in hippocampal volume over time. This revealed a significant decline in hippocampal volume in the MB group (p < 0.01), but not in the HC group (p = 0.89). In the MB group, there was an estimated 2.89% decrease in hippocampal volume each year (baseline = 3568.14 mm³, 3 year follow-up = 3275.04 mm³). CONCLUSIONS: The current results show that treatment for MB is associated with atypical development of the hippocampus in children. Future work will examine the impact of clinical factors such as radiation dose and the occurrence of hydrocephalus on hippocampal volume and its developmental trajectory.

OBJECTIVES: Exercise has been shown to increase hippocampal volume in children with intellectual disability. However, it is unknown whether aerobic exercise would increase hippocampal volume in children treated for brain tumors. The aim of this study is to investigate the impact of aerobic exercise on hippocampal volume change over time in children treated for medulloblastoma. PARTICIPANTS AND METHODS: 16 children treated for medulloblastoma were randomized to either a 12-week aerobic exercise intervention (TXT) or a waitlist control (CTRL). The TXT group received aerobic exercise three times per week for 3 months. Participants were evaluated at baseline (T1) and post-intervention (T2). The CTRL group underwent a follow-up assessment 3 months after intervention (T3). The CTRL group underwent a third assessment (T3) after receiving the exercise intervention. Participants were scanned using a GE 1.5T or Siemens 3T MRI. Hippocampal regions were traced blind to group status and corrected for intra-cranial volume, scanner type and age. RESULTS: A repeated measures ANOVA revealed a significant group by time interaction (T1: F(1,14) = 25.43, p = .0001). At T2, the TXT group exhibited significantly more change in average hippocampal volume (11.22 ± 3.37 mm³) as compared to the CTRL group (−2.21 ± 0.30 mm³). A significant change in hippocampal volume was observed in the TXT group (F(1,14) = 25.43, p = .0001). In the CTRL group, there was no significant change in hippocampal volume over time. CONCLUSIONS: The current results suggest that aerobic exercise may be an effective intervention in repairing some of the damage following radiation. Future work will examine the relation between hippocampal volume increase and cognitive change, particularly in learning and memory.
suggest that emotional, behavioral or social impairments at diagnosis tend to stably persist throughout treatment and must then be target of early intervention. Moreover, specific neuropsychological rehabilitation might be beneficial in case of lesions involving the fourth ventricle. A larger cohort of patients and longer follow-up are required to better characterize our results.

NP-021. SOCIAL COGNITIVE DEFICITS AND REDUCED SOCIAL ATTAINMENT IN ADULT SURVIVORS OF CHILDHOOD CNS TUMORS
Kumar Srivastava, Leslie Robison, Melissa Hudson, and Kevin Krull; St. Jude Children’s Research Hospital, Memphis, TN, USA

BACKGROUND: Pediatric CNS tumor survivors are at risk for neurocognitive impairment, yet little is known about social cognition in adult survivors. METHODS: Participants included 78 adult survivors of childhood CNS tumors [53% infratentorial, 45% supratentorial] enrolled in the St. Jude Lifetime Cohort (mean SD current age = 28.1 years [5.8], at diagnosis = 9.4 years [4.7], and time since diagnosis = 18.8 years [6.0]). Age-adjusted standard scores were calculated for measures of intelligence and social cognition including affect recognition (i.e. facial expression of emotion) and prosody (i.e. emotional tone of voice). Impairment was defined as performance >1SD below the normative mean. Multivariable general linear models were used to examine associations between tumor location and treatment and social cognition. Logistic regression models examined associations between social cognition and attainment (i.e. employment, education, and income). RESULTS: 30% of CNS tumor survivors were impaired on measures of facial affect labeling (p = 0.001), 32% for identifying prosody (p < 0.001), and 34% for matching prosody with nonverbal social cues (i.e. body posture, affect; p < 0.001). Infratentorial tumor survivors treated with craniospinal radiotherapy (CSI) performed significantly worse than infratentorial tumor survivors treated with focal RT, supratentorial survivors treated with focal RT, and survivors treated with no RT on facial affect naming (p = 0.017), prosody identification (p < 0.001), and matching prosody with social cues (p = 0.007). These differences persisted after accounting for IQ. In models adjusted for IQ, sex and age, better performance on social cognition tasks increased the likelihood of full time employment by 55% (OR = 1.5, 95% CI 1.2-2.1) and independent living by 20% (OR = 1.2, 95% CI, 1.1-1.4). CONCLUSIONS: Adult survivors of pediatric CNS tumors demonstrated considerable impairment on measures of social cognition, with greater impairment observed for survivors of infratentorial tumors treated with CSI. Observed social impairment confers risk for reduced occupational attainment in adulthood and may have implications for the social independence and achievement of survivors.

