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Abstract

 

Successful development of software systems depends on the quality of the
requirements engineering process. Use cases and scenarios are promising vehi-
cles for eliciting, specifying and validating requirements. This thesis investi-
gates the role of use case modelling in requirements engineering and its relation
to system verification and validation. The thesis includes studies of concepts
and representations in use case modelling. Semantic issues are discussed and
notations based on natural and graphical languages are provided, which allow a
hierarchical structure and enable representation at different abstraction levels.

Two different strategies for integrating use case modelling with system test-
ing are presented and evaluated, showing how use cases can be a basis for test
case generation and reliability assessment. An experiment on requirements vali-
dation using inspections with perspective-based reading is also reported, where
one of the perspectives applies use case modelling. The results of the experi-
ment indicate that a combination of multiple perspectives may not give higher
defect detection rate compared to single perspective reading. Pilot studies of
the transition from use case based requirements to high-level design are
described, where use cases are successfully applied for documenting how func-
tional requirements are distributed on architectural elements. The investigation
of an industrial requirements engineering process improvement programme is
also reported, where the introduction of a release-driven prioritisation method
contributed to a measurable improvement in delivery precision and product
quality. 

The results presented in the thesis provide further support for how to suc-
cessfully apply requirements engineering with use cases as an important basis
for software development.
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Introduction

 

Software is intangible and immaterial. While physical constructions have
properties that we can observe directly with our senses, software systems
cannot be weighed, touched or smelled. A software system can only be
observed through the linguistic representations that we make of it or
through the effects it produces when it is used. In addition, many soft-
ware systems of today are very “large” and of immense complexity. If we,
for example, would print on paper the source code for the software that
operates in a public telephone exchange, using the format of normal pro-
gram listings, the printing would be several miles long. We should also
bear in mind that such a complex system requires thousands of engineers
involved in its development and subsequent modification. 

A software system is, due to these facts, very difficult to conceptualize
and communicate. Still, if we cannot define what we want from a software
system in a precise and comprehensible manner, it is not very easy for the
software engineers to know what to build and to verify that a system ful-
fils what was wanted from it. If we cannot capture the expectations on a
system before it is implemented, it is very likely that the system will be a
disappointment. 

This thesis concentrates on how to elicit, specify and validate the
requirements of a software system to be constructed. These activities are
carried out within the discipline called 

 

requirements engineering

 

. The
research presented here aims at improving a particular technique in
requirements engineering, called 

 

use case modelling

 

, and to integrate this
technique with other techniques used for the 

 

testing

 

 of software systems.

 

A



 

Introduction

 

8

 

Requirements Engineering with Use Cases - A Basis for Software Development

 

The thesis includes a collection of seven papers and is organized in the
following four parts:

 

■

 

Introduction

 

. The introduction gives a background to the pre-
sented papers. Section 1 presents the research focus and states the
research questions. Section 2 explains the research methods used in
relation to the research questions and the presented papers.
Section 3 gives an overview of related work. Section 4 summarises
the main contributions of the research.

 

■

 

Concepts and representations of use cases

 

. This part includes two
papers regarding semantical and syntactical issues in use case mod-
elling. Paper I explains the need for adding structure to use cases
and proposes a way to build an integrated model of use case frag-
ments. Paper II presents a conceptual framework for use case mod-
elling and proposes a graphical representation with support for
different abstraction levels.

 

■

 

Integrating use cases with verification & validation

 

. This part
includes three papers regarding the role use cases can play in testing
and inspection. Paper III provides an investigation of how to utilize
the information in use case models for statistical usage testing.
Paper IV describes how use cases can be a basis for operational pro-
file testing. Paper V reports on the results from an experiment with
a specific inspection technique used for validating requirements
documents, called Perspective Based Reading, in which use cases are
applied as one way of finding requirements defects.

 

■

 

Industrial requirements engineering

 

. This part includes two
papers regarding industrial process improvement efforts in require-
ments engineering. Paper VI reports on experiences from a sequel of
industrial pilot projects where use cases were used in the transition
from requirements to high-level design. Paper VII analyses the ben-
efits of an industrial requirements engineering process, and outlines
how some challenges can be addressed with use cases. 
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1. Research Focus

The research presented in this thesis is carried out within the discipline of
software engineering, concerned with methods, tools, and techniques for
developing and managing the process of creating and evolving software
products (Sommerville, 1996). Within software engineering, a sub-disci-
pline has grown during this decade, called requirements engineering, which
focuses on the early phases of software development where decisions are
made on what to implement by the software system and the foundation is
laid for the later phases that determine how to implement it.

The software industry is perhaps the fastest growing and most profita-
ble industry in the world and software has had a profound impact on our
society. During the last decades, software systems have become more and
more complex, and many vital functions of our society now depend on
software systems. Development of large and complex software systems,
however, is intrinsically difficult. It is unfortunately common that soft-
ware systems are delivered with poor quality, too late, and over budget.
The term “software crisis” was coined already in the late 1960’s (Naur &
Randell, 1969), but even in the 1990’s, the crisis is still present (Gibbs,
1994). No single technique or method has yet been discovered that over-
comes all the essential difficulties in the creative process of large-scale soft-
ware development (Brooks, 1987). Thus, we have to apply a number of
different techniques and methods in this process to get complex software
systems with adequate quality delivered in a predictable time and to a pre-
dictable cost.

In large software development projects, it is neither feasible, nor desir-
able, to start directly with coding; several activities are needed before a
solution can be implemented. After the implementation is ready, activities
have to be carried out to assure and assess its quality and when the prod-
uct has been delivered, it has to be maintained as all significant software
systems are likely to need changes. New services are introduced into the
system as its environment changes and its users require more functional-
ity. In order to manage large software development projects, that either
develop new systems from scratch or enhance existing systems, we need to
follow a well defined process.

The waterfall model (Royce, 1970) is often used to illustrate the proc-
ess of large-scale software development. It views the development as a
stepwise transformation from the problem domain to the solution
through a number of phases. The model has been criticized for being too
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simplistic and not taking iterations and other aspects into account
(Boehm, 1988), but variants of the model are still used to illustrate the
software development process. The major activities can be summarized as
follows:

■ Requirements Engineering. Requirements on the software system are
elicited, specified and validated.

■ Design. The architecture of the software system is determined, and
the system is modularised into coherent subsystems (components).

■ Implementation. Executable components are developed which
implement the design.

■ Component Verification. The components of the system are verified
to ensure that they are implemented according to the design.

■ System Verification & Validation. The system is verified to assure that
it fulfils its specification, and validated against the users’ and cus-
tomers’ needs and expectations. Quality aspects, such as reliability,
are assessed.

This thesis concentrates on improvements to a specific technique for
requirements engineering called use case modelling, and how this tech-
nique can be integrated with the verification & validation phases. The
subsequent sections give a background to requirements engineering, use
case modelling, and verification & validation respectively. Section 1 is
concluded by stating the research questions investigated in this thesis.

1.1 Requirements Engineering

The two major objectives of requirements engineering are (1) to under-
stand the problem that the intended system is supposed to solve, and (2)
to select and document the requirements on the system and its develop-
ment. The products of requirements engineering are the foundation for
the whole subsequent development. In particular, we want to create a
solid basis for:

■ Planning and cost estimation,

■ Design and architectural decisions,

■ Verification and validation.
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A major motive for spending time and effort on requirements engineering
and its improvement comes from the objective of doing the software
development right from the beginning, instead of patching at the end.
This objective is justified by empirical evidence supporting the following
hypotheses (Davis, 1993):

■ Many requirements errors are being made.

■ Many of these errors are detected late.

■ Many of these errors can be detected early.

■ Not detecting these errors may contribute to dramatic increase of
software costs.

Experience shows that the cost of detecting and repairing errors increases
dramatically as the development process proceeds. Table 1 shows a compi-
lation of three empirical studies, indicating that it may be up to 200 times
more expensive to detect and repair errors in the operation stage, com-
pared to detecting and repairing them during the requirements stage
(Davis, 1993). 

With these figures in mind, it is reasonable to believe that efforts spent
on improving requirements engineering will pay off.

Webster’s Dictionary (1989) defines a requirement as “something
required; something wanted or needed”. A more elaborated definition,
specific to software systems, can be found in the IEEE Standard 610
(1990), where a requirement is defined as:

Table 1. Relative cost of error repair in different development stages.

Stage Relative cost of error repair

Requirements 0.1 - 0.2

Design 0.5

Implementation 1

Component Verification 2

System Validation 5

Operation 20
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1. A condition or capability needed by a user to solve a problem or achieve
an objective.

2. A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed document. 

3. A documented representation of a condition or capability as in 1 or 2.

We can see that the word requirement can mean both a desired property
and an obligatory property. This reflects the decision process, inherent to
requirements engineering; we need not only to find all desires, we also
have to decide which of the, possibly conflicting, desires to be imple-
mented. 

The documented representation of a requirement is also, for short,
termed just requirement. This indicates the specification process within
requirements engineering, as we need to document the selected require-
ments together with the reasons for our decision so that the rationale for
the requirements can easily be understood.

Those that have interests in the process of requirements engineering
are called stakeholders, including, for example, requirements holders (cus-
tomers, procurers, sponsors, end-users, etc.) and developers (requirements
engineers, designers, testers, managers etc.). 

The product of requirements engineering is called requirements specifi-
cation. This term is also used for the process of documenting requirements. 

The process of requirements engineering is not a simple succession of
demarcated activities. Instead, it is inherently iterative and consists of a
number of interrelated subprocesses. Loucopoulos & Karakostas (1995)
identify the following interrelated subprocesses:

■ Elicitation: understand the problem, identify the stakeholders and
capture the requirements. 

■ Specification: describe the problem and document the requirements.

■ Validation: ensure that the specified requirements agree with the
stakeholders’ expectations. 

Figure 1 gives an overview of the information flow between these proc-
esses. This picture does, however, not take into account other important
subprocesses, such as the management of requirements changes or the pri-
oritisation of requirements. Karlsson & Ryan (1998), for example, stress
the need for incorporating a structured requirements selection process
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into requirements engineering, where requirements may be prioritised
based on pair-wise comparison of requirements, using the criteria of value
and cost. Requirements are selected so that the system will give a high
value to an acceptable cost.

A major challenge is to know when to stop requirements analysis, and
unfortunately it is not easy to define an objective stop criterion. It is up to
the judgement of the involved stakeholders to determine if the require-
ments documentation is good enough to proceed with design. The subse-
quent phases in the development process are likely to demand changes in
the requirements document, and after delivery, the system is likely to need
changes caused by changing requirements. Hence, the requirements engi-
neering process must continue, in some form, throughout the entire life-
time of the system.

User

Problem
Domain

Elicitation ValidationSpecification

User Feedback

Requirements
specifications

Knowledge

Request for more
knowledge

Requirements
models

Validation
results

Figure 1. Processes in requirements engineering (Loucopoulos & Karakostas,1995).

User requirements

Domain knowledge Domain knowledge

Models to be validated
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1.2 Use Case Modelling

The main concepts in use case modelling are actors and use cases. Accord-
ing to Jacobson et al. (1992), an actor represents a certain user type or a
role played by users. A use case is a specific way of using the system, viewed
as a set of related transactions performed by an actor and the system in
dialogue.

As an example, consider an automated teller machine, where users can
retrieve money and check how much money they have in their bank
account. In this system we can identify the following actors:

■ Customer – the normal user role with the goals of withdrawing cash
and checking the account balance.

■ Supervisor – the actor which supervises and maintains the machine,
including money and receipt paper refilling.

■ Database – the central banking system maintaining and updating
bank account information.

The last actor is an example of a user type where the role is not played by
humans, but instead by another software system.

Examples of use cases for the customer actor are withdraw cash and
check balance. These use cases typically include events such as insert card,
display message, enter code etc. 

As another example, consider a telephony system. Here we may iden-
tify actors such as subscriber and operator, and the use cases make call and
add new subscriber. The use case make call typically includes events such as
lift receiver, send dialtone, dial number, etc.

Another example is an ordinary, single user word processor system,
where the writer actor may, for example, perform the use case spell check-
ing, including events such as select paragraph, select dictionary, display mis-
spelling, learn word, etc.

Use cases may have different variants or alternative courses, depending
on the different circumstances of system usage. For example, in the with-
draw cash example use case there may be different courses depending on,
for example, if the code is entered correctly or not. A single sequence of
events representing such specific realisations of a use case is often termed a
scenario. Hence, a use case is often said to cover a set of scenarios.

The term use case was coined by Jacobson et al. (1992), and intro-
duced in an object-oriented context. Object orientation provides concepts
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for defining and relating objects. These objects can both be entities of the
problem domain and entities existing as parts of a software system. Many
object-oriented methods demarcate between analysis and design, where
analysis is focused on problem domain objects and design is focused on
system internal objects. Traditional object-oriented analysis, however, can
only partially capture requirements, as object models, focused on inherit-
ance and aggregation, mainly are static views of the system and its prob-
lem domain. Requirements are, however, to a large extent functional and
not solely object-oriented, as they define a system’s functional properties
also with regard to dynamic issues. Several object-oriented methods have,
in consequence, incorporated dynamic modelling based on the concept of
use cases in order to bridge the gap between a functional view in require-
ments analysis and an object-oriented view in architectural analysis and
design.

Although often combined with object orientation, use case modelling
is a general technique that may be applicable as a front-end to any design
method. The basic idea of modelling usage from an external point of view
by describing different usage scenarios, is often practised within require-
ments engineering, sometimes under the name scenario-based require-
ments analysis (see e.g. Carroll, 1995).

Paper I and II concentrate on improvements to use case modelling
with respect to their meaning and representation. In paper VI, an indus-
trial case study is presented, where use cases are used as a vehicle in the
transition from requirements to high-level design.

1.3 Verification & Validation

As the software development process is human intensive and error prone,
it is important to continuously assure that the interim and final products
of the development are of adequate quality. Verification & Validation
(V&V) refer to activities that test the quality of a product for the purpose
of finding and correcting defects and deciding if the development can
continue or some parts must be subjected to rework. Verification refers to
a narrow frame of testing, where a product is checked if it is correct in
terms of previous products. An example of verification is when an imple-
mented software component is executed using a set of test cases to see if it
fulfils the component design. Validation is a broader type of evaluation,
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where the product is checked against the original stakeholders’ views. An
example of validation is when the final integrated system is tested in an
acceptance test, to see if it corresponds to the original intentions.

V&V strategies may be divided into two main classes: (1) static V&V

including V&V methods that do not execute the artifact under scrutiny,
and (2) dynamic V&V including methods that exercise a software artifact
by executing it with sample input data. These two classes can be broken
down further into different types of methods. Figure 2 shows a partial1

classification of V&V methods. 

Static V&V in turn may be divided into automated checking and inspec-
tions. Automated static checking is based on formal languages and com-
piler technology and may reveal defects based on the syntax and semantics
of the formal languages used. 

Inspection, on the other hand, is a manual approach, where humans
read the documentation of a software artifact with the objective of finding
and understanding defects. Reading techniques are suitable for docu-
ments containing natural language, common in requirements documents,
but also applicable when evaluating, for example, the quality of design
and code. This thesis includes an investigation of a reading technique for
requirements inspection that involves use cases (Paper V).

Dynamic testing can be divided into black-box and white-box tech-
niques, where black-box refers to functional testing with an external per-
spective and white-box refers to structural testing with an internal

1. The figure only includes a few examples of each class. A more detailed survey of existing tech-
niques is available in (Graham, 1994).

V&V

Static Dynamic

Black-boxWhite-boxInspection
Automated

EquivalenceRandom

Checking
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Figure 2. Classification of verification & validation techniques.
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perspective. In white-box techniques, the test cases are defined based on
structural aspects, such as path coverage.

In black-box techniques, test cases are derived from a system specifica-
tion, and hence have a natural connection to requirements. One example
of a black-box technique is equivalence partitioning (see e.g. Sommerville,
1996), where the test cases are based on classes of input and/or output
values of a system. 

Another example of a black-box V&V technique is random testing,
where test cases are selected according to some probability distribution.
This type of testing is motivated by the need for making test cases resem-
ble system operation. The reliability of a system depends not only on the
number of defects in a software product, but also on how it is executed in
operation. This implies that reliability testing must resemble operational
usage, i.e. test cases are selected according to a usage profile. 

This thesis includes investigations of how usage models for reliability
testing can be constructed based on use cases (Papers III, IV). The three
papers III, IV & V are based on a general investigation of use cases and
V&V integration opportunities provided in (Regnell & Runeson, 1998).

1.4 Research Questions

The presented thesis project started in November 1993. The main vision
of the project was to work with methods and techniques which support a
user-centred approach to software engineering, where the user perspective
is in focus throughout the life-cycle (Wohlin et al., 1994). This vision
aims at continuous visibility and evaluation by the customers and users,
which in turn is assumed to help with keeping software development on
track for the successful delivery of systems that comply with the original
needs and expectations. 

There are inherent connections between Requirements Engineering
(RE) and Verification & Validation (V&V). Both RE and V&V view the
system under development at a higher abstraction level compared to
design and implementation, and both disciplines have an external view of
the system (see Figure 3), where the system usage is in focus, rather than
its internal structure. In both the RE and V&V research communities,
there exist concepts related to system usage, namely the use case concept in
RE and the concept of usage testing in V&V. At the beginning of this dec-
ade, little effort was paid to the integration of these concepts, and research
questions were formulated for the investigation of such an integration. 
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Before an integration between use case modelling and usage testing can
be achieved, it is important to investigate the properties of each of these
concepts in order to see which parts best fit together. The first two papers
in this thesis are focused on research questions related to use case model-
ling itself, as the investigation presented by Wohlin et al. (1994) identified
several open issues regarding how to apply use cases. It was assumed that a
more structured approach to use case modelling was needed in order to
facilitate an integration with usage testing.

The investigation of use case modelling is based on questions regarding
the representation of use cases, the abstraction level of use case representa-
tions, and their understandability to laymen.

The thesis project has a broad interest in requirements engineering in
general, and use case modelling in particular. Other requirements engi-
neering related issues have been investigated, such as requirements valida-
tion through inspections and requirements process improvements.

Figure 3. External and internal views in the software development process.
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In summary, four major research questions have formed the basis for
the presented work:

RQ1. How can the semantics and syntax of use case representations be
improved in order to allow different degrees of formality, differ-
ent levels of abstraction, and easy comprehension?

RQ2. How can use case modelling be integrated with system testing,
so that the usage information contained in use case models can
be utilised for test case creation and assessment of reliability?

RQ3. How does the user perspective perform in requirements valida-
tion through inspection?

RQ4. What have been the outcomes of requirements engineering
improvement efforts in industry?
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2. Research Methods

Software engineering has a short history and is still maturing as a research
discipline. It is therefore not surprising that the research community is
debating how to conduct research in software engineering and require-
ments engineering (Potts, 1993; Fenton, et al., 1994; Glass, 1994; Ryan,
1995). Software engineering emerged as a complement to computer sci-
ence, which in turn has grown out of a sub-discipline of mathematics.
Although software engineering research deals with real world problems
involving humans and organisations, a great deal of software engineering
research is, perhaps for historical reasons, conducted in the analytical tra-
dition of mathematics, where formal (mathematical) reasoning is the
main starting point. The research presented in this thesis is, however, less
based on formal mathematics, and more centred around the investigation
of informal and semi-formal techniques aimed at solving practical prob-
lems faced by the software industry.

The humans involved in and affected by software development are
central to software engineering. Hence, it may be wise to investigate the
research approaches used in behavioural sciences which have a longer tra-
dition of research with humans as subjects. Robson (1993) gives a classifi-
cation of behavioural science research approaches on an ordinal scale from
basic research to applied investigations:

■ A. The traditional ‘science only’ approach, including (1) basic research
where application to problem-solving in the real world is not usu-
ally seen as an objective; (2) less basic, but still ‘pure’ or ‘theoretical’
where application is not a high priority; (3) research on practical
problems where application is seen as possible but not a necessary
outcome.

■ B. Building bridges between researcher and user, where (1) the
researcher believes that the work has practical implications and
should be used and seeks to disseminate results widely and in an
accessible language; (2) the researcher obtains client collaboration
on researcher-designed projects and would like the client to be
influenced by the outcome of the research; (3) in addition to B2 the
researcher takes steps to give the client regular feedback on progress,
problems and outcomes and during this feedback, the client has an
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opportunity to check on interim findings and contribute with the
client’s own analysis and interpretation and the researcher helps in
the practical implementation of the research results.

■ C. Researcher-client equality. (1) The researcher and client together
discuss problem areas and jointly formulate the research design and
actively collaborate involving some measure of control on part of
the client, including implementation of results; (2) As in C1, but
the initiative is taken by the client who identifies the problem and
the researcher consider whether there are other issues which should
receive primary attention; (3) As in C2, but the problem identified
by the client is not questioned and research proceeds on that basis
with the researcher paying most attention to implementation.

■ D. Client-professional exploration. A client with a problem requests
help from a researcher. Collection of new data (if any) is minimal.
Advice or recommendation is based on the researcher’s past experi-
ence and knowledge of the field. If this takes place in an organisa-
tion, then training or organisation development is a frequent
outcome.

■ E. Client-dominated quest. A client requests help from a specialist
who examines the problem, interprets ‘best current knowledge’,
makes a diagnosis and suggests a line of action.

The work presented in this thesis has, according to the above classifica-
tion, been conducted with approaches in the classes from A3 to C1, indi-
cating a clearly applied focus with the researcher in main control of the
research design.

A classification of research methods in software engineering was pro-
posed at a Dagstuhl Workshop (Adrion, 1993) and discussed by Glass
(1994) and Zelkowitz & Wallace (1998). This classification identifies the
following four research methods:

■ Scientific method. Scientists develop a theory to explain a phenome-
non; they propose a hypothesis and then test alternative variations
of the hypothesis. As they do so, they collect data to verify or refute
the claims of the hypothesis. An example is building a simulation
model of a software development process based on mathematical
relations between measurable entities and validate results from the
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simulations with empirical data from real projects; if the simulation
model is valid it may be used for prediction purposes (see e.g.
Donzelli & Iazeolla, 1996).

■ Engineering method. In this evolutionary approach, engineers
observe existing solutions, propose improvements and analyse and
measure the improvements proposals; this scheme is repeated until
the solutions do not need further improvements. An example is
proposing improvements to a requirements engineering method
and trying it out to evaluate the results; the evaluation is input to
further improvement efforts (see e.g. Potts et al., 1994). 

■ Empirical method. Based on hypotheses, design a study, collect data,
and test the hypotheses with quantitative (statistical) methods.
Unlike the scientific method, there is not necessarily a formal model
or theory describing the hypotheses. Empirical methods can be fur-
ther categorised into three types (Robson, 1993):
– Experiment: measuring the effect of manipulating one variable
over another variable. An example is comparing the effectiveness of
two different requirements inspection techniques (see e.g. Basili et
al., 1996)
– Survey: collection of information in standardized form from
groups of people. An example is investigating current practice in
requirements engineering through interviews with a number of
companies (see e.g. Weidenhaupt et al., 1998)
– Case study: development of detailed, intensive knowledge about a
single case, or a small number of related cases. An example is study-
ing a specific requirements engineering technique used in a real
project (see e.g. Gough et al., 1995)

■ Analytical method. A formal theory is developed, and results derived
from that theory can be compared with empirical observations. An
example is using formal reasoning in requirements specification (see
e. g. Du Bois et al., 1997; Desharnais et al., 1998).

The work presented in papers I, II, III, and IV represents the engineering
research method, as new improvement proposals on existing techniques
are investigated. Paper V represents the empirical research method, in
which a controlled experiment is performed. Paper VI and VII represents
the empirical research method as case studies of specific industrial require-
ments engineering methods are investigated. 
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The approaches and methods used in this thesis are summarised in
Table 2.

The work presented here is conducted by engineers with a strong urge to
measure and quantify. Although, the search for objective and quantifiable
facts is considered as essential, there is in engineering also a pragmatic
attitude to the problems in focus; if a method works, then use it, even if
there is no rigorous scientific explanation to why it works or any certain
quantification of how effective the method is. The use of qualitative
methods in software engineering is often not as structured as in the more
mature behavioural sciences, but qualitative reasoning is often used by
engineers. 

During the presented research project, there have been many occasions
where a clear cut, objective answer in quantifiable terms has not been
found. Other parts of the problem space have been investigated with
more scientific rigour. Still, all research results presented in the thesis are
founded in the dedicated quest for solutions to industrial software engi-
neering problems.

Table 2. Mapping between research questions, papers, approaches and methods.

Research
Questions Papers Approaches Methods

RQ1 I, II B1, B2 Engineering

RQ2 III, IV B1 Engineering

RQ3 V A3 Empirical: experiment

RQ4 VI, VII C1 Empirical: case study
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3. Related Work

The research contributions presented in this thesis are enhancements of
previous work in the area of requirements engineering and verification &
validation. This section puts the presented work into context, points out
some important publications in the field, and identifies a number of
sources that have been major inputs to the study of the research questions. 

This thesis represents an effort of combining and integrating different
areas of software engineering through the use case concept, as the research
questions RQ2 & RQ3 in Section 1.4 suggest. The presentation of related
work is consequently divided into three subsections, describing use cases,
testing, and inspections, respectively.

3.1 Use cases and Scenarios

The work in this thesis was initially based on the use case concept coined
by Jacobson et al. (1992). In the papers of this thesis we use the terminol-
ogy that stems from Jacobson, where a “scenario” is specialisation of a “use
case”. Now, the term “scenario” has gained widespread acceptance as a
general concept denoting a sub-discipline of requirements engineering
rather than a specific, well-defined technique. 

The number of research publications in the area has grown and indus-
try is applying scenarios and use cases in a plurality of ways. A large EU-
funded basic research action started in 1996 called CREWS (An ESPRIT 4th
Framework Programme, No. 21.903), which stands for “Cooperative
Requirements Engineering With Scenarios”, and which have had a major
impact on the requirements engineering community. An important con-
cept-building CREWS report is the Scenario Classification Framework
(Rolland et al., 1998) – subsequently denoted CREWS-SCF – which also
includes an extensive literature study and the classification of 12 scenario
approaches according to this framework. A scenario approach is classified
in terms of its contents, form, purpose and role in the requirements engi-
neering life cycle. An overview of the CREWS-SCF is given in Figure 4.

Paper I is classified by Rolland et al. (1998) according to the CREWS-
SCF, and it is concluded that the approach in Paper I differs from Jacob-
son et al. (1992) with respect to form, contents and purpose, as more
structure to use case modelling is applied, a more advanced graphical
notation is provided, and the purpose is primarily focused on require-
ments specification rather than identification of design objects. Paper II is



3. Related Work

Requirements Engineering with Use Cases - A Basis for Software Development 25

in essence similar to Paper I in terms of the CREWS-SCF, although the
graphical representation is more developed and extensions are proposed in
relation to the standard language of Message Sequence Chart (MSC,
1993) ITU Recommendation Z.120. Many of the ideas in Paper II are
now incorporated in the latest version of MSC (1996).

The CREWS-SCF shows that the views of scenarios may vary to a large
extent and that many different ways of using scenarios are possible. For
example, Gough et al. (1995) present a use case approach where use cases
are expressed using visual representations with multimedia and hypertext
animations, while Hsia et al. (1994) present a formal but non-executable,
grammar-based approach to scenario generation and analysis. Potts et al.
(1994) propose textual scenarios and tabular notations and integrate sce-
narios with an inquiry cycle where open questions, responses and argu-
ments are tracked together with change requests.

The plurality of scenario applications is further emphasised by the sur-
vey of current industrial practice described in another CREWS report
(Weidenhaupt et al., 1998), where 15 projects in 4 European countries
are classified according to the CREWS-SCF. In this survey it is concluded
that inspections in conjunction with scenarios are commonly used, which
is a motivation from practice for the study in Paper V. 

Another conclusion from the survey is that nearly all developers men-
tion the need to base system tests on scenarios, but current practice rarely
satisfies this demand as most projects lack a systematic approach for defin-
ing test cases based on scenarios. Paper III & IV provide an investigation
of such systematic approaches, providing methods to integrate use case
modelling with testing. 

Figure 4. Overview of the CREWS Scenario Classification Framework 
(Rolland et al., 1998). 
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In addition, four types of scenario evolution where encountered by the
survey: (1) top-down decomposition of scenarios, (2) from black-box to
white-box scenarios, (3) from informal to formal scenario definitions, and
(4) incremental scenario development. The first two evolution types are
discussed in Paper VI. The third evolution type is discussed in Paper I &
II. Leite et al. (1997) discuss the management of incremental scenario
development in conjunction with a requirements baseline, which in turn
may fit well to the use case approach in Paper I & II.

Several object-oriented methods have incorporated dynamic object
modelling with use cases, as a complement to the static view in traditional
object models. One of the early publications on dynamic object behaviour
analysis is Rubin & Goldberg (1992), who propose object scripts in tabu-
lar form which resemble use cases. Paper II presents a comparison of
object-oriented use case approaches including OOSE (Jacobson et al.,
1992), OMT (Rumbaugh et al., 1991), the Booch method (Booch,
1994), and ROOM (Selic et al., 1994). The Jacobson, Rumbaugh, and
Booch approaches are now integrated in the Unified Modelling Language
(UML).

In Paper II, the goal concept (Dardenne et al., 1993) is pointed out as
useful in the identification and definition of use cases. Several authors
agree with the importance of combining use cases and goals (see e.g.
Cockburn, 1997a; Cockburn, 1997b; van Lamsweerde & Willemet,
1998). Anton et al. (1994) investigate the derivation of goals from scenar-
ios.

Paper I & II are mainly interested in functional requirements, while
Paper III & IV focus on one non-functional requirement, namely reliabil-
ity. Sutcliffe & Minocha (1998) provide a general investigation of how
scenarios can be utilised in the analysis of non-functional requirements.

3.2 Usage-based Testing

Non-functional requirements are an essential part of requirements specifi-
cations. In particular, the reliability requirements are often regarded as
one of the most important non-functional requirements. Software relia-
bility is in the IEEE Standard 610 (1990) defined as “the ability of a sys-
tem or component to perform its required functions under stated
conditions for a specified period of time”. As the definition indicates, reli-
ability is dependent on the circumstances of operation. When certifying
that a system fulfils a specified reliability requirement, it is in consequence
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necessary to specify under which circumstances this reliability require-
ment is to be met. Thus, there is a need to model system usage and to
quantify the probability of different usages in order to generate test cases
that resemble the circumstances in the reliability requirement. As in all
testing, the testing budget is limited, making it impossible to test all possi-
ble cases, which in turn implies that a subset of all test cases must be
selected. A common criterion for selecting test cases is their expected fre-
quency of usage.

It can thus be concluded that both the objective of prioritising among
possible test cases and the objective of certifying reliability, results in the
need for a system usage model. Usage-based testing implies a focus on
detecting the faults that cause the most frequent failures, hence maximis-
ing the growth in reliability. 

There are two main approaches on probabilistic models of system
usage: (1) Statistical Usage Testing (SUT) based on Markov models as
introduced by Mills et. al. (1987) and further developed by Whittaker &
Thomason, where test cases are generated from a state-machine model
with probabilities attached to transitions between externally observable
system states; and (2) Operational Profile Testing (OPT) as proposed by
Musa (1993), where test cases are sorted in expected frequency order
based on a functional profile combined with an operational profile
including quantification of usage frequencies. A further development of
SUT is presented by Runeson & Wohlin (1992, 1995), introducing the
state-hierarchy (SHY) model in order to tackle the problem of scalability of
Markov models.

Common to the mentioned techniques is that the approaches include
two basic parts of usage specification: (1) a usage model including the
structural aspects of usage in terms of externally observable states or sys-
tem functions, and (2) a usage profile including the statistical aspects of
usage in terms of frequency or probabilities. 

Paper III is based on the SHY model, and shows how SUT can be com-
bined with use case modelling, while Paper IV is based on OPT and
presents ways of creating an operational profile from use cases. Another
approach for generating operational profiles from use cases is proposed by
Denney (1998). This approach uses the regular expression based use case
notation from the Fusion object-oriented method (Coleman et al., 1994),
complemented with statistical information.



Introduction

28 Requirements Engineering with Use Cases - A Basis for Software Development

3.3 Requirements Inspections

Tool support for requirements validation based on scenarios has been pro-
posed by, for example, Maiden et al. (1998) and Sutcliffe et al. (1998).
The validation of requirements documents is, however, often done manu-
ally, as requirements normally include informal representations, fre-
quently based on natural language.

A commonly used technique for manual validation of software docu-
ments is inspections, proposed by Fagan (1976). Inspections can be car-
ried out in different ways and used throughout the software development
process for (1) understanding, (2) finding defects, and (3) as a basis for
making decisions. Inspections can be used to find defects early in the
development process, and have shown to be cost effective (e.g. Doolan,
1992). 

