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Abstract

With the continued growth of digital services offering storage and com-
munication of pictorial information, the need to efficiently represent this
information has become increasingly important, both from an information
theoretic and a perceptual point of view.

There has been a recent interest to design systems for efficient repre-
sentation and compression of image and video data that take the features
of the human visual system into account. One part of this thesis investi-
gates whether knowledge about viewers’ gaze positions as measured by an
eye-tracker can be used to improve compression efficiency of digital video;
regions not directly looked at by a number of previewers are lowpass fil-
tered. This type of video manipulation is called off-line foveation. The
amount of compression due to off-line foveation is assessed along with how
it affects new viewers’ gazing behavior as well as subjective quality. We
found additional bitrate savings up to 50% (average 20%) due to off-line
foveation prior to compression, without decreasing the subjective quality.

In off-line foveation, it would be of great benefit to algorithmically
predict where viewers look without having to perform eye-tracking mea-
surements. In the first part of this thesis, new experimental paradigms
combined with eye-tracking are used to understand the mechanisms be-
hind gaze control during scene perception, thus investigating the prereq-
uisites for such algorithms. Eye-movements are recorded from observers
viewing contrast manipulated images depicting natural scenes under a
neutral task. We report that image semantics, rather than the physical
image content itself, largely dictates where people choose to look. To-
gether with recent work on gaze prediction in video, the results in this
thesis give only moderate support for successful applicability of algorith-
mic gaze prediction for off-line foveated video compression.
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Chapter

Introduction

we are constantly fed with visual impressions through television,

the Internet, and our cellular phones, to name a few important ex-
amples. Consequently, it is an ongoing challenge to find improved methods
for efficient representation and storage of this voluminous data. Today,
there are a number of quite mature methods for data compression pop-
ularized in standards such as the JPEG and MPEG families of codecs.
However, a common denominator for these standards is that they take
only few of the properties of the human visual system (HVS) and percep-
tion into account. It is therefore likely that many of tomorrow’s improve-
ments in these standards lie in optimizing images and videos not only in a
mathematical framework, but over the end-to-end optimization between
image acquisition and the viewer(s) at the receiving end.

Surely, the time is now right to further cross-fertilize knowledge from
information theory and cognitive psychology to facilitate improved data
compression. In this thesis, we will investigate whether current state-
of-the-art methods for compression of pictorial data can be improved by
taking into account where people look as measured by an eye-tracker.
Since regions outside the central line of sight cannot be seen with high de-
tail, the quality of such regions can be reduced without this being noticed.
Clearly, this opens a large potential for improved data compression.

D IGITAL information is increasingly more pictorial in nature, and

Of course, it would be of great advantage if it was possible to algo-
rithmically predict where people would look, without having to perform
time-consuming eye-tracking experiments. In view of this, a part of the
thesis is devoted to empirical investigations of the cognitive mechanisms
behind gaze control in image viewing. For example, we address questions
like: "Where do people look when presented to natural scenes?’” and "Why
do they look toward these regions?’. The answers to these questions are




2 Introduction

crucial first steps toward future successful algorithms for gaze prediction
in video.

The thesis is divided in two parts. Using a new experimental paradigm,
we investigate in Part I the mechanisms behind gaze control. In Part II,
we measure how off-line foveation affects compression, subjective quality,
and eye-movements. Below, an overview of the contents and main results
of the thesis are given.

1.1 Overview of Part I: Gaze Behavior in Im-
ages

Gaze behavior in scene viewing has been investigated for over a century,
with important pioneering work in the early twentieth century by Buswell
(1935) and later by Yarbus (1967). Some important aspects in scene per-
ception concern the cognitive mechanisms behind eye-movement control:
to which scene regions do viewers look, and why do they look toward these
particular regions of the scene? Although much is known from the vast
amount of published research on the subject, there is currently an intense
debate of how higher- and lower cognitive factors interact to control where
people direct their gazes. While this type of research is well motivated
solely to increase the general understanding about the HVS and visual
cognition, accurate models of gaze control and prediction would have di-
rect practical applications within fields such as computer vision, image
and video compression, marketing, and automobile safety. There have
been numerous efforts to develop computational tools to predict human
fixation locations, many relying on the basic structure outlined by Koch
and Ullman (Koch & Ullman, 1985). Although many of these models
seem promising, they are currently quite far from mimicking the behavior
of a human viewer in terms of accurate modeling of fixation locations and,
in particular, fixation durations.

In this part of the thesis, partly to highlight the limitations of mod-
els predicting visual attention, we aim to better understand the causes
behind gaze shifts during inspection of natural images. We use a new
experimental paradigm where low-level image statistics are manipulated
to dissociate objects from their low-level signal strength. Eye-tracking
experiments are then performed to elicit the spatial and temporal con-
tributions of lower and higher cognitive factors to gaze guidance. Figure
1.1 gives an example of the stimuli we used in the experiments. The im-
age is contrast manipulated such that the face is blurred, and the circles
represent fixations collected from a number of observers free-viewing the
image. The diameter of each circle is proportional to the fixation dura-
tion. Notice that the face attracts many (long) fixations despite its low
contrast and thus lack of detailed facial features. In this case a typical,
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Figure 1.1: Distribution of fixations over a contrast manipulated image.
Each circle represents a fixation, and the diameter of each circle is propor-
tional to the fixation duration.

image-driven algorithmic predictor would fail miserably to predict human
fixations.

The highlights of our findings reveal that the interplay and relative
contribution between lower and higher cognitive factors on gaze guidance
are linked with the semantics of the viewed image; fixated content in
images with neutral semantics correlates quite well with image features
whereas semantically important objects are gazed upon despite a weak
feature signal strength.

Part T of the thesis is outlined as follows. Chapter 2 gives an intro-
duction of some properties of the HVS and also a brief overview of eye-
movements and visual attention as well as how they are coupled. That
is, does the position of the eye also indicate where attention is located?
If so, how tight is this relationship? In Chapter 3, we review some key
papers on gaze behavior in image viewing. Specifically, we address what
is previously known about where people look, why they choose to look
at these regions, and for how long. The following three chapters (4, 5,
6) present our work which is mainly based on material from the papers
Nystrom and Holmgqvist (2007b) and Nystrém and Holmqvist (2008, in
press). Our main findings are summarized and discussed in Chapter 7.
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1.2 Overview of Part II: Off-line Foveation
for Video Compression

In most practical application, compression is essential to manage and
store image and video data. Compression efficiency is a trade-off between
bitrate, quality, and computational complexity, and today’s standards
for compression have addressed these issues quite successfully. A typical
image coder such as JPEG can compress an image to about 1/30 of its
original size and still produce acceptable quality. Video coders can further
improve this ratio due to significant temporal redundancies present in
video data. Despite these substantial capabilities for data compression,
there is a constant demand for improved compression efficiency due to
factors such as ever larger picture formats, increasing costs for bandwidth,
etc.

In this part of the thesis, we investigate how knowledge about where
people look can be utilized to improve compression efficiency of digital
video. If we knew where people looked while viewing video, unattended
parts could be degraded in quality and, due to the inability of the HVS
to resolve fine detail in peripheral vision, this would not be noticed. Since
regions low in spatial detail generally require fewer bits to represent dig-
itally, this opens a large potential for improved data compression. The
following questions are addressed: Where do observers look? Do ob-
servers look toward similar regions? If we know where people look, how
much can we degrade regions where people do not look (and thus decrease
the bitrate) without decreasing the subjective quality and changing where
people initially look?

In our work, eye-tracking is utilized to collect eye-movements from
a number of observers while free-viewing images and videos. This eye-
movement data is then used to study observers’ viewing behavior as well
as to control the bit-allocation such that visually attended regions are
given more bits than regions not visited by peoples’ high-acuity, foveal
vision. We have dubbed this approach off-line foveation. An illustrative
example is shown in Figure 1.2. Figure 1.2(a) depicts a frame from a video
shown to a group of viewers. Each crosshair represents one viewer’s gaze
position. Figure 1.2(b) shows this frame after off-line foveation. Notice
the peripheral blurring in unattended regions.

We will address the design, implementation and evaluation of off-line
foveated image and video coding. Specifically, we focus on a number of
central challenges. First, a method is proposed to transform collected gaze
positions to regions of interest (ROTs) for images, and volumes of interest
(VOIs) for video applications. Second, we address the problem of how the
ROI/VOI could be used to implement off-line foveation. Third, we target
off-line foveation in a framework of video coding. Fourth, we devise new
methods to evaluate off-line foveation subjectively.
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Our results show that off-line foveation can yield substantial bitrate
savings without decreasing subjective quality. In some of the tested
videos, bitrate reductions of up to 50% due to off-line foveation were
found compared to unfoveated video. However, the degree of bitrate sav-
ings largely depends on the type of the video, and what type of viewing
behavior the video elicits.

Part II is structured as follows. Chapter 8 provides a brief introduction
to image and video compression, gives an overview of viewing behavior
while watching video, and presents previous work in foveated image/video
coding. Chapter 9 presents our initial work on off-line foveation video cod-
ing, where we get an estimate of its potential in compression. The chap-
ter is based on results from Nystrém, Novak, & Holmqvist, 2004. The
highlights of Part II are given in Chapter 10, originating from the work
published in Nystrom & Holmqvist, 2007a, 2008. Here, a full-scale imple-
mentation and evaluation of off-line foveated video is undertaken. Finally,
Chapter 11 summarizes our findings and discusses the practicability and
potential of using off-line foveation in real-world applications.




Introduction

Figure 1.2: Example of off-line foveation. The upper video frame shows
where people look in the original frame and the lower video frame de-
picts the same frame after off-line foveation. Each crosshair represents one
viewer’s position of gaze.
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Chapter

Human Visual System

the functionalities of the human visual system (HVS) is key to

understanding, implementing and evaluating systems for visual
communications. This chapter gives a brief overview of some properties
of the HVS. It describes the anatomy of the eye, visual acuity, the vi-
sual pathway, eye-movements, visual attention, and reviews evidence for
a coupling between eye-movements and visual attention.

K NOWLEDGE about the evolutionary optimized design as well as

2.1 Physiology of the HVS

Fovea

Figure 2.1: Structure of the human eye (Modified from Wikipedia, 2008b)
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Figure 2.2: Distribution of rods and cones on the retina (Adapted after
Osterberg, 1935)

Figure 2.1 shows a cross-section of the human eye. At the first stage
of processing, incoming light reaches the cornea, which together with a
flexible lens focuses the light on the retina. The cornea has more refractive
power than the lens; approximately 70% of the refractive power is provided
by the cornea.

On the inside of the eye ball lays the retina, which comprises a set of
neural layers. The retina is sensitive to light and holds two different types
of photo-receptors involved in vision: rods and cones. Rods are sensitive
to illumination, total 70-150 million per eye and are found over the entire
retinal surface. Since many rods can share the same nerve ending they
reproduce visual details quite poorly, typically yielding a coarse, gray scale
image of the world. However, rods are invaluable due to their sensitivity
to dim light, and provide night vision. In addition to rods, about seven
million cones serve high acuity color vision. Cones are densely packed
within a small part of the retina called the fovea, and are increasingly
more sparse away from the fovea. With cones humans can resolve fine
details in fovea since each cone is connected to one nerve end. Figure
2.2 illustrates the distribution of rods and cones on the retina. The fovea
subtends approximately 2° of visual angle. In other words, if we look
straight ahead, we have sharp vision only in the central 2° of vision.
Regions outside the fovea are usually divided in two different parts: the
parafovea and the periphery. The parafovea is the area outside of the fovea
extending over 2-5° of the visual angle. Due to the steep drop of cones,
vision is reduced in the parafovea compared the fovea itself. The periphery
suffers from very poor acuity, and no detailed spatial information can be
acquired from this part of the retina. However, peripheral vision has other
important functionalities such as guiding eye-movements, and is also very
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sensitive to motion. One can rather easily get a feeling for foveal acuity
(and the lack of detail outside the fovea): fixate a word in the book you
are reading and then try to read the next or previous two words. This is
a very difficult task without moving the eyes.

In early retinal processing, rods and cones translate incoming light
to action potentials, which are propagated to higher neural layers in the
retina where bi-polar cells provide some basic visual processing such as
edge detection. In later stages of retinal processing, ganglion cells trans-
mit neural signals to the brain through the optic nerve. They leave the eye
through a part of the retina where no receptors exist. Thus we cannot see
an object falling onto this part of the retina, hence the name ’blind spot’.
Figure 2.3 depicts how the visual input is transmitted to the visual cor-
tex through dedicated pathways; information leaving the retina through
the optic nerve is passed to the lateral geniculate nucleus (LGN), which
forwards the input primarily the the visual cortex, even though smaller
pathways directly to the superior colliculus (SC) exist. Neurons in pri-
mary visual cortex, V1, are typically activated by simple features such
as orientation, color, intensity, and contrast. V2-V5 represent regions of
the visual cortex that facilitate higher level interpretations of the visual
input. Typically, direct sensory information together with information
processed in higher regions of the visual cortex are combined in the SC
to trigger eye-movements. The exact topology of the visual cortex and
how it activates motor control for eye-movements currently remains a hot
topic of research.

2.2 Eye-Movements — Basic Facts

A general problem in biological systems is information overflow, that is,
large amounts of sensory information are constantly fed to the system,
which does not have the resources and time for processing and interpreta-
tion. The HVS is no exception; the retina has been estimated to receive
up to 10% bits of (Shannon) information per second (Kelly, 1962). The
evolutionary design to handle this huge amount of information is solved
by a foveated system, which uses sparse visual input from the periphery
to guide the fovea to regions with potentially important or relevant in-
formation through eye-movements. In fact, we constantly move our eyes
three to four times per second for this purpose. Foveal information is not
only acquired with higher detail than other regions on the retina, but is
also processed by a disproportionally large part of the visual cortex. This
is known as cortical magnification.

To move our eyes, different types of eye-movements are employed;
shifting our gaze from one location to another is called a saccade and be-
tween these shifts the eye remains relatively stable in a fization (typically
around 300 ms). However, the eye is not completely stable during a fixa-
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i/
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Figure 2.3: The visual pathway (Modified from Wikipedia, 2008a).

tion, but three types of small fixational eye-movements occur (Martinez-
Conde, Macknik, & Hubel, 2004): tremor, drifts, micro-saccades. Tremor
are the smallest eye-movements, having a frequency around 90 Hz. The
role of tremor in vision is unclear, but is believed to help maintaining
vision by preventing retinal stabilization. It has been observed that by
stabilizing visual input on the retina, the impression of vision slowly fades
away. Drifts are movements that slowly move the eye away from the point
of fixation, possible due to lack of precision or fatigue of the oculomo-
tor system. This is compensated for by micro-saccades, small corrective
movements, which rapidly guide the eye back to its initial position.

A saccade is a rapid eye-movement and therefore sensitivity to visual
input is significantly impaired. The speed of a saccade can be up to 1000
degrees per second and its length varies over 1-30°. However, this depends
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on factors such as task and stimuli. Typically, the time it takes for the
eye to move from one location to another during a saccade is 30-70 ms.
As expected, long saccades take more time than short.

Pursuit eye-movements occur when the eye follows slow moving ob-
jects. Compared to saccadic eye-movements, pursuit eye-movements are
considerably slower. This type of eye-movement is generally not possible
to evoke without a moving target for the eye to track.

Another type of eye-movement is called vergence and occurs when the
eyes move toward each other in order to fixate on close objects. If the head
moves, but the gaze is kept on the same target, vestibular eye-movements
have been used to compensate for head movements.

Depending on type of task (silent reading, oral reading, visual search,
scene perception, music reading and typing), fixation duration and sac-
cade length can vary considerably.

For a more comprehensive overview on the basic properties of eye-
movements and their significance in visual cognition, refer to the overviews
by Rayner, 1998; Henderson & Ferreira, 2004; Rayner & Castelhano, 2007.

2.3 Eye-Tracking and Its Applications

For quite some time it has been known that eye-movements provide valu-
able insights in cognitive processes. However, high precision eye-trackers
are relatively new and the number of papers using eye-tracking as a
measurement, tool are quickly increasing. There is a range of available
techniques and apparatus as well as methodological concerns using eye-
tracking, and accurate eye-tracking is of course essential to get valid data.
Further information about eye-tracking and related issues can be found
in the books by Duchowski (2003) and Holmqvist (2009).

Eye-tracking applications have been reported from for a wide range of
disciplines, for example neuroscience, psychology, industrial engineering
and human factors, and has been divided in two broad areas: diagnostic
and interactive (Duchowski, 2002). In diagnostic applications, the tracked
eye-movements are analyzed off-line in order to assess or to obtain objec-
tive and quantitative measures of a viewer’s overt visual attention. For ex-
ample, successful studies have been performed on subjects with schizotypy
(O’Driscoll, Lenzenweger, & Holzman, 1998) and autism (Klin, Jones,
Schultz, Volkmar, & Cohen, 2002) where eye-tracking data show indica-
tions of sickness due to deviating eye-movement behavior. In applications
where a system responds or interacts with recorded eye-movements in
real-time, it is said to be interactive. An example of an interactive system
is real-time, gaze-contingent foveation, where the resolution of a display
changes contingent on viewers’ position of gaze.

In psychology, eye-tracking has become an invaluable tool to study
different aspect of visual cognition in reading, scene perception, and visual
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search. One comprehensive source of how the usage of eye-tracking has
progressed over the years is the review by Rayner (1998). He compiles 20
years of eye-movement research mostly covering the cognitive mechanisms
in reading, and provides a range of basic information about reading be-
havior: When reading English, the fixation duration is typically 225-275
ms and saccade length about 8 letters; readers do not exclusively go for-
ward in the text but use small saccades to the left called regressions; good
readers tend regress less frequently than bad readers and the number of
regressions increase as texts grow more conceptually difficult; silent read-
ing is faster that reading aloud. Obviously, these types of observations
would be cumbersome without modern eye-tracking technology.

Scene perception is another field that has benefited significantly from
the evolution of eye-tracking. Unlike reading, scene viewing produces less
systematic eye-movement across viewers. In part, this can be explained by
the classical observation made by Yarbus (1967) that task influences eye-
movements. While the task in scene viewing is not always well defined,
reading follows certain rules with the overall goal to comprehend the text.
Eye-tracking in scene perception has particularly been used to investigate
the influence of higher and lower factors to gaze guidance, which typically
is done by analyzing fixated image content.

A more constrained type of scene perception is visual search (see Wolfe,
1998) where subjects are asked to search for targets until they are found,
or until subjects are ensured that the target is absent in the display. While
response buttons can measure search and reaction times, eye-movement
data yield a rich collection of perceptual measures indicating the allocation
of attention during the search.

Eye-tracking has been used in other areas such as monitoring eye-
movements of drivers, pilots, in newspaper design and advertising, and
also gaze contingent displays and computer graphics. As eye-tracking
technology gets more portable, easier to use and cheaper, the potential for
eye-tracking applicability is expected to grow substantially. One example
of a future application with huge potential is to integrate eye-trackers with
computer games, opening a whole new world of opportunities for rapid
and intelligent game interaction. Further information about applications
can be found in the overview by Duchowski (2002).

2.4 Visual Attention

Generally speaking, attention refers to the ability to focus most of our
cognitive resources to limited or relevant parts in our environment, while
largely ignoring other parts. In visual attention, these resources can refer
to the ability of the HVS to focus on the most relevant and interesting
visual elements in the environment, and allocate proper parts in the brain
to process this information with priority. Visual attention is commonly
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divided into overt and covert attention. Overt attention is of a direct
measurable nature, and is aligned with the eye-movement. Covert atten-
tion is a mental state of attention and cannot be measured explicitly; it
is sometimes described as a mental ’spotlight” preceding overt attention
(Posner, 1980).

2.4.1 Bottom-up and top-down processing

Perceiving visual information can be seen as a hierarchical process; visual
input propagates from lower cognitive levels to higher, more complex lev-
els where the information gets increasingly more tangible (Levine, 2000).
Within this framework, attention may be responsible for integrating, or
‘gluing’ simple features into whole objects (Treisman & Gelade, 1980).
Moreover, it is argued that higher cognitive levels can influence the de-
cisions at lower levels through feedback. These two processes are often
referred to as bottom-up respectively top-down processing. Bottom-up
processing consists of rapid, spontaneous and automatic decisions and is
purely stimulus dependent and computed in parallel. Top-down process-
ing on the other hand reflects higher cognitive mechanisms controlled by
factors such as task, context and linguistic input, and is believed to be
slower than bottom-up processes. In scene viewing, bottom-up processing
refers to a quick, involuntary response after image onset to saccade to-
ward low-level features such as color, motion and contrast while top-down
guidance is influenced by factors such as task-dependence (e.g., remember
image objects, object search) as well as prior knowledge and experiences
(e.g., faces are important in human communications).

Although the metaphorical model of bottom-up and top-down process-
ing outlines an important conceptual model in cognitive psychology, it is
also subject to quite some confusion. One key issue concerns which parts
of the brain comprise the 'top’ and, likewise, the "bottom’ (cf. Roepstorff
& Frith, 2004). In an anatomical sense, the bottom can refer to the 'rep-
tile’ brain, whereas the top would comprise more developed mammalian
parts of the brain. However, dividing the brain into sections responsible
for top-down and bottom-up processing has shown to be elusive, partly
since the functions within and interactions between different parts of the
brain cannot be fully explained. The top and bottom can also refer to
an organism and its sensory input. The top is then controlled by the
organism’s mental world, whereas bottom-up control is modulated by the
organism’s physical input. Today, the interplay between bottom-up and
top-down processing in scene perception as well as how they contribute
to different actions are not completely understood.
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2.4.2 Coupling between eye-movements and visual at-
tention

A recurring question directed to researchers using eye-tracking to study vi-
sual attention touches the relationship between the position of gaze (overt
attention) and location of our internal (covert) attention. There is a large
body of research devoted to the relationship between visual attention and
eye-movements. While it has been shown that eye-movements quite eas-
ily can be separated from covert attention in simple discrimination tasks
(Posner, 1980), there exists ample evidence that that this coupling gen-
erally is quite tight (Deubel & Schneider, 1996), especially when scenes
grow more complex (see e.g., Henderson & Ferreira, 2004).

The connection between saccadic programming and shifts in covert at-
tention has been extensively researched through clever visual search and
discrimination task experiments. Deubel and Schneider (1996) used a
letter discrimination task where subjects were asked to fixate a cross in
the center of a display, and simultaneously prepare a saccade to a cued
location. Before the saccade was initiated, the discrimination letter ap-
peared briefly either at the cued location or adjacent to the cued location.
Results showed that letter discrimination increased significantly when the
cued location coincided with the position of the discrimination target.
This finding supports the coupling hypothesis - that it is not possible to
prepare a saccade to a target without first directing attention to it. If
the contrary were true, attention could have been directed to the dis-
crimination letter independently of the programmed saccade target. As
a consequence, letter identification would be successful even if the loca-
tion of the discrimination letter would differ from the intended saccade
landing location. These results are in line with the widely believed claim
that covert attention precedes saccadic eye-movements and thus is used
to guide the eyes to interesting regions in a scene.

