Uppdatering av den vetenskapliga grunden för klimatarbetet. En översyn av naturvetenskapliga aspekter

Rummukainen, Markku; Johansson, Daniel J. A.; Azar, Christian; Langner, Joakim; Döscher, Ralf; Smith, Henrik G.

2011

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Uppdatering av den vetenskapliga grunden för klimatarbetet
En översyn av naturvetenskapliga aspekter

Markku Rummukainen, Daniel J. A. Johansson, Christian Azar, Joakim Langner, Ralf Döscher, Henrik Smith
KLIMATOLOGI Nr 4, 2011

Uppdatering av den vetenskapliga grunden för klimatarbetet
En översyn av naturvetenskapliga aspekter

Markku Rummukainen, Daniel J. A. Johansson, Christian Azar, Joakim Langner, Ralf Döscher, Henrik Smith
Sammanfattning

Samtidigt finns det betydande osäkerheter när det gäller konsekvenserna av klimatförändringarna samt hur mycket utsläppen behöver minska för att man ska nå ett givet klimatmål. Värden på klimatkänsligheten är den viktigaste faktorn för beräkningar av hur mycket växthusgaser vi kan släppa ut, givet ett visst temperaturmål.

Forskningen visar att det behövs stora och snabba utsläppsminskningar för att uppnå tvågradersmålet. För att nå ett lägre temperaturmål, till exempel ett 1,5-gradersmål, är de nödvändiga utsläppsminskningarna än mer omfattande.

- För att nå tvågradersmålet med en sannolikhet runt 70 % krävs uppskattningsvis att de globala växthusgasutsläppen minskar i storleksordningen 50–60 % från år 2000 till 2050, och minskar med nära 100 % till 2100.
- För att nå ett 1,5-gradersmål med en sannolikhet runt 70 % krävs globala nollutsläpp redan runt år 2050.
- För att nå ett 1,5-gradersmål med en sannolikhet runt 50 % krävs uppskattningsvis att de globala växthusgasutsläppen minskar i storleksordningen 80 % från år 2000 till 2050, och med nära 100 % till 2100.

Det är framför allt de kumulativa utsläppen av koldioxid och andra långlivade växthusgaser som räknas när det gäller hur stora klimatförändringarna blir bortom 2100. Ju senare de globala utsläppen kulminerar, och ju högre nivå de då är på, desto större blir utmaningen för att åstadkomma en tillräckligt snabb påföljande utsläppsminskningstakt. Reducerade utsläpp av kortlivade klimatpåverkande ämnen är viktigt främst i ett kortare perspektiv.

Det finns olika modeller för hur de globala utsläppsminskningarna kan fördelas mellan olika regioner och länder. Dessa baseras inte på naturvetenskapliga principer utan är beroende av politiska och andra ställningstaganden. För en del länder skiljer sig resultaten mycket beroende på valet av fördelningsmodell. För de flesta industriländer är slutsatsen dock generellt sett densamma: jämfört med idag behöver deras utsläpp minska mycket kraftigt.

- För att nå tvågradersmålet med i storleksordningen 70 % sannolikhet krävs, givet en globalt lika per capita fördelning av utsläppen från och med 2050, att utsläppen i Sverige minskar med cirka 70 % från år 2005 till 2050. Den motsvarande siffran för EU är cirka 80 %.
- För att nå ett 1,5-gradersmål med i storleksordningen 70 % sannolikhet krävs, givet en globalt lika per capita fördelning av utsläppen från och med 2050, att utsläppen minskar från år 2005 till år 2050 med runt 100 % i Sverige och i EU, och i andra länder.
- För att nå ett 1,5-gradersmål med i storleksordningen 50 % sannolikhet krävs, givet en globalt lika per capita fördelning av utsläppen från och med 2050, att utsläppen i Sverige och EU minskar med drygt 90 % från år 2005 till 2050.

Nettoutsläpp av koldioxid från avskogning och utrikes luft- och sjöfart ingår inte i dessa uppskattningar.

Generellt blir riskerna för allvarliga klimatteffekter mindre ju mer ambitiöst temperaturmål som väljs, men riskerna försvinner inte med tvågradersmålet, och inte ens med ett 1,5-gradersmål.

Sammantaget ter sig riskerna för allvarliga klimateffekter större jämfört med AR4.

