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Abstract 

There is an urgent need to start generating energy within cities in order to pave the way for a more sustainable and resilient 

society. Renewable energy by means of active solar energy systems (solar thermal, ST and/or photovoltaics, PV) can be 

generated using roofs and facades of buildings. In this study, the annual solar energy potential of typical Swedish city blocks was 

analysed in order to develop guidelines for urban planners and architects. The results show that the design of the city blocks has a 

significant effect (up to 50%) on the total annual solar energy production. The study also shows that the contribution from active 

solar energy can be significant even in the urban environment, but shading by adjacent buildings may greatly limit the total 

amount of energy produced.  
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1. Introduction 

Cities are home to more than half of the world population [1] and consume the majority of global energy [2] and 

resources. Future cities will be faced with the necessity to reduce their energy demand significantly while shifting to 

local urban energy production systems. Political instruments, such as the energy performance of buildings directive 

(EPBD) [3], are already in place to prepare for net zero-energy buildings, and eventually, net zero-energy 

communities and cities in the European Union. An increased use of active solar energy as well as an awareness of 

the passive use of solar energy -by solar gains and daylight- is needed to reach sustainable solutions. Smart planning 

of new urban districts will help cities to reach their goals of energy reduction and energy production; in such a way 

that urban districts could become more self-reliant [4].  

The urban design process is a complex one with a range of stakeholders taking various decisions at each stage of 

the process. Solar energy is just one of the many parameters affecting this process [5], but paradoxically, the energy 

http://www.sciencedirect.com/science/journal/22126716
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yield of solar systems is very dependent on design decisions made in the early stages of the design process. Besides 

the design of the cityscape, other key issues to accelerate the implementation of solar energy in the urban 

environment are: legal framework, processes, methods and tools, good examples, and further education [6]. 

Architects and urban planners are amongst the actors shaping new urban districts and by making right and 

informed decisions, future buildings can be both energy efficient and energy self-reliant. Building Performance 

Simulation (BPS) tools can support the decision-making process regarding solar energy [7-11] as will be 

demonstrated in this study.  

1.1. Density 

The layout and density of urban districts are two of the most important parameters to consider in the early design 

phase. The density of the urban fabric is expressed by the Floor Space Index (FSI), Plot Ratio or Floor Area Ratio 

(called FSI in the rest of this article). Formerly defined, the FSI is the ratio of a building's total floor area in relation 

to the size of the plot on which it is built, see Figure 1. A plot with no buildings on it has a FSI of 0. Building the 

same amount of floor area as the plot area results in a FSI of 1; two floor slabs covering the entire plot results in 

FSI=2 etc. The same FSI can thus be reached by adjusting the ground floor area and the amount of floors in a 

building, as shown in Figure 1. Also, a site with a large unoccupied space and a high FSI will results in tall 

buildings. Table 1 shows the FSI of different cities. Note that in some cases, the maximum allowed FSI is per plot, 

and that the FSI is only per building plot, not including streets, which explains why some cities are known to be very 

spread (like e.g. San Francisco compared to Amsterdam or Paris). Note that is difficult to provide an overview of 

FSI of cities in the world due to differences in calculation methods. 

 

 

Table 1. Overview of FSI in different cities [12] 

 
City Floor Space Index City Floor Space Index 

New York 10-15 (centre) San Francisco 9 (maximum) 

Central Amsterdam  2 Hong Kong 12 

Paris  3 Los Angeles 13 (centre) 

Bangkok  8 (maximum in centre) Singapore  2.8 (maximum)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Principle of Floor Space Index (FSI). 
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1.2. Solar energy potential 

Every building has a solar energy potential, which is the amount of energy that can be produced using building 

surfaces covered with photovoltaics (PV) or solar thermal (ST) systems. In this research, a parametric study was 

carried out, based on typical layouts and densities of Swedish urban city blocks in order to investigate the effect of 

the urban layout and density on the solar energy potential. The results of this analysis will provide guidelines for 

urban planners when designing new urban districts. 

