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Abstra
t
With the 
ontinued growth of digital servi
es o�ering storage and 
om-muni
ation of pi
torial information, the need to e�
iently represent thisinformation has be
ome in
reasingly important, both from an informationtheoreti
 and a per
eptual point of view.There has been a re
ent interest to design systems for e�
ient repre-sentation and 
ompression of image and video data that take the featuresof the human visual system into a

ount. One part of this thesis investi-gates whether knowledge about viewers' gaze positions as measured by aneye-tra
ker 
an be used to improve 
ompression e�
ien
y of digital video;regions not dire
tly looked at by a number of previewers are lowpass �l-tered. This type of video manipulation is 
alled o�-line foveation. Theamount of 
ompression due to o�-line foveation is assessed along with howit a�e
ts new viewers' gazing behavior as well as subje
tive quality. Wefound additional bitrate savings up to 50% (average 20%) due to o�-linefoveation prior to 
ompression, without de
reasing the subje
tive quality.In o�-line foveation, it would be of great bene�t to algorithmi
allypredi
t where viewers look without having to perform eye-tra
king mea-surements. In the �rst part of this thesis, new experimental paradigms
ombined with eye-tra
king are used to understand the me
hanisms be-hind gaze 
ontrol during s
ene per
eption, thus investigating the prereq-uisites for su
h algorithms. Eye-movements are re
orded from observersviewing 
ontrast manipulated images depi
ting natural s
enes under aneutral task. We report that image semanti
s, rather than the physi
alimage 
ontent itself, largely di
tates where people 
hoose to look. To-gether with re
ent work on gaze predi
tion in video, the results in thisthesis give only moderate support for su

essful appli
ability of algorith-mi
 gaze predi
tion for o�-line foveated video 
ompression.
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Chapter 1Introdu
tion
DIGITAL information is in
reasingly more pi
torial in nature, andwe are 
onstantly fed with visual impressions through television,the Internet, and our 
ellular phones, to name a few important ex-amples. Consequently, it is an ongoing 
hallenge to �nd improved methodsfor e�
ient representation and storage of this voluminous data. Today,there are a number of quite mature methods for data 
ompression pop-ularized in standards su
h as the JPEG and MPEG families of 
ode
s.However, a 
ommon denominator for these standards is that they takeonly few of the properties of the human visual system (HVS) and per
ep-tion into a

ount. It is therefore likely that many of tomorrow's improve-ments in these standards lie in optimizing images and videos not only in amathemati
al framework, but over the end-to-end optimization betweenimage a
quisition and the viewer(s) at the re
eiving end.Surely, the time is now right to further 
ross-fertilize knowledge frominformation theory and 
ognitive psy
hology to fa
ilitate improved data
ompression. In this thesis, we will investigate whether 
urrent state-of-the-art methods for 
ompression of pi
torial data 
an be improved bytaking into a

ount where people look as measured by an eye-tra
ker.Sin
e regions outside the 
entral line of sight 
annot be seen with high de-tail, the quality of su
h regions 
an be redu
ed without this being noti
ed.Clearly, this opens a large potential for improved data 
ompression.Of 
ourse, it would be of great advantage if it was possible to algo-rithmi
ally predi
t where people would look, without having to performtime-
onsuming eye-tra
king experiments. In view of this, a part of thethesis is devoted to empiri
al investigations of the 
ognitive me
hanismsbehind gaze 
ontrol in image viewing. For example, we address questionslike: 'Where do people look when presented to natural s
enes?' and 'Whydo they look toward these regions?'. The answers to these questions are



2 Introdu
tion
ru
ial �rst steps toward future su

essful algorithms for gaze predi
tionin video.The thesis is divided in two parts. Using a new experimental paradigm,we investigate in Part I the me
hanisms behind gaze 
ontrol. In Part II,we measure how o�-line foveation a�e
ts 
ompression, subje
tive quality,and eye-movements. Below, an overview of the 
ontents and main resultsof the thesis are given.1.1 Overview of Part I: Gaze Behavior in Im-agesGaze behavior in s
ene viewing has been investigated for over a 
entury,with important pioneering work in the early twentieth 
entury by Buswell(1935) and later by Yarbus (1967). Some important aspe
ts in s
ene per-
eption 
on
ern the 
ognitive me
hanisms behind eye-movement 
ontrol:to whi
h s
ene regions do viewers look, and why do they look toward theseparti
ular regions of the s
ene? Although mu
h is known from the vastamount of published resear
h on the subje
t, there is 
urrently an intensedebate of how higher- and lower 
ognitive fa
tors intera
t to 
ontrol wherepeople dire
t their gazes. While this type of resear
h is well motivatedsolely to in
rease the general understanding about the HVS and visual
ognition, a

urate models of gaze 
ontrol and predi
tion would have di-re
t pra
ti
al appli
ations within �elds su
h as 
omputer vision, imageand video 
ompression, marketing, and automobile safety. There havebeen numerous e�orts to develop 
omputational tools to predi
t human�xation lo
ations, many relying on the basi
 stru
ture outlined by Ko
hand Ullman (Ko
h & Ullman, 1985). Although many of these modelsseem promising, they are 
urrently quite far from mimi
king the behaviorof a human viewer in terms of a

urate modeling of �xation lo
ations and,in parti
ular, �xation durations.In this part of the thesis, partly to highlight the limitations of mod-els predi
ting visual attention, we aim to better understand the 
ausesbehind gaze shifts during inspe
tion of natural images. We use a newexperimental paradigm where low-level image statisti
s are manipulatedto disso
iate obje
ts from their low-level signal strength. Eye-tra
kingexperiments are then performed to eli
it the spatial and temporal 
on-tributions of lower and higher 
ognitive fa
tors to gaze guidan
e. Figure1.1 gives an example of the stimuli we used in the experiments. The im-age is 
ontrast manipulated su
h that the fa
e is blurred, and the 
ir
lesrepresent �xations 
olle
ted from a number of observers free-viewing theimage. The diameter of ea
h 
ir
le is proportional to the �xation dura-tion. Noti
e that the fa
e attra
ts many (long) �xations despite its low
ontrast and thus la
k of detailed fa
ial features. In this 
ase a typi
al,



1.1 Overview of Part I 3

Figure 1.1: Distribution of �xations over a 
ontrast manipulated image.Ea
h 
ir
le represents a �xation, and the diameter of ea
h 
ir
le is propor-tional to the �xation duration.image-driven algorithmi
 predi
tor would fail miserably to predi
t human�xations.The highlights of our �ndings reveal that the interplay and relative
ontribution between lower and higher 
ognitive fa
tors on gaze guidan
eare linked with the semanti
s of the viewed image; �xated 
ontent inimages with neutral semanti
s 
orrelates quite well with image featureswhereas semanti
ally important obje
ts are gazed upon despite a weakfeature signal strength.Part I of the thesis is outlined as follows. Chapter 2 gives an intro-du
tion of some properties of the HVS and also a brief overview of eye-movements and visual attention as well as how they are 
oupled. Thatis, does the position of the eye also indi
ate where attention is lo
ated?If so, how tight is this relationship? In Chapter 3, we review some keypapers on gaze behavior in image viewing. Spe
i�
ally, we address whatis previously known about where people look, why they 
hoose to lookat these regions, and for how long. The following three 
hapters (4, 5,6) present our work whi
h is mainly based on material from the papersNyström and Holmqvist (2007b) and Nyström and Holmqvist (2008, inpress). Our main �ndings are summarized and dis
ussed in Chapter 7.



4 Introdu
tion1.2 Overview of Part II: O�-line Foveationfor Video CompressionIn most pra
ti
al appli
ation, 
ompression is essential to manage andstore image and video data. Compression e�
ien
y is a trade-o� betweenbitrate, quality, and 
omputational 
omplexity, and today's standardsfor 
ompression have addressed these issues quite su

essfully. A typi
alimage 
oder su
h as JPEG 
an 
ompress an image to about 1/30 of itsoriginal size and still produ
e a

eptable quality. Video 
oders 
an furtherimprove this ratio due to signi�
ant temporal redundan
ies present invideo data. Despite these substantial 
apabilities for data 
ompression,there is a 
onstant demand for improved 
ompression e�
ien
y due tofa
tors su
h as ever larger pi
ture formats, in
reasing 
osts for bandwidth,et
.In this part of the thesis, we investigate how knowledge about wherepeople look 
an be utilized to improve 
ompression e�
ien
y of digitalvideo. If we knew where people looked while viewing video, unattendedparts 
ould be degraded in quality and, due to the inability of the HVSto resolve �ne detail in peripheral vision, this would not be noti
ed. Sin
eregions low in spatial detail generally require fewer bits to represent dig-itally, this opens a large potential for improved data 
ompression. Thefollowing questions are addressed: Where do observers look? Do ob-servers look toward similar regions? If we know where people look, howmu
h 
an we degrade regions where people do not look (and thus de
reasethe bitrate) without de
reasing the subje
tive quality and 
hanging wherepeople initially look?In our work, eye-tra
king is utilized to 
olle
t eye-movements froma number of observers while free-viewing images and videos. This eye-movement data is then used to study observers' viewing behavior as wellas to 
ontrol the bit-allo
ation su
h that visually attended regions aregiven more bits than regions not visited by peoples' high-a
uity, fovealvision. We have dubbed this approa
h o�-line foveation. An illustrativeexample is shown in Figure 1.2. Figure 1.2(a) depi
ts a frame from a videoshown to a group of viewers. Ea
h 
rosshair represents one viewer's gazeposition. Figure 1.2(b) shows this frame after o�-line foveation. Noti
ethe peripheral blurring in unattended regions.We will address the design, implementation and evaluation of o�-linefoveated image and video 
oding. Spe
i�
ally, we fo
us on a number of
entral 
hallenges. First, a method is proposed to transform 
olle
ted gazepositions to regions of interest (ROIs) for images, and volumes of interest(VOIs) for video appli
ations. Se
ond, we address the problem of how theROI/VOI 
ould be used to implement o�-line foveation. Third, we targeto�-line foveation in a framework of video 
oding. Fourth, we devise newmethods to evaluate o�-line foveation subje
tively.



1.2 Overview of Part II 5Our results show that o�-line foveation 
an yield substantial bitratesavings without de
reasing subje
tive quality. In some of the testedvideos, bitrate redu
tions of up to 50% due to o�-line foveation werefound 
ompared to unfoveated video. However, the degree of bitrate sav-ings largely depends on the type of the video, and what type of viewingbehavior the video eli
its.Part II is stru
tured as follows. Chapter 8 provides a brief introdu
tionto image and video 
ompression, gives an overview of viewing behaviorwhile wat
hing video, and presents previous work in foveated image/video
oding. Chapter 9 presents our initial work on o�-line foveation video 
od-ing, where we get an estimate of its potential in 
ompression. The 
hap-ter is based on results from Nyström, Novak, & Holmqvist, 2004. Thehighlights of Part II are given in Chapter 10, originating from the workpublished in Nyström & Holmqvist, 2007a, 2008. Here, a full-s
ale imple-mentation and evaluation of o�-line foveated video is undertaken. Finally,Chapter 11 summarizes our �ndings and dis
usses the pra
ti
ability andpotential of using o�-line foveation in real-world appli
ations.



6 Introdu
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(a)

(b)Figure 1.2: Example of o�-line foveation. The upper video frame showswhere people look in the original frame and the lower video frame de-pi
ts the same frame after o�-line foveation. Ea
h 
rosshair represents oneviewer's position of gaze.



Part IGaze Behavior in Images





Chapter 2Human Visual System
KNOWLEDGE about the evolutionary optimized design as well asthe fun
tionalities of the human visual system (HVS) is key tounderstanding, implementing and evaluating systems for visual
ommuni
ations. This 
hapter gives a brief overview of some propertiesof the HVS. It des
ribes the anatomy of the eye, visual a
uity, the vi-sual pathway, eye-movements, visual attention, and reviews eviden
e fora 
oupling between eye-movements and visual attention.2.1 Physiology of the HVS

PSfrag repla
ementsRetinaFigure 2.1: Stru
ture of the human eye (Modi�ed from Wikipedia, 2008b)



10 Human Visual System

Figure 2.2: Distribution of rods and 
ones on the retina (Adapted afterOsterberg, 1935)Figure 2.1 shows a 
ross-se
tion of the human eye. At the �rst stageof pro
essing, in
oming light rea
hes the 
ornea, whi
h together with a�exible lens fo
uses the light on the retina. The 
ornea has more refra
tivepower than the lens; approximately 70% of the refra
tive power is providedby the 
ornea.On the inside of the eye ball lays the retina, whi
h 
omprises a set ofneural layers. The retina is sensitive to light and holds two di�erent typesof photo-re
eptors involved in vision: rods and 
ones. Rods are sensitiveto illumination, total 70-150 million per eye and are found over the entireretinal surfa
e. Sin
e many rods 
an share the same nerve ending theyreprodu
e visual details quite poorly, typi
ally yielding a 
oarse, gray s
aleimage of the world. However, rods are invaluable due to their sensitivityto dim light, and provide night vision. In addition to rods, about sevenmillion 
ones serve high a
uity 
olor vision. Cones are densely pa
kedwithin a small part of the retina 
alled the fovea, and are in
reasinglymore sparse away from the fovea. With 
ones humans 
an resolve �nedetails in fovea sin
e ea
h 
one is 
onne
ted to one nerve end. Figure2.2 illustrates the distribution of rods and 
ones on the retina. The foveasubtends approximately 2◦ of visual angle. In other words, if we lookstraight ahead, we have sharp vision only in the 
entral 2◦ of vision.Regions outside the fovea are usually divided in two di�erent parts: theparafovea and the periphery. The parafovea is the area outside of the foveaextending over 2-5◦ of the visual angle. Due to the steep drop of 
ones,vision is redu
ed in the parafovea 
ompared the fovea itself. The peripherysu�ers from very poor a
uity, and no detailed spatial information 
an bea
quired from this part of the retina. However, peripheral vision has otherimportant fun
tionalities su
h as guiding eye-movements, and is also very



2.2 Eye-Movements � Basi
 Fa
ts 11sensitive to motion. One 
an rather easily get a feeling for foveal a
uity(and the la
k of detail outside the fovea): �xate a word in the book youare reading and then try to read the next or previous two words. This isa very di�
ult task without moving the eyes.In early retinal pro
essing, rods and 
ones translate in
oming lightto a
tion potentials, whi
h are propagated to higher neural layers in theretina where bi-polar 
ells provide some basi
 visual pro
essing su
h asedge dete
tion. In later stages of retinal pro
essing, ganglion 
ells trans-mit neural signals to the brain through the opti
 nerve. They leave the eyethrough a part of the retina where no re
eptors exist. Thus we 
annot seean obje
t falling onto this part of the retina, hen
e the name 'blind spot'.Figure 2.3 depi
ts how the visual input is transmitted to the visual 
or-tex through dedi
ated pathways; information leaving the retina throughthe opti
 nerve is passed to the lateral geni
ulate nu
leus (LGN), whi
hforwards the input primarily the the visual 
ortex, even though smallerpathways dire
tly to the superior 
olli
ulus (SC) exist. Neurons in pri-mary visual 
ortex, V1, are typi
ally a
tivated by simple features su
has orientation, 
olor, intensity, and 
ontrast. V2-V5 represent regions ofthe visual 
ortex that fa
ilitate higher level interpretations of the visualinput. Typi
ally, dire
t sensory information together with informationpro
essed in higher regions of the visual 
ortex are 
ombined in the SCto trigger eye-movements. The exa
t topology of the visual 
ortex andhow it a
tivates motor 
ontrol for eye-movements 
urrently remains a hottopi
 of resear
h.2.2 Eye-Movements � Basi
 Fa
tsA general problem in biologi
al systems is information over�ow, that is,large amounts of sensory information are 
onstantly fed to the system,whi
h does not have the resour
es and time for pro
essing and interpreta-tion. The HVS is no ex
eption; the retina has been estimated to re
eiveup to 109 bits of (Shannon) information per se
ond (Kelly, 1962). Theevolutionary design to handle this huge amount of information is solvedby a foveated system, whi
h uses sparse visual input from the peripheryto guide the fovea to regions with potentially important or relevant in-formation through eye-movements. In fa
t, we 
onstantly move our eyesthree to four times per se
ond for this purpose. Foveal information is notonly a
quired with higher detail than other regions on the retina, but isalso pro
essed by a disproportionally large part of the visual 
ortex. Thisis known as 
orti
al magni�
ation.To move our eyes, di�erent types of eye-movements are employed;shifting our gaze from one lo
ation to another is 
alled a sa

ade and be-tween these shifts the eye remains relatively stable in a �xation (typi
allyaround 300 ms). However, the eye is not 
ompletely stable during a �xa-
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Figure 2.3: The visual pathway (Modi�ed from Wikipedia, 2008a).tion, but three types of small �xational eye-movements o

ur (Martinez-Conde, Ma
knik, & Hubel, 2004): tremor, drifts, mi
ro-sa

ades. Tremorare the smallest eye-movements, having a frequen
y around 90 Hz. Therole of tremor in vision is un
lear, but is believed to help maintainingvision by preventing retinal stabilization. It has been observed that bystabilizing visual input on the retina, the impression of vision slowly fadesaway. Drifts are movements that slowly move the eye away from the pointof �xation, possible due to la
k of pre
ision or fatigue of the o
ulomo-tor system. This is 
ompensated for by mi
ro-sa

ades, small 
orre
tivemovements, whi
h rapidly guide the eye ba
k to its initial position.A sa

ade is a rapid eye-movement and therefore sensitivity to visualinput is signi�
antly impaired. The speed of a sa

ade 
an be up to 1000degrees per se
ond and its length varies over 1-30◦. However, this depends



2.3 Eye-Tra
king and Its Appli
ations 13on fa
tors su
h as task and stimuli. Typi
ally, the time it takes for theeye to move from one lo
ation to another during a sa

ade is 30-70 ms.As expe
ted, long sa

ades take more time than short.Pursuit eye-movements o

ur when the eye follows slow moving ob-je
ts. Compared to sa

adi
 eye-movements, pursuit eye-movements are
onsiderably slower. This type of eye-movement is generally not possibleto evoke without a moving target for the eye to tra
k.Another type of eye-movement is 
alled vergen
e and o

urs when theeyes move toward ea
h other in order to �xate on 
lose obje
ts. If the headmoves, but the gaze is kept on the same target, vestibular eye-movementshave been used to 
ompensate for head movements.Depending on type of task (silent reading, oral reading, visual sear
h,s
ene per
eption, musi
 reading and typing), �xation duration and sa
-
ade length 
an vary 
onsiderably.For a more 
omprehensive overview on the basi
 properties of eye-movements and their signi�
an
e in visual 
ognition, refer to the overviewsby Rayner, 1998; Henderson & Ferreira, 2004; Rayner & Castelhano, 2007.2.3 Eye-Tra
king and Its Appli
ationsFor quite some time it has been known that eye-movements provide valu-able insights in 
ognitive pro
esses. However, high pre
ision eye-tra
kersare relatively new and the number of papers using eye-tra
king as ameasurement tool are qui
kly in
reasing. There is a range of availablete
hniques and apparatus as well as methodologi
al 
on
erns using eye-tra
king, and a

urate eye-tra
king is of 
ourse essential to get valid data.Further information about eye-tra
king and related issues 
an be foundin the books by Du
howski (2003) and Holmqvist (2009).Eye-tra
king appli
ations have been reported from for a wide range ofdis
iplines, for example neuros
ien
e, psy
hology, industrial engineeringand human fa
tors, and has been divided in two broad areas: diagnosti
and intera
tive (Du
howski, 2002). In diagnosti
 appli
ations, the tra
kedeye-movements are analyzed o�-line in order to assess or to obtain obje
-tive and quantitative measures of a viewer's overt visual attention. For ex-ample, su

essful studies have been performed on subje
ts with s
hizotypy(O'Dris
oll, Lenzenweger, & Holzman, 1998) and autism (Klin, Jones,S
hultz, Volkmar, & Cohen, 2002) where eye-tra
king data show indi
a-tions of si
kness due to deviating eye-movement behavior. In appli
ationswhere a system responds or intera
ts with re
orded eye-movements inreal-time, it is said to be intera
tive. An example of an intera
tive systemis real-time, gaze-
ontingent foveation, where the resolution of a display
hanges 
ontingent on viewers' position of gaze.In psy
hology, eye-tra
king has be
ome an invaluable tool to studydi�erent aspe
t of visual 
ognition in reading, s
ene per
eption, and visual
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h. One 
omprehensive sour
e of how the usage of eye-tra
king hasprogressed over the years is the review by Rayner (1998). He 
ompiles 20years of eye-movement resear
h mostly 
overing the 
ognitive me
hanismsin reading, and provides a range of basi
 information about reading be-havior: When reading English, the �xation duration is typi
ally 225-275ms and sa

ade length about 8 letters; readers do not ex
lusively go for-ward in the text but use small sa

ades to the left 
alled regressions ; goodreaders tend regress less frequently than bad readers and the number ofregressions in
rease as texts grow more 
on
eptually di�
ult; silent read-ing is faster that reading aloud. Obviously, these types of observationswould be 
umbersome without modern eye-tra
king te
hnology.S
ene per
eption is another �eld that has bene�ted signi�
antly fromthe evolution of eye-tra
king. Unlike reading, s
ene viewing produ
es lesssystemati
 eye-movement a
ross viewers. In part, this 
an be explained bythe 
lassi
al observation made by Yarbus (1967) that task in�uen
es eye-movements. While the task in s
ene viewing is not always well de�ned,reading follows 
ertain rules with the overall goal to 
omprehend the text.Eye-tra
king in s
ene per
eption has parti
ularly been used to investigatethe in�uen
e of higher and lower fa
tors to gaze guidan
e, whi
h typi
allyis done by analyzing �xated image 
ontent.A more 
onstrained type of s
ene per
eption is visual sear
h (see Wolfe,1998) where subje
ts are asked to sear
h for targets until they are found,or until subje
ts are ensured that the target is absent in the display. Whileresponse buttons 
an measure sear
h and rea
tion times, eye-movementdata yield a ri
h 
olle
tion of per
eptual measures indi
ating the allo
ationof attention during the sear
h.Eye-tra
king has been used in other areas su
h as monitoring eye-movements of drivers, pilots, in newspaper design and advertising, andalso gaze 
ontingent displays and 
omputer graphi
s. As eye-tra
kingte
hnology gets more portable, easier to use and 
heaper, the potential foreye-tra
king appli
ability is expe
ted to grow substantially. One exampleof a future appli
ation with huge potential is to integrate eye-tra
kers with
omputer games, opening a whole new world of opportunities for rapidand intelligent game intera
tion. Further information about appli
ations
an be found in the overview by Du
howski (2002).2.4 Visual AttentionGenerally speaking, attention refers to the ability to fo
us most of our
ognitive resour
es to limited or relevant parts in our environment, whilelargely ignoring other parts. In visual attention, these resour
es 
an referto the ability of the HVS to fo
us on the most relevant and interestingvisual elements in the environment, and allo
ate proper parts in the brainto pro
ess this information with priority. Visual attention is 
ommonly



2.4 Visual Attention 15divided into overt and 
overt attention. Overt attention is of a dire
tmeasurable nature, and is aligned with the eye-movement. Covert atten-tion is a mental state of attention and 
annot be measured expli
itly; itis sometimes des
ribed as a mental 'spotlight' pre
eding overt attention(Posner, 1980).2.4.1 Bottom-up and top-down pro
essingPer
eiving visual information 
an be seen as a hierar
hi
al pro
ess; visualinput propagates from lower 
ognitive levels to higher, more 
omplex lev-els where the information gets in
reasingly more tangible (Levine, 2000).Within this framework, attention may be responsible for integrating, or'gluing' simple features into whole obje
ts (Treisman & Gelade, 1980).Moreover, it is argued that higher 
ognitive levels 
an in�uen
e the de-
isions at lower levels through feedba
k. These two pro
esses are oftenreferred to as bottom-up respe
tively top-down pro
essing. Bottom-uppro
essing 
onsists of rapid, spontaneous and automati
 de
isions and ispurely stimulus dependent and 
omputed in parallel. Top-down pro
ess-ing on the other hand re�e
ts higher 
ognitive me
hanisms 
ontrolled byfa
tors su
h as task, 
ontext and linguisti
 input, and is believed to beslower than bottom-up pro
esses. In s
ene viewing, bottom-up pro
essingrefers to a qui
k, involuntary response after image onset to sa

ade to-ward low-level features su
h as 
olor, motion and 
ontrast while top-downguidan
e is in�uen
ed by fa
tors su
h as task-dependen
e (e.g., rememberimage obje
ts, obje
t sear
h) as well as prior knowledge and experien
es(e.g., fa
es are important in human 
ommuni
ations).Although the metaphori
al model of bottom-up and top-down pro
ess-ing outlines an important 
on
eptual model in 
ognitive psy
hology, it isalso subje
t to quite some 
onfusion. One key issue 
on
erns whi
h partsof the brain 
omprise the 'top' and, likewise, the 'bottom' (
f. Roepstor�& Frith, 2004). In an anatomi
al sense, the bottom 
an refer to the 'rep-tile' brain, whereas the top would 
omprise more developed mammalianparts of the brain. However, dividing the brain into se
tions responsiblefor top-down and bottom-up pro
essing has shown to be elusive, partlysin
e the fun
tions within and intera
tions between di�erent parts of thebrain 
annot be fully explained. The top and bottom 
an also refer toan organism and its sensory input. The top is then 
ontrolled by theorganism's mental world, whereas bottom-up 
ontrol is modulated by theorganism's physi
al input. Today, the interplay between bottom-up andtop-down pro
essing in s
ene per
eption as well as how they 
ontributeto di�erent a
tions are not 
ompletely understood.



16 Human Visual System2.4.2 Coupling between eye-movements and visual at-tentionA re
urring question dire
ted to resear
hers using eye-tra
king to study vi-sual attention tou
hes the relationship between the position of gaze (overtattention) and lo
ation of our internal (
overt) attention. There is a largebody of resear
h devoted to the relationship between visual attention andeye-movements. While it has been shown that eye-movements quite eas-ily 
an be separated from 
overt attention in simple dis
rimination tasks(Posner, 1980), there exists ample eviden
e that that this 
oupling gen-erally is quite tight (Deubel & S
hneider, 1996), espe
ially when s
enesgrow more 
omplex (see e.g., Henderson & Ferreira, 2004).The 
onne
tion between sa

adi
 programming and shifts in 
overt at-tention has been extensively resear
hed through 
lever visual sear
h anddis
rimination task experiments. Deubel and S
hneider (1996) used aletter dis
rimination task where subje
ts were asked to �xate a 
ross inthe 
enter of a display, and simultaneously prepare a sa

ade to a 
uedlo
ation. Before the sa

ade was initiated, the dis
rimination letter ap-peared brie�y either at the 
ued lo
ation or adja
ent to the 
ued lo
ation.Results showed that letter dis
rimination in
reased signi�
antly when the
ued lo
ation 
oin
ided with the position of the dis
rimination target.This �nding supports the 
oupling hypothesis - that it is not possible toprepare a sa

ade to a target without �rst dire
ting attention to it. Ifthe 
ontrary were true, attention 
ould have been dire
ted to the dis-
rimination letter independently of the programmed sa

ade target. Asa 
onsequen
e, letter identi�
ation would be su

essful even if the lo
a-tion of the dis
rimination letter would di�er from the intended sa

adelanding lo
ation. These results are in line with the widely believed 
laimthat 
overt attention pre
edes sa

adi
 eye-movements and thus is usedto guide the eyes to interesting regions in a s
ene.2.5 SummaryThe foveated nature of the HVS is highly e�
ient and addresses thetrade-o� between the huge amount of information 
onstantly availableand the limited 
omputational resour
es of information pro
essing in thebrain. Information from our visual surroundings is gleaned through eye-movements, dire
ting high a
uity vision to potentially relevant of inter-esting regions in our environment. This 
hapter des
ribed some key prop-erties of the HVS and the types of eye-movements used by humans toexplore the visual world, and also how visual information is transportedto the brain for further pro
essing. For the natural, 
omplex images,whi
h will be used in this thesis, we pointed to eviden
e that the 
ouplingbetween attention and eye-movement is tight.



