Intranasal Immunization of Mice with Group B Streptococcal Protein Rib and Cholera Toxin B Subunit Confers Protection against Lethal Infection.

Larsson, Charlotte U; Holmgren, Jan; Lindahl, Gunnar; Bergquist, Charlotta

Published in:
Infection and Immunity

DOI:
10.1128/IAI.72.2.1184-1187.2004

2004

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Intranasal Immunization of Mice with Group B Streptococcal Protein Rib and Cholera Toxin B Subunit Confers Protection against Lethal Infection

Charlotte Larsson, Jan Holmgren, Gunnar Lindahl, and Charlotta Bergquist

Department of Medical Microbiology, Dermatology and Infection, Lund University, Lund, and Department of Medical Microbiology and Immunology, Göteborg University, Göteborg, Sweden

Received 10 September 2003/Returned for modification 9 October 2003/Accepted 14 November 2003

Intranasal immunization of mice with Rib, a cell surface protein of group B streptococcus (GBS), conjugated to or simply coadministered with the recombinant cholera toxin B subunit, induces systemic immunoglobulin G (IgG) and local IgA antibody responses and confers protection against lethal GBS infection. These findings have implications for the development of a human GBS vaccine.

Several approaches have been tried in an attempt to design an efficient vaccine against group B streptococcal (GBS) disease, and possible vaccine components include capsular polysaccharides and cell surface proteins of GBS. Mucosal immunization is an attractive strategy, since it is noninvasive and has the potential to induce both systemic and local immune responses. Indeed, it should be advantageous to use a GBS vaccine that not only induces protective immunoglobulin G antibodies that can be transplacentally transferred to the fetus but also induces mucosal antibodies that prevent genital colonization of the mother and thereby prevent transfer of the bacteria to the fetus.

Some human and animal studies have focused on antibodies to GBS at the female genital mucosa. Although, the role of these local antibodies in the pathogenesis of GBS infection is not clear, it seems reasonable to assume that they may to some extent protect against colonization with GBS. It has been reported that mucosal immunization with GBS polysaccharides and inactivated GBS bacteria induces systemic and local antibody responses in mice. However, there is no previous report on mucosal immunization with purified GBS proteins.

Earlier studies have shown that parenterally administered cell surface proteins of GBS elicit a systemic IgG response and confer protection against experimental GBS infection. In the present study, Rib, a well-characterized GBS surface protein that is expressed by many strains causing invasive neonatal infection, was combined with recombinant cholera toxin B subunit (CTB) and administered intranasally (i.n.) to mice. The systemic and local IgG and IgA responses were examined. In addition, the protective capacity of this mucosal vaccination was evaluated by lethal intraperitoneal (i.p.) challenge with GBS.

Preparation of conjugate vaccine. The Rib protein was isolated from the high-virulence type III strain BM110 by several purification steps and was free of contaminating polysaccharides. Recombinant CTB was purified from Vibrio cholerae strain 358. The Rib protein was conjugated to CTB using N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP; Pharmacia AB, Uppsala, Sweden) as a bifunctional coupling reagent. SPDP was added to both proteins according to the manufacturer’s instructions, using pH 8.5 for Rib and pH 7.5 for CTB. A similar method has been used for coupling polysaccharides to CTB and is described in detail elsewhere.

A 10-fold molar excess was used for Rib, and a 3-fold molar excess was used for CTB. The 2-pyridyl disulfide-containing Rib was then reduced using 50 mM dithiothreitol, and the excess was used for CTB. The 2-pyridyl disulfide-containing Rib was then reduced using 50 mM dithiothreitol, and the excess 2-pyridyl disulfide and dithiothreitol was removed using a Sephadex G25 prepacked PD10 column (Pharmacia AB, Uppsala, Sweden). The two derivatized proteins were mixed and allowed to react overnight at room temperature. The conjugate was purified using a Superdex 200 10/30 column connected to a BioLogic WorkStation (Bio-Rad). The fractions containing the highest-molecular-weight material were collected, pooled, and concentrated using an Amicon stirred concentration cell (Amicon). The conjugate was tested by enzyme-linked immunosorbent assay (ELISA), and both CTB and Rib were detected. The Lowry protein determination assay was used to measure the total protein content of the conjugate. However, the exact proportion of each protein could not be determined. The conjugate was stored at 4°C with 0.005% Merthiolat (Kebo AB, Stockholm, Sweden) as a preservative.