2. Method 

Four typical Swedish city blocks designs were modelled based on city blocks in the Southern cities of Malmö and 

Lund (Figure 2); two of them based on existing city blocks (Rörsjöstaden and Norra Fäladen), and two of them 

based on planned city blocks (Hyllie and Brunnshög). As can be seen in Figure 2, the three designs Rörsjöstaden, 

Hyllie and Brunnshög are relatively similar and generally present a rectangular “donut” shape. Note however that 

Hyllie is more square than Rörsjöstaden and Brunnshög. In Rörsjöstaden, the buildings have a pitched roof while all 

other designs have a flat roof. In Norra Fäladen, the buildings are scattered differently on the plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.The four simulated city blocks and their actual FSI. 

In addition to studying the impact of urban design layout on solar energy production, this study analysed the 

effect of ‘rotation’ and ‘density’ of the city block on annual solar energy production. The rotation of the city blocks 

varied from 0° to 90° counter clockwise (with 15 increments) with respect to South (Figure 2). The density ranged 

from 0.5 to 2.5 FSI. The four modelled city blocks had an existing density (as displayed in Figure 2), but for the 

present study, the FSI was virtually altered by adding or deleting floors in the 3D models (Figure 3). Important to 
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notice is that the city blocks are modelled with equally dense adjacent city blocks, streets and courtyards similar to 

the real world situation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Alternation of density (FSI) of Rörsjöstaden 

 The four city blocks were modelled in Rhinoceros [13] with the help of information from the urban planning 

departments of Lund and Malmö. The annual solar irradiation analysis was performed in DIVA-for-Rhino (D4R), a 

Radiance based program [14] embedded in the CAAD program Rhinoceros using the GenCumulativeSky [15] 

model for solar radiation. Settings for these simulations were as presented in Table 2. Many of these parameters are 

default values in the DIVA-for-Rhino program and will be used in the Radiance engine for performing the 

simulation. The ambient bounces setting – the maximum number of different bounces computed by the indirect 

calculation- was however altered to increase the accuracy. The reflectance value was set to resemble the reflectance 

of surfaces, roofs, and ground.  

Table 2. Settings of DIVA-for-Rhino 

Parameter Setting  Parameter Setting 

Ambient bounces 5  Start date 01 01 

Ambient divisions 1000  End date 12 31 

Ambient super-samples 20   Hour range 00 24 

Ambient resolution 300  Geometric density 100 

Ambient accuracy 0.1  Reflectance of facades and roof 35% 

Weather data Lund (Meteonorm)  Reflectance of ground plane 20% 

 

The next step consisted of comparing the total annual solar irradiation with the energy demand of the buildings. 

The surfaces on the roof and façade which received an annual solar irradiation superior to 650 kWh/m²a were 

considered suitable, which is justified in an earlier study [16]. This threshold is dependent on many parameters; a 

study by Compagnon [10] suggested a value of 800 kWh/m²a for PV, but in this case 650 kWh/m²a was selected to 

achieve a shorter payback time than the life time of the system in the Swedish context.  

Furthermore, the suitable area was considered to be split into photovoltaic (PV) systems (80% of the surface, 

20% efficiency) and solar thermal (ST) systems (20% of the surface, 40% efficiency). Solar thermal and PV systems 

behave differently if they get shaded: if ST systems get shaded partly, in most cases, the output will decrease 

accordingly. For PV systems however, the output drops more than proportionally. In this case, the difference in 

behaviour between the two different technologies was omitted. Windows, lift shafts, and other installations were 

considered to cover 25% of the suitable area. The electricity need of the buildings was considered to be 50 

kWh/m²a, consisting of 20 kWh/m²a for common electricity use [17] and 30 kWh/m²a for household electricity [18]. 