Innehållsförteckning

1 INTRODUKTION ... 1
2 VARFÖR TVÅGRADERSMÅLET? ... 3
3 GRUNDLÄGGANDE NATURVETENSKAPLIGA FAKTORER ... 5
3.1 Klimatkänslighet .. 5
3.2 Kolcykeln ... 7
3.3 Andra långlivade växthusgaser än koldioxid ... 8
3.4 Kortlivade klimatpåverkande ämnen ... 8
4 UTSLÄPPSBANOR FÖR ATT NÅ TVÅGRADERSMÅLET .. 12
4.1 Introduktion ... 12
4.2 AR4 och senare internationella analyser av globala utsläppsbanor 14
4.3 Sammanfattning av kunskapsläget om utsläppsbanor förenliga med tvågradersmålet ... 16
4.4 En scenarioanalys av globala och nationella utsläppsbanor med en svensk modell, MiMiC ... 17
4.5 Uppskattning av globala utsläppsbanor enligt MiMiC .. 18
4.6 Uppskattning av nationella utsläppsmål enligt MiMiC .. 20
4.7 Betydelsen av utsläpp relaterade till markanvändning och skogsbruk 21
5 UTSLÄPPSBANOR FÖR ATT NÅ ETT 1,5-GRADERSMÅL ... 23
5.1 Uppskattning av globala utsläppsbanor enligt MiMiC .. 23
5.2 Uppskattning av nationella utsläppsmål enligt MiMiC .. 24
6 TVÅGRADERSMÅLET RESPEKTIVE ETT 1,5-GRADERSMÅL ... 26
7 BECCS – BIOMASSA MED KOLINFÅNGNING .. 28
8 KLIMATEFFEKTER ... 30
8.1 Havsförsurningen ... 31
8.2 Havsnivån ... 32
8.3 Biologisk mångfald ... 34
8.4 Vad innebär tvågradersmålet för Arktis? .. 35
9 PÅVERKAR NY KUNSKAP TIDIGARE SLUTSATSER? ... 37
10 SLUTSATSER ... 38

REFERENSER ... 39

Bilaga I: The MiMiC model .. 46
Bilaga II: “Contraction & convergence” .. 48
1 Introduktion

Denna rapport är en genomsyn av kunskapsläget för klimatarbetet, ur ett naturvetenskapligt perspektiv. Rapporten bygger på IPCC:s kunskapssammanställningar, senaste publicerade forskningsresultat och genomsyner av expertgrupper som samlat vetenskapligt material.

Rapporten sammanfattar resultatet av det uppdraget som regeringen gav till SMHI i maj 2011 (M2011/2166/KI), om uppdaterat underlag till klimatarbetet på följande punkter:

- hur ny kunskap och nya forskningsresultat påverkar slutsatserna i tidigare sammanställningar om klimatförändringar och klimatteffekter
- vetenskapliga förutsättningar för det så kallade tvågradersmålet
- vetenskapliga förutsättningar för ett 1,5-gradersmål

Utöver dessa övergripande syften, uppdrogs SMHI att särskilt beakta ny kunskap om kortlivade klimatpåverkande ämnen. Dessa ämnen har uppmärksammats på vissa policyarenor.

De frågeställningar som ingår i uppdraget är i högsta grad relevanta för samhällets klimatarbete inklusive de internationella klimatförhandlingarna. Tvågradersmålet är idag en utgångspunkt i de internationella klimatförhandlingarna. Dessutom har man kommit överens om en framtidig översyn av detta mål och i synnerhet om ett lägre temperaturmål borde väljas i stället. Dessa beslut är grundläggande internationellt, inom EU och i Sverige, de fastslår den övergripande ambitionsnivån för utsläppsminkningar och specificerar utgångspunktarna för en färdplan i klimatarbetet framöver.

Rapporten innehåller en kort inledning om tvågradersmålet, en diskussion om klimatkänsligheten och koleyklen som i detta sammanhang är grundläggande naturvetenskapliga faktorer, en redovisning av utsläppsbantor för att nå tvågradersmålet och för ett 1,5-gradersmål, vilket baseras framför allt på sammanställningar av UNEP (2010) och EGScience (2010). Även

Av författarna utanför SMHI har Daniel Johansson och Christian Azar (Institutionen för energi och miljö, avdelningen för fysisk resursteori, Chalmers) bidragit till avsnitten om utsläppsbanor. Henrik Smith (Centrum för miljö och klimatforskning, Lunds universitet) har bidragit till diskussionen om klimatffekter på biologisk mångfald.

Rapporten har tagits fram efter samråd med Naturvårdsverket och Energimyndigheten. Rapporten förordar inte något specifikt temperaturmål, utsläppsbana, eller andra policybeslut.
2 Varför tvågradersmålet?

Det ligger nära till hands att koppla tvågradersmålet till Klimatkonventionens ”Article 2” (UNFCCC 1992) som handlar om konventionens grundläggande målsättning om att förebygga farlig mänsklig påverkan på klimatsystemet:

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a timeframe sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.

1 Tvågradersmålet anges även med att den globala medeltemperaturhöjningen inte ska överstiga två grader jämfört med den förindustriella perioden. Det finns en viss skillnad mellan formuleringarna, men andemeningen är densamma.
2 Prop. 2001/02:55
3 I denna rapport används ppm (miljondelar) synonymt med ppmv (miljondelar per volym).
4 Prop. 2008/09:162

Den pågående uppvärmningen och de globala utsläppens ökningstakt (Friendlingstein m fl 2010) understryker tvågradersmålets utmaningar. Möjligheterna till att klara målet beror dock på tekniska, ekonomiska, politiska och andra samhälleliga förutsättningar och på hur man lyckas förena en önskad global och regional samhällsutveckling med den omvandling som krävs av global och regional tillförsel af primärenergi och effektivisering av användningen av energi inom olika samhällssektorer.