2.5 Summary

The foveated nature of the HVS is highly efficient and addresses the
trade-off between the huge amount of information constantly available
and the limited computational resources of information processing in the
brain. Information from our visual surroundings is gleaned through eye-
movements, directing high acuity vision to potentially relevant of inter-
esting regions in our environment. This chapter described some key prop-
erties of the HVS and the types of eye-movements used by humans to
explore the visual world, and also how visual information is transported
to the brain for further processing. For the natural, complex images,
which will be used in this thesis, we pointed to evidence that the coupling
between attention and eye-movement is tight.




Chapter

Gaze Behavior in Natural
Images — The Where, Why, and
For How Long

in scene viewing has shown to be a challenging and interesting

problem, and has attracted an increasing amount of attention
from researchers using eye-tracking as a measurement tool. Knowledge
about visual attention and gaze behavior in scene perception has im-
portant application in, e.g., engineering and marketing, to render visual
communications more precise and efficient. This chapter reviews the lit-
erature on scene perception and eye-movement, and presents some key
findings gleaned over the last century.

UNDERSTANDING the subtle mechanisms behind eye-movements

3.1 Scene Perception and Eye-Movements

A scene usually refers to a depiction of an environment, which for example
can comprise the real world, an artificial world, or line drawings illustrat-
ing real-world or artificial objects. In an experimental setting today, most
scenes are viewed as digitized images on computer screens, where it is easy
to control experimental parameters such as where the scene is located, the
size of the scene, how long the scene is shown and the viewing distance
from the scene to the observer. The goals when studying scene percep-
tion are multifaceted and involve how people understand and interpret
scenes. In this chapter, we review what eye-movements can reveal about
the perception about a particular type of scene: Natural images. In this
thesis natural images refers to digitized photographs depicting natural
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environments from the real-world, that is, visual input that is typical for
the everyday person.

An exciting part in scene viewing concerns the speed and mechanisms
of perception, which have been lively debated issues over the past decades.
Currently, many aspects of the early perceptual mechanisms remain un-
clear. There are however some general consensus. There exists evidence
that the general semantic category, sometimes called gist, of a image is
apprehended very quickly, well within a fixation after image onset but
perhaps as quickly as 30-50 ms. Gist is rather ill-defined in the litera-
ture but is assumed to include the category of the image (e.g., indoor or
outdoor), and some information of the objects and their spatial layout
(Henderson & Ferreira, 2004). However, more detailed semantic informa-
tion of individual objects is not likely to be acquired during this very brief
period of time unless the object is large and close to the point of fixation.
A recent study by Fei-Fei, Iyer, Koch, and Perona (2007) investigated the
amount of information subjects could glean from a set of test images for
a number of short presentation times (27 to 500 ms). They found that
only a feature level representation of the images could be acquired from
the shortest times (27 and 40 ms). However, presentation times well be-
low a typical fixation duration showed to be sufficient to acquire a “rich
collection of perceptual attributes” which “raises to conscious memory”.
There are some evidence that low spatial frequencies facilitate, but are not
mandatory for, initial scene identification, more so than high frequencies
(Oliva & Schyns, 1997). Moreover, there is evidence that scene identifica-
tion is faster when objects are presented in (natural) color rather than in
gray scale (Oliva & Schyns, 2000).

To understand how scenes are perceived, it is necessary to understand
how the eyes move to provide us with the information that optimally
facilitates perception. Knowing the position of the eye and for how long
it stays at each position provides valuable insight into what is sent to the
brain, and thus comprising a basis for perception.

Studies of scene perception through eye-tracking have been conducted
for over a century. Initial studies were based on direct observations of
how humans moved their eyes while watching different stimuli. Two of
the most frequently cited early studies in picture viewing were performed
by Buswell (1935) and Yarbus (1967). Buswell used a simple but ingenious
device to record eye-movements while participants viewed pictures, and
made a number of important observations. For example, he noted that
certain image regions attracted substantially more fixations than others,
and that differences in eye-movement locations were large across subjects.
Besides Buswell’s work, Yarbus’ book about eye-movements and vision is
one of the most well-cited studies in the history of eye-movement research.
To a large extent, he replicated and expanded the findings of Buswell.
Perhaps the most cited of Yarbus’ observations is that the task heavily
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Figure 3.1: Typical fixation duration and saccade amplitude in scene view-
ing. Eye-movements were recorded from viewers looking at images pre-
sented on a 19 inch screen from a distance of approximately 70 cm.

influences where people look in pictures. Considering the limited technical
equipment used by Buswell and Yarbus, the results of these early studies
were remarkably fruitful and outline much of today’s work.

Today, knowledge about how the eyes move in scene viewing is well
documented (cf. e.g., Rayner, 1998; Henderson, 2003; Henderson &
Ferreira, 2004). For example, scene viewing elicits somewhat different,
more unconstrained, eye-movements than for example reading and visual
search. Typically, both the fixation duration and saccade length are on
average slightly larger in scene viewing. The fixation duration is usually
around 300 ms and the saccade length 2-20 degrees. However, fixation
duration and saccade length can vary significantly with the distribution
of low-level image features, image semantics, task, size of stimulus, type
of stimulus, etc. Figure 3.1 illustrates histograms of typical distributions
of fixation duration and saccade amplitude. The figures are generated
with data collected from subjects free-viewing natural images during five
seconds.

3.2 Factors That Influence Where We Look

Eye-movements are generally guided toward a small portion of the to-
tal image area considered more interesting, relevant, or informative than
other regions. What makes an image region have these inherently ill-
defined attributes largely remains an open question, central in many re-
cent studies aiming to unravel the causes behind fixation selection. Specif-
ically, the interplay between bottom-up and top-down factors in fixation
selection has been investigated in several recent eye-tracking studies.

In favor of a bottom-up perspective, there is some evidence that at-
tention, and hence eye-movements, quickly and effortlessly are guided
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toward certain regions based on low-level features in the image (Treisman
& Gelade, 1980). These features can be contrast, color, luminance, and
spatial frequency. In agreement with this evidence, there are eye-tracking
studies showing that fixations on average land on regions with higher fea-
ture densities than control regions. For example, it is known that fixated
regions contain higher contrast (Reinagel & Zador, 1999; Parkhurst &
Niebur, 2003; Parkhurst, Law, & Niebur, 2002; Einhauser & Konig, 2003;
Tatler, Baddeley, & Gilchrist, 2005; Henderson, Brockmole, Castelhano,
& Mack, 2007; Rajashekar, Linde, Bovik, & Cormack, 2007) and edge
density (Mannan, Ruddock, & Wooding, 1996; Tatler et al., 2005; Bad-
dely & Tatler, 2006; Henderson et al., 2007) than control regions. It has
also been reported that high levels of luminance correlate with fixation
locations (Tatler et al., 2005; Rajashekar et al., 2007), although lower
than control luminance at fixated regions was reported by Henderson et
al. (2007).

The influence of bottom-up features on eye-movements has been stud-
ied through computational frameworks by computing a saliency map, i.e.,
the distribution of saliency over an image, and then measure how saliency
coincides with human fixations. Saliency is defined as a weighted combina-
tion of a candidate set of low-level primitives, and peaks in a saliency map
point to regions likely to be visually attended (Itti, Koch, & Niebur, 1998;
Itti & Koch, 2000). Salience has shown to correlate with gaze positions
better than at random (Parkhurst et al., 2002), and has recently been
reported to coincide with image regions deemed as important by human
viewers (Elazary & Itti, 2008). Parkhurst et al. (2002) and Ttti (2006) ar-
gue that saliency is more influential early after stimulus onset than later
in viewing. However, these findings are not supported by Tatler et al.
(2005), who found that bottom-up features are equally influential over
time, whereas top-down influences increase as a function of viewing time.
Since the acuity of the HVS drops quickly as a function of eccentricity’
and thus prevents high frequencies from being registered by peripheral
vision, the correlation between feature content and fixation locations de-
creases as a function of saccade length (Rajashekar et al., 2007). Tatler,
Baddeley, and Vincent (2006) found only short saccades (< 8 degrees) to
be feature dependent, whereas longer saccades show no such tendencies.
Obviously, the landing positions of long saccades are hard to predict given
the feature content available in the periphery of a viewer when the saccade
is initialized.

Despite the recent popularity of computational models of visual atten-
tion dominantly relying on bottom-up features, it is an undisputed fact
that higher cognitive factors are highly involved in the attentional pro-
cesses preceding eye-movements. Some factors known to influence where
people look are short and long term episodic memory and scene schema

L Angular distance from the fixation point




3.2 Factors That Influence Where We Look 21

Estimate malerial circumstances
of the family

Surmise what the fkmily had
been doing before the arrival
of the unexpected visitor.

3 min. recordings
of the same
subject

Remember positions of people and Estimate how long the visitor had
objects in the room. been away from the family.

Figure 3.2: Influence of task on eye-movements - a classical example from
Yarbus (1967).

knowledge (cf. Henderson & Ferreira, 2004 for an excellent review).
An old, well known example of top-down influence on eye-movements is
Yarbus’ experiment using a painting named *The unexpected visitor’ con-
taining a number of people in a room. Depending on the instruction given
to the viewer prior to image onset, which could be to estimate peoples’
ages or remember the positions of people and objects in the room, different
viewing pattern were observed. Figure 3.2 illustrates the eye-movement
pattern elicited by different viewer instructions. The significant influence
of context and task on eye-movements has been replicated and extended
by several other studies (Lipps & Pelz, 2004; Rothkopf, Ballard, & Hay-
hoe, 2007; Einhduser, Rutishauser, & Koch, 2008). As when viewing im-
ages on computer screens, eye-movement guidance in everyday activities
seems to be even more about task and context (M. Land, 2007). Differ-
ences in eye-movement behavior have also emerged due to gender (Rupp
& Wallen, 2007) (men look more toward faces in sexually explicit images,
whereas women look more toward genitals or the background); cultural
differences (Chua, Boland, & Nisbett, 2005) (“Westerners attend more to
focal objects, whereas East Asians attend more to contextual informa-
tion.”); and between experts and novices (Law, M. Atkins, Kirkpatrick,
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Lomax, & Mackenzie, 2004). All this despite being engaged in the same
task and context. Moreover, it is also well known that eye-movements are
reflected by linguistic input; this is extensively researched using the visual
world paradigm, in which the interplay between, for example, when an
object is mentioned and when this object is fixated is investigated. Evi-
dence of linguistic control of eye-movements can be found in anticipatory
eye-movements where objects expected to be uttered are gazed upon, or
when the mentioning of an object elicits eye-movements to a part of a
blank screen where this object previously was located (Johansson, Hol-
sanova, & Holmqvist, 2006). Clearly, such eye-movements originate from
internal mechanisms.

Lately, the saliency map hypothesis as well the empirical evidence
showing a coupling between certain low-level features and fixations have
been challenged by a series of studies. Einhduser and Konig (2003), for ex-
ample, show that moderate changes in local contrast at a number of image
regions do not change where subjects fixate, as would be expected by a
bottom-up predictor tuned toward contrast. Moreover, it has been shown
that bottom-up predictors such as the one presented by Itti et al. (1998)
easily can be cognitively over-ridden by changing the task instructions dur-
ing viewing (Underwood, Foulsham, Loon, Humphreys, & Bloyce, 2006;
Einh&user et al., 2008). Interestingly, experiments by Henderson et al.
(2007) report that fixated locations not only contain high densities of cer-
tain low-level features, but also are judged as more semantically impor-
tant than control regions. Together, these results raise questions about
the causes behind the measured correlations between low-level features
and fixated image content. One specific question is whether this effect
is simply correlative or in fact causal. A causal effect would imply that
fixation locations are chosen as a direct consequence of the signal strength
of one or a set of combined low-level primitives. A correlative effect, on
the other hand, would mean that fixations land on regions that happen
to contain high feature densities, but are in fact guided to these regions
by other, higher level mechanisms. For example, objects may be fixated
since they contribute to the semantic representation of the scene, and not
because they happen to contain high contrast. It is hardly speculative to
claim that certain objects are fixated due to their semantic contribution
to the scene, and not mainly because they happen to contain, e.g., high
contrast or edge density.

A well known observation is that eye-movements (positions) are strongly
biased to the center of the display (see e.g., Tseng, Carmi, Cameron, &
Munoz, 2007; Tatler, 2007). This tendency is shown in Figure 3.3, which
plots fixation locations from eight subjects free-viewing 30 images. Inter-
estingly, Tatler (2007) found this central bias to be largely independent
from both feature distribution and task. Instead, he suggests three alter-
native explanations: “First, the center of the screen may be an optimal
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Figure 3.3: Central bias effect of eye-movements. Each dot represents a
fixation.

location for early information processing of the scene. Second, it may sim-
ply be that the center of the screen is a convenient location from which to
start oculomotor exploration of the scene. Third, it may be that the cen-
tral bias reflects a tendency to re-center the eye in its orbit.”. Besides that
gaze positions are biased toward the center of the display, previous and
future eye-movements influence where we look (Tatler & Vincent, 2008, in
press). For example, long fixations tend to be followed by long fixations
and we have a tendency to execute the current saccade in the same or the
180 degree opposite direction as the previous saccade. Overall, Tatler and
Vincent suggest a global and local relocation of gaze; long global saccades
take us to new image regions whereas short saccades are employed in local
scanning to scrutinize a limited image area in detail.

3.3 Summary

What controls where we look and for how long we look there? There is
ample evidence that eye-movement guidance in scene viewing is deter-
mined by a combination of bottom-up, external factors, i.e., the physical
properties that compile the scene, and top-down, internal factors, which
reflect a complicated interplay between higher cognitive processes. How-
ever, the spatial and temporal manners in which these factors interact are
still elusive. Currently, the attentional mechanisms behind eye-movement
control are slowly starting to unravel, but unanimity among explanations
is surprisingly low considering the large number of papers published on
the subject.
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Chapter

Effects of Contrast
Manipulations on Gaze
LLocations

research on gaze behavior in natural images, and that the results
are somewhat incongruent: on the one hand, people emphasize the
contribution of image based saliency to gaze guidance while at the same
time it is known that top-down factors largely influence where people look.

P REVIOUS chapters have shown that there exists a large body of

It has be argued that one of the problems in eliciting the causes behind
fixation selection is the lack of experimental manipulation of the natural
images (e.g., Henderson, 2007). While it is common to use different view-
ing instructions, which are known to influence eye-movements, to argue
for the important role of higher level factors to gaze guidance, it is much
less common to use a neutral task and instead alter the low-level con-
tent of the image. An exception is the work done by Einhaduser and Konig
(2003) who used a new experimental paradigm where natural images were
contrast manipulated at five randomly chosen points; contrast was either
decreased or increased smoothly around these points. Eye-movements
were recorded from viewers watching the contrast manipulated images
and an analysis revealed that contrast by itself was not a good predictor
of fixation locations. They observed that moderate changes in contrast
affected fixated locations very little, whereas strong reductions in contrast
attracted fixations. This is inconsistent with previous research that found
a significant correlation between high contrast and image content at fix-
ations. However, their results were disputed by Parkhurst and Niebur
(2004), who pointed to a number of methodological flaws. First, the same
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image (with slight modification) was seen by each subject multiple times.
This gave subjects the possibility to encode the images as well as the loca-
tions of the manipulated image patches into memory over the trials, and
potentially use this top-down information during later inspections. Sec-
ond, Parkhurst and Niebur criticized the lack of stimulus control; while
changing the local contrast, Einhduser and Konig also altered the local
luminance in this regions, making is difficult to relate the changes in fix-
ation locations to contrast manipulations alone. Finally, Parkhurst and
Niebur criticized the introduction of undesired changes in second order
statistics due to first-order contrast manipulations. Specifically, they ar-
gue that ’texture contrast’, defined as the ’contrast of the contrast’, was
altered and thus acted as a causal attractor for fixations. In fact, using a
bottom-up model (Itti et al., 1998) tuned toward texture contrast to pre-
dict fixations on the image set used by Einhduser and Ko6nig, Parkhurst
and Niebur found texture contrast to predict fixations quite well.

Despite the criticism by Parkhurst and Niebur, we believe that proper
use of the contrast manipulation paradigm can serve as a useful tool to
dissociate objects from their low-level signal strength, and therefore elu-
cidate possible relationships between gaze guidance and image features
from a new perspective. In the current and following two chapters, we
will use contrast manipulated images to estimate the relationship between
bottom-up and top-down processing on eye-movements in image view-
ing; eye-movement will be measured from subjects viewing natural im-
ages with manipulated low-level statistics while engaged in rather neutral
tasks (“free-view the images”, “inspect the images carefully”). We will ad-
dress the issues brought up by Parkhurst and Niebur in our experimental
design.

This chapter presents two experiments. In the first, Fzperiment I, eye-
movements are collected from viewers watching 39 images. Thirty of these
are shown in their original form whereas three of the images are shown
both with and without contrast manipulations. Each of the three images
is displayed in three version: One unprocessed and two versions that are
contrast manipulated at locations specified by the experimenter. In Ez-
periment II, contrast is modified contingent on where people looked in the
unprocessed images from the first experiment. A new group of test sub-
jects then views these images under the same experimental conditions as
in Experiment I. Besides investigating how contrast manipulation affects
gaze behavior in these experiments, we analyze how contrast statistics
around gaze positions are affected by the image manipulations.

4.1 TImplementing Contrast Manipulations

Variable image contrast is implemented in the wavelet domain (cf. Ap-
pendix A) by multiplying a wavelet decomposed image with a Gaussian
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(a) Wavelet mask used to introduce (b) Variable contrast image com-
a varying contrast. Five levels of puted by using the mask in (a).
wavelet decomposition were used in

this example.

Figure 4.1: Implementing a varying image contrast. The contrast is
smoothly reduced away from the chosshair in the upper left corner.

mask. Such a mask with five levels of decomposition is exemplified in Fig-
ure 4.1(a). The brightest areas in the mask represent unit values whereas
the dark areas represent values close to zero. In order to achieve a smooth
contrast degradation, the mask is generated by centering a 2-D Gaussian
function with standard deviation Ao in each wavelet subband at the posi-
tion marked by a crosshair in Figure 4.1(b). A denotes the decomposition
level, where A = 1 represents the highest frequency level. Figure 4.1(b)
illustrates the resulting variable contrast image after inverse transforma-
tion. If instead the region around the crosshair is to be degraded, each
Gaussian function is inverted, normalized to unit height, and its standard
deviation is set to (L — A+ 1)o. L denotes the number of decomposi-
tion levels. The choice of parameters (o and number of decomposition
levels) were experimentally tuned to introduce noticeable blur in desired
parts of the image. When implementing varying contrast in color images,
each color component (R,G, and B) was manipulated separately as just
described.

4.2 Experiment I — Manually Controlled Con-
trast Reduction

The purpose of Experiment I is to investigate how eye-movements are
affected by contrast manipulations. We observe qualitatively how gaze
guidance to objects with high cognitive saliency, such as human faces,
interplay with lower level features such as high/low image contrast.
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4.2.1 Subjects

Eight naive subjects (two females, 32.6+7.6 (M + SD) years old), students
and staff at Lund University, volunteered to take part in the experiment.
All subjects had normal or corrected-to-normal vision.

4.2.2 Stimuli

In total 39 images (in gray scale and color and of various dimensions)
were used in the experiment. They are commonly used by the image
compression community and depict a range of different image types such
as natural outdoor scenes, humans, and computer generated images, as
shown in Figure 4.2. Among the images, there are three images that each
is represented in three different versions: One original version and two
versions with different configurations of variable spatial contrast. Larger
prints of these nine images can be seen in the left columns in Figures 4.3,
4.4 and 4.5. The reason for using more images than those with manipu-
lated contrast was threefold. First, since three different versions of three of
the images are shown during the presentation, there will be undesirable
memory-driven influences on eye-movements if the versions were shown
directly after each other. To alleviate this effect other images are mixed
in with the contrast manipulated versions. Second, eye-movements are
collected from all images in preparation for the second experiment where
contrast is manipulated contingent on gaze density instead of subjective
decisions. Third, recorded gaze positions from unaltered images are used
as a baseline measure during the analysis in Experiment II.

In the current experiment high and low contrast regions were cho-
sen to compose the facial/non-facial regions in the two images containing
faces (Barbara and Kodak) and two arbitrarily defined regions in Peppers,
which contains no obvious region of interest. Contrast manipulations
were implemented as described in the previous section by centering Gaus-
sian/inverted Gaussian functions with ¢ = 0.10M at the desired regions.
M denotes the horizontal image dimension. Five levels of wavelet decom-
position were used.

4.2.3 Procedure

Subjects were seated in front of a 19 inch (37.7x30.5 cm active display
area) flat screen (of resolution 1024x768 and an update rate of 75 Hz)
where the screen area subtended a visual angle of 27.7 degrees horizontally
and 22.5 degrees vertically. They were asked to place their heads on a chin
rest positioned 76.5 cm from the screen.

A session started with a 13-point calibration and after verifying the
accuracy of the calibration, the 39 test images were displayed one by
one in a random order. Each image was displayed for five seconds and




Figure 4.2: Test images used in Experiment I.
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between two subsequent images a mid-gray image was shown for one sec-
ond. Images were displayed in full screen while maintaining their aspect
ratio. No pre-stimulus fixation marker was used to constrain the position
of subjects’ initial gaze position.

Subjects were given no specific task and were asked to ‘free-view’ the
images. Before a session started, they were introduced to the presentation
setup and were shown a trial presentation with images not contained in
the set of test images. Eye-movements were recorded monocularly with
an iView X Hi-Speed eye-tracker, sampling gaze positions at 240 Hz with
gaze position accuracy 0.2°. A Matlab program using ActiveX scripting to
communicate with the Quicktime media player was developed to control
the eye-tracker, display the stimuli and control the accuracy in timing
throughout the experiments.

4.2.4 Data representation

Subjects’ visual interest is represented and visualized by centering a 2-D
Gaussian function at the location of each gaze point and then superimpos-
ing all functions belonging to the set of gaze points to be visualized. The
variance of each Gaussian function is set such that the full width at half
maximum height spans the foveal and para-foveal regions (approximately
five degrees of visual angle) of a subject viewing the stimuli presenta-
tion. The aggregate Gaussian functions represent the gaze density and
are therefore referred to as gaze densily functions (GDFs). Examples of
GDFs represented as so called heat maps are shown in the middle columns
of Figures 4.3 through 4.5.