A central part of the inspection process is the defect detection carried
out by an individual reviewer reading the document and recording defects
(a part of preparation, see Humphrey, 1989). Three techniques for defect
detection are Ad Hoc, Checklist and Scenario-based reading (Porter,
1995). Ad Hoc detection denotes an unstructured technique, providing
no guidance and the reviewers detect defects based on their personal
knowledge and experience. The checklist detection technique provides a
list of issues and questions, capturing the knowledge of previous inspec-
tions, helping the reviewers to focus their reading. 

In the scenario-based approach, different reviewers have different
responsibilities and are guided in their reading by specific scenarios which
aim at constructing a model, instead of just passive reading. A scenario in
this context denotes a script or procedure that the reviewer should follow. 

There is a considerable risk for terminology confusion here, as the
term scenario also is used within requirements engineering in general, and
in this thesis in particular, to denote a sequence of events involved in an
envisaged usage situation of the system under development, and a use case
is often said to cover a set of related (system usage) scenarios. The term
scenario in a scenario-based reading context is, however, a meta-level con-
cept which denotes a procedure that a reader of a document should follow
during inspection.

Two variants of scenario-based reading have been proposed: Defect-
Based Reading (Porter, 1995) and Perspective-Based Reading (Basili,
1996). The former concentrates on specific defect classes, while the latter
focuses on the points of view of the users of a document.
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Another part of the inspection process is the compilation of defects into
a consolidated defect list where all individual reviewers’ defect lists are
combined. This step may include the removal of false positives (reported
defects that where not considered to be actual defects) as well as the detec-
tion of new defects. This step is often done in a structured inspection meet-
ing in which the team of reviewers participates. The effectiveness of a team
meeting has been questioned and studied empirically by Votta (1993) and
Johnson (1998).

Paper V describes research on scenario-based reading with a perspec-
tive-based approach. The research method is empirical and includes a for-
mal factorial experiment in an academic environment. The presented
experiment is a partial replication of previous experiments in the area and
focuses on refined hypotheses regarding the differences between the per-
spectives in perspective-based reading.
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4. Research Results

The main results of the presented work include findings related to both
use case modelling itself, the combination with verification & validation,
as well as industrial application of requirements engineering and use cases.
This chapter summarises the main contributions, and gives a guide to the
reader on the contents of each included paper. Finally, an extensive list of
further research is presented.

4.1 Main contributions

The main research contributions are summarised below. The results are
grouped in relation to the research questions of Section 1.4.

■ Proposals on use case syntax and semantics (RQ1). A conceptual study
of use case modelling is provided including additional concepts,
such as goal, service, episode, context and event. Definitions of and
relations between the concepts are given. Proposals on how to give
use cases more structure are given, and representation suggestions
regarding both natural language and graphical descriptions are illus-
trated with examples. A hierarchical approach to use case modelling
is presented as a means for allowing descriptions at different levels
of abstraction. Extensions to the Message Sequence Chart language
are provided, making it more suitable for graphical representation
of requirements-level use cases.

■ Methods for applying use cases as a basis for testing (RQ2). An investi-
gation of the integration of use case modelling and usage-based test-
ing is provided, and two specific methods of integration is
proposed: extension and transformation. The two approaches are
investigated in combination with both Statistical Usage Testing
using the State Hierarchy model, and Operational Profile Testing.
The results include a conceptual analysis of the terms from each
domain and methods for deriving test models from use cases.

■ Evaluation of use cases in requirements inspection (RQ3). An experi-
ment is conducted, which evaluates perspective-based reading of
requirements documents with three perspectives, including the user
perspective applying use case modelling. The assumption of differ-
ence between perspectives is analysed and the results of the data
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analysis show that (1) there is no significant difference between the
three perspectives in terms of defect detection rate and number of
defects found per hour, (2) there is no significant difference in the
defect coverage of the three perspectives, and (3) PhD students with
a checklist approach find significantly more defects per hour and
have a significantly higher detection rate than MSc students with a
PBR approach.

■ Experiences from industrial applications (RQ4). Case studies in two
different industrial environments are presented. The first case study
includes a sequel of pilot studies where use cases are applied in the
modelling of requirements distribution on architectural compo-
nents. Use case modelling was found valuable as a tool in the transi-
tion from requirements engineering to design. A central
observation is that the use cases are not decomposed in a strict top
down manner and that the architectural decomposition is mainly
carried out based on trade-offs between non-functional require-
ments. The second case study reports on a requirement process
improvement programme in a market driven context, concluding
that requirements prioritisation in combination with cost estima-
tions and release planning have contributed to significant improve-
ments of delivery precision and product quality. The evaluation of
the case study includes the observation of a remaining challenge of
how to implement a product strategy for a plurality of market seg-
ments, which possibly can be achieved using a use case based
approach in combination with prioritisation based on pair-wise
comparison.
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4.2 Summary of Papers

The work presented in Paper I represents the earliest views of the research
project. This paper is written in the bold spirit of providing a step towards
the grand Method for use case modelling. As the investigation of use case
modelling progressed, it became obvious that use cases can be applied in a
number of ways depending on, for example, the application domain and
the purpose, and that no modelling strategy is optimal in all situations.
Hence, despite some rather categorical statements in Paper I, a more prag-
matic view on formalisation in general and the use of specific constructs
in particular is represented by the later papers. 

The abstracts of each paper are provided below.

PAPER I: Improving the Use Case Driven Approach to Requirements 
Engineering

Björn Regnell, Kristofer Kimbler and Anders Wesslén

Proceedings of Second IEEE International Symposium on Requirements Engineering
(RE’95), York, UK, March 1995.

This paper presents the idea of Usage-Oriented Requirements Engineering, an
extension of use case driven analysis. The main objective is to achieve a require-
ments engineering process resulting in a model which captures both functional
requirements and system usage aspects in a comprehensive manner. The paper
presents the basic concepts and the process of Usage-Oriented Requirements
Engineering, and the Synthesized Usage Model resulting from this process. The
role of this model in system development, and its potential applications are also
discussed.

PAPER II: A Hierarchical Use Case Model with Graphical 
Representation

Björn Regnell, Michael Andersson and Johan Bergstrand

Proceedings of IEEE International Symposium and Workshop on Engineering of Computer-
Based Systems (ECBS’96), Friedrischshafen, Germany, March 1996.

This paper presents a conceptual framework for use case modelling and a new
use case model with graphical representation, including support for different
abstraction levels and mechanisms for managing large use case models. Current
application of use cases in requirements engineering is discussed, as well as con-
ceptual and methodological issues related to use case modelling.
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PAPER III: Towards Integration of Use Case Modelling and Usage-
Based Testing

Björn Regnell, Per Runeson and Claes Wohlin

Accepted for publication in Journal of Systems and Software, Elsevier.

This paper focuses on usage modelling as a basis for both requirements engineer-
ing and testing, and investigates the possibility of integrating the two disciplines
of use case modelling and statistical usage testing. The paper investigates the
conceptual framework for each discipline, and discusses how they can be inte-
grated to form a seamless transition from requirements models to test models for
reliability certification. Two approaches for such an integration are identified:
integration by model transformation and integration by model extension. The
integration approaches are illustrated through an example, and advantages as
well as disadvantages of each approach are discussed. Based on the fact that the
two disciplines have models with common information and similar structure, it
is argued that an integration may result in coordination benefits and reduced
costs. Several areas of further research are identified.

PAPER IV: Derivation of an Integrated Operational Profile and Use 
Case Model

Per Runeson and Björn Regnell

Proceedings of 9th International Symposium on Software Reliability Engineering
(ISSRE’98), Paderborn, Germany, November 1998.

Requirements engineering and software reliability engineering both involve
model building related to the usage of the intended system; requirements models
and test case models respectively are built. Use case modelling for requirements
engineering and operational profile testing for software reliability engineering
are techniques which are evolving into software engineering practice. In this
paper, approaches towards integration of the use case model and the operational
profile model are proposed. By integrating the derivation of the models, effort
may be saved in both development and maintenance of software artifacts. Two
integration approaches are discussed: transformation and extension. It is con-
cluded that the use case model structure can be transformed into an operational
profile model adding the profile information. As a next step, the use case model
can be extended to include the information necessary for the operational profile.
Through both approaches, modelling and maintenance effort as well as risks for
inconsistencies can be reduced. A positive spin-off effect is that quantitative
information on usage frequencies is available in the requirements, enabling plan-
ning and prioritizing based on that information.
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PAPER V: Are the Perspectives Really Different? – Further 
Experimentation on Scenario-Based Reading of Requirements

Björn Regnell, Per Runeson, and Thomas Thelin

Technical Report CODEN:LUTEDX(TETS-7172)/1-40/1999 & local 4,
Submitted to the journal of Empirical Software Engineering, Kluwer.

Perspective-Based Reading (PBR) is a scenario-based inspection technique where
several inspectors read a document from different perspectives (e.g. user,
designer, tester). The reading is made according to a special scenario, specific for
each perspective. The basic assumption behind PBR is that the perspectives find
different defects and a combination of several perspectives detects more defects
compared to the same amount of reading with a single perspective. This paper
presents a study which analyses the differences in the perspectives. The study is a
partial replication of previous studies. It is conducted in an academic environ-
ment using MSc and PhD students as subjects. Each perspective applies a spe-
cific modelling technique: use case modelling for the user perspective,
equivalence partitioning for the tester perspective and structured analysis for the
design perspective. A total of 30 MSc students were divided into 3 groups, giv-
ing 10 subjects per perspective. A control group of 9 PhD students used a check-
list reading technique. The analysis results show that (1) there is no significant
difference between the three perspectives in terms of defect detection rate and
number of defects found per hour, (2) there is no significant difference in the
defect coverage of the three perspectives, and (3) PhD students with a checklist
approach find significantly more defects per hour and have a significantly higher
detection rate than MSc students with a PBR approach. The results suggest that
a combination of multiple perspectives may not give higher coverage of the
defects compared to single-perspective reading. It is also indicated that individ-
ual abilities and motivation are more important than the reading technique
used.

PAPER VI: From Requirements to Design with Use Cases
– Experiences from Industrial Pilot Projects

Björn Regnell and Åke Davidson

Proceedings of 3rd International Workshop on Requirements Engineering - Foundation for
Software Quality (REFSQ'97), Barcelona, Spain, June 1997.

In systems evolution, new requirements are distributed on existing architectures.
This paper describes a method for modelling how new requirements are distrib-
uted on a hierarchy of existing system components. The method applies use case
modelling in the transition from requirements to design, with focus on require-
ments traceability and dynamic system behaviour modelling. The method is
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based on a recursive process where functionality specification and distribution
activities are applied at different abstraction levels in the component hierarchy.
The method has been evaluated in three realistic projects, concerned with the
evolution of a complex real-time cellular switching system. The subjective con-
clusions from these evaluations suggest that use case modelling is useful in
requirements analysis and distribution within the studied domain.

PAPER VII: A Market-Driven Requirements Engineering Process
– Results from an Industrial Process Improvement Programme

Björn Regnell, Per Beremark, Ola Eklundh

Journal of Requirements Engineering 3:121-129, Springer-Verlag, 1998.

In market-driven software evolution, the objectives of a requirements engineer-
ing process include the envisioning and fostering of new requirements on exist-
ing packaged software products in a way that ensures competitiveness in the
market place. This paper describes an industrial, market-driven requirements
engineering process which incorporates continuous requirements elicitation and
prioritisation together with expert cost estimation as a basis for release planning.
The company has gained a measurable improvement in delivery precision and
product quality of their packaged software. The described process will act as a
baseline against which new promising techniques can be evaluated in the contin-
uation of the improvement programme.
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4.3 Further Research

One important outcome of research is the formulation of new research
issues to be investigated in the striving for more knowledge. Several areas
of further research in use case modelling are identified in each of the
papers of this thesis. Below, some examples of further research areas are
outlined.

■ Use cases and market-driven requirements engineering. Most of the
published requirements engineering practices and process models
have been oriented towards customer driven projects. Requirements
engineering for market-driven projects poses quite different prob-
lems, regarding, for example, how to invent requirements based on
foreseen end-user needs and select a set of requirements resulting in
a software product which can compete on the market. Require-
ments prioritisation based on use cases may be a valuable tool,
when designing requirements for a packaged software product. 

■ Use cases and software procurement. The market for commercial off-
the-shelf software components is taking off, and system providers
may construct their systems using components that they buy from
specialised software vendors. Software procurers are often in a deli-
cate situation, as they need to be experts in several specific compo-
nent domains in order to be able to state the right requirements of
each component. There are considerable risks of either being too
specific, or too general, which may result in a component that does
not solve the actual problem. Use cases may play an important role
in the requirements models used for specifying component require-
ments in a procurement situation.

■ Usage-based inspection. Given that a use case model is part of the
requirements document rather than created afterwards, this can be
a starting-point for a new type of inspection technique (Regnell,
1998), where the focusing of inspection effort is based on use cases
annotated with priority information. Techniques based on pair-wise
comparison may be used here (Karlsson, 1997). By comparing pairs
of use cases, we may prioritise them according to criteria such as fre-
quency and criticality. With the methods in (Karlsson, 1998) it is
possible to derive the relative priority of each use case. Based on
this, it may be possible to conduct usage-based reading using the
following scheme of effort partitioning: (1) Prioritise the use cases;
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(2) Decide on the total time to be spent on reading of an artifact;
(3) Assign a fraction of the total time to each use case based on the
priority; (4) For each use case, inspect the artifact for the assigned
time fraction by “walking through” the events of the use case and
decide if the artifact is correct. By using the priority criterion of
usage frequencies to focus reading by use cases, we get a static verifi-
cation that corresponds to the expected operational conditions of
the system. If we also record the reading time between found
defects, we may use these measures to derive an estimate of reliabil-
ity based on the mean time between defects. The performance of
such an inspection technique is an interesting area of further empir-
ical research.

■ Use cases and usage-based testing. The two proposed strategies of
integrating use cases with testing (transformation and extension)
require validation in real situations to investigate under which con-
ditions which strategy is best. Further study of stochastic semantics
of use case models in the extension approach is needed. Interesting
topics are how time can be introduced in stochastic use case models,
and how to construct user simulators based on use case models.

■ Use cases and usability engineering. In usability engineering the user
interface of a system is optimized in order provide a user friendly
and efficient interaction between humans and computer-based sys-
tems. Analysis of user tasks in terms of their contained operations
and their frequency is hence an important step in usability engi-
neering. Scenarios have been used in the Human Computer Inter-
action (HCI) community, and the relation between and integration
of HCI methods with use case based RE is an interesting topic for
further studies.

■ Requirements engineering process simulation based on “meta use cases”.
In Paper VII, requirements engineering process enactment scenarios
are described using Message Sequence Charts in a similar way as use
cases are described in Paper II. These meta-level “process use cases”
may be a valuable input to the creation of requirements engineering
process simulation models, which may be used to investigate proc-
ess optimization problems, such as how to partition the effort spent
on different requirements engineering activities in order to get the
highest possible throughput in the analysis and specification of
requirements.
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■ Formal methods and use case modelling. In this thesis, the representa-
tions of use cases are semi-formal in the sense that they are not
based on a mathematical formalism that allow formal reasoning.
Although there is in an inherent conflict between the understanda-
bility of requirements models and their formalisation, it is still
interesting to define and investigate the formal semantics of use
cases, using, for example, the Z language (Spivey, 1992) or process
algebra (Hoare, 1985), to see how the deductions made possible by
such a formal language can help in the analysis of use case based
requirements.

■ Use cases as a basis for effort estimation. When planning a software
development project, a difficult task is to estimate the efforts
needed to implement the requirements. Given that the require-
ments include structured use case models, it may be possible to
define measurements that can be used in the creation of use case
based effort prediction models. Combined with experiences from
previous projects, use case metrics may play a key role in effort esti-
mation. Developing and validating such metrics and prediction
models is an interesting area of further research.

■ Tool support for use case modelling. If use cases are represented using
natural language without restrictions, it may be suitable to use a
common word processor as a tool for creating and maintaining use
cases. However, a structured approach to use case modelling may
provide the opportunities of effective tool support, where text-
based requirements entities are integrated with use case descriptions
in, for example, graphical language. Tools may support the analysis
of use case syntax and semantics and provide means for relating use
cases to other artefacts such as test cases and design models.

■ Empirical studies of use case approaches. Weidenhaupt et al. (1998)
provide an interesting survey of current practice in 15 European
software development projects. Further surveys of use case practice
and the effectiveness of use cases and scenarios are important. Spe-
cific case studies on new use case methodology proposals are also of
certain interest. It is very important to gain further understanding
of when and how use cases and scenarios can be effectively and effi-
ciently applied in different contexts.
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PAPER I:

Improving the Use Case Driven
Approach to Requirements Engineering

Björn Regnell, Kristofer Kimbler and Anders Wesslén

Published in Proceedings of RE’95, Second IEEE International Symposium on Requirements 
Engineering, York, UK, March 1995

Abstract

This paper presents the idea of Usage-Oriented Requirements Engineer-
ing, an extension of Use Case Driven Analysis. The main objective is to
achieve a requirements engineering process resulting in a model which
captures both functional requirements and system usage aspects in a com-
prehensive manner. The paper presents the basic concepts and the process
of Usage-Oriented Requirements Engineering, and the Synthesized Usage
Model resulting from this process. The role of this model in system devel-
opment, and its potential applications are also discussed.

I



Improving the Use Case Driven Approach to Requirements Engineering

44 Requirements Engineering with Use Cases - A Basis for Software Development

1. Introduction

When dealing with complex systems, it does not seem feasible to go
directly, in one step, from an informal requirements description provided
by the customer to a formal requirements specification. Too rapid formal-
ization of requirements may have several negative consequences, such as a
substantial semantic gap between the requirements description and the
requirements specification or incompleteness of the latter. It is also very
difficult to produce a formal specification without a deep understanding
of what the customer and the end users expect from the system, and how
they intend to employ it in practice. This kind of information is rarely
provided at the outset of system development.

This paper presents Usage-Oriented Requirements Engineering
(UORE) which tries to address the above issues in a structured and sys-
tematic way. The concept of UORE originates from Use Case Driven
Analysis (UCDA), a key contribution of Object-Oriented Software Engi-
neering (OOSE) [1]. 

Our objective is to improve the original UCDA by extending it with a
synthesis phase where separate use cases are integrated into a Synthesized
Usage Model (SUM). This model captures both functional requirements
and system usage aspects. To facilitate this integration, UORE introduces
a formal, graphical representation of use cases and abstraction mecha-
nisms for representing user and system actions.

Abbreviations

The following abbreviations are used throughout this paper:

AIO Abstract Interface Object

AUS Abstract Usage Scenario

SUM Synthesized Usage Model

UCDA Use Case Driven Analysis

UCM Use Case Model

UCS Use Case Specification

UORE Usage-Oriented Requirements Engineering

OOSE Object-Oriented Software Engineering, according to [1]
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2. Use Case Driven Analysis

This section presents and discusses UCDA as defined in OOSE [1]. The
basic concepts of UCDA are actors and use cases. An actor is a specific role
played by a system user, and represents a category of users that demon-
strate similar behaviour when using the system. By users we mean both
human beings, and other external systems or devices communicating with
the system. An actor is regarded as a class, and users as instances of this
class. One user may appear as several instances of different actors depend-
ing on the context. 

A use case is a system usage scenario characteristic of a specific actor.
During the analysis we try to identify and describe a number of typical
use cases for every actor. Use cases are expressed in natural language with
terms from the problem domain. The descriptions of actors and use cases
form the Use Case Model (UCM). 

Advantages. UCDA helps to cope with the complexity of the require-
ments analysis process. By identifying and then independently analysing
different use cases we may focus on one, narrow aspect of the system
usage at a time. 

Since the idea of UCDA is simple, and the use case descriptions are
based on natural concepts that can be found in the problem domain, the
customers and the end users can actively participate in requirements anal-
ysis. In consequence, the developers can learn about the potential users,
their actual needs, and their typical behaviour.

Disadvantages. The lack of synthesis is probably the main drawback of
UCDA. The Use Case Model that we get from UCDA is just a loose col-
lection of use cases. In the subsequent phases of OOSE, these use cases are
directly used to create the so-called Analysis Model. This model describes
the structure of the system and is a step towards design. What we really
would like to get from requirements analysis, is a model which captures
the functional requirements and system usage, without any design
aspects.

Although use cases are perfect material for creating test cases, the
UCM resulting from UCDA cannot be used for automatic generation of
test cases. This limits its applicability as a reference model for validation
and verification.
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There are also several problems with the interpretation of the actor and
use case concepts, as defined in [1]. No clear definition of the semantics of
use cases, and no consistent guidelines on how the use cases should be
described are provided. It is not clear what kind of events we should con-
centrate on while describing use cases; external stimuli-responses only, or
internal system activities as well. In [1], use cases are treated as classes with
inheritance-like relations, but, at the same time, they are seen as sequences
of events. Object-orientation purists tend to treat everything as objects,
but here we find the class interpretation rather artificial and confusing. 

In [1], every use case is associated with a specific actor, but, at the same
time, allows use case descriptions in which several actors are involved.
Moreover, an actor is defined as a specific role played by a user. This
means that, in extreme, one physical user can appear as different actors in
a single use case. These uncertainties leave too much room for free inter-
pretation of the actor and use case concepts, and may cause a lot of confu-
sion.

The number of use cases may be very large in cases of complex systems.
Since produced independently, there might be inconsistencies between
use case descriptions. Moreover, use cases might be contradictory, as they
express goals of different actors. In [1] there is no support for resolving
such problems. 

A specific use case can not occur in every situation. What we need for
each use case is a specification of the context in which it can be triggered
and successfully accomplished. This issue is not addressed by UCDA.

In general, UCDA, as defined in [1], does not fully address the follow-
ing issues:

■ Use cases are not independent. They may overlap, occur simultane-
ously, or influence each other.

■ Use cases occur under specific conditions. They have invocation
and termination contexts.

■ The level of abstraction of use cases and their length are matters of
arbitrary choice.

■ The use cases can, in practice, guarantee only partial coverage of all
possible system usage scenarios.
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3. Usage-Oriented Requirements 
Engineering 

The proposed UORE process aims at removing some of the weaknesses of
UCDA stated in the previous section. UCDA is extended with a synthesis
phase, where use cases are formalized and integrated into a Synthesized
Usage Model. The SUM captures functional requirements and system
usage in a more formal way than the UCM. 

The SUM is intended to be a part of requirements specification, and a
reference model for validation and verification. The SUM captures the
following related aspects:

■ Categories of system users and their objectives,

■ Domain objects, their attributes, and operations,

■ Stimuli and responses of user-system communication,

■ User and system actions, their possible combinations and usage
contexts,

■ Scenarios of system usage, their flows of events, and trigger condi-
tions.

The process of UORE consists of two phases, analysis and synthesis, as
shown in fig. 1. The analysis phase has an informal requirements descrip-
tion as input, and produces the use case model containing descriptions of
actors and use cases. This model, in turn, is used as input to the synthesis
phase which formalizes the use cases, integrates them, and creates the syn-
thesized usage model

3.1 Analysis phase

The analysis phase of UORE resembles the original UCDA, and consists
of two interrelated activities: 

1. Identification of use cases and actors,

2. Unification of terminology.



Improving the Use Case Driven Approach to Requirements Engineering

48 Requirements Engineering with Use Cases - A Basis for Software Development

The first activity aims at finding and describing actors and use cases. The
second activity unifies the terminology of these descriptions. For this pur-
pose the problem domain objects and their attributes are identified and
described in a data dictionary. The focus is on entities manipulated by the
actors, externally observable system operations, and elements of the user
interface.

The unification of terminology is important, especially as different use
cases may be described by separate persons or groups. The terminology is
gradually extended and revised as more and more use cases are identified.
The unified terminology is enforced by inspections. The two activities of
the analysis phase are performed iteratively.

To illustrate UORE we will use a well-known example of an Auto-
mated Teller Machine (ATM) [2]. ATM offers basically two services: cash
withdrawal and account control. In fig. 2 we show examples of actors and
use cases.

Synthesized Usage Model 
SUM

Unification 

Integration

ANALYSIS

SYNTHESIS

Requirements Description 

Formalization

Verification

Identification 

Use Case Model 
UCM

Figure 1. The process of UORE.
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1. Withdraw Cash, normal case 
Actor: “ ATM customer”
1.IC Invocation Conditions:
1.IC.1 The system is ready for transactions.

1.FC Flow Conditions:
1.FC.1 The user’s card is valid.

1.FC.2 The user enters a valid code.
1.FC.3 The user enters a valid amount.
1.FC.4 The machine has the required amount of cash.

1.FE Flow of Events:
1.FE.1 The user inserts the card.

1.FE.2 The system checks if the card is valid.

1.FE.3 A prompt for the code is given.

1.FE.4 The user enters the code.
1.FE.5 The system checks if the code is valid.

1.FE.6 A prompt “enter amount or select balance” is given.

1.FE.7 The user enters the amount.

1.FE.8 The system checks if the amount is valid.

1.FE.9 The system collects the cash.
1.FE.10 The cash is ejected.

1.FE.11 A prompt “take cash” is given.

1.FE.12 The user takes the cash.
1.FE.13 The card is ejected.

1.FE.14 A prompt “take card” is given.

1.FE.15 The user takes the card.

1.FE.16 The system collects receipt information.

1.FE.17 The receipt is printed.

1.FE.18 A prompt “take receipt” is given.

1.FE.19 The user takes the receipt.

1.TC Termination condition:
1.TC.1 The system is ready for transactions.

2. Withdraw Cash, amount invalid
Actor: “ATM customer”
2.IC Invocation Conditions:
2.IC.1 Same as 1.IC.1.

2.FC Flow Conditions:
2.FC.1 Same as 1.FC.1 - 1.FC.2.

2.FC.2 The user enters an invalid 

amount.

2.FE Flow of Events:
2.FE.1 Same as 1.FE.1 - 1.FE.8

2.FE.2 The “invalid amount” message 

is given.

2.FE.3 A prompt for “retry” is given.

2.FE.4 The user aborts the transaction.

2.FE.5 Same as 1.FE.13 - 1.FE.15

2.TC Termination condition:
2.TC.1 Same as 1.TC.1.

3. Account Control, normal case
Actor: “ATM customer”
3.IC Invocation Conditions:
3.IC.1 Same as 1.IC.1.

3.FC Flow Conditions:
3.FC.1 Same as 1.FC.1 - 1.FC.2.

3.FE Flow of Events:
3.FE.1 Same as 1.FE.1 - 1.FE.6.

3.FE.2 The user selects “balance”.

3.FE.3 The system collects balance 

information.

3.FE.4 The balance is displayed.

3.FE.5 Same as 1.FE.13 - 1.FE.19

3.TC Termination condition:
3.TC.1 Same as 1.TC.1.Problem domain objects in bold face.

Defined and unified terminology in italics.

Figure 2. Use case description examples.

Actors:
ATM customer – uses the ATM to withdraw cash or control the account balance.

ATM supervisor – supervises and maintains the operation of the ATM.

ATM database – the external system maintaining account information.
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Differences

As mentioned above, the analysis phase of UORE resembles the OOSE
version of UCDA. There are, however, a number of issues that make our
approach different:

■ Changed semantics of actors and use cases,

■ Identification of use case contexts,

■ Strict application of the single-actor view,

■ Explicit unification of terminology,

■ Structured description of use cases.

In UORE, an actor represents a user (a person or an external system) that
belongs to a set of users with common behaviour and goals. An UORE
actor does not necessarily model a single role played by a user, as in [1]. In
our opinion, the single-role semantics of actors may lead to use cases
which address too narrow aspects of system usage. This, in turn, disables
analysis of how different system operations interact. (Some systems may
allow a user to play multiple roles at the same time.)

Unlike [1], which treats the use cases as classes, we regard them just as
examples of system usage. We consider use cases as “experimental mate-
rial” which will be further investigated in the synthesis phase. 

In UORE, each use case describes the system behaviour, as seen by one
actor only. This single-actor-view approach makes the use case concept
simpler. We assume that the actor involved in a use case communicates
with other actors through the system. No situations with direct actor-to-
actor communication are modelled. In other words, the narration of the
use cases distinguishes only between the actor and the “rest”. If a system
usage scenario involves several actors, this scenario should be modelled by
several use cases, one for each involved actor. This provides a clear crite-
rion for constructing use case descriptions and reduces their complexity.
To conclude, we can say that the UORE principle for use case definition
is: “multiple roles, yes; multiple actors, no”.

In UORE, the description of each use case contains a list of conditions
defining a context in which the specific flow of events of the use case can
occur. The invocation conditions and termination conditions define the sys-
tem state before and after the use case, while the flow conditions state the
assumptions about the user and system behaviour during the use case. A
flow condition is not necessarily true at the invocation of the use case, but
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it becomes true at some point in the use case. A flow condition is thus a
temporal assertion that implicitly refers to a “future” point in the flow of
events of the use case. These different conditions are an important aid in
the synthesis phase for finding relations between use cases. 

In order to avoid some typical problems with natural language descrip-
tions, all the use cases should use the same terminology and format. The
terminology of these descriptions is unified across different use cases, as
discussed above. The examples in fig. 2 show a possible structure of use
case descriptions. A systematic numbering of events supports traceability
within and between the models of the analysis and synthesis phases. Fur-
thermore, when describing a use case, we can use such numbers to refer to
identical conditions and sequences of events in other use cases, in order to
make the description shorter.

3.2 Synthesis phase

The synthesis phase formalizes the use cases, integrates them, and creates
the Synthesized Usage Model. The synthesis phase consists of three activi-
ties:

1. Formalization of use cases,

2. Integration of use cases,

3. Verification.

These three activities are carried out in an iterative manner, until an agree-
ment upon the correctness and completeness of the SUM is reached. In
the following sections we will describe each activity and the concepts they
use.

3.3 Formalization activity

The formalization activity aims at producing a formal Use Case Specifica-
tion (UCS) for each use case identified in the analysis phase. The product
of this activity is a collection of UCS’s, represented in the formal, graphic
language of message sequence charts (an extension of [3]). Each UCS
expresses the temporal ordering of user stimuli, system responses, and
atomic operations. 

The formalization activity has the following steps:
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1. Identification of abstract interface objects,

2. Identification of atomic operations,

3. Creation of one UCS for every use case.

The concepts used in the formal representation of user-system communi-
cation, and the steps necessary in the creation of a UCS are explained
below.

Abstract interface objects

The user never communicates directly with a software system. Some sort
of interface is always involved in this communication. The interface trans-
forms the user’s stimuli into messages (software events) and, messages from
the system into responses comprehensible to the user. This transformation
is not necessarily straightforward. The three basic elements of user-system
communication; the user, the interface and the system, are inherently parts
of system usage, consequently they can be found in use case descriptions. 

The entities that form the nature of user-system communication will
be called Abstract Interface Objects (AIO). They are abstract in the sense
that they do not necessarily represent concrete interface objects. Instead,
they model responsibilities (see [4]) that can be mapped to one or more
real interface objects. The intention is to avoid any design decisions at this
stage.

Identification of abstract interface objects is achieved by examining all
the use cases and the problem domain terminology, and searching for
entities that take part in the actor-system communication. An AIO is
characterized by its sets of stimuli, responses, messages, and states. 

Atomic operations

On a conceptual level we can describe the elements of the system’s capa-
bilities by atomic operations. They are operations performed by the sys-
tem, and have effect on the users. A system operation is atomic from an
actor’s point of view, if it does not require any communication with this
actor during its execution. However, other actors may see the same opera-
tion as a combination of other atomic operations and communication
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protocols. For example, the operation card validation is atomic from the
ATM Customer actor’s point of view, although from the ATM Database
actor’s point of view it is a sequence of operations and communications.

The atomic operations are identified from the use cases by focusing on
system operations that do not require interaction with the actor involved
in the use case. Every system action is described and given a unique name
to be used uniformly in all use case specifications. We will not elaborate
here on the specification of atomic operations. 

Formal use case specification

The formalization activity produces formal use case specifications. After
identifying all abstract interface objects and atomic operations, we trans-
form the flow of events of every use case into a UCS that models the tem-
poral relations between AIO stimuli/responses/states and atomic
operations. 

We illustrate the notation of UCS by our ATM example. The UCS
corresponding to the use case “withdraw cash, normal case” is shown in
fig. 3. The left-most time axis of fig. 3 represents the specified actor. The
right-most time axis represents the system. Between the actor and the sys-
tem we have the different AIO’s involved in this use case. The AIO states
are drawn as diamonds on the AIO time axis, and the atomic operations
are drawn as boxes on the system’s time axis.

3.4 Integration activity

The integration activity aims at merging different use case specifications
and producing a Synthesized Usage Model. The SUM consists of a collec-
tion of usage views, one for each actor. The integration activity consists of
the following three steps:

1. Identification of user and system actions,

2. Creation of abstract usage scenarios,

3. Integration of abstract usage scenarios.
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card message receiptnumber ATM SystemATM Customer

Figure 3. Use Case Specification Withdraw cash - normal case.
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Figure 4.
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User and system actions

 

In a use case, the control shifts between the user and the system. When we
formally represent system usage we would like to have an abstraction
mechanism that conceals the detailed protocol of the interaction during
the user-controlled parts and the system-controlled parts of a use case. We
use the terms 

 

user actions

 

 for protocols where the user is in control, and

 

system actions

 

 for protocols where the system is in control. 
The first step of the integration activity aims at extracting such abstract

protocols. Hence, in several UCS’s we can identify actions such as “enter
code” and “cash collection”, which form a demarcated protocol with a
sequence of related events, resulting in a single message. All such UCS
parts are uniformly defined with a name and description. 