Det är lätt att problematisera tvågradersmålet. Som den utgångspunkt för klimatarbetet som detta mål är genom att antagits genom politiska beslut, är det ändå angeläget att arbeta vidare utifrån detta, oavsett om det längre fram skulle ersättas med andra mål. Detta förutsätter kunskaper om bland annat vilka globala, regionala och nationella utsläppsbanan som är förenliga med tvågradersmålet. Som diskuteras vidare i nästa avsnitt, handlar detta i grund och botten om klimatkänslighet, kolcykeln känslighet för klimatförändringar och kumulativa koldioxidutsläpp. När det gäller utsläppen är det i klimatarbetet likaså viktigt att kunna karakterisera utsläppsbanan i termer av kulminering av de globala utsläppen, hur snabbt dessa sedan minskas och vilka för utsläppsnivåer som förutsätts för olika tidsperioder, till exempel år 2020 och 2050.

5 En utsläppsbana är en representation av årliga utsläppsnivåer över en viss tidsperiod.
6 När (vilket är) de årliga globala utsläppen når sitt maximum samt hur stora de är i sina kulmen.
7 Energimängden ökar i det globala havet, vilket bromsar temperaturökningen i luften.
3 Grundläggande naturvetenskapliga faktorer

Det finns vissa grundläggande naturvetenskapliga faktorer som behöver belysas i samband med bedömning av klimatförändringar och därmed av vilka utsläppsanor som kan vara förena med tvågradersmålet eller andra temperaturnivå (IPCC 2007a, Wigley m fl 2009). Dessa faktorer handlar om sambanden mellan dels den globala uppvärmningen, atmosfärshalter av växthusgaser och partiklar, dels mellan dessa halter och utsläppen. Dessa samband beror den så kallade klimatkänsligheten (avsnitt 3.1) respektive den globala kolekyllen (avsnitt 3.2). Kunskaper om dessa samband är avgörande för bedömningar av vilken sannolikhet för måluppfyllelse specifika utsläppsanor förnämler.

Det Vetenskapliga rådet (MVB-SOU 2007) presenterade dessa samband mellan mänskliga aktiviteter, utsläpp av växthusgaser, klimatförändringar och deras effekter på ekosystem och samhälle, samt olika typer av klimatmål enligt följande illustration:

Det konstaterades vidare (MVB-SOU 2007) att

Temperaturnivå sätts utifrån vilka effekter på ekosystemen och samhälle som olika stora klimatförändringar, uttryckta i termer av global medeltemperaturökning, kan förutsetes ge. Vad som är acceptabelt är en värderingsfråga och kan inte avgöras på vetenskaplig grund...

Koncentrationen sätts utifrån vetenskapligt konstruerade samband mellan ökad koncentration av växthusgaser och temperaturökning. Både temperaturnivå och koncentrationen är globala, eftersom de påverkas av världens samlade utsläpp av växthusgaser.

Ett globalt utsläppsnivå kan sedan häraldas från koncentrationsnivå genom vetenskapligt uppskattade samband om vilka utsläppsnivåer (globalt) som är förena med olika koncentrationer av växthusgaser i atmosfären. Utsläppsnivå kan anges som en utsläppsmängd, antingen totalt eller per capita, som inte får överskridas vid ett visst årtal. Det kan också räknas om till hur mycket utsläppen behöver minska över en viss tidsperiod. Utsläppsnivå är det typ av mål som är enklast att omsätta till strategier och åtgärder.

Regionala och nationella utsläppsnivå kan inte bestämmas vetenskapligt, men de kan beräknas med utgångspunkt i globala utsläppsnivå och en politiskt bestämd fördelning mellan olika regioner och länder. De kan också till största delen baseras på politiska bedömningar av vad som är politiskt nödvändigt eller möjligt.

I denna rapport tas temperaturnivå som utgångspunkt, medan koncentrationsnivå diskuteras enbart kort. Fokus ligger på utsläppsanor som kan vara förena med specifika temperaturnivå.

3.1 Klimatkänslighet

Klimatkänslighet anger hur mycket klimatet förändras vid en given ändring av mängden växthusgaser i atmosfären. Ju högre klimatkänslighet, desto mer värms jorden upp. Forskningen om klimatkänslighet bedrivs genom analyser av observerat klimat under den instrumentellt observerade perioden, studier av tidigare klimatvariationer samt klimatmodellering. IPCC (2007a) anger att klimatkänsligheten troligen ligger mellan 2 och 4,5 grader. Medianen ligger

8 Klimatkänslighet definieras som den långsiktiga globala medeltemperaturökningen som orsakas av en fördubbling av atmosfären koldioxidhalt. Effekter av olika återkopplingar vid stigande temperatur, till exempel förändringar i molnigheten och mängden vattenånga i atmosfären, ingår.

9 Sannolikheten att klimatkänsligheten är lägre eller högre än detta intervall anges som högst 33 %. Intervall som är dock inte symmetriskt utan den uppskattade sannolikhetsfördelningen är skev mot högre
på 3 grader. Den bästa (median)bedömningen ligger på 3 grader. Senare redovisade forskningsresultat föranleder inte någon justering av detta intervall (Rummukainen m fl 2010, s. 51-58).