Chapter 3Gaze Behavior in NaturalImages � The Where, Why, andFor How Long
UNDERSTANDING the subtle me
hanisms behind eye-movementsin s
ene viewing has shown to be a 
hallenging and interestingproblem, and has attra
ted an in
reasing amount of attentionfrom resear
hers using eye-tra
king as a measurement tool. Knowledgeabout visual attention and gaze behavior in s
ene per
eption has im-portant appli
ation in, e.g., engineering and marketing, to render visual
ommuni
ations more pre
ise and e�
ient. This 
hapter reviews the lit-erature on s
ene per
eption and eye-movement, and presents some key�ndings gleaned over the last 
entury.3.1 S
ene Per
eption and Eye-MovementsA s
ene usually refers to a depi
tion of an environment, whi
h for example
an 
omprise the real world, an arti�
ial world, or line drawings illustrat-ing real-world or arti�
ial obje
ts. In an experimental setting today, mosts
enes are viewed as digitized images on 
omputer s
reens, where it is easyto 
ontrol experimental parameters su
h as where the s
ene is lo
ated, thesize of the s
ene, how long the s
ene is shown and the viewing distan
efrom the s
ene to the observer. The goals when studying s
ene per
ep-tion are multifa
eted and involve how people understand and interprets
enes. In this 
hapter, we review what eye-movements 
an reveal aboutthe per
eption about a parti
ular type of s
ene: Natural images. In thisthesis natural images refers to digitized photographs depi
ting natural



18 Gaze Behavior in Natural Imagesenvironments from the real-world, that is, visual input that is typi
al forthe everyday person.An ex
iting part in s
ene viewing 
on
erns the speed and me
hanismsof per
eption, whi
h have been lively debated issues over the past de
ades.Currently, many aspe
ts of the early per
eptual me
hanisms remain un-
lear. There are however some general 
onsensus. There exists eviden
ethat the general semanti
 
ategory, sometimes 
alled gist, of a image isapprehended very qui
kly, well within a �xation after image onset butperhaps as qui
kly as 30-50 ms. Gist is rather ill-de�ned in the litera-ture but is assumed to in
lude the 
ategory of the image (e.g., indoor oroutdoor), and some information of the obje
ts and their spatial layout(Henderson & Ferreira, 2004). However, more detailed semanti
 informa-tion of individual obje
ts is not likely to be a
quired during this very briefperiod of time unless the obje
t is large and 
lose to the point of �xation.A re
ent study by Fei-Fei, Iyer, Ko
h, and Perona (2007) investigated theamount of information subje
ts 
ould glean from a set of test images fora number of short presentation times (27 to 500 ms). They found thatonly a feature level representation of the images 
ould be a
quired fromthe shortest times (27 and 40 ms). However, presentation times well be-low a typi
al �xation duration showed to be su�
ient to a
quire a �ri
h
olle
tion of per
eptual attributes� whi
h �raises to 
ons
ious memory�.There are some eviden
e that low spatial frequen
ies fa
ilitate, but are notmandatory for, initial s
ene identi�
ation, more so than high frequen
ies(Oliva & S
hyns, 1997). Moreover, there is eviden
e that s
ene identi�
a-tion is faster when obje
ts are presented in (natural) 
olor rather than ingray s
ale (Oliva & S
hyns, 2000).To understand how s
enes are per
eived, it is ne
essary to understandhow the eyes move to provide us with the information that optimallyfa
ilitates per
eption. Knowing the position of the eye and for how longit stays at ea
h position provides valuable insight into what is sent to thebrain, and thus 
omprising a basis for per
eption.Studies of s
ene per
eption through eye-tra
king have been 
ondu
tedfor over a 
entury. Initial studies were based on dire
t observations ofhow humans moved their eyes while wat
hing di�erent stimuli. Two ofthe most frequently 
ited early studies in pi
ture viewing were performedby Buswell (1935) and Yarbus (1967). Buswell used a simple but ingeniousdevi
e to re
ord eye-movements while parti
ipants viewed pi
tures, andmade a number of important observations. For example, he noted that
ertain image regions attra
ted substantially more �xations than others,and that di�eren
es in eye-movement lo
ations were large a
ross subje
ts.Besides Buswell's work, Yarbus' book about eye-movements and vision isone of the most well-
ited studies in the history of eye-movement resear
h.To a large extent, he repli
ated and expanded the �ndings of Buswell.Perhaps the most 
ited of Yarbus' observations is that the task heavily
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Figure 3.1: Typi
al �xation duration and sa

ade amplitude in s
ene view-ing. Eye-movements were re
orded from viewers looking at images pre-sented on a 19 in
h s
reen from a distan
e of approximately 70 
m.in�uen
es where people look in pi
tures. Considering the limited te
hni
alequipment used by Buswell and Yarbus, the results of these early studieswere remarkably fruitful and outline mu
h of today's work.Today, knowledge about how the eyes move in s
ene viewing is welldo
umented (
f. e.g., Rayner, 1998; Henderson, 2003; Henderson &Ferreira, 2004). For example, s
ene viewing eli
its somewhat di�erent,more un
onstrained, eye-movements than for example reading and visualsear
h. Typi
ally, both the �xation duration and sa

ade length are onaverage slightly larger in s
ene viewing. The �xation duration is usuallyaround 300 ms and the sa

ade length 2-20 degrees. However, �xationduration and sa

ade length 
an vary signi�
antly with the distributionof low-level image features, image semanti
s, task, size of stimulus, typeof stimulus, et
. Figure 3.1 illustrates histograms of typi
al distributionsof �xation duration and sa

ade amplitude. The �gures are generatedwith data 
olle
ted from subje
ts free-viewing natural images during �vese
onds.3.2 Fa
tors That In�uen
e Where We LookEye-movements are generally guided toward a small portion of the to-tal image area 
onsidered more interesting, relevant, or informative thanother regions. What makes an image region have these inherently ill-de�ned attributes largely remains an open question, 
entral in many re-
ent studies aiming to unravel the 
auses behind �xation sele
tion. Spe
if-i
ally, the interplay between bottom-up and top-down fa
tors in �xationsele
tion has been investigated in several re
ent eye-tra
king studies.In favor of a bottom-up perspe
tive, there is some eviden
e that at-tention, and hen
e eye-movements, qui
kly and e�ortlessly are guided
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ertain regions based on low-level features in the image (Treisman& Gelade, 1980). These features 
an be 
ontrast, 
olor, luminan
e, andspatial frequen
y. In agreement with this eviden
e, there are eye-tra
kingstudies showing that �xations on average land on regions with higher fea-ture densities than 
ontrol regions. For example, it is known that �xatedregions 
ontain higher 
ontrast (Reinagel & Zador, 1999; Parkhurst &Niebur, 2003; Parkhurst, Law, & Niebur, 2002; Einhäuser & König, 2003;Tatler, Baddeley, & Gil
hrist, 2005; Henderson, Bro
kmole, Castelhano,& Ma
k, 2007; Rajashekar, Linde, Bovik, & Corma
k, 2007) and edgedensity (Mannan, Ruddo
k, & Wooding, 1996; Tatler et al., 2005; Bad-dely & Tatler, 2006; Henderson et al., 2007) than 
ontrol regions. It hasalso been reported that high levels of luminan
e 
orrelate with �xationlo
ations (Tatler et al., 2005; Rajashekar et al., 2007), although lowerthan 
ontrol luminan
e at �xated regions was reported by Henderson etal. (2007).The in�uen
e of bottom-up features on eye-movements has been stud-ied through 
omputational frameworks by 
omputing a salien
y map, i.e.,the distribution of salien
y over an image, and then measure how salien
y
oin
ides with human �xations. Salien
y is de�ned as a weighted 
ombina-tion of a 
andidate set of low-level primitives, and peaks in a salien
y mappoint to regions likely to be visually attended (Itti, Ko
h, & Niebur, 1998;Itti & Ko
h, 2000). Salien
e has shown to 
orrelate with gaze positionsbetter than at random (Parkhurst et al., 2002), and has re
ently beenreported to 
oin
ide with image regions deemed as important by humanviewers (Elazary & Itti, 2008). Parkhurst et al. (2002) and Itti (2006) ar-gue that salien
y is more in�uential early after stimulus onset than laterin viewing. However, these �ndings are not supported by Tatler et al.(2005), who found that bottom-up features are equally in�uential overtime, whereas top-down in�uen
es in
rease as a fun
tion of viewing time.Sin
e the a
uity of the HVS drops qui
kly as a fun
tion of e

entri
ity1and thus prevents high frequen
ies from being registered by peripheralvision, the 
orrelation between feature 
ontent and �xation lo
ations de-
reases as a fun
tion of sa

ade length (Rajashekar et al., 2007). Tatler,Baddeley, and Vin
ent (2006) found only short sa

ades (≤ 8 degrees) tobe feature dependent, whereas longer sa

ades show no su
h tenden
ies.Obviously, the landing positions of long sa

ades are hard to predi
t giventhe feature 
ontent available in the periphery of a viewer when the sa

adeis initialized.Despite the re
ent popularity of 
omputational models of visual atten-tion dominantly relying on bottom-up features, it is an undisputed fa
tthat higher 
ognitive fa
tors are highly involved in the attentional pro-
esses pre
eding eye-movements. Some fa
tors known to in�uen
e wherepeople look are short and long term episodi
 memory and s
ene s
hema1Angular distan
e from the �xation point
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Figure 3.2: In�uen
e of task on eye-movements - a 
lassi
al example fromYarbus (1967).knowledge (
f. Henderson & Ferreira, 2004 for an ex
ellent review).An old, well known example of top-down in�uen
e on eye-movements isYarbus' experiment using a painting named 'The unexpe
ted visitor' 
on-taining a number of people in a room. Depending on the instru
tion givento the viewer prior to image onset, whi
h 
ould be to estimate peoples'ages or remember the positions of people and obje
ts in the room, di�erentviewing pattern were observed. Figure 3.2 illustrates the eye-movementpattern eli
ited by di�erent viewer instru
tions. The signi�
ant in�uen
eof 
ontext and task on eye-movements has been repli
ated and extendedby several other studies (Lipps & Pelz, 2004; Rothkopf, Ballard, & Hay-hoe, 2007; Einhäuser, Rutishauser, & Ko
h, 2008). As when viewing im-ages on 
omputer s
reens, eye-movement guidan
e in everyday a
tivitiesseems to be even more about task and 
ontext (M. Land, 2007). Di�er-en
es in eye-movement behavior have also emerged due to gender (Rupp& Wallen, 2007) (men look more toward fa
es in sexually expli
it images,whereas women look more toward genitals or the ba
kground); 
ulturaldi�eren
es (Chua, Boland, & Nisbett, 2005) (�Westerners attend more tofo
al obje
ts, whereas East Asians attend more to 
ontextual informa-tion.�); and between experts and novi
es (Law, M. Atkins, Kirkpatri
k,
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kenzie, 2004). All this despite being engaged in the sametask and 
ontext. Moreover, it is also well known that eye-movements arere�e
ted by linguisti
 input; this is extensively resear
hed using the visualworld paradigm, in whi
h the interplay between, for example, when anobje
t is mentioned and when this obje
t is �xated is investigated. Evi-den
e of linguisti
 
ontrol of eye-movements 
an be found in anti
ipatoryeye-movements where obje
ts expe
ted to be uttered are gazed upon, orwhen the mentioning of an obje
t eli
its eye-movements to a part of ablank s
reen where this obje
t previously was lo
ated (Johansson, Hol-sanova, & Holmqvist, 2006). Clearly, su
h eye-movements originate frominternal me
hanisms.Lately, the salien
y map hypothesis as well the empiri
al eviden
eshowing a 
oupling between 
ertain low-level features and �xations havebeen 
hallenged by a series of studies. Einhäuser and König (2003), for ex-ample, show that moderate 
hanges in lo
al 
ontrast at a number of imageregions do not 
hange where subje
ts �xate, as would be expe
ted by abottom-up predi
tor tuned toward 
ontrast. Moreover, it has been shownthat bottom-up predi
tors su
h as the one presented by Itti et al. (1998)easily 
an be 
ognitively over-ridden by 
hanging the task instru
tions dur-ing viewing (Underwood, Foulsham, Loon, Humphreys, & Bloy
e, 2006;Einhäuser et al., 2008). Interestingly, experiments by Henderson et al.(2007) report that �xated lo
ations not only 
ontain high densities of 
er-tain low-level features, but also are judged as more semanti
ally impor-tant than 
ontrol regions. Together, these results raise questions aboutthe 
auses behind the measured 
orrelations between low-level featuresand �xated image 
ontent. One spe
i�
 question is whether this e�e
tis simply 
orrelative or in fa
t 
ausal. A 
ausal e�e
t would imply that�xation lo
ations are 
hosen as a dire
t 
onsequen
e of the signal strengthof one or a set of 
ombined low-level primitives. A 
orrelative e�e
t, onthe other hand, would mean that �xations land on regions that happento 
ontain high feature densities, but are in fa
t guided to these regionsby other, higher level me
hanisms. For example, obje
ts may be �xatedsin
e they 
ontribute to the semanti
 representation of the s
ene, and notbe
ause they happen to 
ontain high 
ontrast. It is hardly spe
ulative to
laim that 
ertain obje
ts are �xated due to their semanti
 
ontributionto the s
ene, and not mainly be
ause they happen to 
ontain, e.g., high
ontrast or edge density.A well known observation is that eye-movements (positions) are stronglybiased to the 
enter of the display (see e.g., Tseng, Carmi, Cameron, &Munoz, 2007; Tatler, 2007). This tenden
y is shown in Figure 3.3, whi
hplots �xation lo
ations from eight subje
ts free-viewing 30 images. Inter-estingly, Tatler (2007) found this 
entral bias to be largely independentfrom both feature distribution and task. Instead, he suggests three alter-native explanations: �First, the 
enter of the s
reen may be an optimal
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Figure 3.3: Central bias e�e
t of eye-movements. Ea
h dot represents a�xation.lo
ation for early information pro
essing of the s
ene. Se
ond, it may sim-ply be that the 
enter of the s
reen is a 
onvenient lo
ation from whi
h tostart o
ulomotor exploration of the s
ene. Third, it may be that the 
en-tral bias re�e
ts a tenden
y to re-
enter the eye in its orbit.�. Besides thatgaze positions are biased toward the 
enter of the display, previous andfuture eye-movements in�uen
e where we look (Tatler & Vin
ent, 2008, inpress). For example, long �xations tend to be followed by long �xationsand we have a tenden
y to exe
ute the 
urrent sa

ade in the same or the180 degree opposite dire
tion as the previous sa

ade. Overall, Tatler andVin
ent suggest a global and lo
al relo
ation of gaze; long global sa

adestake us to new image regions whereas short sa

ades are employed in lo
als
anning to s
rutinize a limited image area in detail.3.3 SummaryWhat 
ontrols where we look and for how long we look there? There isample eviden
e that eye-movement guidan
e in s
ene viewing is deter-mined by a 
ombination of bottom-up, external fa
tors, i.e., the physi
alproperties that 
ompile the s
ene, and top-down, internal fa
tors, whi
hre�e
t a 
ompli
ated interplay between higher 
ognitive pro
esses. How-ever, the spatial and temporal manners in whi
h these fa
tors intera
t arestill elusive. Currently, the attentional me
hanisms behind eye-movement
ontrol are slowly starting to unravel, but unanimity among explanationsis surprisingly low 
onsidering the large number of papers published onthe subje
t.
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Chapter 4E�e
ts of ContrastManipulations on GazeLo
ations
PREVIOUS 
hapters have shown that there exists a large body ofresear
h on gaze behavior in natural images, and that the resultsare somewhat in
ongruent: on the one hand, people emphasize the
ontribution of image based salien
y to gaze guidan
e while at the sametime it is known that top-down fa
tors largely in�uen
e where people look.It has be argued that one of the problems in eli
iting the 
auses behind�xation sele
tion is the la
k of experimental manipulation of the naturalimages (e.g., Henderson, 2007). While it is 
ommon to use di�erent view-ing instru
tions, whi
h are known to in�uen
e eye-movements, to arguefor the important role of higher level fa
tors to gaze guidan
e, it is mu
hless 
ommon to use a neutral task and instead alter the low-level 
on-tent of the image. An ex
eption is the work done by Einhäuser and König(2003) who used a new experimental paradigm where natural images were
ontrast manipulated at �ve randomly 
hosen points; 
ontrast was eitherde
reased or in
reased smoothly around these points. Eye-movementswere re
orded from viewers wat
hing the 
ontrast manipulated imagesand an analysis revealed that 
ontrast by itself was not a good predi
torof �xation lo
ations. They observed that moderate 
hanges in 
ontrasta�e
ted �xated lo
ations very little, whereas strong redu
tions in 
ontrastattra
ted �xations. This is in
onsistent with previous resear
h that founda signi�
ant 
orrelation between high 
ontrast and image 
ontent at �x-ations. However, their results were disputed by Parkhurst and Niebur(2004), who pointed to a number of methodologi
al �aws. First, the same
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ts of Contrast Manipulations on Gaze Lo
ationsimage (with slight modi�
ation) was seen by ea
h subje
t multiple times.This gave subje
ts the possibility to en
ode the images as well as the lo
a-tions of the manipulated image pat
hes into memory over the trials, andpotentially use this top-down information during later inspe
tions. Se
-ond, Parkhurst and Niebur 
riti
ized the la
k of stimulus 
ontrol; while
hanging the lo
al 
ontrast, Einhäuser and König also altered the lo
alluminan
e in this regions, making is di�
ult to relate the 
hanges in �x-ation lo
ations to 
ontrast manipulations alone. Finally, Parkhurst andNiebur 
riti
ized the introdu
tion of undesired 
hanges in se
ond orderstatisti
s due to �rst-order 
ontrast manipulations. Spe
i�
ally, they ar-gue that 'texture 
ontrast', de�ned as the '
ontrast of the 
ontrast', wasaltered and thus a
ted as a 
ausal attra
tor for �xations. In fa
t, using abottom-up model (Itti et al., 1998) tuned toward texture 
ontrast to pre-di
t �xations on the image set used by Einhäuser and König, Parkhurstand Niebur found texture 
ontrast to predi
t �xations quite well.Despite the 
riti
ism by Parkhurst and Niebur, we believe that properuse of the 
ontrast manipulation paradigm 
an serve as a useful tool todisso
iate obje
ts from their low-level signal strength, and therefore elu-
idate possible relationships between gaze guidan
e and image featuresfrom a new perspe
tive. In the 
urrent and following two 
hapters, wewill use 
ontrast manipulated images to estimate the relationship betweenbottom-up and top-down pro
essing on eye-movements in image view-ing; eye-movement will be measured from subje
ts viewing natural im-ages with manipulated low-level statisti
s while engaged in rather neutraltasks (�free-view the images�, �inspe
t the images 
arefully�). We will ad-dress the issues brought up by Parkhurst and Niebur in our experimentaldesign.This 
hapter presents two experiments. In the �rst, Experiment I, eye-movements are 
olle
ted from viewers wat
hing 39 images. Thirty of theseare shown in their original form whereas three of the images are shownboth with and without 
ontrast manipulations. Ea
h of the three imagesis displayed in three version: One unpro
essed and two versions that are
ontrast manipulated at lo
ations spe
i�ed by the experimenter. In Ex-periment II, 
ontrast is modi�ed 
ontingent on where people looked in theunpro
essed images from the �rst experiment. A new group of test sub-je
ts then views these images under the same experimental 
onditions asin Experiment I. Besides investigating how 
ontrast manipulation a�e
tsgaze behavior in these experiments, we analyze how 
ontrast statisti
saround gaze positions are a�e
ted by the image manipulations.4.1 Implementing Contrast ManipulationsVariable image 
ontrast is implemented in the wavelet domain (
f. Ap-pendix A) by multiplying a wavelet de
omposed image with a Gaussian
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(a) Wavelet mask used to introdu
ea varying 
ontrast. Five levels ofwavelet de
omposition were used inthis example.PSfrag repla
ementsNormalized 
ontrast(b) Variable 
ontrast image 
om-puted by using the mask in (a).Figure 4.1: Implementing a varying image 
ontrast. The 
ontrast issmoothly redu
ed away from the 
hosshair in the upper left 
orner.mask. Su
h a mask with �ve levels of de
omposition is exempli�ed in Fig-ure 4.1(a). The brightest areas in the mask represent unit values whereasthe dark areas represent values 
lose to zero. In order to a
hieve a smooth
ontrast degradation, the mask is generated by 
entering a 2-D Gaussianfun
tion with standard deviation λσ in ea
h wavelet subband at the posi-tion marked by a 
rosshair in Figure 4.1(b). λ denotes the de
ompositionlevel, where λ = 1 represents the highest frequen
y level. Figure 4.1(b)illustrates the resulting variable 
ontrast image after inverse transforma-tion. If instead the region around the 
rosshair is to be degraded, ea
hGaussian fun
tion is inverted, normalized to unit height, and its standarddeviation is set to (L − λ + 1)σ. L denotes the number of de
omposi-tion levels. The 
hoi
e of parameters (σ and number of de
ompositionlevels) were experimentally tuned to introdu
e noti
eable blur in desiredparts of the image. When implementing varying 
ontrast in 
olor images,ea
h 
olor 
omponent (R,G, and B) was manipulated separately as justdes
ribed.4.2 Experiment I � Manually Controlled Con-trast Redu
tionThe purpose of Experiment I is to investigate how eye-movements area�e
ted by 
ontrast manipulations. We observe qualitatively how gazeguidan
e to obje
ts with high 
ognitive salien
y, su
h as human fa
es,interplay with lower level features su
h as high/low image 
ontrast.
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ts of Contrast Manipulations on Gaze Lo
ations4.2.1 Subje
tsEight naive subje
ts (two females, 32.6±7.6 (M ± SD) years old), studentsand sta� at Lund University, volunteered to take part in the experiment.All subje
ts had normal or 
orre
ted-to-normal vision.4.2.2 StimuliIn total 39 images (in gray s
ale and 
olor and of various dimensions)were used in the experiment. They are 
ommonly used by the image
ompression 
ommunity and depi
t a range of di�erent image types su
has natural outdoor s
enes, humans, and 
omputer generated images, asshown in Figure 4.2. Among the images, there are three images that ea
his represented in three di�erent versions: One original version and twoversions with di�erent 
on�gurations of variable spatial 
ontrast. Largerprints of these nine images 
an be seen in the left 
olumns in Figures 4.3,4.4 and 4.5. The reason for using more images than those with manipu-lated 
ontrast was threefold. First, sin
e three di�erent versions of three ofthe images are shown during the presentation, there will be undesirablememory-driven in�uen
es on eye-movements if the versions were showndire
tly after ea
h other. To alleviate this e�e
t other images are mixedin with the 
ontrast manipulated versions. Se
ond, eye-movements are
olle
ted from all images in preparation for the se
ond experiment where
ontrast is manipulated 
ontingent on gaze density instead of subje
tivede
isions. Third, re
orded gaze positions from unaltered images are usedas a baseline measure during the analysis in Experiment II.In the 
urrent experiment high and low 
ontrast regions were 
ho-sen to 
ompose the fa
ial/non-fa
ial regions in the two images 
ontainingfa
es (Barbara and Kodak) and two arbitrarily de�ned regions in Peppers,whi
h 
ontains no obvious region of interest. Contrast manipulationswere implemented as des
ribed in the previous se
tion by 
entering Gaus-sian/inverted Gaussian fun
tions with σ = 0.10M at the desired regions.
M denotes the horizontal image dimension. Five levels of wavelet de
om-position were used.4.2.3 Pro
edureSubje
ts were seated in front of a 19 in
h (37.7×30.5 
m a
tive displayarea) �at s
reen (of resolution 1024×768 and an update rate of 75 Hz)where the s
reen area subtended a visual angle of 27.7 degrees horizontallyand 22.5 degrees verti
ally. They were asked to pla
e their heads on a 
hinrest positioned 76.5 
m from the s
reen.A session started with a 13-point 
alibration and after verifying thea

ura
y of the 
alibration, the 39 test images were displayed one byone in a random order. Ea
h image was displayed for �ve se
onds and
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ts of Contrast Manipulations on Gaze Lo
ationsbetween two subsequent images a mid-gray image was shown for one se
-ond. Images were displayed in full s
reen while maintaining their aspe
tratio. No pre-stimulus �xation marker was used to 
onstrain the positionof subje
ts' initial gaze position.Subje
ts were given no spe
i�
 task and were asked to `free-view' theimages. Before a session started, they were introdu
ed to the presentationsetup and were shown a trial presentation with images not 
ontained inthe set of test images. Eye-movements were re
orded mono
ularly withan iView X Hi-Speed eye-tra
ker, sampling gaze positions at 240 Hz withgaze position a

ura
y 0.2◦. A Matlab program using A
tiveX s
ripting to
ommuni
ate with the Qui
ktime media player was developed to 
ontrolthe eye-tra
ker, display the stimuli and 
ontrol the a

ura
y in timingthroughout the experiments.4.2.4 Data representationSubje
ts' visual interest is represented and visualized by 
entering a 2-DGaussian fun
tion at the lo
ation of ea
h gaze point and then superimpos-ing all fun
tions belonging to the set of gaze points to be visualized. Thevarian
e of ea
h Gaussian fun
tion is set su
h that the full width at halfmaximum height spans the foveal and para-foveal regions (approximately�ve degrees of visual angle) of a subje
t viewing the stimuli presenta-tion. The aggregate Gaussian fun
tions represent the gaze density andare therefore referred to as gaze density fun
tions (GDFs). Examples ofGDFs represented as so 
alled heat maps are shown in the middle 
olumnsof Figures 4.3 through 4.5.4.2.5 ResultsFigures 4.3, 4.4 and 4.5 show di�erent versions of the three manipulatedtest images (�rst 
olumn). The se
ond and third image 
olumns depi
tGDFs generated by gaze positions 
olle
ted during short time intervals;the se
ond 
olumns show where attention is lo
ated after subje
ts typi
allyhave laun
hed their �rst sa

ade (300-350 ms) and the third 
olumnsvisualize the distribution of subje
ts' gaze lo
ations after about twi
e thistime. The fourth image 
olumns 
orrespond to the 
umulative distributionof GDFs 
omposing a representative set of 
olle
ted gaze positions fromall viewers over the whole �ve se
onds of viewing.First, we observe that introdu
ing a variable 
ontrast a�e
ts the waysubje
ts look at an image; total dwell time is in
reased in regions remainedin high 
ontrast and de
reased in regions redu
ed in 
ontrast. This e�e
tis present in all three tested images. Se
ond, from the se
ond and third
olumns in Figures 4.3-4.5, it 
an be observed that the lo
ation of the�rst sa

ade target seems largely una�e
ted by a 
hange in image 
on-trast. Rather is it 
onsistent, even when the sa

ade is dire
ted toward
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ationsPSfrag repla
ementsmsmsPSfrag repla
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ementsmsms 750 − 800 msPSfrag repla
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ementsmsmsFigure 4.5: Test image Peppers.a region where the image 
ontrast is heavily degraded. In the images
ontaining fa
es, eye-movements are qui
kly dire
ted toward the blurredfa
ial regions. Even in the Peppers image, whi
h 
ontains no obviousregions of interest, subje
ts' gaze dire
tions are initially not drawn to theregions of high 
ontrast but instead follow a similar path as in the same,unaltered image. The third observation 
on
erns the initial sa

ade la-ten
y; GDFs reveal that the initial sa

ade is laun
hed more qui
kly whenit is dire
ted dire
ted toward a high 
ontrast region and at the same timeaway from a low 
ontrast region. Also, the initiation of a sa

ade seems toslow down when the sa

ade target is of low 
ontrast relative the overallimage.The rightmost 
olumns in Figures 4.3-4.5 illustrate the lo
al image
ontrast, whi
h for a pixel at lo
ation (m,n) is de�ned as the standarddeviation within a 15×15 pixel square 
entered at (m,n). These illustra-tions 
learly show that 
ontrast per se does not have a dominant in�uen
eon the lo
ation of the initial sa

ade target, but seems to shift the overallgaze density toward regions kept in high 
ontrast.4.3 Experiment II - Gaze Density ControlledContrast Redu
tionIn this se
ond experiment, we further investigate the results from Experi-ment I by asking the following questions: 1) What happens with subje
ts'gaze behavior if regions known to attra
t overt visual attention are de-
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PSfrag repla
ementsmsPSfrag repla
ementsmsPSfrag repla
ementsms
PSfrag repla
ementsmsPSfrag repla
ementsmsPSfrag repla
ementsmsFigure 4.6: Variable 
ontrast images used in Experiment II.graded in 
ontrast? 2) How do these manipulations a�e
t 
ontrast statis-ti
s around viewers' positions of gaze? The reason for degrading regionswith a known high probability of attra
ting gaze is to quantify how fea-tures and semanti
s intera
t to guide eye-movements toward informativeregions. Sin
e the experimental setup and pro
edure in Experiment IIfollow that in Experiment I, only di�eren
es from the �rst experimentare des
ribed below. If nothing else is mentioned it is assumed that the
onditions from Experiment I are ful�lled.4.3.1 Subje
ts15 naive subje
ts (nine females) of ages 30.2±16.1 (M ± SD) years.4.3.2 StimuliStimuli 
onsisted of six of the images used in Experiment I, ea
h havingits 
ontrast modi�ed in in a

ordan
e to the gaze density (as found inthe �rst experiment) from all viewers between t = 500−600 ms su
h thatregions of high gaze density were redu
ed, whereas other regions were keptin high 
ontrast. Contrast modi�
ations were implemented as des
ribedin Se
tion 4.1, but with a GDF repla
ing the single Gaussian fun
tion inthe wavelet mask. The resulting six stimuli images are shown in Figure4.6. These images were presented to the subje
ts. Again, the imageswere shown with another 35 images, not in
luded in the 
urrent analysis.