To illustrate this, in fig. 3 a UCS part is marked with 

 

*1

 

, which corre-
sponds in fig. 4 to the user action 

 

1*

 

 “enter code” and the resulting mes-
sage “code”. Similarly, the UCS part denoted 

 

*2

 

 corresponds to the
system action “cash collection” and message “cash”, marked with 

 

2*

 

.
An action can have different outcomes. For example, the system action

“code validation” may result in the events “code OK” or “code invalid”.
An action can thus represent a collection of similar protocols, with differ-
ent outcomes. An action can also be seen as a state where the user or the
system tries to accomplish some specific task. The user and system actions
could be described internally by finite state machines, as proposed in [5].
This possibility is, however, not yet incorporated into UORE.

 

Abstract usage scenarios

 

Using the abstraction mechanisms of user and system actions, use case
specifications can be expressed in a more condensed way. Every UCS is
transformed into an Abstract Usage Scenario

 

 

 

(AUS), drawn as a sequence
of user actions (bubbles) and system actions (boxes) interconnected with
transitions (arrows) that represent the resulting messages of each action.
The invocation and termination context of an AUS is indicated by labels
(circles). A label denotes an external system state, i.e. a subset of the
carthesian product of all AIO states. In fig. 4 a sample AUS is shown.

The main purpose of creating AUS’s, is to make the synthesis feasible
even if we have a very large number of use cases. By raising the abstraction
level we hide information, to make “clean threads” and then “weave them
together” in the last step of integration.
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Synthesized Usage Model

 

The SUM consists of one usage view per actor. A usage view is synthesized
from all Abstract Usage Scenarios produced for one specific actor. A usage
view is created by finding similar parts of Abstract Usage Scenarios and
merging them. The result is a directed graphs with three types of nodes:

 

user actions

 

, 

 

system actions, 

 

and

 

 labels

 

. These nodes have the same meaning
as in Abstract Usage Scenarios. Labels are used to maintain traceability
between usage views and AUS’s. Additional labels can be introduced to
divide large graphs into separate sub-diagrams, thus promoting scalability.
An example of a usage view is given in fig. 3. (This usage view is an inte-
gration of more use cases than shown in the examples in fig. 3.)

In summary, the SUM contains descriptions of the following:

1. Actors,

2. Usage views,

3. Use case specifications,

4. Abstract interface objects,

5. User actions and system actions,

6. Data dictionary with problem domain objects.

 

3.5 Verification activity

 

The purpose of the verification activity is to obtain a consistent and com-
plete SUM. There are two verification steps related to the formalization
activity and integration activity respectively: 

1. Verification of UCS,

2. Verification of SUM.

The verification of a UCS is performed as a rigorous inspection where the
UCS is compared with the corresponding use case in the UCM. The
reviewers check that the UCS is a correct transformation of the informal
use case description, meaning that everything in the use case is contained
in the UCS and that the objects in all UCS’s are consistently defined.

The second verification step aims at ensuring that the SUM com-
pletely covers every UCS. Here is a great potential for automatic verifica-
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tion, where a tool could check that every AUS is a possible path in the
corresponding usage view. It is possible that, during the synthesis phase,
new user and system actions are discovered and incorporated in a usage
view, thus making more usage scenarios valid in addition to the defined
AUS’s. In the verification of the SUM, such additional usage scenarios can
be created by traversing the graphs of the usage views. In this way, the

ready

insert card

card validation

enter code

code validation

amount validation

cash collection

take cash

take receipt

ready

account number

card ok

code

amount

amount ok

cash

cash taken

receipt taken

take card

card taken

collect receipt info

receipt

balance

code ok

card invalid

take card

card taken

code
fail

re-enter code

code

code invalid

retry validation

code

code
invalid

too many errors

disclaim card

amount
fail

amount
invalid

re-enter amount

amount

aborted

aborted

aborted

Legend:

System Action

User Action

Label

Message 

m

x

y

z

ready

Figure 5.  The usage view for “ATM Customer”.

enter amount
or select balance 

balance
selected

collect balance info

abort

abort

abort

abort

balance info

aborted

ok



 

4. Applications of SUM

Requirements Engineering with Use Cases - A Basis for Software Development

 

59

 

“experimental material” of use cases is used to build a model that enables
the discovery of yet unidentified scenarios, and thus making the SUM a
model that covers 

 

more

 

 than the initial experiments.

 

4. Applications of SUM

 

The Synthesized Usage Model is designed to be used as a

 

 

 

reference model

 

for the remaining phases of system development. The SUM captures not
only functional requirements, but also system usage. The SUM is a source
of information about 

 

what

 

 the system is supposed to do, and 

 

how

 

 it
should behave from the user’s point of view in different usage contexts.
Therefore, the SUM can form a backbone for the whole development
process including system design, verification, and validation. This role of
a formal usage model in system development is discussed in [6]. In the
following sections we discuss the potential benefits of SUM in system
design as well as in verification and validation. A report on practical expe-
riences in the field of telecommunication is also given.

 

4.1 System design

 

The SUM captures functional and behavioural aspects of the system that
are important for system design. The user and system actions are abstrac-
tions of user-system communication protocols that produce system stim-
uli and responses.

The semantics of an action is defined by the different contexts in
which it can occur, and the set of abstract interface objects it encapsulates.
This information can be directly applied in the 

 

external design

 

, where the
mapping of AIO’s to actual interface objects, and the concrete shape of
the user interface is determined. The SUM can also be used for creating a
prototype of the user interface.

The set of atomic system operations and their usage contexts is a valu-
able information for 

 

internal design

 

. Here we have to consider the fact that
some system operations can be atomic for one actor, but not for another.
This information can be useful for finding a robust object structure of the
system, and for allocating functionality to objects, as suggested in [1].
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4.2 System verification and validation

 

In order to ensure the correctness of the system implementation and
requirements traceability, the system can be verified against the SUM by
means of testing. The possibility of 

 

automatic generation of test cases

 

 is one
of the most important properties of the SUM. Each usage view of the
SUM can be used to generate test cases in the form of “re-created” usage
scenarios. These scenarios contain both stimuli to the system and the
expected system responses, thus enabling automatic verification of the test
results. Though a strategy of test case selection is beyond the scope of this
paper, in the next paragraph we briefly discuss the possibility of using the
SUM for statistical usage testing. 

 

Statistical usage testing

 

In statistical usage testing [7], test cases are derived from a usage model.
This model describes both functional and statistical properties of system
usage. Experiences with the so-called 

 

state hierarchy model

 

 [8, 9], shows
that it is feasible to generate test cases automatically from a model of sys-
tem usage. These test cases are samples of the expected system usage and
have the necessary statistical properties that enable certification of the sys-
tem’s reliability.

Statistical usage testing is a black-box testing technique, as it derives
the usage model from the requirements specification. Unfortunately, there
is a substantial gap between the usage model required for statistical usage
testing and the traditional requirements specification. What we need from
requirements analysis is an explicit description of system usage. By using
the SUM as an element of requirements specification, we can possibly
bridge this gap and make test preparation easier. By this approach, test
preparation can concentrate on modelling statistical properties by adding
probabilities to the SUM.

 

4.3 Practical experiences

 

Though UORE, as described in this paper, has been used only in minor
case studies, the key elements of the method (synthesis of use cases, single-
actor views, and SUM) have already been applied in practice. In the anal-
ysis of interactions between pan-European telecom services, these ele-
ments of UORE have yielded positive results [10, 11].
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The problem of undesired feature interactions is a major threat to the
rapid deployment of new telecom services. An interaction occurs when
one service feature changes or disables the operation of another feature.
One of the approaches to this problem is to detect and resolve interac-
tions during requirements analysis. 

By applying the use case driven approach to the analysis of the pan-
European candidate services, and synthesizing the use cases, a behavioural
model of these services and their features was obtained. This model corre-
sponds to one usage view of the SUM, i.e. it represents the behavioural
aspects of the services as seen by one actor, 

 

service user

 

. This model was
analysed by a custom-designed tool that automatically detected a large
number of potential feature interactions. The tool used the possibility of
re-creating service usage scenarios (in this case different scenarios of tele-
phone calls) from the model, as described in [12] and [10].

 

5. Conclusions

 

The ideas introduced in this paper clarify and formalize several important
aspects of UCDA. It is our belief that UORE is a significant improvement
of UCDA, by its criteria for finding, describing, formalizing, and synthe-
sizing use cases. However, it is still untried on the large scale, and it
remains to be proven that UORE is easier to use and gives a better sup-
port in requirements engineering than the original UCDA. By empirical
studies we hope to prove the benefits of the SUM as a system reference
model. 

In summary, the main contributions are:

 

■

 

The improvement of the actor and use case concepts,

 

■

 

The formalization of use case descriptions,

 

■

 

The idea of use case synthesis,

 

■

 

The Synthesized Usage Model,

 

■

 

The process of Usage-Oriented Requirements Engineering.

There are still a number of issues to be addressed in future research, for
example:
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■

 

Formal description of the invocation, termination, and flow condi-
tions of use cases,

 

■

 

Formal description of procedural and non-procedural properties of
user and system actions,

 

■

 

Further refinement of use case synthesis – integration of different
usage views in the SUM,

 

■

 

Formal definition of the syntax and semantics of SUM,

■ Transformation of the SUM into a test model suitable for statistical
usage testing,

■ Automation of verification and validation of the test results by
using SUM as a reference model of system behaviour.
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Abstract

Use case modelling is gaining increasing interest in computer-based sys-
tems engineering, especially in the earliest stages of system development,
where requirements are elicited, documented and validated. This paper
presents a conceptual framework for use case modelling and a new use
case model with graphical representation, including support for different
abstraction levels and mechanisms for managing large use case models.
Current application of use cases in requirements engineering is discussed,
as well as ontological and methodological issues related to use case model-
ling.

1. Introduction

The elicitation, analysis and documentation of requirements on complex
computer-based systems is a crucial and non-trivial task [1]. Well defined
concepts and methods are needed when constructing formal, agreed
upon, specifications that represent requirements in an unambiguous, con-
sistent, and complete manner. It is also important to have representations
of requirements models that are easily understood by the different stake-
holders that take part in requirements analysis [2]. 

II
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Use cases (also called scenarios), introduced in OOSE [3], have been
given increasing attention in other object-oriented development methods,
e.g. [4, 5]. In requirements engineering use cases are of special interest, as
this concept has proven to be valuable in elicitation, analysis and docu-
mentation of requirements [6, 7, 8]. Use cases also provide traceability of
requirements throughout the design, implementation and verification and
validation phases [9]. This paper presents ongoing research in use case
based requirements engineering, with focus on representation. The pre-
sented results are extensions of the work described in [10, 11]. 

A major objective of use case driven analysis is to model a system’s
functional requirements by describing different scenarios of system usage.
The basic concepts of these descriptions are actors and use cases. An actor
is a specific role played by a system user, and represents a category of users
that demonstrate similar behaviour when using the system. The way an
actor uses the system is described by use cases. The actors and use cases
form the use case model. An important advantage of use case driven anal-
ysis is that it helps to manage complexity, as it focuses on one specific
aspect of usage at a time. It also provides means for customers and users to
actively participate in requirements analysis, as use cases are expressed in
terms familiar to them.

An important question in use case based requirements engineering
research is: How should use cases be represented? In [6], one of the con-
clusions from an industrial case study on use cases in requirements specifi-
cation was that textual representation is insufficient and that graphical
representation is desirable. This paper presents a new hierarchical use case
model with a graphical representation based on an extension of Message
Sequence Charts (MSC), an ITU-T standardized language [12].

The main hypothesis behind this work is that use case modelling bene-
fits from graphical representations that have support for descriptions at
different levels of abstraction. The results presented here include such a
representation.

Section 2 discusses the state of the art in uses case modelling. Section 3
provides a conceptual framework for a use case ontology and discusses
methodological issues. The presented conceptual framework forms the
basis for Section 4, where a new hierarchical use case model with graphi-
cal notation is presented. Section 5 provides conclusions and covers some
issues of further research and tool support.
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2. Use Cases in Current Methods

This section discusses how use cases are currently applied in four develop-
ment methods; OOSE [3, 13], OMT [14, 5], Booch [4], and ROOM
[15]. The main focus here is on the role of use cases in requirements elici-
tation and analysis. 

Table 1 shows an overview of these four methods with respect to con-
cepts, notation, process and methodology. The overview is not complete,
but highlights some similarities and differences between the methods.

Below we give a few reflections on these methods.

■ OOSE has the most thorough definition of the use case model and
the most methodological support for constructing the model. In
OOSE, use cases play a central role, as the whole development
process is driven by the use case model.

■ OMT [5] has adopted many of the use case related concepts in
OOSE and added pre- and post conditions to use cases.

OOSE OMT Booch ROOM
Concepts use case, actor, 

exception, extends, 
uses

use case, actor, 
scenario, pre- & post 
condition, excep-
tion, adds

use case, scenario, 
initiator, 
pre- & post condi-
tion

scenario, initiator, 
participant, package, 
alternative, excep-
tion, high level sce-
nario

Notation in 
requirements 
analysis phase

Natural language 
describes use cases. 
Arrows and ovals 
describe relations 
between use cases.

Natural language 
with some structure 
guidelines. 

Natural language. Natural language and 
Message Sequence 
Charts.

Role in the 
development 
process

Drives the whole 
process. Used for 
finding objects. Used 
for 
finding robust 
design.

Used to strengthen 
req. analysis. Used 
for 
finding objects.

Used for finding 
objects. Used in 
design. Used for 
release planning.

Used for expressing 
functional require-
ments; to make ini-
tial design; for 
incremental develop-
ment.

Methodology 
for creating 
use case model

Some heuristics are 
provided. Questions 
to answer for each 
actor help identify 
use cases.

Step-wise action list 
is provided. Scenar-
ios are combined/
generalized into use 
cases.

Prescribes scenario 
planning as an activ-
ity and provides a 
few guidelines.

A few guidelines are 
provided.

Table 1. Overview of use cases in current object-oriented methods.
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■ The Booch method includes scenarios, similar to use cases, but the
initiator concept does not fully correspond to the actor concept of
OOSE.

■ In ROOM, scenarios are grouped into packages that may be priori-
tized. This prioritization is used when planning incremental devel-
opment. ROOM has an initiator concept similar to Booch.

The semantics of the use case related concepts in the different methods
are not corresponding, and thus there is a significant inconsistency
between the methods with respect to how the concepts are interpreted.
Consequently the use case concept as such becomes fuzzy and several
issues need to be clarified [16]. The inventors of OOSE, OMT and
Booch are currently striving at a unified method, and in the future we will
hopefully see a convergence between the different sets of concepts. (In the
next section we will define the concepts that will be used later on in this
paper. It remains to be seen how these concepts correspond to use case
related concepts in the emerging unified method.)

Natural language is the main tool, in most current methods, for
describing use cases at the requirements level. Graphical representation, if
present, is only used in the design phase. An exception is ROOM, that
uses Message Sequence Charts for describing linear scenarios already dur-
ing requirements specification. Natural language gives freedom and
expressive power, but little support for visualization and automated syn-
tactic and semantic checking.

In all methods, use cases are mainly a support for design, and here use
cases are used for finding objects and determine the system structure.
Although ROOM mentions scenarios as a means for expressing func-
tional requirements, no methods have, in our opinion, fully exploited use
cases in pre-requirements specification activities. 

In general, the methods focus on internal rather than external system
behaviour, thus making their use case approach less suitable for require-
ments engineering.

Furthermore, no modularisation concepts are given to manage large
use case models. The uses and extends concepts in OOSE, and the adds
concept in OMT [5], are presented as a means to provide extensibility,
but no rigorous semantics are provided for these concepts.

A general disadvantage of current use case approaches is that we get a
loose collection of use cases which are separate, partial models, addressing
narrow aspects of the system requirements [11]. When we divide the sys-
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tem requirements into different partial models of usage we face the prob-
lem of relating these views and keeping them consistent with each other
[17].

Another general problem with use case modelling is granularity. How
detailed should we be when describing use cases? How large should the
scope of each use case be? The current methods give little support to
tackle this problem.

3. Ontological and Methodological Issues

In order to create a method that gives sufficient support in model crea-
tion, it is vital that the conceptual framework applied by the method is
well defined and easy to interpret. This section is aimed at providing clear
definitions of the concepts that will form a basis for the hierarchical use
case model presented in the next section. In addition to the concepts of
actor and use case, this section will extend the conceptual framework of
use case analysis with a number of additional concepts, such as service,
goal [18], and episode [7]. The concepts scenario and use case have often
been used synonymously [6], but within the presented framework, they
will be distinguished.

3.1 Concepts

We start with the demarcation of what is inside and what is outside the
system to be built. The intended system is called target system and the
environment in which the system will operate is called the host system.
The users of a target system belong to the host system and can be either
humans or software/hardware based systems. Inside the target system we
have a number of services. A service is a package of functional entities
(features) offered to the users in order to satisfy one or more goals that the
users have.

Users can be of different types, called actors. A user is thus an instance
of one actor (or possibly many actors, if user types are defined as overlap-
ping and thus allowing for multiple classifications). An actor (also called
user type) represents a set of users that have some common characteristics
with respect to why and how they use the target system. Each actor has a
set of goals, reflecting such common characteristics. In other words; goals
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are objectives that users have when using the services of a target system; goals
are used to categorize users into actors. 

A use case models a usage situation where one or more services of the
target system are used by one or more users with the aim to accomplish
one or more goals. A use case may either model a successful or an unsuc-
cessful accomplishment of goal(s). Every use case has a context that
demarcates the scope of the use case and defines its preconditions (prop-
erties of the host and target system that need to be fulfilled in order to
invoke the use case) and postconditions (properties of the host and target
system at use case termination).

A use case may be divided into coherent parts, called episodes. The
same episode can occur in many use cases. Each episode consists of events
of three kinds: stimuli (messages from users to the target system),
responses (messages from the target system to users), and actions (target
system intrinsic events with no communication between the target system
and the users that participate in the use case). Stimuli and responses can
have parameters that carry data to and from the target system. Actions
may have input and output parameters.

These concepts build up our conceptual framework for use case analy-
sis. Some of the concepts and their relations are illustrated in figure 1.

A use case can be described at different levels of abstraction. Three lev-
els can be identified. At the environment level, the environment of each
use case is described by associating it with related actors, services and
goals. At the structure level the episode structure of each use case is
described by defining sequencing, alternatives, repetitions, exceptions and
interrupts. At the event level the episodes are described in further detail in
terms of the events that occur in each episode. The event level orders the
events by the same means as episodes are ordered at the structure level.

A scenario is a realisation of a use case described as a sequence of a
limited number of events with linear time order. A use case may cover an
unlimited number of scenarios as it may include undetermined repeti-
tions and interrupts that may occur at any time, whereas a scenario is a
specific and bound realisation of a use case. The structure of a scenario is
flat, with repetitions and alternatives evaluated. 

It is possible to have different degrees of scenario instantiation [7]; a
completely instantiated scenario corresponds to a system usage trace,
where the sequence of events is totally ordered and every parameter has a
specific value. A scenario may also be on a slightly higher level, having
symbolic names instead of specific parameter values.
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3.2 Model Creation

An important question when applying use case modelling is: What crite-
ria should we have for creating and describing use cases? This question
relates to the problem of granularity: How large should the scope of a use
case be, and at what level of detail should use cases be modelled? By the
introduction of goals and services into our conceptual framework we can
use them to form a lower bounding criterion for use case granularity: The
scope of one use case is at minimum covering how one goal is satisfied or unsat-
isfied by the usage of one service. When it is relevant to model that users
have multiple goals to be realized simultaneously, and use many services
in combination, the scope has to be extended to cover these cases.

When creating use case models it is possible to apply two principally
different approaches; top-down and bottom-up. A top-down approach
starts with eliciting a number of use cases that are further refined with
respect to their structural properties. A bottom-up approach starts with
concrete examples of usage scenarios that are further generalized and syn-
thesised into use cases that encompass these scenarios and more [11]. We
believe that the two approaches can complement each other, and that

ActorUser

Context

Goal

Service

Precond

Use Case

PostcondEpisode

Stimulus

ResponseEvent

Action

Parameter

is-a has

participates-in

describes
satisfies

has

definesdefines

consists-of 

consists-of

has

is-a

is-a

is-a

Figure 1. Concept relations.
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they, together with an appropriate representation, can be incorporated as
iteratively performed activities in the same method. The top-down and
bottom-up approaches are illustrated in figure 2.

3.3 Managing Complexity

When dealing with complex systems, the structure of the use case model
is critical. It is vital to have modularisation constructs for dividing the use
case model into manageable units. Another common way to cope with
complexity is to use hierarchical models, allowing successive refinement of
entities into descriptions with more details.

In large use case models we can, at the environment level, organize use
cases into packages depending on what services they describe. Use cases
that describe usage of a single service may be packaged together into a
“service usage package”. Special “service combination packages” can be
created, when it is possible to use services in combination with each other.
Such combination packages include use cases that describe how two or
more services are used together. Thus the concept of services allows for
dividing large use case models into manageable units. 

The concept of episodes supports reuse of use case parts, and thus
avoids duplication of use case specification work. This will be of help in
managing large use case models by avoiding rework and giving a more
compact use case model. 

Identify actors & use cases

Build use case structures

Describe events

Generate scenarios & validate

Organize use case model

Generalize scenarios

Identify common episodes

Create Scenarios

Top-Down

Bottom-Up

Environment level 

Structure level 

Event level 

Figure 2. Model creation approaches.
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In addition, the hierarchical nature of the use case model helps to
manage complexity, as the use cases can be viewed on different levels of
detail. The environment level provides an overview, without cluttering the
picture with details. The detailed descriptions on the event level are
organized by the structure level.

4. Representation

Given the ontological and methodological background, this section
presents a hierarchical use case model with graphical representation, after
a brief discussion on some different possible representation alternatives.

4.1 Representation alternatives

Different application domains may need different notations for docu-
menting use cases. It is also possible that in the same method, different
notations are used at different stages. There are numerous alternative lan-
guages for representing use cases. Some of them are listed below.

1. Natural language without restrictions,

2. Structured natural language,

3. Pseudo code,

4. Data flow diagrams,

5. State machine based notations,

6. Event based (e.g. MSC).

Natural language provide expressive power but little support for automa-
tion. Some problems can be tackled by structuring natural language spec-
ifications into enumerated sections with defined contents [11]. The third
alternative is a mix between structured natural language and some pro-
gramming language and thus gives weak support for graphical visualisa-
tion. Alt. 4, although graphical, has the disadvantage of being biased
towards internal, rather than external system behaviour. Alt. 5 we believe
is rather difficult for the average end user to comprehend.

To accomplish a step-wise formalisation of use cases that seamlessly
introduces formality, we recommend to start with structured natural lan-
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guage descriptions that are subsequently formalised into an unambiguous
graphical language with event based semantics. Such a language needs to
include constructs for managing complexity, e.g. mechanisms for hierar-
chical decomposition, as discussed earlier.

4.2 Hierarchical Event Based Representation

In this and the subsequent sections we describe a graphical notation for
use cases, based on an extension of Message Sequence Chart (MSC) [12].
In the domain of distributed real-time systems (e.g. telecommunication
systems) MSC is a common and well known language for describing tem-
poral relations between events. For use case modelling, the MSC language
needs to be extended with further constructs to encompass, for example,
alternative flows and iteration.The presented graphical language includes

such constructs1. 
Figure 3 gives an overview of the hierarchical use case model. Each

level is described in more detail in the following sections. The grey arrows
indicate refinement links from higher level entities into more detailed
level descriptions, and are not part of the graphical syntax

In the subsequent sections, each level is illustrated by a small example
system, called “Access control”, which controls a number of card and code
terminals and locks on doors in an office building, where access is
restricted. The system can open selected doors after an employee has put
in her card and given the correct code. The system also keeps track of
when employees have entered and exited the building. Visitors can via an
entrance door terminal call the security section to ask for access. Some
administrative features are also provided, such as daily printouts of enter-
ing and exits.

We will not go into detail on all aspects of this system, and not discuss
how the system’s use case model was created from a methodological point
of view. We only show some parts of the model to exemplify the notation. 

1. The presented MSC extensions are under consideration by ITU-T Study Group 10, 
for incorporation in the comming ITU-T MSC Standard
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USE CASE X

  
EPISODE Z
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EPISODE A

EPISODE B

 

alt

level
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X

Z

A

B

SYSTEM S

SERVICE T
SERVICE U

PRE

POST

Orders events by sequencing and 
special operators.

Defines the pre- and post-
conditions and episode 
structure of each use 
case. 

Relates and gives 
names to actors, use 
cases and services.

Episodes can be decomposed 
into new episode structures.

Figure 3. Overview of hierarchical use case model.
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level
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4.3 Environment Level

Figure 4 shows the environment level of the example system, with its
actors, use cases and services. The notation here is similar to the notation
used in [3], but we have added services, allowing use cases to be encapsu-
lated into packages, representing a demarcated functional entity.

These symbols are used on the environment level:

Enter by bell
Produce log

Visitor

System 

Open door

SYSTEM Access control

Register In/Out

SERVICE Access 

Add Employee

Remove Employee

admin.

Employee

SERVICE Admin

Figure 4. Environment level example.

Open door

Employee

SYSTEM Access
Control

SERVICE Access

Use case. Oval with a unique name, describing the use case
from the main actor’s point of view.

Actor. Icon with a name denoting the user type.

Interaction. Arrow that shows interaction between one
use case and its environment (the actors in the host system).

System. The name of the system and the boundary
between the system and its environment. Contains services.

Service. The name of the service. Contains the use cases of
this service.
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4.4 Structure Level

The structure level describes each use case as a graph of episodes. Each
episode is a named use case part, representing a demarcated and coherent
flow of events. Pre- and postconditions are defined at this level. Operators
can be used to express alternative, repetition, exception and interrupt. An
exceptional episode is a part of a use case that may occur at a specific point
(i.e. either zero or one time). If an exception occurs, the use case is termi-
nated. An interrupting episode can occur at any point in a use case and
may either terminate the use case or resume it at the point where the
interrupt occurred. 

An episode can be expanded into new episode structures in a hierarchi-
cal manner. A leaf episode in this hierarchy is defined on the event level
(see next section) as a message sequence chart. Episode decomposition is
used to make use cases easier to understand and of manageable size, but
also for allowing reuse of episodes across many use cases.

Figure 5 shows a use case in our example system, where we have used
pre- and postconditions (drawn as named hexagons). Episodes are drawn
as named rectangles.

Time progresses downwards. The flow lines that connect episodes indicate
sequencing. Alternative (also called choice) is indicated by a flow line that
is split and then connected to two or more episodes.

USE CASE Open door

Draw card

Enter code

Open Access denied

Figure 5. Structure level example.

idle

idle
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Figure 6 shows interrupts, exceptions and repetitions. Interrupts are
not connected with the flow of other episodes, as they can occur any-
where. If an interrupt terminates the use case, it is connected to a hexagon
labelled with the name of the postcondition. 

Exceptions are attached to a flow line, indicating where it may occur.
Repetitions can have brackets indicating upper and/or lower bounds. A
fully undetermined repetition means that the episode occurs at least one
time, i.e. there is no upper limit on the number of repetitions.

The int, exc, and rep operators can be used on multiple episodes by
using an extra operator frame around them, as shown in figure 7.

postcond

intexc

XZ

rep

R

rep 

S

int
Y

Interrupting episode

Terminating interrupt 

Exceptional episode

Undetermined repetition 

Determined repetition 

Figure 6. Exception, repetition and interrupt.

[0,4]

X

Y

Figure 7. Multi-episode operator.

rep
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4.5 Event Level

On the event level the detailed flow of events in each use case episode is
described as an MSC. There are three kinds of events: stimuli, responses
and system actions. An MSC expresses the temporal relation between
these events. Operators for alternative, repetition, exception and interrupt
are also used at this level. Operators can be nested. Actors on the event
level are explicitly instantiated, to allow for multiple instances of the same
actor to participate in the same event flow. Figure 8 shows an example of
an event flow.

The “Enter code” episode shows the nesting of a repetition and an
exception operator. Shading indicate level of operator nesting. Timers are
used to keep track of time. 

The episode starts with a response DisplayMsg and then repeats for
four times the stimuli Key. At the beginning of the repetition, a timer is

EPISODE Enter code

Employee:1 System

Key

DisplayMsg

'Timeout'

key

KeyTimer

KeyTimer

KeyTimer
exc

rep [4]

DisplayMsg

'Enter code'

—

Figure 8. Event level example.

Validate code
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set, and normally the Key stimulus comes before the timer expires. If the
exceptional case occurs, where the employee waits too long between keys,
the timer expires and the use case is terminated after a DisplayMsg
response. If all four keys are entered in time, the system action “Validate
code” is performed.

The following symbols are used at the event level:

EPISODE 
Enter code

DisplayMsg

'Enter code'

Diagram name. “EPISODE <name>”, where <name>
corresponds to the episode name on the structure level.

Stimulus/Response. An asynchronous message is drawn
as an arrow. It has a name and optional parameters inside
brackets. The parameter could either be a specific value or a
name.

System action. An intrinsic operation that involves no
communication with the actor instances of the episode.

Instance.  An instance represents a participant of the use
case (actor instances or the system). It contains an instance
head, an axis and an end. The instance head contains the
instance name, which is either “System“ or an actor name
followed by a colon and an instance number. The instance
axis orders its events in time. The axis is ended with a filled
rectangle indicating the end of the episode.

Alternative. The alt operator indicates a choice between
two or more alternative flows separated by dashed lines. The
example here means that either the stimulus A, or the
response B, will happen.

Exception. The exc operator indicates exceptional events.
If the exception occurs, the use case is terminated. This is
indicated by a condition symbol with a dash that refers to
the postcondition label of the use case.

Validate code

Employee:1

A

B

exc
A

B

alt

—
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The current MSC standard from 1993 [12] does not include the pre-
sented operators alt, rep, int, and exc. There are also some constructs in
[12] that we have not included in this presentation, such as co-regions
and instance decomposition, although they might be of interest in some
modelling situations. There are also some additional constructs in [10]
and [11] that are not included in this short presentation.

5. Conclusions and Further Research

The presented hierarchical use case model with graphical representation
has been verified on relatively small examples. From these examples we
can conclude that a graphical representation of use cases with well defined
syntax and semantics helps to visualize functional requirements, and also
gives a more structured, and less ambiguous use case model, compared to
natural language representations. To fully assess the virtues of the pre-
sented model, more extensive case studies, that cover larger systems, are
needed. 

We also plan to investigate constructs for supporting extensibility.
When extending an existing system with new services that reuse or rede-

Repetition. The rep operator indicates repetition. If
no interval in brackets are specified, the events inside
the rectangle are repeated one or more times.

Interrupt. If interrupts are to be expressed on the
event level, this is done by referring to another epi-
sode. An episode rectangle with an int operator is
drawn beside the instances, similar to the structure
level notation.

Timer. A timer has a name and may be associated
with a specific time duration. A timer has three possi-
ble events:

Set. The timer is activated.

Reset. The timer is deactivated.

Timeout. The timer expires.
aTimer

aTimer

aTimer

rep
A

int

—

Abort Key Pressed
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fine existing services, it is preferable to have mechanisms that prevent a
restructuring or duplication of existing services. This relates to the uses
and extends concepts in OOSE, and the adds concept in OMT. Well
defined extensibility mechanisms are needed, not only on the environ-
ment level, but also on the structure and event levels.

Another area of further research is goal modelling [18] and its relation
to use case modelling. We here see the opportunity to further strengthen
the methodological support for use case model creation by incorporating
a semiformal goal model that enables expression of inter-goal relations
and relations between goals and use cases.

In the presented model, system intrinsic actions are represented as
named entities with temporal relations to other events. Other require-
ments on actions, such as temporal constraints or relations between their
inputs and outputs can be expressed e.g. by comments in natural language
attached to actions. In further development of the model, it could be use-
ful to include a formal language for system action specification.

In order to provide tool support, not only for diagram drawing, but also
for automated analysis and checking, we need to formally define the syn-
tax and semantics of the presented use case model in some meta language,
e.g. process algebra.

Finally, we want to stress the importance of relating the use case model
to other requirements documentation. In a tool environment it would, for
instance, be valuable to have the possibility of creating links between
requirements in a requirements management database, stated as interre-
lated “shall-statements”, and use cases in a use case model, in order to be
able to express mappings between requirements and usage models and
thus supporting traceability between these models.
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Abstract

This paper focuses on usage modelling as a basis for both requirements
engineering and testing, and investigates the possibility of integrating the
two disciplines of use case modelling and statistical usage testing. The
paper investigates the conceptual framework for each discipline, and dis-
cusses how they can be integrated to form a seamless transition from
requirements models to test models for reliability certification. Two
approaches for such an integration are identified: integration by model
transformation and integration by model extension. The integration
approaches are illustrated through an example, and advantages as well as
disadvantages of each approach are discussed. Based on the fact that the
two disciplines have models with common information and similar struc-
ture, it is argued that an integration may result in coordination benefits
and reduced costs. Several areas of further research are identified.