Osäkerheten om klimatets känslighet gör att en given ändring i atmosfärens halt av växthusgaser inte kan associeras med ett specifikt uppvärmningsscenario. En ökande global temperatur och en rad andra förändringar i klimatet är ändå en robust konsekvens vid ökande växthusgashalter. Med utgångspunkt från osäkerheten i klimatäktsenheten kan man också räkna till exempel på sannolikheten av att en specifik förändring i atmosfären ger en större eller mindre uppvärmning än två grader. I tabell 3.1.1 redovisas resultat för den långsiktiga globala uppvärmningen som motsvarar olika bestående atmosführar av växthusgaser.

Tabell 3.1.1. Varaktig global medeltemperaturförändring jämfört med förindustriellt klimat, vid olika stabiliseringshalter av växthusgaser i atmosfären baserat på IPCC (2007a, tabell 10.8).

<table>
<thead>
<tr>
<th>Koldioxidekvivalenter (ppm)</th>
<th>Troligast ("best estimate" enligt IPCC 2007a) långsiktig global temperaturförändring (°C)</th>
<th>Osäkerhetsintervall (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>1,0</td>
<td>0,6–1,4</td>
</tr>
<tr>
<td>450</td>
<td>2,1</td>
<td>1,4–3,1</td>
</tr>
<tr>
<td>550</td>
<td>2,9</td>
<td>1,9–4,4</td>
</tr>
<tr>
<td>650</td>
<td>3,6</td>
<td>2,4–5,5</td>
</tr>
<tr>
<td>750</td>
<td>4,3</td>
<td>2,8–6,4</td>
</tr>
<tr>
<td>1000</td>
<td>5,5</td>
<td>3,7–8,3</td>
</tr>
</tbody>
</table>

Den koldioxidekvivalenta halten i atmosfären ska inte blandas ihop med de koldioxidekvivalenta utsläppen, vilket är helt annat koncept (se avsnitt 3.3).

värden, dvs. klimatäktsenheten skulle även kunna vara betydligt högre än 4,5°C. Sannolikheten att klimatäktsenheten vore lägre än 1,5 grader bedöms som mindre än 10 % (IPCC 2007a, s. 798-799).
3.2 Kolcykeln

I hittillsvarande klimatmodellering har observationer och framtidsscenarier av atmosfärens växthusgasalster och partiklar varit ingångsdata för simulerings av den antropogena klimatpåverkan. Detta har förutsatt att scenarier för atmosfärhalter av växthusgaser och partiklar i ett inledande steg först har härletts från specifika utsläppsscenarier, vilka i sin tur har baserats på socioekonomiska scenarier (t ex IPCC 2000). Detta har gjorts med kolcykelmodellering som beskriver kolets kretslopp mellan atmosfären, terrestra system och havet, och hur mycket av släppen som stannar i atmosfären respektive tas upp i havet och i terrestra ekosystem. Eftersom de naturliga kolsänkorna och källorna påverkas av klimatet, behöver de simuleras tillsammans med klimatet för att komplexiteten i sambandet mellan utsläppen och atmosfärhalterna ska kunna uppskattas bättre. Efter hand har globala klimatmodeller också börjat kompletteras med kolcykelkomponenter. Beräkningar av utsläppsskanor som är förenliga med temperaturutveckling förutsätter och begränsas av kunskaperna om kolcykeln och speciellt hur den påverkas av klimatförändringar.

Som redan hänvisats till, hamnar en del av de antropogena utsläppen i havet och i terrestra ekosystem. Översiktligt handlar detta om drygt hälften av de årliga och kumulativa antropogena utsläppen hittills från användning av fossila bränslen och markanvändning. Kolflödena mellan atmosfären, havet och terrestra ekosystem är dock komplicerade och dessutom föränderliga eftersom de påverkas av temperatur, hydrologiska förhållanden och även vindar. Eventuella förändringar i havets och de terrestra ekosystemens förmåga att lagra kol medför osäkerheter i sambandet mellan utsläppsskanor och resulterande atmosfärhalter, och därmed i temperaturutvecklingen. Generellt sett tyder forskningsresultat på att naturliga kolsänkor mättas av vid stigande global medeltemperatur (se Rummukainen m fl 2010, s. 23-24 och 56-57). Nya rön finns också om kolupptaget i världens skogar. Gosling m fl (2011) och Good m fl (2011) diskuterar olika resultat som bland annat handlar om att gamla skogar kanske fortsätter att ta upp kol i stället för att hamna i en balans, men också att effekterna av högre temperatur och vattenstress kan drabba olika typer av skogar hårdare än enligt tidigare studier.