Immunizations and antibody responses. Five groups with four 10-week-old C3H/HeN female mice (Charles River, Sulzfeld, Germany) in each group were immunized i.n. with either of the following vaccines: protein Rib conjugated to CTB (Rib-CTB) (8 μg), Rib mixed with CTB (Rib+CTB) (4 μg plus 4 μg), Rib alone (Rib) (4 μg), CTB alone (CTB) (4 μg), or phosphate-buffered saline (PBS) three times 2 weeks apart. One group with four mice received 5 μg of Rib subcutaneously (s.c.) and 4 weeks later a booster of 2.5 μg s.c. The antigens were diluted in PBS to a volume of 25 μl for i.n. administration and 150 μl for s.c. administration, respectively. The mice were lightly anesthetized with methoxyflurane (Methofane) (Mallin-
TABLE 1. Titers of Rib-specific IgG in serum after immunization with different vaccine compositions

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Route of immunization</th>
<th>Titer of IgG, geometric mean (range)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rib-CTB</td>
<td>i.n.</td>
<td>6,959 (1,772–27,258)</td>
</tr>
<tr>
<td>Rib+CTB</td>
<td>i.n.</td>
<td>10,342 (6,288–14,998)</td>
</tr>
<tr>
<td>Rib</td>
<td>i.n.</td>
<td>86 (40–261)</td>
</tr>
<tr>
<td>CTB</td>
<td>i.n.</td>
<td>4 (~3–11)</td>
</tr>
<tr>
<td>Rib</td>
<td>s.c.</td>
<td>2,243 (640–4,030)</td>
</tr>
</tbody>
</table>

a Mice (four per group) were immunized thrice with Rib-CTB, Rib+CTB, Rib, or CTB i.n. or twice with Rib s.c.

b The titers of antibody are presented as the antilog of the geometric mean and range. Titers of ≤3 were not detected. Background values from mice sham immunized with PBS are subtracted.

TABLE 2. Titers of Rib-specific IgA in serum and genital tissue extract after immunization with different vaccine compositions

<table>
<thead>
<tr>
<th>Vaccine tissue</th>
<th>Route of immunization</th>
<th>Titer of IgA, geometric mean (range)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rib-CTB</td>
<td>i.n.</td>
<td>53 (36–87)*</td>
</tr>
<tr>
<td>Rib+CTB</td>
<td>i.n.</td>
<td>8 (4–18)</td>
</tr>
<tr>
<td>Rib</td>
<td>i.n.</td>
<td>≤3</td>
</tr>
<tr>
<td>CTB</td>
<td>i.n.</td>
<td>≤3</td>
</tr>
<tr>
<td>Rib</td>
<td>s.c.</td>
<td>4 (~3–5)*</td>
</tr>
</tbody>
</table>

a Mice (four per group) were immunized thrice with Rib-CTB, Rib+CTB, Rib or CTB i.n. or twice with Rib s.c. The genital tissue was extracted with 2% saponin-PBS.

b The titers of antibody are presented as the antilog of the geometric mean and range. Titers of ≤3 were not detected.

c Only three sera were available for analysis of IgA.
complete protection against lethal GBS infection ($P = 0.00002$) (Fig. 1).

Conclusions. Intranasal immunization of mice with the Rib protein and CTB seems to induce systemic and local antibody responses and to confer protective immunity against GBS infection. The titers of IgG induced by immunization with Rib protein and CTB and Rib-CTB given i.p. with a ~90% lethal dose of GBS strain BM110. Deaths were recorded daily for 7 days. Fisher’s exact test was used to calculate P values.

mixed with CTB, which resulted in both systemic and local IgG and IgA responses to the vaccine antigens (23). Since these nonhuman primates are phylogenetically close to humans, it seems possible that humans would respond similarly to i.n. immunization with vaccines composed of bacterial protein and CTB. Further, i.n. immunization with CTB in humans has stimulated strong systemic as well as respiratory and vaginal mucosal antibody responses (3, 14, 22). Moreover, recent studies of naturally acquired antibodies to GBS cell surface proteins in different human populations have indicated that antibodies to GBS cell surface proteins are prevalent (10, 15), indicating that these protein antigens indeed are immunogenic also in humans.

The majority of clinically important GBS strains express either of the two proteins Rib or α (17, 25). Previously, we have shown that it is possible to include these two GBS cell surface proteins in a vaccine and elicit protective immunity in mice without any sign of immunogenic competition between the vaccine antigens (18). We conclude that i.n. immunization with a vaccine containing cell surface proteins from GBS strains that are prevalent among pregnant women may be an alternative strategy in the ongoing efforts to design an efficient vaccine against neonatal GBS disease.

This work was supported by grants from the Swedish Research Council (Medicine), the Meningitis Research Foundation (United Kingdom), Sida-SAREC’s programme for research on AIDS and related sexually transmitted infections, the “Förenade Liv” Mutual Group Life Insurance Company, the Swedish Society for Medical Research, the Royal Physiographic Society in Lund, and the trusts of Jerring, Kock, and Osterlund.

We thank Margaretha Ståhlman-Carlemalm for her help and for purified protein Rib, and we thank Gun Wallerström for laboratory assistance.

REFERENCES

Editor: D. L. Burns