4.2.5 Results

Figures 4.3, 4.4 and 4.5 show different versions of the three manipulated
test images (first column). The second and third image columns depict
GDFs generated by gaze positions collected during short time intervals;
the second columns show where attention is located after subjects typically
have launched their first saccade (300-350 ms) and the third columns
visualize the distribution of subjects’ gaze locations after about twice this
time. The fourth image columns correspond to the cumulative distribution
of GDFs composing a representative set of collected gaze positions from
all viewers over the whole five seconds of viewing,.

First, we observe that introducing a variable contrast affects the way
subjects look at an image; total dwell time is increased in regions remained
in high contrast and decreased in regions reduced in contrast. This effect
is present in all three tested images. Second, from the second and third
columns in Figures 4.3-4.5, it can be observed that the location of the
first saccade target seems largely unaffected by a change in image con-
trast. Rather is it consistent, even when the saccade is directed toward
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300 — 350 ms 600 — 650 ms 0 — 5000 ms

Figure 4.3: Test image Barbara. The heat maps visualize how gaze posi-
tions from seven viewers are distributed over different time intervals. The
rightmost column illustrates the local image contrast.
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Figure 4.4: Test image Kodak.
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Figure 4.5: Test image Peppers.

a region where the image contrast is heavily degraded. In the images
containing faces, eye-movements are quickly directed toward the blurred
facial regions. Even in the Peppers image, which contains no obvious
regions of interest, subjects’ gaze directions are initially not drawn to the
regions of high contrast but instead follow a similar path as in the same,
unaltered image. The third observation concerns the initial saccade la-
tency; GDFs reveal that the initial saccade is launched more quickly when
it is directed directed toward a high contrast region and at the same time
away from a low contrast region. Also, the initiation of a saccade seems to
slow down when the saccade target is of low contrast relative the overall
image.

The rightmost columns in Figures 4.3-4.5 illustrate the local image
contrast, which for a pixel at location (m,n) is defined as the standard
deviation within a 15x15 pixel square centered at (m,n). These illustra-
tions clearly show that contrast per se does not have a dominant influence
on the location of the initial saccade target, but seems to shift the overall
gaze density toward regions kept in high contrast.

4.3 Experiment II - Gaze Density Controlled
Contrast Reduction
In this second experiment, we further investigate the results from Experi-

ment I by asking the following questions: 1) What happens with subjects’
gaze behavior if regions known to attract overt visual attention are de-
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Figure 4.6: Variable contrast images used in Experiment II.

graded in contrast? 2) How do these manipulations affect contrast statis-
tics around viewers’ positions of gaze? The reason for degrading regions
with a known high probability of attracting gaze is to quantify how fea-
tures and semantics interact to guide eye-movements toward informative
regions. Since the experimental setup and procedure in Experiment II
follow that in Experiment I, only differences from the first experiment
are described below. If nothing else is mentioned it is assumed that the
conditions from Experiment I are fulfilled.

4.3.1 Subjects

15 naive subjects (nine females) of ages 30.2+16.1 (M + SD) years.

4.3.2 Stimuli

Stimuli consisted of six of the images used in Experiment I, each having
its contrast modified in in accordance to the gaze density (as found in
the first experiment) from all viewers between ¢ = 500 — 600 ms such that
regions of high gaze density were reduced, whereas other regions were kept
in high contrast. Contrast modifications were implemented as described
in Section 4.1, but with a GDF replacing the single Gaussian function in
the wavelet mask. The resulting six stimuli images are shown in Figure
4.6. These images were presented to the subjects. Again, the images
were shown with another 35 images, not included in the current analysis.
t = 500—600 ms was chosen since the similarity between different viewers’
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Figure 4.7: Inter-subject dispersion across eight people free viewing the 33
original test images from Experiment I. Error bars span one + one standard
deviation.

gaze positions typically peaks around that time (cf. Tatler et al., 2005),
hence identifying regions of particular visual interest. Figure 4.7 confirms
this observation for data collected from all 33 (unprocessed) test images
in Experiment 1. The figure illustrates the degree to which subjects’ gaze
positions coincide as a function of time after image onset, defined by the
inter-subject dispersion, Sy, which at time ¢ is calculated as

. .
1 %,maz - G% (Tn/i; nz)
Si=p 2 a7 a7 (4.1)
i=1,2,...,P t,max — “t,avg

where G}; (m, n) denotes a GDF at time ¢ that has been generated by P—1
gaze positions collected during the time interval [t — At, ¢ + At], excluding

. . ! 7 .
the i*" gaze location (m;, n;). G} maz and G 4, , denote the maximum and

average value of Gil (m,n), respectively. To obtain a robust measure of
dispersion at time ¢, At was set to 40 ms. Following this notation, S; = 0
indicates that all gaze positions are located at the same spatial location,
whereas S; = 1 represents a random distribution of gaze positions. The
bottom curve depicts the inter-subject dispersion across the collected gaze
positions. Notice the dip in dispersion around 500 ms. As a control, the
top curve in Figure 4.7 represents simulated random viewers (whose gaze
positions were drawn from a uniform distribution).
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4.3.3 Results

Figure 4.8(a) shows the inter-subject dispersion between viewers watching
the images in Figure 4.6. As for the unprocessed images in Experiment I,
similarity peaks around 500 ms, which typically coincides with subjects’
fixation locations after the first voluntary eye-movement. This indicates
that, after reducing the contrast in regions where people normally look
early after image onset, subjects still largely agree on where to initially
move their eyes. However, we cannot tell whether people look at similar
regions as the viewers from Experiment I or if they have decided to look
at a region elsewhere in the image. One way to approach this issue is by
analyzing the image content at fixation. Specifically, how is fixated image
content correlated to contrast densities?

The analysis of contrast statistics was limited to gray images. Images
presented in color were therefore converted to gray images through an
RGB to YUV transformation, where the Y component composed the gray
image after transformation. Each image was then resized to match the
display resolution it was presented at. After resizing, a pixel subtended
the same visual angle in all images. Contrast at each pixel location (m,n)
was defined as the local standard deviation of pixel intensities within a
square region centered at (m,n). We used squares of size 15x15 pixels.
Symmetric padding was used at the image borders. In the analysis below,
we have extracted the average contrast from 35x35 pixel squares (roughly
corresponding to the foveal part of the visual field) around gaze positions
recorded during a range of temporal interval, and normalized it with the
average contrast of the whole image. Other square sizes for contrast cal-
culation and analysis of contrast were tested with similar results as those
presented below.

Figure 4.8(b) presents how contrast statistics around viewers’ gaze po-
sitions change as a function of viewing time ¢t. Each box represents the
average normalized contrast around each gaze position recorded during
time [t — At,t + At]. The analysis reveals that after about 500 ms, gaze
positions land on image regions with lower than average contrast, and are
after a while drawn to regions with higher than the average contrast. This
suggests that the region(s) attracting many subjects’ gaze some hundred
milliseconds after stimulus onset indeed are those where contrast has been
degraded. For comparison, normalized contrast at gaze locations collected
from the 33 test images in Experiment I is given in Figure 4.9. It con-
firms findings from earlier work that contrast is elevated at gaze locations
compared to random locations, which give a unit normalized contrast as
indicated by the solid red line in the figure. The low values of contrast
right after image onset occur because subjects have not yet completed
their first voluntary eye-movement. An interesting, and maybe somewhat
surprising observation {rom Figures 4.8(b) and 4.9 is their large differences
in normalized contrast after a few seconds of viewing. This happens since
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Figure 4.8: Statistics at gaze positions collected from 6 subjects free view-
ing the 6 variable contrast test images from Experiment II.
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Figure 4.9: Statistics at gaze positions collected from 8 subjects free view-
ing the 33 original test images from Experiment I.

visually interesting regions are positioned close to the center of the image,
where fixations generally are biased (Parkhurst et al., 2002; Tatler, 2007).

4.4 Summary

Earlier studies have shown that while free-viewing images people tend
to gaze at regions with a high local density of bottom-up features such
as contrast. In particular, this tendency was found to be more empha-
sized during the first few fixations after image onset. In this chapter, we
used a new experimental paradigm to investigate how gaze locations are
chosen; image contrast was modified and we measured how this affected
eye-movement behavior during free viewing. Results showed that gaze
density overall is shifted toward regions presented in high contrast over
those reduced in contrast. However, initial saccade targets are largely
unaffected by a change in contrast and certain image regions seem to at-
tract early fixations regardless of display contrast. These results suggest
that cognitive factors, instead of image features, are dominant in guiding
eye-movements early after image onset.
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Chapter

Effects of Contrast
Manipulations and Image
Semantics on Fixation Behavior

INCE the contrast manipulation paradigm proved to be an inter-

esting and efficient experimental method to study gaze control in

images, we continue in this chapter to pursue the causes behind gaze
control using this paradigm. We make a number of important modifica-
tions and extensions compared to the previous chapter. First, it is inves-
tigated how image semantics influence the relative contribution of lower-,
and higher level cognitive mechanisms to viewing behavior. We propose a
method to quantify image semantics dubbed semantic information disper-
sion (SID). Second, Gaussian pyramids, instead of wavelets, are used to
implement contrast manipulations because they yield smoother contrast
reductions and fewer undesired contrast artifacts. Third, we analyze event
based measures in the form of fixations instead of solely observing peo-
ples’ gazing behavior. Fourth, since edge density and contrast arguably
are the two most investigated low-level features in earlier works, both of
these features are analyzed in this chapter. Fifth, the level of discrimina-
tion for contrast and edge density between fixated and control locations
is analyzed using receiver operating characteristics (ROC), which lately
has arisen as a popular method in such analyses. Moreover, we use a
slightly modified viewing instruction to alleviate the undesired top-down
adoptions reported by participants in the previous chapter. Finally, due
to the importance faces have in human communication and interaction,
one section is devoted to the effect contrast manipulations have on face
perception.
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In this chapter, we will investigate how contrast and edge density con-
tribute to fixation selection, and how this effect varies over time. Unlike
the majority of previous studies, test images are contrast manipulated
prior to display. Meanwhile, we aim to keep their semantic content in-
tact. We believe that by decoupling objects (or regions) from their low-
level signal strength, an analysis is more likely to elicit causal relationships
between where subjects fixate and the reason they choose to look there.
Besides manipulating the image statistics, three image categories are used:
Images naturally embedding faces, images with man-made objects, and
images depicting scenes with neutral semantics (trees, leaves, etc.). Each
class is chosen to represent images with different semantic information
dispersion (SID), a concept we define as follows:

Definition 1 Semantic information dispersion (SID) measures how scat-
tered the information is that subjectively best conveys the information of
the whole image.

For example, a face generally contributes more to the core meaning of an
image then does a leaf on a tree. Consequently, an image has a low SID
if a small aspect of the image (such as a face) is judged to contain the
majority of conveyed information. The rationale for using different image
categories is to introduce a varying top-down influence without using an
explicit task, a strategy employed by a range of earlier works. For example,
the task look at regions with uniform texture would yield a low correlation
between edge density and fixated image content, but would hardly reveal
much about the mechanisms behind gaze guidance. To verify that the
images chosen for the experiment indeed represent different levels of SID,
an experiment is performed where subjects are asked to identify a fixed
size region that best conveys the information of the whole image. The
average overlap between the regions chosen by the subjects is then used
to estimate the SID.

The remainder of this chapter is organized as follows: Section 5.1
describes the materials and methodology of the eye-tracking and data
recordings. Specifically, we describe the images and how they are exper-
imentally modified, the experimental setup, and the procedure for data
collections. Results are given in Section 5.2 and discussed in Section 5.3.

5.1 Methods

5.1.1 Test images

Three semantic image categories are used. In the first category, we use
images containing faces; it is known that faces are very semantically im-
portant image regions and therefore frequent fixation targets (e.g. Yarbus,
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1967). The second category comprises images with neutral scene seman-
tics and depicts scenes with motives from nature such as trees and bushes
(from Einhduser & Konig, 2003), grass, and a picture of a brick wall.
The last category falls between the first two categories and contains man-
made objects embedded in natural environments. Six images from each
category are used. Images were converted to eight bit gray scale and re-
sized to dimension 1024 x 768 through the Matlab functions rgb2gray
and imresize (bilinear), respectively. The test images are shown in Fig-
ure 5.1. They comprise: Face images (top two rows), images with neutral
semantics (row three and four), and images containing man-made objects
(bottom two rows). As can be seen, each image comes in two versions
where contrast has been modified differently.

Face images are modified to form two subcategories. In the first sub-
category faces were retained in high contrast, whereas other regions were
gracefully reduced in contrast away from the facial region. In the second
subcategory, these contrast modifications were inverted; only the facial re-
gions were reduced in contrast. Figure 5.2 exemplifies this. For the other
two categories, each image was transformed into two different versions as
follows: Four candidate positions, same for all images, were available as
shown in Figure 5.3. One of these positions was selected at random, and
the first version was generated by reducing the contrast smoothly away
from this position. The other version was generated in a similar manner,
but now with the contrast being reduced away from the point diagonally
opposite to the randomly selected position.

5.1.2 Image manipulation

Contrast manipulation was implemented by means of variable resolution
image processing using Gaussian pyramids. A five level pyramid was cre-
ated by iterative lowpass filtering and downsampling of the original image,
followed by upsampling and (bi-linear) interpolation back to the original
image resolution (1024 x 768). Lowpass filtering was implemented by
an ideal filter with a cutoff frequency adjusted to avoid aliasing given a
subsampling factor of two pixels. These operations resulted in a collec-
tion of images where the original image comprised the bottom layer and
higher layers were copies of the original image with increasingly lower con-
trasts. To create images with variable contrast, high resolution regions
were selected from the bottom layer of the pyramid, whereas low resolu-
tion regions originated from the higher layers in the pyramid. Regions
from different levels were then synthesized through a Gaussian shaped
blending function. Let I;(m,n) denote an image at level ¢ in the lowpass
pyramid. m and n span the image dimensions and ¢ = {1,2,3,4,5}, where
¢ =1 denotes the bottom layer comprising the original image. Then the
implementation can be described by Algorithm 1. I(m,n) is the output




Figure 5.1: Test images.
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Figure 5.2: Contrast manipulation for face images. (a) shows the original
image. In (b), the contrast is decreased away from the marker in (a),
positioned over the woman’s face. The figure in (¢) illustrates the case
where contrast instead is reduced toward the face area by inverting the
contrast manipulation function in (b).
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Figure 5.3: Contrast manipulation for images not containing faces. Figure
(a) shows the original image with four candidate markers. One of these
markers is chosen at random, and (b) illustrates the case when contrast is
reduced away from this marker (in upper left corner). In Figure (c), the
marker diagonally opposite the randomly picked one is instead used as the
point from were contrast is reduced.

image, and G(m,n) denotes a Gaussian function

,((mfgngnfnzq:ﬁ)
G(m,n) —¢ 205, 207

(5.1)
where (m;,n;) represents the point where the Gaussian function is cen-
tered, i.e., the point from where the image is increasingly reduced in con-
trast. The * operator denotes normalization to unit height. To introduce a
noticeable amount of blur, o,,, and o,, were set to 1024/2 and 768/2 pixels,
respectively. These parameters were chosen simply by pilot testing where
contrast reduction was deemed as significant without changing the seman-
tics of the image. It has been pointed out in an earlier study (Parkhurst &
Niebur, 2004), that when using contrast manipulations to study fixation
selection, it is important to implement smooth contrast degradations to
avoid undesired variation in higher order image statistics, which could ex-
plain possible changes in fixation behavior. Our implementation accounts
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Algorithm 1 Implementing a variable contrast
1: I(m,n) = I(m,n) {Initialize}
2: for { =2 to 5 do . R
3 I(m,n) «— I(m,n)-G(m,n)+ I;(m,n)- (1 — G(m,n))
4: end for

for this observation.

Contrast manipulation for face images was implemented with the above
parameters when contrast was reduced away from the face. However, in
the opposite case, when contrast was reduced toward the face region (the
face was blurred), then the blending function was modified as

Ginv(m,n) =1 —G(m,n),{om,on} = {1024/23,768/2%} (5.2)

in order to better limit the contrast reduction effect to the facial region.

5.1.3 Subjects

13 naive test subjects (25.7+4.9 (M£SD) years old, one female) were
recruited to participate in the experiment. Their visions were normal or
corrected to normal. Compensation was given in the form a lottery ticket
and subjects consented to use of their data by signing a form.

5.1.4 Experiment I: Viewing contrast manipulated im-
ages

Contrast manipulated images from all three categories were shown one
at the time in full screen. Before the presentation of an image, a central
dynamic fixation marker in the form of solid black circle was shown on a
mid-gray screen. The diameter of the circle was decreasing as a function of
time. After one second, the circle disappeared and an image was displayed
in full screen during a time randomly drawn from the interval ¢t = [3,4, 5, 6]
seconds. This procedure was repeated for all images, which were shown
in random order. Varying display time was used to prevent subjects from
adopting top-down strategies such as systematic scanning of the images.
Prior to each image was displayed, subjects were asked to look at the
fixation marker.

The instruction given to the subjects was to please study the images
carefully. Supposedly, being a fairly general instruction, it prevents sub-
jects from adopting individual viewing strategies that try to guess the
purpose of the tests. For example, we saw in an earlier study (Nystrom &
Holmgvist, 2007b), where subjects were given the more neutral instruc-
tion solely to watch the images, that subjects adopted a top-down strategy
avoiding to look at the blurred regions a bit into the presentation. We
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believe that the task instruction used in this chapter will alleviate this
undesirable adaption.

5.1.5 Experiment II: Image semantics evaluation

In a second experiment, that followed right after the first, subjects were
shown the 18 unprocessed (no contrast manipulation) images (in eight bit
gray scale of dimension 1024 x 768), one by one in full screen. For each
image, their task was to position a box, controlled by the mouse cursor,
over a region in the image that had the highest semantic importance.
The exact instruction was given in writing before the experiment started:
"Position the box over a region that best conveys the information of the
whole image’. There was no time constraint to finish this task, and when
the final box position was decided, a mouse click ended the semantic rating
to proceed to the next image. The size of the box was chosen large enough
to encapsulate whole objects or parts of objects, so that the meaning of
the box content would be clear without access to the whole image. We
used a box size that spanned four degrees (128 x 128 pixels). Subjects
were not informed about Experiment II until after the first experiment
was completed.

5.1.6 Eye-tracking

Eye-tracking was preformed monocularly during both experiments with
an SMI iView X Hi-Speed 1250 Hz system. Subjects were seated 0.67 m
away from a 19 Inch Samsung GH19PS screen with the resolution and
update rate set to 1024 x 768 pixels and 60 Hz. The physical dimen-
sion of the screen was 380 x 300 mm, spanning 32x25 degrees of visual
angle. Each recording started with a 13-point calibration. Stimuli pre-
sentation, communication with the eye-tracker, and data analysis were
performed with Matlab and its Psychophysics Toolbox Version 3 exten-
sion (Brainard, 1997). A saccade based detection scheme developed by
SMI (IDFconvert.exe) was used to filter out event based measures such as
fixations and saccades. Gaze positions were classified as saccades if the
eye velocity was > 75°/s and if the saccade duration lasted > 10 ms. If
these assumptions were violated, and the eye was stable for >50 ms, a
fixation was detected.

5.2 Analysis and Results

The analyses address the following questions: Are contrast and edge den-
sity different at fixated regions compared to control regions for contrast
manipulated images? Do contrast manipulations change where people
look, and how is the magnitude of change related to image semantics?
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If contrast manipulations change where people look, do they also change
what people look at? Finally, we target how one category of images,
namely those containing faces, is affected by contrast manipulations.

5.2.1 What do we look at? — Feature analysis

It is known from several previous studies that certain low-level features are
elevated at fixated positions. For example, fixated locations tend to have
higher contrast and edge density than non-fixated, control regions. We
begin our analysis by testing whether these observations still hold using
contrast manipulated images. Contrast at the image location (m,n) is
defined as the standard deviation within a 3 x 3 neighborhood centered at
(m,n). Edge density is extracted by convolving the image separately with
horizontal and vertical Sobel operators, and then computing the average
of these filtered outputs.

In the analysis, an approximately 1 degree (32 x 32 pixel) region is
extracted from the feature maps around each fixation location. For com-
parison, 1 degree regions are also extracted from control locations, and
the difference between fixated and control feature contents is analyzed.
Instead of using uniform sampling over the image area to simulate a ran-
dom viewer, we use control fixations collected from other images used in
the experiment. This way, a simulated 'random’ fixation pattern coincides
with the distribution of fixations, which is known to be non-uniform with
a bias to the center of the display. It has been argued that the central bias
may give rise to artificially high features values at fixation (e.g., Tatler et
al., 2005), and should therefore be carefully accounted for in the analysis.

An increasingly popular method to estimate the degree to which fix-
ated and control feature content can be differentiated from each other
is the receiver operating characteristics (ROC) analysis (e.g., Hanley &
McNeil, 1982). A ROC curve plots the fraction of true positives (TPs)
against the {raction of false positives (FPs). In our case, TPs consist of
fixated feature content, whereas FPs comprise feature content at control
locations. The area under the ROC curve varies between zero and one,
and is a robust measure of how well image features can be discriminated
between fixated and control locations; if the ROC area is significantly
larger than 0.5, a tested feature is said to discriminate fixated locations
from control locations. A ROC area that equals 1 is said to give perfect
classification.

Figure 5.4 plots the average ROC areas for contrast and edge den-
sity. Black bars represent results considering the first fixation (from all
subjects in all images) only, whereas the white bars represent a similar
analysis over all fixations. By the first fization, we mean the fixation fol-
lowing the initial saccade after image onset and not the first registered
fixation is the data file, which is constrained to the center of the screen by
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Figure 5.4: ROC areas for discrimination between image features at fix-
ated and control locations. Black bars show ROC areas for the first fixation
whereas all fixations are included in the white bars. Error bars span stan-
dard errors of the mean. A ROC area larger than 0.5 indicates a difference.

a fixation marker. As reported by several previous studies, feature den-
sities at fixated locations are significantly higher (ROC area > 0.5) than
feature densities at control locations (p < 0.01, t-test, for both contrast
and edge density). Apparently, this is also true for contrast manipulated
images. Moreover, there is a tendency, although non-significant, that ini-
tial fixations discriminate contrast and edge density better than fixations
do over the whole time course of viewing.