t = 500−600 ms was 
hosen sin
e the similarity between di�erent viewers'
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Figure 4.7: Inter-subje
t dispersion a
ross eight people free viewing the 33original test images from Experiment I. Error bars span one ± one standarddeviation.gaze positions typi
ally peaks around that time (
f. Tatler et al., 2005),hen
e identifying regions of parti
ular visual interest. Figure 4.7 
on�rmsthis observation for data 
olle
ted from all 33 (unpro
essed) test imagesin Experiment I. The �gure illustrates the degree to whi
h subje
ts' gazepositions 
oin
ide as a fun
tion of time after image onset, de�ned by theinter-subje
t dispersion, St, whi
h at time t is 
al
ulated as
St =

1

P

∑

i=1,2,...,P

Gi′

t,max −G
i′

t (mi, ni)

Gi′
t,max −G

i′
t,avg

(4.1)where Gi′

t (m,n) denotes a GDF at time t that has been generated by P−1gaze positions 
olle
ted during the time interval [t−∆t, t+∆t], ex
ludingthe ith gaze lo
ation (mi, ni). Gi′

t,max and Gi′

t,avg denote the maximum andaverage value of Gi′

t (m,n), respe
tively. To obtain a robust measure ofdispersion at time t, ∆t was set to 40 ms. Following this notation, St = 0indi
ates that all gaze positions are lo
ated at the same spatial lo
ation,whereas St = 1 represents a random distribution of gaze positions. Thebottom 
urve depi
ts the inter-subje
t dispersion a
ross the 
olle
ted gazepositions. Noti
e the dip in dispersion around 500 ms. As a 
ontrol, thetop 
urve in Figure 4.7 represents simulated random viewers (whose gazepositions were drawn from a uniform distribution).



4.3 Experiment II 354.3.3 ResultsFigure 4.8(a) shows the inter-subje
t dispersion between viewers wat
hingthe images in Figure 4.6. As for the unpro
essed images in Experiment I,similarity peaks around 500 ms, whi
h typi
ally 
oin
ides with subje
ts'�xation lo
ations after the �rst voluntary eye-movement. This indi
atesthat, after redu
ing the 
ontrast in regions where people normally lookearly after image onset, subje
ts still largely agree on where to initiallymove their eyes. However, we 
annot tell whether people look at similarregions as the viewers from Experiment I or if they have de
ided to lookat a region elsewhere in the image. One way to approa
h this issue is byanalyzing the image 
ontent at �xation. Spe
i�
ally, how is �xated image
ontent 
orrelated to 
ontrast densities?The analysis of 
ontrast statisti
s was limited to gray images. Imagespresented in 
olor were therefore 
onverted to gray images through anRGB to YUV transformation, where the Y 
omponent 
omposed the grayimage after transformation. Ea
h image was then resized to mat
h thedisplay resolution it was presented at. After resizing, a pixel subtendedthe same visual angle in all images. Contrast at ea
h pixel lo
ation (m,n)was de�ned as the lo
al standard deviation of pixel intensities within asquare region 
entered at (m,n). We used squares of size 15×15 pixels.Symmetri
 padding was used at the image borders. In the analysis below,we have extra
ted the average 
ontrast from 35×35 pixel squares (roughly
orresponding to the foveal part of the visual �eld) around gaze positionsre
orded during a range of temporal interval, and normalized it with theaverage 
ontrast of the whole image. Other square sizes for 
ontrast 
al-
ulation and analysis of 
ontrast were tested with similar results as thosepresented below.Figure 4.8(b) presents how 
ontrast statisti
s around viewers' gaze po-sitions 
hange as a fun
tion of viewing time t. Ea
h box represents theaverage normalized 
ontrast around ea
h gaze position re
orded duringtime [t−∆t, t + ∆t]. The analysis reveals that after about 500 ms, gazepositions land on image regions with lower than average 
ontrast, and areafter a while drawn to regions with higher than the average 
ontrast. Thissuggests that the region(s) attra
ting many subje
ts' gaze some hundredmillise
onds after stimulus onset indeed are those where 
ontrast has beendegraded. For 
omparison, normalized 
ontrast at gaze lo
ations 
olle
tedfrom the 33 test images in Experiment I is given in Figure 4.9. It 
on-�rms �ndings from earlier work that 
ontrast is elevated at gaze lo
ations
ompared to random lo
ations, whi
h give a unit normalized 
ontrast asindi
ated by the solid red line in the �gure. The low values of 
ontrastright after image onset o

ur be
ause subje
ts have not yet 
ompletedtheir �rst voluntary eye-movement. An interesting, and maybe somewhatsurprising observation from Figures 4.8(b) and 4.9 is their large di�eren
esin normalized 
ontrast after a few se
onds of viewing. This happens sin
e
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t dispersion. Error bars span one ± one stan-dard deviation.
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s at gaze. Error bars span ±1 standarderror.Figure 4.8: Statisti
s at gaze positions 
olle
ted from 6 subje
ts free view-ing the 6 variable 
ontrast test images from Experiment II.
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Figure 4.9: Statisti
s at gaze positions 
olle
ted from 8 subje
ts free view-ing the 33 original test images from Experiment I.visually interesting regions are positioned 
lose to the 
enter of the image,where �xations generally are biased (Parkhurst et al., 2002; Tatler, 2007).4.4 SummaryEarlier studies have shown that while free-viewing images people tendto gaze at regions with a high lo
al density of bottom-up features su
has 
ontrast. In parti
ular, this tenden
y was found to be more empha-sized during the �rst few �xations after image onset. In this 
hapter, weused a new experimental paradigm to investigate how gaze lo
ations are
hosen; image 
ontrast was modi�ed and we measured how this a�e
tedeye-movement behavior during free viewing. Results showed that gazedensity overall is shifted toward regions presented in high 
ontrast overthose redu
ed in 
ontrast. However, initial sa

ade targets are largelyuna�e
ted by a 
hange in 
ontrast and 
ertain image regions seem to at-tra
t early �xations regardless of display 
ontrast. These results suggestthat 
ognitive fa
tors, instead of image features, are dominant in guidingeye-movements early after image onset.
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Chapter 5E�e
ts of ContrastManipulations and ImageSemanti
s on Fixation Behavior
SINCE the 
ontrast manipulation paradigm proved to be an inter-esting and e�
ient experimental method to study gaze 
ontrol inimages, we 
ontinue in this 
hapter to pursue the 
auses behind gaze
ontrol using this paradigm. We make a number of important modi�
a-tions and extensions 
ompared to the previous 
hapter. First, it is inves-tigated how image semanti
s in�uen
e the relative 
ontribution of lower-,and higher level 
ognitive me
hanisms to viewing behavior. We propose amethod to quantify image semanti
s dubbed semanti
 information disper-sion (SID). Se
ond, Gaussian pyramids, instead of wavelets, are used toimplement 
ontrast manipulations be
ause they yield smoother 
ontrastredu
tions and fewer undesired 
ontrast artifa
ts. Third, we analyze eventbased measures in the form of �xations instead of solely observing peo-ples' gazing behavior. Fourth, sin
e edge density and 
ontrast arguablyare the two most investigated low-level features in earlier works, both ofthese features are analyzed in this 
hapter. Fifth, the level of dis
rimina-tion for 
ontrast and edge density between �xated and 
ontrol lo
ationsis analyzed using re
eiver operating 
hara
teristi
s (ROC), whi
h latelyhas arisen as a popular method in su
h analyses. Moreover, we use aslightly modi�ed viewing instru
tion to alleviate the undesired top-downadoptions reported by parti
ipants in the previous 
hapter. Finally, dueto the importan
e fa
es have in human 
ommuni
ation and intera
tion,one se
tion is devoted to the e�e
t 
ontrast manipulations have on fa
eper
eption.



40 Contrast and Fixation Lo
ationsIn this 
hapter, we will investigate how 
ontrast and edge density 
on-tribute to �xation sele
tion, and how this e�e
t varies over time. Unlikethe majority of previous studies, test images are 
ontrast manipulatedprior to display. Meanwhile, we aim to keep their semanti
 
ontent in-ta
t. We believe that by de
oupling obje
ts (or regions) from their low-level signal strength, an analysis is more likely to eli
it 
ausal relationshipsbetween where subje
ts �xate and the reason they 
hoose to look there.Besides manipulating the image statisti
s, three image 
ategories are used:Images naturally embedding fa
es, images with man-made obje
ts, andimages depi
ting s
enes with neutral semanti
s (trees, leaves, et
.). Ea
h
lass is 
hosen to represent images with di�erent semanti
 informationdispersion (SID), a 
on
ept we de�ne as follows:De�nition 1 Semanti
 information dispersion (SID) measures how s
at-tered the information is that subje
tively best 
onveys the information ofthe whole image.For example, a fa
e generally 
ontributes more to the 
ore meaning of animage then does a leaf on a tree. Consequently, an image has a low SIDif a small aspe
t of the image (su
h as a fa
e) is judged to 
ontain themajority of 
onveyed information. The rationale for using di�erent image
ategories is to introdu
e a varying top-down in�uen
e without using anexpli
it task, a strategy employed by a range of earlier works. For example,the task look at regions with uniform texture would yield a low 
orrelationbetween edge density and �xated image 
ontent, but would hardly revealmu
h about the me
hanisms behind gaze guidan
e. To verify that theimages 
hosen for the experiment indeed represent di�erent levels of SID,an experiment is performed where subje
ts are asked to identify a �xedsize region that best 
onveys the information of the whole image. Theaverage overlap between the regions 
hosen by the subje
ts is then usedto estimate the SID.The remainder of this 
hapter is organized as follows: Se
tion 5.1des
ribes the materials and methodology of the eye-tra
king and datare
ordings. Spe
i�
ally, we des
ribe the images and how they are exper-imentally modi�ed, the experimental setup, and the pro
edure for data
olle
tions. Results are given in Se
tion 5.2 and dis
ussed in Se
tion 5.3.5.1 Methods5.1.1 Test imagesThree semanti
 image 
ategories are used. In the �rst 
ategory, we useimages 
ontaining fa
es; it is known that fa
es are very semanti
ally im-portant image regions and therefore frequent �xation targets (e.g. Yarbus,



5.1 Methods 411967). The se
ond 
ategory 
omprises images with neutral s
ene seman-ti
s and depi
ts s
enes with motives from nature su
h as trees and bushes(from Einhäuser & König, 2003), grass, and a pi
ture of a bri
k wall.The last 
ategory falls between the �rst two 
ategories and 
ontains man-made obje
ts embedded in natural environments. Six images from ea
h
ategory are used. Images were 
onverted to eight bit gray s
ale and re-sized to dimension 1024 × 768 through the Matlab fun
tions rgb2grayand imresize (bilinear), respe
tively. The test images are shown in Fig-ure 5.1. They 
omprise: Fa
e images (top two rows), images with neutralsemanti
s (row three and four), and images 
ontaining man-made obje
ts(bottom two rows). As 
an be seen, ea
h image 
omes in two versionswhere 
ontrast has been modi�ed di�erently.Fa
e images are modi�ed to form two sub
ategories. In the �rst sub-
ategory fa
es were retained in high 
ontrast, whereas other regions weregra
efully redu
ed in 
ontrast away from the fa
ial region. In the se
ondsub
ategory, these 
ontrast modi�
ations were inverted; only the fa
ial re-gions were redu
ed in 
ontrast. Figure 5.2 exempli�es this. For the othertwo 
ategories, ea
h image was transformed into two di�erent versions asfollows: Four 
andidate positions, same for all images, were available asshown in Figure 5.3. One of these positions was sele
ted at random, andthe �rst version was generated by redu
ing the 
ontrast smoothly awayfrom this position. The other version was generated in a similar manner,but now with the 
ontrast being redu
ed away from the point diagonallyopposite to the randomly sele
ted position.5.1.2 Image manipulationContrast manipulation was implemented by means of variable resolutionimage pro
essing using Gaussian pyramids. A �ve level pyramid was 
re-ated by iterative lowpass �ltering and downsampling of the original image,followed by upsampling and (bi-linear) interpolation ba
k to the originalimage resolution (1024 × 768). Lowpass �ltering was implemented byan ideal �lter with a 
uto� frequen
y adjusted to avoid aliasing given asubsampling fa
tor of two pixels. These operations resulted in a 
olle
-tion of images where the original image 
omprised the bottom layer andhigher layers were 
opies of the original image with in
reasingly lower 
on-trasts. To 
reate images with variable 
ontrast, high resolution regionswere sele
ted from the bottom layer of the pyramid, whereas low resolu-tion regions originated from the higher layers in the pyramid. Regionsfrom di�erent levels were then synthesized through a Gaussian shapedblending fun
tion. Let Iℓ(m,n) denote an image at level ℓ in the lowpasspyramid. m and n span the image dimensions and ℓ = {1, 2, 3, 4, 5}, where
ℓ = 1 denotes the bottom layer 
omprising the original image. Then theimplementation 
an be des
ribed by Algorithm 1. I(m,n) is the output
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PSfrag repla
ementsms (a)PSfrag repla
ementsms (b)PSfrag repla
ementsms (
)Figure 5.2: Contrast manipulation for fa
e images. (a) shows the originalimage. In (b), the 
ontrast is de
reased away from the marker in (a),positioned over the woman's fa
e. The �gure in (
) illustrates the 
asewhere 
ontrast instead is redu
ed toward the fa
e area by inverting the
ontrast manipulation fun
tion in (b).
PSfrag repla
ementsms (a)PSfrag repla
ementsms (b)PSfrag repla
ementsms (
)Figure 5.3: Contrast manipulation for images not 
ontaining fa
es. Figure(a) shows the original image with four 
andidate markers. One of thesemarkers is 
hosen at random, and (b) illustrates the 
ase when 
ontrast isredu
ed away from this marker (in upper left 
orner). In Figure (
), themarker diagonally opposite the randomly pi
ked one is instead used as thepoint from were 
ontrast is redu
ed.image, and G(m,n) denotes a Gaussian fun
tion

G(m,n) = e
−

(

(m−mi)
2

2σ2
m

+
(n−ni)

2

2σ2
n

) (5.1)where (mi, ni) represents the point where the Gaussian fun
tion is 
en-tered, i.e., the point from where the image is in
reasingly redu
ed in 
on-trast. The ·̂ operator denotes normalization to unit height. To introdu
e anoti
eable amount of blur, σm and σn were set to 1024/2 and 768/2 pixels,respe
tively. These parameters were 
hosen simply by pilot testing where
ontrast redu
tion was deemed as signi�
ant without 
hanging the seman-ti
s of the image. It has been pointed out in an earlier study (Parkhurst &Niebur, 2004), that when using 
ontrast manipulations to study �xationsele
tion, it is important to implement smooth 
ontrast degradations toavoid undesired variation in higher order image statisti
s, whi
h 
ould ex-plain possible 
hanges in �xation behavior. Our implementation a

ounts
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ationsAlgorithm 1 Implementing a variable 
ontrast1: I(m,n) = I1(m,n) {Initialize}2: for ℓ = 2 to 5 do3: I(m,n)← I(m,n) · Ĝ(m,n) + Iℓ(m,n) · (1− Ĝ(m,n))4: end forfor this observation.Contrast manipulation for fa
e images was implemented with the aboveparameters when 
ontrast was redu
ed away from the fa
e. However, inthe opposite 
ase, when 
ontrast was redu
ed toward the fa
e region (thefa
e was blurred), then the blending fun
tion was modi�ed as
Ginv(m,n) = 1−G(m,n), {σm, σn} = {1024/23, 768/23} (5.2)in order to better limit the 
ontrast redu
tion e�e
t to the fa
ial region.5.1.3 Subje
ts13 naive test subje
ts (25.7±4.9 (M±SD) years old, one female) werere
ruited to parti
ipate in the experiment. Their visions were normal or
orre
ted to normal. Compensation was given in the form a lottery ti
ketand subje
ts 
onsented to use of their data by signing a form.5.1.4 Experiment I: Viewing 
ontrast manipulated im-agesContrast manipulated images from all three 
ategories were shown oneat the time in full s
reen. Before the presentation of an image, a 
entraldynami
 �xation marker in the form of solid bla
k 
ir
le was shown on amid-gray s
reen. The diameter of the 
ir
le was de
reasing as a fun
tion oftime. After one se
ond, the 
ir
le disappeared and an image was displayedin full s
reen during a time randomly drawn from the interval t = [3, 4, 5, 6]se
onds. This pro
edure was repeated for all images, whi
h were shownin random order. Varying display time was used to prevent subje
ts fromadopting top-down strategies su
h as systemati
 s
anning of the images.Prior to ea
h image was displayed, subje
ts were asked to look at the�xation marker.The instru
tion given to the subje
ts was to please study the images
arefully. Supposedly, being a fairly general instru
tion, it prevents sub-je
ts from adopting individual viewing strategies that try to guess thepurpose of the tests. For example, we saw in an earlier study (Nyström &Holmqvist, 2007b), where subje
ts were given the more neutral instru
-tion solely to wat
h the images, that subje
ts adopted a top-down strategyavoiding to look at the blurred regions a bit into the presentation. We
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tion used in this 
hapter will alleviate thisundesirable adaption.5.1.5 Experiment II: Image semanti
s evaluationIn a se
ond experiment, that followed right after the �rst, subje
ts wereshown the 18 unpro
essed (no 
ontrast manipulation) images (in eight bitgray s
ale of dimension 1024 × 768), one by one in full s
reen. For ea
himage, their task was to position a box, 
ontrolled by the mouse 
ursor,over a region in the image that had the highest semanti
 importan
e.The exa
t instru
tion was given in writing before the experiment started:'Position the box over a region that best 
onveys the information of thewhole image'. There was no time 
onstraint to �nish this task, and whenthe �nal box position was de
ided, a mouse 
li
k ended the semanti
 ratingto pro
eed to the next image. The size of the box was 
hosen large enoughto en
apsulate whole obje
ts or parts of obje
ts, so that the meaning ofthe box 
ontent would be 
lear without a

ess to the whole image. Weused a box size that spanned four degrees (128 × 128 pixels). Subje
tswere not informed about Experiment II until after the �rst experimentwas 
ompleted.5.1.6 Eye-tra
kingEye-tra
king was preformed mono
ularly during both experiments withan SMI iView X Hi-Speed 1250 Hz system. Subje
ts were seated 0.67 maway from a 19 In
h Samsung GH19PS s
reen with the resolution andupdate rate set to 1024 × 768 pixels and 60 Hz. The physi
al dimen-sion of the s
reen was 380 × 300 mm, spanning 32×25 degrees of visualangle. Ea
h re
ording started with a 13-point 
alibration. Stimuli pre-sentation, 
ommuni
ation with the eye-tra
ker, and data analysis wereperformed with Matlab and its Psy
hophysi
s Toolbox Version 3 exten-sion (Brainard, 1997). A sa

ade based dete
tion s
heme developed bySMI (IDF
onvert.exe) was used to �lter out event based measures su
h as�xations and sa

ades. Gaze positions were 
lassi�ed as sa

ades if theeye velo
ity was ≥ 75◦/s and if the sa

ade duration lasted ≥ 10 ms. Ifthese assumptions were violated, and the eye was stable for ≥50 ms, a�xation was dete
ted.5.2 Analysis and ResultsThe analyses address the following questions: Are 
ontrast and edge den-sity di�erent at �xated regions 
ompared to 
ontrol regions for 
ontrastmanipulated images? Do 
ontrast manipulations 
hange where peoplelook, and how is the magnitude of 
hange related to image semanti
s?
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ationsIf 
ontrast manipulations 
hange where people look, do they also 
hangewhat people look at? Finally, we target how one 
ategory of images,namely those 
ontaining fa
es, is a�e
ted by 
ontrast manipulations.5.2.1 What do we look at? � Feature analysisIt is known from several previous studies that 
ertain low-level features areelevated at �xated positions. For example, �xated lo
ations tend to havehigher 
ontrast and edge density than non-�xated, 
ontrol regions. Webegin our analysis by testing whether these observations still hold using
ontrast manipulated images. Contrast at the image lo
ation (m,n) isde�ned as the standard deviation within a 3×3 neighborhood 
entered at
(m,n). Edge density is extra
ted by 
onvolving the image separately withhorizontal and verti
al Sobel operators, and then 
omputing the averageof these �ltered outputs.In the analysis, an approximately 1 degree (32 × 32 pixel) region isextra
ted from the feature maps around ea
h �xation lo
ation. For 
om-parison, 1 degree regions are also extra
ted from 
ontrol lo
ations, andthe di�eren
e between �xated and 
ontrol feature 
ontents is analyzed.Instead of using uniform sampling over the image area to simulate a ran-dom viewer, we use 
ontrol �xations 
olle
ted from other images used inthe experiment. This way, a simulated 'random' �xation pattern 
oin
ideswith the distribution of �xations, whi
h is known to be non-uniform witha bias to the 
enter of the display. It has been argued that the 
entral biasmay give rise to arti�
ially high features values at �xation (e.g., Tatler etal., 2005), and should therefore be 
arefully a

ounted for in the analysis.An in
reasingly popular method to estimate the degree to whi
h �x-ated and 
ontrol feature 
ontent 
an be di�erentiated from ea
h otheris the re
eiver operating 
hara
teristi
s (ROC) analysis (e.g., Hanley &M
Neil, 1982). A ROC 
urve plots the fra
tion of true positives (TPs)against the fra
tion of false positives (FPs). In our 
ase, TPs 
onsist of�xated feature 
ontent, whereas FPs 
omprise feature 
ontent at 
ontrollo
ations. The area under the ROC 
urve varies between zero and one,and is a robust measure of how well image features 
an be dis
riminatedbetween �xated and 
ontrol lo
ations; if the ROC area is signi�
antlylarger than 0.5, a tested feature is said to dis
riminate �xated lo
ationsfrom 
ontrol lo
ations. A ROC area that equals 1 is said to give perfe
t
lassi�
ation.Figure 5.4 plots the average ROC areas for 
ontrast and edge den-sity. Bla
k bars represent results 
onsidering the �rst �xation (from allsubje
ts in all images) only, whereas the white bars represent a similaranalysis over all �xations. By the �rst �xation, we mean the �xation fol-lowing the initial sa

ade after image onset and not the �rst registered�xation is the data �le, whi
h is 
onstrained to the 
enter of the s
reen by
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Figure 5.4: ROC areas for dis
rimination between image features at �x-ated and 
ontrol lo
ations. Bla
k bars show ROC areas for the �rst �xationwhereas all �xations are in
luded in the white bars. Error bars span stan-dard errors of the mean. A ROC area larger than 0.5 indi
ates a di�eren
e.a �xation marker. As reported by several previous studies, feature den-sities at �xated lo
ations are signi�
antly higher (ROC area > 0.5) thanfeature densities at 
ontrol lo
ations (p < 0.01, t-test, for both 
ontrastand edge density). Apparently, this is also true for 
ontrast manipulatedimages. Moreover, there is a tenden
y, although non-signi�
ant, that ini-tial �xations dis
riminate 
ontrast and edge density better than �xationsdo over the whole time 
ourse of viewing.5.2.2 Do image semanti
s and feature manipulationsin�uen
e where we look?To this point, our empiri
al �ndings are in line with previous results em-phasizing bottom-up 
ontrol over �xation sele
tion. The �ndings show,on average, that 
ontrast and edge density are higher at �xated positionsthan at other, 
ontrol positions. In this se
tion, it is investigated whetherthese general tenden
ies are 
onsistent when analyzing images with regardto their semanti
 information dispersion (SID) as well as their dire
tionof 
ontrast redu
tion. What happens with peoples' allo
ation of �xations,for example, if a region deemed as semanti
ally important is redu
ed inlow-level signal strength? Obviously, a salien
y based framework wouldpredi
t an obligatory shift in �xation density away from this region.
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PSfrag repla
ementsms PSfrag repla
ementsms PSfrag repla
ementsms
PSfrag repla
ementsms PSfrag repla
ementsms PSfrag repla
ementsmsFigure 5.5: Images in order of in
reasing semanti
 information dispersion(SID). The top row shows where subje
ts have positioned a box that 'best
onveys the information of the whole image'. The bottom row illustratesthe �xation density of the same subje
ts while performing this task. As
an be seen, the inter-subje
t agreement between �xation density and theregions judged to best 
onvey the information of the whole image is large.Using data 
olle
ted from the se
ond experiment, we found the SIDfor ea
h image, 
al
ulated as the average overlap between box lo
ationswithin an image. Thus, if Bi,j denotes a box in the image i positioned bysubje
t j, the SID for image number i is de�ned asSIDi =