III
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1. Introduction

Over the last decades, much effort has been devoted to software imple-
mentation issues. However, as complexity grows, software development
needs more than just programming. Design paradigms, such as object ori-
entation, have entered the scene claiming to provide robust architectures
and reusable components. Recently, the focus of the software research and
practice has also approached issues related to requirements specification
and reliability certification. 

This paper presents recent research related to both these areas. The
basic idea behind the presented work is to combine and integrate two dif-
ferent approaches that focus on the modelling of usage:

■ Use Case Modelling, UCM, (Jacobson et al., 1992) and

■ Statistical Usage Testing, SUT, (Mills et al., 1987). 

Both UCM and SUT address phenomena related to the modelling of
anticipated system usage, although with different background and termi-
nology. UCM focuses on requirements analysis and usage modelling as a
tool for describing and understanding requirements, while SUT focuses
on usage modelling to enable test case generation for reliability estimation
and certification. 

In a survey of industrial software projects (Weidenhaupt et al., 1997),
it is concluded that there is an industrial need to base system tests on use
cases and scenarios. The studied projects, however, rarely satisfied this
demand, as most projects lacked a systematic approach for defining test
cases based on use cases.

UCM was introduced in the object-oriented paradigm (Jacobson et al.,
1992) to complement traditional static object models with dynamic
aspects. The work on use case modelling has in an object-oriented context
primarily been focused on the transition from use case based requirements
to high-level design, and how use cases can be used to find good object
structures (Jacobson, 1995; Buhr and Casselman, 1996).

SUT, on the other hand, has focused on how to create a usage model
that allows for generation of test suites which resemble operational condi-
tions, by capturing the dynamic behaviour of the anticipated users. SUT
research has concentrated on how such a model can be made scalable
(Runeson and Wohlin, 1992; Wohlin and Runeson, 1994), but the main
focus has been on the usage model itself from a testing perspective and
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not on the process of creating it from a requirements perspective. Hence,
we see the need to study the common denominator of UCM and SUT in
the perspective of requirements engineering, in search for an integrated
framework for usage modelling.

There is an intimate relation between requirements specification and
system validation; the major goal of validation is to show, for example
through testing, that a system correctly fulfils its requirements. This fact is
the main motivation behind combining and integrating use case model-
ling and statistical usage testing. Modelling effort related to the specifica-
tion of system usage hopefully can be minimised if it can be used for both
purposes (Wohlin et al., 1994). Software developers want to avoid model-
ling the same thing twice. 

The main challenges in this work are:

■ What concepts in use case modelling on the requirements level can
be utilised in usage-based testing for reliability certification?

■ How can we create a seamless transition between usage models for
requirements specification and usage models for testing?

The presented work includes a conceptual study of each of the
approaches, together with some preliminary results on how the
approaches can be combined. Future work on an integrated usage model-
ling approach is also discussed. Chapter 2 presents the major motivations
to integration and gives a general overview of integration approaches.
Chapter 3 focuses on concepts in usage analysis for requirements specifi-
cation with use cases, and Chapter 4 focuses on concepts in usage analysis
for system validation with statistical usage testing. Chapter 5 presents two
approaches to integrated usage modelling in more detail. Some conclu-
sions are presented in Chapter 6.

2. An Integrated View on Usage Modelling

A schematic picture of the software development process is shown in
Figure 1. The figure focuses on two dimensions: time and abstraction
level. System development progresses from requirements elicitation and
analysis, through design, implementation and testing, to validation and
certification before delivery of a new system release. During this progress
of activities, the focus changes with respect to abstraction. Development
starts with an external view of the system, continues during design and
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implementation with a more detailed focus on system internal issues,
before returning to an external “black-box” view. The external view
focuses on externally observable functionality as seen by the users of the
system, while the internal view focuses on system architecture and the
structural and behavioural properties of objects within the system.

Usage modelling refers to the analysis and representation of system
usage from the external viewpoint and thus fits well with both the early
and late phases in Figure 1. This external view enables usage modelling on
a high abstraction level, preventing models to be cluttered with internal
details of the system.

Usage modelling deals with the dynamic relations between the events
that take place when the system is used by its users. Thus, we are inter-
ested in stimuli to the system and its responses from the system actions
issued by user stimuli. From a requirements perspective we want to capture
what events should take place and in what order. Use case modelling, as
presented in Chapter 3, is focused on the modelling of such dynamic
aspects. A use case model describes a collection of use cases. Each use case
covers a set of scenarios. The use cases determine the order of the events
and define the possible alternatives in the flow of events.

When the system has been implemented, its function is determined by
its program. System usage is, however, due to the free will of its human
users, non-deterministic. The flow of events in system usage includes
points where the next event is determined by a user action. A use case
model represents the different usage possibilities and thus allows for non-
deterministic choices of the users. From a testing perspective, we want to be

Figure 1. Different abstraction levels over time.
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able to capture this non-determinism in statistical terms by quantifying
the probabilities (frequencies) of different alternative usages, in order to
make the testing conditions resemble the foreseen operating conditions.
Statistical usage testing, as presented in Chapter 4, is focused on both the
usage dynamics and usage statistics, and quantifies the usage probabilities
in, so called, usage profiles or operational profiles.

The statistical properties of system usage are also interesting from a
requirements perspective. Information on, for example, how often a cer-
tain service is used is important input to the process of prioritizing
requirements (Karlsson, et al., 1998). The probabilities of combining cer-
tain services are vital information when analysing how service combina-
tions can interfere (Kimbler and Wohlin, 1995). Usage frequencies may
also be used to optimize user interfaces.

Both Requirements Engineering (RE) and the Verification & Valida-
tion (V&V) have the same challenge of completeness and coverage. Have
we covered all the essential requirements? Does the set of test cases cover
adequately the requirements? Limited resources may require both require-
ments models and test models to be partial, giving the challenge of find-
ing a level of coverage that is a good approximation of the complete
system usage.

In summary, the commonalities between RE and V&V include:

1. Both areas desire models of system usage.

2. Both areas strive at an external view of the system.

3. Both areas benefit from quantification of usage frequencies.

4. Both areas have the challenge of adequate coverage.

Besides these commonalities, the motivation for integrating usage models
in RE with usage models in V&V is based on the following expected bene-
fits:

1. Modelling effort is reduced, as the same information is used for
many purposes.

2. Traceability from requirements to test is promoted, which can be
assumed to lead to less expensive maintenance.

Both RE and V&V have a variety of approaches proposed for usage mod-
elling. In (Rolland et al., 1998) a survey of existing literature on scenarios
and use cases in RE shows a great span of available methods. In (Jarke, et
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al., 1998) a survey of industrial practise revealed a great diversity in the
ways that scenarios and use cases are applied. In (Graham, 1994) a
number of different black-box testing techniques are outlined. 

In this exploration of the possibilities of integration, we have chosen to
focus only on two particular approaches: an extended version of Jacob-
son’s use case modelling (Regnell, 1996), and an extended version of
Whittaker’s state-based markov model (Whittaker and Thomason, 1994;
Runeson and Wohlin, 1995). These approaches are summarised in
Chapter 3 and 4 respectively. Other specific approaches to use case mod-
elling and usage-based testing can of course be combined in a number of
ways. The specific integration approaches presented in Chapter 5 may be
used as input to further research on the integration of other specific RE
and V&V approaches to usage modelling. 

In general, two different integration strategies can be identified, as illus-
trated in Figure 2.

The first integration strategy, model transformation, is based on the
assumption that two different usage models are used: one for RE and one
for V&V. The integration strategy requires guidelines for how to trans-
form the information in the use case model in combination with addi-
tional test-specific information in the process of test model building.

The second integration strategy, model extension, is based on the
assumption that a tailored use case model can be used directly for V&V, if
it is extended with additional information necessary for testing. 

The presented work represents an initial study on each of these strate-
gies, but hard evidence on which strategy fits best with which context

Figure 2. Two ways of integrating usage modelling.
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requires further research. There are, however, some basic reflections on the
different strategies:

1. Model extension requires only one model, which can be assumed to
imply less modelling effort and less expensive maintenance, com-
pared to model transformation.

2. Model transformation may be more appropriate if the models differ
greatly between requirements and test. By creating two models tai-
lored for their special purposes, no compromise is needed. The
common information may still be utilised through transformation
rules.

Before we continue the investigation of the two proposed integration
approaches, we present a conceptual study of each of the specific methods
for use case modelling (Chapter 3) and statistical usage testing
(Chapter 4) respectively.

3. Functional Requirements Specification 
with Use Cases

The elicitation, analysis and documentation of requirements on software
systems is a crucial and non-trivial task (Loucopoulos and Karakostas,
1995; Bubenko, 1995). Well defined concepts and methods are needed
when constructing specifications that represent requirements in an unam-
biguous, consistent, and complete manner. It is also important to have
representations of requirements that are easily understood by the different
stakeholders that take part in requirements analysis (Pohl, 1993). This
Chapter concentrates on use case modelling for eliciting, analysing and
documenting functional requirements. The use case concept has gained
widespread acceptance within methods and notations such as OOSE
(Jacobson, 1992), OMT (Rumbaugh et al., 1991; Rumbaugh 1994), the
Booch method (Booch, 1994), ROOM (Selic et al., 1994), Fusion (Cole-
man, et al., 1994), and UML (Fowler and Scott, 1997). 

There are many different possibilities of applying use cases and scenar-
ios in requirements engineering. A survey of european software projects
(Weidenhaupt, 1997) concluded that about two thirds of 15 visited
projects used the OOSE (Jacobson, 1992) approach extended in various
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ways. Here we concentrate on one such extension (Regnell, 1996; Regnell
et al., 1995; Regnell et al., 1996).

The main purpose of the presentation of the use case modelling con-
cepts in this Chapter, and the statistical usage testing concepts in
Chapter 4, is to provide a background to our objective of combining the
two disciplines into an integrated framework, as discussed in Chapter 5.

In the subsequent sections, an example from the domain of telecom-
munication will be used as illustration. This example is a simplification of
results from a case study conducted as a prestudy for the presented work,
and involves a simplified Private Branch Exchange (PBX) with some com-
mon telephony services, such as unconditional call forwarding (CFU).

3.1 A Conceptual Framework for Use Case Modelling

The main idea behind use case modelling is to elicit and document
requirements by discussing and defining specific contexts of system usage
as they are anticipated by the different stakeholders in the requirements
engineering process. The conceptual framework for the presented use case
modelling approach (Regnell et al., 1996) and their relations are illus-
trated in Figure 3. These concepts are described in the subsequent sec-
tions. 
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Use cases can be viewed on different abstraction levels. At the environ-
ment level, the use case is related to the entities external to intended sys-
tem. On this level, a use case is viewed as an entity representing a usage
situation. At the structure level, the internal structure of a use case is
revealed together with its different variants and parts. The event level rep-
resents a lower abstraction level where the individual events are character-
ized.

3.2 Environment Level

The users belong to the intended target system’s environment and can be
either humans or other software/hardware based systems. Inside the target
system we have a number of services. A service is a package of functional
entities (features) offered to the users in order to satisfy one or more goals
that the users have. Table 1, includes the services of our PBX example sys-
tem. 

Users can be of different types, called actors. A user is thus an instance of
an actor. An actor (also called user type or agent) represents a set of users
that have some common characteristics with respect to why and how they
use the target system. Each actor has a set of goals, reflecting such com-
mon characteristics. Goals are objectives that users have when using the
services of a target system. Thus, goals are used to categorize users into
actors. Table 2 shows the goals of the two actors subscriber and operator in
the PBX example.

The goals are described as patterns using general temporal operators
such as achieve, cease, and maintain (Dardenne and van Lamswerde,
1993).

A use case represents a usage situation where one or more services of
the target system are used by one or more actors with the aim to accom-
plish one or more goals. Table 3 shows the use cases of the PBX example,
and their relation to actors, goals, and services. 

Table 1. Services in the PBX example.

 Service Description

NCC Normal Call with Charging

CFU Call Forward Unconditional

RMR Read Markings and Reset
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3.3 Structure Level

The structure level includes concepts that relates to the internal structure
of use cases, such as different variants and parts of a use case. 

A scenario1 is a specific realisation of a use case described as a sequence
of a finite number of events. A scenario may either model a successful or
an unsuccessful accomplishment of one or more goals. A use case may
cover an unlimited number of scenarios as it may include alternatives and
repetitions. A scenario, however, is a specific and bound realisation of a
use case, with all choices determined to one specific path. Table 4 shows a
number of scenarios identified for the use case normal call.

The standardised language of Message Sequence Chart (MSC) (ITU-
T, 1996; Regnell et al., 1996) may be used to express the structure level of
a use case graphically. A High Level Message Sequence Chart (HMSC) is

Table 2. Actors and their goals in the PBX example.

Actors Goals

Subscriber GS1 To achieve communication with another subscriber

GS2 To cease communication with another subscriber

GS3 To achieve reachability at another destination

GS4 To cease reachability at another destination

Operator GO1 To maintain markings information representing call duration

GO2 To achieve a printout of the number of markings for each subscriber

GO3 To achieve a resetting of the number of markings for each subscriber

Table 3. Uses cases in the PBX example.

Use Cases Actors Goals Services

Normal Call Subscriber GS1, GS2, GO1 NCC

Activate CFU Subscriber GS3 CFU

Deactivate CFU Subscriber GS4 CFU

CFU Call Subscriber GS1, GS2, GS3, GO1 CFU

Read Markings Operator GO2 RMR

Reset Markings Operator GO3 RMR

1. Some authors use the terms scenarios and use cases as synonyms, but here we distinguish
between them, to differentiate between type level and instance level.
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illustrated in Figure 4. Each scenario of the use case “normal call” is repre-
sented as an alternative.

Each box with rounded corners refers to either another HMSC at a
sub-structure level, or an MSC at the event level

Every use case (and scenario) has a context that demarcates the scope
of the use case and defines its pre-conditions (properties of the environ-
ment and the target system that need to be fulfilled in order to invoke the
use case) and post-conditions (properties of the environment and the tar-
get system at use case termination). An example of a pre-condition for the
“CFU Call” use case is that “the CFU service has been activated”. An
example of a post-condition for the “normal call” use case is that “the
caller is idle”. Pre- and post-conditions are shown in Figure 4 as diamond
symbols.

It is possible to have different degrees of scenario instantiation (Potts et
al., 1994); a completely instantiated scenario corresponds to a system
usage trace, where the sequence of events is totally ordered and every
parameter has a specific value. A scenario may also be on a slightly higher
level, having symbolic names instead of specific parameter values.

Table 4. Scenarios for the use case “Normal Call”

Scenario Description

Reply Call to idle subscriber that replies

Busy Subscriber Call to busy subscriber

No Reply Call to idle subscriber that does not reply

Non-Existent Call to non-existent subscriber 

Timeout Subscriber waits too long after offHook

Busy NonExistReply TimeoutNoReply

Figure 4. High Level Message Sequence Chart.

Caller.state=idle

Caller.state=idle
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In use cases and scenarios it may be possible to identify coherent parts,
called episodes. Similar event sequences may occur in several use cases,
and episodes can be used as a modularisation mechanism to encapsulate
use case parts and create a hierarchical use case model. We will not go into
detail on episodes here, for more information see (Potts et al., 1994; Reg-
nell et al., 1996).

3.4 Event Level

The lower abstraction level of uses cases, scenarios, and episodes includes
events of three kinds: stimuli (messages from users to the target system),
responses (messages from the target system to users), and actions (target
system intrinsic events which are atomic in the sense that there is no com-
munication between the target system and the users that participate in the
use case). 

Stimuli and responses can have parameters that carry data to and from
the target system. In order to express parameters, and also conditions on
data, a use case model may be complemented by a data model. A simple
representation of a data model for the PBX example is given in Figure 5.

Given a data model, we may express conditions on the data model that
always should be true. Figure 6 shows such invariants for our PBX exam-
ple.

When describing the information exchange between actors and the
target system, it may be useful to define unique names for messages (stim-
uli and responses) together with information on the data types of their
parameters. Table 5 presents the identified messages for our PBX example.

toneType = 
 (dialTone, ringSignal, ringTone, busyTone, errorTone, infoTone);
maxNumberOfSubscribers: Natural;
SubscriberType: record  (

state: (idle, busy, off);
telNumber: TelNbrType;
CFU_active: Boolean;
CFU_number: TelNbrType;
markings: Natural;
talkingTo: SubscriberType);

SubscriberSet: 
Set  (1..maxNumberOfSubscribers) Of  SubscriberType;

Figure 5. A data model for the PBX example.
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Based on the data model, the message definitions and natural language
descriptions of scenarios, MSC can be used to describe graphically the
event level as shown in Figure 7. 

Each actor instance and the system are represented by a vertical time-
axis, with time progressing downwards. Stimuli and responses are repre-
sented by arrows between actors and the system. Conditions are expressed
as assertions on the data model in Figure 5. 

Table 5. Messages in the PBX example.

Message Description

offHook From Subscriber when lifting receiver

onHook From Subscriber when hanging up the receiver

number(telNbrType) From Subscriber when dialling a Number

activateCFU(telNbrType) From Subscriber when activating CFU

deactivateCFU From Subscriber when deactivating CFU

startTone(toneType) To Subscriber when a tone is given

stopTone(toneType) To Subscriber when a tone is stopped

readMarkings From Operator when issuing a reading of markings

resetMarkings From Operator when issuing a reset of markings

markings(markingListType) To Operator when reporting the markings

The telephone number is unique:
For-all  X in  SubscriberSet: 

 For-all Y in SubscriberSet:
if  X<>Y then  X.telNumber<>Y.telNumber;

If state is idle, the subscriber is not connected to another subscriber.
For-all  X in  SubscriberSet: 

( if  X.state=idle then  X.talkingTo=nil)

If subscriber X is talking to Y then subscriber Y is talking to X:
For-all  X in  SubscriberSet: 

if  X.talkingTo <> nil then
X. state = busy and
Exist  Y in  Subscriberset: 

Y.state=busy and  Y.talkingTo=X and
X.talkingTo=Y;

Figure 6. Some invariants in the PBX example.
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Figure 7. MSC for the scenario “Reply” of use case “Normal Call”.
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It is also possible to describe alternatives and repetitions on the event
level. Figure 8 shows a simple example of an alternative operator on the
event level, expressing a choice between either stimuli A or response B.
For more details on operators for ordering events, see (Regnell et al.,
1996).

4. Reliability Requirements Specification 
and Certification

Non-functional requirements are an essential part of requirements specifi-
cations. In particular, the reliability requirements are often regarded as
one of the most important non-functional requirements. The reliability
requirements cannot be formulated as a single figure (e.g. probability for
failure-free execution or mean time between failures), since more informa-
tion is needed. The reliability depends not only on system properties, for
example correctness, but also on the system environment, i.e. how the sys-
tem is used. It is necessary to take the anticipated usage into account as
the reliability of the system is dependent on the usage; the usage for which
the requirement is valid must be stated together with the requirements of
the system.

Usage-based testing with reliability certification is a means for validat-
ing reliability requirements. Functional requirements are validated at the
same time. Thus, usage-based testing allows for both functional require-
ments validation and reliability certification.

This chapter describes the concepts and representations of a particular
usage-based testing approach, and Chapter 5 provides examples of usage-
based testing models (using the PBX system of Chapter 3), and discusses
how to integrate usage-based testing with use case modelling.

Figure 8. Example of operator notation at the event level.
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4.1 Usage-based Testing

There are two major approaches to testing: black-box testing and white-box
testing. Black-box testing techniques take an external view of the system
and test cases are generated without knowledge of the interior of the sys-
tem. White-box testing techniques take an internal view and aim at cover-
ing all paths in the code or all lines in the code or maximising some other
coverage measure. The main objective of all testing techniques is to vali-
date that the system fulfils the requirements; mostly the focus is on func-
tional requirements, but test cases can also address quality issues. For
example, they can either be derived with the objective to locate as many
faults as possible or to certify the reliability level of the software.

 Usage-based testing implies a focus on detecting the faults that cause
the most frequent failures, hence maximising the growth in reliability.
This paper focuses on black-box testing and in particular on  usage-based
testing, which can be used to certify a particular reliability level and, of
course, to validate the functional requirements.

The ability to certify software during testing is based on a user-ori-
ented approach. This requires a model of the anticipated usage of the soft-
ware and quantification of the expected usage as the software is released.
Several approaches have been investigated and used in this area. Musa
(1993), for example, advocates operational profile testing, Mills et al.
(1987) discuss random testing based on the operational profile and Rune-
son and Wohlin (1992; 1995) present an approach with user-state
dependent random testing based on the operational profile. The focus in
this paper is on the latter approach, i.e. statistical usage testing based on a
state hierarchy model (Wohlin and Runeson, 1994; Runeson and Wohlin,
1998). The subsequent sections present the conceptual framework for this
approach and discuss how the concepts are represented in the state hierar-
chy model.

4.2 A Conceptual Framework for Usage-based Testing

A system consists of a number of services provided to the system users.
These services are implemented by objects. The objective here is to pro-
vide a framework for modelling usage and to enable reliability certifica-
tion of objects that are parts of a system, as well as certification of an
entire system. In Figure 9, the relations between target system and envi-
ronment concepts are illustrated. These concepts form the basis for creat-
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ing a model of the usage of the certification object and also for
quantifying the anticipated usage. The concepts of the usage specification
test model are further discussed below and shown in Figure 10.

The concepts in Figure 9 can be defined as follows. The software to be
certified is referred to as a the certification object. A certification object
has a certain reliability, which is the probability that the object works as
intended for a specified time and in a specified service usage environ-
ment. The certification object is used by one or many users, which can be
either human users or other systems. The communication between the
user in the environment and the certification object is made through
stimuli generated by the user and responses sent by the object. The user
of the certification object participates in service usage, which is described
by the usage specification. From the usage specification, test cases are
generated including stimuli and responses to/from the certification object.

To enable certification, the environment must be modelled to allow for
generation of test cases which resemble the anticipated behaviour in the
operational phase. Thus, modelling concepts capturing the environment
are needed. Depending on the type of testing being applied, different test
models have to be derived. The focus here is on usage-based testing,
which means that the test model is a usage specification, see Figure 10.
The usage specification consists of a usage model, which describes the
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possible behaviour of the users, and the usage profile, which quantifies
the actual usage in terms of probabilities for different user behaviour. 

The usage model is described through a hierarchy which defines the
users and their relations (user types and user sub-types), the behaviour
models which define the user states and transitions between user states,
the system variables which capture important assets of the system state
and the links which define connections between different behaviour
models and system variables. 

The usage profile is divided into a hierarchy profile, which describes
the probabilities for choosing one specific user in the environment, and
the behaviour profile, which models the behaviour of a single user, while
using the available services.

The hierarchy is a tree structure where the nodes in the tree represent
groups of users, based on their usage models and usage profiles. A user
type is defined as the collection of users having the same possible behav-
iour (normally equivalent to that the users have the same goal, cf. actor),
i.e. they have exactly the same behaviour models. A user sub-type is a
further division of the users into a group where all users also have the

Usage
Specification

Usage
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Usage
Profile

Behaviour

Hierarchy
Profile

Behaviour
Profile

Figure 10. The usage test model and its usage-oriented modelling concepts.
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same behaviour profile, hence having a similar statistical behaviour. The
users are instances of a user sub-type and each user has access to a set of
services, which usage is described by behaviour models.

4.3 Hierarchical Representation of User Behaviour and 
Usage Profiles

The usage model has to two main parts, the hierarchy and the behaviour
parts. The two model parts are illustrated through a small example in
Figure 11 and Figure 12, which show a part of the PBX example.

For each instance of a service, there is a behaviour model, which con-
sists of states and transitions. The services in Figure 11, has been divided
into states, and the possible transitions among the states are also shown. 

It should be noted that the states are external states, i.e. user states,
which are only a subset of the possible system states. User states describe
the externally visible states of the system. 

The total state of the usage model is a vector T of states for all behav-
iour models:

where  means the state of service j for user i. 

Probabilities are assigned to each arc in the instances of the behaviour
models, hence taking different profiles into account. Furthermore, state
weights are assigned to each state (denoted Wk for service k), which reflect
the overall stimulus frequency of the user being in that state.

In Figure 12, the hierarchy is shown, which breaks down the usage of
the certification object into individual users and their services. 

Behaviour

User Shi1

Service NCC

Figure 11. Behaviour model for a part of the PBX example.
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Two user types have been identified, which implies, for example, that
all users of user type Subscriber must have the same behaviour model. Sub-
scriber is divided into two user sub-types, hence modelling differences in
the behaviour profiles, i.e. users Slo1 through Slo5 do not have the same
behaviour profiles as users Shi1 and Shi2. These users use the services NCC
and CFU. 

The Operator user type only consists of one user sub-type Op, and only
one user exists of this sub-type, i.e. user Op1. This user uses a single serv-
ice, i.e. service RMR. (This example is further elaborated in Section 5.1.)

The hierarchy profile is a little bit more complicated. The complica-
tion arises as it is reasonable to change the probabilities in the hierarchical
profile based on the state of the users. The probability for the selection of
a service (denoted pk for service k) equals the current state weight of the
service, divided by the sum of the current state weights for all services.

if at least one 

For each transition in a behaviour model, the hierarchy profile is
updated. The update algorithm is described in more detail in (Runeson
and Wohlin, 1998).

The usage specification is run through, using random numbers. To
generate test cases, the tester is supposed to act as the system and provide

Usage

Subscrlo Subscrhi Op

Slo1 Slo4 Shi2Slo2 Slo5 Op1Slo3 Shi1

Usage level

User type level

User sub-type level

User level

Figure 12. The hierarchy part of the usage model, using the PBX example
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the expected responses of the certification object using the requirements
specification as a basis. The stimuli generated from the usage specification
and the responses from the tester are stored on a test file. The test genera-
tion procedure is further described in (Wesslén and Wohlin, 1995).

5. Two Approaches to Integrated Usage 
Modelling

The combination of use cases and usage-based testing provides a compre-
hensive view of the software development process from a user perspective
(Wohlin et al., 1994). The user does not have to bother about internal
technical solutions. Instead the user can focus on the external view and
the actual use of the system. However, to make the combination seamless,
there is a need for bridging the conceptual gap between the two
approaches. This Chapter presents two approaches to integration.

As stated in Chapter 1, use case modelling and usage based testing are
sprung out of different traditions and have different objectives. It should
be noted, however, that both usage-based testing and use case modelling
need similar information, which means that the information is not col-
lected solely for either requirements specification or testing purposes; use
case models contain much information that can be used for system valida-
tion. Although there are many conceptual similarities between use case
modelling, as presented in Chapter 3, and usage-based testing, as pre-
sented in Chapter 4, there does not exist a simple one-to-one mapping
between the concepts in the two disciplines. The use case modelling con-
cepts do, for example, not cover the stochastic semantics of usage profiles,
and the state hierarchy model does, for example, not cover the concepts of
actor goals or pre- and post-conditions.

When trying to combine the concepts of Section 3 and Section 4 to
form an integrated approach to usage modelling, two integration
approaches can be identified: (1) we could try to transform a use case
model into a state hierarchy model by translating the concepts in the
former to the concepts in the latter according to some concept mapping
rules, or (2) we could try to extend the use case model to incorporate sto-
chastic semantics and the necessary information for test case generation.

Section 5.1 and Section 5.2 proposes a working procedure for each of
these integration approaches, and the PBX example presented in
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Section 3 is followed in both approaches. Section 5.3 discusses their
advantages and disadvantages. 

5.1 Approach 1: Integration by Transformation

The first approach to integration is based on the observation that many of
the concepts in use case modelling and statistical usage testing have simi-
lar semantics. For such similar concepts it may be possible to use simple
translation guidelines, and together with the necessary additional infor-
mation on the stochastic properties of users we can create a state hierarchy
model by transforming the use case model. This transformational
approach is sketched in Figure 13.

In general, the transformation includes moving from an event based
representation to a state-based representation and adding other necessary
information. 

When creating the state hierarchy model, it may be suitable to follow
the method outlined below (Runeson and Wohlin, 1998). The transfor-
mation activity uses the concepts captured by the use case model and
additional information of usage probabilities and quantities. 

1. Identify services

2. Define user types

3. Define user sub-types and instantiate users

4. Create behaviour models

5. Define the behaviour usage profile 

6. Define the hierarchy usage profile

Figure 13. Transforming a use case model into a state hierarchy model.
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This method shall not be seen as completely defined steps; iterations
are performed when needed. Below the steps are presented.

Identify services. The services can be used directly as defined in the use
case model, see Table 1. In our example the resulting service list is: NCC
(Normal Call with Charging), CFU (Call Forward Unconditional) and
RMR (Read Markings and Reset).

Define user types and sub-types. The actors in the use case model are
the basis for the upper levels of the hierarchy model. Each actor becomes a
user type and user sub-types are added if there are different probability
profiles for a user type. Additional information on the estimated number
of instances of each user sub-type determines the user level in the hierar-
chy model. 

The example has two actors in the use case model, Subscriber and
Operator (see Table 2), which constitute user types in the usage model.
The Subscriber user type has access to two of the services, NCC and CFU,
and the Operator user type has the RMR service. 

In addition to the use case information, quantitative information is
gathered from other sources. There are two variants of the Subscriber
type, one with high frequency usage and one with low frequency; each
constituting a user sub-type. For each of the user sub-types, the number
of instances are defined as well. There are 5 low-frequency subscribers,
2 high-frequency subscribers and 1 operator. These steps result in the
hierarchy model as presented in Figure 12.

Create behaviour and sub-behaviour models. The information for the
behaviour models are not directly available in the use case model as the
information for the hierarchy model are. However, there are parts of the
information in the use cases and the scenarios (see Table 3 and Table 4
respectively) which can be integrated to a behaviour model for the service
in question. Furthermore, the messages (see Table 5) constitute the inter-
face between the system and its users and will hence appear in the usage
model as well.

The behaviour model is a state-transition diagram in which use cases
and scenarios constitute parts. The state information can in parts be col-
lected from the pre- and postconditions for the use cases. The messages
are attached to the transitions in the behaviour model, as stimuli to the
system.
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In our example, the NCC service behaviour model is further elabo-
rated. The Normal Call use case and its five scenarios (Reply, Busy Sub-
scriber, No Reply, Non-Existent and Timeout) is the starting point for the
behaviour modelling. The first state to define is the starting state, Idle,
when no actions haave taken place, see Figure 14. Then we follow the
reply scenario, see Figure 7. The first stimulus that can be generated from
the subscriber is offHook, resulting in the DialTone state. Next step is to
enter a number and the subscriber state moves into RingTone. The called
part (called B-part) answers the call and the state is moved into Talking.
Finally when they close the call with onHook, the subscriber is back to the
Idle state.

All the other scenarios are taken into account in the model, resulting in
the model in Figure 15. It can be noted that there are a few new labels on
the transitions in addition to the messages in Table 5. Timeouts are mod-
elled as stimuli. There are also transitions labelled B-Answer and B-Call-
ing which involve another behaviour model, denoted with asterisk in the
figure. These are replaced with links, meaning that transitions in the other
behaviour model causes a transition in the current model.

Define the behaviour usage profile. When the behaviour models are
ready, the behaviour profile can be defined. There is no quantitative infor-
mation on the system usage in the use cases, so this information has to be
collected elsewhere. Typical information sources are measurements on ear-
lier releases of the system and interviews with intended users of the sys-
tem.

Two usage profiles are defined, for the NCC behaviour model, one for
each user sub-type. Fictitious data is presented in the tables below.

Figure 14. Behaviour model for service NCC, scenario Reply.
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The state weights represent the frequency of use when being in the respec-
tive states of the behaviour model. 

The state weights for the idle state show that a subscrhi has twice as
high frequency for starting a talk; the state weights for the talking state
show that a subscrhi talks 50% longer than a subsclo.

Table 6. Behaviour profile “Subscriber”

State Transition Subscrlo Subscrhi

Idle offHook 1.0 1.0

DialTone number(idle) 0.70 0.60

number(busy) 0.25 0.35

number(non-exist) 0.03 0.03

timeOut 0.02 0.02

RingSignal offHook 1.0 1.0

RingTone onHook 0.98 0.98

timeOut 0.02 0.02

Talking onHook 1.0 1.0

BusyTone onHook 1.0 1.0

NoTone onHook 1.0 1.0

ErrorTone onHook 1.0 1.0

InfoTone onHook 1.0 1.0

Figure 15. Behaviour model for service NCC, all scenarios integrated.
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Define the hierarchy usage profile. Finally the hierarchy profile is calcu-
lated, based on the state weights for each service. 

The concept translations discussed are, as shown in the example, not suf-
ficient for automatic transformation. There is still a need for skill and
intellectual work in the creation of the usage model. 