Resultat från klimat-kolcykelmodeller (Matthews m fl 2009) tyder att cumulativa utsläpp på omkring 3700 miljarder ton koldioxid (GtCO2), vilket är samma som 1000 miljarder ton kol (GtC), motsvarar en global temperaturhöjning på 1,0–2,1°C (5 till 95 % konfidensintervall) med bästa uppskattning på 1,5°C. Detta motsvarar att cirka 4800 GtCO2 kan släppas ut om tvågadersmålet ska vara nåbart med en sannolikhet runt 50 %. De cumulativa antropogena koldioxidutsläppen uppgår hittills till drygt 1850 GtCO2 och ingår i denna mängd. Världen har alltså en möjlighet att släppa ut ytterligare knappt 3000 GtCO2 och ändå att behöva att begränsa den globala temperaturhöjningen till 2°C med en sannolikhet runt 50 %. Zickfeld m fl (2009) uppskattar cumulativa koldioxidutsläpp över perioden 2000 till 2500 som är förenliga med tvågadersmålet och en sannolikhet runt 70 %. Enligt deras beräkningar ska resterande cumulativa utsläppen vara runt 1830 GtCO2, men osäkerhetsintervallet är stort. Om målet ska nås med en sannolikhet runt 50 %, kan de resterande utsläppen vara knappt 2800 GtCO2 (även detta med ett stort osäkerhetsintervall). Zickfeld m fl (2009) beaktar vare sig partiklar eller andra växthusgaser än koldioxid i sin analys.

Resultat från Allen m fl (2009), Meinshausen m fl (2009) och O’Neill m fl (2010) jämför sig relativt väl till Matthews m fl (2009). Dessa ”utsläppssutrymmen” kan dock inte utan vidare omsättas till utsläppsskanor eftersom antagandena om andra antropogena utsläpp av växthusgaser (speciellt metan och lustgas) och effekten av antropogena partiklar varierar mellan dem.

kolcykelmodeller kan i så fall te sig något för optimistiska beträffande hur stora de kumulativa antropogena växthusgasutsläppen kan få bli. Detta återstår dock att bekräftas med ytterligare studier.

3.3 Andra långlivade växthusgaser än koldioxid

Det är koldioxidutsläppen som utgör den största delen av den mänskliga klimatpåverkan, men även andra antropogena växthusgasutsläpp påverkar klimatet. Metan (CH\textsubscript{4}), lustgas (N\textsubscript{2}O), svavelhexafluorid (SF\textsubscript{6}), perfluorkolväten (PFC), och fluorkolväten (HFC) ingår tillsammans med koldioxid i den så kallade Kyotokorgen av gaser (UNFCCC 1997), som diskuteras i de internationella klimatförhandlingarna. En del andra utsläpp som har klimatpåverkan hanteras inom ramen för Montrealprotokollet som handlar om att skydda ozonskiktet. Det finns även luftföroringningar inklusive partiklar som har klimatpåverkan. Dessa diskuteras vidare i nästa avsnitt.

I jämförelse med koldioxid har andra klimatpåverkande ämnen olika stark klimatpåverkan och de stannar en längre eller en kortare tid i atmosfären än koldioxid. Emellertid räknar man ofta om deras utsläpp till koldioxidekvivalenter i studier av utsläppsbanor, i regel med de så kallade Global Warming Potentials (GWPs, Plattner m fl 2009). GWP värdena är typiskt framräknade för att jämföra den integrerade uppvärmande effekten av olika gaser under en tidshorisont av 100 år. Då man i koldioxidekvivalenta utsläppsbanor inte fullt ut fångar de olika gasearnas styrka och tidsdynamik så kan två olika utsläppsbanor med identiska koldioxidekvivalenta utsläpp ge olika temperatursvar om andelen gaser i utsläppsbanorna är olika (Daniel m fl 2011).

När antaganden för andra växthusgaser än koldioxid görs, kan de dock vara mycket varierande (t ex Wigley m fl 2009), vilket komplicerar jämförelser av utsläppsbanor och dylikt mellan olika studier. I en del inkluderar bara koldioxidutsläppen, medan andra exempelvis bara beaktar gasser som ingår i Kyotokorgen eller även inkluderar luftföroreningar och partiklar. Till exempel, i en del studier har det antagits att koldioxidutsläpp inte innehåller en koldioxidutsläpp som ingår i Kyotokorgen eller även inkluderar luftföroreningar och partiklar. Till exempel, i en del studier har det antagits att uppvärmande effekten av andra växthusgaser än koldioxid och avkylande effekten (svavelpartiklar) är starkare, och tidsdynamik så kan två olika utsläppsbanor med identiska koldioxidekvivalenta utsläpp ge olika temperatursvar om andelen gaser i utsläppsbanorna är olika (Daniel m fl 2011).

När antaganden för andra växthusgaser än koldioxid görs, kan de dock vara mycket varierande (t ex Wigley m fl 2009), vilket komplicerar jämförelser av utsläppsbanor och dylikt mellan olika studier. I en del inkluderar bara koldioxidutsläppen, medan andra exempelvis bara beaktar gasser som ingår i Kyotokorgen eller även inkluderar luftföroreningar och partiklar. Till exempel, i en del studier har det antagits att koldioxidutsläpp inte innehåller en koldioxidutsläpp som ingår i Kyotokorgen eller även inkluderar luftföroreningar och partiklar. Till exempel, i en del studier har det antagits att uppvärmande effekten av andra växthusgaser än koldioxid och avkylande effekten (svavelpartiklar) är starkare, och tidsdynamik så kan två olika utsläppsbanor med identiska koldioxidekvivalenta utsläpp ge olika temperatursvar om andelen gaser i utsläppsbanorna är olika (Daniel m fl 2011).