The space heating demand was set at 20 kWh/m²a, which can be reached in Sweden with a very low energy design 

[19]. Taking these assumptions into consideration, the heating coverage (amount of heat produced / heat demand) 

and the electricity coverage (amount of electricity produced / electricity demand) was calculated. 



 Author name / Energy Procedia 00 (2014) 000–000  

Two hypotheses were tested: 1) the Norra Fäladen design will perform poorly compared to the other designs due 

to self shading and 2) the Rörsjöstaden will perform better than the Brunnshög design due to its pitched roofs.   

3. Results 

The computer tool D4R can provide both graphic and numerical results. In section 3.1., graphical results are 

presented while section 3.2. provides numerical results.  

3.1. Graphical results 

The direct embedding of D4R into the CAAD program Rhinoceros is advantagous since it does not require extra 

translations or additional programs to show results and it is possible to analyse the results interactively, i.e. the user 

is able to use the results in various ways. One way is simply to show the annual solar radiation on the analysed 

geometry (Figure 4, top).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Interactive use of results 

Another way to display the results is by using a filter. An example of such a filter is shown in Figure 4 (bottom), 

where the green surfaces represent surfaces that receive an annual solar irradiation superior to 650 kWh/m²a. By 

applying such a filter, architects and urban planners get direct feedback about the most valuable surfaces for the 

design.  

 

 

3.2. Numerical results 

In this section, the focus is on the annual electricity coverage, followed by the annual heating coverage, and the 

annual energy coverage. Figure 5 shows the annual electricity coverage of the four building blocks. A 100% 

coverage means that the annual electricity produced by PV equals the annual electricity use. 
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Figure 5: Annual electricity coverage at different densities 

The four graphs in Figure 5 show that there is a significant difference in annual electricity coverage due to the 

layout of the city blocks, especially for the lowest densities. In general, it can be seen that for the higher densities 

(>1.5), the absolute differences between the different layouts are less significant. The reason for this can be 

explained by the decreasing suitable area (roof area plus suitable facade) per floor area. At lower densities, the 

amount of suitable area is relatively high compared to the floor area, while at higher densities, this ratio decreases. 

The patterns of Brunnshög and Rörsjöstaden are almost identical, also at lower densities. Hyllie does not follow the 

same pattern as Brunnshög, although their geometry is quite identical (Brunnshög is a bit more rectangular). The 

irregular pattern in the results obtained for Norra Fäladen is most likely caused by its special “scattered” geometry 

increasing the impact of self shading.  

Furthermore, the rotation of the building blocks did not have as much impact in the Brunnshög, Hyllie and 

Rörsjöstaden layouts as expected, except for the Rörsjöstaden 45° rotation, which provided less energy covering for 

all densities. This is due to the fact that, at exactly 45°, a big part of the roof received slightly less than the threshold 

due to shading at the place where the two sloped roof surfaces meet.  

The results also show that rotation has a larger impact in the Norra Fäladen layout compared to the other layouts. 

Note, in addition, that differences between orientations also became less significant at higher densities.  
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Figure 6 shows the heating coverage of the building blocks.This figure shows similar patterns as in Figure 5, 

which was expected since the only difference lies in another efficiency of the solar technology and energy demand. 

The only difference is thus found in the absolute values.  
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Figure 6: Annual heating coverage at different densities 

The annual energy coverage can be calculated for the different building blocks by summarising the produced 

electrcity and heat, divided by the total energy need of the building blocks. Summarising heat and electricity is often 

done by taking conversion factors into account, but for the sake of simplification, this is not done in this study.  

Figure 7 shows the annual energy coverage, in which the average of all rotations is calculated per layout.  
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Figure 7. Annual energy coverage 

It becomes clear that Brunnshög, Rörsjöstaden, and Fäladen have almost identical values and patterns. The 

pattern which clearly stands out is the one of Norra Fäladen. Table 2 shows the normalised energy coverage of all 

building blocks per FSI (0.5; 1; 1,5; 2; 2,5) (the maximum energy coverage per FSI is underlined) and emphasises 

the differences between the different layouts, orientations and densities. 