It can be concluded that the use case model can be transformed into a
usage model. The environment and structure levels contribute to the hier-
archy model with a few additional modelling decisions. The behaviour
model derivation is supported by the structure and event levels, while the
profile information has to be collected from other sources. 

5.2 Approach 2: Integration by Model Extension

Instead of creating a completely new model by transforming the use case
model into a state hierarchy model, we can adopt the principal ideas
behind statistical usage profiles and create an extended use case model,
complemented with event statistics. If we can create well defined seman-
tics for how test cases can be generated directly out of the use case model,
we will save the effort of making two different models. The model exten-
sion approach is illustrated in Figure 16. 

Table 7. State weights.

State 
weight Subscrlo Subscrhi

W Idle 1 2

W DialTone 100 100

W RingTone 100 100

W RingSignal 50 50

W Talking 15 10

W BusyTone 100 100

W NoTone 100 100

W ErrorTone 100 100

W InfoTone 100 100

Pi

Wi

Wk

k 1=

16
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The basic idea behind the model extension is to complement every
part of the use case model where there are non-deterministic choices with
the probabilities of the different choices. 

Environment level. On the environment level, we have to extend the use
case model with information on the number of instances of each actor
and the probabilities for each actor to generate stimuli to the system. Fur-
thermore, it has to be analysed if there are variants of actors with respect
to their usage profile. 

In our example, there are 7 instances of the subscriber actor and
1 instance of the operator actor. There are two variants of the subscribers,
with respect to their usage frequency, subscrhi and subscrlo. This informa-
tion and the fictitous usage profile is summarized in Table 8.

Table 8. Added information to the use case model on the environment level.

Actor Variants Use Cases

<0.95> Subscriber

(7)

<0.55> Subscrlo

(5)

<0.7> Normal Call

<0.05> Activate CFU

<0.05> Deactivate CFU

<0.2> CFU Call

<0.45> Subscrhi

(2)

<0.6> Normal Call

<0.05> Activate CFU

<0.05> Deactivate CFU

<0.3> CFU Call

<0.05> Operator 

(1)

none <0.7> Read Markings

<0.3> Reset Markings

Figure 16. Extending a use case model with additional information needed for 
test case generation.
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Structure level. On the structure level we have to add profile information
to the scenarios. To each branch in the HMSC flow (see Figure 4), a prob-
ability is attached. The resulting use case with profile information for the
scenarios in the use case Normal Call with Charging is presented in
Figure 17.

Event level. On the event level, probabilities are attached to each choice
in the model. For example, the alternative operator introduces a non-
deterministic choice between two or more alternatives. If we decorate the
alternative operator, as shown in Figure 18, with probabilities, we can

draw random numbers to decide which alternative is chosen during test
case generation. This way we can construct stochastic semantics for each
operator that determines how to generate scenarios. The scenarios are
then used as test cases.

Figure 17. MSC for the use case NCC extended with profile information.
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Figure 18. Operators extended with probabilities.
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For each actor-service combination an invocation probability can be
given to reflect how likely it is for this service to be selected for a given
actor. As many users may interact simultaneously with the system, we
need to specify the likelihood of the next event belonging to the same
service invocation. To model this, we introduce for each possible actor-
service combination a continuation probability that states the probability
that the next event is within the same service invocation.

5.3 Discussion

Both the presented approaches to integration of use case modelling and
statistical usage testing have shown to be feasible in a pilot study con-
ducted on a PBX system, but there is a need for further investigation. This
paper presents some examples from the pilot study, together with some
preliminary observations and findings, but extensive case studies are
needed to evaluate the two approaches, before deciding on which
approach is preferable in which situation.

The transformation approach has the advantage of being based on two
relatively mature disciplines which ends up in two models, each specifi-
cally defined for its purpose. The transformation rules support the model-
ling activities. The major disadvantage of this approach is the necessity of
dealing with two different conceptual frameworks and, and having to per-
form the transformation between the models.

The extension approach has the advantage of not needing a second
model, as it, instead, extends the modelling power of use cases with sto-
chastic semantics. We can stick to the same conceptual framework for our
requirements level usage model and decorate the model with probabilities
of usage to enable reliability certification. Thus, the event based semantics
does not need to be transformed into state based semantics.
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6. Conclusions and Further Research

There remains many challenges in both requirements engineering and
requirements-based system validation, and we believe that usage model-
ling will play an important role in both disciplines. Reliability certifica-
tion is still in the cradle, but quantification of software quality will be a
competition factor in the future, hence usage-based testing and a user per-
spective on the software are important. Use cases provide the means for
communication between users and developers in the requirements phase,
and usage-based testing allows for user evaluation prior to releasing the
software.

The presented work addresses conceptual issues related to usage mod-
elling and its application to both requirements engineering and testing.
The objective is to integrate use case modelling and usage-based testing to
form a comprehensive user-centred framework that enables both func-
tional requirements specification and reliability certification. The pre-
sented results include a conceptual study of use case modelling and
statistical usage testing based on the state hierarchy model. Both model-
ling techniques rely on similar concepts, which suggests that an integra-
tion is feasible. Two integration approaches are identified. The first
approach aims at establishing transformations rules that allow use case
models to be transformed into state hierarchy models. The second
approach aims at extending use case models with stochastic semantics to
allow test case generation directly from use case models. We believe that
both approaches are feasible, but further research is needed to fully assess
the virtues of each approach. Some of the areas where further research is
needed are:

■ Validation of rules for transformation of event-based use case mod-
els to state-based test models.

■ Stochastic semantics of use case models for test case generation.

■ Introduction of time in stochastic use case models.

■ Empirical studies of an integrated usage modelling approach.
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Abstract

Requirements engineering and software reliability engineering both
involve model building related to the usage of the intended system;
requirements models and test case models respectively are built. Use case
modelling for requirements engineering and operational profile testing for
software reliability engineering are techniques which are evolving into
software engineering practice. In this paper, approaches towards integra-
tion of the use case model and the operational profile model are proposed.
By integrating the derivation of the models, effort may be saved in both
development and maintenance of software artifacts. Two integration
approaches are presented, transformation and extension. It is concluded
that the use case model structure can be transformed into an operational
profile model adding the profile information. As a next step, the use case
model can be extended to include the information necessary for the oper-
ational profile. Through both approaches, modelling and maintenance
effort as well as risks for inconsistencies can be reduced. A positive spin-
off effect is that quantitative information on usage frequencies is available
in the requirements, enabling planning and prioritizing based on that
information.

IV
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1. Introduction

Bringing the software development under control is a common goal for
requirements engineering (RE) and software reliability engineering (SRE).
Requirements engineers strive for capturing as much as possible of the
requirements on the software, before it is being built. Thereby late and
expensive changes are reduced. Software reliability engineers strive for
quantifying and improving the quality of the software, in particular the
reliability. Thereby disappointing experiences on insufficient operational
reliability, with belonging costs are reduced.

However, the strive for reduced costs by taking problems upfront is not
the only common denominator for RE and SRE. In both areas a large
share of the job is collecting information and building models, both of
which take the user’s viewpoint. There are opportunities for coordinating
tasks for RE and SRE, which leads to reduction of total modelling effort. 

Use cases are means for requirements engineering to capture the
requirements on a system [1, 2]. Use cases define usage scenarios for dif-
ferent users of the system, thereby defining the external requirements on
system capabilities.

The operational profile is an external user-oriented test model which
specifies the intended usage of the system in terms of events and their
invocation probabilities [3, 4]. A similar approach is presented as statisti-
cal usage testing in the Cleanroom methodology [5, 6, 7]. Test cases are
generated from the operational profile, thus enabling estimation of the
operational software reliability already during system test.

Positive results are reported on the application of both methods. Use
cases and scenarios have gained acceptance, both in research and industry,
for their ability to support analysis, documentation and validation of
requirements [8, 9, 10, 11]. Operational profile testing is reported to save
effort during system test and to reduce the operational failures [4]. In this
paper we present an integrated approach which provides both use cases
for the requirements specification and the operational profile for testing
from the same information collection and modelling. A use case based
requirements specification has a structure very similar to an operational
profile model. Many concepts can be mapped upon each others. We pro-
pose a mapping scheme for transformation of a requirements model into a
test model. This approach can be further elaborated towards making a
single integrated model that fulfils both purposes: requirements and test
model. In both cases, effort can be saved in the derivation of the model
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and in the second approach, also in the maintenance of the model during
development and in future maintenance of the system.

The paper is structured as follows. Chapter 2 gives a brief overview of
the use case based requirements and Chapter 3 provides and introduction
to operational profile testing. In Chapter 4 two approaches to integration
are presented and evaluated, the transformation and extension approaches.
A summary is given in Chapter 5. 

A subset of a telephone system, a Private Branch eXchange (PBX),
which is used in an educational environment, is used throughout the
paper as an example [12]. The PBX is a commercial switch with its con-
trol processor “short-circuited” and connected to a UNIX workstation
running the control software. The PBX provides basic telephony to the
connected subscribers, see Figure 1. In its basic version, its only feature is
to make a call from one caller to a callee. During a project course, the stu-
dents implement extended services to the control software, such as charg-
ing, and call forwarding.

2. Use Case Based Requirements

2.1 Background

The elicitation, analysis and documentation of requirements on software
systems is a crucial and non-trivial task. The concepts of use cases and sce-
narios has gained wide-spread acceptance in object-oriented methods [1,
13, 14] and in the field of requirements engineering [15, 16, 17]. A strong
motivation for applying use cases is their support for the modelling of
functional requirements in a way that is understandable to users and cus-
tomers. This ability is embodied in the main idea behind use case model-

PBX

Figure 1. Example PBX system

Workstation
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ling, which is to elicit and document requirements by defining and
discussing specific contexts of system usage as they are anticipated by the
users.

2.2 Method

In [18, 19] a method for use case modelling is presented. This method is
an extension of the use case modelling part of the OOSE approach [1].
The major activities are summarized below:

■ Elicit actors and their goals.

■ Define use cases based on the actors and their goals.

■ Elicit scenarios for each use case.

■ Describe the events in the scenarios.

The main concepts in the these activities are briefly described in the fol-
lowing. Users can be of different types, called actors. A user is thus an
instance of an actor. An actor represents a set of users that have some
common characteristics with respect to why and how they use the target
system. In the PBX system, two actors can be identified, subscriber and
operator. Each actor has a set of goals, reflecting such common character-
istics. Goals are objectives that users have when using the services of a tar-
get system. Thus, goals are used to categorize users into actors.  Figure 2a
shows the goals of the two actors in the PBX example.

A service is a package of functional entities (features) offered to the
users in order to satisfy one or more goals that the users have. Figure 2b
includes the services of our PBX example system. 

A use case represents a usage situation where one or more services of
the target system are used by one or more actors with the aim to accom-
plish one or more goals. Figure 2c  shows use cases of the PBX example,
and their relation to actors, goals, and services.

A scenario1 is a specific realisation of a use case described as a finite
sequence of events. A scenario may either model a successful or an unsuc-
cessful accomplishment of one or more goals. A use case may cover an
unlimited number of scenarios as it may include alternatives and repeti-

1. Some authors use the terms scenarios and use cases as synonyms, but here we distinguish
between them, to differentiate between type level and instance level.
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tions. A scenario, however, is a specific and bound realisation of a use case,
with all choices determined to one specific path. Figure 3a shows a
number of scenarios identified for the use case normal call. 

When describing the events of each scenario it is useful to define a
data model, messages of the system and system actions. The latter mean
system intrinsic events which are atomic in the sense that there is no com-

 

c) Uses cases.

Use Cases Actors Goals Services

Normal Call Subscriber GS1, GS2, GO1 NCC

Activate CFU Subscriber GS3 CFU

Deactivate CFU Subscriber GS4 CFU

Invoke CFU Subscriber GS1, GS2, GS3 CFU

Read Markings Operator GO2 RMR

Reset Markings Operator GO3 RMR

b) Services.

Service Description

NCC Normal Call with Charging

CFU Call Forward Unconditional

RMR Read Markings and Reset

Figure 2. Actors, goals, services and use cases in the PBX example.

a) Actors and goals.

Actors Goals

Subscriber GS1 To achieve communication with another subscriber

GS2 To cease communication with another subscriber

GS3 To achieve reachability at another destination

GS4 To cease reachability at another destination

Operator GO1 To maintain markings information representing call duration

GO2 To achieve a printout of the number of markings for each subscriber

GO3 To achieve a resetting of the number of markings for each subscriber
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Figure 3. Data, messages and a subset of the scenarios for the PBX example.

c) Messages.

Message Description

offHook From Subscriber when lifting receiver

onHook From Subscriber when hanging up the receiver

number(telNbrType) From Subscriber when dialling a Number

activateCFU(telNbrType) From Subscriber when activating CFU

deactivateCFU From Subscriber when deactivating CFU

startTone(toneType) To Subscriber when a tone is given

stopTone(toneType) To Subscriber when a tone is stopped

readMarkings From Operator when issuing a reading of markings

resetMarkings From Operator when issuing a reset of markings

markings(markingListType) To Operator when reporting the markings

a) Scenarios for use case “Normal Call”.

Scenario Description

Reply Call to idle subscriber that replies

Busy Subscriber Call to busy subscriber

No Reply Call to idle subscriber that does not reply

Non-Existent Call to non-existent subscriber 

Timeout Subscriber waits too long after offhook

b) Data model.
toneType = 
 (dialTone, ringSignal, ringTone, 
  busyTone, errorTone, infoTone);
maxNumberOfSubscribers: Natural;
SubscriberType: record  (

state: (idle, busy, off);
telNumber: TelNbrType;
CFU_active: Boolean;
CFU_number: TelNbrType;
markings: Natural;
talkingTo: SubscriberType);

SubscriberSet: 
Set  (1..maxNumberOfSubscribers) 
Of  

SubscriberType;
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munication between the target system and the users that participate in the
use case. The data and messages for the PBX example are shown in
Figure 3b and 3c respectively, and the system actions can be seen in the
example scenario described in Table 1. 

2.3 Results

Use cases and scenarios are gaining increased attention in requirements
engineering research and industrial application. In [8], an industrial case
study reports that use cases facilitates all stakeholders to participate in the

Table 1. Use Case “Normal Call” Scenario “Reply”

Actor(s) Caller, Callee: Subscriber

Pre-condition(s): Caller.state = idle

Events Constraints

1. Caller to System: offHook Caller.state = busy

2. System to Caller: startTone(dialTone)

3. Caller to System: number(X)

4. System to Caller: stopTone(dialTone)

5. System action: number analysis Callee.telNumber = X;

Callee.state = idle

6. System to Callee: startTone(ringSignal) Callee.state = busy

System to Caller: startTone(ringTone)

7. Callee to System: offhook

8. System to Callee: stopTone(ringSignal)

System to Caller: stopTone(dialTone)

9. System action: connect Caller and Callee Caller.talkingTo = Callee; 
Callee.talkingTo = Caller;

10. Callee to System: onHook

Caller to System: onHook

11. System action: disconnects Caller and Callee Caller.talkingTo = nil;

Calle.talkingTo = nil;

12. System action: updates marking info Caller.markings is incremented 
based on the time between 9–11;

Post-condition(s): Caller.state = idle; Callee.state = idle;
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requirements process with good results in revealing defects. In [11], a sur-
vey of industrial application of use cases and scenarios identifies a number
of perceived benefits. 

Potential problems applying use cases and scenarios are to choose the
appropriate level of detail and degree of completeness for the use cases.

In [10], it is concluded that there is an industrial need to base system
tests on use cases and scenarios. The studied projects, however, rarely sat-
isfied this demand, as most projects lacked a systematic approach for
defining test cases based on use cases. In the this paper we investigate if
such an approach can be based on operational profile testing.

3. Operational Profiles

3.1 Background

Software reliability is defined as “the probability for failure-free operation
of a program for a specified time under a specified set of operating condi-
tions” [20]. The reliability is hence not only depending on the number of
faults in the software, but on how the software is used, hence exposing the
faults as failures. In order to predict the operational reliability during test,
the test cases executed has to resemble the operational usage, thus consti-
tuting a sample from the future operation. For this purpose a model of the
future operation is built: the operational profile.

The operational profile consists of the structure of the usage and the
probabilities for different uses. Examples of structural elements of the
operational profile are different types of customers, different types of
users, modes in which the system can operate, functions and operations
which can be invoked by the user. The probabilities for activation of users,
services etc. are connected to each structural element, constituting the
operational profile.

From the operational profile, test cases are selected and executed. The
test cases constitute a sample from the future operation, and hence the
failure data collected during the test can be used for predicting the opera-
tional software reliability. In addition, the tests based on the operational
profile has appeared to be efficient with respect to improved software reli-
ability during testing [3, 4].
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3.2 Method

In [4] a method for deriving an operational profile is presented. The
method is summarized below in five steps:

■ Develop a customer type list.

■ Develop a user type list.

■ List system modes.

■ Develop a functional profile.

■ Convert the functional profile to an operational profile.

For a more thorough description of the steps, refer to [4]. Here we illus-
trate the steps with the PBX example.

The customer type list collects the different types of customers that
acquire the system. A customer type represents a set of customers which
utilize the system in a similar manner. The example PBX can be sold to
small companies with 4-8 employees and medium-sized companies with
9–50 employees. Hence there are two customer types, small and medium.

The user type list collects the different types of users that use the sys-
tem. This list is not necessarily the same as the customer type list. For
larger systems, it is generally not the same. In our example case, there are
two user types, subscribers that make calls via the PBX and operators which
maintains the charging information.

System modes represent a set of functions or operations that are
grouped together in a way that is suitable for the application. The system
modes need not to be orthogonal to each others; a function or operation
can be member of different system modes. Criteria for defining system
modes can be according to [4]: Relatedness of functions/operations to
larger task, significant environmental conditions, operational architectural
structure, criticality, customer or user, and user experience.

In our example, we define three system modes: low-traffic subscriber
use, high-traffic subscriber use and operator use. The low-traffic and high-
traffic system modes represent the same functions and operations but with
different frequencies of use.

The first step in defining the functional profile is to create a function
list. Functions are defined from the user’s perspective and do not involve
architectural or design factors. In the sample system there are four func-
tions for the low-traffic and high-traffic subscriber system modes: normal
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call, and three functions for call forward unconditional (CFU), activate,
deactivate and invoke. For the operator system mode there are two func-
tions: Read markings and reset markings. The function list can be modified
by taking environmental variables into account, for example different
traffic levels. However this is already taken into account in the system
modes in this example.

Now the profile is attached to the functions. We choose an implicit
form with key input variables for each function. The variables decide the
variants of the functions. The different values of the variables are called
levels. For the normal call function, the key input variable is the input, or
lack of input from the callee. Different variants of the function are
invoked depending on which input, or lack of input the called party gives.
Five levels of the variable are identified: reply, busy subscriber, no reply, non-
existent and timeout. Similarly the variables and levels can be identified for
the other functions.

The functions and key input variables can be presented as an event tree
for the user subscriber under the system mode low traffic, see Figure 4.
Similarly is defined for the operator functions and the other system
modes.

The operational profile segments for the customer types, user types
and system modes are presented in Figure 5a. Note that all combinations
are not possible between user types and system modes. 

Finally the functions are mapped onto operations. For example, the
normal call function can be built up by four operations, number analysis,
connect subscribers, disconnect subscribers and update markings. It can be
noted that operations may be involved in performing different functions.
For example, the operations that are involved in the normal call function
are also involved in the invoke CFU. The difference between the two func-
tions is that in the normal call, the number analysis operation returns the
identity of the callee, while in the invoke CFU, the number analysis returns
the identity of the subscriber to which the CFU is directed. The resulting
operations are listed in Figure 5b. The four subscriber functions result in
six unique operations, of which four are shared by multiple functions.

There are key input variables for the operations as well, but this is not
elaborated here. Nor is the functional profile mapped onto the operations,
since the focus in this paper is on the structural parts, not on the profile
parts.
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3.3 Results

Application of operational profile testing is reported in [3, 4]. Firstly it
provides measures of the software reliability which can be used for project
and market planning. This is a substantial step forwards in the strive for
having the software engineering process under control. 

Secondly, it is reported to save effort during test. In [3] it is reported
that test costs are saved with up to 56%. These figures has of course to be
taken as is: a case study. Even if there was no saving at all in the general
case, the operational profile testing moves effort upfront to earlier phases
of the project which supports the approach of solving problems earlier,
and thus cheaper. 

Thirdly, the user perspective taken in the operational profile definition
is beneficial since it affects the system design effort as well [21]. By look-
ing at the system from outside-in, the customer and user viewpoints are
taken. This helps prioritizing what are the requirements on the system,
that fulfil the customer and user needs.

Problems encountered in operational profile testing are related to the
usage information. For newly developed systems, the usage information
may not be known in detail. However for evolving systems, usage infor-
mation is available from earlier releases in operation.

Figure 4. Event tree for user “subscriber” under system mode “low traffic”.

User type Function Key input variable value

Reply (45%)

Busy subscriber (36%)

No reply (15%)

Non-existent (3%)

Timeout (1%)

Activate CFU (5%) Successful (99%)

Timeout (1%)

Deactivate CFU (5%) Successful (99%)

Timeout (1%)

 Single forward reply (82%)

2-chain forward (10%)

3-or-more-chain forward (7%)

Timeout (1%)

Su
bs

cr
ib

er

Normal call (75%)

Invoke CFU (15%)
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These results from applying operational profile testing can be com-
bined with use case modelling, giving coordination benefits, which is fur-
ther elaborated in next chapter.

a) Profile segments.

Customer type User type System mode

Small (75%) Subscriber (95%) Low-traffic subscriber (55%)

Medium (25%) Operator (5%) High-traffic subscriber (45%)

Operator use (100%)

Figure 5. Operational profile parts.

b) Functions and their mapping onto operations.

Function Operations

Normal call Number Analysis
Connect Subscribers
Disconnect Subscribers
Update Markings

Activate CFU CFU Activation

Deactivate CFU CFU Deactivation

Invoke CFU Number Analysis
Connect Subscribers
Disconnect Subscribers
Update Markings
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4. Derivation of Operational Profile from 
Use Cases

A use case model and operational profile model has very much informa-
tion in common. It can be observed in the examples in Chapter 2 and
Chapter 3, that the structures of the models are very much the same. The
operational profile model primarily adds the profile information i.e. the
probabilities for use of different system capabilities. However the models
originate from different disciplines and different terminology is used.

In the search for possibilities for integrating models from the two
domains, we elaborate two different approaches, the transformation
approach and the extension approach, see Figure 6.

4.1 Transformation approach

The transformation approach takes the information in the use case model
and builds the operational profile model based on that information and
additional information from other sources. In order to find the common
parts in the two models, the concepts in the two domains are elaborated
below.

The requirements model does not include quantitative aspects on
usage frequencies, while the operational profile model does. This informa-
tion has hence to be derived in addition to the use case information.

The customer types in the operational profile model address the cus-
tomers, which acquire the system, and the probability information for dif-
ferent types of customers. If high-level goals are included in the use case
model, customers might be found among the actors, otherwise others
sources have to be consulted.

Figure 6. Two ways of integrating use case models with operational profile models.

Transformation Operational 

Extension
Integrated Model

with additional
information for
test generation

Use Case 
Model

Use Case 
Model

Profile Model
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The user types in the operational profile generally correspond to the
actors in the use case model. Both concepts refer to categories of objects,
either human users or other systems, that interact with the system.

The system mode is a set of functions and operations that relate to
each other. This corresponds in part to the service concept of the use case
model. However the system mode may also cover profiling information,
and that part cannot be found in the use case model.

The usage of functions in the operational profile model is described by
use cases in the requirements model. The functions as well as the use
cases are defined from the user’s perspective, and do not consider architec-
tural and design factors. Variants of functions in the operational profile
are distinguished by key input variables. Depending on the value of the
variable (the level), different alternatives of the function are chosen. The
levels of the key input variables have their counterparts in the scenarios of
the use case model, which are variants of a use case. A specific combina-
tion of key input variables gives a specific scenario, i.e. a realisation of a
use case.

In the operational profile model, operations are tasks accomplished by
the system in order to deliver a function to the user. A similar concept in
the use case model are the system actions.

The mapping between concepts in an operational profile model and a
use case model are summarized in Table 2. 

Table 2. Mapping of terminology a

a. “≈” means that the concepts partially model the same 
information,
“=” means that they actually model the same infor-
mation.

Operational profile model Use case model

Customer type ≈ Actor

User type = Actor

System mode ≈ Service

Function ≈ Use case

Key input variable ≈ Scenario

Operation = System action
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4.2 Example on the transformation approach

In this section we present an example on the transformation approach.
Given the mapping scheme from Section 4.1, an operational profile
model is derived from the use case model presented in Chapter 2. As in
Chapter 3, we follow the steps proposed in [4], but now the information
is collected from the use case model.

First the customer type list is derived. Since there are no high-level
actors in the use case model, there is no information on customer types,
so this information has to be collected elsewhere. Generally the different
customer types are defined as a requirement written in plain text. In our
example we have small (4–8 employees) and medium-sized (9–50 employ-
ees) enterprises as two different customer types.

The user type list can be derived directly from the list of actors in
Figure 2a. The actors subscriber and operator are selected as user types.

Next, the systems modes are elaborated. The information can be
taken in parts form the services in Figure 2b: normal call with charging
(NCC), call forward unconditional (CFU) and read markings and reset
(RMR). In addition to this, we add the profile information. Among the
subscribers, there are two different groups with respect to their usage fre-
quencies Thus we add, low-traffic and high-traffic to the system modes for
the subscriber services, defining in total four: low-traffic CFU, low-traffic
NCC, high-traffic CFU and high-traffic NCC. The operator use is defined as
a fifth system mode. 

The list of functions is derived directly from the list of use cases, see
Figure 2c. There are in total six functions, normal call, activate CFU, deac-
tivate CFU, invoke CFU, read markings and reset markings.

The key input variables which define variants of the functions can be
derived from the scenarios of the use case, see Figure 3a. For the normal
call function, the key input variable is the input or lack of input given as
response to the call. The levels of the variable are: reply, busy subscriber, no
reply, non-existent and timeout.

The usage frequency information in the functional profile cannot be
found in the use case model, but has to be derived from other sources, for
example interviews or measurements on existing systems.

The functions are mapped onto operations which together constitute
the function to the user. The system actions in the use case model consti-
tute candidates for operations, see Figure 1. In the normal call use case,
scenario reply, there are four system actions involved, number analysis,
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connect subscribers, disconnect subscribers and update markings. We define
operations with the same names for the operational profile. 

Finally, the functional profile is mapped onto the operations, defining
the operational profile. A summary of the transformation is given in
Table 3:

It can be concluded that the main part of the structural information for
the transformation can be taken from the use case model. In some cases,
the interpretations of the concepts differ, but the core of the information
is valid. The profile information, i.e. probabilities and frequencies have to
be taken from elsewhere. It can also be noticed that the operational model
transformed from the use case model can be slightly different from the
one that was derived directly. In our example, the system modes are not
exactly the same. 

4.3 Extension approach

An alternative to transforming the use case model into an operational pro-
file model is to extend the use case model with profile information. The
resulting integrated model should then fit both the purpose of require-
ments specification and test specification. Given the two sets of models
with different concepts and terminology presented in Chapter 2 and
Chapter 3, an integrated model should be developed.

Basically the extension means that user frequencies and probabilities
are added to the use case model. Additionally, the concepts of the opera-
tional profile model, which have no correspondence in the use case model
or has a different interpretation must be added or tailored. The extension

Table 3. Summary of information origin in the transformation approach.

Operational profile part Information in use case model

Customer type Partly

User type Yes

System mode Partly

Function Yes

Key input variable Yes

Functional profile No

Operation Yes

Operational profile No
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approach also means that concepts which are close to each other in the
two models, have to be defined to be exactly the same. Below it is identi-
fied which concepts can be used exactly as is, and which have to be tai-
lored or added to the integrated model. It shall not be seen as a complete
proposal for an integrated model, but a basis for further definition work.

The customer type is not generally a part of the operational profile
model, although sometimes modelled as actors, e.g. when defining high-
level goals for the system. The information is beneficial for the under-
standing of the customer needs and is often provided in text in the
requirements specification, hence it is added to the integrated model.

User types and actors are substantially the same in the two models,
and can be integrated.

The system modes in the operational profile and the service concept
in the use case model are integrated.

The usage of the functions in the operational profile are described by
use cases and can be integrated. The functional profile information is
added to the model.

Key input variables define alternatives in functions, while scenarios
define alternative realizations of use cases. Given that usage of functions
and use cases are integrated, these two can be integrated as well.

The operations of the operational profile model are the tasks that
build up a function which correspond to system actions in the use case
model. The operational profile is added to the model. 

Table 4. Integrated use case and operational profile model

Operational profile model Use case model Integrated model

Customer type ≈ Actor Customer actor

User type = Actor Actor

System mode ≈ Service Service

Function ≈ Use case Use case

Key input variable ≈ Scenario Scenario

Functional profile – Use case profile

Operation = System action Operation

Operational profile – Operational profile
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4.4 Analysis of approaches

The use case model and the operational profile model have similar struc-
tures and much information in common. It can hence be concluded that
any form of coordination is beneficial with respect to effort spent on
modelling, focus on test and testability already in the requirements and
quantification of requirements for priority or other purposes.

The models have different terminology and notations used. However,
also the purposes of the models differ. The purpose of the use case model
is to provide understanding of customer needs while the purpose of the
test model is to generate test cases to verify that requirements are fulfilled.
The notations and terminology used can be mapped between the two
domains, as elaborated above. The purpose conflict is more serious in the
transformation approach than in the extension approach.

The two approaches to integration, transformation of the use case
model into an operational profile model and extension of the use case
model into an integrated model, have their advantages and disadvantages.
The approaches are compared below, but in order to make a better evalu-
ation, empirical studies have to be conducted.

The extension approach has advantages over the transformation
approach with respect to effort spent to derive the model. A single model
is derived instead of two, which saves effort. Furthermore from a mainte-
nance perspective, the extension approach is to prefer, since it reduces
risks for inconsistencies between models. The consistency within a single
model is easier to maintain. Furthermore the incentives for maintaining
the integrated model are better since it is used both in requirements and
test, not only for a single purpose.

The transformation approach has advantages over the extension
approach when studying the fitness for purposes and level of detail. The
extension approach always include compromises between needs for the
different purposes. The purpose of the use case model is to bring best pos-
sible understanding of user and customer needs. The purpose of the test
model is to generate test cases representative for the future operation. The
main conflict concerns functions with low usage frequency, but high
importance for the customer. These functions are given more attention in
the requirements model and less attention in the test model. 

The requirements model may be less detailed than the test model. On
the other hand, if the extended model evolves during the development,
the level of detail can be set for the requirements purposes in the begin-
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ning of the development, and evolve into more details, according to the
test model needs.

The advantages and disadvantages are summarized in Table 5. 

5. Summary

This paper presents work which aims at integrating requirements engi-
neering (RE) and software reliability engineering (SRE). Two different
approaches are presented, the transformation and the extension approaches. 

There are many advantages of an integration between RE and SRE.
The SRE aspects are addressed earlier in the development cycle, enabling
proactive rather than reactive actions. The quantitative aspects of the SRE
usage modelling may help in the prioritizing of requirements. The con-
nection between the requirements defined and their verification and vali-
dation is made closer. Finally, by utilizing the same sources for
information, effort may be saved in the modelling tasks.

The transformation of a use case model to an operational profile model
is one step towards integration of the two domains, which is evaluated in
this paper. The model extension is another step which is supposed to save
more effort, in particular in maintenance of software artifacts, but on the
other hand may involve compromises between RE and SRE purposes for
usage modelling. The proposed approaches to integration have to be eval-
uated empirically in order to get more understanding on which approach
is most preferable in different situations.

Table 5. Comparison between integration approaches.

Transformation Extension

Information + same information for both 
purposes

+ same information for both purposes

Structure + same structure for both pur-
poses

+ same structure for both purposes

Derivation – two models to derive + single model to derive

Maintenance – two models to maintain

– risk for inconsistencies

+ single model to maintain

+ consistency within model

Fit for purpose + each model tailored for its 
purpose

– the model is a compromise between 
purposes

Level of detail + each model at appropriate 
level of detail

– the model is a compromise between 
levels of detail
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Abstract

Perspective-Based Reading (PBR) is a scenario-based inspection technique
where several inspectors read a document from different perspectives (e.g.
user, designer, tester). The reading is made according to a special scenario,
specific for each perspective. The basic assumption behind PBR is that the
perspectives find different defects and a combination of several perspec-
tives detects more defects compared to the same amount of reading with a
single perspective. This paper presents a study which analyses the differ-
ences in the perspectives. The study is a partial replication of previous
studies. It is conducted in an academic environment using MSc and PhD
students as subjects. Each perspective applies a specific modelling tech-
nique: use case modelling for the user perspective, equivalence partition-
ing for the tester perspective and structured analysis for the design
perspective. A total of 30 MSc students were divided into 3 groups, giving
10 subjects per perspective. A control group of 9 PhD students used a
checklist reading technique. The analysis results show that (1) there is no
significant difference between the three perspectives in terms of defect
detection rate and number of defects found per hour, (2) there is no sig-
nificant difference in the defect coverage of the three perspectives, and (3)
PhD students with a checklist approach find significantly more defects
per hour and have a significantly higher detection rate than MSc students

V
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with a PBR approach. The results suggest that a combination of multiple
perspectives may not give higher coverage of the defects compared to sin-
gle-perspective reading. It is also indicated that individual abilities and
motivation are more important than the reading technique used.