3.4 Kortlivade klimatpåverkande ämnen

Kortlivade klimatpåverkande ämnen är av betydelse speciellt i ett kort och mellanlångt tidsperspektiv (se faktaruta på s. 10-11). Särskilt lyfts den uppvärmande effekten av sot ("black carbon") och troposfäriskt ozon fram. Gasen metan som diskuterades ovan som en långlivad växthusgas diskuteras även i samband med kortlivade klimatpåverkande ämnen eftersom dess halt påverkar troposfäriskt ozon. Metans effekt på ozon finns samtidigt redan med i Kyotokorgen, denna effekt inkluderades när man beräknar de koldioxidekvivalenta utsläppen av metan.

Påverkan från sotpartiklar finns i synnerhet i delar av tropikerna kopplat till stora utsläpp, i Sydostasien (Ramanathan och Carmichael 2008) men även i Arktis (Shindell och Faluvegi 2009, Flanner m fl 2009, Quinn m fl 2008, Shindell 2007) på grund av både absorption av solstrålning och deponering av sotpartiklar på snö och is med påföljande förändring av albedot. Eftersom de direkta utsläppen av sot i Arktis ännu är relativt små så styr klimatförändringar, och nedfallet och därmed den regionala klimatpåverkan av längssträck från lägre latituder. I en modellstudie som inkluderade 17 olika globala atmosfäriska modeller redovisar Shindell m fl (2008) beräkningar av bidraget från olika källområden till nedfallet av sot. Enligt beräkningarna dominerar bidragen till Arktis från Europa förutom för Grönland där bidrag från Nordamerika är av lika stor betydelse och bidragen från södra och östra Asien också är betydande. Norra Asien inkluderades inte som ett särskilt källområde i studien men det är sannolikt att bidraget därifrån
är betydande (Quinn m fl 2008). Föroreningar från Asien blir progressivt mer viktiga med höjden i atmosfären och dominerar i den övre delen av troposfären.

Emellertid påtalas också farhågor med att koppla ihop dessa frågor. Dels skulle det innebära att diskussionerna inom olika FN-konventioner delvis skulle gå in i varandra (speciellt UN-ECE CLRTAP och UNFCCC), dels skulle det kunna leda till mindre omfattande åtgärder mot koldioxidutsläppen trots att de är avgörande för en långsiktig klimatstabilisering. Berntsen m fl (2010) argumenterar dock för att med ”rätt” formulering av klimatmålet och jämförelser mellan lång- och kortlivade klimatpåverkande luftföroreningar kan detta undvikas. (Se även IPCC 2009.)

De olika sammanställningarna är entydiga på punkten om att även om särskilda åtgärder görs för att minska luftföroreningarna för att dämpa temperaturökningen på kort sikt så påverkar det inte vikten av att minska utsläppen av långlivade växthusgaser för att nå tvågradersmålet. De sistnämnda stannar kvar i atmosfären en mycket längre tid. Åtgärder mot kortlivade ämnen kan ändå vara kompletterande.

Osäkerheterna är betydande när det gäller partiklars klimatpåverkan, medan kunskapsläget är bättre för troposfäriskt ozon (IPCC 2007a, s. 204, Isaksen 2009). Den stora osäkerheten för partiklarnas klimatpåverkan bidrar också till osäkerheten i klimatkänsligheten. Kulmala m fl (2011) argumenterar för att osäkerheten i såväl den direkta som den indirekta effekten av partiklar på strålningsbalansen har reducerats väsentligt genom såväl förnyade analyser av observationer och bättre förståelse av mikrofysikaliska förhållanden i moln som har implementerats i klimatmodeller. Kulmala m fl anger uppskattnings av den direkta effekten till $-0,4 \pm 0,2 \text{ W m}^{-2}$ och $-0,7 \pm 0,5 \text{ W m}^{-2}$ för den indirekta effekten. De centrala skattningarna är lägre (mindre negativa) än de som redovisades i IPCC (2007a). Ytterligare modellstudier behövs för att bekräfta att dessa lägre skattningsar är robusta.

10 En referensbana avser ett ”business as usual”-scenario utan klimatpolitik.
Kortlivade klimatpåverkande luftföroringar

Med så kallade kortlivade klimatpåverkande ämnen avses framför allt troposfäriskt ozon och sot ("black carbon"). Även andra typer av partiklar och några av de industriella HFC-gaserna med kortare uppehållstider i atmosfären kan i vissa sammanhang inkluderas. Ofta inkluderas metan i diskussionen om kortlivade klimatpåverkande ämnen, eftersom dess halt påverkar bildningen av troposfäriskt ozon. Både sot (såsom andra partiklar) och troposfäriskt ozon har korta livstider i atmosfären, från några dagar till någon vecka för partiklar och ozon sommartid, upp till ett par månader för ozon vintertid i högre luftlager i troposfären. Detta är i kontrast med koldioxid och andra långlivade växthusgaser. I andra forsknings- och polisysammanhang är den vedertagna benämningen av kortlivade klimatpåverkande ämnen luftföroringar.