[

2

P (P + 1)− 2P

∑

j=1,...,P−1
k=j+1,...,P−1

Bi,j ∩Bi,k

]−1 (5.3)where ∩ denotes the interse
tion between the boxes in pixels, and P is thenumber of viewers. The inverse is 
omputed su
h that a large SID valuerepresents a spread out semanti
 information and vi
e versa. The top rowin Figure 5.5 shows three of the unpro
essed test images and the boxesas positioned by the test subje
ts. Out of the 18 unpro
essed imagesused in the experiment, images with the lowest, midmost, and highestSID are shown in the �gure. Unsurprisingly, the image with the lowestSID 
ontains a fa
e, and the image with the highest SID 
ontains ratherneutral semanti
s. For the sake of 
omparison, the �xation density of thesame subje
ts performing the SID dete
tion task is given in the se
ondrow in the �gure. For these images, the overlap between where subje
ts�xated and where they positioned the box is quite large. As expe
ted,the image 
ategories were tightly 
ouple with SID; �ve of the six images
ontaining fa
es were among the images with the lowest SID (boxes weredominantly positioned over the fa
e), and all the six images from the
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t of 
ontrast manipulation on �xation behavior.'neutral' 
ategory had the highest SIDs. Consequently, �ve images fromthe 'man-made obje
t' 
lass were lo
ated in the mid-SID se
tion alongwith one fa
e image.Figure 5.6 illustrates how the �xation density 
hanges as a result of
ontrast manipulations for images with low, medium, and high SID. The�xation densities are visualized as heat maps, where Gaussian fun
tionshave been 
entered at ea
h �xation lo
ation and then superimposed. Thevarian
e of ea
h Gaussian fun
tion has been set su
h that the width athalf its maximum height approximates the size of the foveal span of aviewer in the 
urrent experimental setup. In addition, the height of ea
hGaussian fun
tion has been s
aled in proportion to the �xation duration.As a 
onsequen
e the �xation densities not only re�e
t where people have�xated, but also their level of 
ognitive pro
essing during ea
h �xation,hen
e providing more sensitive and detailed information. Hen
eforth, werefer to the heat maps as �xation density fun
tions (FDFs), in order tobetter 
apture what the heat maps represent. The se
ond 
olumn in Fig-
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ationsure 5.6 depi
ts FDFs for all subje
ts during the �rst �xation, and thethird 
olumn illustrates 
orresponding �xation densities 
ollapsed over all�xations. This 
an be 
ompared with the two rightmost 
olumns, where
ontrast and edge density are visualized. An inspe
tion of the plots indi-
ates that 
ontrast and edge manipulations 
learly in�uen
e where sub-je
ts look. However, the magnitude of 
hange seems to di�er dependingon the image type; the images 
ontaining fa
es undergo relatively small
hanges in �xation pla
ement due to 
ontrast manipulation whereas �xa-tions in the images that 
ontain more neutral semanti
s seem to be morein�uen
ed by the manipulations.To quantify how �xation lo
ations 
hange as a fun
tion of 
ontrast ma-nipulation and SID, the two-dimensional 
orrelation 
oe�
ient betweenFDFs belonging to the two 
ontrast manipulated versions of ea
h imageis 
omputed. This metri
 has been used in other works for the same pur-pose (Rajashekar, Linde, Bovik, & Corma
k, 2008). Although it is not
lear how a

urately the 2-D 
orrelation 
oe�
ient, or any other metri
 forthat matter, 
aptures the di�eren
e between people's �xation lo
ations, itgives an estimate that helps us to interpret the magnitude of 
hange. Fora referen
e of other metri
s used to estimate the similarity between �xa-tions, see for example Mannan, Ruddo
k, and Wooding (1995); Priviteraand Stark (2000); Tatler et al. (2005). Sin
e images' SID-values almostperfe
tly mat
hed the initial division of images into three semanti
 
at-egories, the analysis is preformed with respe
t to the image 
ategories,whi
h hen
eforth are referred to as 'Fa
e', 'Man-made', and 'Neutral'.Figure 5.7(a) depi
ts the average 2-D 
orrelation between FDFs gener-ated from the initial �xation (bla
k bars) and all �xation (white bars)within ea
h 
ategory. It 
an be seen that the image 
ategory in�uen
esthe degree to whi
h 
ontrast manipulations trigger shifts in �xation densi-ties; images 
ontaining regions of high semanti
 importan
e, su
h as fa
es,are less sensitive to the manipulations than other images and in parti
ularthose from the 'Neutral' 
ategory. This tenden
y is present for both theinitial �xation and for �xations over the time 
ourse of viewing.Another way to represent how �xation lo
ations are a�e
ted by 
on-trast manipulations and semanti
s, shown in Figure 5.7(b), is to plot theshift in �xation density (2-D 
orrelation 
oe�
ient between FDFs) againstimages' SID. Cir
les and triangles represent how the initial �xation andall �xations, respe
tively, are shifted in lo
ation as a fun
tion of SID.The lines are least square �ts to the data points. Considering all �xa-tions, it 
an been seen that SID 
learly in�uen
es the magnitude of shiftin �xation density, having a 
orrelation of ρ = −0.62. This tenden
y isweak, or hardly present at all, 
onsidering the �rst �xation only. It maybe the 
ase sin
e fewer �xations are used to generate the �rst �xationFDFs, giving individual �xations more weight. Consequently, a �xationthat is not aligned with other �xations has a large impa
t on the shape
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tion).



52 Contrast and Fixation Lo
ationsof an FDF, and therefore also the value of the 2-D 
orrelation 
oe�
ientbetween two FDFs. In summary, the results from Figure 5.7 
learly illus-trate that the degree to whi
h �xation lo
ations are in�uen
ed by 
ontrastmanipulations depends on SID and image 
ategory.5.2.3 Do image semanti
s and feature manipulationsin�uen
e what we look at?Sin
e 
ontrast manipulations 
hange where people look with di�erentmagnitudes depending on images' SID, one would expe
t this to be re-�e
ted in �xated image 
ontent a
ross the image 
ategories. For example,in the 
ategory that was least in�uen
ed by the image manipulations, wewould expe
t a lower dis
rimination for 
ontrast and edge density between�xated and 
ontrol lo
ations than for the other two 
ategories. Figure5.8(a) plots average ROC areas for 
ontrast and edge density over thethree image 
ategories. Results for both the �rst �xation and all �xationsare given for ea
h feature and 
ategory. As expe
ted, the dis
riminationof features between �xated and 
ontrol lo
ations was the lowest in the'Fa
e' 
ategory and in
reasingly higher for the 'Man-made' and 'Neutral'
ategories. However, it was signi�
antly (p < 0.05, t-test) better than
han
e (ROC area > 0.5) in all 
ases. Also noti
e how ROC s
ores in the'Neutral' 
ategory are signi�
antly (p < 0.05) higher for �rst �xation thanall �xations, whereas this tenden
y was not signi�
ant in the other two
ategories. Figure 5.8(b) di�ers from Figure 5.8(a) in that only imagesfrom the 'Fa
e' 
ategory where 
ontrast was redu
ed toward the fa
e, i.e.,where the fa
es were blurred, were in
luded in the analysis. Sin
e peoplestill looked at the fa
e regions after being redu
ed in 
ontrast, the dis-
rimination was redu
ed to a 
han
e level, 
onsidering both the �rst andall �xations. Interestingly, dis
rimination was worse for feature 
ontent�xated at the initial �xation, 
ontrary to the �nding by Parkhurst et al.(2002).Both image semanti
s and features determine what we look at. Thereis a 
lear e�e
t, however, that semanti
ally important regions are lookedat largely independent of their feature 
ontent in terms of 
ontrast andedge density.5.2.4 What so spe
ial about fa
es?In agreement with previous �ndings fa
es seem to attra
t viewers' gazes,and do so largely regardless of their 
ontrasts. So, what is so spe
ial aboutfa
es, and what 
an we learn about fa
e per
eption using the 
ontrastmanipulation paradigm developed in this thesis? Considering all fa
eimages regardless of 
ontrast, and if fa
ial regions are de�ned by the bla
kboxes in Figure 5.9, we found initial �xations to be lo
ated within these
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ationsPSfrag repla
ementsmsFirst FixationAll Fixation PSfrag repla
ementsmsFirst FixationAll Fixation PSfrag repla
ementsmsFirst FixationAll FixationPSfrag repla
ementsmsFirst FixationAll Fixation PSfrag repla
ementsmsFirst FixationAll Fixation PSfrag repla
ementsmsFirst FixationAll FixationFigure 5.9: The images showed here depi
t the versions where 
ontrast hasbeen redu
ed away from the fa
e regions, i.e., in 'non-fa
ial' regions. Thebla
k boxes de�ne the fa
e regions used in the analysisregions in 68.6% of the trials, and in 30.9% when taking all �xations intoa

ount. In the 
ase non-fa
ial regions are redu
ed in 
ontrast, fa
es are�xated initially 93.6% of the times and overall in 39.1% of the trials.When the fa
es instead are redu
ed in 
ontrast these numbers de
reaseto 43.6% and 22.7% , respe
tively. Fa
es are expe
ted to be �xated with6.5% 
han
e if �xation lo
ations are drawn from a uniform distribution.Figure 5.10 breaks down the analysis to an image by image basis;Figure 5.10(a) plots the proportion of initial �xations lo
ated on the fa
eregion, and Figure 5.10(b) 
ontains similar plots taking all �xations onthe fa
e into a

ount. The x-axis lists the images in Figure 5.9 numberedfrom left to right starting from the upper left 
orner. It 
an be seenthat subje
ts' initial �xations are overrepresented in fa
e regions in allthe tested images, and that fewer �xations are lo
ated on a fa
e whenits 
ontrast is redu
ed. The same trend is found when 
onsidering theproportions of all �xations on the fa
e regions. However, in this 
asemany �xations are lo
ated on non-fa
ial regions. In parti
ular, this istrue in images where other semanti
ally important regions 
ompete forattention with the fa
es; in the image numbered '2', there are toy animalswhose fa
es attra
t many �xations and in image '4' the hands of the manare a strong 
ompetitor to the fa
e region.Besides knowing the position of a �xation, the �xation duration is an-other important measure that re�e
ts ongoing visual and 
ognitive pro-
esses (Rayner, 1998; Henderson & Ferreira, 2004). Initial �xation dura-tions are given in Figure 5.11(a), whereas all �xations lo
ated on the fa
eare plotted in Figure 5.11(b). Apparently, if the initial sa

ade lands onthe fa
e, the duration of the following �xation is longer when the 
ontrast
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(b) Overall �xated time on fa
eFigure 5.11: (*) indi
ates a signi�
ant di�eren
e in mean for signi�
an
elevel α = 0.05 (t-test).of the fa
e is higher than its surrounding regions. Figure 5.11(b) gives thetotal �xation time on the fa
e as a proportion of the total viewing time.Again, it 
an be seen that the fa
es are looked upon more when they arekept in high 
ontrast. Sin
e �xation durations not only depend on fovealinformation available to the viewer but also on peripheral information, weanalyze initial sa

ade laten
ies, in the 
ase a sa

ade is dire
ted towarda fa
e region. Laten
ies are measured as the time from image onset untilthe �rst sa

ade lands in a �xation. Thus, in
luded in the sa

ade laten-
ies is the time it takes to exe
ute the sa

ade, whi
h typi
ally is 50 ms.Figure 5.12 shows the initial laten
ies when all initial sa

ades, regardlessof �nal destination, are 
onsidered (Figure 5.12(a)), and when only thoselanding on the fa
e are 
onsidered (Figure 5.12(b)). The �gures tell us
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(b) Sa

ade laten
y when initial sa

adeis dire
ted toward the fa
eFigure 5.12: Initial sa

ade laten
ies + durations for all sa

ades (a), andonly for the sa

ades dire
ted toward the fa
e region. (*) indi
ates a sig-ni�
ant di�eren
e in mean for signi�
an
e level α = 0.05 (t-test).that a redu
ed fa
e 
ontrast yields an in
rease in sa

ade laten
y.5.3 SummaryThis 
hapter extends the work from the previous 
hapter using the ex-perimental paradigm based on 
ontrast manipulations; it investigates the
ontribution of the low-level features 
ontrast and edge density as well asimage semanti
s to the sele
tion of �xations in images. Overall, both 
on-trast and edge density were elevated at �xated image pat
hes 
ompared to
ontrol pat
hes within an image. However, image 
ontent a
tively 
hosenby subje
ts' gazes varied signi�
antly with a number of fa
tors. First,when regions of high semanti
 importan
e were redu
ed in 
ontrast, sub-je
ts still looked at these regions, 
ausing 
ontrast and edge density tobe lower at �xated lo
ations 
ompared to 
ontrol lo
ations. This ten-den
y was parti
ularly strong when fa
es were redu
ed in 
ontrast, andwas found both early after image onset as well as later in viewing. Se
ond,image 
ontent at �xation proved to 
orrelate better with the tested low-level features when the semanti
 information dispersion (SID) was high.In other words, when an image does not 
ontain any spe
i�
 regions ofhigh semanti
 importan
e, bottom-up features 
orrelate quite well withimage 
ontent around �xation lo
ations. Overall, the results in this 
hap-ter do not support a 
ausal link between bottom-up features and image
ontent at �xation.



Chapter 6Assessing Fixation Predi
tionAlgorithms on ContrastManipulated Images
ALGORITHMS for �xation predi
tion have re
ently attra
ted 
on-siderable attention from resear
hers a
ross di�erent �elds. Onereason for this interest is the potential bene�t su
h algorithmswould have in a range of resear
h dis
iplines and future te
hni
al systems.A

urate algorithms for gaze predi
tion 
ould repla
e time 
onsuming eye-tra
king experiments and hen
e, for example, be used to automati
allyassess if people look at the desired produ
t in a 
ommer
ial, or providerelevant visual input to a robot. The ability of some of the proposed al-gorithms to predi
t human �xations has been reported to be quite goodunder 
ertain 
onditions (Itti & Ko
h, 2000; Parkhurst & Niebur, 2002;Itti, 2004), despite using only low-level features as a basis for predi
tion.Given the 
urrent, intense debate on gaze 
ontrol and �xation predi
tionin natural images, we will in this 
hapter take a 
loser look at two algo-rithms that predi
t human �xations solely based on low-level image input:One, by Itti et al. (1998), is based on the 
on
ept of a salien
y map and iswell established and evaluated against human �xations in several previousworks (see e.g., Parkhurst & Niebur, 2002). The other algorithm is a veryre
ent 
ontribution by Rajashekar et al. (2008).Previous 
hapters did not support the hypothesis that low-level fea-tures per se provide 
ausal 
ues to �xation sele
tion in natural images.Instead, regions with a high semanti
 importan
e, su
h as a fa
e, 
ouldrather easily 
ognitively override manipulations in image 
ontrast.To put the predi
tive a

ura
y of the two algorithms to a test, they



58 Assessing Fixation Predi
tion Algorithmsare used to �nd �xations in some of the 
ontrast manipulated images weused in last 
hapter. The similarity between algorithmi
ally generated�xations and human �xations will be 
ompared. Again, the main noveltyin this 
hapter lies in, as opposed to the majority of previous work, usingstimuli manipulations to naturally separate image semanti
s from its low-level signal strength. By applying the algorithms to the manipulatedimages, we will measure how they 
ontribute to �xation sele
tion undertask-neutral viewing.6.1 Predi
ting FixationsWe present in this se
tion two di�erent approa
hes to algorithmi
 pre-di
tion of �xations. It is not intended as a 
omprehensive des
ription ofthe algorithms, but merely an overview of their major 
omponents andfun
tionalities. For details, refer to the referen
es given.6.1.1 Salien
y map approa
hThe 
on
ept of a salien
y map and its relevan
e in attentional guidan
ewas �rst proposed by Ko
h and Ullman (1985). A

ording to a salien
ymap, visual importan
e is represented by a two-dimensional map predi
t-ing how likely ea
h lo
ation of an image is to be visually attended by aviewer; peaks in the salien
y map point to regions likely to be gazed at,and vi
e versa. By su

essively moving to the highest peak in the salien
ymap, a sequen
e of �xations 
an be predi
ted. To prevent the algorithmfrom halting at the largest peak, it is endowed with an inhibition-of-returnme
hanism, whi
h redu
es the salien
y at previously visited peaks. Thesalien
y at these regions is restored after a period of time su
h that thesame image lo
ation 
an be visited multiple times over the 
ourse of view-ing.A salien
y map is 
omputed by �rst de
omposing an image into a set offeature 
hannels, typi
ally 
omprising luminan
e, orientation, and 
olor.Ea
h feature 
hannel is then transformed into a feature map by feedingit through 
enter-surround extra
ting �lters and a me
hanism that allowsspatial 
ompetition between neighboring feature 
ontent. Finally, all fea-tures maps are 
ombined into a single salien
y map. The 
hoi
e of featuresare motivated by early psy
hologi
al resear
h, e.g., that by Treisman andGelade (1980), suggesting that some features trigger attentional sele
tionqui
kly and obligatorily by 'popping out' from their surrounds.Algorithmi
 implementations following the framework outlined by Ko
hand Ullman have been proposed in several papers, e.g., (Itti et al., 1998;Itti & Ko
h, 2000; Walther & Ko
h, 2006). We have used the Matlabbased Salien
y Toolbox by (Walther & Ko
h, 2006) to 
ompute the �rst15 �xations in ea
h tested image. Besides generating a salien
y map from



6.1 Predi
ting Fixations 59an image, this implementation identi�es salient obje
t-based representa-tions in a image. We do not use this extension of the implementation, butuse the salien
y map dire
tly to predi
t �xated lo
ations.Implementations of salien
y maps have been validated against human�xations in some earlier papers (see e.g., Parkhurst et al., 2002; Hendersonet al., 2007; Rothkopf et al., 2007; Foulsham & Underwood, 2008). Thereis some eviden
e that peaks in salien
y 
oin
ide with �xation lo
ationswhen the viewing task is neutral, but also ample eviden
e that task and
ontext 
an override su
h a relation.6.1.2 Gaze attentive �xation �nding engine (GAFFE)The gaze attentive �xation �nding engine (GAFFE), whi
h is designedby Rajashekar et al. (2008), uses an approa
h based on ma
hine learn-ing. Using an image set 
omprising gray s
ale, natural images, �xationsfrom a large number of subje
ts are 
olle
ted to �nd statisti
al di�eren
esbetween �xated and 
ontrol image lo
ations using a foveated image anal-ysis. In a foveated analysis, an image is blurred away from the 
urrentpoint of �xation in a

ordan
e to the spatial sensitivity of the human vi-sual system (HVS). Then a region around the lo
ation for next �xationis analyzed in terms of feature 
ontent. This way, a foveated analysisuses the information available to a human viewer at the time a sa

adeto the next �xation lo
ation is planned. Rajashekar et al. report thatluminan
e and 
ontrast as well as bandpass outputs of these features aresigni�
antly higher at lo
ations �xated by human viewers 
ompared to
ontrol lo
ations. Consequently, these features are 
hosen as the basis forpredi
tion.Fixation predi
tion is initiated by foveating an image away from its
enter. This foveated image then is �ltered with respe
t to the four fea-tures mentioned above, and the next �xation target is de
ided by 
om-bining the �ltered feature maps based on parameters empiri
ally foundby the initial analysis. The algorithm pro
eeds by updating the foveationpoint to the next (predi
ted) �xation and repeats the �ltering pro
edureat this new �xation. GAFFE permanently inhibits previously �xated po-sitions from be
oming �xated again. Also, it does not attempt to predi
tthe temporal order of the �xations.As for the salien
y map approa
h, we use GAFFE to �nd 15 �xations(we do not use the 
entral, initial �xation). Before applying GAFFE topredi
t �xations on our set of images, parameters were modi�ed to �t theexperimental setting we used while re
ording eye-movements.6.1.3 Eye-tra
king on human subje
tsTo validate the algorithmi
 predi
tions, �xations were extra
ted as de-s
ribed in the previous 
hapter, Se
tion 5.1.6. To allow for a fair 
om-
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tion Algorithmsparison between human and algorithmi
 �xations, the �rst 15 �xations(ex
luding the initial in the 
enter of the display) from ea
h viewer weresele
ted to 
omprise the human baseline measure. In 
ase fewer than 15�xations were re
orded from one viewer, these Nf < 15 �xations wereused in the analysis.6.1.4 StimuliImages belonging to the 
ategories 'Fa
e' and 'Neutral' from the last 
hap-ter were used. They were 
hosen sin
e they represent images with di�erentsemanti
s; fa
es are known to 
onvey mu
h information in human inter-a
tion whereas images from the 'Neutral' 
ategory 
ontain no obje
ts ofparti
ular informative semanti
s. Stimuli are shown in Figure 5.1 (p. 42).6.2 Analysis and Results6.2.1 Qualitative analysisFigure 6.1(a) illustrates how human and algorithmi
ally predi
ted �x-ations from all images (and subje
ts) are distributed. Consistent withwhat has been reported in previous works, human �xations show a 
learbias toward the 
enter of the image as illustrated by the heat map inFigure 6.1(b). It 
an further be noted that human �xations tend to havean oval distribution, being extended more in the horizontal dire
tion thanin the verti
al dire
tion. GAFFE also shows a strong 
entral tenden
yin �xation distribution (Figure 6.1(
)), but with more equally extendedhorizontal and verti
al biases. Lastly, Figure 6.1(d) visualizes how �x-ations 
omputed from salien
y maps are distributed; substantially more�xations are lo
ated toward the edges in the images 
ompared to the othertwo 
ases.Figures 6.2 and 6.3 show a 
omparison between human and algorith-mi
 �xations for images belonging to the 'Neutral' 
ategory. As des
ribedin previous 
hapter, 
ontrast has been redu
ed in a Gaussian-like man-ner away from a (di�erent) lo
ation in ea
h version of an image. Dotsrepresent human �xations from all tested subje
ts, squares point to lo
a-tions predi
ted by a salien
y map, and 
ir
les indi
ate �xations generatedby GAFFE. As we reported from previous 
hapter, the distribution of�xations re
orded from human viewers is shifted toward regions kept inhigh 
ontrast. The general tenden
y for both algorithmi
 predi
tors issimilar. Interestingly, GAFFE seems to overemphasize the bias towardregions of high 
ontrast whereas the opposite is true for predi
tion madefrom salien
y maps.In Figures 6.4 and 6.5, algorithmi
 predi
tion is 
ompared to human�xations on the images 
ontaining fa
es, whi
h we from the previous 
hap-
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t human �xation regardless of the tested 
ontrast. As ex-pe
ted, the limitations of purely bottom-up predi
tors are made expli
itwhen redu
ing the 
ontrast in the fa
ial regions; the predi
tions deviatestrongly from human �xation in these situations. Both algorithms failsystemati
ally to predi
t that �xations will land on a blurred fa
e. Infa
t, they are in most 
ases not even 
lose to the fa
es. Interestingly, alsowhen they are kept in high 
ontrast, fa
es are sometimes missed by thealgorithms.6.2.2 Quantitative analysisTo quantify the strengths of the tested algorithms' abilities to predi
thuman �xations, we use two di�erent methods to estimate the similar-ity between two sets of �xations: The 2-D 
orrelation 
oe�
ient and a
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eCorrelation2-D 
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(b)Figure 6.6: Comparison between human �xations and model generated�xations using two di�erent methods. Error bars span one standard error.dispersion measure that we de�ned in Chapter 4, Eq.(4.1). Initially, �xa-tions 
olle
ted from humans and predi
ted by GAFFE and salien
y mapsare used to 
reate �xation density fun
tions (FDFs) for ea
h image. TheFDFs were generated using σ = 20 pixels. Sin
e neither of the algorithmsattempts to predi
t the duration of a �xation, human FDFs are generatedwithout taking �xation duration into a

ount.First, the 
orrelation 
oe�
ient between human FDFs and algorithmi
FDFs is 
omputed. Figure 6.6(a) illustrates these 
orrelations for all theimages together, and those from the 'Neutral' and 'Fa
e' 
ategories sepa-rately. For 
omparison, FDFs for 15 �xations drawn from a uniform anda Gaussian (to model the 
entral bias) distribution are 
ompared againsthuman �xations. Samples drawn from the latter distribution were gen-erated by Matlab's randn fun
tion and then s
aled by σ. In order toget more robust 
omparisons, uniform and Gaussian samples were 
om-pared to human �xations over 10 trials, and the average value over these
omparisons was used.Using the 
orrelation 
oe�
ient to estimate the similarity betweenFDFs, it 
an be seen from Figure 6.6(a) that algorithmi
 predi
tion per-forms best on images 
oming from the 'Neutral' 
ategory and worst onimages 
ontaining fa
es. These results are veri�ed in Figure 6.6(b), wheresimilar 
omparisons have been made using the dispersion measure. Re-markably, it seems like �xations generated from a Gaussian distribution,that is, �xations that are biased toward the 
enter of the image, are 
om-patible or outperform the algorithmi
 �xation predi
tors. Remember thatthis is the 
ase despite that 
ontrast manipulations expli
itly are imple-mented 'o�-
enter', i.e., the kept high-
ontrast regions in the manipulatedimages are deliberately positioned a bit away from the 
enter of the image.Overall, GAFFE seems to predi
t �xations better than a salien
y map.