1. Introduction

The validation of requirements documents is often done manually, as
requirements documents normally include informal representations of
what is required of an intended software system. A commonly used tech-
nique for manual validation of software documents is inspections, pro-
posed by Fagan (1971). Inspections can be carried out in different ways
and used throughout the software development process for (1) under-
standing, (2) finding defects, and (3) as a basis for making decisions.
Inspections are used to find defects early in the development process, and
have shown to be cost effective (e.g. Doolan, 1992). 

A central part of the inspection process is the defect detection carried
out by an individual reviewer reading the document and recording defects
(a part of preparation, see Humphrey, 1989). Three common techniques
for defect detection are Ad Hoc, Checklist and Scenario-based reading
(Porter, 1995). Ad Hoc detection denotes an unstructured technique,
providing no guidance and the reviewers detect defects based on their per-
sonal knowledge and experience. The checklist detection technique pro-
vides a list of issues and questions, capturing the knowledge of previous
inspections, helping the reviewers to focus their reading. 

In the scenario-based approach, different reviewers have different
responsibilities and are guided in their reading by specific scenarios which
aim at constructing a model, instead of just passive reading. A scenario1

here denotes a script or procedure that the reviewer should follow. Two
variants of scenario-based reading have been proposed: Defect-Based
Reading (Porter, 1995) and Perspective-Based Reading (Basili, 1996). The
former (subsequently denoted DBR) concentrates on specific defect

1. There is considerable risk for terminology confusion here, as the term scenario also is used
within requirements engineering to denote a sequence of events involved in an envisaged usage
situation of the system under development. A use case is often said to cover a set of related (sys-
tem usage) scenarios. In scenario-based reading, however, the term scenario is a meta-level con-
cept, denoting a procedure that a reader of a document should follow during inspection.
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classes, while the latter (subsequently denoted PBR) focuses on the points
of view of the users of a document.

Another part of the inspection process is the compilation of defects into
a consolidated defect list where all individual reviewers’ defect lists are
combined. This step may include the removal of false positives (reported
defects that were not considered to be actual defects) as well as the detec-
tion of new defects. This step is often done in a structured inspection meet-
ing where the team of reviewers participate. The effectiveness of a team
meeting has been questioned and studied empirically by Votta (1993) and
Johnson (1998).

This paper describes research on scenario-based reading with a PBR
approach. The research method is empirical and includes a formal facto-
rial experiment in an academic environment. The presented experiment is
a partial replication of previous experiments in the area and focuses on
refined hypotheses regarding the differences between the perspectives in
PBR. The paper concentrates on defect detection by individual reviewers,
while the team meeting aspects are left out for future analysis.

The structure of the paper is as follows. Section 2 gives an overview of
related work by summarising results from previously conducted experi-
ments in requirements inspections with a scenario-based approach. Sec-
tion 3 includes the problem statement motivating the presented work. In
Section 4, the experiment plan is described including a discussion on
threats to the validity of the study, and Section 5 reports on the operation
of the experiment. The results of the analysis is given in Section 6, and
Section 7 includes an interpretation of the results. Section 8 provides con-
clusions and an outline of future work.

2. Related Work

The existing literature on empirical software engineering includes a
number of studies related to inspections, where formal experimentation
has shown to be a relevant research strategy. The experiment presented in
this paper relates to previous experiments on inspections with a scenario-
based approach. The findings of a number of experiments on scenario-
based inspection of requirements documents are summarized below.

■ The Maryland-95 study (Porter, 1995) compared DBR with Ad
Hoc and Checklist in an academic environment. The experiment
was run twice with 24 subjects in each run. The requirements docu-
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ments used were a water level monitoring system (WLMS, 24
pages) and an automobile cruise control system (CRUISE, 31
pages).
Result 1: DBR reviewers have significantly higher defect detection
rates than either Ad Hoc or Checklist reviewers. 
Result 2: DBR reviewers have significantly higher detection rates for
those defects that the scenarios were designed to uncover, while all
three methods have similar detection rates for other defects. 
Result 3: Checklist reviewers do not have significantly higher detec-
tion rates than Ad Hoc reviewers. 
Result 4: Collection meetings produce no net improvement in the
detection rate – meeting gains are offset by meeting losses.

■ The NASA study (Basili, 1996) compared PBR with Ad Hoc1 in an
industrial environment. The experiment consisted of a pilot study
with 12 subjects and a second main run with 13 subjects. There
were two groups of requirements documents used; general require-
ments documents: an automatic teller machine (ATM, 17 pages), a
parking garage control system (PG, 16 pages); and two flight
dynamics requirements documents (27 pages each).
Result 1: Individuals applying PBR to general documents have sig-
nificantly higher detection rates compared to Ad Hoc.
Result 2: Individuals applying PBR to NASA-specific documents do
not have significantly higher detection rates compared to Ad Hoc.
Result 3: Simulated teams applying PBR to general documents have
significantly higher detection rates compared to Ad Hoc.
Result 4: Simulated teams applying PBR to NASA-specific docu-
ments have significantly higher detection rates compared to Ad
Hoc.
Result 5: Reviewers with more experience do not have higher detec-
tion rates.

■ The Kaiserslautern study (Ciolkowski, 1997) compared PBR with
Ad Hoc in an academic environment using the ATM and PG docu-
ments from the NASA study. The experiment consisted of two runs

1. Basili (1996) refers to this reading technique as the “usual technique” at NASA SEL described
in Recommended Approach to Software Development, Revision 3, available at (1 Feb. 1999)
http://sel.gsfc.nasa.gov/doc-st/docs/81-305.pdf
Requirements inspections according to this document do not prescribe any specific reading
technique.
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with 25 and 26 subjects respectively.
Result 1: Individuals applying PBR to general documents have sig-
nificantly higher detection rates compared to Ad Hoc.
Result 2: Simulated teams applying PBR to general documents have
significantly higher detection rates compared to Ad Hoc.
Result 3: The detection rates of five different defect classes are not
significantly different among the perspectives.

■ The Bari study (Fusaro, 1997) compared DBR with Ad Hoc and
Checklist in an academic environment using the WLMS and
CRUISE documents from the Maryland-95 study. The experiment
had one run with 30 subjects.
Result 1: DBR did not have significantly higher defect detection
rates than either Ad Hoc or Checklist.
Result 2: DBR reviewers did not have significantly higher detection
rates for those defects that the scenarios were designed to uncover,
while all three methods had similar detection rates for other defects. 
Result 3: Checklist reviewers did not have significantly higher detec-
tion rates than Ad Hoc reviewers. 
Result 4: Collection meetings produced no net improvement in the
detection rate – meeting gains where offset by meeting losses.

■ The Trondheim study (Sørumgård, 1997) compared the NASA
study version of PBR with a modified version of PBR (below
denoted PBR2) where reviewers were given more instructions on
how to apply perspective-based reading. The study was conducted
in an academical environment using the ATM and PG documents
from the NASA study. The experiment consisted of one run with
48 subjects.
Result 1: PBR2 reviewers did not have significantly higher defect
detection rates than PBR.
Result 2: Individuals applying PBR2 reviewed significantly longer
time compared to those who applied PBR.
Result 3: Individuals applying PBR2 suggested significantly fewer
potential defects compared to those who applied PBR.
Result 4: Individuals applying PBR2 had significantly lower produc-
tivity and efficiency than those who applied PBR.

■ The Strathclyde study (Miller, 1998) compared DBR with Checklist
in an academic environment using the WLMS and CRUISE docu-
ments from the Maryland study. The experiment consisted of one
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run with 50 subjects.
Result 1: In the WLMS document, DBR did not have significantly
higher defect detection rates than Checklist.
Result 2: In the CRUISE document, DBR had significantly higher
defect detection rates than Checklist.
Result 3: Collection meetings produced no net improvement in the
detection rate – meeting gains were offset by meeting losses.

■ The Linköping study (Sandahl, 1998) compared DBR with Check-
list in an academic environment using the WLMS and CRUISE
documents from the Maryland study. More defects were added to
the list of total defects. The experiment consisted of one run with
24 subjects.
Result 1: DBR reviewers did not have significantly higher defect
detection rates than Checklist reviewers.
Result 2: DBR reviewers did not have significantly higher detection
rates than Checklist reviewers.

■ The Maryland-98 study (Shull, 1998) compared PBR with Ad Hoc
in an academical environment using the ATM and PG documents
from the Maryland study. The experiment consisted of one run
with 66 subjects.
Result 1: PBR reviewers had significantly higher defect detection
rates than Ad Hoc reviewers.
Result 2: Individuals with high experience applying PBR did not
have significantly1 higher defect detection rates compared to Ad
Hoc.
Result 3: Individuals with medium experience applying PBR had
significantly higher defect detection rates compared to Ad Hoc.
Result 4: Individuals with low experience applying PBR had signifi-
cantly higher defect detection rates compared to Ad Hoc.
Result 5: Individuals applying PBR had significantly lower produc-
tivity compared to those who applied Ad Hoc.

■ The Lucent study (Porter, 1998) replicated the Maryland-95 study
in an industrial environment using 18 professional developers at
Lucent Technologies. The replication was successful and completely
corroborated the results from the Maryland-95 study.

1. Results 2-4 of the Maryland-98 study apply a significance level of 0.10, while 0.05 is the cho-
sen significance level in all other results.



3. Background and Motivation

Requirements Engineering with Use Cases - A Basis for Software Development 147

The Maryland-95, NASA, Kaiserslautern, Maryland-95, and Lucent
studies indicate that a scenario-based approach give higher detection rate.
The Bari, Strathclyde, and Linköping studies could, however, not corrob-
orate this with statistically significant results, which motivates further
studies to increase the understanding of scenario-based reading. 

Many of the studies concluded that real team meetings were ineffective
in terms of defect detection. (There may of course be other good reasons
for conducting team meetings apart from defect detection, such as con-
sensus building, competence sharing, and decision making.)

The efficiency (detected defects per time unit) of scenario-based read-
ing has, however, not been studied, as the major dependent variable is
detection rate which does not take into account the time spent on read-
ing.

The series of studies summarised above is a salient example of how
independently conducted replications of experiments in different envi-
ronments are used to strengthen or question theories and hypotheses. In
Software Engineering, replicated experiments are relatively uncommon,
compared to other scientific disciplines. This paper follows the empirical
tradition, by building on the understanding gained by previous studies
and testing refined hypotheses in a continued replication effort. 

The study presented here is subsequently denoted the Lund study. The
Lund study is a partial replication of the NASA study, and is based on a
lab package (Basili, 1998) provided by the University of Maryland in
order to support empirical investigations of scenario-based reading. The
problem statement motivating the Lund study is given in the subsequent
section.

3. Background and Motivation

The previous studies, summarised in Section 2, have mainly concentrated
on comparing scenario-based reading with checklist and Ad Hoc tech-
niques in terms of defect detection rates. The objective of the Lund study
is, however, to investigate the basic assumption behind scenario-based
reading, that the different perspectives find different defects. Another
interest is the efficiency of the different perspectives in terms of defects
detected per hour. This section describes PBR and states the research
questions motivating the presented work.
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3.1 Perspective-Based Reading Theory

The basic assumptions behind PBR are (1) that a reviewer with a specific
focus performs better than a reviewer with the responsibility to detect all
types of defects, and (2) that different foci can be designed so that their
union yields full coverage of the inspected document. Another important
assumption is that it is easier to detect defects if a reviewer works struc-
tured and reads actively. Also, by utilising the document under inspection
in a way that it will be used in subsequent phases, the reviewer is able to
detect defects that otherwise are not detected until later on. 

The idea behind reading a document from different perspectives and
use of scenarios is to gain a better detection coverage of defects in a soft-
ware document. Basili et al. (1996) use three different perspectives which
originate from roles in the software development process. Three different
phases of special importance are design, verification and operation; the
roles are designer, tester and user1.

Model building is a central part of PBR. The models used in the study
of PBR stem from well-known techniques used in the different software
phases. Designers utilise structured analysis, tester apply equivalence parti-
tioning and users construct use cases. All these models are adapted to be
used as inspection techniques. Procedures for all three perspectives are
provided by Basili et. al. (1998). 

Structured analysis aims at creating a high-level and a low-level data
flow diagram from requirements, where internal software processes are
modelled. After a number of iterative steps between the low-level and
high-level data flows, the diagrams show the relationship between the sys-
tem and its environment as well as the internal processing in the system.
During the inspection a number of questions are answered to validate that
the design fulfils all requirements documented and that no requirements
are missing. As a result of the structured analysis based inspection, it is
expected that some defects are detected in the requirements phase which
otherwise not would have been detected until the design phase.

Equivalence partition testing aims at creating a set of test cases using a
requirements document as input. The test cases are based on partitions of
input data into classes equivalent in terms of how the system functions.
Test cases close to the edge values and the middle of a range of values are

1. The user perspective is in Basili (1996) represented by a technical writer who will, based on the
requirements document, prepare a user manual.
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selected. During the work with finding test cases different questions are
answered by the reviewer to ensure that the requirements are correct and
that no requirements are missing. As a result of the equivalence partition-
ing based inspection, it is expected that some defects are detected in the
requirements phase which otherwise not would have been detected until
the testing phase.

Use case modelling aims at documenting the functionality of the prod-
uct as seen by the user. This is carried out in three iterative activities. First,
the person inspecting as a user tries to find the participants involved from
which actors are identified. Second, the functions of the product is identi-
fied from which use cases are modelled. Third, the actors are matched to
the corresponding use cases in which they participate. Q uestions are
answered during the creation of use cases. As a result of the use case based
inspection, it is expected that some defects are detected in the require-
ments phase which otherwise not would have been detected until opera-
tion.

By combining these three perspectives, the expected results are better
defect coverage and earlier defect detection.

3.2 Research Questions

In this experiment the focus is to investigate whether perspective-based
reading works as it is supposed to. Two questions are addressed:

1. Do the perspectives detect different defects?

2. Is one perspective superior to another?

Addressing the latter first, there are two aspects of superiority that are to
be addressed, namely effectiveness, i.e. how high fraction of the existing
defects are found (detection rate), and efficiency, i.e. how many defects are
found per time unit. 

The perspectives proposed by Basili (1996) are designer, tester and
user. The users are important stakeholders in the software development
process, and especially when the requirements are elicited, analysed and
documented. The user role in PBR is focused on detecting defects at a
high abstraction level related to system usage, while the designer is
focused on internal structures and the tester is focused on verification. It
may not be unlikely that the user perspective is more efficient in finding
missing requirements, as the user often is a major source of the require-
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ments. Furthermore, the user perspective is focused on the employment
of the product, while the designer and the tester are focused on the devel-
opment of the product and are thereby closer to the code. The user may
very well be the most capable perspective for detecting requirements
defects. With these suppositions in mind, it would be interesting to inves-
tigate the capabilities of the user perspective in comparison with other
perspectives.

Previous studies have mainly concentrated on the effectiveness in terms
of detection rate. From a software engineering viewpoint it is important
also to assess the efficiency (e.g. in terms of detected defects per time
unit), as this factor is important for a practitioner’s decision to introduce a
new reading technique. The specific project and application domain con-
straints then can, together with estimations of how much effort is needed,
be a basis for a trade-off between quality and cost.

One main purpose of PBR is that the perspectives detect different
kinds of defects in order to minimise the overlap among the reviewers.
Hence, a natural question is whether reviewers do find different defects or
not. If they detect the same defects, the overlap is not minimised and PBR
does not work as it was meant to. If all perspectives find the same kinds of
defects it may be a result of (1) that the scenario-based reading approach
is inappropriate, (2) that the perspectives may be insufficiently supported
by their accompanying scenarios, or (3) that other perspectives are needed
to gain a greater coverage difference. The optimal solution is to use per-
spectives with no overlap and as high defect detection rate as possible,
making PBR highly dependable and effective. The Lund study addresses
the overlap by investigating whether the perspectives detect different
defects.

Another structured inspection technique is checklist reading. In con-
trast to PBR, which concentrates on the working procedure, checklist
reading is focused on detecting specific kinds of defects that are known
from previous inspections to be common or crucial. In this experiment we
focus upon PBR, but a group of readers applying a checklist is also
included as a comparison. The checklist used in the Lund study is the
same as in (Miller, 1998). Due to educational constraints, it was not pos-
sible to have the same type of subjects for both PBR and checklist reading.
The PBR technique was taught within a Software Engineering course at
the Master level and the education goal of the Master students would not
be fulfilled if one group just applied checklist reading. Hence, in the Lund
study PhD students participated voluntarily as a control group. As a con-
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sequence, the subjects in the PBR group consisting of MSc students have
different training, experience, motivation and ability compared to the
checklist group consisting of PhD students. This fact introduces a con-
founding factor in the experiment, but the comparison with a checklist is
still interesting, as the following research question can be answered:

3. Can less experienced reviewers with PBR outperform more experi-
enced reviewers with a less sophisticated approach, or are personal
abilities more important than the technique used?

The Maryland-95 study indicates that checklist inspections are approxi-
mately as good as Ad Hoc inspections and the NASA study suggests that
PBR inspections are significantly better than Ad Hoc inspections in terms
of detection rate, so it is interesting to investigate if this effect can be
observed even if the group using the more “primitive” approach of check-
list reading is more experienced.

The three questions stated above are the main input to the more
detailed planning of the experiment. This plan is described in the subse-
quent section.

4. Experiment Planning

In this section describes the planning of the reading experiment. The
planning includes the definition of dependent and independent variables,
hypotheses to be tested in the experiment, experiment design, instrumen-
tation and an analysis of threats to the validity of the experiment. The
purpose is to describe and motivate the procedures applied when con-
ducting the experiment in order to enable the reader to validate the
reported results. This section is also aimed at supporting further replica-
tion of the experiment, which is encouraged to be conducted in industrial
as well as academical environments.

The reading experiment is conducted in an academical environment
with close relations to industry. The subjects are fourth-year students at
the Master’s programmes in Computer Science & Engineering and Elec-
trical Engineering at Lund University and PhD students at the Depart-
ment of Communication Systems and the Department of Computer
Science at the same university. The departments have close cooperation
with industry, both in joint research projects and in education matters.
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4.1 Variables

The independent variables determine the cases for which the dependent
variables are sampled. The purpose is to investigate different reading per-
spectives and methods, applied to two objects (requirements documents)
by different types of subjects (reviewers). The independent variables are
hence:

■ STYPE. Among the subjects, there are two types: fourth-year Mas-
ter students (MSc) and PhD students (PhD). 30 Msc students and
9 PhD students took part in the study.

■ PERSP. In the PBR reading method used by MSc students, one of
three perspectives is applied by each subject: User, Tester or
Designer (U, T, D). The control group of PhD students uses the
checklist method, and for simplicity this method is treated as yet
another value of the PERSP variable: Checklist (C).

■ DOC. The inspection objects are two requirements documents one
for an automatic teller machine (ATM) and one of a parking garage
control system (PG). The ATM document is 17 pages and contains
29 defects. The PG document is 16 pages and contains 30 defects.

The inspection objects are the same as in the University of Maryland lab
package (Basili, 1998), and the design and instrumentation is also based
on this lab package.

There is one variable that is controlled, in order to guide the allocation
of subjects to different perspectives:

■ EXPERIENCE. The experience is measured through a question-
naire which covers software engineering experience in general, expe-
rience with inspections, and experience with the modelling
techniques of the three perspectives, user, tester and designer. The
experience is measured for each perspective and each modelling
technique on a 5 level ordinal scale (1 = none, 2 = studied in class or
from book, 3 = practised in a class project, 4 = used on one project
in industry, 5 = used on multiple projects in industry)

The variables in the study are summarized in Table 1 together with brief
explanations.
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The problem statements on PBR effectiveness, efficiency and distribution
over perspectives imply that the following set of dependent variables are
measured.

■ TIME. The time spent by each inspector in individual preparation
is recorded by all subjects. The time unit used is minutes.

■ DEF. The number of defects found by each inspector is recorded,
excluding false positives. The false positives are removed by the
experimenters, in order to ensure that all defect candidates are
treated equally.

■ EFF. The fault finding efficiency, i.e. the number of defects found
per hour, calculated as (DEF*60)/TIME.

■ RATE. The fault finding effectiveness, i. e. the fraction of found
defects by total number of defects (also called detection rate) is cal-
culated as DEF divided by the total number of known defects con-
tained in the inspected documents.

■ FOUND. The number of reviewers, belonging to a certain perspec-
tive, which have found a certain defect in a specific document is
recorded. This variable is used for analysing fault finding distribu-
tions for different perspectives.

Table 1. Variables.

Name Values Description

Independent

variables

STYPE {MSc,PhD} Type of subject

PERSP {U,T,D,C} Perspective (U,T,D) or checklist (C)

DOC {ATM,PG} Inspected requirements document

Controlled

Variable

EXPERIENCE Ordinal Experience with user, tester, design and 
checklist techniques, measured on a five-
level ordinal scale.

Dependent 

Variables

TIME Integer Time in minutes spent on finding defects

DEF Integer Number of defects found after removal of 
false positives

EFF 60*DEF/TIME Number of defects found per hour

RATE DEF/TOT The fraction of found defects per total 
number of defects

FOUND Integer How many in a certain perspective 
PERSP in {U,T,D} have found defect 
DEFID for a given document DOC
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4.2 Hypotheses

Perspective-Based Reading is assumed to provide more efficient inspec-
tions, as different reviewers take different perspectives making the defect
overlap smaller (Basili, 1996). The objective of the study is to empirically
test if these assumptions are true. In consequence, hypotheses related to
performance of different perspectives and the checklist method are stated.
The checklist method is treated as a fourth perspective with respect to
efficiency and rate. The hypotheses are elaborated below, and the formal
definitions of the hypotheses, as well as their null hypotheses counterparts
are presented in Table 2. The three hypotheses address efficiency, effec-
tiveness and distribution over perspectives.

■ HEFF. The perspectives are assumed to have different finding effi-
ciency, i.e. the number of defects found per hour of inspection is
different for the various perspectives.

■ HRATE. The perspectives are assumed to have different effectiveness
or detection rates, i.e. the fraction of defects identified is different
for the various perspectives.

■ HFOUND. The perspectives are assumed to find different defects,
i.e. the distribution over defects found are not the same for different
perspectives.

Table 2. Hypotheses.

Hypothesis Definition Null Definition

HEFF The average defect detec-
tion efficiency EFFPERSP is 
different for at least one per-
spective {U,D,T,C}

H0,EFF The average defect detec-
tion efficiency EFFPERSP 
is equal for all perspec-
tives {U,D,T,C}

HRATE The average defect detec-
tion rate RATEPERSP is dif-
ferent for at least one 
perspective {U,D,T,C}

H0,RATE The average defect detec-
tion rate RATEPERSP is 
equal for all perspectives 
{U,D,T,C}

HFOUND The distribution of 
FOUND is different for at 
least one perspective 
{U,D,T}

H0,FOUND The distribution of 
FOUND is equal for all 
perspectives {U,D,T}
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4.3 Design

To test these hypotheses an experiment with a factorial design (Mont-
gomery, 1997) is used with two factors (PERSP and DOC). The design is
summarized in Table 3. The experiment varies the four perspectives over
two documents and two types of subjects. The documents are independ-
ent of the other two factors, while there is a constraint in the allocation of
subject types to perspectives. Due to educational limitations, the STYPE
factor could not be used in randomisation as MSc students could only be
allocated to either the User, Designer or Tester perspective, and hence, the
PhD subject types are allocated to the Checklist perspective.

The assignment of an individual subject to one of the three PBR perspec-
tives (U, D, T), was conducted based on their reported experience, similar
to the NASA study (Basili, 1996). The objective of experience-based per-
spective assignment is to ensure that each perspective gets a fair distribu-
tion of experienced subjects, so that the outcome of the experience is
affected by perspective difference rather than experience difference. The
experience questionnaire required the subjects to grade their experience
with each perspective on a five level ordinal scale. The subjects were then
sorted three times, giving a sorted list of subjects for each perspective with
the most experienced first. Within the same experience level, the subjects
were placed in random order. The subjects were then assigned to perspec-
tives by selecting a subject on top of a perspective list and removing this
subject in the other lists before continuing with the next perspective in a
round robin fashion starting with a randomly selected perspective, until
all subject were assigned a perspective.

Table 3. Experiment design

PERSP

User Designer Tester Checklist

D
O

C ATM 5 MSc 5 MSc 5 MSc 6 PhD

PG 5 MSc 5 MSc 5 MSc 3 PhD
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Each PhD student was randomly assigned to one of the two docu-
ments in a way that allowed team meetings1 with three participants in
each team, hence the unbalanced 6/3 in the number of subjects for DOC.

The instruments for the reading experiment consists of two require-
ments documents and reporting templates for time and defects. These
instruments are taken from the University of Maryland lab package
(Basili, 1998) and are reused with minimal changes. 

The factorial design described above is analysed with descriptive statis-
tics (bar plots and box plots) and analysis of variance (ANOVA) (Mont-
gomery, 1997) for the hypotheses HEFF, and HRATE. 

For the HFOUND hypothesis a Chi-square test (Siegel, 1988) is used
together with correlation analysis (Robson, 1993).

4.4 Threats to Validity

The validity of the results achieved in experiments depends on factors in
the experiment settings. Different types of validity can be prioritized
depending on the goal of the experiment. In this case, threats to four
types of validity are analysed (Cook, 1979): Conclusion validity, internal
validity, construct validity and external validity.

Conclusion validity concerns the statistical analysis of results and the
composition of subjects. In this experiment, well known statistical tech-
niques are applied which are robust to violations of their assumptions.
One general threat to conclusion validity is, however, the low number of
samples, which may reduce the ability to reveal patterns in the data, and
in particular there are few samples for the chi-square test, which is further
elaborated in Section 6.2. The subjects consists of two groups, MSc and
PhD students, which are homogeneous within the groups but heterogene-
ous between the groups. This reduces the ability to draw conclusions over
the different groups.

Internal validity concerns matters that may affect the independent var-
iable with respect to causality, without the researchers knowledge. There
are two threats to the internal validity in this experiment, selection and
instrumentation. The experiment was a mandatory part of a software
engineering course, thus the selection of subjects is not random, which
involves a threat to the validity of the experiment. The requirements doc-

1. Team meetings were held for educational reasons, but the analysis of team meeting results are
not included in this investigation.
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uments used may also affect the results. The documents are rather fault-
prone and additional issues in the documents could be considered as
defects. On the other hand, it is preferable to have the same definition of
defects as in the previous studies for comparison reasons. Other threats to
internal validity are considered small. Each subject was only allocated to a
single object and a single treatment, hence there is no threat of matura-
tion in the experiment. The subjects applied different perspectives during
inspection, but the difference between perspectives are not large enough
to suspect compensatory equalisation of treatments or compensatory
rivalry. The subjects were also told that their grading in the course was not
depending on their performance in the experiment, only on their serious
attendance. There is of course a risk that the subjects lack motivation;
they may, for example, consider their participation a waste of time or they
may not be motivated to learn the techniques. The teacher in the course
in which the experiment is performed, has, however, made a strong effort
in motivating the students. It was clearly stated that a serious participa-
tion was mandatory for passing the course. It is the teacher’s opinion that
the students made a very serious attempt in their inspection.

Construct validity concerns generalisation of the experiment result to
concept or theory behind the experiment. A major threat to the construct
validity is the limitation of allocation of subjects to the different perspec-
tives. Since the MSc students had to be allocated to one of the U, D or T
perspective and the PhD students were allocated to the C perspective, the
C perspective cannot be compared in general with the U, D and T per-
spectives. Further, the chosen perspectives or the reading techniques for
the perspectives (Basili, 1996) might not be representative or good for sce-
nario-based reading. This limits the scope for the conclusions made to
these particular perspectives and techniques. Other threats to the con-
struct validity are considered small. The subjects did not know which
hypotheses were stated, and were not involved in any discussion on
advantages and disadvantages of PBR, thus they were not able to guess
what the expected results were.

External validity concerns generalisation of the experiment result to
other environments than the one in which the study is conducted. The
largest threat to the external validity is the use of MSc students as subjects.
However this threat is reduced by using fourth-year students which are
close to finalise their education and start working in industry. The use of
PhD students was intended as a control group with respect to external
validity, but due to limitations in allocation of subjects to treatments, gen-
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eral conclusions regarding checklist performance in comparison to PBR
performance cannot be drawn from this experiment. The setting is
intended to resemble a real inspection situation, but the process that the
subjects participate in is not part of a real software development project.
The assignments are also intended to be realistic, but the documents are
rather short, and real software requirements documents may include
many more pages. The threats to external validity regarding the settings
and assignments are, however, considered limited, as both the inspection
process and the documents resemble real cases to a reasonable extent.

It can be concluded that there are threats to the construct, internal and
external validity. However, these are almost the same as in the original
studies. Hence, as long as the conclusions from the experiment are not
drawn outside the limitations of these threats, the results are valid.

5. Experiment Operation

The experiment was run during spring 1998. The MSc students were all
given a two hour introductory lecture where an overview of the study was
given together with a description of the defect classification. A question-
naire on experience was given and each subject was assigned to a perspec-
tive, as described in Section 4.4. The students were informed that the
experiment was a compulsory part of the course, but the grading was only
based on serious participation in the study and not on the individual per-
formance of the students. The anonymity of the students was guaranteed.

A two hour exercise was held, where the three PBR perspectives were
described and illustrated using a requirements document for a video
rental system (VRS). During the second hour of the exercise, the subjects
were practising their own perspective reading technique for the VRS doc-
ument, and had the opportunity to ask questions. The data collection
forms were also explained and used during the exercise. The perspective-
based reading of the VRS document was completed by the students on
their own after the classroom hours.

The hand-outs for the experiment, which were handed out during the
exercise, included the following instrumentation tools:

1. Defect Classification which describes defect classes to be used in the
defect list. 

2. Time Recording Log for recording the time spent on reading. 
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3. Defect List for recording the found defects.

4. Reading Instruction, specific for the user, designer, and tester per-
spective respectively.

5. Modelling Forms, specific for the user, designer, and tester perspec-
tive respectively. (See Figure 1 and 2 for examples of these forms.)

6. The requirements document (either ATM or PG).

The students were instructed not to discuss the ATM or PG documents
and the defects that they may find. They were allowed to discuss the PBR
perspectives in relation to the VRS document before they started with the
actual data collection.

For the control group using the checklist approach, subjects were
recruited by inviting PhD students to participate. All PhD students that
volunteered were allowed to participate. A one-hour introduction was

Figure 1. An example of how subjects filled in the form for the user perspective.
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Figure 2. Examples of how subjects filled in the forms for the designer and tester perspectives.
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given for the PhD students where the experiment was described, the
defect classes explained and the checklist method was outlined. The
checklist published in Miller (1998) was handed out together with defect
lists and time recording logs. 

6. Data Analysis

This section presents the statistical analysis of the gathered data. The data
were collected from the hand-ins from subjects. Each defect in each sub-
ject’s defect log was compared with the original “correct” defect list pro-
vided by the University of Maryland lab package. In a meeting, we
discussed each defect and decided if it corresponded to a “correct” defect.
If no corresponding “correct” defect was found, the reported defect was
considered a false positive. The reported time spent was also collected and
the EFF, RATE, and FOUND measures were calculated. The total data
set is given in Appendices A and B.

6.1 Individual Performance for Different Perspectives

The means of individual performance in terms of number of defects
found per hour (EFF), the fraction of found defects against the total
number of defects (RATE), and time spent on reading (TIME), are
shown in Figure 3 and Figure 4, grouped by document and perspective.
For simplicity in comparisons, the Checklist reading technique is
regarded as a fourth value of the PERSP variable.

The means of EFF, and RATE for the Checklist reading technique are
higher than the Designer, Tester, and User perspectives for both docu-
ments. For RATE the Designer means are slightly higher compared to the
User and Tester perspectives for both documents. For the EFF mean the
Tester perspective on the PG document is higher than the User and
Designer perspectives, while for the ATM document, the Designer per-
spective has a higher mean. The variation in the data is indicated by the
standard deviations, which show that Checklist reading on the ATM doc-
ument has a larger variation than other groups.

The means of the TIME measures show that, on average per docu-
ment, the subjects reading with the Checklist technique have spent the
shortest time. For the ATM document the TIME measures show that on
average, the Designer perspective spent shorter time than the Tester per-
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spective which in turn spent shorter time than the User perspective, while
for the PG document the Tester perspective spent shorter time followed
by the User and Designer perspectives. 

Figure 5 shows box-plots1 of the data split by document and perspec-
tive. In general, the ATM document has a larger variation, especially for
Checklist reading. There are, however, too few data points per group for

1. The box-plots are drawn with the box width corresponding to the 25th and 75th percentile,
with the 50th percentile (the median) marked in the box. The whiskers correspond to the 10th
and 90th percentile.