5.2.2 Do image semantics and feature manipulations
influence where we look?

To this point, our empirical findings are in line with previous results em-
phasizing bottom-up control over fixation selection. The findings show,
on average, that contrast and edge density are higher at fixated positions
than at other, control positions. In this section, it is investigated whether
these general tendencies are consistent when analyzing images with regard
to their semantic information dispersion (SID) as well as their direction
of contrast reduction. What happens with peoples’ allocation of fixations,
for example, if a region deemed as semantically important is reduced in
low-level signal strength? Obviously, a saliency based framework would
predict an obligatory shift in fixation density away from this region.
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Figure 5.5: Images in order of increasing semantic information dispersion
(SID). The top row shows where subjects have positioned a box that "best
conveys the information of the whole image’. The bottom row illustrates
the fixation density of the same subjects while performing this task. As
can be seen, the inter-subject agreement between fixation density and the
regions judged to best convey the information of the whole image is large.

Using data collected from the second experiment, we found the SID
for each image, calculated as the average overlap between box locations
within an image. Thus, if B; ; denotes a box in the image ¢ positioned by
subject j, the SID for image number ¢ is defined as

92 —1
D= B,;N B .
j=1,...,P—1

k=j+1,..,P—1

where N denotes the intersection between the boxes in pixels, and P is the
number of viewers. The inverse is computed such that a large SID value
represents a spread out semantic information and vice versa. The top row
in Figure 5.5 shows three of the unprocessed test images and the boxes
as positioned by the test subjects. Out of the 18 unprocessed images
used in the experiment, images with the lowest, midmost, and highest
SID are shown in the figure. Unsurprisingly, the image with the lowest
SID contains a face, and the image with the highest SID contains rather
neutral semantics. For the sake of comparison, the fixation density of the
same subjects performing the SID detection task is given in the second
row in the figure. For these images, the overlap between where subjects
fixated and where they positioned the box is quite large. As expected,
the image categories were tightly couple with SID; five of the six images
containing faces were among the images with the lowest SID (boxes were
dominantly positioned over the face), and all the six images from the
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Images First Fixation All Fixations Contrast BEdge Density

Figure 5.6: Effect of contrast manipulation on fixation behavior.

‘neutral’ category had the highest SIDs. Consequently, five images from
the 'man-made object’ class were located in the mid-SID section along
with one face image.

Figure 5.6 illustrates how the fixation density changes as a result of
contrast manipulations for images with low, medium, and high SID. The
fixation densities are visualized as heat maps, where Gaussian functions
have been centered at each fixation location and then superimposed. The
variance of each Gaussian function has been set such that the width at
half its maximum height approximates the size of the foveal span of a
viewer in the current experimental setup. In addition, the height of each
Gaussian function has been scaled in proportion to the fixation duration.
As a consequence the fixation densities not only reflect where people have
fixated, but also their level of cognitive processing during each fixation,
hence providing more sensitive and detailed information. Henceforth, we
refer to the heat maps as fixation density functions (FDFs), in order to
better capture what the heat maps represent. The second column in Fig-
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ure 5.6 depicts FDFs for all subjects during the first fixation, and the
third column illustrates corresponding fixation densities collapsed over all
fixations. This can be compared with the two rightmost columns, where
contrast and edge density are visualized. An inspection of the plots indi-
cates that contrast and edge manipulations clearly influence where sub-
jects look. However, the magnitude of change seems to differ depending
on the image type; the images containing faces undergo relatively small
changes in fixation placement due to contrast manipulation whereas fixa-
tions in the images that contain more neutral semantics seem to be more
influenced by the manipulations.

To quantify how fixation locations change as a function of contrast ma-
nipulation and SID, the two-dimensional correlation coefficient between
FDFs belonging to the two contrast manipulated versions of each image
is computed. This metric has been used in other works for the same pur-
pose (Rajashekar, Linde, Bovik, & Cormack, 2008). Although it is not
clear how accurately the 2-D correlation coefficient, or any other metric for
that matter, captures the difference between people’s fixation locations, it
gives an estimate that helps us to interpret the magnitude of change. For
a reference of other metrics used to estimate the similarity between fixa-
tions, see for example Mannan, Ruddock, and Wooding (1995); Privitera
and Stark (2000); Tatler et al. (2005). Since images’ SID-values almost
perfectly matched the initial division of images into three semantic cat-
egories, the analysis is preformed with respect to the image categories,
which henceforth are referred to as ’Face’, 'Man-made’, and 'Neutral’.
Figure 5.7(a) depicts the average 2-D correlation between FDFs gener-
ated from the initial fixation (black bars) and all fixation (white bars)
within each category. It can be seen that the image category influences
the degree to which contrast manipulations trigger shifts in fixation densi-
ties; images containing regions of high semantic importance, such as faces,
are less sensitive to the manipulations than other images and in particular
those from the Neutral’ category. This tendency is present for both the
initial fixation and for fixations over the time course of viewing.

Another way to represent how fixation locations are affected by con-
trast manipulations and semantics, shown in Figure 5.7(b), is to plot the
shift in fixation density (2-D correlation coefficient between FDFs) against
images’ SID. Circles and triangles represent how the initial fixation and
all fixations, respectively, are shifted in location as a function of SID.
The lines are least square fits to the data points. Considering all fixa-
tions, it can been seen that SID clearly influences the magnitude of shift
in fixation density, having a correlation of p = —0.62. This tendency is
weak, or hardly present at all, considering the first fixation only. It may
be the case since fewer fixations are used to generate the first fixation
FDFs, giving individual fixations more weight. Consequently, a fixation
that is not aligned with other fixations has a large impact on the shape
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Figure 5.7: Influence of fixation selection on image category, SID, and
contrast manipulations. (a) Bars represent the average shift in fixation
density due to contrast manipulations within each image category. Error
bars span one standard error around the mean. (b) The solid lines are least
square fits to the data points. 95% confidence intervals of the correlation
coefficient p are generated using bootstrapping with 1000 resampled sets
(Matlab’s bootstrp function).
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of an FDF, and therefore also the value of the 2-D correlation coefficient
between two FDFs. In summary, the results from Figure 5.7 clearly illus-
trate that the degree to which fixation locations are influenced by contrast
manipulations depends on SID and image category.

5.2.3 Do image semantics and feature manipulations
influence what we look at?

Since contrast manipulations change where people look with different
magnitudes depending on images’ SID, one would expect this to be re-
flected in fixated image content across the image categories. For example,
in the category that was least influenced by the image manipulations, we
would expect a lower discrimination for contrast and edge density between
fixated and control locations than for the other two categories. Figure
5.8(a) plots average ROC areas for contrast and edge density over the
three image categories. Results for both the first fixation and all fixations
are given for each feature and category. As expected, the discrimination
of features between fixated and control locations was the lowest in the
"Face’ category and increasingly higher for the ’Man-made’ and "Neutral’
categories. However, it was significantly (p < 0.05, t-test) better than
chance (ROC area > 0.5) in all cases. Also notice how ROC scores in the
"Neutral’ category are significantly (p < 0.05) higher for first fixation than
all fixations, whereas this tendency was not significant in the other two
categories. Figure 5.8(b) differs from Figure 5.8(a) in that only images
from the "Face’ category where contrast was reduced toward the face, i.e.,
where the faces were blurred, were included in the analysis. Since people
still looked at the face regions after being reduced in contrast, the dis-
crimination was reduced to a chance level, considering both the first and
all fixations. Interestingly, discrimination was worse for feature content
fixated at the initial fixation, contrary to the finding by Parkhurst et al.
(2002).

Both image semantics and features determine what we look at. There
is a clear effect, however, that semantically important regions are looked
at largely independent of their feature content in terms of contrast and
edge density.

5.2.4 What so special about faces?

In agreement with previous findings faces seem to attract viewers’ gazes,
and do so largely regardless of their contrasts. So, what is so special about
faces, and what can we learn about face perception using the contrast
manipulation paradigm developed in this thesis? Considering all face
images regardless of contrast, and if facial regions are defined by the black
boxes in Figure 5.9, we found initial fixations to be located within these
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Figure 5.8: ROC analysis of contrast and edge density over different image
categories. (a) All images from each category are included. (b) From the
"Face’ category, only images with blurred faces are included.
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Figure 5.9: The images showed here depict the versions where contrast has
been reduced away from the face regions, i.e., in 'non-facial’ regions. The
black boxes define the face regions used in the analysis

regions in 68.6% of the trials, and in 30.9% when taking all fixations into
account. In the case non-facial regions are reduced in contrast, faces are
fixated initially 93.6% of the times and overall in 39.1% of the trials.
When the faces instead are reduced in contrast these numbers decrease
to 43.6% and 22.7% , respectively. Faces are expected to be fixated with
6.5% chance if fixation locations are drawn from a uniform distribution.

Figure 5.10 breaks down the analysis to an image by image basis;
Figure 5.10(a) plots the proportion of initial fixations located on the face
region, and Figure 5.10(b) contains similar plots taking all fixations on
the face into account. The z-axis lists the images in Figure 5.9 numbered
from left to right starting from the upper left corner. It can be seen
that subjects’ initial fixations are overrepresented in face regions in all
the tested images, and that fewer fixations are located on a face when
its contrast is reduced. The same trend is found when considering the
proportions of all fixations on the face regions. However, in this case
many fixations are located on non-facial regions. In particular, this is
true in images where other semantically important regions compete for
attention with the faces; in the image numbered ’2’, there are toy animals
whose faces attract many fixations and in image 4’ the hands of the man
are a strong competitor to the face region.

Besides knowing the position of a fixation, the fixation duration is an-
other important measure that reflects ongoing visual and cognitive pro-
cesses (Rayner, 1998; Henderson & Ferreira, 2004). Initial fixation dura-
tions are given in Figure 5.11(a), whereas all fixations located on the face
are plotted in Figure 5.11(b). Apparently, if the initial saccade lands on
the face, the duration of the following fixation is longer when the contrast
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of the face is higher than its surrounding regions. Figure 5.11(b) gives the
total fixation time on the face as a proportion of the total viewing time.
Again, it can be seen that the faces are looked upon more when they are
kept in high contrast. Since fixation durations not only depend on foveal
information available to the viewer but also on peripheral information, we
analyze initial saccade latencies, in the case a saccade is directed toward
a face region. Latencies are measured as the time from image onset until
the first saccade lands in a fixation. Thus, included in the saccade laten-
cies is the time it takes to execute the saccade, which typically is 50 ms.
Figure 5.12 shows the initial latencies when all initial saccades, regardless
of final destination, are considered (Figure 5.12(a)), and when only those
landing on the face are considered (Figure 5.12(b)). The figures tell us
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that a reduced face contrast yields an increase in saccade latency.

5.3 Summary

This chapter extends the work from the previous chapter using the ex-
perimental paradigm based on contrast manipulations; it investigates the
contribution of the low-level features contrast and edge density as well as
image semantics to the selection of fixations in images. Overall, both con-
trast and edge density were elevated at fixated image patches compared to
control patches within an image. However, image content actively chosen
by subjects’ gazes varied significantly with a number of factors. First,
when regions of high semantic importance were reduced in contrast, sub-
jects still looked at these regions, causing contrast and edge density to
be lower at fixated locations compared to control locations. This ten-
dency was particularly strong when faces were reduced in contrast, and
was found both early after image onset as well as later in viewing. Second,
image content at fixation proved to correlate better with the tested low-
level features when the semantic information dispersion (SID) was high.
In other words, when an image does not contain any specific regions of
high semantic importance, bottom-up features correlate quite well with
image content around fixation locations. Overall, the results in this chap-
ter do not support a causal link between bottom-up features and image
content at fixation.




Chapter

Assessing Fixation Prediction
Algorithms on Contrast
Manipulated Images

siderable attention from researchers across different fields. One

reason for this interest is the potential benefit such algorithms
would have in a range of research disciplines and future technical systems.
Accurate algorithms for gaze prediction could replace time consuming eye-
tracking experiments and hence, for example, be used to automatically
assess if people look at the desired product in a commercial, or provide
relevant visual input to a robot. The ability of some of the proposed al-
gorithms to predict human fixations has been reported to be quite good
under certain conditions (Itti & Koch, 2000; Parkhurst & Niebur, 2002;
Itti, 2004), despite using only low-level features as a basis for prediction.
Given the current, intense debate on gaze control and fixation prediction
in natural images, we will in this chapter take a closer look at two algo-
rithms that predict human fixations solely based on low-level image input:
One, by Ttti et al. (1998), is based on the concept of a saliency map and is
well established and evaluated against human fixations in several previous
works (see e.g., Parkhurst & Niebur, 2002). The other algorithm is a very
recent contribution by Rajashekar et al. (2008).

Previous chapters did not support the hypothesis that low-level fea-
tures per se provide causal cues to fixation selection in natural images.
Instead, regions with a high semantic importance, such as a face, could
rather easily cognitively override manipulations in image contrast.

To put the predictive accuracy of the two algorithms to a test, they

Q LGORITHMS for fixation prediction have recently attracted con-
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are used to find fixations in some of the contrast manipulated images we
used in last chapter. The similarity between algorithmically generated
fixations and human fixations will be compared. Again, the main novelty
in this chapter lies in, as opposed to the majority of previous work, using
stimuli manipulations to naturally separate image semantics from its low-
level signal strength. By applying the algorithms to the manipulated
images, we will measure how they contribute to fixation selection under
task-neutral viewing.

6.1 Predicting Fixations

We present in this section two different approaches to algorithmic pre-
diction of fixations. It is not intended as a comprehensive description of
the algorithms, but merely an overview of their major components and
functionalities. For details, refer to the references given.

6.1.1 Saliency map approach

The concept of a saliency map and its relevance in attentional guidance
was first proposed by Koch and Ullman (1985). According to a saliency
map, visual importance is represented by a two-dimensional map predict-
ing how likely each location of an image is to be visually attended by a
viewer; peaks in the saliency map point to regions likely to be gazed at,
and vice versa. By successively moving to the highest peak in the saliency
map, a sequence of fixations can be predicted. To prevent the algorithm
from halting at the largest peak, it is endowed with an inhibition-of-return
mechanism, which reduces the saliency at previously visited peaks. The
saliency at these regions is restored after a period of time such that the
same image location can be visited multiple times over the course of view-
ing.

A saliency map is computed by first decomposing an image into a set of
feature channels, typically comprising luminance, orientation, and color.
Each feature channel is then transformed into a feature map by feeding
it through center-surround extracting filters and a mechanism that allows
spatial competition between neighboring feature content. Finally, all fea-
tures maps are combined into a single saliency map. The choice of features
are motivated by early psychological research, e.g., that by Treisman and
Gelade (1980), suggesting that some features trigger attentional selection
quickly and obligatorily by ’popping out’ from their surrounds.

Algorithmic implementations following the framework outlined by Koch
and Ullman have been proposed in several papers, e.g., (Itti et al., 1998;
Itti & Koch, 2000; Walther & Koch, 2006). We have used the Matlab
based Saliency Toolbox by (Walther & Koch, 2006) to compute the first
15 fixations in each tested image. Besides generating a saliency map from
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an image, this implementation identifies salient object-based representa-
tions in a image. We do not use this extension of the implementation, but
use the saliency map directly to predict fixated locations.

Implementations of saliency maps have been validated against human
fixations in some earlier papers (see e.g., Parkhurst et al., 2002; Henderson
et al., 2007; Rothkopf et al., 2007; Foulsham & Underwood, 2008). There
is some evidence that peaks in saliency coincide with fixation locations
when the viewing task is neutral, but also ample evidence that task and
context can override such a relation.

6.1.2 Gaze attentive fixation finding engine (GAFFE)

The gaze attentive fixation finding engine (GAFFE), which is designed
by Rajashekar et al. (2008), uses an approach based on machine learn-
ing. Using an image set comprising gray scale, natural images, fixations
from a large number of subjects are collected to find statistical differences
between fixated and control image locations using a foveated image anal-
ysis. In a foveated analysis, an image is blurred away from the current
point of fixation in accordance to the spatial sensitivity of the human vi-
sual system (HVS). Then a region around the location for nezt fixation
is analyzed in terms of feature content. This way, a foveated analysis
uses the information available to a human viewer at the time a saccade
to the next fixation location is planned. Rajashekar et al. report that
luminance and contrast as well as bandpass outputs of these features are
significantly higher at locations fixated by human viewers compared to
control locations. Consequently, these features are chosen as the basis for
prediction.

Fixation prediction is initiated by foveating an image away from its
center. This foveated image then is filtered with respect to the four fea-
tures mentioned above, and the next fixation target is decided by com-
bining the filtered feature maps based on parameters empirically found
by the initial analysis. The algorithm proceeds by updating the foveation
point to the next (predicted) fixation and repeats the filtering procedure
at this new fixation. GAFFE permanently inhibits previously fixated po-
sitions from becoming fixated again. Also, it does not attempt to predict
the temporal order of the fixations.

As for the saliency map approach, we use GAFFE to find 15 fixations
(we do not use the central, initial fixation). Before applying GAFFE to
predict fixations on our set of images, parameters were modified to fit the
experimental setting we used while recording eye-movements.

6.1.3 Eye-tracking on human subjects

To validate the algorithmic predictions, fixations were extracted as de-
scribed in the previous chapter, Section 5.1.6. To allow for a fair com-
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parison between human and algorithmic fixations, the first 15 fixations
(excluding the initial in the center of the display) from each viewer were
selected to comprise the human baseline measure. In case fewer than 15
fixations were recorded from one viewer, these Ny < 15 fixations were
used in the analysis.

6.1.4 Stimuli

Images belonging to the categories 'Face’ and 'Neutral’ from the last chap-
ter were used. They were chosen since they represent images with different
semantics; faces are known to convey much information in human inter-
action whereas images from the 'Neutral’ category contain no objects of
particular informative semantics. Stimuli are shown in Figure 5.1 (p. 42).

6.2 Analysis and Results

6.2.1 Qualitative analysis

Figure 6.1(a) illustrates how human and algorithmically predicted fix-
ations from all images (and subjects) are distributed. Consistent with
what has been reported in previous works, human fixations show a clear
bias toward the center of the image as illustrated by the heat map in
Figure 6.1(b). It can further be noted that human fixations tend to have
an oval distribution, being extended more in the horizontal direction than
in the vertical direction. GAFFE also shows a strong central tendency
in fixation distribution (Figure 6.1(c)), but with more equally extended
horizontal and vertical biases. Lastly, Figure 6.1(d) visualizes how fix-
ations computed from saliency maps are distributed; substantially more
fixations are located toward the edges in the images compared to the other
two cases.

Figures 6.2 and 6.3 show a comparison between human and algorith-
mic fixations for images belonging to the 'Neutral’ category. As described
in previous chapter, contrast has been reduced in a Gaussian-like man-
ner away from a (different) location in each version of an image. Dots
represent human fixations from all tested subjects, squares point to loca-
tions predicted by a saliency map, and circles indicate fixations generated
by GAFFE. As we reported from previous chapter, the distribution of
fixations recorded from human viewers is shifted toward regions kept in
high contrast. The general tendency for both algorithmic predictors is
similar. Interestingly, GAFFE seems to overemphasize the bias toward
regions of high contrast whereas the opposite is true for prediction made
from saliency maps.

In Figures 6.4 and 6.5, algorithmic prediction is compared to human
fixations on the images containing faces, which we from the previous chap-
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Figure 6.1: (a) Distribution of fixations collected from human viewers and
predicted algorithmically. (b)-(d) Fixation density functions represented
as heat maps.

ter know attract human fixation regardless of the tested contrast. As ex-
pected, the limitations of purely bottom-up predictors are made explicit
when reducing the contrast in the facial regions; the predictions deviate
strongly from human fixation in these situations. Both algorithms fail
systematically to predict that fixations will land on a blurred face. In
fact, they are in most cases not even close to the faces. Interestingly, also
when they are kept in high contrast, faces are sometimes missed by the
algorithms.

6.2.2 Quantitative analysis

To quantify the strengths of the tested algorithms’ abilities to predict
human fixations, we use two different methods to estimate the similar-
ity between two sets of fixations: The 2-D correlation coefficient and a
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Figure 6.2: Algorithmically predicted fixations and human fixations (dots).
Algorithmic predictions are made by GAFFE (circles) and by using a
saliency map (squares).




6.2 Analysis and Results 63

Figure 6.3: Algorithmically predicted fixations and human fixations (dots).
Algorithmic predictions are made by GAFFE (circles) and by using a
saliency map (squares).
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Figure 6.4: Algorithmically predicted fixations and human fixations (dots).
Algorithmic predictions are made by GAFFE (circles) and by using a
saliency map (squares).
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Figure 6.5: Algorithmically predicted fixations and human fixations (dots).
Algorithmic predictions are made by GAFFE (circles) and by using a
saliency map (squares).
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Figure 6.6: Comparison between human fixations and model generated
fixations using two different methods. Error bars span one standard error.

dispersion measure that we defined in Chapter 4, Eq.(4.1). Initially, fixa-
tions collected from humans and predicted by GAFFE and saliency maps
are used to create fixation density functions (FDFs) for each image. The
FDFs were generated using o = 20 pixels. Since neither of the algorithms
attempts to predict the duration of a fixation, human FDFs are generated
without taking fixation duration into account.

First, the correlation coefficient between human FDFs and algorithmic
FDFs is computed. Figure 6.6(a) illustrates these correlations for all the
images together, and those from the 'Neutral’ and "Face’ categories sepa-
rately. For comparison, FDFs for 15 fixations drawn from a uniform and
a Gaussian (to model the central bias) distribution are compared against
human fixations. Samples drawn from the latter distribution were gen-
erated by Matlab’s randn function and then scaled by o. In order to
get more robust comparisons, uniform and Gaussian samples were com-
pared to human fixations over 10 trials, and the average value over these
comparisons was used.

Using the correlation coefficient to estimate the similarity between
FDFs, it can be seen from Figure 6.6(a) that algorithmic prediction per-
forms best on images coming from the ’Neutral’ category and worst on
images containing faces. These results are verified in Figure 6.6(b), where
similar comparisons have been made using the dispersion measure. Re-
markably, it seems like fixations generated from a Gaussian distribution,
that is, fixations that are biased toward the center of the image, are com-
patible or outperform the algorithmic fixation predictors. Remember that
this is the case despite that contrast manipulations explicitly are imple-
mented ’off-center’, i.e., the kept high-contrast regions in the manipulated
images are deliberately positioned a bit away from the center of the image.

Overall, GAFFE seems to predict fixations better than a saliency map.




6.3 Summary 67

However, much of this effect derives from the central bias that the design-
ers of GAFFE have built in. The bias originates from two sources. First,
GAFFE always begins its prediction at the center of the image, and since
the distance between the current and the next predicted fixation typically
is quite small', it may take a while for the algorithm to reach the borders
of the image. Second, a mask attenuating features along the borders is
applied before prediction. This prevents fixations from appearing close to
the image borders, as can be seen from Figure 6.1(a).