6.3 Summary 67However, mu
h of this e�e
t derives from the 
entral bias that the design-ers of GAFFE have built in. The bias originates from two sour
es. First,GAFFE always begins its predi
tion at the 
enter of the image, and sin
ethe distan
e between the 
urrent and the next predi
ted �xation typi
allyis quite small1, it may take a while for the algorithm to rea
h the bordersof the image. Se
ond, a mask attenuating features along the borders isapplied before predi
tion. This prevents �xations from appearing 
lose tothe image borders, as 
an be seen from Figure 6.1(a).6.3 SummaryWe evaluated the performan
e of two bottom-up driven algorithms for �x-ation predi
tion against human �xations re
orded from viewers wat
hingimages with manipulated 
ontrast. While previous work has shown that
ertain task instru
tions 
an override predi
tions made by bottom-up al-gorithms, we show that by using a more neutral task in 
ombination with
ontrast manipulated images, the same e�e
t 
an be eli
ited. In view ofthese observations, our results strongly question the 
ausal 
ontributionof bottom-up algorithms to �xation predi
tion.

1The 
orrelation between features and �xated image 
ontent is signi�
ant only forshort sa

ades, typi
ally ≤ 8 degrees.
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Chapter 7Dis
ussion of Part I
WE investigated gaze 
ontrol in natural images using a new ex-perimental paradigm where 
ontrast manipulated images wereinspe
ted during task neutral viewing. A measure 
alled se-manti
 information dispersion (SID) was devised to estimate the 
om-pa
tness of an image's semanti
s and to 
lassify images into semanti

ategories, and we quanti�ed how both 
ontrast manipulation and SIDin�uen
ed where people looked. Finally, using images before and aftertheir 
ontrasts were manipulated, we 
ompared two state-of-the-art algo-rithms for �xation predi
tion against �xations 
olle
ted from parti
ipants.Over all subje
ts and images, we found a net e�e
t that 
ontrast manip-ulations 
hanged where people looked; their gazes were repelled from re-gions where 
ontrast had been redu
ed. Interestingly, we also found thatthe degree to whi
h 
ontrast manipulations a�e
t parti
ipants' gazes de-pends on an image's semanti
 
ategory; semanti
ally informative regionsattra
t visual attention despite being redu
ed in 
ontrast. Fixations madeon images 
ontaining fa
es, in parti
ular, were rather insensitive to themanipulations, and parti
ipants looked at the fa
e regions regardless oftested 
ontrasts. In agreement with these results, our 
omparative studyrevealed that algorithms using bottom-up features to predi
t human �x-ations sometimes perform well, but many times fail miserably.In Chapter 4, the e�e
t 
ontrast manipulation has on gaze lo
ationswas analyzed. Over all images and types of manipulations, we found thatsubje
ts' gaze positions were a�e
ted by 
ontrast manipulations; gazedensity was shifted toward regions in high 
ontrast over those redu
ed in
ontrast. We also found that parti
ipants on average looked at regionswith 
ontrast higher than what was found at 
ontrol regions. This is
onsistent with the hypothesis of preattentive sele
tion, i.e., that atten-tion is drawn to lo
al image 
ues based on their physi
al signal strength.



70 Dis
ussion of Part IThe bulk of previous works emphasize the 
ontribution of su
h low-levelfeatures to gaze guidan
e. For example, it has been shown that 
ontrast(Mannan et al., 1996; Reinagel & Zador, 1999; Tatler et al., 2005), edgedensity (Baddely & Tatler, 2006), and salien
y (Parkhurst et al., 2002)are higher at �xated than 
ontrol regions. A salien
y based framework, inparti
ular, predi
ts an obligatory shift in �xation density toward regionswhere the low-level signal strength is high (Ko
h & Ullman, 1985).By analyzing images from di�erent semanti
 
ategories, we found inChapter 5 that the degree to whi
h 
ontrast manipulations a�e
t �xa-tion sele
tion heavily depends on the semanti
 
ontent of an image, aswell as how this 
ontent is distributed over the image area. In our experi-ments, fa
e regions attra
ted attention regardless of their tested 
ontrasts,whereas �xations in images with more neutral semanti
s, su
h as a pho-tograph of a bri
k wall or a forest, were shifted toward regions wherethe 
ontrast remained high. For the semanti
 
ategory 
omprising pho-tographs of man-made obje
ts, we observed a moderate 
hange in wherepeople looked; gaze lo
ations were a�e
ted more than in the fa
e im-ages but less than for images 
ontaining neutral semanti
s. These resultssuggest a semanti
 override of low-level features, in 
ase the semanti
information dispersion (SID) is low and points to regions with high se-manti
 relevan
e su
h as a fa
e. In images with high SID, on the otherhand, 
ontrast manipulations seem to dominantly in�uen
e where peoplelook. However, even though the 
orrelation between bottom-up featuresand �xated image 
ontent is higher in the latter 
ase, it 
annot be ruledout that other high-level me
hanisms still 
ontrol �xation sele
tion. Itis possible, for example, that the 
ontrast manipulations a�e
t images'semanti
 
ontent, whi
h then is responsible for shifts in �xation density.This is by no means a 
ontroversial hypothesis sin
e there is ample evi-den
e supporting that eye-movements are guided by 
ognitive fa
tors su
has 
ontext and semanti
s, where the physi
al image 
omponents interplay
ognitively to give the raw image 
ontent a higher meaning (review evi-den
e from Chapter 3).In Chapter 6, we tested two popular algorithms to predi
t �xations,implemented by Walther and Ko
h (2006) and Rajashekar et al. (2008),and 
ompared the predi
ted lo
ations with those 
olle
ted from parti
i-pants wat
hing the 
ontrast manipulated images. Although there exist ev-iden
e supporting the 
ontribution of low-level salien
y to eye-movementguidan
e in both stati
 (Parkhurst & Niebur, 2002) and dynami
 (Itti,2005) s
enes, it has been shown that top-down fa
tors su
h as task and
ontext 
an override su
h 
ontribution. For example, Underwood et al.(2006) used a sear
h task where subje
ts were instru
ted to dete
t thepresen
e of a low salien
y target. This task yielded a low spatial overlapbetween salien
y and �xation lo
ations. Rothkopf et al. (2007) studiedthe deployment of gaze in a virtual environment during di�erent tasks



71and found that task and 
ontext, instead of salien
y, dominate gaze al-lo
ation. Everyday a
tivities su
h as food preparation seem largely in-dependent of obje
ts' low-level properties (M. F. Land & Hayhoe, 2001).While the dominant in�uen
e of task on eye-movements has been longknown (Buswell, 1935; Yarbus, 1967), signi�
antly less work has beendone using the opposite experimental strategy with neutral, free-viewingtasks and images with manipulated low-level statisti
s, whi
h we use inthis thesis. Overall, we found the algorithms being remarkably poor atpredi
ting human �xations, in parti
ular for low SID images where 
on-trast had been redu
ed at semanti
ally informative regions. These resultstogether strongly question that the low-level features used by these algo-rithms 
ontribute 
ausally to �xation sele
tion.It is 
urrently debated whether regions are looked at be
ause theyare informative with respe
t to their physi
al image properties (su
h assalien
y) or due to their semanti
 informativeness. Henderson et al. (2007)reported that, besides having higher salien
y than 
ontrol regions, �xatedlo
ations were deemed as more semanti
ally informative than 
ontrol re-gions. Salient regions have also been shown to overlap with regions labeledas interesting (Elazary & Itti, 2008). By redu
ing the 
oupling betweensalien
y and semanti
 informativeness, we found that semanti
ally in-formative regions are looked at despite having a weak low-level signalstrength. Therefore, the previously reported (
orrelative) link between�xation sele
tion and salien
y may in fa
t re�e
t the 
ausal link betweensemanti
 informativeness and �xation sele
tion. A predi
tor based onsalien
y 
an in other words output predi
tions that 
oin
ide with a
tual�xations 
olle
ted from humans, but does so not be
ause salien
y attra
tsattention, but sin
e underlying, semanti
ally informative obje
ts happento 
ontain features with high salien
y. As we have seen, if su
h obje
tsare redu
ed in salien
y, they nevertheless attra
t �xations.A number of studies have re
ently investigated the me
hanisms 
on-trolling the �rst �xation, whi
h usually refers to the �xation following theinitial sa

ade after image onset. A general observation (and 
onsensus)is that the position of the �rst �xation largely 
oin
ides a
ross viewers(Tatler et al., 2005). However, the explanation for this observation varies.Whereas early studies reported that obje
ts in
onsistent with the generalsemanti
 
ategory of the image (Loftus & Ma
kworth, 1978) and regionsdeemed as informative by viewers (Antes, 1974) attra
ted a dispropor-tional amount of initial �xations, some later works have emphasized the
ontribution of image features. For example, Parkhurst et al. (2002), sug-gested that salien
y 
ontributes more to �xation sele
tion during the �rst�xation and thereafter 
ontributes less. Tatler et al. (2005), on the otherhand, argue that the 
ontribution of bottom-features does not 
hangewith viewing time. Instead, top-down in�uen
es do. Using our data, weagain found that 
ontrast manipulations a�e
t the lo
ation of the initial



72 Dis
ussion of Part I�xation di�erently depending on the image 
ategory. The e�e
t reportedby Parkhurst et al. (2002) was found in the high SID, 'neutral' 
ategory.However, the opposite e�e
t was found when regions rated as semanti-
ally important, su
h as fa
es, were redu
ed in 
ontrast; subje
ts' initial�xations instead landed on regions with low 
ontrast and edge density.Consequently, our results do not support the hypothesis that initial sa
-
ades 
ausally are driven by salien
y. Instead, it is likely that the gistof the s
ene provides enough information to guide the initial sa

ade. Infa
t, re
ent resear
h has shown that an image's gist 
an be apprehendedvery qui
kly after image onset and in
ludes �a ri
h 
olle
tion of per
ep-tual attributes� and �rises to 
ons
ious memory within a single �xation�(Fei-Fei et al., 2007).We have in this part of the thesis analyzed �xated 
ontent at ratherhigh spatial frequen
ies. For example, the �lters we used in Chapter 5 wereof size 3× 3 pixels and operated on images of size 1024× 768 pixels. Con-sequently, only image variations with high detail were extra
ted, whereas
oarser variations were not 
aptured by these �lters. Mannan et al. (1995,1996) investigated how lowpass �ltering of an image a�e
ts where peoplelook. They found that during the �rst 1.5 se
onds of viewing, people �xatethe same lo
ations in the original image as in the lowpass �ltered versionof this image. Sin
e only the low frequen
y 
ontent is shared betweenthese versions, this suggests that a representation based on low spatialfrequen
ies 
ould be responsible to guide early �xations. In this sense,a salien
y map operating on lower spatial frequen
ies 
ould a

ount forthe results found in this paper. This line of argument has some support
onsidering images from the 'fa
e' 
ategory only; 
ontrast manipulationsdominantly attenuating higher frequen
ies have little in�uen
e on wherepeople look, and fa
es are looked at regardless of their 
ontrast levels.However, it seems more plausible that fa
e regions are looked at be
auseof their known semanti
 importan
e than be
ause of some low-level a
-
ount. Moreover, images from the 'neutral' 
ategory dire
tly overthrowthis assumption sin
e �xation lo
ations showed to be dire
tly a�e
ted bythe 
ontrast manipulations in this 
ase.In summary, the results from this part of the thesis do not supportthe hypothesis of a 
ausal relationship between �xation sele
tion and im-age features, i.e., bottom-up features do not obligatorily attra
t visualattention.
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Chapter 8Compression and Foveation
THE la
k of spatial detail in peripheral vision allows a display tobe redu
ed in quality at lo
ations where a viewer does not lookdire
tly, without this being noti
ed by the viewer. In image andvideo 
ompression, this fa
t 
an be exploited by allo
ating bits in a
-
ordan
e to the spatial sensitivity of the HVS; more bits are given tofovea-near regions than to peripheral regions. This is 
alled foveated 
om-pression.This 
hapter serves as an introdu
tion and motivation to foveated
ompression. It begins with an overview of traditional methods for imageand video 
ompression, followed by an introdu
tion to foveation; whatit is, how it is implemented, and how it 
an be (and has been) used toimprove image and video 
ompression. Unlike 
ommonly known methodsfor foveated 
oding relying on real-time implementations, we introdu
e anapproa
h 
alled o�-line foveation where gaze data 
olle
ted from severalpreviewers are used to predi
t where later observers, wat
hing the samevideos, will look.8.1 Some Words on Sour
e CodingAs the digital information age matures, te
hnologi
al advan
es have al-lowed an in
reasing number of people to use a range of multimedia ser-vi
es. Video appli
ations, in parti
ular, have re
ently undergone an ex-plosive growth. For the pra
ti
al appli
ability of video 
ommuni
ations,sour
e 
ompression is 
ru
ial. Without 
ompression, video �le sizes wouldbe too large to store on many devi
es and use ex
essive bandwidth duringtransmission. Sin
e this se
tion only s
rat
hes the surfa
e of the widearea of sour
e 
oding, the interested reader is referred to the textbooks



76 Compression and Foveationby Haskell & Netravali, 1995 and Sayood, 2000 for a more 
omprehensivetreatment of the subje
t.There are two types of 
ompression: lossless and lossy. As the namesimply, lossless 
ompression requires the re
onstru
tion of the sour
e to bean exa
t repli
a of the original sour
e, while in lossy 
ompression a 
er-tain amount of distortion, that is, a dis
repan
y between the re
onstru
tedand original sour
e, is a

eptable. A 
ommon goal in 
ompression is toremove so 
alled redundan
ies in a sour
e, that is, repeated informationthat we 
an dis
ard and still keep the 
ru
ial sour
e elements. The sour
e
an 
omprise digitized text, spee
h, an image, or a video. Mathemat-i
ally, a sour
e 
an be des
ribed by a statisti
al model with alphabet
A = {A1, A2, . . . , An}, where letters in the alphabet o

ur with probabil-ities P = {P (A1), P (A2), . . . , P (An)}.Lossless 
ompression is ne
essary in a variety of appli
ations wheredistortion is not a

eptable. For medi
al purposes, for example, distortionin an X-ray image may lead to misinterpretations and 
onfuse authenti
fra
tures with 
ompression artifa
ts. In text 
ompression, a single letterthat is lost or distorted may 
hange the meaning of a word or a senten
edrasti
ally. Of 
ourse, there is a pri
e for not allowing image distortionafter re
onstru
tion. Lossless s
hemes usually do not 
ompress to lessthan about three times of the original sour
e. The theoreti
al limit forhow mu
h a sour
e without memory, i.e., where the sour
e elements areindependent, 
an be 
ompressed is de�ned by the entropy of the sour
e(Shannon, 1948)

H = −
∑

i

P (Xi) logP (Xi) (8.1)where {X1, X2, X3, . . . , } denotes a sequen
e generated from the alpha-bet A. There are many well known methods for lossless 
ompression,for example Hu�man (1952) and arithmeti
 
odes (Rissanen, 1976), ex-ploiting statisti
al properties of the sour
e, and Lempel, Ziv and Welsh(LZW) (Wel
h, 1984) 
oding, taking advantage of repeated patterns in thesour
es. The LZW implementation 
an be found in, for example, Adobe'sPortable Do
ument Format (PDF).Lossy 
ompression addresses the trade-o� between rate and distortion,with the overall goal to simultaneously minimize the rate and the distor-tion. Besides addressing statisti
al and stru
tural redundan
ies, lossy
ompression targets psy
ho-visual redundan
ies by taking advantage ofthe very forgiving nature of human visual or auditory per
eption. A
-
ording to this philosophy, a sour
e 
an be 
ompressed until the �delity isviolated as judged by human observers. The vagueness of this statementindi
ates the subtle nature of lossy sour
e 
oding, whi
h is even more 
om-pli
ated sin
e individual, subje
tive di�eren
es exist between humans; oneperson 
an judge the sour
e quality as poor while another person judgesthe quality of the same sour
e as being fair or even good. In image 
om-
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Figure 8.1: Overview of a 
ompression s
heme.pression, lossy 
ompression s
hemes 
an give about 30 fold 
ompressionof natural gray s
ale images with little or no per
eived distortion.Sour
e 
oding is an important part of a 
ommuni
ation system, whi
hin
ludes a sour
e and 
hannel en
oder/de
oder and sometimes also sour
een
ryption/de
ryption. We only 
onsider sour
e 
oding and assume thatthe 
hannel is ideal and hen
e introdu
es no errors. As previously men-tioned the sour
e 
an be an image, spee
h, musi
 et
. In this thesis wewill 
onsider only image and video sour
es. Figure 8.1 depi
ts a generi
sour
e 
oding s
heme. A sour
e X is fed into a sour
e en
oder whi
h out-puts a di�erent (often binary) 
ompressed representation Y of the originalsour
e X . To prote
t the en
oded sour
e from being 
orrupted when sentover the 
ommuni
ation 
hannel, redundan
y 
an be added before trans-mission if the 
hannel is not ideal. Sin
e we only deal with ideal 
hannels,in our 
ase Ŷ = Y . For lossless 
ompression we demand that X̂ = X af-ter sour
e de
oding while in lossy 
ompression, we want to minimize thedistortion. In other words, we want the re
onstru
tion X̂ to be as 
loseto the original image X as possible, but at the 
ost of as few transmissionbits as possible.8.1.1 Image 
odingImage 
oding is a spe
ial 
ase of sour
e 
oding. A typi
al system forimage 
oding is outlined in Figure 8.2. It 
onsists of an en
oder and ade
oder, whi
h further are divided into a transform, quantization, and en-tropy 
oding stage. As a �rst step the image is transformed. The purposeof transformation is to de
orrelate neighboring pixels and 
ompa
t themajority of the image information into a small number of transform 
o-e�
ients from an alphabet C. Popular transforms are the dis
rete 
osinetransform (DCT) and the dis
rete wavelet transform (DWT), in
luded inthe standards JPEG (Walla
e, 1992) and JPEG2000 (Taubman & Mar-
ellin, 2001), respe
tively. The transform 
oe�
ients are then quantized,whi
h 
an be de�ned as an operation that maps 
oe�
ients from C to
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oder.another, 
oarser alphabet CQ. The purpose of quantization is to redu
ethe entropy of the 
oe�
ients. Lastly, an entropy 
oder is applied tothe quantized 
oe�
ients. In JPEG, for example, the quantized outputis entropy 
oded with run length 
oding (RLE) 
ombined with Hu�man
oding. De
oding is generally straightforward, where entropy de
odingis followed by inverse quantization and transformation. The degree of
ompression depends mostly on the quantization strategy, sin
e both thetransform and entropy 
oding stages are lossless or nearly lossless.8.1.2 Video 
odingA video 
onsists of a sequen
e of images (
alled frames), ea
h slightly dif-ferent from its neighboring frames. Showing the frames qui
kly after ea
hother 
reates the illusion of motion. In terms of 
ompression, the moststraightforward approa
h would be to 
ode ea
h frame as a still image.However, this approa
h is very ine�
ient. Instead, besides exploiting spa-tial redundan
ies as in image 
oding, a video 
oding s
heme also exploitstemporal redundan
ies through the fa
t that neighboring frames largely
ontain the same information. As a 
onsequen
e, 
ompression rates invideo 
an be mu
h higher than in still image 
ompression.The stru
ture of a general video en
oder/de
oder is depi
ted in Figure8.3. As a �rst step at the en
oder, the input video is divided into a groupof pi
tures (GOP), whi
h typi
ally 
onsists of 8, 16, or 30 
onse
utiveframes. In intra (I) mode, an input frame is dire
tly transformed, quan-tized, and entropy 
oded, i.e., it is 
oded as a still image. In the predi
tive(P) mode, the (
urrent) frame is �rst predi
ted from the previous de
odedframe, and only the di�eren
e between the 
urrent predi
ted frame the
urrent original frame, i.e., the predi
tion error (PE) is en
oded. Predi
-tion is made in two steps through motion estimation (ME) and motion
ompensation (MC). Figure 8.4 illustrates the general idea behind ME.Initially, two 
onse
utive frames are divided into non-overlapping blo
ks.Ea
h blo
k in the 
urrent frame is then mat
hed against blo
ks of the same
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Motion vector

Best matching block

Previous framePSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random Figure 8.4: Blo
k based motion estimation.size in the previous frame within a sear
h window. A ve
tor des
ribingthe translational motion between the blo
k in the 
urrent frame and thebest mat
hing blo
k in the previous frame is stored. These motion ve
torsare used in MC to rearrange blo
ks of information in the previous frameto best des
ribe the 
urrent frame. Algorithms for video 
oding followingthis basi
 framework have su

essfully been in
luded in standards su
has the moving pi
ture experts group (MPEG) family of 
ode
s (see, e.g.,Gall, 1991; Wiegand, Sullivan, Bjontegaard, & Luthra, 2003).8.1.3 Quality assessment in 
ompressionTo be able to design, implement, and evaluate an algorithm for 
ompres-sion, we need to be able to obtain a

urate estimates of a 
ompressedimage's quality. The di�eren
e in quality between an original image Xand its 
ompressed representation X̂ of dimensions m × n is typi
allymeasured with the mean squared error (MSE )
MSE =

1

mn

m−1
∑

i=0

n−1
∑

j=0

(X(i, j)− X̂(i, j))2 (8.2)or with the related peak signal-to-noise ratio (PSNR)
PSNR = 10 · log10

(

[maxi,j(X(i, j))]2

MSE

)

. (8.3)While these obje
tive measures have been used extensively by resear
hersworking with image and video 
ompression, they have been found to 
or-relate with the quality as per
eived by human viewers quite poorly. Thisis hardly surprising sin
e the HVS takes several aspe
ts into a

ount thatare not 
onsidered by simple, pixel-based measures su
h as the MSE . Forexample, these aspe
ts in
lude (from Wang, Sheikh, & Bovik, 2003)
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• Non-uniform retinal sampling.
• Light adaptation (luminan
e masking).
• Contrast sensitivity fun
tions.
• Spatial frequen
y, temporal frequen
y and orientation sele
tive sig-nal analysis.
• Masking and fa
ilitation.
• Contrast response saturation.Unfortunately, there are today no obje
tive measures that produ
equality measures indistinguishable from those 
olle
ted through subje
tivequality assessment. Currently, �nding su
h obje
tive methods is an a
tivearea of resear
h (see e.g., Wang, Sheikh, & Bovik, 2003). Instead, toensure reliable quality s
ores, experiments where several observers viewand assess 
ompressed images on rating s
ales (e.g., bad, poor, fair, good,ex
ellent) or impairment s
ales (e.g., very annoying, annoying, slightlyannoying, per
eptible but annoying, imper
eptible) are preformed. (ITU,2002).8.2 Using Foveation in CompressionAs we saw in Chapter 2, humans have evolved a foveated system that
ombined with eye-movements is used for visual exploration. Foveated
ompression exploits the foveated nature of the HVS by removing unde-te
table high frequen
y 
ontent away from the foveation 
enter as a fun
-tion of e

entri
ity. Sin
e high frequen
y 
ontent generally requires moreinformation to represent digitally than low frequen
y 
ontent, foveationinherently improves 
ompression. Although the huge potential to exploitfoveation for the purpose of 
ompression has been known for quite sometime (formalized in e.g., Girod, 1988), it is today not a widespread te
h-nology. The reasons for this are mainly twofold. First, the 
ompressionsystem needs to know, or a

urately estimate where the viewer looks. Se
-ond, in real-time appli
ations, the delay introdu
ed by 
oding and trans-mission is believed to ex
eed that a

eptable to an observer. This delay
auses a lag between the position of the 
urrent foveation point and thefoveation 
enter in the image 
urrently being de
oded. In other words, it
annot be guaranteed that the position where a viewer looks and the posi-tion where the de
oded image has its best quality are aligned. Moreover,
ompression standards need to be extended to optimally 
ode foveatedimage and video representations.