NP-022. COMPUTERIZED ASSESSMENT OF NEUROCOGNITIVE FUNCTION IN PRE-SCHOOL- AND SCHOOL-AGED CHILDREN WITH BRAIN TUMORS
Kristina Hardy, Sarah Hestetter, Eugene Hwang, and Karin Walsh; Children’s National Health System, Washington, DC, USA

OBJECTIVE: Psychometrically-valid and reliable neuropsychological assessment tools for young children are lacking, particularly for domains affected by brain tumors and their treatment. We examined the utility and construct validity of a brief, computerized assessment in a sample of preschoolers (aged 4-5) and school-aged children (aged 7-16) diagnosed with brain tumors (BT). METHODS: Five computerized tasks using touch-screen technology were developed using the CogState assessment platform. Two versions of the tasks were used: one tailored for children 4-6 and one developed for older children and adolescents. Tasks included measures of processing speed, visual attention, working memory, visual learning, and executive functioning. Children completed these tasks as well as traditional measures of intellectual, memory, visual-motor, and executive functioning. RESULTS: To date, 37 children with BT (M age = 10.4, 60% male, 84% White) have completed computerized testing. Participants ranged from 0-14 years since diagnosis (M = 4.5 years), 50% had received cranial radiation therapy. Mean intellectual functioning and parent-rated working memory were in the average range (FSIQ = 99.4, SD = 18.93; BRIEF Working Memory T = 57.9, SD = 12.99; CBCL/BASC Attention T = 52.4, SD = 8.30). Data supported the convergent validity of many computerized tasks for both the preschoolers and school-aged groups. For example, worse performance on a computerized working memory task was associated with executive dysfunction (r = 0.41, p < 0.05), longer time since diagnosis (r = 0.35, p < 0.05), and younger age at diagnosis (r = -0.43, p < 0.05). CONCLUSIONS: Computerized cognitive testing has potential advantages over traditional paper-and-pencil measures for children with BT at risk for neurocognitive sequelae, including brevity, multiple alternate forms, and reduced motor demands. If reliable and valid, these tasks could serve as rapid, low-cost cognitive monitoring tools that can be administered within an on-site neuropsychologist.

NP-023. NEUROINFO FOR KIDS – DEVELOPMENT OF A MANUAL TO HELP CHILDREN WITH A BRAIN TUMOR TO MAKE THE BEST OUT OF THEIR NEUROPSYCHOLOGICAL TEST RESULTS
Ulrike Leiss1, Anna Bemmer2, Thomas Pletschko1, Juergen Grafender2, Agathe Schwarzer2, Pia Demann1, and Irene Slave1; 1Department of Pediatrics, Medical University of Vienna, Vienna, Austria; 2Faculty of Psychology, University of Vienna, Vienna, Austria

As survival rates in pediatric neuro-oncology have risen over the past decades, tumor- and treatment related neuropsychological late effects remain problematic for survivors. Various guidelines emphasize the importance of neuropsychological evaluation at different time points and give recommendations concerning the way assessment is carried out. However, the test situation itself as well as the report of the test results can be very challenging for the survivors, possibly facing their own deficits and therefore feeling degraded. For this reason we developed a standardized, resource-oriented manual facilitating the reporting of test results, NeuroInfo for Kids (NIK). NIK is based on the concept of salutogenesis and focuses on empowering the child and the family, through helping the child to get realistic knowledge of his own strengths and weaknesses and to get ideas of how to best deal with potential deficits. PARTICIPANTS: 23 patients with different types of brain tumors at the Department of Pediatrics, Medical University of Vienna; 12 girls, 11 boys; mean age 10.7 [7-13] years; mean age at onset 5.6; mean time since onset 5.39; treatment with surgery, chemotherapy and/or radiotherapy. METHODS: The first draft of NIK was evaluated in a pilot study, with respect to the study questions whether NIK has an influence on comprehension, manageability and the feeling of meaningfulness. The young patients had to fill out standardized questionnaires before and after the intervention with NIK, which was carried out by a trained neuropsychologist. SPSS was used for statistical analysis. RESULTS: We found that NIK significantly increased knowledge about personal strengths and weaknesses. Moreover knowledge about possible interventions was significantly improved. However, general knowledge about neuropsychological assessment could not be increased. Besides, NIK had no impact on self-esteem of the participants. As a result of the pilot study the improved version NIK was defined.

NP-024. COGNITIVE OUTCOMES IN MEDULLOBLASTOMA PATIENTS WITH CEREBELLAR MUTISM AND SHUNTED HYDROCEPHALUS
Patti Batchelder1, Greta Wilkening1, Todd Hankinson1, Nicholas Foreman1, and Michael Handler1; 1Children’s Hospital Colorado, Aurora, CO, USA; 2University of Colorado School of Medicine, Aurora, CO, USA

PURPOSE: Medulloblastoma survivors have lower cognitive scores than healthy peers, attributed to radiation therapy. We sought to assess the impact of cerebellar mutism and shunted hydrocephalus. METHODS: A retrospective chart review was completed of all 95 medulloblastoma patients treated at our institution between 1/2001 and 12/2013. Patients were excluded for age older than 21 years (4), incomplete data (8), no surgical resection (2), and rapid death (1). 80 charts were reviewed for age at diagnosis, sex, treatment, diagnosis of cerebellar mutism, presence of cerebral spinal fluid (CSF) shunt, and results and timing of cognitive testing. RESULTS: 55/80 had documented post-treatment neuropsychological evaluations, 26 males and 12 females, with a mean age of 8.2 years at diagnosis. 37/38 received radiation. 10 had cerebellar mutism, 8 a CSF shunt, and 4 had both. All 14 patients received the age appropriate Wechsler exam providing measures of full scale IQ (FSIQ), Verbal Comprehension, Perceptual Reasoning, Memory, and Processing Speed. The mean FSIQ in patients without cerebellar mutism or a shunt was 92.1, as compared to the normative mean of 100. In those with a CSF shunt it was 87, and 71.7 in those with cerebellar mutism. Performance was weakest in patients with cerebellar mutism and a CSF shunt, 67. Verbal scores were better than Perceptual and Working Memory measures in all groups. Processing speed was slow to below average in all. CONCLUSION: With parenchymal medulloblastoma, patients demonstrate lower than average cognitive scores. Cerebellar mutism worsens the outcome further, particularly in patients requiring a shunt.