6.3 Summary

We evaluated the performance of two bottom-up driven algorithms for fix-
ation prediction against human fixations recorded from viewers watching
images with manipulated contrast. While previous work has shown that
certain task instructions can override predictions made by bottom-up al-
gorithms, we show that by using a more neutral task in combination with
contrast manipulated images, the same effect can be elicited. In view of
these observations, our results strongly question the causal contribution
of bottom-up algorithms to fixation prediction.

IThe correlation between features and fixated image content is significant only for
short saccades, typically < 8 degrees.
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Chapter

Discussion of Part |

E investigated gaze control in natural images using a new ex-
‘ ; ‘ / perimental paradigm where contrast manipulated images were
inspected during task neutral viewing. A measure called se-
mantic information dispersion (SID) was devised to estimate the com-
pactness of an image’s semantics and to classify images into semantic
categories, and we quantified how both contrast manipulation and SID
influenced where people looked. Finally, using images before and after
their contrasts were manipulated, we compared two state-of-the-art algo-
rithms for fixation prediction against fixations collected from participants.
Over all subjects and images, we found a net effect that contrast manip-
ulations changed where people looked; their gazes were repelled from re-
gions where contrast had been reduced. Interestingly, we also found that
the degree to which contrast manipulations affect participants’ gazes de-
pends on an image’s semantic category; semantically informative regions
attract visual attention despite being reduced in contrast. Fixations made
on images containing faces, in particular, were rather insensitive to the
manipulations, and participants looked at the face regions regardless of
tested contrasts. In agreement with these results, our comparative study
revealed that algorithms using bottom-up features to predict human fix-
ations sometimes perform well, but many times fail miserably.

In Chapter 4, the effect contrast manipulation has on gaze locations
was analyzed. Over all images and types of manipulations, we found that
subjects’ gaze positions were affected by contrast manipulations; gaze
density was shifted toward regions in high contrast over those reduced in
contrast. We also found that participants on average looked at regions
with contrast higher than what was found at control regions. This is
consistent with the hypothesis of preattentive selection, i.e., that atten-
tion is drawn to local image cues based on their physical signal strength.
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The bulk of previous works emphasize the contribution of such low-level
features to gaze guidance. For example, it has been shown that contrast
(Mannan et al., 1996; Reinagel & Zador, 1999; Tatler et al., 2005), edge
density (Baddely & Tatler, 2006), and saliency (Parkhurst et al., 2002)
are higher at fixated than control regions. A saliency based framework, in
particular, predicts an obligatory shift in fixation density toward regions
where the low-level signal strength is high (Koch & Ullman, 1985).

By analyzing images from different semantic categories, we found in
Chapter 5 that the degree to which contrast manipulations affect fixa-
tion selection heavily depends on the semantic content of an image, as
well as how this content is distributed over the image area. In our experi-
ments, face regions attracted attention regardless of their tested contrasts,
whereas fixations in images with more neutral semantics, such as a pho-
tograph of a brick wall or a forest, were shifted toward regions where
the contrast remained high. For the semantic category comprising pho-
tographs of man-made objects, we observed a moderate change in where
people looked; gaze locations were affected more than in the face im-
ages but less than for images containing neutral semantics. These results
suggest a semantic override of low-level features, in case the semantic
information dispersion (SID) is low and points to regions with high se-
mantic relevance such as a face. In images with high SID, on the other
hand, contrast manipulations seem to dominantly influence where people
look. However, even though the correlation between bottom-up features
and fixated image content is higher in the latter case, it cannot be ruled
out that other high-level mechanisms still control fixation selection. It
is possible, for example, that the contrast manipulations affect images’
semantic content, which then is responsible for shifts in fixation density.
This is by no means a controversial hypothesis since there is ample evi-
dence supporting that eye-movements are guided by cognitive factors such
as context and semantics, where the physical image components interplay
cognitively to give the raw image content a higher meaning (review evi-
dence from Chapter 3).

In Chapter 6, we tested two popular algorithms to predict fixations,
implemented by Walther and Koch (2006) and Rajashekar et al. (2008),
and compared the predicted locations with those collected from partici-
pants watching the contrast manipulated images. Although there exist ev-
idence supporting the contribution of low-level saliency to eye-movement
guidance in both static (Parkhurst & Niebur, 2002) and dynamic (Itti,
2005) scenes, it has been shown that top-down factors such as task and
context can override such contribution. For example, Underwood et al.
(2006) used a search task where subjects were instructed to detect the
presence of a low saliency target. This task yielded a low spatial overlap
between saliency and fixation locations. Rothkopf et al. (2007) studied
the deployment of gaze in a virtual environment during different tasks
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and found that task and context, instead of saliency, dominate gaze al-
location. Everyday activities such as food preparation seem largely in-
dependent of objects’ low-level properties (M. F. Land & Hayhoe, 2001).
While the dominant influence of task on eye-movements has been long
known (Buswell, 1935; Yarbus, 1967), significantly less work has been
done using the opposite experimental strategy with neutral, free-viewing
tasks and images with manipulated low-level statistics, which we use in
this thesis. Overall, we found the algorithms being remarkably poor at
predicting human fixations, in particular for low SID images where con-
trast had been reduced at semantically informative regions. These results
together strongly question that the low-level features used by these algo-
rithms contribute causally to fixation selection.

It is currently debated whether regions are looked at because they
are informative with respect to their physical image properties (such as
saliency) or due to their semantic informativeness. Henderson et al. (2007)
reported that, besides having higher saliency than control regions, fixated
locations were deemed as more semantically informative than control re-
gions. Salient regions have also been shown to overlap with regions labeled
as interesting (Elazary & Itti, 2008). By reducing the coupling between
saliency and semantic informativeness, we found that semantically in-
formative regions are looked at despite having a weak low-level signal
strength. Therefore, the previously reported (correlative) link between
fixation selection and saliency may in fact reflect the causal link between
semantic informativeness and fixation selection. A predictor based on
saliency can in other words output predictions that coincide with actual
fixations collected from humans, but does so not because saliency attracts
attention, but since underlying, semantically informative objects happen
to contain features with high saliency. As we have seen, if such objects
are reduced in saliency, they nevertheless attract fixations.

A number of studies have recently investigated the mechanisms con-
trolling the first fixation, which usually refers to the fixation following the
initial saccade after image onset. A general observation (and consensus)
is that the position of the first fixation largely coincides across viewers
(Tatler et al., 2005). However, the explanation for this observation varies.
Whereas early studies reported that objects inconsistent with the general
semantic category of the image (Loftus & Mackworth, 1978) and regions
deemed as informative by viewers (Antes, 1974) attracted a dispropor-
tional amount of initial fixations, some later works have emphasized the
contribution of image features. For example, Parkhurst et al. (2002), sug-
gested that saliency contributes more to fixation selection during the first
fixation and thereafter contributes less. Tatler et al. (2005), on the other
hand, argue that the contribution of bottom-features does not change
with viewing time. Instead, top-down influences do. Using our data, we
again found that contrast manipulations affect the location of the initial
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fixation differently depending on the image category. The effect reported
by Parkhurst et al. (2002) was found in the high SID, 'neutral’ category.
However, the opposite effect was found when regions rated as semanti-
cally important, such as faces, were reduced in contrast; subjects’ initial
fixations instead landed on regions with low contrast and edge density.
Consequently, our results do not support the hypothesis that initial sac-
cades causally are driven by saliency. Instead, it is likely that the gist
of the scene provides enough information to guide the initial saccade. In
fact, recent research has shown that an image’s gist can be apprehended
very quickly after image onset and includes “a rich collection of percep-
tual attributes” and “rises to conscious memory within a single fixation”
(Fei-Fei et al., 2007).

We have in this part of the thesis analyzed fixated content at rather
high spatial frequencies. For example, the filters we used in Chapter 5 were
of size 3 x 3 pixels and operated on images of size 1024 x 768 pixels. Con-
sequently, only image variations with high detail were extracted, whereas
coarser variations were not captured by these filters. Mannan et al. (1995,
1996) investigated how lowpass filtering of an image affects where people
look. They found that during the first 1.5 seconds of viewing, people fixate
the same locations in the original image as in the lowpass filtered version
of this image. Since only the low frequency content is shared between
these versions, this suggests that a representation based on low spatial
frequencies could be responsible to guide early fixations. In this sense,
a saliency map operating on lower spatial frequencies could account for
the results found in this paper. This line of argument has some support
considering images from the ’face’ category only; contrast manipulations
dominantly attenuating higher frequencies have little influence on where
people look, and faces are looked at regardless of their contrast levels.
However, it seems more plausible that face regions are looked at because
of their known semantic importance than because of some low-level ac-
count. Moreover, images from the 'neutral’ category directly overthrow
this assumption since fixation locations showed to be directly affected by
the contrast manipulations in this case.

In summary, the results from this part of the thesis do not support
the hypothesis of a causal relationship between fixation selection and im-
age features, i.e., bottom-up features do not obligatorily attract visual
attention.
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Chapter

Compression and Foveation

be reduced in quality at locations where a viewer does not look

directly, without this being noticed by the viewer. In image and
video compression, this fact can be exploited by allocating bits in ac-
cordance to the spatial sensitivity of the HVS; more bits are given to
fovea-near regions than to peripheral regions. This is called foveated com-
pression.

This chapter serves as an introduction and motivation to foveated
compression. It begins with an overview of traditional methods for image
and video compression, followed by an introduction to foveation; what
it is, how it is implemented, and how it can be (and has been) used to
improve image and video compression. Unlike commonly known methods
for foveated coding relying on real-time implementations, we introduce an
approach called off-line foveation where gaze data collected from several
previewers are used to predict where later observers, watching the same
videos, will look.

THE lack of spatial detail in peripheral vision allows a display to

8.1 Some Words on Source Coding

As the digital information age matures, technological advances have al-
lowed an increasing number of people to use a range of multimedia ser-
vices. Video applications, in particular, have recently undergone an ex-
plosive growth. For the practical applicability of video communications,
source compression is crucial. Without compression, video file sizes would
be too large to store on many devices and use excessive bandwidth during
transmission. Since this section only scratches the surface of the wide
area of source coding, the interested reader is referred to the textbooks
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by Haskell & Netravali, 1995 and Sayood, 2000 for a more comprehensive
treatment of the subject.

There are two types of compression: lossless and lossy. As the names
imply, lossless compression requires the reconstruction of the source to be
an exact replica of the original source, while in lossy compression a cer-
tain amount of distortion, that is, a discrepancy between the reconstructed
and original source, is acceptable. A common goal in compression is to
remove so called redundancies in a source, that is, repeated information
that we can discard and still keep the crucial source elements. The source
can comprise digitized text, speech, an image, or a video. Mathemat-
ically, a source can be described by a statistical model with alphabet
A={Ay, Ay, ..., A}, where letters in the alphabet occur with probabil-
ities P = {P(A;), P(Aa),...,P(A,)}.

Lossless compression is necessary in a variety of applications where
distortion is not acceptable. For medical purposes, for example, distortion
in an X-ray image may lead to misinterpretations and confuse authentic
fractures with compression artifacts. In text compression, a single letter
that is lost or distorted may change the meaning of a word or a sentence
drastically. Of course, there is a price for not allowing image distortion
after reconstruction. Lossless schemes usually do not compress to less
than about three times of the original source. The theoretical limit for
how much a source without memory, i.e., where the source elements are
independent, can be compressed is defined by the entropy of the source
(Shannon, 1948)

H =~ P(X;)log P(X)) (8.1)

where {X7, X2, X3,...,} denotes a sequence generated from the alpha-
bet A. There are many well known methods for lossless compression,
for example Huffman (1952) and arithmetic codes (Rissanen, 1976), ex-
ploiting statistical properties of the source, and Lempel, Ziv and Welsh
(LZW) (Welch, 1984) coding, taking advantage of repeated patterns in the
sources. The LZW implementation can be found in, for example, Adobe’s
Portable Document Format (PDF).

Lossy compression addresses the trade-off between rate and distortion,
with the overall goal to simultaneously minimize the rate and the distor-
tion. Besides addressing statistical and structural redundancies, lossy
compression targets psycho-visual redundancies by taking advantage of
the very forgiving nature of human visual or auditory perception. Ac-
cording to this philosophy, a source can be compressed until the fidelity is
violated as judged by human observers. The vagueness of this statement
indicates the subtle nature of lossy source coding, which is even more com-
plicated since individual, subjective differences exist between humans; one
person can judge the source quality as poor while another person judges
the quality of the same source as being fair or even good. In image com-
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Figure 8.1: Overview of a compression scheme.

pression, lossy compression schemes can give about 30 fold compression
of natural gray scale images with little or no perceived distortion.

Source coding is an important part of a communication system, which
includes a source and channel encoder/decoder and sometimes also source
encryption/decryption. We only consider source coding and assume that
the channel is ideal and hence introduces no errors. As previously men-
tioned the source can be an image, speech, music etc. In this thesis we
will consider only image and video sources. Figure 8.1 depicts a generic
source coding scheme. A source X is fed into a source encoder which out-
puts a different (often binary) compressed representation Y of the original
source X. To protect the encoded source from being corrupted when sent
over the communication channel, redundancy can be added before trans-
mission if the channel is not ideal. Since we only deal with ideal channels,
in our case Y =Y. For lossless compression we demand that X = X af-
ter source decoding while in lossy compression, we want to minimize the
distortion. In other words, we want the reconstruction X to be as close
to the original image X as possible, but at the cost of as few transmission
bits as possible.

8.1.1 Image coding

Image coding is a special case of source coding. A typical system for
image coding is outlined in Figure 8.2. It consists of an encoder and a
decoder, which further are divided into a transform, quantization, and en-
tropy coding stage. As a first step the image is transformed. The purpose
of transformation is to decorrelate neighboring pixels and compact the
majority of the image information into a small number of transform co-
efficients from an alphabet C. Popular transforms are the discrete cosine
transform (DCT) and the discrete wavelet transform (DWT), included in
the standards JPEG (Wallace, 1992) and JPEG2000 (Taubman & Mar-
cellin, 2001), respectively. The transform coefficients are then quantized,
which can be defined as an operation that maps coefficients from C to
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Figure 8.2: A lossy image coder.

another, coarser alphabet Cg. The purpose of quantization is to reduce
the entropy of the coefficients. Lastly, an entropy coder is applied to
the quantized coefficients. In JPEG, for example, the quantized output
is entropy coded with run length coding (RLE) combined with Huffman
coding. Decoding is generally straightforward, where entropy decoding
is followed by inverse quantization and transformation. The degree of
compression depends mostly on the quantization strategy, since both the
transform and entropy coding stages are lossless or nearly lossless.

8.1.2 Video coding

A video consists of a sequence of images (called frames), each slightly dif-
ferent from its neighboring frames. Showing the frames quickly after each
other creates the illusion of motion. In terms of compression, the most
straightforward approach would be to code each frame as a still image.
However, this approach is very inefficient. Instead, besides exploiting spa-
tial redundancies as in image coding, a video coding scheme also exploits
temporal redundancies through the fact that neighboring frames largely
contain the same information. As a consequence, compression rates in
video can be much higher than in still image compression.

The structure of a general video encoder/decoder is depicted in Figure
8.3. As a first step at the encoder, the input video is divided into a group
of pictures (GOP), which typically consists of 8, 16, or 30 consecutive
frames. In intra (I) mode, an input frame is directly transformed, quan-
tized, and entropy coded, i.e., it is coded as a still image. In the predictive
(P) mode, the (current) frame is first predicted from the previous decoded
frame, and only the difference between the current predicted frame the
current original frame, i.e., the prediction error (PE) is encoded. Predic-
tion is made in two steps through motion estimation (ME) and motion
compensation (MC). Figure 8.4 illustrates the general idea behind ME.
Initially, two consecutive frames are divided into non-overlapping blocks.
Each block in the current frame is then matched against blocks of the same
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Figure 8.3: A typical video coder (without entropy coding).
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Figure 8.4: Block based motion estimation.

size in the previous frame within a search window. A vector describing
the translational motion between the block in the current frame and the
best matching block in the previous frame is stored. These motion vectors
are used in MC to rearrange blocks of information in the previous frame
to best describe the current frame. Algorithms for video coding following
this basic framework have successfully been included in standards such
as the moving picture experts group (MPEG) family of codecs (see, e.g.,
Gall, 1991; Wiegand, Sullivan, Bjontegaard, & Luthra, 2003).

8.1.3 Quality assessment in compression

To be able to design, implement, and evaluate an algorithm for compres-
sion, we need to be able to obtain accurate estimates of a compressed
image’s quality. The difference in quality between an original image X
and its compressed representation X of dimensions m x n is typically
measured with the mean squared error (MSE)

m—1n—1

MSE = —L 3™ (X, 4) — XG.5)) (8.2)

i=0 ;=0
or with the related peak signal-to-noise ratio (PSNR)

[maxi_,j(X(i,j))]Q) ,

(8.3)

PSNR =10 - log, < VSE

While these objective measures have been used extensively by researchers
working with image and video compression, they have been found to cor-
relate with the quality as perceived by human viewers quite poorly. This
is hardly surprising since the HVS takes several aspects into account that
are not considered by simple, pixel-based measures such as the MSE. For
example, these aspects include (from Wang, Sheikh, & Bovik, 2003)
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e Non-uniform retinal sampling.
e Light adaptation (luminance masking).
e Contrast sensitivity functions.

e Spatial frequency, temporal frequency and orientation selective sig-
nal analysis.

e Magking and facilitation.
e Contrast response saturation.

Unfortunately, there are today no objective measures that produce
quality measures indistinguishable from those collected through subjective
quality assessment. Currently, finding such objective methods is an active
area of research (see e.g., Wang, Sheikh, & Bovik, 2003). Instead, to
ensure reliable quality scores, experiments where several observers view
and assess compressed images on rating scales (e.g., bad, poor, fair, good,
excellent) or impairment scales (e.g., very annoying, annoying, slightly
annoying, perceptible but annoying, imperceptible) are preformed. (ITU,
2002).

8.2 Using Foveation in Compression

As we saw in Chapter 2, humans have evolved a foveated system that
combined with eye-movements is used for visual exploration. Foveated
compression exploits the foveated nature of the HVS by removing unde-
tectable high frequency content away from the foveation center as a func-
tion of eccentricity. Since high frequency content generally requires more
information to represent digitally than low frequency content, foveation
inherently improves compression. Although the huge potential to exploit
foveation for the purpose of compression has been known for quite some
time (formalized in e.g., Girod, 1988), it is today not a widespread tech-
nology. The reasons for this are mainly twofold. First, the compression
system needs to know, or accurately estimate where the viewer looks. Sec-
ond, in real-time applications, the delay introduced by coding and trans-
mission is believed to exceed that acceptable to an observer. This delay
causes a lag between the position of the current foveation point and the
foveation center in the image currently being decoded. In other words, it
cannot be guaranteed that the position where a viewer looks and the posi-
tion where the decoded image has its best quality are aligned. Moreover,
compression standards need to be extended to optimally code foveated
image and video representations.
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8.2.1 Foveation

Unlike the composition of a digital image as a uniform, two dimensional
grid of pixels, acquisition of visual information on the retina is highly
nonuniform with the highest sampling density in the fovea. The process
of matching the image resolution in accordance to the sampling density of
photoreceptors on the retina is called image foveation (Kortum & Geisler,
1996). Successfully implemented, foveation transforms an image such that
a viewer looking at the foveation center cannot distinguish the foveated
version from its original. Figure 8.5 illustrates image foveation; Figure
8.5(a) shows an unprocessed image and Figure 8.5(b) depicts the image
after foveation, which is centered at the ball being pushed by the train.

There are a number of methods proposed to implement foveation.
Early ones were based on adding pixels into larger elements, SuperPix-
els, which increase in size with increasing eccentricity from the point of
gaze according to a resolution fall-off model consistent with anatomi-
cal measurements in the human retina and visual cortex (Kortum &
Geisler, 1996). This type of implementation is simple and quick. How-
ever, borders between SuperPixels give rise to distinct blocking artifacts,
which proved to be visually unpleasant. More recent implementations
used multi-resolution pyramids (e.g., Geisler & Perry, 1998, 1999), where
peripheral regions in the foveated image contain information from up-
sampled, higher pyramid levels, while regions closer to the foveation cen-
ter comprise higher frequency content available from the low pyramid
levels or from the original image itself. The borders between pyramid
levels are typically smoothed with a blending function to avoid sharp
transitions in the foveated image. Figure 8.5(b) has been generated us-
ing a foveated multi-resolution pyramid. The code is available online
(http://svi.cps.utexas.edu/software.shtml).

Foveation has also successfully been implemented in the transform
domain, using wavelets (Chang & Yap, 1997; Duchowski, 2000; Sheikh,
Liu, Evans, & Bovik, 2001), and the discrete cosine transform (DCT)
(Bergstrom, 2003) where appropriate transform coefficient scaling prior
to inverse transformation produces foveated images. Typically, transform
coefficients are scaled by a factor, p € [0,1]. Where p is small, the dis-
play quality is heavily degraded and where p is one, the quality is un-
affected compared to the original display. Moreover, foveation has been
implemented using polar down-sampling schemes (Juday & Fisher, 1989;
Kuyel, Geisler, & Ghosh, 1999). The choice of implementation method
depends on the application. Typically, smooth and artifact free resolution
degradations are desirable.

In this thesis, we have chosen to implement foveation in the wavelet
domain, mostly because the successful application of wavelets in compres-
sion. For example, the transform stage in many current state-of-the-art
compression methods is based on wavelets (e.g., JPEG2000). Implement-
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Figure 8.5: Image foveation. The bottom picture shows a foveated version
of the original image on the top. Foveation center is located in the middle
of the dotted ball. The foveated image was generated by the software
publicly available from http://svi.cps.utexas.edu/software.shtml.
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Figure 8.6: Overview of a foveated compression scheme.

ing foveation requires a number of parameters to be known (or accurately
estimated). First, we need to know where a person looks. Second, we need
a function approximating how visual sensitivity decreases as a function of
eccentricity. Third, we need to know the distance from the image to the
viewer. Fourth, we require knowledge about the resolution of the image
and the screen on which it is presented, as well as the physical dimensions
of the screen.

Foveated displays have been used for a number of purposes (see, e.g.,
Parkhurst & Niebur, 2002), for example to reduce computational resources
in computer graphics rendering, to evaluate the perceptual span in scene
perception, and to improve the compression efficiency of digital images
and videos, which is the specific target of investigation in this thesis.