82 Compression and Foveation8.2.1 FoveationUnlike the 
omposition of a digital image as a uniform, two dimensionalgrid of pixels, a
quisition of visual information on the retina is highlynonuniform with the highest sampling density in the fovea. The pro
essof mat
hing the image resolution in a

ordan
e to the sampling density ofphotore
eptors on the retina is 
alled image foveation (Kortum & Geisler,1996). Su

essfully implemented, foveation transforms an image su
h thata viewer looking at the foveation 
enter 
annot distinguish the foveatedversion from its original. Figure 8.5 illustrates image foveation; Figure8.5(a) shows an unpro
essed image and Figure 8.5(b) depi
ts the imageafter foveation, whi
h is 
entered at the ball being pushed by the train.There are a number of methods proposed to implement foveation.Early ones were based on adding pixels into larger elements, SuperPix-els, whi
h in
rease in size with in
reasing e

entri
ity from the point ofgaze a

ording to a resolution fall-o� model 
onsistent with anatomi-
al measurements in the human retina and visual 
ortex (Kortum &Geisler, 1996). This type of implementation is simple and qui
k. How-ever, borders between SuperPixels give rise to distin
t blo
king artifa
ts,whi
h proved to be visually unpleasant. More re
ent implementationsused multi-resolution pyramids (e.g., Geisler & Perry, 1998, 1999), whereperipheral regions in the foveated image 
ontain information from up-sampled, higher pyramid levels, while regions 
loser to the foveation 
en-ter 
omprise higher frequen
y 
ontent available from the low pyramidlevels or from the original image itself. The borders between pyramidlevels are typi
ally smoothed with a blending fun
tion to avoid sharptransitions in the foveated image. Figure 8.5(b) has been generated us-ing a foveated multi-resolution pyramid. The 
ode is available online(http://svi.
ps.utexas.edu/software.shtml).Foveation has also su

essfully been implemented in the transformdomain, using wavelets (Chang & Yap, 1997; Du
howski, 2000; Sheikh,Liu, Evans, & Bovik, 2001), and the dis
rete 
osine transform (DCT)(Bergström, 2003) where appropriate transform 
oe�
ient s
aling priorto inverse transformation produ
es foveated images. Typi
ally, transform
oe�
ients are s
aled by a fa
tor, p ∈ [0, 1]. Where p is small, the dis-play quality is heavily degraded and where p is one, the quality is un-a�e
ted 
ompared to the original display. Moreover, foveation has beenimplemented using polar down-sampling s
hemes (Juday & Fisher, 1989;Kuyel, Geisler, & Ghosh, 1999). The 
hoi
e of implementation methoddepends on the appli
ation. Typi
ally, smooth and artifa
t free resolutiondegradations are desirable.In this thesis, we have 
hosen to implement foveation in the waveletdomain, mostly be
ause the su

essful appli
ation of wavelets in 
ompres-sion. For example, the transform stage in many 
urrent state-of-the-art
ompression methods is based on wavelets (e.g., JPEG2000). Implement-
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PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (a) Original
PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (b) FoveatedFigure 8.5: Image foveation. The bottom pi
ture shows a foveated versionof the original image on the top. Foveation 
enter is lo
ated in the middleof the dotted ball. The foveated image was generated by the softwarepubli
ly available from http://svi.
ps.utexas.edu/software.shtml.
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PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomFigure 8.6: Overview of a foveated 
ompression s
heme.ing foveation requires a number of parameters to be known (or a

uratelyestimated). First, we need to know where a person looks. Se
ond, we needa fun
tion approximating how visual sensitivity de
reases as a fun
tion ofe

entri
ity. Third, we need to know the distan
e from the image to theviewer. Fourth, we require knowledge about the resolution of the imageand the s
reen on whi
h it is presented, as well as the physi
al dimensionsof the s
reen.Foveated displays have been used for a number of purposes (see, e.g.,Parkhurst & Niebur, 2002), for example to redu
e 
omputational resour
esin 
omputer graphi
s rendering, to evaluate the per
eptual span in s
eneper
eption, and to improve the 
ompression e�
ien
y of digital imagesand videos, whi
h is the spe
i�
 target of investigation in this thesis.8.2.2 Foveated 
ompressionFoveation improves 
ompression e�
ien
y by removing high frequen
y
ontent, whi
h typi
ally 
onsumes a substantial portion of the bit budget,from unattended parts of an image. We have identi�ed two major 
at-egories of foveation-based, or foveation-like methods for improved imageand video 
ompression: Real-time and o�-line. Maybe the most straight-forward, intuitive approa
h to foveated 
oding is in real-time, �rst pointedout by Girod (1988), with potential appli
ations in, e.g., surveillan
e, tele-operating of remote vehi
les, telemedi
ine, and tele
onferen
ing; these aresituations where transmission bandwidth may be limited. In a typi
al sit-uation shown in Figure 8.6, the position of the foveation 
enter is sentto a remote lo
ation (
amera) where the image is foveated in the spatialor transform domain, 
ompressed with a standard 
oder su
h as JPEG,and transmitted ba
k to the viewer where it is de
oded and displayed.Of 
ourse, this type of setup requires a minimum delay from the timethe foveation point is a
quired until the image is de
oded and displayed.Otherwise, it 
annot be ensured that the foveation 
enter and the re-gion with best image quality 
oin
ide, whi
h would redu
e the subje
tivequality of the de
oded image. Real-time foveated 
ompression requiresa fast and reliable link to transmit the foveation point to the en
oder
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k algorithm to implement foveation, and symmetri
 
odings
hemes of relatively low 
omplexity. Re
ent work has found that if agaze-
ontingent display is updated within 60 ms after an eye-movement,blur due to foveation is not dete
table (L. C. Los
hky &Wolverton, 2007).One strategy to alleviate the e�e
ts of larger delays is to foveate an imagewhile predi
ting how viewers' gazes 
hange during the period of the delay(Khan & Komogortsev, 2006). The penalty is that a larger portion of theimage needs to be represented in high quality than if the gaze positionswould be known exa
tly. Real-time foveation has been reported to sub-stantially improve 
ompression. The bit rate savings depend on fa
torssu
h as image size and viewing distan
e, but typi
ally 
ontributes witha fa
tor ≥ 3 
ompared to standard 'unfoveated' 
ompression (Geisler &Perry, 1999). With only minor 
hanges in system design and implemen-tation, real-time foveated 
ompression 
an easily be extended to 
onsidermultiple foveation points (viewers).A perhaps less intuitive way to use the fa
t that vision is redu
ed inthe periphery, that we have named o�-line foveation, is to beforehandpredi
t where viewers will look and keep a high display �delity only inthese regions, while degrading other regions. Given that later viewers lookwithin the predi
ted regions and that the peripheral degradation does notintrodu
e visually unpleasant video distortions, o�-line foveation will the-oreti
ally not redu
e subje
tive quality. Obviously, besides exploiting pe-ripheral image degradations to improve 
ompression, o�-line foveation re-lies on the assumption that di�erent viewers will look at similar lo
ations.If this was not the 
ase, and if viewers' gaze positions were uniformlydistributed, no region 
ould be degraded without signi�
antly redu
ingthe per
eived quality for an un
ontrollable number of later viewers. For-tunately, there is ample eviden
e that di�erent viewers look at largelysimilar video regions (Elias, Sherwin, & Wise, 1984; Stelma
h, Tam, &Hearty, 1991; Tosi, Me
a

i, & Pasquali, 1997; Goldstein, Peli, Lerner, &Luo, 2004; Dorr, Böhme, Drewes, Gegenfurtner, & Barth, 2005). Most ofthe time, these regions are 
on�ned to the 
enter of the video display. Thegeneral stru
ture of a system for o�-line foveated 
ompression is the sameas in Figure 8.6. However, the foveation points are repla
ed by estimatesof the lo
ations where future viewers are likely to look. In our imple-mentation, estimates 
ome in the form of gaze density fun
tions (GDFs)generated from superimposed Gaussian fun
tions derived from empiri
algaze data 
olle
ted from previewers. Also, sin
e the en
oder is not 
on-strained by any real-time 
omputational demands, o�-line foveation allowsfor a more non-symmetri
 
onstru
tion where 
omplexity 
an be shiftedto the en
oder. O�-line foveated 
ompression is mainly suitable for, butnot limited to, o�-line, and semi real-time appli
ations su
h as sports andnews broad
ast and streaming video over the Internet.In addition to being real-time and o�-line, foveated 
ompression 
an
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alable Juday and Fisher (1989) Itti (2004)Kortum and Geisler (1996) Agra�otis et al. (2006)Geisler and Perry (1998)Sheikh et al. (2001)Bergström (2003)Khan and Komogortsev (2006)Rate s
alable ←−Wang and Bovik (2001)→
←−Wang, Lu, and Bovik (2003)→Table 8.1: Categorization of some papers on foveated image and video
oding.be rate s
alable or not (see Wang & Bovik, 2001; Wang, Lu, & Bovik,2003). S
alability in foveated 
ompression refers to the ability to orderthe bit stream su
h that regions 
lose to the foveation 
enter are 
odedand transmitted with priority. As a 
onsequen
e, when initial parts of thebit stream are re
eived at the de
oder side, the foveated region 
onsumesbits almost ex
lusively, and is therefore re
onstru
ted with higher �delitythan other regions. At this point, only a heavily foveated image version
an be de
oded. As more bits get available to the de
oder, regions furtheraway from the foveation 
enter are su

essively re�ned. When the wholebit stream is de
oded, the re
eived image is fully 'unfoveated'. In foveatedvideo 
ompression, s
alability 
an also refer to temporal s
alability, wherefoveated regions are prioritized in frame rate. Table 8.1 lists a number ofrepresentative works from ea
h 
ategory.8.2.3 O�-line foveation: Open problemsOne of the main 
hallenges in o�-line foveated video is how to a

uratelypredi
t where future viewers will dire
t their gazes. There have beentwo main approa
hes: Using eye-movements from a number of previewerswat
hing the video (Stelma
h & Tam, 1994; Du
howski & M
Cormi
k,1998), and using 
omputational algorithms for automati
 predi
tion (e.g.,Osberger & Rohaly, 2001; Wang, Lu, & Bovik, 2003; Itti, 2004; Le Meur,Le Callet, & Barba, 2007).Without expli
itly targeting video 
oding appli
ations, the use of pre-viously re
orded eye-movements to implement o�-line foveation was pre-sented and evaluated by Stelma
h & Tam, 1994 and Du
howski & M
-
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k, 1998. Stelma
h and Tam manipulated ea
h video frame su
hthat the one region where most previewers looked remained in high reso-lution, whereas other parts of the frame were in
reasingly degraded awayfrom this region by means of low-pass �ltering or DCT 
oe�
ient quan-tization. The per
eived quality of the manipulated, variable-resolutionvideo was assessed by human observers and 
ompared with three otherversions of the same video; one unpro
essed, one with an equal level ofblur distributed uniformly over the frame, and one with a 
entrally �xedhigh-resolution region. As expe
ted, the unpro
essed video got the high-est quality ratings and the uniformly blurred video the worst. The authorsfound, rather surprisingly, that the judged quality of the o�-line foveatedvideo was 
omparable to having a 
entrally �xed high resolution regionthroughout the video. In view of these results, Stelma
h and Tam (1994)
on
lude that �Given the modest bene�ts and high 
ost of implementa-tion ... gaze 
ontingent pro
essing is not suitable for general purposepro
essing�. However, as they also dis
uss, the poor quality ratings of theo�-line foveated sequen
e may derive from repeated viewings of the testsequen
es as well as the imposed task of quality evaluation, whi
h 
ouldmake subje
ts a
tively sear
h for quality impairments. Either of these tworeasons may disrupt the natural viewing behavior of subje
ts and hen
e
ause them to gaze outside the regions of high resolution where the im-age quality is signi�
antly de
reased. A similar study by Du
howski andM
Cormi
k (1998) investigated the subje
tive quality of videos that weremanipulated (o�-line) su
h that high resolution was maintained aroundea
h previewer's position of gaze (from several viewers), whereas otherregions were degraded in resolution. Results showed that eye-movements
olle
ted from subje
ts wat
hing the manipulated videos deviated fromeye-movements 
olle
ted from the unpro
essed, original video. The au-thors argue that new, suddenly appearing high-resolution regions maydistra
t viewers' natural viewing patterns in the former 
ase. Appar-ently, both Stelma
h and Tam and Du
howski and M
Cormi
k 
ame tothe 
on
lusion that o�-line foveation is infeasible sin
e it introdu
es videoartifa
ts de
reasing the subje
tive quality, and also seems to 
hange theviewing behavior of new viewers.Computational models for gaze predi
tion typi
ally use low-level im-age features su
h as luminan
e, 
ontrast, edge density, and motion (
f.Chapter 6 for gaze predi
tion in images), or use heuristi
 rules su
h as'always 
hoose fa
es'. Although there exist a few implementations using
omputational approa
hes for gaze predi
tion to generate o�-line foveatedvideos (e.g., Osberger & Maeder, 1998; Itti, 2004) none, to the author'sknowledge, has been subje
tively evaluated. Interestingly, a re
ent studyshowed that the best among 
urrent state-of-the-art gaze predi
tors invideo was one simply predi
ting that viewers would look at the 
enter ofthe s
reen (Le Meur et al., 2007). As for gaze predi
tion algorithms in still
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ussed in the �rst part of the thesis, automati
 gaze predi
tionin video is 
urrently quite far from produ
ing data 
onsistent with thosere
orded from human observers. This motivates the use of eye-tra
kingdata, whi
h de�ne the 'ground truth', to predi
t future gazing behaviorfor the purpose of o�-line foveation. In this thesis, therefore, we haveadopted this approa
h.There are a number of 
entral 
hallenges in o�-line foveated 
om-pression that we will address in the 
oming 
hapters. First, it is an openquestion how re
orded gaze positions best are transformed into a foveationfun
tion, that is, a fun
tion that manipulates the video quality su
h thatperipheral degradations do not 
ompromise the subje
tive quality expe-rien
ed by later viewers. Imagine for example that gaze data is 
olle
tedfrom 14 previewers; 11 look at an obje
t in the upper left 
orner and theother three look toward a region in the lower right 
orner. When foveatingand 
oding the video to be looked at by other viewers, how many bits dowe want to spend in the lower right 
orner 
ompared to the upper left
orner? Se
ond, given a foveation fun
tion, how is it used to e�
ientlyallo
ate bits in a 
oding s
heme? Finally, assuming the �rst two problemsare solved, how 
an we estimate the quality of the foveated and 
odedvideo? Obviously, obje
tive quality estimates su
h as the PSNR, whi
htreats di�erent image regions without regard either to the varying spatialnature of foveated images or to the 
olle
tive viewing behavior, are notdire
tly appli
able to evaluate o�-line foveated video. These and otherissues will be the targets of investigating in the 
oming 
hapters.8.3 SummaryFoveated 
ompression exploits the non-uniform spatial a
uity of the hu-man visual system (HVS) by removing high spatial frequen
ies not de-te
table by our peripheral vision. By representing only the regions ina video where people look in high quality while degrading other regions,foveation has the potential to signi�
antly improve today's state-of-the-artmethods for 
ompression. In a system for real-time foveation, a foveationpoint is sent from the viewer to a remote 
amera where the image isfoveated, en
oded, and dire
tly transmitted ba
k to the viewer. At thede
oder side, the image is rapidly de
oded and displayed. In a di�erentapproa
h to foveated 
oding that we have named o�-line foveation, gazepositions are 
olle
ted from a number of previewers. These gaze positionsare then used to manipulate the image quality su
h that later viewers willnot per
eive the blur introdu
ed by o�-line foveation. Previous works ono�-line foveated video argue against the feasibility of su
h an approa
h.In the 
oming 
hapters, we will revisit o�-line foveation and evaluate itspotential in 
ompression by addressing a number of open resear
h prob-lems.



Chapter 9A First Glan
e Toward O�-LineFoveated Compression
WE begin to explore o�-line foveated 
ompression using eye-tra
king experiments 
ombined with a simple 
oding s
heme.Foveated 
ompression is applied to six short image sequen
esdepi
ting natural s
enes, where ea
h image is foveated and 
ompressedwithout regard to its neighboring images.9.1 OverviewFigure 9.1 gives an overview of the system design. It 
onsists of three mainbuilding blo
ks, ea
h outlined by a dotted box. Initially, eye-movementsare re
orded from 17 people free-viewing the original image sequen
es. Toimplement foveation, ea
h image from a sequen
e is wavelet transformed,and the wavelet 
oe�
ients are multiplied by a weighting fun
tion de-riving from 
olle
ted gaze positions. The foveated 
oe�
ients are �nallyquantized with a simple, uniform s
alar quantizer and entropy 
oded witha Hu�man 
oder. De
oding reverses the entropy 
ode and transformsthe wavelet 
oe�
ients ba
k to the spatial domain. The degree of addi-tional 
ompression due to o�-line foveation is 
al
ulated. In the evaluationphase, another 18 people look at the foveated, de
oded image sequen
eunder the same 
onditions as during the initial data 
olle
tion. Again,their eye-movements are re
orded. The purpose of a se
ond re
ording isto 
ompare where subje
ts look in the original sequen
e to where they lookwhile wat
hing the 
ompressed o�-line foveated sequen
e. Sin
e standardmethods for subje
tive and, in parti
ular, obje
tive quality evaluation arenot dire
tly appli
able to o�-line foveated video, we argue that 
omparing
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Initial Evaluation
data collectionPSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random Figure 9.1: System overviewthe distribution of gazes in the two 
onditions serves as an indi
ator of theper
eived quality. For example, if people look at similar lo
ations a
rossthe 
onditions, we know by de�nition that they gazed toward regions withhigh quality. Otherwise we know that they looked at regions degraded byfoveation, whi
h were thus of poorer quality. Besides analyzing the gazingbehavior, we asked subje
ts some questions about their subje
tive viewingexperien
e.9.2 Methods9.2.1 Data 
olle
tionTest subje
ts were seated one by one at a viewing distan
e of 75 
m in frontof a 
omputer s
reen. The s
reen extended 31×25 
m (23×19 degrees) andhad a resolution and refresh rate of 720×576 pixels and 60 Hz, respe
tively.All observers had normal or 
orre
ted-to-normal vision. Image sequen
eswere played with the Qui
ktime 6.3 player at 25 frames per se
ond (fps).
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PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomFigure 9.2: Representative image (Y-
omponent) from ea
h tested se-quen
e.To enable fast and a

urate display, the image sequen
es were en
oded ata high bitrate. Stimuli 
onsisted of six short image sequen
es depi
tingnatural s
enes, and had a total duration of 3 min and 30 se
onds. Theresolution of the images was the same as the s
reen resolution. The imageswere represented in 24 bit 
olor (RGB with 8 bit in ea
h 
olor 
hannel). Arepresentative image from ea
h sequen
e is shown in Figure 9.2. Duringimage display, gaze positions were re
orded at 50 Hz with an SMI iVieweye-tra
ker using a pupil/
ornea re�ex system to tra
k the eyes. Subje
tswere naive in the sense that they had no prior knowledge of either the
ontent of the stimuli or the purpose of the test. Prior to ea
h eye-tra
king session, subje
ts did a nine-point 
alibration and were instru
tedto 'free-view' the sequen
es ('wat
h the videos as you naturally would doat home').During the initial eye-movement data 
olle
tion, we had 17 subje
tswat
hing the original image sequen
e. The 
olle
ted eye-movement datafrom 141 of these subje
ts were used for the purpose of foveation.In the se
ond data 
olle
tion (the evaluation phase), 18 new subje
tswat
hed the foveated and 
ompressed image sequen
e under the same
onditions as in the �rst test. Again, data from 14 subje
ts were used.9.2.2 O�-line foveation and 
oding � ImplementationdetailsEa
h image from the sequen
es is foveated and 
oded separately. Firstwe exploit the fa
t that humans are less sensitive to 
hromati
 than toluminan
e information by a RGB-to-YUV 
onversion, where the U andV 
omponents are subsampled by a fa
tor two. The YUV 
omponents1Eye-tra
king data from the three test-subje
ts with the most deviant (from othertest-subje
ts) eye-movement patterns were omitted.
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PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random(8)(4)(4)(4)(3)(3)(3)(1)(1)(1) (a)

PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random(8)(4)(4)(4)(3)(3)(3)(1)(1)(1) (b)

PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random(8)(4)(4)(4)(3)(3)(3)(1)(1)(1) (
)Figure 9.3: (a) Image with overlaid gaze positions. Ea
h marker representsthe gaze position from one viewer. (b) Three level wavelet de
ompositionof the Y-
omponent. (
) Subband weighting masks for a three level waveletde
omposition.are ea
h wavelet de
omposed (
.f. Appendix A) using a Daube
hies 4-tap �lter with periodi
 border extension. Ea
h 
omponent is de
omposedwith three levels as depi
ted in Figure 9.3(b). Foveation is implementedin the wavelet domain by weighting (multiplying) the 
oe�
ients in ea
hsubband Bλ at de
omposition level λ = {1, 2, 3} with a Gaussian-likefun
tion Wλ(m,n), whose shape is determined by the distribution of gazepositions. This way, high frequen
y information is attenuated in regionslargely unattended by viewers' gazes. More pre
isely, if P denotes thenumber of viewers, (mi, ni) denotes the position gazed at by viewer i, and
M ×N de�ne the image dimensions, then

Gλ(m,n) =

P
∑

i=1

− exp
((m−mi)

2 + (m−mi)
2

2σ2

) (9.1)
m = 1, 2, . . . ,

M

2λ
, n = 1, 2, . . . ,

N

2λde�nes a gaze density fun
tion (GDF). Wλ(m,n) relates to the GDF asfollows
Wλ(m,n) = min

m,n

(

1, Gλ(m,n)
) (9.2)Consequently, values larger than one are trun
ated so that Wλ(m,n) 
on-sists only of values on the interval (0 1℄. Figure 9.3(
) gives an exampleof how the weighting fun
tion Wλ(m,n), λ = {1, 2, 3} is 
omposed in thewavelet domain. Noti
e how 
oe�
ients from the lowest frequen
y band,

LL3, are una�e
ted by the weighting to ensure a 
rude ba
kground qualityin the de
oded image. The parameter σ in Eq. (9.1) 
ontrols how fast thedisplay quality is degraded away from regions with high gaze density. Inour experiments, we use σ = 0.10M . This lets the 'full width at half max'(used by, e.g., Rajashekar, Corma
k, & Bovik, 2004) of ea
h Gaussianfun
tion 
entered at a gaze position 
over the foveal span of an observer,



9.3 Data Evaluation 93and also a

ounts for the un
ertainty introdu
ed by allowing new viewersto wat
h the o�-line foveated video.Wavelet 
oe�
ient weighting is followed by quantization. We use avery simple quantization strategy where 
oe�
ients at levels λ = {1, 2, 3}are quantized with respe
tively {1, 3, 4} bits using a s
alar uniform quan-tizer with the step size optimized for a Lapla
ian distribution (see e.g.,Table 8.3 on p. 225 in Sayood, 2000). The lowest frequen
y band LL3,however, is quantized with the step size optimized for a uniform distribu-tion, using 8 bits. Quantized wavelet 
oe�
ients are as a last step entropy
oded with a Hu�man 
oder. De
oding is straightforward as shown inFigure 9.1.9.3 Data EvaluationImage 
ompression algorithms struggle with the trade-o� between main-taining a good per
eptual quality and at the same time obtaining lowbitrates. Unfortunately, there exist 
urrently no obje
tive methods forquality evaluation that produ
e results indistinguishable from those ob-tained by human observers. In parti
ular, standard methods for obje
tivequality evaluation would fail miserably if applied to o�-line foveated video.For that matter, it is not even 
lear if standard methods for subje
tivequality assessment would yield reliable results. We address these 
on-
erns by 
olle
ting eye-movements from a new group of viewers wat
hingthe o�-line foveated image sequen
e, and 
ompare their gaze positionsagainst those 
olle
ted from the original image sequen
e. If gaze positions
oin
ide a
ross the two 
onditions, foveated 
ompression does not 
hangewhere people look. Consequently, the new viewers look at regions wherethe quality is high. This is an obvious prerequisite for o�-line foveated
ompression.To quantify whether o�-line foveated 
ompression 
hanges where peo-ple look, we de�ne twomeasures based on the 
olle
ted gaze data: between-group (BG) di�eren
e and within-group (WG) similarity. The BG di�er-en
e measures the degree of similarity a
ross any two sets of gaze posi-tions A and B. We use a modi�ed version of the Kullba
k-Leibler distan
e(KLD) (Cover & Thomas, 1991) to de�ne this similarity mathemati
ally.In its standard from, the KLD is expressed as
D(p ‖ q) =

∑

X

p(x) log2 .
p(x)

q(x)
(9.3)

p(x) and q(x) are probability density fun
tions (PDFs) of a dis
rete ran-dom variable X with alphabet X. The KLD, also known as the relativeentropy, is a known information theoreti
 measure and 
an be thoughtof as a distan
e, alas non-symmetri
, between two PDFs; it equals zero



94 O�-Line Foveated Compression Iif and only if the distributions are identi
al. The more the distributionsdi�er, the larger this distan
e will be. To address the non-symmetri
properties of the KLD, we de�ne the BG di�eren
e, SBG(ĜA, ĜB) as theharmoni
 KLD (hKLD) (used by, e.g., Rajashekar et al., 2004) betweenthe normalized GDFs ĜA and ĜB

SBG(ĜA, ĜB) =

(

1

D(ĜA ‖ ĜB)
+

1

D(ĜB ‖ ĜA)

)−1 (9.4)where Ĝ(m,n) = G(m,n)/(
∑

m

∑

nG(m,n)), and G(m,n) is de�ned asin Eq. (9.1) with λ = 0.The WG similarity quanti�es the degree to whi
h subje
ts' gaze posi-tions are spread out over the s
reen area. Obviously, in order to a
hievelarge bitrate savings, gaze density must be 
onstrained to limited regions,
onsiderably smaller than the whole display area. The WG similarity,
SWG a
ross gaze positions for any set A is found by 
omputing

SWG = SBG(ĜA, U(Ω)) (9.5)where U(Ω) denotes the uniform distribution spanned by the image area
Ω. In this 
hapter, a set (A or B) will 
omprise either gaze positions
olle
ted during the display of one image from a sequen
e, or positionsdrawn from an underlaying distribution (e.g., Gaussian or uniform).9.4 Results9.4.1 Compression due to o�-line foveationO�-line foveation prior to quantization and 
oding redu
es the bitratewith, on average, 17.8% in our tested image sequen
es, despite usinga simple 
oding method not in any way optimized to en
ode foveatedimages. Figure 9.4 illustrates an image-by-image 
omparison in bitratebetween the original and o�-line foveated image sequen
es. Noti
e thein
reased variability in bitrate due to o�-line foveation, whi
h is a resultof the 
onstantly varying size of the weighting fun
tion used to 
ontrolthe bit allo
ation. Of 
ourse, the potential for improved 
ompression dueto foveation rea
hes its peak when all tested subje
ts gaze toward exa
tlythe same position. On the other hand, if the gaze density is evenly dis-tributed over an image, o�-line foveation may yield no or very little bitrategain. Figure 9.5 shows two images from the tested sequen
es where o�-line foveation had the largest (Figure 9.5(a)) and smallest (Figure 9.5(b))impa
t on 
ompression. As 
an be seen, a 
ompa
t gaze density a
rossviewers is an important aspe
t for improved 
ompression. Just as im-portantly, however, is the frequen
y 
ontent of the unattended regions;
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ementsmsFirst FixationAll FixationImage numberFa
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Image Number

Bitrate(bits/pi
xel)

Image number versus bitrateOriginal, 
ompressed version
Foveated, 
ompressed versionFigure 9.4: Bitrates of the original and o�-line foveated image sequen
esafter 
ompression.removing mu
h high-frequen
y information due to foveation greatly in-
reases the degree of 
ompression. If on the other hand the unattendedregions already are of lowpass nature, little additional gain in 
ompressionis won by foveation.9.4.2 EvaluationFigure 9.6(a) shows the within-group (WG) similarity a
ross gaze posi-tions 
olle
ted in the initial data 
olle
tion (�rst 
olumn), referred to as'Original', and those 
olle
ted during the evaluation phase (se
ond 
ol-umn), named 'Foveated'. Ea
h value re�e
ts the WG similarity amonggaze positions 
olle
ted from one image. A large value on the y-axis in-di
ates a high similarity. For 
omparison, the WG similarity for randomviewers is shown (third 
olumn), where 14 gaze positions were drawn froma uniform distribution for ea
h image. The similarities are visualized withbox plots. Ea
h box has lines at the lower quartile, median, and upperquartile values. The whiskers extend to 1.5 times the inter-quartile rangeand values outside this interval are 
onsidered as outliers and representedby plus signs. The not
h in ea
h box re�e
ts the un
ertainty in median ina box-to-box 
omparison. If the not
hes between two boxes do not over-lap, they have di�erent medians with 95% signi�
an
e. As 
an be seenfrom Figure 9.6(a), the WG similarity is signi�
antly larger (p < 0.05)a
ross di�erent human viewers than a
ross positions drawn at random.



96 O�-Line Foveated Compression IPSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (a) High 
ompression gain
PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (b) Low 
ompression gainFigure 9.5: Images with the highest (28.2%) and lowest (10.1%) additionalbitrate redu
tion due to o�-line foveation.This is true for both the 'Original' and 'Foveated' data. Clearly, viewerslook toward limited parts of the display, and their viewing behavior isnot of 'random' nature. Moreover, it 
an been seen that 'Foveated' gazepositions are more 
ompa
t than the 'Original'. This 
ould imply that theperipheral blur introdu
ed by o�-line foveation repels new viewers' gazes,whi
h instead are attra
ted to regions with high quality.While the higher-than-random WG similarity reveals that the distri-butions of gaze positions are 
ompa
t, it does not tell us whether twodistributions of gaze positions 
oin
ide spatially. Therefore, we 
omputebetween-group (BG) di�eren
es, whi
h are illustrated in Figure 9.6(b).The �rst 
olumn plots the di�eren
e between 'Original' and the 'Foveated'gaze positions whereas the se
ond and third 
olumns illustrate the di�er-en
e between 'Original vs. Interleaved' and 'Foveated vs. Interleaved',respe
tively. When interleaving gaze positions, we assign ea
h image withgaze positions taken from a di�erent, non-
ontiguous image in the se-quen
e. Interleaving is done to 
ompare the 
olle
ted data against 'ran-dom' viewing behavior, whi
h in
ludes the 
entral bias inherent in typi-
al gaze data. Figure 9.6(b) shows that di�erent viewers' gaze positionslargely 
oin
ide when wat
hing the same video before and after o�-linefoveated 
ompression.9.4.3 Viewer ratings and 
ommentsDire
tly after the eye-movement re
ording in the evaluation phase, sub-je
ts were asked to name one or many s
ene(s) that were of better orworse quality than the others. To redu
e the potential top-down bias oneye-movements that a quality evaluation task 
ould give, subje
ts werenot informed of this quality assessment in advan
e. Although giving onlya 
rude estimate of the quality of the o�-line foveated image sequen
es,
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hing the o�-line foveated and 
om-pressed video ('Foveated'). 'Interleaved' gaze positions originate from the'Original' image sequen
e, after the image order has been randomly shuf-�ed.