0 ,00

1 ,00

2 ,00

3 ,00

4 ,00

5 ,00

6 ,00

C
el

l M
ea

n

C D T U
Cell

PG

ATM

Interaction Bar Plot for EFF
Effect: PERSP * DOC

0 ,00

, 0 5

, 1 0

, 1 5

, 2 0

, 2 5

, 3 0

, 3 5

, 4 0

, 4 5

C
el

l M
ea

n

C D T U
Cell

PG

ATM

Interaction Bar Plot for RATE
Effect: PERSP * DOC

0 ,00

25,00

50,00
75,00

100,00

125,00
150,00

175,00
200,00

225,00

250,00

C
el

l M
ea

n

C D T U
Cell

PG

ATM

Interaction Bar Plot for TIME
Effect: PERSP * DOC

Figure 3. Bar plots for EFF, RATE and TIME grouped by PERSP and DOC.
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any further interpretation of the box-plots, with respect to outliers and
skewdness.

When several dependent variables are measured, the multi-variate
analysis of variance (MANOVA) can be used to assess if there exists any
statistically significant difference in the total set of means. In Figure 6 the
results of four different MANOVA tests regarding three effects are shown:
PERSP, DOC, and the combined effect. For the PERSP and DOC
effects, the MANOVA tests show significance at the 5% level. For the
combined effect the results are not significant, indicating absence of inter-
action effects.

In order to investigate if the differences in the means of EFF, RATE,
and TIME are of any statistical difference, an analysis of variance
(ANOVA) is presented in Figure 7 for each variable.

There are three P-values below 5%, indicating that there is a statistical
significant difference in:

■ EFF by PERSP

■ RATE by PERSP

■ TIME by DOC

6 4,985 3,071 1,254

3 4,921 ,672 ,388

5 2,755 ,392 ,175

5 2,760 1,155 ,516

5 2,360 ,790 ,353

5 3,593 1,587 ,710

5 2,308 1,280 ,573

5 2,473 ,930 ,416

Count Mean Std. Dev. Std. Err.

C, ATM

C, PG

D, ATM

D, PG

T, ATM

T, PG

U, ATM

U, PG

Means Table for EFF
Effect: PERSP * DOC

6 ,414 ,135 ,055

3 ,300 ,067 ,039

5 ,290 ,062 ,028

5 ,267 ,058 ,026

5 ,241 ,055 ,024

5 ,220 ,060 ,027

5 ,283 ,145 ,065

5 ,213 ,090 ,040

Count Mean Std. Dev. Std. Err.

C, ATM

C, PG

D, ATM

D, PG

T, ATM

T, PG

U, ATM

U, PG

Means Table for RATE
Effect: PERSP * DOC

6 170,000 71,875 29,343

3 110,000 22,539 13,013

5 182,400 25,126 11,237

5 187,000 46,583 20,833

5 191,800 68,882 30,805

5 117,200 25,074 11,213

5 229,400 53,379 23,872

5 161,600 43,102 19,276

Count Mean Std. Dev. Std. Err.

C, ATM

C, PG

D, ATM

D, PG

T, ATM

T, PG

U, ATM

U, PG

Means Table for TIME
Effect: PERSP * DOC

Figure 4. Means tables for EFF, RATE and TIME grouped by PERSP and DOC.
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In order to find out which pairs of values of PERSP that give statistically
significant difference in the means of EFF and RATE, Fisher’s Protected
Least Square Difference (PLSD) tests are presented in Figure 8. These
post hoc tests may only be used when the ANOVA tests show significant
results. 

The post-hoc tests in Figure 8 show that there is a statistically signifi-
cant difference in 6 pairwise combinations:

■ EFF: C find more defects per hour than D, T, U

■ RATE: C has a higher detection rate than D, T, U

Figure 5. Box plots for EFF, RATE and TIME split by DOC and PERSP.
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The significant difference of TIME over DOC is investigated by compar-
ing the means of the TIME spent for each document in Figure 4:

■ TIME: ATM has more time spent on it than PG

From this analysis regarding individual performance we can conclude that
the null hypotheses for EFF and RATE only can be rejected for the
Checklist reading technique.

Figure 6. MANOVA tables for the PERSP independent variable and the EFF, RATE 
and TIME as dependent variables.
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MANOVA Table for PERSP * DOC
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Figure 8. Post-hoc tests for EFF, RATE over PERSP.
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6.2 Defects found by different perspectives

The hypothesis HFOUND regarding the overlap of the found defects
between the perspectives, is studied in this section. Descriptive statistics in
the form of bar chart plots are shown in Figure 9. For each document the
distribution of number of found defects per perspective is shown. There
do not seem to be any particular patterns in the different perspective dis-
tributions; the defect findings of each perspective seem similarly spread
over the defect space. If there had been large differences in the perspective
distributions, the bar plot would presumably have groups of defects where
one perspective would have a higher number of findings while the other
would have a low number of findings.

In order to compare the distributions of found defects for each per-
spective and investigate if there is a significant difference between which
defects the perspectives find, a contingency table is created for which a
Chi Square test is made (Siegel, 1988, pp. 191-194), as shown in
Figure 10. The defects that no perspective has found are excluded from

3 33,577 11,192 4,530 ,0096 13,591 ,846

1 1,055 1,055 ,427 ,5182 ,427 ,095

3 2,674 ,891 ,361 ,7817 1,082 ,111

3 1 76,585 2,470

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

PERSP

DOC

PERSP * DOC

Residual

ANOVA Table for EFF

3 ,081 ,027 3,061 ,0426 9,184 ,657

1 ,030 ,030 3,451 ,0727 3,451 ,422

3 ,013 ,004 ,487 ,6936 1,462 ,135

3 1 ,272 ,009

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

PERSP

DOC

PERSP * DOC

Residual

ANOVA Table for RATE

3 18264,611 6088,204 2,408 ,0860 7,224 ,539

1 23014,612 23014,612 9,103 ,0051 9,103 ,847

3 9946,295 3315,432 1,311 ,2883 3,934 ,307

3 1 78373,200 2528,168

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

PERSP

DOC

PERSP * DOC

Residual

ANOVA Table for TIME

Figure 7. ANOVA tables for EFF, RATE and TIME.



6. Data Analysis

Requirements Engineering with Use Cases - A Basis for Software Development 167

the contingency tables, as these cases do not contribute to the testing of
differences. 

The Chi Square P-values are far from significant, indicating that it is
not possible with this test and this particular data set to show a difference
in the perspectives’ defect finding distributions.

There are rules of thumb regarding when the Chi Square test can be
used (Siegel, 1988, pp. 199-200), saying that no more than 20% of the
cells should have an expected frequency of less than 5, and no cell should
have an expected frequency of less than 1. These rules of thumb are not
fulfilled by the data set in this case, but it may be argued that the rules are
too conservative and as the expected frequencies in our case are rather
evenly distributed, the Chi Square test may still be valid.
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Figure 9. Bar charts illustrating the distribution of number of reviewers that found each defect.
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The Chi Square test does not give a measure of the degree of difference.
In order to analyse how different (or similar) the perspectives are, a corre-
lation analysis is presented in Figure 11, using the Pearson correlation
coefficient (Robson, 1993, pp. 338-340).

Two different correlation analyses are provided for each document, one
with all “correct” defects included and one where only those defects are
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Figure 10. Chi Square tests and contingency tables for defects found by U,T,D per DOC.
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included that were found by at least one reviewer. The latter may be advo-
cated, as we are interested in the differences in the set of defects that are
found by each perspective; the defects that no perspective find do not
contribute to differences between perspectives. 

The P-value indicates if the correlation coefficient is significant, and
the confidence intervals presented indicate the range wherein the correla-
tion coefficient is likely to be.

The correlation analysis indicates that there are significantly positive
correlations between the perspectives, meaning that when one perspective
finds a defect it is not unlikely that others also find it. The only correla-
tion coefficient that is far from significant is the Designer-Tester correla-
tion for the ATM document.
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Figure 11. Correlation analysis of the perspectives for each document.
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Another way of qualitatively analysing the overlap between the per-
spectives is Venn-diagrams, as used in the NASA study (Basili, 1998,
p.151). 

For the purpose of comparison we include such diagrams for the Lund
study data, as shown in Figure 12. Each defect is categorised in one of
seven classes depending on which combinations of perspective that have a
FOUND measure greater than zero. The numbers in the Venn-diagrams
indicate how many defects that belong to each class. For example, for the
PG document, there are 10 defects which were found by all perspectives,
while 5 defects were found by both the user and designer perspectives and
only one defect was found solely by the user perspective.

This type of analysis is very sensitive to the number of subjects. It is
enough that only one reviewer finds a defect, for the classification to
change. The probability that a defect is found increases with the number
of reviewers, and if we have a large number of reviewers the defects will be
more likely to be included in the class where all perspectives have found
it. This means that this type of analysis is not very robust, and does not
provide meaningful interpretations in the general case. In our case, we can
at least say that the defect coverage analysis in Figure 12 does not contra-
dict our previous results that we cannot reject the hypothesis that the per-
spectives are similar with respect the sets of defects that they find. The
defects found by all perspectives is by far the largest class.

PG

Figure 12. Defect coverage for the PG and ATM documents.
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7. Interpretations of Results

In this section the data analysis is interpreted with respect to the hypothe-
ses stated in Section 4.2. The three hypotheses are basically that there are
differences among the performance of the perspectives with respect to
effectiveness, efficiency and specific defects found, see Table 2. Note that
the checklist method is treated as a fourth perspective in the analysis. 

The first two hypotheses are tested using ANOVA and PLSD tests.
The following three hypotheses can be rejected:

■ H0,EFF. The perspectives are assumed to have the same finding effi-
ciency. This hypothesis can be rejected based on the ANOVA analy-
sis on a p-level of 0.01. A PLSD test (p<0.01) shows that checklist
reading has a higher efficiency measure than the other three per-
spectives.

■ H0,RATE. The perspectives are assumed to have the same detection
rates. This hypothesis can be rejected based on the ANOVA analysis
on a p-level of 0.04. A PLSD test (p<0.03) shows that checklist
reading has a higher detection rate than the other three perspec-
tives.

The high performance of the checklist perspective may be explained by
the difference between the subjects; the PhD students may be more expe-
rienced and motivated compared to the MSc students.

The third hypothesis is tested using a chi-square test:

■ H0,FOUND. The perspectives are assumed to find the same defects.
This hypothesis can not be rejected based on the chi-square test.

Another difference that is statistically significant, is that more time is
spent on the ATM document than on the PG document. Otherwise there
are no statistical differences between the documents.

In summary it can be concluded that more experienced reviewers using
checklist as reading technique, perform better than less experienced
reviewers, using PBR. This is true with respect to effectiveness and effi-
ciency. This indicates that the experience seems to have larger impact on
the performance than the reading technique. Unfortunately, the con-
straints behind the experiment design hinders the ability to make a cross-
check to investigate if more experienced reviewers with PBR perform bet-
ter than less experienced reviewers with checklists. 
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An even more interesting result from the study is that there is no sig-
nificant difference between the three perspectives, user, design and test.
This is true for all the three hypotheses, i.e. there is no significant differ-
ence in terms of effectiveness or efficiency. Furthermore, there is no signif-
icant difference in time spent using the different perspectives, hence, the
time spent does not bias in favour of any of the techniques. The lack of
difference between the three perspectives does, if the result is possible to
replicate and generalize, seriously affect the cornerstones of the PBR. The
advantages of PBR are assumed to be that the different perspectives focus
on different types of defects, and thus detect different defect sets. This
study shows no statistically significant difference between the sets of
defects found by the three perspectives, and thus the advantages of PBR
can be questioned.

Threats to the conclusion validity of the results are that the number of
samples is low, in particular for the chi-square test. However, the bar
charts over the defects found by different perspectives (see Figure 9) do
not indicate any clear pattern, which supports the non-significant results.
The ANOVA statistics are applied within acceptable limits, and these do
not show any difference between the perspectives. Furthermore, the
design itself is a limitation in the study, as mentioned before. The specific
perspectives and the reading techniques for the perspectives might also be
a threat to the validity of the results, when trying to apply the results to
scenario-based reading in general. 

The validity threat regarding the motivation of subjects can be evalu-
ated by comparing the detection rates of the Lund study with other stud-
ies. The individual PBR detection rate for the NASA study (Basili, 1996)
was on average 0,249 for the pilot study and 0,321 for the main run,
while the Lund study shows an average individual PBR detection rate of
0,252. The rates are comparable, supporting the assumption that the sub-
jects in this study was as motivated as in the NASA study.

Other threats to the validity, as elaborated in Section 4.4, are not con-
sidered differently in the light of the result.
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8. Conclusions

The study reported in this paper is focused on the evaluation of Perspec-
tive Based Reading (PBR) of requirements documents. The study is a par-
tial replication of previous experiments in an academic environment
based on the University of Maryland lab package. 

The objective of the presented study is twofold:

1. Investigate the differences in the performance of the perspectives in
terms of effectiveness (defect detection rate) and efficiency (number
of found defects per hour).

2. Investigate the differences in defect coverage of the different per-
spectives, and hence evaluate the basic assumptions behind PBR
supposing that different perspectives find different defects.

The experiment setting includes two requirements documents and scenar-
ios for three perspectives (user applying use case modelling, designer apply-
ing structured analysis, and tester applying equivalence partitioning). A
total of 30 MSc students were divided into 3 groups, giving 10 subjects
per perspective. A control group of 9 PhD students used a checklist read-
ing technique. Due to limitations imposed by the educational context, the
particular experiment design introduces confounding factors that makes it
impossible to differentiate effects of the reading technique (PBR and
checklist) from effects of the subject type (MSc and PhD).

In summary the results from the data analysis show that:

1. There is no significant difference between the user, designer and
tester perspectives in terms of defect detection rate and number of
defects found per hour.

2. There is no significant difference in the defect coverage of the three
perspectives.

3. PhD students with a checklist approach find significantly more
defects per hour and have a significantly higher detection rate than
MSc students with a PBR approach.

The interpretation of these results suggests that a combination of multiple
perspectives may not give higher coverage of the defects compared reading
with only one perspective. The data also indicate that individual experi-
ences and abilities are more important than the reading technique itself.
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The results contradict the main assumptions behind PBR and also
some of the previously conducted studies, summarized in Section 2. Some
of the previous studies have shown significant advantages with PBR over
Ad Hoc inspection, but no statistical analysis on the difference between
perspective performance is made in any of the studies reported in
Section 2. Furthermore, the previous studies have not taken the efficiency
into account (number of defects found per hour), but concentrates on
detection rate as the main dependent variable. From a software engineer-
ing perspective, where the cost and efficiency of a method are of central
interest, it is very interesting to study not only the detection rate, but also
if a method can perform well with limited effort.

There are a number of threats to the validity of the results, including:

■ The setting may not be realistic.

■ The perspectives may not be optimal.

■ The subjects may not be motivated or trained enough.

■ The number of subjects may be too small.

It can be argued that the threats to validity are under control, as (1) the
inspection objects are similar to industrial requirements documents, (2)
the perspectives are motivated from a software engineering process view,
and (3) the subjects were 4th year students with a special interest in soft-
ware engineering attending a self-chosen course. However, a single study,
like this, is no sufficient basis for changing the attitudes towards PBR.
Conducting the same analyses on data from existing experiments as well
as new replications with the purpose of evaluating differences between
perspectives will bring more clarity into the advantages and disadvantages
of PBR techniques, and also give a better control over the validity threats.

In future work, the following issues are of certain interest:
New PBR scenarios. In the presented experiment, use cases are con-

structed after the requirements document is completed. This may not be
optimal, as use cases is a promising technique for eliciting, analysing and
documenting requirements (Weidenhaupt, 1998). Given that use cases
are incorporated into the requirements document, we may design a new
inspection scenario for the user perspective in PBR. Use cases have also
shown to be interesting as a basis for test case construction (Regnell,
1999). Instead of equivalence partitioning, a use case based approach for
the tester perspective may be used as well.
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Usage-base reading. Given that a use case model is part of the require-
ments document rather than created afterwards, this can be a starting-
point for a new type of inspection technique as an alternative to PBR
(Regnell, 1998), where the focusing of inspection effort is based on use
cases (i.e. system usage scenarios rather than meta-level inspection scenar-
ios). To be able to conduct inspections with usage-based reading, we need
to annotate the use cases with priority information. Techniques based on
pairwise comparison may be used here (Karlsson, 1998). By comparing
pairs of use cases ( , ), we may prioritise them according to criteria
such as “  is more frequently used than ” and “  is more critical to
hazard than ”. 

With the methods in (Karlsson, 1998) it is possible to derive the rela-
tive priority , ( , ), of each use case . Based on this, we
propose to conduct usage-based reading of design or code documents
using the following scheme of effort partitioning: (1) Prioritise the use
cases; (2) Decide on the total time T to be spent on reading of artifact A;
(3) Assign the time  to each use case ; (4) For each use case ,
inspect A for a period of  by “walking through” the events of  and
decide if A is correct with respect to . 

By using the priority criterion of usage frequencies to focus reading by
use cases, we get a static verification that corresponds to the expected
operational conditions of the system. If we also record the reading time
between found defects, we may use these measures to derive an estimate
of reliability based on the mean time between defects.The performance of
the proposed usage-based reading technique is an interesting area of fur-
ther empirical research.
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Ux Uy Ux
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Appendix A. Individual performance

Table 4. Data for each subject.

ID PERSP DOC STYPE TIME DEF EFF TOT RATE

1 U ATM MSc 187 8 2,567 29 0,276

2 D PG MSc 150 8 3,200 30 0,267

3 T ATM MSc 165 9 3,273 29 0,310

4 U PG MSc 185 11 3,568 30 0,367

5 D ATM MSc 155 8 3,097 29 0,276

6 T PG MSc 121 8 3,967 30 0,267

7 U ATM MSc 190 7 2,211 29 0,241

8 D PG MSc 260 7 1,615 30 0,233

9 T ATM MSc 123 6 2,927 29 0,207

10 U PG MSc 155 6 2,323 30 0,200

11 D ATM MSc 210 11 3,143 29 0,379

12 T PG MSc 88 9 6,136 30 0,300

13 U ATM MSc 280 11 2,357 29 0,379

14 D PG MSc 145 11 4,552 30 0,367

15 T ATM MSc 170 5 1,765 29 0,172

16 U PG MSc 120 6 3,000 30 0,200

17 D ATM MSc 190 9 2,842 29 0,310

18 T PG MSc 97 5 3,093 30 0,167

19 U ATM MSc 295 2 0,407 29 0,069

20 D PG MSc 180 7 2,333 30 0,233

21 T ATM MSc 306 7 1,373 29 0,241

22 U PG MSc 223 4 1,076 30 0,133

23 D ATM MSc 157 6 2,293 29 0,207

24 T PG MSc 130 6 2,769 30 0,200

25 U ATM MSc 195 13 4,000 29 0,448

26 D PG MSc 200 7 2,100 30 0,233

27 T ATM MSc 195 8 2,462 29 0,276

28 U PG MSc 125 5 2,400 30 0,167

29 D ATM MSc 200 8 2,400 29 0,276

30 T PG MSc 150 5 2,000 30 0,167

31 C ATM PhD 102 18 10,588 29 0,621

32 C PG PhD 96 9 5,625 30 0,300

33 C ATM PhD 113 7 3,717 29 0,241

34 C PG PhD 98 7 4,286 30 0,233

35 C ATM PhD 140 14 6,000 29 0,483

36 C PG PhD 136 11 4,853 30 0,367

37 C ATM PhD 165 13 4,727 29 0,448

38 C ATM PhD 204 9 2,647 29 0,310

39 C ATM PhD 296 11 2,230 29 0,379
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Appendix B. Defects found by perspectives

B.1  PG document

Table 5. Defects id D# found (1) or not found (0) by individuals reading the PG 
document.

Individuals

User Perspective Tester Perspective Designer Perspective

D# 2 8 14 20 26 Σ 4 10 16 22 28 Σ 6 12 18 24 30 Σ

1 0 0 1 0 1 2 1 0 0 0 0 1 1 0 0 1 0 2

2 1 1 1 0 1 4 1 0 1 0 0 2 0 1 1 1 0 3

3 0 0 0 0 0 0 1 1 0 1 0 3 0 0 0 1 0 1

4 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

5 0 0 1 1 1 3 1 0 0 0 1 2 0 1 1 0 0 2

6 1 1 0 0 0 2 0 1 1 0 0 2 1 0 0 1 1 3

7 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1

8 1 1 1 1 1 5 1 1 1 1 0 4 1 1 0 1 0 3

9 1 1 1 1 0 4 1 1 1 0 0 3 0 1 0 0 0 1

10 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

11 1 1 0 1 1 4 0 0 0 0 0 0 0 1 1 0 0 2

12 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 1 1 1 1 0 1 1 4 1 1 0 1 1 4

15 0 0 1 0 0 1 0 1 0 0 1 2 1 0 0 0 0 1

16 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 2

17 0 0 0 1 1 2 1 0 0 0 0 1 0 1 0 0 0 1

18 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 3

22 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1

23 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

24 0 0 1 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

28 0 1 1 0 0 2 0 0 0 0 0 0 1 0 0 0 0 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 1 0 1 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0

Σ 8 7 11 7 7 40 11 6 6 4 5 32 8 9 5 6 5 33
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B.2  ATM document

Table 6. Defects number D# found (1) or not found (0) by individuals reading the 
ATM document.

Individuals

User Perspective Tester Perspective Designer Perspective

D# 1 7 13 19 25 Σ 3 9 15 21 27 Σ 5 11 17 23 29 Σ

1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 3

2 1 0 1 0 0 2 1 0 1 1 1 4 1 1 1 0 1 4

3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2

4 0 1 1 1 0 3 1 1 0 0 0 2 1 1 1 0 1 4

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 2

7 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 2

8 0 0 1 0 0 1 0 1 0 1 1 3 1 1 0 0 1 3

9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2

10 0 1 1 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1

11 1 0 0 0 0 1 0 1 0 1 1 3 1 0 1 0 0 2

12 1 1 1 0 0 3 0 0 1 1 1 3 0 1 0 0 0 1

13 1 0 1 0 0 2 0 0 0 0 0 0 0 1 1 1 0 3

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 1 0 0 0 1 1 0 0 0 1 2 0 0 0 0 0 0

16 0 1 1 0 0 2 1 1 1 0 0 3 0 1 1 0 0 2

17 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1

18 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

19 1 0 0 0 0 1 1 1 0 0 0 2 0 0 0 1 0 1

20 0 0 1 0 0 1 0 0 1 1 0 2 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

23 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0

27 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 3

28 1 0 1 0 0 2 1 0 0 0 0 1 1 0 1 0 1 3

29 1 1 1 0 0 3 1 0 0 0 1 2 0 0 0 1 0 1

Σ 8 7 11 2 0 28 8 6 5 7 8 34 8 11 9 6 8 42
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Abstract

In systems evolution, new requirements are distributed on existing archi-
tectures. This paper describes a method for modelling how new require-
ments are distributed on a hierarchy of existing system components. The
method applies use case modelling in the transition from requirements to
design, with focus on requirements traceability and dynamic system
behaviour modelling. The method is based on a recursive process where
functionality specification and distribution activities are applied at differ-
ent abstraction levels in the component hierarchy. The method has been
evaluated in three realistic projects, concerned with the evolution of a
complex real-time cellular switching system. The subjective conclusions
from these evaluations suggest that use case modelling is useful in require-
ments analysis and distribution within the studied domain.

VI
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1. Introduction

The normal case in most software development projects is that existing
systems are extended with new capabilities [1]. When new requirements
are implemented in an existing architecture, it is vital that these require-
ments are distributed on present architectural elements without destroy-
ing the system structure.

This paper describes motives for, and results from, a method develop-
ment project at Ericsson Radio Systems, focused on the transformation
from requirements to design in the context of system evolution. A
method, called FRED (From REquirements to Design), is under develop-
ment as a part of REME (Requirements Engineering Methods for Erics-
son), which is a collection of method components applicable in the early
phases of software development.

An important ingredient of FRED is use case modelling [2]. The main
concepts of use case modelling are actors and use cases. An actor represents
an entity (human or non-human) external to the system under develop-
ment, that communicates with the system in order to achieve certain
goals. A use case is a generalisation of a usage situation where one or
many actors interact with the system to accomplish specific goals. One
use case may cover several sequences of events (so called scenarios or flow
variants). A use case may be described either from an external (black-box)
point of view suitable for requirements, or from an internal (white-box)
point of view suitable for design. Related work on use case modelling can
be found in, e.g., [3, 4, 5, 6, 7].

The FRED method has been developed over a period of several years,
taking previous method engineering efforts at Ericsson into account.
FRED has been evaluated in three industrial pilot projects with real
requirements, and experiences from each of these studies have resulted in
incremental improvements of the method.

The goal of this paper is threefold: (1) to describe the problems moti-
vating the presented work, (2) to describe the FRED method, and (3) to
report on its evaluation.

The paper is organized as follows. Section 2 gives the context of Erics-
son’s software development and characterises its products, projects and
practises. In Section 3, the problems motivating the development of
FRED are stated. An overview of the method is given in Section 4, with
its main concepts, models and activities. Section 5 describes the evolution
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and evaluation of FRED, and Section 6 presents some conclusions and
issues of interest in the further development of FRED.

2. Context

Ericsson Radio Systems is the world-leading manufacturer of cellular
switching systems. Software intensive products are provided for all major
cellular standards. All systems are based on a common architecture, called
AXE, which includes a large number of software components, distributed
in a network. 

The products derived from this architecture have the following charac-
teristics:

■ Large and complex. Systems typically include several million lines of
code.

■ Very high reliability demands. System failure often leads to substan-
tial financial loss, and AXE-based switches are used in safety-critical
application domains.

■ Distributed real-time systems. Systems consist of many hardware and
software components that are geographically distributed and com-
municate in real time with high performance demands.

■ Many installations on different markets. AXE-based cellular switch-
ing systems serve approximately 50 million mobile subscribers in
close to 100 countries.

■ Support for many different standards. The telecommunication
domain includes many different standards, which increase complex-
ity.

The development of systems is carried out in development projects with
the following characteristics:

■ Large and complex. Projects involve a large number of people to a
substantial cost.

■ Distributed development. The development of AXE is distributed
over many countries, with different languages and culture.



From Requirements to Design with Use Cases - Experiences from Industrial Pilot Projects

184 Requirements Engineering with Use Cases - A Basis for Software Development

■ Evolution rather than create-from-scratch. Development projects are
rarely concerned with development of completely new systems.
Instead, new features are added to the existing architecture.

The software engineering practice used by Ericsson in the development of
AXE-based systems includes:

■ Incremental development. A product management function collects
requirements and defines increments of evolutionary changes in the
AXE system. For each increment, a document-driven process, simi-
lar to the common waterfall-process [8] is applied. The early phases
(prestudy and feasibility study) have a strong focus on assessment of
risks, costs, and impact.

■ Inspection and testing. Projects have a strong focus on quality, and
formal inspections [9] and rigorous testing at different abstraction
levels are applied.

■ Object-based design. Data and behaviour are encapsulated in objects,
called blocks, which communicate with asynchronous messages
called signals.

The AXE architecture includes a large set of blocks, and it is not uncom-
mon that blocks include over 10 000 lines of code. To manage a distrib-
uted development an facilitate effective configuration management,
blocks are arranged in a hierarchy of system components (nodes, subsys-
tems, block groups).

The AXE architecture has evolved over several decades and its compo-
nents with belonging documentation constitute an extensive design base.
Over time, the development processes, methods and standards have also
evolved.

3. Problem Description

Ericsson is a highly successful software development organisation, but as
new requirements arrive and complexity grows, there is a constant need
for improvements. The objective of all improvement efforts at Ericsson
are a better achievement of the following goals: (G1) high product quality,
(G2) short time-to-market, and (G3) low development costs. 

Ericsson’s ability to achieve a good trade-off between these goals relies
on (1) a system architecture that allows a controlled architectural evolution
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when new features are incorporated, and (2) a development process that
can, predictably, achieve a good balance between G1-G3.

The block level has a comprehensive documentation, but the AXE
design base includes little documentation on how requirements are dis-
tributed on high-level software components, and how components inter-
act at higher abstraction levels (e.g. network, node, and subsystem level). 

Improved requirements traceability [10] is assumed to give better sup-
port for impact analysis (the assessment of system change induced by new
and changed requirements). Furthermore, improved impact analysis is
assumed to improve increment planning, and effort prediction, as well as
give a higher control over the system evolution. This in turn, is assumed
to support a better achievement of G1-G3. 

By capturing the responsibilities of architectural components, and pro-
viding high-level models of component interaction, it is assumed that sys-
tem understandability is increased and that development becomes less
dependent on experienced designers which know the architectural princi-
ples by heart. This is also assumed to positively influence G1-G2. It is also
assumed that a shift of some effort from low-level design and implemen-
tation to requirements analysis and high-level design supports the
achievement of G1-G3.

These assumptions have not been validated in controlled experiments,
but are nevertheless a basis for improvement efforts at Ericsson. The
method development work reported here is, in the consequence of these
assumptions, focused on requirements traceability and high-level system
modelling. 

Some of the problems motivating the presented work are (1) how to
model (telecommunication) systems at a high abstraction level, (2) how to
achieve traceability between requirements and different design entities, (3)
how to model the distribution of new requirements on existing system compo-
nents.

The development of the FRED method represents a first step in the
search of good solutions to these problems. The current version of FRED
is briefly described in the following section.
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4. Solution Proposal

The FRED1 method tries to address the problems described previously,
by combining use case modelling with a hierarchical system model. The
models produced using FRED express how new requirements are distrib-
uted on existing software components. Before requirements are distrib-
uted on a set of components, new components may be introduced, and
existing components may be changed. 

The system architecture is viewed as a set of communicating compo-
nents. A component is an entity on which requirements can be distrib-
uted. A component is defined in terms of its responsibilities [11], and its
interface to its environment. Components may contain other compo-
nents, in a hierarchical manner, creating a tree structure. The leaf compo-
nents of this tree are called target components. Only target components
may contain executable software, while intermediate components only
act as containers for other components. The root of the tree is called top-
level component, and represents the component for which the require-
ments distribution process is initiated. Entities outside the top-level com-
ponent are represented by actors. 

The input to FRED is (1) a numbered list of textual requirements, and
(2) a top level component including its architecture. The output of FRED
is comprised of three interrelated models that describe the result of the
requirements distribution in a way suitable for low-level design of target
components.

FRED focuses on the modelling of the result of requirements distribu-
tion, and does not prescribe how the architecture is to be changed or
extended to meet the new requirements. Architectural evolution relies on
design expertise and domain knowledge, which is not captured by FRED
(except for a number of informal, telecommunication specific guidelines
not elaborated here). 

FRED assumes that a component’s internal structure on the next hier-
archical level is defined before requirements are distributed on its con-
tained components, but a top-down definition of the architecture is not
prescribed.

1. An extensive WWW-based guide for FRED is provided on Ericsson’s intranet; the
overview presented here is a simplification and only focuses on the main aspects of the
method.
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FRED is mainly focused on the functional and dynamical aspects of
real-time systems and does not prescribe a specific method or notation for
static data modelling. (FRED projects may use a data dictionary to model
passive data entities, but it is also possible to use E/R-diagrams [12] or
some object-oriented modelling language, e.g. OMT [13].)

The models and activities of FRED are applied recursively for each
non-target component in the component hierarchy. When a target com-
ponent is reached, the recursion stops and a low-level design method suc-
ceeds FRED. 

For each recursion the following three activities are performed in an
iterative manner: Functionality Specification, Component Specification,
and Functionality Distribution, as described in the following.

Functionality Specification activity. Use cases of a component are
defined and described from a black-box point of view. Input: a list of
numbered requirements and (if not a top-level recursion) a Distribution
Model from a higher level recursion. Output: a validated Use Case Model
including a set of textual, black-box use cases. The external components
(specified in a previous recursion) that communicate with the component
for which the use cases are defined, becomes actors from the viewpoint of
the use cases at this recursion level. (See Figure 1.)

Component Specification activity. A component is defined in terms of
its responsibilities and described in terms of its actors, contained compo-
nents, and communication paths. Input: a list of numbered requirements
and a Use Case Model from the Functionality Specification activity, and

Component C1

Use Case U1

Use Case U2

Use Case U3

Actor C2

Actor C3

Actor A2

Textual descriptions 

Figure 1. The Functionality Specification activity creates a use case model for a component 
(C1) from a black-box point of view, based on textual requirements and its 
architectural environment (C2, C3, A2).
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domain-specific architectural principles and guidelines. If this activity is
not in a top-level recursion: a Component Model and a Distribution
Model, including white-box use cases (output of the Functionality Distri-
bution activity, described below) from a higher level recursion. Output: a
validated Component Model, describing each contained component’s
responsibilities, and interfaces. (See Figure 1.)