8.2.2 Foveated compression

Foveation improves compression efficiency by removing high frequency
content, which typically consumes a substantial portion of the bit budget,
from unattended parts of an image. We have identified two major cat-
egories of foveation-based, or foveation-like methods for improved image
and video compression: Real-time and off-line. Maybe the most straight-
forward, intuitive approach to foveated coding is in real-time, first pointed
out by Girod (1988), with potential applications in, e.g., surveillance, tele-
operating of remote vehicles, telemedicine, and teleconferencing; these are
situations where transmission bandwidth may be limited. In a typical sit-
uation shown in Figure 8.6, the position of the foveation center is sent
to a remote location (camera) where the image is foveated in the spatial
or transform domain, compressed with a standard coder such as JPEG,
and transmitted back to the viewer where it is decoded and displayed.
Of course, this type of setup requires a minimum delay from the time
the foveation point is acquired until the image is decoded and displayed.
Otherwise, it cannot be ensured that the foveation center and the re-
gion with best image quality coincide, which would reduce the subjective
quality of the decoded image. Real-time foveated compression requires
a fast and reliable link to transmit the foveation point to the encoder
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side, a quick algorithm to implement foveation, and symmetric coding
schemes of relatively low complexity. Recent work has found that if a
gaze-contingent display is updated within 60 ms after an eye-movement,
blur due to foveation is not detectable (L. C. Loschky & Wolverton, 2007).
One strategy to alleviate the effects of larger delays is to foveate an image
while predicting how viewers’ gazes change during the period of the delay
(Khan & Komogortsev, 2006). The penalty is that a larger portion of the
image needs to be represented in high quality than if the gaze positions
would be known exactly. Real-time foveation has been reported to sub-
stantially improve compression. The bit rate savings depend on factors
such as image size and viewing distance, but typically contributes with
a factor > 3 compared to standard 'unfoveated’ compression (Geisler &
Perry, 1999). With only minor changes in system design and implemen-
tation, real-time foveated compression can easily be extended to consider
multiple foveation points (viewers).

A perhaps less intuitive way to use the fact that vision is reduced in
the periphery, that we have named off-line foveation, is to beforehand
predict where viewers will look and keep a high display fidelity only in
these regions, while degrading other regions. Given that later viewers look
within the predicted regions and that the peripheral degradation does not
introduce visually unpleasant video distortions, off-line foveation will the-
oretically not reduce subjective quality. Obviously, besides exploiting pe-
ripheral image degradations to improve compression, off-line foveation re-
lies on the assumption that different viewers will look at similar locations.
If this was not the case, and if viewers’ gaze positions were uniformly
distributed, no region could be degraded without significantly reducing
the perceived quality for an uncontrollable number of later viewers. For-
tunately, there is ample evidence that different viewers look at largely
similar video regions (Elias, Sherwin, & Wise, 1984; Stelmach, Tam, &
Hearty, 1991; Tosi, Mecacci, & Pasquali, 1997; Goldstein, Peli, Lerner, &
Luo, 2004; Dorr, Béhme, Drewes, Gegenfurtner, & Barth, 2005). Most of
the time, these regions are confined to the center of the video display. The
general structure of a system for off-line foveated compression is the same
as in Figure 8.6. However, the foveation points are replaced by estimates
of the locations where future viewers are likely to look. In our imple-
mentation, estimates come in the form of gaze density functions (GDFs)
generated from superimposed Gaussian functions derived from empirical
gaze data collected from previewers. Also, since the encoder is not con-
strained by any real-time computational demands, off-line foveation allows
for a more non-symmetric construction where complexity can be shifted
to the encoder. Off-line foveated compression is mainly suitable for, but
not limited to, off-line, and semi real-time applications such as sports and
news broadcast and streaming video over the Internet.

In addition to being real-time and off-line, foveated compression can
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Real-time Off-line
Juday and Fisher (1989) Itti (2004)
Kortum and Geisler (1996) Agrafiotis et al. (2006)

Non-scalable
Geisler and Perry (1998)

Sheikh et al. (2001)

Bergstrom (2003)

Khan and Komogortsev (2006)
«——Wang and Bovik (2001)—

Rate scalable +—Wang, Lu, and Bovik (2003)—

Table 8.1: Categorization of some papers on foveated image and video
coding.

be rate scalable or not (see Wang & Bovik, 2001; Wang, Lu, & Bovik,
2003). Scalability in foveated compression refers to the ability to order
the bit stream such that regions close to the foveation center are coded
and transmitted with priority. As a consequence, when initial parts of the
bit stream are received at the decoder side, the foveated region consumes
bits almost exclusively, and is therefore reconstructed with higher fidelity
than other regions. At this point, only a heavily foveated image version
can be decoded. As more bits get available to the decoder, regions further
away from the foveation center are successively refined. When the whole
bit stream is decoded, the received image is fully 'unfoveated’. In foveated
video compression, scalability can also refer to temporal scalability, where
foveated regions are prioritized in frame rate. Table 8.1 lists a number of
representative works from each category.

8.2.3 Off-line foveation: Open problems

One of the main challenges in off-line foveated video is how to accurately
predict where future viewers will direct their gazes. There have been
two main approaches: Using eye-movements from a number of previewers
watching the video (Stelmach & Tam, 1994; Duchowski & McCormick,
1998), and using computational algorithms for automatic prediction (e.g.,
Osberger & Rohaly, 2001; Wang, Lu, & Bovik, 2003; Itti, 2004; Le Meur,
Le Callet, & Barba, 2007).

Without explicitly targeting video coding applications, the use of pre-
viously recorded eye-movements to implement off-line foveation was pre-
sented and evaluated by Stelmach & Tam, 1994 and Duchowski & Mc-
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Cormick, 1998. Stelmach and Tam manipulated each video frame such
that the one region where most previewers looked remained in high reso-
lution, whereas other parts of the frame were increasingly degraded away
from this region by means of low-pass filtering or DCT coefficient quan-
tization. The perceived quality of the manipulated, variable-resolution
video was assessed by human observers and compared with three other
versions of the same video; one unprocessed, one with an equal level of
blur distributed uniformly over the frame, and one with a centrally fixed
high-resolution region. As expected, the unprocessed video got the high-
est quality ratings and the uniformly blurred video the worst. The authors
found, rather surprisingly, that the judged quality of the off-line foveated
video was comparable to having a centrally fixed high resolution region
throughout the video. In view of these results, Stelmach and Tam (1994)
conclude that “Given the modest benefits and high cost of implementa-
tion ... gaze contingent processing is not suitable for general purpose
processing”. However, as they also discuss, the poor quality ratings of the
off-line foveated sequence may derive from repeated viewings of the test
sequences as well as the imposed task of quality evaluation, which could
make subjects actively search for quality impairments. Either of these two
reasons may disrupt the natural viewing behavior of subjects and hence
cause them to gaze outside the regions of high resolution where the im-
age quality is significantly decreased. A similar study by Duchowski and
McCormick (1998) investigated the subjective quality of videos that were
manipulated (off-line) such that high resolution was maintained around
each previewer’s position of gaze (from several viewers), whereas other
regions were degraded in resolution. Results showed that eye-movements
collected from subjects watching the manipulated videos deviated from
eye-movements collected from the unprocessed, original video. The au-
thors argue that new, suddenly appearing high-resolution regions may
distract viewers’ natural viewing patterns in the former case. Appar-
ently, both Stelmach and Tam and Duchowski and McCormick came to
the conclusion that off-line foveation is infeasible since it introduces video
artifacts decreasing the subjective quality, and also seems to change the
viewing behavior of new viewers.

Computational models for gaze prediction typically use low-level im-
age features such as luminance, contrast, edge density, and motion (cf.
Chapter 6 for gaze prediction in images), or use heuristic rules such as
"always choose faces’. Although there exist a few implementations using
computational approaches for gaze prediction to generate off-line foveated
videos (e.g., Osberger & Maeder, 1998; Itti, 2004) none, to the author’s
knowledge, has been subjectively evaluated. Interestingly, a recent study
showed that the best among current state-of-the-art gaze predictors in
video was one simply predicting that viewers would look at the center of
the screen (Le Meur et al., 2007). As for gaze prediction algorithms in still
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images discussed in the first part of the thesis, automatic gaze prediction
in video is currently quite far from producing data consistent with those
recorded from human observers. This motivates the use of eye-tracking
data, which define the ’ground truth’; to predict future gazing behavior
for the purpose of off-line foveation. In this thesis, therefore, we have
adopted this approach.

There are a number of central challenges in off-line foveated com-
pression that we will address in the coming chapters. First, it is an open
question how recorded gaze positions best are transformed into a foveation
function, that is, a function that manipulates the video quality such that
peripheral degradations do not compromise the subjective quality expe-
rienced by later viewers. Imagine for example that gaze data is collected
from 14 previewers; 11 look at an object in the upper left corner and the
other three look toward a region in the lower right corner. When foveating
and coding the video to be looked at by other viewers, how many bits do
we want to spend in the lower right corner compared to the upper left
corner? Second, given a foveation function, how is it used to efficiently
allocate bits in a coding scheme? Finally, assuming the first two problems
are solved, how can we estimate the quality of the foveated and coded
video? Obviously, objective quality estimates such as the PSNR, which
treats different image regions without regard either to the varying spatial
nature of foveated images or to the collective viewing behavior, are not
directly applicable to evaluate off-line foveated video. These and other
issues will be the targets of investigating in the coming chapters.

8.3 Summary

Foveated compression exploits the non-uniform spatial acuity of the hu-
man visual system (HVS) by removing high spatial frequencies not de-
tectable by our peripheral vision. By representing only the regions in
a video where people look in high quality while degrading other regions,
foveation has the potential to significantly improve today’s state-of-the-art
methods for compression. In a system for real-time foveation, a foveation
point is sent from the viewer to a remote camera where the image is
foveated, encoded, and directly transmitted back to the viewer. At the
decoder side, the image is rapidly decoded and displayed. In a different
approach to foveated coding that we have named off-line foveation, gaze
positions are collected from a number of previewers. These gaze positions
are then used to manipulate the image quality such that later viewers will
not perceive the blur introduced by off-line foveation. Previous works on
off-line foveated video argue against the feasibility of such an approach.
In the coming chapters, we will revisit off-line foveation and evaluate its
potential in compression by addressing a number of open research prob-
lems.




Chapter

A First Glance Toward Off-Line
Foveated Compression

E begin to explore off-line foveated compression using eye-
tracking experiments combined with a simple coding scheme.
Foveated compression is applied to six short image sequences

depicting natural scenes, where each image is foveated and compressed
without regard to its neighboring images.

9.1 Overview

Figure 9.1 gives an overview of the system design. It consists of three main
building blocks, each outlined by a dotted box. Initially, eye-movements
are recorded from 17 people free-viewing the original image sequences. To
implement foveation, each image from a sequence is wavelet transformed,
and the wavelet coefficients are multiplied by a weighting function de-
riving from collected gaze positions. The foveated coefficients are finally
quantized with a simple, uniform scalar quantizer and entropy coded with
a Huffman coder. Decoding reverses the entropy code and transforms
the wavelet coefficients back to the spatial domain. The degree of addi-
tional compression due to off-line foveation is calculated. In the evaluation
phase, another 18 people look at the foveated, decoded image sequence
under the same conditions as during the initial data collection. Again,
their eye-movements are recorded. The purpose of a second recording is
to compare where subjects look in the original sequence to where they look
while watching the compressed off-line foveated sequence. Since standard
methods for subjective and, in particular, objective quality evaluation are
not directly applicable to off-line foveated video, we argue that comparing
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the distribution of gazes in the two conditions serves as an indicator of the
perceived quality. For example, if people look at similar locations across
the conditions, we know by definition that they gazed toward regions with
high quality. Otherwise we know that they looked at regions degraded by
foveation, which were thus of poorer quality. Besides analyzing the gazing
behavior, we asked subjects some questions about their subjective viewing
experience.

9.2 Methods

9.2.1 Data collection

Test subjects were seated one by one at a viewing distance of 75 cm in front
of a computer screen. The screen extended 31x25 cm (23x19 degrees) and
had a resolution and refresh rate of 720 x 576 pixels and 60 Hz, respectively.
All observers had normal or corrected-to-normal vision. Image sequences
were played with the Quicktime 6.3 player at 25 frames per second (fps).
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Figure 9.2: Representative image (Y-component) from each tested se-
quence.

To enable fast and accurate display, the image sequences were encoded at
a high bitrate. Stimuli consisted of six short image sequences depicting
natural scenes, and had a total duration of 3 min and 30 seconds. The
resolution of the images was the same as the screen resolution. The images
were represented in 24 bit color (RGB with 8 bit in each color channel). A
representative image from each sequence is shown in Figure 9.2. During
image display, gaze positions were recorded at 50 Hz with an SMI iView
eye-tracker using a pupil /cornea reflex system to track the eyes. Subjects
were naive in the sense that they had no prior knowledge of either the
content of the stimuli or the purpose of the test. Prior to each eye-
tracking session, subjects did a nine-point calibration and were instructed
to 'free-view’ the sequences ("watch the videos as you naturally would do
at home’).

During the initial eye-movement data collection, we had 17 subjects
watching the original image sequence. The collected eye-movement data
from 14' of these subjects were used for the purpose of foveation.

In the second data collection (the evaluation phase), 18 new subjects
watched the foveated and compressed image sequence under the same
conditions as in the first test. Again, data from 14 subjects were used.

9.2.2 Off-line foveation and coding — Implementation
details

Each image from the sequences is foveated and coded separately. First
we exploit the fact that humans are less sensitive to chromatic than to
luminance information by a RGB-to-YUV conversion, where the U and
V components are subsampled by a factor two. The YUV components

! Eye-tracking data from the three test-subjects with the most deviant (from other
test-subjects) eye-movement patterns were omitted.
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(b) (©)

Figure 9.3: (a) Image with overlaid gaze positions. Each marker represents
the gaze position from one viewer. (b) Three level wavelet decomposition
of the Y-component. (¢) Subband weighting masks for a three level wavelet
decomposition.

are each wavelet decomposed (c.f. Appendix A) using a Daubechies 4-
tap filter with periodic border extension. Each component is decomposed
with three levels as depicted in Figure 9.3(b). Foveation is implemented
in the wavelet domain by weighting (multiplying) the coefficients in each
subband B, at decomposition level A\ = {1,2,3} with a Gaussian-like
function Wy (m,n), whose shape is determined by the distribution of gaze
positions. This way, high frequency information is attenuated in regions
largely unattended by viewers’ gazes. More precisely, if P denotes the
number of viewers, (m;, n;) denotes the position gazed at by viewer i, and
M x N define the image dimensions, then

- (m —m;)? + (m—m;

Gx(m,n) = Z—exp( 5,2 )2) (9.1)
N
5%

i=1
M
m:1,2,...,2—/\,n:1,2,... 5
defines a gaze density function (GDF). Wy (m,n) relates to the GDF as
follows

Wi(m,n) = 17213(1’ Gx(m,n)) (9.2)

Consequently, values larger than one are truncated so that W (m,n) con-
sists only of values on the interval (0 1]. Figure 9.3(c) gives an example
of how the weighting function W (m,n),\ = {1,2,3} is composed in the
wavelet domain. Notice how coeflicients from the lowest frequency band,
L L3, are unaffected by the weighting to ensure a crude background quality
in the decoded image. The parameter o in Eq. (9.1) controls how fast the
display quality is degraded away from regions with high gaze density. In
our experiments, we use 0 = 0.10M. This lets the ’full width at half max’
(used by, e.g., Rajashekar, Cormack, & Bovik, 2004) of each Gaussian
function centered at a gaze position cover the foveal span of an observer,
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and also accounts for the uncertainty introduced by allowing new viewers
to watch the off-line foveated video.

Wavelet coefficient weighting is followed by quantization. We use a
very simple quantization strategy where coeflicients at levels A = {1, 2,3}
are quantized with respectively {1, 3,4} bits using a scalar uniform quan-
tizer with the step size optimized for a Laplacian distribution (see e.g.,
Table 8.3 on p. 225 in Sayood, 2000). The lowest frequency band LLs,
however, is quantized with the step size optimized for a uniform distribu-
tion, using 8 bits. Quantized wavelet coeflicients are as a last step entropy
coded with a Huffman coder. Decoding is straightforward as shown in
Figure 9.1.

9.3 Data Evaluation

Image compression algorithms struggle with the trade-off between main-
taining a good perceptual quality and at the same time obtaining low
bitrates. Unfortunately, there exist currently no objective methods for
quality evaluation that produce results indistinguishable from those ob-
tained by human observers. In particular, standard methods for objective
quality evaluation would fail miserably if applied to off-line foveated video.
For that matter, it is not even clear if standard methods for subjective
quality assessment would yield reliable results. We address these con-
cerns by collecting eye-movements from a new group of viewers watching
the off-line foveated image sequence, and compare their gaze positions
against those collected from the original image sequence. If gaze positions
coincide across the two conditions, foveated compression does not change
where people look. Consequently, the new viewers look at regions where
the quality is high. This is an obvious prerequisite for off-line foveated
compression.

To quantify whether off-line foveated compression changes where peo-
ple look, we define two measures based on the collected gaze data: between-
group (BG) difference and within-group (WG) similarity. The BG differ-
ence measures the degree of similarity across any two sets of gaze posi-
tions A and B. We use a modified version of the Kullback-Leibler distance
(KLD) (Cover & Thomas, 1991) to define this similarity mathematically.
In its standard from, the KLD is expressed as

O 19 = 3 p(e) g Ef; (9.3)

p(x) and g(z) are probability density functions (PDFs) of a discrete ran-
dom variable X with alphabet X. The KLD, also known as the relative
entropy, is a known information theoretic measure and can be thought
of as a distance, alas non-symmetric, between two PDFs; it equals zero
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if and only if the distributions are identical. The more the distributions
differ, the larger this distance will be. To address the non-symmetric
properties of the KLD, we define the BG difference, SBg(@A, GB) as the
harmonic KLD (hKLD) (used by, e.g., Rajashekar et al., 2004) between
the normalized GDFs G4 and GP

A4 AB 1 1 o
550646 - (5o * morren) O
where G(m,n) = G(m,n)/(3,, ., G(m,n)), and G(m,n) is defined as
in Eq. (9.1) with A = 0.

The WG similarity quantifies the degree to which subjects’ gaze posi-
tions are spread out over the screen area. Obviously, in order to achieve
large bitrate savings, gaze density must be constrained to limited regions,
considerably smaller than the whole display area. The WG similarity,
Swa across gaze positions for any set A is found by computing

Swa = Spa(GA,U(Q)) (9.5)

where U(2) denotes the uniform distribution spanned by the image area
Q.

In this chapter, a set (A or B) will comprise either gaze positions
collected during the display of one image from a sequence, or positions
drawn from an underlaying distribution (e.g., Gaussian or uniform).

9.4 Results

9.4.1 Compression due to off-line foveation

Off-line foveation prior to quantization and coding reduces the bitrate
with, on average, 17.8% in our tested image sequences, despite using
a simple coding method not in any way optimized to encode foveated
images. Figure 9.4 illustrates an image-by-image comparison in bitrate
between the original and off-line foveated image sequences. Notice the
increased variability in bitrate due to off-line foveation, which is a result
of the constantly varying size of the weighting function used to control
the bit allocation. Of course, the potential for improved compression due
to foveation reaches its peak when all tested subjects gaze toward exactly
the same position. On the other hand, if the gaze density is evenly dis-
tributed over an image, off-line foveation may yield no or very little bitrate
gain. Figure 9.5 shows two images from the tested sequences where off-
line foveation had the largest (Figure 9.5(a)) and smallest (Figure 9.5(b))
impact on compression. As can be seen, a compact gaze density across
viewers is an important aspect for improved compression. Just as im-
portantly, however, is the frequency content of the unattended regions;
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Figure 9.4: Bitrates of the original and off-line foveated image sequences
after compression.

removing much high-frequency information due to foveation greatly in-
creases the degree of compression. If on the other hand the unattended
regions already are of lowpass nature, little additional gain in compression
is won by foveation.

9.4.2 Evaluation

Figure 9.6(a) shows the within-group (WG) similarity across gaze posi-
tions collected in the initial data collection (first column), referred to as
"Original’, and those collected during the evaluation phase (second col-
umn), named 'Foveated’. Each value reflects the WG similarity among
gaze positions collected from one image. A large value on the y-axis in-
dicates a high similarity. For comparison, the WG similarity for random
viewers is shown (third column), where 14 gaze positions were drawn from
a uniform distribution for each image. The similarities are visualized with
box plots. Each box has lines at the lower quartile, median, and upper
quartile values. The whiskers extend to 1.5 times the inter-quartile range
and values outside this interval are considered as outliers and represented
by plus signs. The notch in each box reflects the uncertainty in median in
a box-to-box comparison. If the notches between two boxes do not over-
lap, they have different medians with 95% significance. As can be seen
from Figure 9.6(a), the WG similarity is significantly larger (p < 0.05)
across different human viewers than across positions drawn at random.
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(a) High compression gain (b) Low compression gain

Figure 9.5: Images with the highest (28.2%) and lowest (10.1%) additional
bitrate reduction due to off-line foveation.

This is true for both the ’Original’ and "Foveated’ data. Clearly, viewers
look toward limited parts of the display, and their viewing behavior is
not of 'random’ nature. Moreover, it can been seen that 'Foveated’ gaze
positions are more compact than the ’Original’. This could imply that the
peripheral blur introduced by off-line foveation repels new viewers’ gazes,
which instead are attracted to regions with high quality.

While the higher-than-random WG similarity reveals that the distri-
butions of gaze positions are compact, it does not tell us whether two
distributions of gaze positions coincide spatially. Therefore, we compute
between-group (BG) differences, which are illustrated in Figure 9.6(b).
The first column plots the difference between ’Original’ and the "Foveated’
gaze positions whereas the second and third columns illustrate the differ-
ence between ’Original vs. Interleaved’ and 'Foveated vs. Interleaved’,
respectively. When interleaving gaze positions, we assign each image with
gaze positions taken from a different, non-contiguous image in the se-
quence. Interleaving is done to compare the collected data against ’ran-
dom’ viewing behavior, which includes the central bias inherent in typi-
cal gaze data. Figure 9.6(b) shows that different viewers’ gaze positions
largely coincide when watching the same video before and after off-line
foveated compression.