 

Table 2. Annual energy coverage per city block (%) 

FSI Brunnshög Hyllie Norra Fäladen Rörsjöstaden 

0.5 1.00 0.89 0.52 0.92 

1 0.98 1.00 0.71 0.88 

1.5 0.95 1.00 0.78 0.95 

2 1.00 0.95 0.71 0.94 

2.5 0.96 1.00 0.70 0.99 

 

 

Table 2 shows that the maximum energy coverage for FSI=0.5 is for the Brunnshög design. For FSI=1 and 1.5, it 

is the Hyllie design, for FSI=2, it is the Brunnshög design, and for FSI=2, it is the Hyllie design. The differences 

between the Brunnshög, Rörsjöstaden, and Norra Faladen design were minimal especially for the higher densities, 

often within a range of 10%. The biggest differences were seen at the Norra Fäladen design, differing at a maximum 

of 48% for FSI=0.5, similar to the heating coverage and electricity coverage as shown in Figure 5 and 6.  
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4. Discussion and conclusions  

A parametric study was carried out to evaluate the solar energy potential of four common designs of city blocks 

in Sweden. In addition to design layout, the evaluated parameters were density and rotation. Surfaces on the building 

envelope -roof and facade- were considered to be suitable when they received more than 650 kWh/m²a. The solar 

energy potential of the city blocks was simulated with DIVA-for-Rhino and was expressed as the energy coverage, 

i.e. the energy produced by solar energy divided by the amount of energy used in the building blocks. Two 

hypotheses were stated at the beginning of the study: 1) the Norra Fäladen design will perform poorly compared 

with the other designs and 2) the Rörsjöstaden will perform better than the Brunnshög design due to its pitched 

roofs.   

The first hypothesis was confirmed. In none of the cases did the Norra Fäladen design return the highest energy 

coverage. This configuration also proved to be more unpredictable than the others, i.e. the energy coverage varied in 

a “chaotic” way for different densities and rotations. The design of the Norra Fäladen design consisted of various 

scattered building blocks, resulting in strong mutual shading effects.  

 

The second hypothesis was infirmed. The building blocks with a pitched roof did in most cases not return much 

higher energy coverage, as expected. The Rörsjöstaden design was comparable to the Brunnshög and Hyllie design, 

which basically had the same design but with flat roofs. The design of a roof solar system should obviously be kept 

in mind; a flat roof can have a high potential, but the setup of the system –number of rows, row distance, and 

inclination- also plays a crucial role in converting these flat roofs into energy producing surfaces. In the present 

study, the collectors were assumed to lay flat on the roof (no inclination resulting in no mutual shading, no row 

distance). 

 

Furthermore, results show that 100% coverage or higher with solar energy can be achieved only for low densities 

(FSI<1.25) for the studied conditions in Sweden. This study thus confirms the fact that a significant contribution 

could come from active solar energy but that solar energy systems need to be supplemented by rigorous energy 

conservation measures and other renewable energy sources like wind, geothermal energy, waste heat, etc. 

One great limitation of this study concerns the issue of annual versus monthly or hourly production and coverage 

by means of solar energy. A further study into the monthly and even hourly coverage would be very useful, since the 

amount of solar energy fluctuates significantly during the year and day in Sweden.  

Another limitation is to ignore the difference in behaviour between solar thermal and PV systems. Also, the 

assumption to have 80% PV and 20% ST has a big impact on all the absolute values in this study, however, the 

patterns and relative differences between the designs would be the same.  

 

Overall, this study shows that quantifying the solar energy potential of city blocks in an early design stage and 

providing a visualisation and quantification of the solar energy potential facilitates the comparison of design 

alternatives leading to a successful design. In the urban design process, it would be beneficial if this information is 

passed on to the architects of these buildings. Also, these solar potential studies can provide an underlying document 

for real estate owners who want to perform a cost and benefit analysis.  
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