Halterna av ozon i troposfären har mer än fördubblats sedan förindustriell tid och mer än så i marknära luftlager i tätbefolkade områden. Troposfäriskt ozon bildas i fotokemiska reaktioner från utsläpp av kväveoxider, kolmonoxid, och flyktiga kolväten samt metan. Mänskliga källor till dessa utsläpp inkluderar förbrunningsprocesser, förbranner av biobränslen, industriprocesser, användning av lösningsmedel samt svedjebruk. Mänskliga källor inkluderar skogs- och gräsbränder samt biogena utsläpp från mark och vegetation. I stark förorenade områden bildas ozon framför allt genom oxidation av flyktiga kolväten i närvaro av kväveoxider medan metan och kolmonoxid spelar en större roll för bildningen i bakgrundsluft och i högre luftlager i troposfären.

Partiklar från mänskliga utsläpp kan dels släpps ut direkt i partikelform, till exempel som sot, eller bildas genom oxidation av svaveldioxid, kväveoxider, ammoniak från djurhållning och jordbruk samt flyktiga kolväten till sekundärt bildade partiklar bestående av sulfat, nitrat, ammonium och icke flyktiga organiska fraktioner.

På grund av deras korta uppehållstider har fördelnings och återfinning av partiklar och ozon i den lägre delen av troposfären stark regional karaktär, eftersom de inte hinner transporteras lika långt och blandas lika effektivt i atmosfären som ozonet med längre livstider. I den övre delen av troposfären är ozon mer välblandat och det är också ozonet i den övre delen av troposfären som har starkast positiv effekt på strålningsbalansen. Vid kontinuerliga utsläpp består de kortlivade luftföroringarnas klimatverkan och responsen på reducerade utsläpp är snabb.

När det gäller klimatpåverkan av partiklar är det viktigt att notera att utsläpp av partiklar, beroende på kemisk sammansättning, kan verka både avkylande och uppvärmande. Den avkylande effekten av sulfatpartiklar från fossilförbränning, men även en rad andra partikler ämnena från mänskliga utsläpp beror dels på direkt reflektion av inkommande solstrålning och dels på påverkan av molnens albedo och livslängd (så kallade indirekta effekter), medan den uppvärmande effekten av sot beror på att sot har en stark absorption av inkommande solstrålning. Sot som deponeras på snö och is har en ytterligare uppvärmande effekt genom att minska albedot.

Samma utsläpsskala kan bidra med både avkylande och uppvärmande partikelkomponenter och det är inte alltid enkelt att reducera den ena utan att också påverka den andra. Vid kontinuerliga utsläpp består de kortlivade luftföroringarnas klimatpåverkan. På andra sidan är responsen på reducerade utsläpp snabb.

Figurern nedan (IPCC 2007a, s. 205, figur 2.21) sammanfattar olika klimatpåverkande utsläpp bidrag till påverkan på strålningsbalansen, Radiative Forcing, från 1750 fram till 2005. Troposfäriskt ozon bildas i atmosfären i kemiska reaktioner mellan andra ämnen och dess bidrag återfinns under utsläpp av relevanta upphovsämnen. ”T” för ozon betecknar påverkan från förändringar i troposfäriskt ozon, vilket likter för förändringar i troposfäriskt ozon, vilket ligger utanför frågan om kortlivade luftföroringar. ”S” handlar om påverkan från förändringar i stratosfäriskt ozon, vilket tillkommer utanför frågan om kortlivade luftföroringar. Det sammanlagda bidraget från troposfäriskt ozon uppskattas till 0,35 W m⁻² vilket gör troposfäriskt ozon till den tredje viktigaste bidragsgivaren till den förstärkta växhuseffekten, efter koldioxid och metan. En uppskattning av sotets bidrag finns i den tredje delen av figuren. Summan av effekten på ljusabsorption och effekten på albedo hos snö och is uppskattas till cirka 0,45 W m⁻². Osäkerheterna är betydligt större kring storleken av sotets (och andra partiklars) klimatpåverkan än vad gäller troposfäriskt ozon och inte minst de långlivade växthusgaserna.
4 Utsläppsanor för att nå tvågradersmålet

4.1 Introduktion

Hur det kumulativa utrymmet för de långlivade växthusgasernas del disponeras under de närmaste årtiondena är inte avgörande för de långsiktiga förändringarna. Hur snabbt klimatförändringarna sker under samma period beror dock även på hur utsläppen av de kortlivade klimatpåverkande luftföroreningarna utvecklas, vilket diskuteras ovan.