9.4.3 Viewer ratings and comments

Directly after the eye-movement recording in the evaluation phase, sub-
jects were asked to name one or many scene(s) that were of better or
worse quality than the others. To reduce the potential top-down bias on
eye-movements that a quality evaluation task could give, subjects were
not informed of this quality assessment in advance. Although giving only
a crude estimate of the quality of the off-line foveated image sequences,
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Figure 9.6: Within group similarity (a) and between group difference (b)
across gaze positions recorded from viewers watching the original image
sequence (’Original’) and those watching the off-line foveated and com-
pressed video ("Foveated’). 'Interleaved’ gaze positions originate from the
’Original’ image sequence, after the image order has been randomly shuf-

fled.
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the assessment showed some interesting tendencies. Figure 9.7 illustrates

Subjective ratings
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Figure 9.7: Subjective rating of the six image sequences. Subjects were
asked to name the image sequences that stood out from the others in
terms of better or worse quality.

these. The numbering is according to Figure 9.2 (top left to bottom right).
In particular, the quality of the first and the second image sequences mir-
rored each other. The first sequence contained many objects with vivid
colors whereas the second contained a few main objects (the dolphins)
performing acrobatic tricks. This leads us to assume that foveated com-
pression works better when there is one or a few main objects reliably
attracting viewers’ gazes. Subjects were also able to freely provide feed-
back on the viewed sequences. One of the most frequent comments was
that single, isolated high quality regions seemed to ’float around’. The
same effect was reported by Duchowski and McCormick (1998). Such ar-
tifacts derive from individual viewers whose deviant gaze positions were
nevertheless used to foveate the images.

9.5 Summary

In this first look at off-line foveated compression, we found that: 1) Off-line
foveation prior to compression yields an additional 17.8% bitrate reduc-
tion. These results are obtained without exploiting temporal reduncan-
cies, as used in coding of video. 2) Viewers largely look toward similar
regions when watching image sequences. 3) Off-line foveation affects sub-
jects’ viewing behavior only a little, with a slight shift toward regions kept
in high quality. Since viewers look toward regions kept in high quality, it
is likely that their subjective quality remains high, given that peripheral
regions do not contain easily identifiable artifacts.
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Using Volumes of Interest in
Off-Line Foveated Video

Compression

results from last chapter support that off-line foveation can benefit

image sequence compression. At the same time, some of the subjects
viewing the off-line foveated sequences reported that rapidly appearing
and disappearing high quality regions were disturbing, hence decreasing
the subjective quality. To maintain a high subjective quality, it seems
crucial to transform collected gaze data into a function smoothly control-
ling the spatio-temporal amount of blur introduced by off-line foveation.
Using the observations and design issues from (Stelmach & Tam, 1994;
Duchowski & McCormick, 1998), discussed in Chapter 8, combined with
those from the previous chapter, we will in the current chapter design, im-
plement and evaluate an improved and more elaborate system for off-line
foveated compression. The remainder of this chapter is structured as fol-
lows. Section 10.1 describes how gaze positions are used to define smooth
volumes of interests (VOIs), which are used in Section 10.2 to implement
off-line foveation through wavelet domain filtering. We use the state-of-
the-art video codec H.264 to encode the off-line foveated sequences, and
compute the bitrate gain due to off-line foveation prior to compression.
Finally, evaluations are performed in Section 10.3 to answer how off-line
foveation affects subjective quality and viewing behavior.

IN contrast to what previously has been reported in the literature, the
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10.1 Creating Volumes of Interests (VOIs) From
Gaze Positions

Volumes of interests (VOIs) are derived from gaze data in the following
steps:

Gaze positions ¥ GDF 2 Intra-frame ROT "< Tnter-frame ROT ' VOI

Each of these steps will now be described in detail.

Step (A)

Initially, gaze coordinates are processed per frame and represented by
gaze density functions (GDFs), denoted G(m,n) (See Eq. (9.1) for a
definition). The widths of the Gaussian functions composing the GDF
are motivated by setting the parameter o such that when a Gaussian
function is cropped at half its maximum height, the slice plane or active
area (Wooding, 2002) spans the foveal region of an observer viewing the
video at a distance d. If a denotes the visual angle, then o is easily found

as
B —(dtan(ﬂa/360))2
7" % 2108, (1/2) oD

A GDF reflects the likelihood of where future viewers will direct their gazes
and contains valuable information about where the ROIs are located.

Step (B)

Using GDFs to predict ROIs, we address two heuristic design criteria.
First, ROIs should be representative for viewers of the off-line foveated
video and take into account the uncertainty of where new viewers will look
relative to those originally recorded from. Obviously, there is a trade-off
between keeping the ROIs as small as possible (and thus maximizing the
bitrate gain due to off-line foveation), but large enough to encapsulate the
gazes of as many new viewers as possible. Second, besides the global peak
of a GDF, local peaks in gaze density may indicate potentially interesting
regions and must therefore have the chance to be fully recognized as ROIs.

To resolve the first issue, we compute the inter-subject gaze point
dispersion across P viewers as

1 G — GV (mg,ny)
S == max LR 10.2
P G . — Gt (102)
Z:l 2 P max avg

.....

and use this as a measure of the uncertainty of where new viewers will
look. G* (m,n) denotes a GDF that has been generated by all gaze points
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except that for viewer i; GY _and G denote the maximum and average

max avg

of G¥ (m,n), respectively. Consequently, S equals zero when all viewers
gaze toward exactly the same position. In this case the likelihood that
a new viewer will look elsewhere is low. The opposite is true when §
approaches one; then it is difficult to make qualified predictions of where
new viewers will look, and foveation may have to be omitted to ensure
a reliable, high subjective quality. The uncertainty is accounted for by
computing a scaled o,

os = f(0,59),05 >0 (10.3)

and use this parameter to generate a new, scaled GDF G*(m,n). Notice
that o, does not directly shape Gaussian functions contingent on the
viewing setup (visual angle, etc.), but instead reflects and compensates
for the uncertainty in ROT location.

Using the scaled GDFs, positions and shapes of the ROIs are defined
for each frame. We present a hierarchical approach to ROI selection, which
finds ROIs in order of decreasing saliency and prioritizes regions with high
gaze density. Below we describe the mapping from a set of gaze positions
X to the function G*(m,n); it represents ROI pixels by unit values, and
non-ROT pixels are represented by values less than unity with Gaussian-
type fall-off toward the ROI edges. To emphasize that gaze points are
processed frame-wise, we borrow terminology from video compression by
referring to G*(m, n) as the intraframe ROI function.

At the first hierarchical level /1, a GDF generated from all gaze points
X in a frame is cropped at half its maximum height'. Each gaze point is
classified as significant or insignificant depending on whether it is located
within or outside an active area, and also labeled according to which
active area it belongs. For example, if n active areas are found, the

gaze points in A are divided into the subsets {X, (1) Xe(f)7 ce Xz(ln), Xoy },
where the subset A, contains all gaze points outside of the active areas.
Additionally, the subsets are sorted in order of decreasing saliency, where
saliency is defined by the number of gaze points contained in a subset.
Classification into significant and insignificant gaze points continues in the
same manner at the next hierarchical level /2, but now with X' «— Aj,.
The classification algorithm can run until all gaze points are allocated to

different hierarchical subsets,

1 n 1 2 m 1
Xf(l 5 Zl ,..,,Xe(l) Z(2>7X(> ,Xe(z )7XZ(3>,}

or until gaze points no longer indicate interesting frame regions. The stop
criterion can ultimately be left as a user option.

IFrom this point on, we assume that all GDFs are generated with a scaled sigma,
os, as defined by Eq. (10.3)




102 Off-Line Foveated Compression II
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Figure 10.1: A GDF (a) and the corresponding intraframe ROI functions
before (b) and after (c) removal of temporal outliers. Gaze positions (one
for each tested subject) are represented by crosshairs.

Once the significant clusters of gaze points have been identified, each
subset ()) of gaze points is used to generate a new GDF Gy /(z,y), which
is cut off at half its maximum height and normalized to unit height. All
such cropped and normalized GDF are then combined into the intraframe
ROI function

G*(m,n) =maxp, {G,0(mn),G e(mn),....G.m(m,n),
£q €9 €1
GXe(zl> (ma n)7 GXe(22> (ma n)7 ceey GXZ(;") (ma n)7
GXe(;) (m,n),...} (10.4)

m={1,2,....M},n={1,2,...,N}

Simulations with our data have shown that four or more ROIs rarely
emerge in G*(m,n). Instead, mostly one and sometimes two and three
ROIs account for viewers’ visual interest. Figure 10.1(a-b) show the rela-
tionship between a GDF and the corresponding intraframe ROI function,
which was generated assuming a viewing distance d = 0.75m and o = 5
degrees. The function f(-) was empirically defined as f(o,S) = o-(1+25)
in order to fulfill the criteria that ROIs should cover the whole display
area in case of a spread out gaze point distribution. Only active areas
containing two or more gaze points were considered as “interesting”. In
the coming sections of this chapter, we will use these parameters in our
simulations.

The method for clustering gaze-points into hierarchical subsets de-
scribed above differs from most other clustering techniques. First, it
makes no assumptions about the number of clusters (ROIs). Second, the
cluster formation is driven by GDFs, naturally taking into account the
spatial coherence between different points by modeling the resolution fall-
off by Gaussian functions. Moreover, it takes the uncertainty of where
interesting frame regions reside into account by introducing a measure
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of gaze-position dispersion. Finally, the shapes of the ROIs are decided
automatically.

The hierarchical search for cluster formations (and ROIs) can be ap-
plied to other types of data. However, unless the data comprises point of
gaze coordinates, it is unclear how to choose and motivate o.

Step (C)

Even though the detected intraframe ROIs make perfect sense when look-
ing at the gaze point distributions frame-wise, an ROI can be temporally
extraneous if it lacks neighboring ROIs adjacent in time. What appears
to be a distinct formation of gaze positions in one frame can instead be
eye-movements from different subjects briefly overlapping each other in
time. This must be accounted for when extending the ROIs into 3-D
volumes of interest (VOIs).

We let a new VOI appear only if it remains long enough for a viewer of
the off-line foveated video to plan and execute a saccade (~200 ms) to that
particular region and to dwell for a typical fixation duration (~300 ms).
Therefore, only VOIs emerging and remaining for more than 500 ms are
considered. In practice, this is implemented by finding the centroid of each
ROT in the current frame and making sure that temporally adjacent ROIs
exist at the same spatial location(s) for > 500 ms. Temporally extraneous
gaze points are identified as those contained inside of an ROI not fulfilling
the above criteria. Remaining gaze points are used to generate a new
intraframe ROI function G*(m,n), which is depicted in Figure 10.1(c).
It is generated from the same distribution of gaze points as the GDF in
Figure 10.1(a). Notice how the rightmost active area is excluded since it
does not fulfill the temporal criteria above.

Step (D)

In the final step, we define an interframe ROI function, G§ (m,n) for
frame j by convolving a number of temporally adjacent intraframe ROI
functions by a one-dimensional Gaussian kernel ¢:

Gi(m,n) =Y ¢1Gi_y(m,n) (10.5)
k

where >, ¢ = 1.

Temporal smoothing varies contingent on the length and variance of
the convolution kernel. Figure 10.2 illustrates 29 adjacent interframe ROIs
with a kernel length of 29 pixels and the variance set to 20 pixels. We
define a volume of interest (VOI) as a collection of interframe ROIs.
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m
Figure 10.2: A VOI visualization.

10.2 Using VOIs in Video Compression

To maintain a pleasant viewing experience, previous work on off-line
foveation and its effects on subjective quality and eye-movements em-
phasized the importance of implementing smooth variations in quality,
both spatially and temporally (Stelmach & Tam, 1994; Duchowski & Mc-
Cormick, 1998; Nystrom et al., 2004). We approached this recommenda-
tion by deriving volumes of interest (VOIs) from gaze positions collected
by previewers. In this section, we will use the VOIs to manipulate and
compress video frames such that quality changes contingent on the VOI-
shapes. An overview of the proposed system is schematically depicted in
Figure 10.3. As can be seen from the figure, the video is processed such
that each frame is off-line foveated in the wavelet domain before being
fed to an H.264 encoder. At the decoder side, the bit stream is directly
decoded. Since off-line foveation is generated independently of the video
coder, no modifications of the H.264 implementation are required. In fact,
H.264 can be replaced by any other video coder.

10.2.1 Implementing wavelet foveation

Early techniques for real-time degradation (foveation) of the image quality
away from the position of gaze either increased the pixel-size in the periph-
ery (Kortum & Geisler, 1996) or used multi-resolution pyramids (Geisler
& Perry, 1998). The shape of the foveation mask was derived from ex-
perimental measurements of contrast sensitivity. More recently, wavelets
have become popular to implement image foveation (Chang & Yap, 1997;
Duchowski & McCormick, 1998; Wang & Bovik, 2001). If an observer’s
position of gaze and viewing distance from the screen are known, wavelet
subbands can be weighted such that visually redundant (high-frequency)
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Figure 10.3: Overview of the proposed compression system for off-line
foveated video coding.

information is removed from the peripheral regions in the reconstructed
image (Wang & Bovik, 2001). Implementing off-line foveation requires
different strategies for a number of reasons. Most importantly, gaze po-
sitions of viewers watching the off-line foveated images/videos are not
known exactly. Furthermore, the viewing distances and screen param-
eters (size, resolution) are not known and can differ between observers.
Therefore, there are no straightforward methods either to find the shape
of the ROI function or the mapping from an ROI function in the spatial
domain to the wavelet domain. Below, we address these issues.

Interframe ROI functions define the visual saliency for different frame
regions in the spatial domain. To generate similar interframe ROI func-
tions in the wavelet domain we need a slightly different strategy, both
in order to smoothly degrade the display resolution away from the ROIs
and also to preserve the low frequency subbands in the wavelet decom-
position where most of the energy resides. For the first level (A = 1) in
the wavelet decomposition, we use the intraframe ROI function éj (m,n),
generated from gaze positions where temporal outliers have been removed.
At each of the subsequent levels in the wavelet decomposition, o; in Eq.
(10.3) is increased as o; < o; A\ when creating the intraframe ROI func-
tion at level X\. [ denotes a scaling factor controlling the amount of
peripheral blurring. As with the intraframe ROI functions in the spatial
domain, their wavelet adjusted counterparts are as a last step smoothed
with the same kernel as in Eq. (10.5). Figure 10.4(d) shows an inter-
frame ROI function adjusted to the wavelet domain when four levels of
decomposition are used and Figure 10.4(e) illustrates a frame that has
been foveated by multiplying its wavelet decomposition with the mask in
Figure 10.4(d). For wavelet filtering, we used the bi-orthogonal 9/7 filter
(Cohen, Daubechies, & Feauveau, 1992) and periodic border extension.
When using color images, each color component (R,G and B) is foveated
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|| Quality factor ||

Video Lowest | Low | Medium | High | Highest M=+SD

Alte 0.13 0.29 0.52 0.45 0.33 0.34+0.15
Dolphin 0.19 0.27 0.34 0.35 0.29 0.29+0.06
Fish 0.14 0.24 0.32 0.29 0.21 0.2440.07
Aikyo 0.02 0.01 0.01 0.06 0.16 0.05+0.06
Football 0.13 0.15 0.16 0.16 0.19 0.16+0.02
Hall 0.03 0.03 0.06 0.20 0.18 0.10+0.08
all 0.11 0.16 0.24 0.25 0.23 0.20+0.13

Table 10.1: Bitrate gain due to off-line foveation before video encoding
with H.264 for different quality factors. Results are presented for the six
video clips in Figure 10.5.

using the same method. Through pilot testing we found that § = 2.3
introduced a level of peripheral blurring that, when looking at regions of
high gaze density, was very hard to notice.

10.2.2 Compression gain due to off-line foveation

Using the above method, we computed the compression gain due to off-
line foveation on six video clips. A representative frame from each video
is shown in Figure 10.5. The three videos in the upper row in Figure
10.5 were eight seconds long with resolution 720x576 and those in the
bottom row 352x288 pixels (CIF format) and of durations five, three and
four seconds, counting from the left. Eye-movements had been collected
from these videos as described in (Nystrom et al., 2004; Johannesson,
2005). Each of the videos was encoded before and after off-line foveation
using H.264 (Quicktime 7.3 Pro. implementation) at five different quality
settings: Lowest, Low, Medium, High and Highest. Table 10.1 summarizes
the results where the bitrate gain due to foveation is defined as

. FileSiZeUnfoveated B FﬂeSizeOﬁ'-line foveated
Gain — ated (10.6)
FileSizeunfoveated

The table reveals that off-line foveation decreases the file size by 20% on
average. However, the variations are large. Videos containing much high
frequency content in regions where people do not look can be reduced
by as much as 52%. In contrast, off-line foveation barely contributes to
additional compression when the background is static and out of focus,
as in "Aikyo’.
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(a) Original frame with super-
imposed gaze positions
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) VOI slice in the wavelet do-
maln

Figure 10.4: Implementing off-line foveation. The wavelet representation of
each frame is multiplied by a VOI slice such as the one illustrated in Figure
10.4(d). Figure 10.4(e) shows the same frame after off-line foveation. To
more clearly visualize the difference in quality between the attended and
unattended regions, boxed parts of the original and foveated frames are

zoomed in.

(e) Off-line foveated frame
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Figure 10.5: Representative frame from each of the tested video clips Alte,
Dolphin, Fish, Aikyo, Football and Hall.

10.3 Subjective Evaluations

Off-line foveation clearly reduces the number of bits needed to represent
a video digitally. Of course, the reductions are of no value unless the
subjective quality remains high. In the remainder of this chapter, we
will present a number of new methods to assess how off-line foveation
affects subjective quality and gazing behavior. Results from three subjec-
tive evaluations are presented. In FEwvaluation I, we let subjects compare
the quality of unfoveated and off-line foveated videos compressed with
the same quality factor. Ewaluations II and III extend the methodol-
ogy used in the first evaluation; we use, for example, eye-tracking data
collected during different task instructions and over repeated viewings
to obtain direct and indirect measurements of how viewers perceive the
off-line foveated videos.

10.3.1 Evaluation I
Subjects and Video material

To investigate how viewers experience the quality of off-line foveated video
clips, we let 12 subjects (five women, 28.4+6.3 (M£SD)) watch one un-
foveated and one off-line foveated version of three different, eight second
video clips. All subjects had normal or corrected-to-normal vision.

As stimuli, we use the videos depicted on the first row in Figure 10.5.
These videos are all shorter parts of the videos used in last chapter, and
were chosen to depict different types of scenes; one with several people
moving around in the display, another with a few main objects of interest,
and the last containing one main object of interest. Before being presented
to the subjects, both versions of all three clips were compressed with the
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A much better than B
A better than B

A slightly better than B
The same

A slightly worse than B
A worse than B

A much worse than B

+ 4+

WO~ DN W

Table 10.2: Scale for quality ratings.

Quicktime 7.3 Pro H.264 encoder with the quality factor set to 'medium’.
Since the objective video quality of the unfoveated and off-line foveated
videos is the same within the VOIs before encoding, it is essentially the
same also after compression. However, variations can occur along the VOI
boundaries.

Procedure

Subjects were instructed that they would be watching three different eight
second video clips, each compressed by two different algorithms in an AB
trial. A and B denoted either the unfoveated and compressed or the off-
line foveated and compressed version of the same video clip, and were
presented one by one in full screen.

After each viewing, subjects were asked to evaluate the video quality
of A relative to B according to the quality ratings in Table 10.2.

In order to see the effects of multiple viewings on off-line foveated video
quality, subjects were presented to each of the three video clips another
two times (ABAB). After all three viewings, most subjects felt that they
had a clear picture of the difference in video quality between A and B. If
not, they could watch the clips again until they felt confident of giving
an accurate vote. Only two of the subjects used this option. Subjects
were not informed in advance about the possibility to assess the videos
additional times.

The reason for allowing multiple viewing was twofold. First, as in
traditional methods for quality evaluations, subjects are given additional
viewings to get a clearer picture of the difference in quality. Second,
since the videos are stored in subjects’ memory after the initial viewing,
it is likely that increasing top-down knowledge affects viewing behavior
such that gaze positions between the first and later viewings are located
at slightly different video regions. To get an indication of whether this
occurred, subjects were asked to estimate their viewing behavior during
the trials on a scale reaching from 5 (I was actively searching for quality
impairments) down to 1 (Just like I watch video at home; my natural
viewing behavior). Although people may be quite poor at estimating
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Figure 10.6: Results of the subjective quality evaluation. The z-axis shows
which of the three video clips that was tested. Given on the y-axis is
the difference (according to Table 10.2) in subjective quality between the
unfoveated video and the off-line foveated video. A value larger than zero
means that subjects preferred the unfoveated video quality. Bars span one
standard error around the mean.

where they look relative to where they actually look as measured by an
eye-tracker, we believe that this will give some valuable insight regarding
the connection between subjective quality and viewing behavior.

Before a session started, subjects were informed about the quality rat-
ing scales, carefully introduced to the testing methodology and also guided
through a test session. Subjects were free to ask questions if anything was
unclear. None of the subjects was familiar with off-line foveated compres-
sion. All data was gathered, to the extent it was possible, under the same
conditions as when the eye-movements were collected. The presentation
order of the different video clips and the order of the unfoveated and off-
line foveated versions were randomized. Hence, six different constellations
of the video clips were used.

Results

Figure 10.6 shows the results from the subjective quality evaluation where
subjects were asked to compare an unfoveated and an off-line foveated
version of the same video after compression with H.264 (medium quality
factor). The first three columns show the average quality votes for each
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of the three tested video clips after one AB viewing, whereas the three
rightmost columns show similar votes after two (or more) additional AB
viewings required for the subject to feel confident about the judgment.
A positive value of the quality vote means that the subject preferred
the quality of the unfoveated over the off-line foveated version, while a
negative vote means the opposite. Error bars span one standard error
around the mean.

For the first two tested clips, we see the rather surprising effect that
subjects judge the off-line foveated video quality as better. Similar find-
ings have been reported for real-time gaze-contingent, multi-resolution
still images (L. Loschky, McConkie, Yang, & Miller, 2001). However,
as in this paper, the effects were not significant. Overall, no significant
effects on the difference in video quality were found except for the sec-
ond video after multiple viewings, where the unfoveated version received
slightly better ratings.

After completing the evaluations, subjects were asked to estimate their
viewing behavior during the quality evaluations on a scale {5,4,3,2,1},
where 5 implied that a viewer actively was searching for video quality
impairments while a 1 reflected a viewer’s natural viewing pattern while
watching video. The average value for the answers was 3.17 with a stan-
dard deviation of 0.71. Noticeable, however, was that most of the subjects
mentioned that during the first AB trial, their viewing pattern was close
to a 1, whereas later in the tests more toward a 5. This suggests that a
quality evaluation task does not alter the viewing pattern of subjects from
their normal, task neutral viewing pattern, at least not during first time
viewing of previously unknown video material. This argument is further
strengthened by the observation that peripheral degradations in the off-
line foveated videos were difficult to detect during first time viewing as
shown by the quality votes. This indicates that viewers indeed looked at
the regions of high resolution.