Functionality Distribution activity. Functional requirements for a com-
ponent are distributed on its contained components. The distribution of
the functionality specified in black-box use cases is expressed with white-
box use cases using the standardised notation of Message Sequence Charts
(MSC) [14]. Each white-box use case models a set of scenarios (flow vari-
ants), where sequences of signals between actors and contained compo-
nents are specified. Each MSC is annotated with semi-formal pseudo-
code, specifying operations in the contained components. Input: a Use
Case Model and a Component Model from the activities above, together
with architectural principles for component communication. If not at
top-level recursion: white-box use cases regarding the concerned compo-
nent from higher levels. Output: a validated Distribution Model, specify-
ing requirements distribution in white-box use cases. (See Figure 1.)

Textual descriptions of 

Figure 2. The Component Specification activity creates a component model for a 
component (C1) by describing its contained components (C11-C14) and its 
internal and external communication structure in terms of interfaces (I1-I7).
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Different types of requirements.  Functional Specification focuses on
functional requirements, regarding dynamic system input, output, and
control, but quality requirements1, such as performance, reliability, and
flexibility, may also be considered here. The activities of Functional Speci-
fication and Component Specification both assume a list of numbered
requirements as input. Component Specification focuses on quality
requirements and architectural requirements, meaning requirements that
address the structure or interfaces of components, e.g. that some responsi-
bilities shall be physically separated in a specific component, or that a spe-
cific standard protocol shall be supported.

Requirements traceability. During Functional Distribution, each textual
requirement is assigned to one or more components on the subordinate
level, by creating links between the numbered requirements and the com-
ponents. These links are the main vehicle for requirements traceability,
and most benefits are gained if these links are maintained automatically

1. The terms non-functional requirements [15], non-behavioural requirements [16],
and quality attributes [17] have been used for this type of requirements. The classifi-
cation of requirements into different types is useful in conceptual discussions, but is
often difficult to make in practice.

Figure 3. The Functionality Distribution activity creates, for each component’s black-box 
use case, a number of white-box use cases using MSC diagrams, specifying how 
requirements are distributed on contained components.
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by a tool. To support traceability between different recursion levels,
FRED recommends to maintain typed links at least between:

■ requirements and use cases, e.g. when a use case describes a require-
ment, 

■ use cases and use cases, e.g. when a use case relates to another use
case on the next recursion level,

■ use cases and components, e.g. when one white-box use case dis-
tributes requirements on a set of components,

■ requirements and components, e.g. when requirements are assigned
to a component,

■ components and components, e.g. when components contain other
components.

Vertical traceability [10] can be achieved by maintaining such links
between entities in the models. The impact of, for example a changed
requirement, may be investigated by following the links through the hier-
archy down to target components. By following links from a target com-
ponent up through the hierarchy, the requirements associated with this
component can be found.

Process configuration. Before FRED is applied in a specific project, the
recursive process needs to be configured according to the specific needs of
the project. The number of recursion levels needs to be decided. For exam-
ple, it might be decided that the recursion should be applied on three lev-
els: network level, node level, and subsystem level. In another case it may
be decided to stop the recursion at the node level, and directly continue
with other modelling techniques used in low-level design.

It is also necessary to decide which of the existing components in the
design base that should be included in the component models. It is possi-
ble to stop modelling a specific recursion branch before the lowest recur-
sion level is reached, if the components of this branch has little or no
relevance to the requirements considered by the project. For instance,
some target components may be at the node level, while others are at the
subsystem or block level.

In Figure 4, a principal example of one recursion branch is shown.
FRED is used to model three abstraction levels. At the fourth level, target
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components are described with some low-level design technique, for
example SDL process diagrams [18].

Requirements distribution vs. functional decomposition. In common
applications of structured analysis [19], the architecture of a new system is
determined in a strict top-down manner, by decomposition of functions
according to a divide-and-conquer approach [20, 21]. Functions are
organized in a strict hierarchy, and the system architecture corresponds to
this hierarchy of functions. 

Experiences at Ericsson indicate, however, that quality requirements
(performance, reliability, flexibility, etc.) are more important to consider
when creating a good system architecture, than an incidental decomposi-

Figure 4. An example recursion branch, where FRED is used on three levels and a state 
based technique is used on the fourth level.
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tion of functions. In FRED, the functions are represented by use cases,
but they are not decomposed in a top-down fashion. Use cases on a subor-
dinate level is defined based on relevant information in all use cases from a
higher level together with knowledge of target component responsibilities,
and thus considering not only “previous” use cases in one recursion
branch. 

The component structure is still hierarchical, as this has proven to be
an efficient way of managing complexity, but the responsibilities of com-
ponents are determined through a distribution of quality requirements
and architectural constraints, rather than on a decomposition of use cases.
The functional requirements are distributed according to the responsibili-
ties of components. 

The use cases for a component C at recursion level n are defined based
on its actor’s goals and its responsibilities, rather than on a decomposition
of a use case from recursion level n-1. White-box use cases of level n-1,
concerning C, are studied when defining level n black-box use cases, but
the set of all use cases for all levels is not a decomposition hierarchy. An
important rule constrains (white-box) use cases at different recursion lev-
els: a use case on level n, should not be inconsistent (in terms of signals
from/to its actors) with use cases on level n-1.

Before new requirements are distributed on an existing architecture, it
may be necessary to adjust the component hierarchy, e.g. by splitting a
large component into several smaller components, or transferring respon-
sibilities from one component to another. Such architectural adjustments
are not carried out in a top-down manner.

5. Validation

FRED has been developed and evaluated through a series of three method
applications, concerned with new requirements on real features in the
AXE architecture. This section describes the evaluation settings and
report on some subjective conclusions from these pilot projects.

The pilot projects were not carried out as formal case studies [22, 23].
The reasons for this are: (1) the method was developed in parallel with the
pilot projects, so it was impossible to find a stable treatment and compare
with a control, and (2) no objective measurement were undertaken for use
in statistical analysis (except for total person-hours in the last two
projects). Instead, the pilot projects were used to get subjective opinions
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from the involved engineers, and based on these opinions further improve
the FRED method.

The main result of the evaluation studies is thus represented by the
method itself, as it is described in the previous section. This method ver-
sion has been productified and more pilot projects are planned to further
assess and improve the method and its tool support.

5.1 Evaluation Design

The development of FRED started with studies of existing literature. This
survey, together with previous experience in requirements distribution,
and the problem description in Section 3, formed the input to the design
of FRED, version 0.1. Hereafter, the method has been improved in three
increments, based on experience gained by method applications in realis-
tic projects, as shown in Figure 5. 

Project 1 and 3 was carried out off-line, in parallel with a real project,
while Project 2 was carried out as an on-line project, where the results
were used in further development. During these projects, the method was
changed, as it was sometimes necessary to find immediate work-arounds
for unanticipated method problems.

FRED v 0.1 was based on some elements of Objectory [2], where use
case modelling was applied on network and node level, while “true”
object-oriented modelling with inheritance was not applied. Major revi-
sions were made in FRED v 0.2, and the notion of a recursive process and
a hierarchical component model were introduced. Project 2 applied two
recursions before handing over the results to traditional development,

Activity

Product

Method 

FRED v 0.1

Design
Project 1

FRED v 0.2

Method
Update

FRED v 1.0

Experience
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Update
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Method
Productification
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Figure 5. The FRED method has been evaluated in three subsequent studies.
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which resulted in a real product. Project 3 used the results of Project 2 and
continued with a new increment of the same product, and (in parallel
with a normal project) carried out three recursions, reaching the block
level (as in Figure 4). The reason for Project 3 not being a “sharp” project,
was that the next release was delayed due to synchronisation with other
projects and method development had either to wait or continue in paral-
lel.

After each project, the experiences where documented and the method
documentation was adjusted according to the findings of each project.
After Project 3, the method was productified and released internally at
Ericsson, and comprehensive method documentation were created,
including work instructions, modelling guidelines and selected examples
from Project 2 and 3.

The evaluation projects organisations included a project leader, a
methodology team, and a product development team. The participating
persons were located in the same building, to make continuous interac-
tion between teams easy.

The main tasks of the product development team was to:

■ use FRED on a new feature of AXE, and suggest method improve-
ments,

■ use a tool, specifically tailored for FRED, and suggest tool improve-
ments,

■ coordinate with related projects that use traditional methods,

■ produce test specifications from the output of FRED.

The main tasks for the methodology team was to:

■ develop the FRED method,

■ support the product development team in the use of the method
and the tool,

■ handle dependencies with other methods and tools.

The development team held regular meetings at least two times a week.
Each team member had a detailed work plan to follow, defining what to
do each day. The methodology team had regular meetings once a week to
follow the progress of the design team. A number of meetings together
with the design team was held, in order to sort out problems and decide
on how to cope with unanticipated situations.



5. Validation

Requirements Engineering with Use Cases - A Basis for Software Development 195

Evaluation Criteria. The projects were designed to test the following
hypothesis:

H1. It is possible to apply use case modelling in high-level design.

H2. Use case modelling can support requirements traceability.

H3. It is possible to model distribution of requirements with use cases.

5.2 Evaluation Conclusions

The hypotheses H1-H3 were not falsified by Project 1-3. It was possible
to apply use case modelling on real features introduced in the AXE sys-
tem. With the use of a CASE tool, specifically tailored for FRED, it was
possible to trace requirements from high-level, black-box use cases to low-
level target components. The high-level dynamic behaviour, specified by
functional requirements and black-box use cases, was possible to model
with white-box use cases expressed using Message Sequence Charts.

The total effort of the latter two projects, including some method
development activities, were 7700 person-hours for Project 2, and 1800
person-hours for Project 3. These hours were distributed between the fol-
lowing activities:

No measurements of productivity were undertaken, but the subjective
opinion of project leaders was that it was similar to company standards,
when adjusted by factors of staff inexperience with the new methodology. 

Other subjective conclusions are reported in the following.

Table 1. Distribution of person-hours in percentage over different activities.

Activity Fraction
Product development 32%

Inspections and meetings 12%

Investigation of methods and tools 14%

Preparation of methodology documents 14%

FRED Support 9%

Project management 11%

Training courses (preparation and execution) 6%

Unspecified 2%
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Work parallelisation. It was concluded that FRED allowed earlier paral-
lelisation of work, as interfaces between components are well defined at an
early stage. The low-level design of blocks can be made independently
based on the distribution model. This opportunity may result in shorter
lead-time.

Fragmentation of use cases. In Project 1, it was concluded that the way
use cases are defined is crucial. Project 1 had great problems with a highly
fragmented use case models, where more than 100 use cases were pro-
duced. Many use cases only comprised a small part of the functionality
required by each actor. The “uses” and “extends” relations [2] was difficult
to apply and increased fragmentation. It was found that there was a diffi-
cult trade-off between a separate description of reusable parts of use cases
and self-contained, comprehensive use cases. In Project 2 and 3, greater
emphasis was put on use case definitions reflecting the goals of actors,
making use cases describe a complete goal achievement or an undivided
function. This resulted in a significant reduction of the number of use
cases. However, this also resulted in some redundancy between use cases.
The introduction of the episode concept [5, 24], may be a solution to this
problem.

Information-driven process. By applying CASE-tools, it may be possible
to centre the process around different types of information elements in
one information model instead of around a collection of documents. The
development may focus on the refinement of an information model, rather
than on the production of loosely connected documents. With the aid of
tools, documents may be generated automatically from FRED models,
according to pre-defined templates, when needed, for example, as input to
inspections or decision meetings. In Project 3, a document called “Imple-
mentation Proposal” was, in part, generated automatically from the mod-
els of FRED, and sucessfully used as input to project planning and effort
prediction.

If a transition from a document-driven process to an information-
driven process is made, it is necessary to be able to relate to existing docu-
ments in the design base. The document generation facility may be one
way to recreate changed parts in existing documents.
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Reverse engineering of the design base. Project 2 and 3 showed that it
was possible to model only those parts of the design base that was affected
by the new requirements. Partial models of the system was created on a
high abstraction level, making the affected parts of existing functionality
easier to understand. A complete reverse engineering [25] of the entire
design base is a very large cost, and the ability to migrate the design base
incrementally is considered a big advantage.

Maintenance. The results of Project 2 have not yet been put in operation
at customers, and consequently no failure reports from operation have
been received. It is however believed that the improved ability of tracing
requirements from implementation level to high-level models, will have a
good impact on maintenance productivity. 

Test Case Identification. It was possible to use the models of FRED to
identify test cases. By focusing on actors and use cases, test cases were
identified based on different flow variants of use cases, taking both suc-
cessful, unsuccessful, end error cases into account. Expected results of test
cases were identified based on signals in MSC diagrams. The different
recursion levels were used to identify test cases at different abstraction lev-
els.
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6. Conclusions and Future Work

The FRED method combines use case modelling with a hierarchical com-
ponent model to support requirements distribution. The transition from
requirements to design is viewed in a system evolution context, where
new requirements on an existing architecture are distributed through the
modelling of affected parts only. 

FRED applies a recursive process, where the activities of Functionality
Specification, Component Specification, and Functionality Distribution
are carried out recursively on different abstraction levels. 

In conclusion, the main objectives of FRED are:

1. Improved modelling on a high abstraction level.

2. Improved methods for requirements distribution modelling.

3. Improved requirements traceability.

4. Early definition of interfaces between components, allowing paral-
lelisation of work.

5. Coherent assignment of responsibilities to architectural compo-
nents.

The FRED method has been developed and evaluated through three pilot
projects in the domain of cellular switching systems. Real requirements
concerning new features of a telecommunication system were distributed
on an existing architecture.

The evaluation of FRED concluded that it was possible to apply use
cases in the modelling of requirements distribution, with respect to the
realistic requirements studied in the pilot projects. No quantitative meas-
urement were conducted, but the subjective conclusions from pilot stud-
ies suggest that FRED improves requirements traceability and system
understanding, in comparison with current methods applied in AXE
development at Ericsson Radio Systems.

The method has been productified and released internally at Ericsson,
and more pilot projects are planned to further assess and improve FRED.

In future developments of FRED, the issue of reuse between use cases
will be studied. The concept of episodes (coherent parts of use cases) [24],
and operators [26] (e.g., alternative, repetition, and exceptions) will be
considered, as a support for describing how parts of use cases are related.
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Other issues of future work are:

1. Applying use case models as input to statistical usage testing [27].
How can we select a set of test cases that properly reflects opera-
tional conditions?

2. Formulating tool support requirements, based on pilot studies con-
clusions. Which tool is the most appropriate in supporting FRED?

3. Project management in recursive, information-driven processes.
How to best plan and control FRED projects?

4. Step-wise introduction of FRED in traditional processes, starting
with a “light” version of the method, that do not require a process
revolution and special tool support.

A major challenge is quantitative assessment of the virtues of the proposed
method and to evaluate FRED in formal case studies with focus on sys-
tem quality, time-to-market, and development effort.
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Abstract

In market-driven software evolution, the objectives of a requirements
engineering process include the envisioning and fostering of new require-
ments on existing packaged software products in a way that ensures com-
petitiveness in the market place. This paper describes an industrial,
market-driven requirements engineering process which incorporates con-
tinuous requirements elicitation and prioritisation together with expert
cost estimation as a basis for release planning. The company has gained a
measurable improvement in delivery precision and product quality of
their packaged software. The described process will act as a baseline
against which new promising techniques can be evaluated in the continu-
ation of the improvement programme.

1. Introduction

Requirements Engineering (RE) for packaged software is different from
RE for bespoke software. In tender projects, the customer is well-defined
and the requirements specification often acts as a contract between the
developer and the customer. When developing packaged software for a
market place, the RE process should be able to invent requirements based

VII
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on foreseen end-user needs and select a set of requirements resulting in a
software product which can compete on the market. A packaged software
product, sometimes called COTS (Commercial off-the-shelf ) software, is
often an integration of components. The product with its components is
evolved in releases, with each release including new and improved features
that, hopefully, ensure that the vendor stays ahead of competitors.

This paper describes a specific industrial RE process for packaged soft-
ware, called REPEAT (Requirements Engineering ProcEss At Telelogic),
which is enacted by the Swedish CASE-tool vendor Telelogic AB; a fast
growing company, currently with 180 employees, more than 600 custom-
ers world-wide, and a predicted revenue for 1998 of circa 200 million
SEK (increase from 107 million SEK, 1997).

REPEAT is used in-house at Telelogic for eliciting, selecting and man-
aging requirements on a product family called Telelogic Tau; a software
development environment for real-time systems, used by many of the
world’s largest telecommunication systems providers in their software
development. Telelogic Tau supports standardised graphical languages,
such as SDL [1], MSC [2], TTCN [3], and UML [4], and provides code
generators for integration with several real-time operating systems1. 

Telelogic Tau is an integration of in-house developed COTS compo-
nents and can be tailored for the specific needs of a customer or a market
segment, and is available on UNIX and MS-Windows platforms. It is
built using an architecture with an implicit invocation style [5], which
enables changes with local impact.

The paper is structured as follows. Section 2 describes the current and
first version of the RE process denoted REPEAT-1. The lessons learned
from three subsequent enactments are used for the continuation of the
RE process improvement program at Telelogic aiming at the definition of
REPEAT-2. In this work, REPEAT-1 will act as a baseline against which
process improvement proposals can be evaluated in case studies. The past
experiences of the REPEAT process improvement programme are con-
cluded in Section 3, together with proposals regarding its continuation.

1. More information on Telelogic Tau can be found at http://www.telelogic.se
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2. REPEAT: A Market-Driven 
Requirements Engineering Process

REPEAT is an RE process that manages requirements throughout a whole
release cycle. It covers typical RE activities [6], such as elicitation, docu-
mentation, and validation, and has a strong focus on requirements selec-
tion and release planning. Management of requirements changes due to,
e.g., new market demands, is an important function.

The actors involved in REPEAT include:

■ Requirements Management Group (RQMG). This group is responsi-
ble for requirements management, and makes decisions on which
requirements to implement. It is also responsible for requirements
change management. RQMG includes, among others, product and
project managers together with the quality manager.

■ Issuer. Any employee at Telelogic can submit a requirement to
RQMG. An issuer is usually a person from marketing & sales or
customer support, but can also be e.g. a developer or a tester.

■ Customers & users provide input and feedback to an issuer regarding
user and market needs.

■ Requirements Team. A team with the responsibility of analysing and
specifying a set of requirements. RQMG has several of these teams
at their disposal. A requirements team is cross-functional and
includes persons participating in implementation, testing, market-
ing & sales, and customer support.

■ Construction Team. A team with the responsibility of designing and
implementing a set of requirements. 

■ Test Team. A team with the responsibility of verifying a set of
requirements. 

■ Expert. A person that is assigned to evaluate a specific requirement
in depth, concerned with e.g. cost estimation and impact analysis.

■ Requirements Database (RQDB). All requirements are stored in this
in-house-built database system. RQDB has a web-interface that can
be accessed by Telelogic employees from a multi-continent intranet.
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Elicitation is continuously active, and a requirement can be issued at any
time by an issuer that foresees a market need. Each requirement is stored
in RQDB as an entity described in natural language with unique identity.
Throughout the continuous enactment of REPEAT process instances,
each unique requirement has a life-cycle progressing through specific
states as shown in Fig. 1. 

The semantics of the states are explained below. The RQMG with sup-
port from experts is responsible for deciding on requirement state transi-
tions.

■ New. The initial state of a requirement after it has been issued and
given an initial priority.

■ Assigned. The requirement has been assigned to an expert for classi-
fication.

■ Classified. A rough estimate of cost and impact is attached to the
requirement. Comments and implementation ideas may also be
stated.

■ Rejected. An end-state indicating that the requirement has been
rejected, e.g. because it is a duplicate, already implemented, or it
does not comply with the long-term product strategy.

■ Selected. The requirement has been selected for implementation
with a certain priority attached to it combined with results from
detailed cost and impact estimations. There is also a more detailed
specification of the requirement available. A selected requirement
may be de-selected, due to requirements changes, and then re-
enters the classification state or gets rejected.

■ Applied. An end-state indicating that the requirement has been
implemented and verified.

Figure 1. The states of a requirement in the REPEAT process.

New

Assigned Classified Selected Applied

Rejected
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REPEAT is instantiated for each release, and each process instance has a
fixed duration of 14 months. A new product version is released at fixed
dates every sixth month, which implies that different REPEAT instances
overlap with at most three simultaneous enactments, as shown in Fig. 2.
The REPEAT process instance n denotes the current release project. Each
REPEAT instance consists of five different phases separated by milestones
at pre-defined dates. The different phases are described subsequently.

2.1 Elicitation Phase

The elicitation phase includes two activities: collection and classification.
Collection of requirements is made by an issuer that fills in a web-form
and submits the requirement for storage in RQDB (see Fig. 3). 

Requirements are described using natural language and given a sum-
mary name by the issuer. An explanation of why the requirement is
needed is also given. The issuer gives the requirement an initial priority P,
which suggests in which release it may be implemented. P is a subjective
measure reflecting the view of the issuer, and is measured on an ordinal
scale with three levels, as shown in Table 1.

The requirement is initially in the new state, and a first check is made
by RQMG to see if it is detailed enough; if not it is returned to the issuer
for clarification of its description.

Figure 2. The milestones, phases, durations and parallelisation of REPEAT process 
instances.
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When a new requirement has arrived, RQMG issues a classification of the
requirement by assigning it to an expert. The expert classifies the require-
ment by assigning to it a rough estimate of its cost (C) and impact (I).
The cost estimate C is given on an ordinal scale of implementation effort
from 1 to 5, as shown in Table 2.

The impact estimate I is given to assess how many architectural com-
ponents that are affected by the requirement. The I measure is given on an
ordinal scale from 1 to 5 as shown in Table 3.

Table 1. The ordinal scale of the priority P.

Level Semantics
1 The requirement is allowed to impact on-going construction.

2 The requirement is incorporated in the current release planning.

3 The requirement is postponed to a later release.

Figure 3. The web-form for issuing requirements that are stored in the RQDB.
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The expert also reconsiders the priority P and may recommend RQMG
to change P. Further comments and implementation ideas may also be
given.

The classification (i.e. estimating C and I, and reconsidering P) should
take about 15-30 minutes. If more effort is needed, the expert should rec-
ommend the RQMG to issue a pre-study, where the requirement can be
decomposed to more fine-grained requirements that are easier to classify.

When the priority P, cost estimate C, and impact estimate I, have been
given, the requirement enters the classified state, and will be further
treated when the subsequent selection phase is started.

2.2 Selection Phase

The goals of this phase are: (1) to select which requirements to implement
in the current release, (2) to specify the selected requirements in more
detail, and (3) to validate the requirements document.

The output of this phase is a Requirements Document (RD) which
includes a selected-list, a detailed specification of all selected require-
ments, and a not-selected-list including the requirements that are post-
poned to the next release (see Fig. 4).

In the RD, there are a total of m+w requirements in a selected-list, and
a total of n requirements in a not-selected-list. The selected-list is divided

Table 2. The ordinal scale of the cost estimate C.

Level Semantics
1 Less than 1 day.

2 Less than 5 days.

3 Less than 5 weeks.

4 Less than 3 months.

5 More than 3 months.

Table 3. The ordinal scale of the impact estimate I.

Level Semantics
1 Impact is isolated to one component.

2 A few components are impacted.

3 Less than half of all components are impacted.

4 More than half of all components are impacted.

5 Nearly all components are impacted.
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into two parts: m requirements in the must-list and w requirements in the
wish-list. The select-list is sorted in priority-order.

For each requirement i on the selected-list, a detailed effort estimation
ei is given, measured on a ratio-scale of hours. Given that there is a total
effort of E hours available for implementing the planned release, the selec-
tion-rule given in Fig. 5 must be fulfilled by the RD.

The selected requirements are estimated to take 130% of the available
effort E. The must-list comprises 70% of E (i. e. a 30% risk buffer) and
the wish-list comprises 60% of E. This implies that up to half of the wish-
list will be implemented. 

The effort estimation and detailed specification of all selected require-
ments are made by requirements teams, and more effort is put on specify-
ing the high-priority-requirements. The sorting of the selected
requirements in priority order, is made by RQMG with support from the
requirements teams, using the P, C, I, and ei measures and the detailed
specifications as input information.
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When the RD is completed, it is validated in an inspection before it is
put in the Specification Baseline. The not-selected-list is used in the vali-
dation of the RD so that no requirements are unintentionally omitted.
The not-selected requirements are in state classified, and are normally
placed in the selected-list in the RD of the next release.

 
2.3 Change Management, Construction, Verification and 

Conclusion  

After Specification Baseline, the REPEAT process instance enters the
Change Management Phase. When this happens a new REPEAT process
instance is started in the Elicitation Phase (see Fig. 2). During change
management the RQMG takes decisions on changing the RD caused by
new incoming requirements with P=1, i.e. high-priority requirements that
are suggested to impact the current 

 

development process

 

 (including con-
struction and verification) running in conjunction with the change man-
agement phase of REPEAT.

When the RD is changed, and a new requirement is allowed to enter
the must-list, the selection-rule in Fig. 5 must still hold, and a set of
requirements amounting to the same effort as the new requirement must
be de-selected. The new requirement is inserted by RQMG at a position
in the selected-list that reflects its decided priority. Feedback is given to
the issuer on the decisions taken to the change request. 

The Code Stop milestone separates 

 

construction

 

 from 

 

verification

 

. Con-
struction is made using an iterative design and implementation process
with a weekly build and unit test. In the verification activity, the require-
ments in the selected-list that where really implemented are verified
against the RD using a requirements-based testing method. When the
implementation is correct with respect to RD, the new release is delivered
to marketing & sales and the implemented requirements enter the applied
state. A Conclusion Phase is then entered, where metrics are collected and
a final report is written that summarises the lessons learned from this
REPEAT enactment.
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2.4 Some Process Enactment Scenarios of REPEAT

 

To further explain how REPEAT is enacted in its different phases, we
present a partial process scenario model, using Message Sequence Charts
(MSC) [2]. Fig. 6 shows a High-level MSC (HMSC) [8], that describes
the events related to 

 

one

 

 requirement.
Assume that we are in the elicitation phase of the current release 

 

n

 

, and
we issue a requirement 

 

req

 

 that is classified according to the classification
scheme described in Section 2.1. In Fig. 7, a typical process scenario for
an elicitation episode is depicted. (The case where 

 

req

 

 is rejected before it
is assigned is not included, c.f. Fig. 1.)

When the RQ deadline is reached (see Fig. 2) and the elicitation phase
is ended the priority of 

 

req

 

 determines which release it will affect. Thus, P
suggests to which release it should be “routed” for further treatment. 

If 

 

req.priority

 

=1 then release 

 

n

 

-1 may incorporate 

 

req

 

 in its change
management phase. As it is rather expensive to incorporate late changes, it
is not unusual to enact the Revise Priority episode, so that ongoing con-
struction is unaffected (see Fig. 6).
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Figure 6.

 

Different ways of handling a requirement depending on its classification. 
(Time progresses down-wards.)
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If a change management

 

 

 

of release 

 

n

 

-1 is enacted, different actions are
taken depending on how far release 

 

n

 

-1 has reached, as shown in Fig. 8. 
If the REPEAT process of release 

 

n

 

-1 is in the selection phase (i.e. pre
Specification Baseline), the Change Selection episode is enacted where 

 

req

 

is allowed to change the selected-list. This change is not so expensive as
the other case, where the Specification Deadline milestone is passed. Then

 

req

 

 implies that a Change Construction episode is enacted, causing expen-
sive re-design and, if Code Stop is reached, re-testing. 
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Figure 7. A partial description of the events in the elicitation phase of REPEAT. 
(Time progresses down-wards.)
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If 

 

req.priority

 

=2 then the treatment of 

 

req

 

 will continue with the selec-
tion phase in release 

 

n

 

, where 

 

req

 

 is specified in more detail and subjected
to detailed effort and impact estimation. By the end of the selection
phase, the must-list and wish-list are constructed (as described in
Section 2.2) including 

 

req

 

 at its decided priority level. When req is on the
must- or a wish-list, it is in the 

 

selected

 

 state and when it has been imple-
mented and verified it is in the 

 

applied

 

 state.
If 

 

req.priority

 

=3 then 

 

req

 

 is kept in the 

 

classified

 

 state and postponed to
a later release, where its classification (P, C, and I) is reconsidered. If 

 

req

 

 at
this stage is given priority 1 or 2 it will eventually change its state to

 

selected

 

, and at some future stage become 

 

applied

 

.

ChangeChange

HMSC ChangeMgmt

release(n-1) Pre Spec Baseline release(n-1) Post Spec Baseline

req.state=applied

Selection Construction

Figure 8. Different change episodes depending on the advance of release n-1.
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3. Conclusions from the

 

 

 

REPEAT

 

 

 

Process 
Improvement Programme

 

During 1995, Telelogic realised that they needed a repeatable and defined
RE process and the work started on the formulation of an RE Process
Improvement Programme resulting in REPEAT-1.

Prior to REPEAT-1, Telelogic had an ad hoc process for managing
requirements and faced a number of challenges related to release precision
and product quality. Version 3.0 of the product family was released 8
months later than planned, and version 3.1 was released with a 3 months
delay. Between 3.0 and 3.1, seven intermediate releases were needed in
order to mend quality problems and add on extra requirements. In May
1995, a CMM assessment [7], conducted by an external software engi-
neering consultancy, concluded that very few of the Key Processes Areas
of CMM-Level 2 were in place. 

REPEAT-1 was introduced in January 1996. In February 1998, a sec-
ond CMM assessment showed that Telelogic had almost all Key Processes
Areas of CMM-Level 2 in place. When REPEAT-1 was applied, product
version 3.2 was released with a small delay of 15 days, and the subsequent
version 3.3 was released three days 

 

ahead

 

 of schedule. The current version
3.4 under construction is to date on schedule, and is predicted to be
released on time. The product quality has increased as indicated by the
monotonic decrease of reported failures in operation measured from ver-
sion 3.1 to 3.3. Almost no requirements were unintentionally missed in
the latest two versions. The authors are convinced that the introduction of
REPEAT-1 is the major explanation for these achievements.

The major elements of REPEAT-1 that are believed to cause the dra-
matic improvements in release precision and product quality, are the pri-
oritisation of requirements, the effort estimation, the detailed
requirements specification, and the continuous change management
throughout design, implementation and verification. The classification
activity gives experts the opportunity to carefully consider which require-
ments to be implemented in which release, so that the requirements that
are believed to give the highest value to the lowest cost are implemented
first. The must-, and wish-lists are strong tools for enforcing that a release
project does not take in more requirements than can be achieved within 6
months. Customer support and marketing can easily issue requirements
as a reaction to their observation of end-user and market needs. 
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However, a number of challenges have been identified in the past
enactment of REPEAT. Some of these challenges are outlined below:

 

■

 

Overload control

 

. With the web-interfaced requirements database, it
is very easy to issue new requirements. Every new requirement has a
cost, even if its never implemented. Requirements that are in state
classified must eventually be either applied or rejected. Currently,
the number of classified requirements in RQDB is increasing for
every release, which is about to cause REPEAT-1 to be overloaded.
A mechanism is needed to avoid congestion in the RE process.

 

■

 

Connecting fragments

 

. The requirements entities are not related to
each other. They are only grouped in relation to implementation
components. Requirements fragments need to be packaged into
coherent bundles, in order to give them a structure that reflects the
functionality as seen by the user. This is necessary for managing
dependencies and making prioritisation of sets of requirements.

 

■

 

Bridging the chasm between elicitation and selection

 

. Related to the
above challenges, the authors have made the qualitative observation
that the performance of REPEAT-1 is low in the gap between elici-
tation and selection (see Fig. 9), due to congestion caused by too
many incoming, unrelated requirements fragments with sometimes
poor description quality. The requirements fragments are described
at very different levels of abstraction and classification gets difficult.

 

■

 

Long-term product strategy for a diversity of market segments

 

. As
REPEAT-1 triggers on the issuing of new requirements, RE
becomes to some extent reactive rather than pro-active. There is a
foreseen need of promoting activities related to the existing long
term product strategy and prioritisation in relation to a range of
market segments.

During the continuation of the REPEAT Process Improvement Pro-
gramme, REPEAT-1 will act as a 

 

baseline

 

 against which promising tech-
niques, that are believed to meet the above challenges, can be evaluated
using expert surveys, case studies and experiments [9]. Two techniques
that are candidates for introduction in REPEAT-2 are:
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■

 

Hierarchical use case modelling

 

 [8, 10, 11]. A hierarchy of informal
or semi-formal use cases may help to connect requirement frag-
ments and provide an integrated model of the product’s “function-
ality architecture” as seen by its users. Hopefully, a long-term
product strategy with the priorities of different market segments
can be integrated with such a use case model.

 

■

 

Cost-value use case prioritisation

 

. In order to increase process per-
formance and avoid congestion, a more efficient approach to the
sorting of requirements is need. Currently the selection is made
using expert judgement. A smart grouping of requirements based
on the use cases to which they are related, combined with a system-
atic cost-value prioritisation approach [12, 13] applied to use cases
instead of single requirements, may speed up the selection process.

Figure 9. An informal depiction of the REPEAT process performance challenge of 
bridging the chasm between elicitation and selection.

REPEAT-1 process performance

TimeElicitation Phase Selection Phase

optimum
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