98 O�-Line Foveated Compression Ithe assessment showed some interesting tenden
ies. Figure 9.7 illustrates
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Poor qualityPSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomFigure 9.7: Subje
tive rating of the six image sequen
es. Subje
ts wereasked to name the image sequen
es that stood out from the others interms of better or worse quality.these. The numbering is a

ording to Figure 9.2 (top left to bottom right).In parti
ular, the quality of the �rst and the se
ond image sequen
es mir-rored ea
h other. The �rst sequen
e 
ontained many obje
ts with vivid
olors whereas the se
ond 
ontained a few main obje
ts (the dolphins)performing a
robati
 tri
ks. This leads us to assume that foveated 
om-pression works better when there is one or a few main obje
ts reliablyattra
ting viewers' gazes. Subje
ts were also able to freely provide feed-ba
k on the viewed sequen
es. One of the most frequent 
omments wasthat single, isolated high quality regions seemed to '�oat around'. Thesame e�e
t was reported by Du
howski and M
Cormi
k (1998). Su
h ar-tifa
ts derive from individual viewers whose deviant gaze positions werenevertheless used to foveate the images.9.5 SummaryIn this �rst look at o�-line foveated 
ompression, we found that: 1) O�-linefoveation prior to 
ompression yields an additional 17.8% bitrate redu
-tion. These results are obtained without exploiting temporal redun
an-
ies, as used in 
oding of video. 2) Viewers largely look toward similarregions when wat
hing image sequen
es. 3) O�-line foveation a�e
ts sub-je
ts' viewing behavior only a little, with a slight shift toward regions keptin high quality. Sin
e viewers look toward regions kept in high quality, itis likely that their subje
tive quality remains high, given that peripheralregions do not 
ontain easily identi�able artifa
ts.



Chapter 10
Using Volumes of Interest inO�-Line Foveated VideoCompression
IN 
ontrast to what previously has been reported in the literature, theresults from last 
hapter support that o�-line foveation 
an bene�timage sequen
e 
ompression. At the same time, some of the subje
tsviewing the o�-line foveated sequen
es reported that rapidly appearingand disappearing high quality regions were disturbing, hen
e de
reasingthe subje
tive quality. To maintain a high subje
tive quality, it seems
ru
ial to transform 
olle
ted gaze data into a fun
tion smoothly 
ontrol-ling the spatio-temporal amount of blur introdu
ed by o�-line foveation.Using the observations and design issues from (Stelma
h & Tam, 1994;Du
howski & M
Cormi
k, 1998), dis
ussed in Chapter 8, 
ombined withthose from the previous 
hapter, we will in the 
urrent 
hapter design, im-plement and evaluate an improved and more elaborate system for o�-linefoveated 
ompression. The remainder of this 
hapter is stru
tured as fol-lows. Se
tion 10.1 des
ribes how gaze positions are used to de�ne smoothvolumes of interests (VOIs), whi
h are used in Se
tion 10.2 to implemento�-line foveation through wavelet domain �ltering. We use the state-of-the-art video 
ode
 H.264 to en
ode the o�-line foveated sequen
es, and
ompute the bitrate gain due to o�-line foveation prior to 
ompression.Finally, evaluations are performed in Se
tion 10.3 to answer how o�-linefoveation a�e
ts subje
tive quality and viewing behavior.



100 O�-Line Foveated Compression II10.1 Creating Volumes of Interests (VOIs) FromGaze PositionsVolumes of interests (VOIs) are derived from gaze data in the followingsteps:Gaze positions (A)→ GDF (B)
→ Intra-frame ROI (C)→ Inter-frame ROI (D)→ VOIEa
h of these steps will now be des
ribed in detail.Step (A)Initially, gaze 
oordinates are pro
essed per frame and represented bygaze density fun
tions (GDFs), denoted G(m,n) (See Eq. (9.1) for ade�nition). The widths of the Gaussian fun
tions 
omposing the GDFare motivated by setting the parameter σ su
h that when a Gaussianfun
tion is 
ropped at half its maximum height, the sli
e plane or a
tivearea (Wooding, 2002) spans the foveal region of an observer viewing thevideo at a distan
e d. If α denotes the visual angle, then σ is easily foundas
σ =

√

−
(

d tan(πα/360)
)2

2 loge(1/2)
(10.1)A GDF re�e
ts the likelihood of where future viewers will dire
t their gazesand 
ontains valuable information about where the ROIs are lo
ated.Step (B)Using GDFs to predi
t ROIs, we address two heuristi
 design 
riteria.First, ROIs should be representative for viewers of the o�-line foveatedvideo and take into a

ount the un
ertainty of where new viewers will lookrelative to those originally re
orded from. Obviously, there is a trade-o�between keeping the ROIs as small as possible (and thus maximizing thebitrate gain due to o�-line foveation), but large enough to en
apsulate thegazes of as many new viewers as possible. Se
ond, besides the global peakof a GDF, lo
al peaks in gaze density may indi
ate potentially interestingregions and must therefore have the 
han
e to be fully re
ognized as ROIs.To resolve the �rst issue, we 
ompute the inter-subje
t gaze pointdispersion a
ross P viewers as

S =
1

P

∑

i=1,2,...,P

Gi′

max −G
i′ (mi, ni)

Gi′
max −G

i′
avg

(10.2)and use this as a measure of the un
ertainty of where new viewers willlook. Gi′ (m,n) denotes a GDF that has been generated by all gaze points



10.1 Creating VOIs From Gaze Positions 101ex
ept that for viewer i; Gi′

max and Gi′

avg denote the maximum and averageof Gi′(m,n), respe
tively. Consequently, S equals zero when all viewersgaze toward exa
tly the same position. In this 
ase the likelihood thata new viewer will look elsewhere is low. The opposite is true when Sapproa
hes one; then it is di�
ult to make quali�ed predi
tions of wherenew viewers will look, and foveation may have to be omitted to ensurea reliable, high subje
tive quality. The un
ertainty is a

ounted for by
omputing a s
aled σs

σs = f(σ, S), σs ≥ σ (10.3)and use this parameter to generate a new, s
aled GDF Gs(m,n). Noti
ethat σs does not dire
tly shape Gaussian fun
tions 
ontingent on theviewing setup (visual angle, et
.), but instead re�e
ts and 
ompensatesfor the un
ertainty in ROI lo
ation.Using the s
aled GDFs, positions and shapes of the ROIs are de�nedfor ea
h frame. We present a hierar
hi
al approa
h to ROI sele
tion, whi
h�nds ROIs in order of de
reasing salien
y and prioritizes regions with highgaze density. Below we des
ribe the mapping from a set of gaze positions
X to the fun
tion Gs(m,n); it represents ROI pixels by unit values, andnon-ROI pixels are represented by values less than unity with Gaussian-type fall-o� toward the ROI edges. To emphasize that gaze points arepro
essed frame-wise, we borrow terminology from video 
ompression byreferring to Gs(m,n) as the intraframe ROI fun
tion.At the �rst hierar
hi
al level ℓ1, a GDF generated from all gaze points
X in a frame is 
ropped at half its maximum height1. Ea
h gaze point is
lassi�ed as signi�
ant or insigni�
ant depending on whether it is lo
atedwithin or outside an a
tive area, and also labeled a

ording to whi
ha
tive area it belongs. For example, if n a
tive areas are found, thegaze points in X are divided into the subsets {X (1)

ℓ1
,X

(2)
ℓ1
, . . . ,X

(n)
ℓ1

,Xℓ2},where the subset Xℓ2 
ontains all gaze points outside of the a
tive areas.Additionally, the subsets are sorted in order of de
reasing salien
y, wheresalien
y is de�ned by the number of gaze points 
ontained in a subset.Classi�
ation into signi�
ant and insigni�
ant gaze points 
ontinues in thesame manner at the next hierar
hi
al level ℓ2, but now with X ← Xℓ2 .The 
lassi�
ation algorithm 
an run until all gaze points are allo
ated todi�erent hierar
hi
al subsets,
{X

(1)
ℓ1
,X

(2)
ℓ1
, . . . ,X

(n)
ℓ1

,X
(1)
ℓ2
,X

(2)
ℓ2
, . . . ,X

(m)
ℓ2

,X
(1)
ℓ3
, . . .}or until gaze points no longer indi
ate interesting frame regions. The stop
riterion 
an ultimately be left as a user option.1From this point on, we assume that all GDFs are generated with a s
aled sigma,

σs, as de�ned by Eq. (10.3)



102 O�-Line Foveated Compression IIPSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (a)
PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (b)

PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random (
)Figure 10.1: A GDF (a) and the 
orresponding intraframe ROI fun
tionsbefore (b) and after (
) removal of temporal outliers. Gaze positions (onefor ea
h tested subje
t) are represented by 
rosshairs.On
e the signi�
ant 
lusters of gaze points have been identi�ed, ea
hsubset (Y) of gaze points is used to generate a new GDF GY(x, y), whi
his 
ut o� at half its maximum height and normalized to unit height. Allsu
h 
ropped and normalized GDF are then 
ombined into the intraframeROI fun
tion
Gs(m,n) = maxm,n {G

X
(1)
ℓ1

(m,n), G
X

(2)
ℓ1

(m,n), . . . , G
X

(n)
ℓ1

(m,n),

G
X

(1)
ℓ2

(m,n), G
X

(2)
ℓ2

(m,n), . . . , G
X

(m)
ℓ2

(m,n),

G
X

(1)
ℓ3

(m,n), . . .} (10.4)
m = {1, 2, . . . ,M}, n = {1, 2, . . . , N}Simulations with our data have shown that four or more ROIs rarelyemerge in Gs(m,n). Instead, mostly one and sometimes two and threeROIs a

ount for viewers' visual interest. Figure 10.1(a-b) show the rela-tionship between a GDF and the 
orresponding intraframe ROI fun
tion,whi
h was generated assuming a viewing distan
e d = 0.75m and α = 5degrees. The fun
tion f(·) was empiri
ally de�ned as f(σ, S) = σ ·(1+2S)in order to ful�ll the 
riteria that ROIs should 
over the whole displayarea in 
ase of a spread out gaze point distribution. Only a
tive areas
ontaining two or more gaze points were 
onsidered as �interesting�. Inthe 
oming se
tions of this 
hapter, we will use these parameters in oursimulations.The method for 
lustering gaze-points into hierar
hi
al subsets de-s
ribed above di�ers from most other 
lustering te
hniques. First, itmakes no assumptions about the number of 
lusters (ROIs). Se
ond, the
luster formation is driven by GDFs, naturally taking into a

ount thespatial 
oheren
e between di�erent points by modeling the resolution fall-o� by Gaussian fun
tions. Moreover, it takes the un
ertainty of whereinteresting frame regions reside into a

ount by introdu
ing a measure



10.1 Creating VOIs From Gaze Positions 103of gaze-position dispersion. Finally, the shapes of the ROIs are de
idedautomati
ally.The hierar
hi
al sear
h for 
luster formations (and ROIs) 
an be ap-plied to other types of data. However, unless the data 
omprises point ofgaze 
oordinates, it is un
lear how to 
hoose and motivate σ.Step (C)Even though the dete
ted intraframe ROIs make perfe
t sense when look-ing at the gaze point distributions frame-wise, an ROI 
an be temporallyextraneous if it la
ks neighboring ROIs adja
ent in time. What appearsto be a distin
t formation of gaze positions in one frame 
an instead beeye-movements from di�erent subje
ts brie�y overlapping ea
h other intime. This must be a

ounted for when extending the ROIs into 3-Dvolumes of interest (VOIs).We let a new VOI appear only if it remains long enough for a viewer ofthe o�-line foveated video to plan and exe
ute a sa

ade (∼200 ms) to thatparti
ular region and to dwell for a typi
al �xation duration (∼300 ms).Therefore, only VOIs emerging and remaining for more than 500 ms are
onsidered. In pra
ti
e, this is implemented by �nding the 
entroid of ea
hROI in the 
urrent frame and making sure that temporally adja
ent ROIsexist at the same spatial lo
ation(s) for ≥ 500 ms. Temporally extraneousgaze points are identi�ed as those 
ontained inside of an ROI not ful�llingthe above 
riteria. Remaining gaze points are used to generate a newintraframe ROI fun
tion G̃s(m,n), whi
h is depi
ted in Figure 10.1(
).It is generated from the same distribution of gaze points as the GDF inFigure 10.1(a). Noti
e how the rightmost a
tive area is ex
luded sin
e itdoes not ful�ll the temporal 
riteria above.Step (D)In the �nal step, we de�ne an interframe ROI fun
tion, Gt
j(m,n) forframe j by 
onvolving a number of temporally adja
ent intraframe ROIfun
tions by a one-dimensional Gaussian kernel φ:

Gt
j(m,n) =

∑

k

φkG̃
s
j−k(m,n) (10.5)where ∑

k φk = 1.Temporal smoothing varies 
ontingent on the length and varian
e ofthe 
onvolution kernel. Figure 10.2 illustrates 29 adja
ent interframe ROIswith a kernel length of 29 pixels and the varian
e set to 20 pixels. Wede�ne a volume of interest (VOI) as a 
olle
tion of interframe ROIs.
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tFigure 10.2: A VOI visualization.10.2 Using VOIs in Video CompressionTo maintain a pleasant viewing experien
e, previous work on o�-linefoveation and its e�e
ts on subje
tive quality and eye-movements em-phasized the importan
e of implementing smooth variations in quality,both spatially and temporally (Stelma
h & Tam, 1994; Du
howski & M
-Cormi
k, 1998; Nyström et al., 2004). We approa
hed this re
ommenda-tion by deriving volumes of interest (VOIs) from gaze positions 
olle
tedby previewers. In this se
tion, we will use the VOIs to manipulate and
ompress video frames su
h that quality 
hanges 
ontingent on the VOI-shapes. An overview of the proposed system is s
hemati
ally depi
ted inFigure 10.3. As 
an be seen from the �gure, the video is pro
essed su
hthat ea
h frame is o�-line foveated in the wavelet domain before beingfed to an H.264 en
oder. At the de
oder side, the bit stream is dire
tlyde
oded. Sin
e o�-line foveation is generated independently of the video
oder, no modi�
ations of the H.264 implementation are required. In fa
t,H.264 
an be repla
ed by any other video 
oder.10.2.1 Implementing wavelet foveationEarly te
hniques for real-time degradation (foveation) of the image qualityaway from the position of gaze either in
reased the pixel-size in the periph-ery (Kortum & Geisler, 1996) or used multi-resolution pyramids (Geisler& Perry, 1998). The shape of the foveation mask was derived from ex-perimental measurements of 
ontrast sensitivity. More re
ently, waveletshave be
ome popular to implement image foveation (Chang & Yap, 1997;Du
howski & M
Cormi
k, 1998; Wang & Bovik, 2001). If an observer'sposition of gaze and viewing distan
e from the s
reen are known, waveletsubbands 
an be weighted su
h that visually redundant (high-frequen
y)
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PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomFigure 10.3: Overview of the proposed 
ompression system for o�-linefoveated video 
oding.information is removed from the peripheral regions in the re
onstru
tedimage (Wang & Bovik, 2001). Implementing o�-line foveation requiresdi�erent strategies for a number of reasons. Most importantly, gaze po-sitions of viewers wat
hing the o�-line foveated images/videos are notknown exa
tly. Furthermore, the viewing distan
es and s
reen param-eters (size, resolution) are not known and 
an di�er between observers.Therefore, there are no straightforward methods either to �nd the shapeof the ROI fun
tion or the mapping from an ROI fun
tion in the spatialdomain to the wavelet domain. Below, we address these issues.Interframe ROI fun
tions de�ne the visual salien
y for di�erent frameregions in the spatial domain. To generate similar interframe ROI fun
-tions in the wavelet domain we need a slightly di�erent strategy, bothin order to smoothly degrade the display resolution away from the ROIsand also to preserve the low frequen
y subbands in the wavelet de
om-position where most of the energy resides. For the �rst level (λ = 1) inthe wavelet de
omposition, we use the intraframe ROI fun
tion G̃s
j(m,n),generated from gaze positions where temporal outliers have been removed.At ea
h of the subsequent levels in the wavelet de
omposition, σj in Eq.(10.3) is in
reased as σj ← σjλβ when 
reating the intraframe ROI fun
-tion at level λ. β denotes a s
aling fa
tor 
ontrolling the amount ofperipheral blurring. As with the intraframe ROI fun
tions in the spatialdomain, their wavelet adjusted 
ounterparts are as a last step smoothedwith the same kernel as in Eq. (10.5). Figure 10.4(d) shows an inter-frame ROI fun
tion adjusted to the wavelet domain when four levels ofde
omposition are used and Figure 10.4(e) illustrates a frame that hasbeen foveated by multiplying its wavelet de
omposition with the mask inFigure 10.4(d). For wavelet �ltering, we used the bi-orthogonal 9/7 �lter(Cohen, Daube
hies, & Feauveau, 1992) and periodi
 border extension.When using 
olor images, ea
h 
olor 
omponent (R,G and B) is foveated



106 O�-Line Foveated Compression IIQuality fa
torVideo Lowest Low Medium High Highest M±SDAlte 0.13 0.29 0.52 0.45 0.33 0.34±0.15Dolphin 0.19 0.27 0.34 0.35 0.29 0.29±0.06Fish 0.14 0.24 0.32 0.29 0.21 0.24±0.07Aikyo 0.02 0.01 0.01 0.06 0.16 0.05±0.06Football 0.13 0.15 0.16 0.16 0.19 0.16±0.02Hall 0.03 0.03 0.06 0.20 0.18 0.10±0.08all 0.11 0.16 0.24 0.25 0.23 0.20±0.13Table 10.1: Bitrate gain due to o�-line foveation before video en
odingwith H.264 for di�erent quality fa
tors. Results are presented for the sixvideo 
lips in Figure 10.5.using the same method. Through pilot testing we found that β = 2.3introdu
ed a level of peripheral blurring that, when looking at regions ofhigh gaze density, was very hard to noti
e.10.2.2 Compression gain due to o�-line foveationUsing the above method, we 
omputed the 
ompression gain due to o�-line foveation on six video 
lips. A representative frame from ea
h videois shown in Figure 10.5. The three videos in the upper row in Figure10.5 were eight se
onds long with resolution 720×576 and those in thebottom row 352×288 pixels (CIF format) and of durations �ve, three andfour se
onds, 
ounting from the left. Eye-movements had been 
olle
tedfrom these videos as des
ribed in (Nyström et al., 2004; Johannesson,2005). Ea
h of the videos was en
oded before and after o�-line foveationusing H.264 (Qui
ktime 7.3 Pro. implementation) at �ve di�erent qualitysettings: Lowest, Low, Medium, High and Highest. Table 10.1 summarizesthe results where the bitrate gain due to foveation is de�ned asGain =
FileSizeUnfoveated − FileSizeO�-line foveatedFileSizeUnfoveated (10.6)The table reveals that o�-line foveation de
reases the �le size by 20% onaverage. However, the variations are large. Videos 
ontaining mu
h highfrequen
y 
ontent in regions where people do not look 
an be redu
edby as mu
h as 52%. In 
ontrast, o�-line foveation barely 
ontributes toadditional 
ompression when the ba
kground is stati
 and out of fo
us,as in 'Aikyo'.
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ted at randomFigure 10.4: Implementing o�-line foveation. The wavelet representation ofea
h frame is multiplied by a VOI sli
e su
h as the one illustrated in Figure10.4(d). Figure 10.4(e) shows the same frame after o�-line foveation. Tomore 
learly visualize the di�eren
e in quality between the attended andunattended regions, boxed parts of the original and foveated frames arezoomed in.
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PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomFigure 10.5: Representative frame from ea
h of the tested video 
lips Alte,Dolphin, Fish, Aikyo, Football and Hall.10.3 Subje
tive EvaluationsO�-line foveation 
learly redu
es the number of bits needed to representa video digitally. Of 
ourse, the redu
tions are of no value unless thesubje
tive quality remains high. In the remainder of this 
hapter, wewill present a number of new methods to assess how o�-line foveationa�e
ts subje
tive quality and gazing behavior. Results from three subje
-tive evaluations are presented. In Evaluation I, we let subje
ts 
omparethe quality of unfoveated and o�-line foveated videos 
ompressed withthe same quality fa
tor. Evaluations II and III extend the methodol-ogy used in the �rst evaluation; we use, for example, eye-tra
king data
olle
ted during di�erent task instru
tions and over repeated viewingsto obtain dire
t and indire
t measurements of how viewers per
eive theo�-line foveated videos.10.3.1 Evaluation ISubje
ts and Video materialTo investigate how viewers experien
e the quality of o�-line foveated video
lips, we let 12 subje
ts (�ve women, 28.4±6.3 (M±SD)) wat
h one un-foveated and one o�-line foveated version of three di�erent, eight se
ondvideo 
lips. All subje
ts had normal or 
orre
ted-to-normal vision.As stimuli, we use the videos depi
ted on the �rst row in Figure 10.5.These videos are all shorter parts of the videos used in last 
hapter, andwere 
hosen to depi
t di�erent types of s
enes; one with several peoplemoving around in the display, another with a few main obje
ts of interest,and the last 
ontaining one main obje
t of interest. Before being presentedto the subje
ts, both versions of all three 
lips were 
ompressed with the



10.3 Subje
tive Evaluations 109+ 3 A mu
h better than B+ 2 A better than B+ 1 A slightly better than B0 The same- 1 A slightly worse than B- 2 A worse than B- 3 A mu
h worse than BTable 10.2: S
ale for quality ratings.Qui
ktime 7.3 Pro H.264 en
oder with the quality fa
tor set to 'medium'.Sin
e the obje
tive video quality of the unfoveated and o�-line foveatedvideos is the same within the VOIs before en
oding, it is essentially thesame also after 
ompression. However, variations 
an o

ur along the VOIboundaries.Pro
edureSubje
ts were instru
ted that they would be wat
hing three di�erent eightse
ond video 
lips, ea
h 
ompressed by two di�erent algorithms in an ABtrial. A and B denoted either the unfoveated and 
ompressed or the o�-line foveated and 
ompressed version of the same video 
lip, and werepresented one by one in full s
reen.After ea
h viewing, subje
ts were asked to evaluate the video qualityof A relative to B a

ording to the quality ratings in Table 10.2.In order to see the e�e
ts of multiple viewings on o�-line foveated videoquality, subje
ts were presented to ea
h of the three video 
lips anothertwo times (ABAB). After all three viewings, most subje
ts felt that theyhad a 
lear pi
ture of the di�eren
e in video quality between A and B. Ifnot, they 
ould wat
h the 
lips again until they felt 
on�dent of givingan a

urate vote. Only two of the subje
ts used this option. Subje
tswere not informed in advan
e about the possibility to assess the videosadditional times.The reason for allowing multiple viewing was twofold. First, as intraditional methods for quality evaluations, subje
ts are given additionalviewings to get a 
learer pi
ture of the di�eren
e in quality. Se
ond,sin
e the videos are stored in subje
ts' memory after the initial viewing,it is likely that in
reasing top-down knowledge a�e
ts viewing behaviorsu
h that gaze positions between the �rst and later viewings are lo
atedat slightly di�erent video regions. To get an indi
ation of whether thiso

urred, subje
ts were asked to estimate their viewing behavior duringthe trials on a s
ale rea
hing from 5 (I was a
tively sear
hing for qualityimpairments) down to 1 (Just like I wat
h video at home; my naturalviewing behavior). Although people may be quite poor at estimating
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Figure 10.6: Results of the subje
tive quality evaluation. The x-axis showswhi
h of the three video 
lips that was tested. Given on the y-axis isthe di�eren
e (a

ording to Table 10.2) in subje
tive quality between theunfoveated video and the o�-line foveated video. A value larger than zeromeans that subje
ts preferred the unfoveated video quality. Bars span onestandard error around the mean.where they look relative to where they a
tually look as measured by aneye-tra
ker, we believe that this will give some valuable insight regardingthe 
onne
tion between subje
tive quality and viewing behavior.Before a session started, subje
ts were informed about the quality rat-ing s
ales, 
arefully introdu
ed to the testing methodology and also guidedthrough a test session. Subje
ts were free to ask questions if anything wasun
lear. None of the subje
ts was familiar with o�-line foveated 
ompres-sion. All data was gathered, to the extent it was possible, under the same
onditions as when the eye-movements were 
olle
ted. The presentationorder of the di�erent video 
lips and the order of the unfoveated and o�-line foveated versions were randomized. Hen
e, six di�erent 
onstellationsof the video 
lips were used.ResultsFigure 10.6 shows the results from the subje
tive quality evaluation wheresubje
ts were asked to 
ompare an unfoveated and an o�-line foveatedversion of the same video after 
ompression with H.264 (medium qualityfa
tor). The �rst three 
olumns show the average quality votes for ea
h



10.3 Subje
tive Evaluations 111of the three tested video 
lips after one AB viewing, whereas the threerightmost 
olumns show similar votes after two (or more) additional ABviewings required for the subje
t to feel 
on�dent about the judgment.A positive value of the quality vote means that the subje
t preferredthe quality of the unfoveated over the o�-line foveated version, while anegative vote means the opposite. Error bars span one standard erroraround the mean.For the �rst two tested 
lips, we see the rather surprising e�e
t thatsubje
ts judge the o�-line foveated video quality as better. Similar �nd-ings have been reported for real-time gaze-
ontingent, multi-resolutionstill images (L. Los
hky, M
Conkie, Yang, & Miller, 2001). However,as in this paper, the e�e
ts were not signi�
ant. Overall, no signi�
ante�e
ts on the di�eren
e in video quality were found ex
ept for the se
-ond video after multiple viewings, where the unfoveated version re
eivedslightly better ratings.After 
ompleting the evaluations, subje
ts were asked to estimate theirviewing behavior during the quality evaluations on a s
ale {5, 4, 3, 2, 1},where 5 implied that a viewer a
tively was sear
hing for video qualityimpairments while a 1 re�e
ted a viewer's natural viewing pattern whilewat
hing video. The average value for the answers was 3.17 with a stan-dard deviation of 0.71. Noti
eable, however, was that most of the subje
tsmentioned that during the �rst AB trial, their viewing pattern was 
loseto a 1, whereas later in the tests more toward a 5. This suggests that aquality evaluation task does not alter the viewing pattern of subje
ts fromtheir normal, task neutral viewing pattern, at least not during �rst timeviewing of previously unknown video material. This argument is furtherstrengthened by the observation that peripheral degradations in the o�-line foveated videos were di�
ult to dete
t during �rst time viewing asshown by the quality votes. This indi
ates that viewers indeed looked atthe regions of high resolution.10.3.2 Evaluation IIIn order to investigate how o�-line foveation 
hanges the gazing behaviorduring free-viewing, we measure how eye-movements are a�e
ted in termsof spatial and temporal distribution in addition to repeated viewings.Without expli
itly asking subje
ts for their subje
tive opinion about thevideo quality, the 
olle
ted gaze data will help us understand how o�-line foveated videos are per
eived during task neutral, �normal� viewing
onditions. The measures we 
ompute in this evaluation will then be
ompared to those from Evaluation III, where subje
ts view the samevideos while evaluating the subje
tive quality.