10.3.2 Ewvaluation II

In order to investigate how off-line foveation changes the gazing behavior
during free-viewing, we measure how eye-movements are affected in terms
of spatial and temporal distribution in addition to repeated viewings.
Without explicitly asking subjects for their subjective opinion about the
video quality, the collected gaze data will help us understand how off-
line foveated videos are perceived during task neutral, “normal” viewing
conditions. The measures we compute in this evaluation will then be
compared to those from Evaluation III, where subjects view the same
videos while evaluating the subjective quality.
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Subjects and video material

15 naive subjects (nine women) of ages 30.2+16.1 (M 4 SD) years volun-
teered to take part in the experiment. They all had normal or corrected-
to-normal vision. Stimuli consisted of six original video clips shown in
Figure 10.5 and six off-line foveated versions of these, thus 12 videos in
total. The three videos in the upper row in Figure 10.5 were eight seconds
long with resolution 720x576 and those in the bottom row 352x288 (CIF
format) pixels and of durations five, three and four seconds, counting from
the left. All videos were displayed in color at 25 fps and compressed with
H.264 (in Quicktime 7.3 Pro.) at high bit rates (quality factor "High’)
such to no compression artifacts were visible to the bare eye. No sound
was used.

Procedure

Subjects were asked to view the stimuli as they normally would. To
prevent subjects from trying to guess the purpose of the experiment, they
were told that the study would investigate mental workload by measuring
the pupil size. This way, attention was drawn away from the fact that
gaze positions were recorded. Subjects were further informed that the
same video clip could occur more than once during one presentation.

Each subject was placed at a viewing distance of 76.5 cm in front of
a 19 inch computer screen with resolution 1280x1024 and update rate
75 Hz. The active screen area subtended a visual angle of 28 degrees
horizontally and 23 degrees vertically. A chin rest was used to restrict
head movements.

Prior to each recording, a 13-point spatial calibration was performed.
During data recording, all 12 videos were presented one after the other
on the screen, separated in time by a mid gray image displayed for one
second. Videos were displayed in full screen while maintaining their as-
pect ratio. No prefixation cross was used to restrict subjects’ initial gaze
position. The order was randomized with the restriction that two ver-
sions (unfoveated and off-line foveated) of the same video could not be
displayed directly after each other. To see how repeated viewing affects
eye-movement, behavior, all 12 videos were presented twice more in the
same manner. In total, each video was viewed three times by each subject.

Eye-movements were recorded monocularly with an SMI iViewX Hi-
Speed eye-tracker, sampling gaze positions at 240 Hz with position ac-
curacy 0.2°. On average, 9.6 gaze coordinates were recorded for each
displayed frame. A Matlab script was developed to collect data about the
subjects, communicate with the eye-tracker, display the videos in Quick-
time player and control the accuracy in timing during the experiments.
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Figure 10.7: Eye-movement behavior during free-viewing before and after
off-line foveation.

Analysis and results

The perceptual effects of off-line foveation toward video are assessed by
comparing gaze positions of viewers watching the tested videos before and
after off-line foveation. More precisely, we measure how off-line foveation
influences inter-subject dispersion, i.e., how well (or poorly) viewers’ gaze
positions coincide. This is done both for the initial and later viewings.
The inter-subject dispersion, S; at time ¢ is calculated according to Eq.
(10.2). When generating the GDFs in this equation, o equals 10% of the
horizontal video dimension, i.e., ¢ = 0.10M pixels. We tested slightly
different parameter values, and the all gave largely similar results.

Figure 10.7(a) illustrates the inter-subject dispersion after one, two
and tree viewings of the unfoveated (white bars) and off-line foveated
(black bars) videos. It can be seen that off-line foveation has no or little
effect on the inter-subject dispersion. However, during first time viewing,
there is a tendency (p = 0.10, two-sample ¢-test) that the dispersion
decreases due to off-line foveation. Arguably, this effect is present since
subjects avoid the blurred regions in the off-line foveated videos such
that gaze positions cluster in the high quality regions. Another clear
effect is that the dispersion increases significantly after repeated viewings,
both for unfoveated and off-line foveated videos. This type of behavior
is little surprising since additional viewings encourage more individual
viewing strategies, which are likely to reflect an increase in top-down
control originating, for example, from memory effects.

To estimate the similarity between two sets of gaze positions A and B
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at time ¢, we compute the correlation coefficient

t,avg t,avg

p= ’ (10.7)
\/(ZLy(Gf(Tn’ﬂ TL) o G‘favg)2>(z Z(GtB(Tna TL) - GtB,avg)2>

2y (GE(myn) = Glayg) (GF (myn) — GF,,)

between the GDFs G{*(m,n) and GB(m,n) generated from A and B, re-
spectively. Figure 10.7(b) shows how gaze positions recorded from viewers
watching the unfoveated video correlate with those watching the off-line
foveated video after the first, second and third viewing. It can be seen
that the correlation is high in all three cases, indicating that subjects’
gaze positions have similar distributions.

10.3.3 Evaluation III

It is well known that a task instruction may change where people look
(Yarbus, 1967). In off-line foveated video coding, a task that changes
viewers’ gazing behavior from their ‘'normal’ behavior may have a strong
effect on the perceived quality. One that, for example, directs peoples’
gazes toward regions unattended by previewers will most certainly de-
crease the subjective quality. In this section, we will perform subjective
quality assessments of off-line foveated video and investigate the effect a
quality evaluation task has on eye-movements. Moreover, we will quantify
how subjects’ viewing behavior correlates with their perception of qual-
ity. The stimuli and experimental setup are the same as in Evaluation II;
procedural changes are explained below.

17 naive subjects (six women) of ages 23.8+4.2 (M £ SD) years were
asked to estimate the difference in quality between two versions, A and
B, of the same video in an AB trial. They were told that the two ver-
sions resulted from different compression algorithms being applied to the
original video. To encourage subjects to do their best and maintain focus
during the evaluation, they were told that quality assessment is a difficult
task and the differences in quality would sometimes be hard to notice. As
in Evaluation II, subjects were informed that the study would investigate
mental workload during quality assessment by measuring the pupil size.
The videos were assessed as follows. Each AB trial started by displaying
a uniform mid-gray image with a large, centered black capital A, followed
by version A of the stimulus. Directly after A had been shown followed
the same procedure for version B. Then a pop-up window containing a
slider bar and a button appeared on the screen (see Figure 10.8). On the
slider bar, three different levels of quality were given: A better than B, A
equal to B, B better than A. Subjects could freely adjust the slider to a
position reflecting their experienced quality, and then press the button to
continue with the next AB trial. For subsequent data analysis, the slider
position was quantized to an integer value between -5 and +5. The pre-
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Figure 10.8: Pop-up window for quality assessment.

sentation order of the video (AB) pairs was randomized. A and B denoted
the original and off-line foveated versions of a video clip.

In standardized methods for quality evaluation, subjects are usually
allowed to view the videos to be assessed several times before giving the
actual judgment. Therefore, to see the effect a quality evaluation task
has on repeated viewings, the above video pairs were shown another two
times after which a second quality vote was taken. Subjects did not know
in advance that further chances to evaluate the quality would be given.

Results

Figure 10.9 compares the dispersion of, and the correlation between gaze
positions collected before and after off-line foveation during first, second
and third time viewing. For comparison, similar measures from the second
evaluation are given as bars with smaller width. As can be seen from the
figure, the results are similar to those from the second evaluation with
the difference that the dispersions are significantly larger (p < 0.01, two-
sample t-test) during quality evaluation. Supposedly, the more active
task of quality evaluation encourages individual viewing strategies, and
explains why subjects’ gaze positions spatially are less similar to each
other. During first time viewing, the dispersion during quality assessment
is rather close, although significantly different (p < 0.01, two-sample ¢-
test), to the baseline value (first time free-viewing), and it can be assumed
that subjects look within the non-degraded regions in the off-line foveated
video. The further pursue this assumption, Figure 10.10 compares the
perceived quality of the six tested video clips before and after off-line
foveation and how it is affected by repeated viewings.

The white bars in Figure 10.10 show the average subjective quality
of the videos after the first viewing. Error bars extend one standard
error. A value larger than zero indicates that subjects prefer the quality
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Figure 10.9: Eye-movement behavior during quality assessment before and
after off-line foveation. For comparison, results from Evaluation II are
included in the figure, depicted by the thinner bars.
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Figure 10.10: Subjective votes reflecting the difference in quality between
unfoveated and off-line foveated versions of the same video clip. A value
below zeros indicates that the quality of the off-line foveated video was
judged as higher whereas the opposite is true for values larger than zeros.
Error bars span one standard error.
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of the unfoveated video whereas the opposite is true for values below
zero. Off-line foveation resulted in decreased quality in one of the tested
videos, Football. The reason for this is most likely that eye-data used
to implement off-line foveation was slightly inaccurate temporally, such
that foveation was performed with a slight lag in time. It is therefore no
surprise that the video containing the fastest movements gets a lowered
subjective quality. The rest of the off-line foveated videos were essentially
indistinguishable from the unfoveated videos in terms of subjective quality.
However, as a result of repeated viewings subjects changed their viewing
pattern and gazed directly at degraded parts of the off-line foveated videos.
The consequence of repeated viewings in terms of subjective quality is
illustrated by the black bars in Figure 10.10, where subjects strongly prefer
the quality of the unfoveated versions. An interesting observation is the
large change in subjective quality between the first and later viewings of
Aikyo. Most likely, the facial region is such a strong visual attractor that
it is initially hard to not gaze at. However, when looking outside the facial
region, which happens after repeated viewings, it is rather easy to see the
introduced blurring effects.

10.4 Summary

The work in this chapter extends our initial approach to off-line foveation
and its applicability in compression. We have proposed a mapping from
gaze positions into volumes of interest (VOT), which are use to implement
off-line foveation in video. VOI based off-line foveation prior to compres-
sion decreased the bitrate significantly. In disagreement with previous
works, off-line foveation neither decreased the subjective quality nor did
it change the eye-movement behavior.
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Discussion of Part 11

propose that off-line foveation can be used for improved video com-

pression. Using gaze positions collected from a number of previewers,
off-line foveation is implemented by reducing the quality in regions where
few or none of the previewers look. Such quality reductions can give rise
to significant bit rate reductions when combined with traditional methods
for compression.

In this part of the thesis we reviewed previous techniques for foveated
coding, investigated the rationales behind off-line foveation, and imple-
mented and evaluated systems for off-line foveation. The highlights of our
results show that:

IN contrast to known methods for real-time foveated video coding, we

e Viewers’ gaze positions coincide when looking at video.

e Off-line foveation prior to compression reduces the bitrate with up
to 50% compared to compressing the same, unfoveated video.

Contrary to previous work (Stelmach & Tam, 1994; Duchowski & Mc-
Cormick, 1998), we report that:

e The bitrate gain is achieved without decreasing the subjective qual-
ity.

e During initial free-viewing of a video, off-line foveation has little
effect on subjects’ eye-movement behavior.

We conclude that off-line video foveation combined with compression can
indeed be successful to increase the efficiency of today’s state-of-the-art
methods. On the videos we tested, the average additional compression
gain due to off-line foveation was 20%. There are some reasons why this
number should be regarded a lower bound. First, the methods we used for
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compression are in no way optimized to encode off-line foveated videos.
Using methods that better take advantage of the properties of an off-line
foveated image sequence will yield even better compression gains. For
example, improvements can include coding the motion vectors with un-
equal importance, such that fewer bits are given to motion vectors in
non-attended regions. Second, the degree of peripheral blurring is ex-
perimentally tuned, and it is therefore not clear how much additional
blurring could be introduced without degrading the subjective quality. In
real-world situations, the optimal amount of blurring depends on factors
that can only be approximated, such as the screen size, screen resolu-
tion, and viewing distance of an observer. Third, it can be seen from
Table 10.1 that off-line foveation is less beneficial when the video qual-
ity is poor. In this case, foveation could probably have been increased
further. Finally, the tested videos were assessed in a lab environment
and presented without sound. Using a more engaging viewing setup, it is
likely that the coherence between subjects’ gaze positions would increase
even further. In addition to yielding large bitrate gains, off-line foveation
allows for complexity reductions where computational resources can be
focused toward high quality regions.

Clearly, bitrate reductions due to off-line foveation would be of little
interest without conserving subjective quality. We estimated the quality
by quantifying changes in gazing behavior between unfoveated and off-line
foveated videos and by performing modified versions of standard tests for
subjective quality assessment. Moreover, we calculated the effects these
measures had over repeated viewings. Results show that off-line foveation
had no or very slight effects on both gazing behavior and subjective qual-
ity during first time viewing. However, both gaze locations and subjective
quality were affected as a result of multiple viewings. As we expected, the
results also showed that traditional methods for video quality assessment
were not directly applicable to off-line foveated video. In standards out-
lined in, e.g., (VQEG, 2003), it is advised to show the video to be assessed
several times to the subject before a quality vote is taken. However, as
seen by our results, repeated viewings make subjects’ gazing behavior de-
viate from normal, first time free-viewing, thus shifting visual attention
toward regions where viewers normally would not look. In view of this,
traditional methods would all give very poor results in judged quality for
off-line foveated videos (as was found in Stelmach & Tam, 1994). To our
knowledge, these issues have not been considered in standard quality as-
sessment using ‘normal’; unfoveated stimuli. It is therefore not clear how
multiple viewings affect subjective quality in these cases. Since gazing
behavior changes over multiple viewings, and therefore increasingly more
deviates from typical ’free-viewing’, do standardized methods for video
quality assessment produce results that reflect 'typical’ viewing? This is
indeed an interesting question for future research.
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Conclusions and Outlook

E found off-line foveation prior to compression to decrease the

‘ ; ‘ / video bitrate without neither decreasing the subjective quality

nor changing subjects’ eye-movement behavior. Investigating

the prerequisites for using low-level algorithmic gaze prediction, instead

of eye-tracking, for the purpose of off-line foveation gave few promising

answers; using contrast manipulated still images, we showed that low-

level features such as contrast and edge density can easily be overridden

by higher cognitive factors, both early after image onset and later in
viewing.

Today, there are some practical issues making it cumbersome to ef-
fectively utilize off-line foveated systems for video compression. The one
met with most skepticism is that eye-tracking recordings require expensive
equipment and are time consuming, and therefore would be a bottleneck
in a real-world application. We see two future solutions to this prob-
lem. First, it is by many envisioned that eye-trackers will be embedded in
web cameras, and that other low cost, simple-to-use eye-tracking equip-
ment, will be available for practical use in a near future. Already today,
such systems have been suggested and implemented (Hansen, MacKay,
Hansen, & Nielsen, 2004; Pedersen & Spivey, 2006). This would make
eye-tracking recordings more autonomous and less time consuming, since
individual viewers themselves could download videos and record gaze po-
sitions through self-paced experiments. Since eye-movements would not
have to be measured in real-time, the lack of technical sophistication a
webcamera offers compared to a state-of-the-art eye-tracking system can
be compensated for by first recording the eye-movements, and then let a
high-complexity algorithm calculate gaze positions off-line. One interest-
ing application where webcamera based eye-tracking could have a huge
impact is streaming video over the Internet. For example, around 13 hours
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of video are uploaded to YouTube every minute, and the estimated daily
cost of bandwidth utilization for YouTube is approximately $1 million
(Wikipedia, 2008c). Consequently, off-line foveated compression could
save millions of dollars every year or provide better video quality for the
same cost. Second, there is no doubt that off-line foveation greatly would
benefit from algorithms that automatically and accurately predict where
subjects will look, given only the raw video as input. Such algorithms
would increase the practical usability of off-line foveation for video coding
since eye-tracking collections with human observers would be unneces-
sary. Since dynamic features such as motion and flicker seem to attract
attention more robustly than static features (Itti, 2005), models including
a dynamic feature channel appear even more promising to account for
human eye-movements.

To this date, there have been some implementations aiming to pre-
dict human gaze positions in dynamic scenes (Osberger & Rohaly, 2001;
Bohme, Dorr, Krausea, Martinetz, & Barth, 2006; Le Meur et al., 2007).
A few of these directly target foveated video compression applications
(Wang, Sheikh, & Bovik, 2003; Itti, 2004; Agrafiotis et al., 2006). Wang,
Sheikh, and Bovik (2003) use the heuristic rule of always choosing face re-
gions as foveation points and, to minimize the prediction error, foveation
points are also positioned where the residual error is large. Agrafiotis et
al. (2006) exploit off-line foveation to optimize the quality of video coded
for sign-language; they use eye-tracking to measure where people look
during sign-language comprehension, and code the videos according to
where the people looked. The only method using a general purpose algo-
rithm (without a specific application in mind) at the gaze prediction stage
is the one by Itti (2004), and even though he showed that a substantial
amount of compression can be obtained by using this algorithm to foveate
an image sequence, it was left as future research to measure whether it
changes viewers’ subjective quality and eye-movement behavior. A recent
abstract offers some empirical support that the subjective quality remains
high also after foveated compression (Li & Itti, 2008). Overall, however,
there is no doubt that several issues still need to be addressed and empir-
ically investigated regarding bottom-up algorithms for gaze prediction in
both static and dynamic scenes.

Using contrast manipulated images we showed some limitations of
bottom-up predictors. In particular, the two current state-of-the-art al-
gorithms we tested were far from robust in finding fixations comparable
to those found by human viewers. To improve algorithms based on these
principles, a trend in current research is to endow purely bottom-up mod-
els with top-down knowledge (e.g., Navalpakkam & Itti, 2005; Torralba,
Oliva, Castelhano, & Henderson, 2006; Cerf, Harel, Einhduser, & Koch,
2007). The model by Navalpakkam and Itti (2005) provides keywords
describing a search target and uses prior, learned information about the
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features of this target to bias the search. Torralba et al. (2006) extend a
bottom-up algorithm by feeding it with contextual information. An exam-
ple could be to inform the algorithm searching for pedestrians to look only
at the sidewalk, and not in the sky (where cloud edges could introduce
peaks in a saliency map). Searching for people in real world photographs,
another suggested top-down modification simply adds a face detector to
the bottom-up predictor (Cerf et al., 2007). Although this type of addi-
tional knowledge can improve the performance of a predictor under cer-
tain conditions and well defined tasks, it is still an open question whether
(and what type of) top-down knowledge improves the performance during
a free-viewing task.

A recent study found the central bias inherent in video viewing to
account for eye-movements better than a state-of-the-art model for gaze
prediction (Le Meur et al., 2007). Given the strong influence on both
top-down factors and systematic tendencies (such as the central bias) in
video viewing, it seems very optimistic to believe that bottom-up driven
algorithms can completely account for human eye-movements during free-
viewing, and therefore be successful for the purpose of off-line foveated
video coding. On the good side, we know that semantically informative
regions generally coincide with peaks in bottom-up saliency (Henderson
et al., 2007), and that saliency often is biased toward the center of the dis-
play. As a consequence, a bottom-up algorithm has the potential to find
locations fixated by human viewers, even though the raw video features
do not causally contribute to gaze selection. From this optimistic point
of view, thus, a bottom-up algorithm may at times provide gaze predic-
tions accurate enough to enable successful off-line foveated compression.
A severe limitation is that, sooner or later, the prediction a bottom-up
algorithm makes will deviate from the positions attended by humans. In
terms of subjective video quality this deviation is likely to affect the qual-
ity negatively since the frames with the poorest quality dominantly decide
the overall video quality (compare with packet losses) (Liu, Wang, Boyce,
Wu, & Yang, 2007). However, using a moderate degree of foveation it is
possible that these predictive errors may pass unnoticed by the viewers.

When the problems of accurately predicting foveation points or gaze
densities are solved, we predict that off-line foveation will be an interesting
technology for future applications in video communications. In particu-
lar, is would be beneficial in bandwidth constrained applications such as
wireless communications in mobile devices, and for video streamed over
Internet. For example, prioritizing regions with high gaze density can be
useful to facilitate interpretation, recognition and subjective quality of
image and video data, especially at low bit rates.

To resolve the question how image features are related to fixation
locations we believe that, using a fixed task instruction, a range of features
must be manipulated using an experimental paradigm similar the one
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used in this thesis. By systematically reducing and increasing features
like contrast, color, and luminance in a scene, we are more likely to elicit
the causal contribution for each of these features. Our results show that
when studying gaze control in images, the choice of stimuli is crucial.
Obviously, a gaze prediction algorithm trained on images with neutral
semantics may perform poorly when tested on images containing objects
with high semantic importance, which we know can override bottom-up
features cognitively.
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Appendix

Wavelet Transform

domain, where each representation emphasizes different informa-
tion about the image. For the purpose of analysis, it would be
desirable to have a representation that simultaneously describes the im-
age in both time and frequency; this is where wavelets come in. For an
introduction to wavelets and their application to image coding, see e.g.,
Antoni, Barlaud, Mathieu, and Daubechies (1992) and Sayood (2000).
Wavelets are mathematical functions that are generated from scaled
and translated versions of a single function v

t—>b
a

Q N image is commonly described in either the time or frequency

P (t) = |a| M2 (—) (A1)
1 is usually called the mother wavelet. The wavelet transform W{f(¢)}
of a signal f(t) can then be described by a superposition of wavelets

wis) = [ " TR £ (1) (A.2)

In practical implementations, wavelets are defined by discrete filters,
and the discrete wavelet transform (DWT) takes an input signal and
passes it through these filters to create a wavelet based representation.
Figure A.1 illustrates a 1-level wavelet decomposition of an image. The
image is initially passed through either of two 1-dimensional filters: hg
and hi. The former filter is of lowpass nature and the latter of highpass
nature. Initially, the filters operate in the vertical direction, and filter-
ing is followed by downsampling by a factor of two in the same direction
as the filter operated. These filtering and downsampling procedures are
repeated in the horizontal direction and result in four wavelet subbands:
Lowpass-Lowpass (LL), Lowpass-Highpass (LH), Highpass-Lowpass (HL),
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LL

Input image

HL

HH

Figure A.1: Analysis filter bank.

and Highpass-Highpass (HH). The LL subband is a downscaled version of
the original image, whereas other subbands contain more detailed image
information. Together, the subbands can fully reconstruct the original
image by reversing the above operations: upsampling is followed by filter-
ing with a new set of filters, ho and hi. To ensure a perfect reconstruction
of the image, the filters used for decomposition and reconstruction must
fulfill the requirements of quadrature mirror system.

Figure A.2 depicts a 1-level wavelet decomposition of the 1lena image
using the Daubechies 4 tap family of filters.

Figure A.2: A one level wavelet decomposition. Wavelet coefficients are
logarithmically enhanced for display purpose.
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