112 O�-Line Foveated Compression IISubje
ts and video material15 naive subje
ts (nine women) of ages 30.2±16.1 (M ± SD) years volun-teered to take part in the experiment. They all had normal or 
orre
ted-to-normal vision. Stimuli 
onsisted of six original video 
lips shown inFigure 10.5 and six o�-line foveated versions of these, thus 12 videos intotal. The three videos in the upper row in Figure 10.5 were eight se
ondslong with resolution 720×576 and those in the bottom row 352×288 (CIFformat) pixels and of durations �ve, three and four se
onds, 
ounting fromthe left. All videos were displayed in 
olor at 25 fps and 
ompressed withH.264 (in Qui
ktime 7.3 Pro.) at high bit rates (quality fa
tor 'High')su
h to no 
ompression artifa
ts were visible to the bare eye. No soundwas used.Pro
edureSubje
ts were asked to view the stimuli as they normally would. Toprevent subje
ts from trying to guess the purpose of the experiment, theywere told that the study would investigate mental workload by measuringthe pupil size. This way, attention was drawn away from the fa
t thatgaze positions were re
orded. Subje
ts were further informed that thesame video 
lip 
ould o

ur more than on
e during one presentation.Ea
h subje
t was pla
ed at a viewing distan
e of 76.5 
m in front ofa 19 in
h 
omputer s
reen with resolution 1280×1024 and update rate75 Hz. The a
tive s
reen area subtended a visual angle of 28 degreeshorizontally and 23 degrees verti
ally. A 
hin rest was used to restri
thead movements.Prior to ea
h re
ording, a 13-point spatial 
alibration was performed.During data re
ording, all 12 videos were presented one after the otheron the s
reen, separated in time by a mid gray image displayed for onese
ond. Videos were displayed in full s
reen while maintaining their as-pe
t ratio. No pre�xation 
ross was used to restri
t subje
ts' initial gazeposition. The order was randomized with the restri
tion that two ver-sions (unfoveated and o�-line foveated) of the same video 
ould not bedisplayed dire
tly after ea
h other. To see how repeated viewing a�e
tseye-movement behavior, all 12 videos were presented twi
e more in thesame manner. In total, ea
h video was viewed three times by ea
h subje
t.Eye-movements were re
orded mono
ularly with an SMI iViewX Hi-Speed eye-tra
ker, sampling gaze positions at 240 Hz with position a
-
ura
y 0.2◦. On average, 9.6 gaze 
oordinates were re
orded for ea
hdisplayed frame. A Matlab s
ript was developed to 
olle
t data about thesubje
ts, 
ommuni
ate with the eye-tra
ker, display the videos in Qui
k-time player and 
ontrol the a

ura
y in timing during the experiments.
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Correlation(b) Correlation between gaze positions
olle
ted from the unfoveated and o�-line foveated versions of the samevideos. Error bars span one standarddeviation.Figure 10.7: Eye-movement behavior during free-viewing before and aftero�-line foveation.Analysis and resultsThe per
eptual e�e
ts of o�-line foveation toward video are assessed by
omparing gaze positions of viewers wat
hing the tested videos before andafter o�-line foveation. More pre
isely, we measure how o�-line foveationin�uen
es inter-subje
t dispersion, i.e., how well (or poorly) viewers' gazepositions 
oin
ide. This is done both for the initial and later viewings.The inter-subje
t dispersion, St at time t is 
al
ulated a

ording to Eq.(10.2). When generating the GDFs in this equation, σ equals 10% of thehorizontal video dimension, i.e., σ = 0.10M pixels. We tested slightlydi�erent parameter values, and the all gave largely similar results.Figure 10.7(a) illustrates the inter-subje
t dispersion after one, twoand tree viewings of the unfoveated (white bars) and o�-line foveated(bla
k bars) videos. It 
an be seen that o�-line foveation has no or littlee�e
t on the inter-subje
t dispersion. However, during �rst time viewing,there is a tenden
y (p = 0.10, two-sample t-test) that the dispersionde
reases due to o�-line foveation. Arguably, this e�e
t is present sin
esubje
ts avoid the blurred regions in the o�-line foveated videos su
hthat gaze positions 
luster in the high quality regions. Another 
leare�e
t is that the dispersion in
reases signi�
antly after repeated viewings,both for unfoveated and o�-line foveated videos. This type of behavioris little surprising sin
e additional viewings en
ourage more individualviewing strategies, whi
h are likely to re�e
t an in
rease in top-down
ontrol originating, for example, from memory e�e
ts.To estimate the similarity between two sets of gaze positions A and B
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ompute the 
orrelation 
oe�
ient
ρ =

∑
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(10.7)between the GDFs GA
t (m,n) and GB

t (m,n) generated from A and B, re-spe
tively. Figure 10.7(b) shows how gaze positions re
orded from viewerswat
hing the unfoveated video 
orrelate with those wat
hing the o�-linefoveated video after the �rst, se
ond and third viewing. It 
an be seenthat the 
orrelation is high in all three 
ases, indi
ating that subje
ts'gaze positions have similar distributions.10.3.3 Evaluation IIIIt is well known that a task instru
tion may 
hange where people look(Yarbus, 1967). In o�-line foveated video 
oding, a task that 
hangesviewers' gazing behavior from their 'normal' behavior may have a stronge�e
t on the per
eived quality. One that, for example, dire
ts peoples'gazes toward regions unattended by previewers will most 
ertainly de-
rease the subje
tive quality. In this se
tion, we will perform subje
tivequality assessments of o�-line foveated video and investigate the e�e
t aquality evaluation task has on eye-movements. Moreover, we will quantifyhow subje
ts' viewing behavior 
orrelates with their per
eption of qual-ity. The stimuli and experimental setup are the same as in Evaluation II;pro
edural 
hanges are explained below.17 naive subje
ts (six women) of ages 23.8±4.2 (M ± SD) years wereasked to estimate the di�eren
e in quality between two versions, A andB, of the same video in an AB trial. They were told that the two ver-sions resulted from di�erent 
ompression algorithms being applied to theoriginal video. To en
ourage subje
ts to do their best and maintain fo
usduring the evaluation, they were told that quality assessment is a di�
ulttask and the di�eren
es in quality would sometimes be hard to noti
e. Asin Evaluation II, subje
ts were informed that the study would investigatemental workload during quality assessment by measuring the pupil size.The videos were assessed as follows. Ea
h AB trial started by displayinga uniform mid-gray image with a large, 
entered bla
k 
apital A, followedby version A of the stimulus. Dire
tly after A had been shown followedthe same pro
edure for version B. Then a pop-up window 
ontaining aslider bar and a button appeared on the s
reen (see Figure 10.8). On theslider bar, three di�erent levels of quality were given: A better than B, Aequal to B, B better than A. Subje
ts 
ould freely adjust the slider to aposition re�e
ting their experien
ed quality, and then press the button to
ontinue with the next AB trial. For subsequent data analysis, the sliderposition was quantized to an integer value between -5 and +5. The pre-



10.3 Subje
tive Evaluations 115
PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomDispersionViewing #unfoveatedO�-line foveatedA better than B A equal to B B better than AView nextFigure 10.8: Pop-up window for quality assessment.sentation order of the video (AB) pairs was randomized. A and B denotedthe original and o�-line foveated versions of a video 
lip.In standardized methods for quality evaluation, subje
ts are usuallyallowed to view the videos to be assessed several times before giving thea
tual judgment. Therefore, to see the e�e
t a quality evaluation taskhas on repeated viewings, the above video pairs were shown another twotimes after whi
h a se
ond quality vote was taken. Subje
ts did not knowin advan
e that further 
han
es to evaluate the quality would be given.ResultsFigure 10.9 
ompares the dispersion of, and the 
orrelation between gazepositions 
olle
ted before and after o�-line foveation during �rst, se
ondand third time viewing. For 
omparison, similar measures from the se
ondevaluation are given as bars with smaller width. As 
an be seen from the�gure, the results are similar to those from the se
ond evaluation withthe di�eren
e that the dispersions are signi�
antly larger (p < 0.01, two-sample t-test) during quality evaluation. Supposedly, the more a
tivetask of quality evaluation en
ourages individual viewing strategies, andexplains why subje
ts' gaze positions spatially are less similar to ea
hother. During �rst time viewing, the dispersion during quality assessmentis rather 
lose, although signi�
antly di�erent (p < 0.01, two-sample t-test), to the baseline value (�rst time free-viewing), and it 
an be assumedthat subje
ts look within the non-degraded regions in the o�-line foveatedvideo. The further pursue this assumption, Figure 10.10 
ompares theper
eived quality of the six tested video 
lips before and after o�-linefoveation and how it is a�e
ted by repeated viewings.The white bars in Figure 10.10 show the average subje
tive qualityof the videos after the �rst viewing. Error bars extend one standarderror. A value larger than zero indi
ates that subje
ts prefer the quality



116 O�-Line Foveated Compression II
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at random Dispersion Viewing #
unfoveatedO�-line foveated

1 2 3(a) Inter-subje
t dispersion in gaze lo-
ations. Error bars span on standarderror in ea
h dire
tion around the mean. 0

0.2

0.4

0.6

0.8

1

PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomDispersion
Viewing #

unfoveatedO�-line foveated
1 2 3

Correlation(b) Correlation between gaze positions
olle
ted from the unfoveated and o�-line foveated versions of the samevideos. Error bars span one standarddeviation.Figure 10.9: Eye-movement behavior during quality assessment before andafter o�-line foveation. For 
omparison, results from Evaluation II arein
luded in the �gure, depi
ted by the thinner bars.

−2

−1

0

1

2

3

4

 

 

PSfrag repla
ementsmsFirst FixationAll FixationImage numberFa
ial regions blurredNon-fa
ial regions blurredExpe
ted at randomDispersionViewing #unfoveatedO�-line foveated Quality
Video Clip

After �rst AB viewingAfter three AB viewings

AlteAlte DolphinDolphin FishFish AikyoAikyo FootballFootball HallHall
�Unfoveated better�
�Foveated better�Figure 10.10: Subje
tive votes re�e
ting the di�eren
e in quality betweenunfoveated and o�-line foveated versions of the same video 
lip. A valuebelow zeros indi
ates that the quality of the o�-line foveated video wasjudged as higher whereas the opposite is true for values larger than zeros.Error bars span one standard error.



10.4 Summary 117of the unfoveated video whereas the opposite is true for values belowzero. O�-line foveation resulted in de
reased quality in one of the testedvideos, Football. The reason for this is most likely that eye-data usedto implement o�-line foveation was slightly ina

urate temporally, su
hthat foveation was performed with a slight lag in time. It is therefore nosurprise that the video 
ontaining the fastest movements gets a loweredsubje
tive quality. The rest of the o�-line foveated videos were essentiallyindistinguishable from the unfoveated videos in terms of subje
tive quality.However, as a result of repeated viewings subje
ts 
hanged their viewingpattern and gazed dire
tly at degraded parts of the o�-line foveated videos.The 
onsequen
e of repeated viewings in terms of subje
tive quality isillustrated by the bla
k bars in Figure 10.10, where subje
ts strongly preferthe quality of the unfoveated versions. An interesting observation is thelarge 
hange in subje
tive quality between the �rst and later viewings ofAikyo. Most likely, the fa
ial region is su
h a strong visual attra
tor thatit is initially hard to not gaze at. However, when looking outside the fa
ialregion, whi
h happens after repeated viewings, it is rather easy to see theintrodu
ed blurring e�e
ts.10.4 SummaryThe work in this 
hapter extends our initial approa
h to o�-line foveationand its appli
ability in 
ompression. We have proposed a mapping fromgaze positions into volumes of interest (VOI), whi
h are use to implemento�-line foveation in video. VOI based o�-line foveation prior to 
ompres-sion de
reased the bitrate signi�
antly. In disagreement with previousworks, o�-line foveation neither de
reased the subje
tive quality nor didit 
hange the eye-movement behavior.
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Chapter 11Dis
ussion of Part II
IN 
ontrast to known methods for real-time foveated video 
oding, wepropose that o�-line foveation 
an be used for improved video 
om-pression. Using gaze positions 
olle
ted from a number of previewers,o�-line foveation is implemented by redu
ing the quality in regions wherefew or none of the previewers look. Su
h quality redu
tions 
an give riseto signi�
ant bit rate redu
tions when 
ombined with traditional methodsfor 
ompression.In this part of the thesis we reviewed previous te
hniques for foveated
oding, investigated the rationales behind o�-line foveation, and imple-mented and evaluated systems for o�-line foveation. The highlights of ourresults show that:
• Viewers' gaze positions 
oin
ide when looking at video.
• O�-line foveation prior to 
ompression redu
es the bitrate with upto 50% 
ompared to 
ompressing the same, unfoveated video.Contrary to previous work (Stelma
h & Tam, 1994; Du
howski & M
-Cormi
k, 1998), we report that:
• The bitrate gain is a
hieved without de
reasing the subje
tive qual-ity.
• During initial free-viewing of a video, o�-line foveation has littlee�e
t on subje
ts' eye-movement behavior.We 
on
lude that o�-line video foveation 
ombined with 
ompression 
anindeed be su

essful to in
rease the e�
ien
y of today's state-of-the-artmethods. On the videos we tested, the average additional 
ompressiongain due to o�-line foveation was 20%. There are some reasons why thisnumber should be regarded a lower bound. First, the methods we used for
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ompression are in no way optimized to en
ode o�-line foveated videos.Using methods that better take advantage of the properties of an o�-linefoveated image sequen
e will yield even better 
ompression gains. Forexample, improvements 
an in
lude 
oding the motion ve
tors with un-equal importan
e, su
h that fewer bits are given to motion ve
tors innon-attended regions. Se
ond, the degree of peripheral blurring is ex-perimentally tuned, and it is therefore not 
lear how mu
h additionalblurring 
ould be introdu
ed without degrading the subje
tive quality. Inreal-world situations, the optimal amount of blurring depends on fa
torsthat 
an only be approximated, su
h as the s
reen size, s
reen resolu-tion, and viewing distan
e of an observer. Third, it 
an be seen fromTable 10.1 that o�-line foveation is less bene�
ial when the video qual-ity is poor. In this 
ase, foveation 
ould probably have been in
reasedfurther. Finally, the tested videos were assessed in a lab environmentand presented without sound. Using a more engaging viewing setup, it islikely that the 
oheren
e between subje
ts' gaze positions would in
reaseeven further. In addition to yielding large bitrate gains, o�-line foveationallows for 
omplexity redu
tions where 
omputational resour
es 
an befo
used toward high quality regions.Clearly, bitrate redu
tions due to o�-line foveation would be of littleinterest without 
onserving subje
tive quality. We estimated the qualityby quantifying 
hanges in gazing behavior between unfoveated and o�-linefoveated videos and by performing modi�ed versions of standard tests forsubje
tive quality assessment. Moreover, we 
al
ulated the e�e
ts thesemeasures had over repeated viewings. Results show that o�-line foveationhad no or very slight e�e
ts on both gazing behavior and subje
tive qual-ity during �rst time viewing. However, both gaze lo
ations and subje
tivequality were a�e
ted as a result of multiple viewings. As we expe
ted, theresults also showed that traditional methods for video quality assessmentwere not dire
tly appli
able to o�-line foveated video. In standards out-lined in, e.g., (VQEG, 2003), it is advised to show the video to be assessedseveral times to the subje
t before a quality vote is taken. However, asseen by our results, repeated viewings make subje
ts' gazing behavior de-viate from normal, �rst time free-viewing, thus shifting visual attentiontoward regions where viewers normally would not look. In view of this,traditional methods would all give very poor results in judged quality foro�-line foveated videos (as was found in Stelma
h & Tam, 1994). To ourknowledge, these issues have not been 
onsidered in standard quality as-sessment using 'normal', unfoveated stimuli. It is therefore not 
lear howmultiple viewings a�e
t subje
tive quality in these 
ases. Sin
e gazingbehavior 
hanges over multiple viewings, and therefore in
reasingly moredeviates from typi
al 'free-viewing', do standardized methods for videoquality assessment produ
e results that re�e
t 'typi
al' viewing? This isindeed an interesting question for future resear
h.



Part IIIGeneral Dis
ussion andCon
lusions





Chapter 12Con
lusions and Outlook
WE found o�-line foveation prior to 
ompression to de
rease thevideo bitrate without neither de
reasing the subje
tive qualitynor 
hanging subje
ts' eye-movement behavior. Investigatingthe prerequisites for using low-level algorithmi
 gaze predi
tion, insteadof eye-tra
king, for the purpose of o�-line foveation gave few promisinganswers; using 
ontrast manipulated still images, we showed that low-level features su
h as 
ontrast and edge density 
an easily be overriddenby higher 
ognitive fa
tors, both early after image onset and later inviewing.Today, there are some pra
ti
al issues making it 
umbersome to ef-fe
tively utilize o�-line foveated systems for video 
ompression. The onemet with most skepti
ism is that eye-tra
king re
ordings require expensiveequipment and are time 
onsuming, and therefore would be a bottlene
kin a real-world appli
ation. We see two future solutions to this prob-lem. First, it is by many envisioned that eye-tra
kers will be embedded inweb 
ameras, and that other low 
ost, simple-to-use eye-tra
king equip-ment will be available for pra
ti
al use in a near future. Already today,su
h systems have been suggested and implemented (Hansen, Ma
Kay,Hansen, & Nielsen, 2004; Pedersen & Spivey, 2006). This would makeeye-tra
king re
ordings more autonomous and less time 
onsuming, sin
eindividual viewers themselves 
ould download videos and re
ord gaze po-sitions through self-pa
ed experiments. Sin
e eye-movements would nothave to be measured in real-time, the la
k of te
hni
al sophisti
ation aweb
amera o�ers 
ompared to a state-of-the-art eye-tra
king system 
anbe 
ompensated for by �rst re
ording the eye-movements, and then let ahigh-
omplexity algorithm 
al
ulate gaze positions o�-line. One interest-ing appli
ation where web
amera based eye-tra
king 
ould have a hugeimpa
t is streaming video over the Internet. For example, around 13 hours
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lusions and Outlookof video are uploaded to YouTube every minute, and the estimated daily
ost of bandwidth utilization for YouTube is approximately $1 million(Wikipedia, 2008
). Consequently, o�-line foveated 
ompression 
ouldsave millions of dollars every year or provide better video quality for thesame 
ost. Se
ond, there is no doubt that o�-line foveation greatly wouldbene�t from algorithms that automati
ally and a

urately predi
t wheresubje
ts will look, given only the raw video as input. Su
h algorithmswould in
rease the pra
ti
al usability of o�-line foveation for video 
odingsin
e eye-tra
king 
olle
tions with human observers would be unne
es-sary. Sin
e dynami
 features su
h as motion and �i
ker seem to attra
tattention more robustly than stati
 features (Itti, 2005), models in
ludinga dynami
 feature 
hannel appear even more promising to a

ount forhuman eye-movements.To this date, there have been some implementations aiming to pre-di
t human gaze positions in dynami
 s
enes (Osberger & Rohaly, 2001;Böhme, Dorr, Krausea, Martinetz, & Barth, 2006; Le Meur et al., 2007).A few of these dire
tly target foveated video 
ompression appli
ations(Wang, Sheikh, & Bovik, 2003; Itti, 2004; Agra�otis et al., 2006). Wang,Sheikh, and Bovik (2003) use the heuristi
 rule of always 
hoosing fa
e re-gions as foveation points and, to minimize the predi
tion error, foveationpoints are also positioned where the residual error is large. Agra�otis etal. (2006) exploit o�-line foveation to optimize the quality of video 
odedfor sign-language; they use eye-tra
king to measure where people lookduring sign-language 
omprehension, and 
ode the videos a

ording towhere the people looked. The only method using a general purpose algo-rithm (without a spe
i�
 appli
ation in mind) at the gaze predi
tion stageis the one by Itti (2004), and even though he showed that a substantialamount of 
ompression 
an be obtained by using this algorithm to foveatean image sequen
e, it was left as future resear
h to measure whether it
hanges viewers' subje
tive quality and eye-movement behavior. A re
entabstra
t o�ers some empiri
al support that the subje
tive quality remainshigh also after foveated 
ompression (Li & Itti, 2008). Overall, however,there is no doubt that several issues still need to be addressed and empir-i
ally investigated regarding bottom-up algorithms for gaze predi
tion inboth stati
 and dynami
 s
enes.Using 
ontrast manipulated images we showed some limitations ofbottom-up predi
tors. In parti
ular, the two 
urrent state-of-the-art al-gorithms we tested were far from robust in �nding �xations 
omparableto those found by human viewers. To improve algorithms based on theseprin
iples, a trend in 
urrent resear
h is to endow purely bottom-up mod-els with top-down knowledge (e.g., Navalpakkam & Itti, 2005; Torralba,Oliva, Castelhano, & Henderson, 2006; Cerf, Harel, Einhäuser, & Ko
h,2007). The model by Navalpakkam and Itti (2005) provides keywordsdes
ribing a sear
h target and uses prior, learned information about the



125features of this target to bias the sear
h. Torralba et al. (2006) extend abottom-up algorithm by feeding it with 
ontextual information. An exam-ple 
ould be to inform the algorithm sear
hing for pedestrians to look onlyat the sidewalk, and not in the sky (where 
loud edges 
ould introdu
epeaks in a salien
y map). Sear
hing for people in real world photographs,another suggested top-down modi�
ation simply adds a fa
e dete
tor tothe bottom-up predi
tor (Cerf et al., 2007). Although this type of addi-tional knowledge 
an improve the performan
e of a predi
tor under 
er-tain 
onditions and well de�ned tasks, it is still an open question whether(and what type of) top-down knowledge improves the performan
e duringa free-viewing task.A re
ent study found the 
entral bias inherent in video viewing toa

ount for eye-movements better than a state-of-the-art model for gazepredi
tion (Le Meur et al., 2007). Given the strong in�uen
e on bothtop-down fa
tors and systemati
 tenden
ies (su
h as the 
entral bias) invideo viewing, it seems very optimisti
 to believe that bottom-up drivenalgorithms 
an 
ompletely a

ount for human eye-movements during free-viewing, and therefore be su

essful for the purpose of o�-line foveatedvideo 
oding. On the good side, we know that semanti
ally informativeregions generally 
oin
ide with peaks in bottom-up salien
y (Hendersonet al., 2007), and that salien
y often is biased toward the 
enter of the dis-play. As a 
onsequen
e, a bottom-up algorithm has the potential to �ndlo
ations �xated by human viewers, even though the raw video featuresdo not 
ausally 
ontribute to gaze sele
tion. From this optimisti
 pointof view, thus, a bottom-up algorithm may at times provide gaze predi
-tions a

urate enough to enable su

essful o�-line foveated 
ompression.A severe limitation is that, sooner or later, the predi
tion a bottom-upalgorithm makes will deviate from the positions attended by humans. Interms of subje
tive video quality this deviation is likely to a�e
t the qual-ity negatively sin
e the frames with the poorest quality dominantly de
idethe overall video quality (
ompare with pa
ket losses) (Liu, Wang, Boy
e,Wu, & Yang, 2007). However, using a moderate degree of foveation it ispossible that these predi
tive errors may pass unnoti
ed by the viewers.When the problems of a

urately predi
ting foveation points or gazedensities are solved, we predi
t that o�-line foveation will be an interestingte
hnology for future appli
ations in video 
ommuni
ations. In parti
u-lar, is would be bene�
ial in bandwidth 
onstrained appli
ations su
h aswireless 
ommuni
ations in mobile devi
es, and for video streamed overInternet. For example, prioritizing regions with high gaze density 
an beuseful to fa
ilitate interpretation, re
ognition and subje
tive quality ofimage and video data, espe
ially at low bit rates.To resolve the question how image features are related to �xationlo
ations we believe that, using a �xed task instru
tion, a range of featuresmust be manipulated using an experimental paradigm similar the one
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lusions and Outlookused in this thesis. By systemati
ally redu
ing and in
reasing featureslike 
ontrast, 
olor, and luminan
e in a s
ene, we are more likely to eli
itthe 
ausal 
ontribution for ea
h of these features. Our results show thatwhen studying gaze 
ontrol in images, the 
hoi
e of stimuli is 
ru
ial.Obviously, a gaze predi
tion algorithm trained on images with neutralsemanti
s may perform poorly when tested on images 
ontaining obje
tswith high semanti
 importan
e, whi
h we know 
an override bottom-upfeatures 
ognitively.
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Appendix AWavelet Transform
AN image is 
ommonly des
ribed in either the time or frequen
ydomain, where ea
h representation emphasizes di�erent informa-tion about the image. For the purpose of analysis, it would bedesirable to have a representation that simultaneously des
ribes the im-age in both time and frequen
y; this is where wavelets 
ome in. For anintrodu
tion to wavelets and their appli
ation to image 
oding, see e.g.,Antoni, Barlaud, Mathieu, and Daube
hies (1992) and Sayood (2000).Wavelets are mathemati
al fun
tions that are generated from s
aledand translated versions of a single fun
tion ψ

ψa,b(t) = |a|−1/2ψ
( t− b

a

) (A.1)
ψ is usually 
alled the mother wavelet. The wavelet transform W{f(t)}of a signal f(t) 
an then be des
ribed by a superposition of wavelets

W{f(t)} =

∫ ∞

−∞

ψa,b(t)f(t)dt. (A.2)In pra
ti
al implementations, wavelets are de�ned by dis
rete �lters,and the dis
rete wavelet transform (DWT) takes an input signal andpasses it through these �lters to 
reate a wavelet based representation.Figure A.1 illustrates a 1-level wavelet de
omposition of an image. Theimage is initially passed through either of two 1-dimensional �lters: h0and h1. The former �lter is of lowpass nature and the latter of highpassnature. Initially, the �lters operate in the verti
al dire
tion, and �lter-ing is followed by downsampling by a fa
tor of two in the same dire
tionas the �lter operated. These �ltering and downsampling pro
edures arerepeated in the horizontal dire
tion and result in four wavelet subbands:Lowpass-Lowpass (LL), Lowpass-Highpass (LH), Highpass-Lowpass (HL),
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