Framtagandet av utsläppsanor påverkas dessutom av ett antal andra antaganden. Till detta tillkommer skillnader i olika studiers bakomliggande metodik (van Vuuren and Riahi 2011), till exempel beträffande utsläpp som handlar om markanvändning och skogsbruk, andra långlivade växthusgaser än koldioxid, samt aerosoler. Det är därmed inte helt enkelt att jämföra resultaten rakt av.

Figure 4.1.1. Koldioxidekvivalenta koncentrationsbanor förenliga med tvågraders målet förutsatt en klimatkänslighet på 3°C och olika antaganden på dynamiken för havets värmelagring. Det sistnämnda uttrycks med hjälp av k – en ”effektiv vertikal diffusionskoefficient för ”värme”. (Figuren baseras på Johansson [2011].)

Resultat om utsläppsbanor kan sammanfattas med hjälp av specifika attribut (se Faktaruta). Emellertid bör man fästa uppmärksamhet vid flera attribut samtidigt eftersom många av dessa attribut inte karakterisera hela utsläppsbanan och därmed inte heller ger all information om utsläppen (t ex den Elzen m fl 2010, Kallbekken och Rive 2007).

Den avgörande faktorn för en utsläppsbanas möjlighet att klara ett temperaturstabiliseringsmål är klimatkänslighetens värde. År klimatkänsligheten hög krävs kraftigare och/eller snabbare minskningar av de globala växthusgasutsläppen än om den är låg, se figur 4.1.2.

Figure 4.1.2. Globala utsläppsbanor av koldioxidekvivalenter framtagna med MiMiC, som alla är förenliga med ett globalt temperaturmål på två grader, men beroende på vad klimatkänsligheten är. De tre linjerna motsvarar tre antaganden om klimatkänsligheten (2, 3 respektive 4,5 grader).
Som beskrivs ovan har även osäkerheterna om den globala kolcykeln och havets värmeupptag betydelse för hur förenlig en utsläppsbana är med ett visst temperaturmål.

FAKTARUTA

Centrala karakteristika av utsläppbanor

Inom ramen för ett specifikt globalt mål, beror utsläppsbananornas attribut av varandra (se figuren ovan för en generell skiss). Ett tidigare (senare) kulmineringssår tillsammans med mindre (större) utsläppsminkningstakt däremot kan leda till samma kumulativa utsläpp och samma sannolikhet för uppfyllelsen av det valda temperaturmålet. Generellt gäller att en senareläggning av utsläppsminkningar innebär större risker och mindre flexibilitet, speciellt om förväntningar på ny teknologi och energieffektiviseringspotential inte infrias.

Kulmineringssåret tillsammans med respektive utsläpssnivå, utsläppsnivåer vid andra år, hur snabbt utsläppen behöver minska och med vilken sannolikhet en utsläppsbana är förenlig med globala temperaturmål hänger alltså ihop.

4.2 AR4 och senare internationella analyser av globala utsläppbanor

Vid framtagandet av AR4 (IPCC 2007c), fanns få studier av utsläppsbanor som med någorlunda hög sannolikhet är förenliga med tvågradersmålet (tabell 4.2.1). Dessa pekade på betydelse av tidig kulminering av de globala utsläppen samt att stora utsläppsminskningar behövs för klimatstabilisering vid förhållandevis låga atmosfärhalter och motsvarande temperaturhöjningar. De två scenariokategorier som låg närmast ett tvågradersmål karakteriserades av en kulminering av de globala utsläppen mellan 2000 och 2020 samt globala utsläppsminskningar från 30 till 85 % jämflower med utsläppen år 2000.

Tabell 4.2.1. Karakteristika av stabiliseringsscenarier från AR4 (se IPCC 2007c, tabell 3.5 för mer information), där scenarier i vilka de varaktiga växthusgashalterna blir så pass stora att sannolikheten för att uppnå tvågradersmålet blir mycket låg har exkluderats.

<table>
<thead>
<tr>
<th>Atmosfärens koldioxidhalt</th>
<th>Atmosfärens halt av koldioxidekvivalenter</th>
<th>Kulmineringår</th>
<th>Globala utsläpp vid 2050 jämfört med 2000</th>
<th>Antal scenarier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>ppm</td>
<td>År</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

EU EGScience (2010) diskuterade om länderns utsläppsminskningsutfästelser i samband med "Copenhagen Accord" utifrån analyser av ett 100-tal olika utsläppsbanner. Dessutom gjordes i

12 EGScience är en av de expertgrupperna under EU:s rådsarbetsgrupp för klimat. EGScience bereder frågor av vetenskaplig karaktär inför förhandlingar under FN:s klimatkonvention, UNFCCC.

Man kom också fram till att de än så länge gjorda utsläppstillståndena var mindre omfattande än det som deras analyserade utsläppsbanan som indikerade var nödvändigt för att nå tvågradersmålet med en sannolikhet på över 66 %. Gapets storlek berodde på antaganden om hur effektiva utfästelserna skulle bli, vilket påverkas av framtidshansatta överenskommelser om hur utsläpp från markanvändning behandlas samt hur man ska förhålla sig till tidigare utsläppsminkningar.

Dessa olika analyser samlar mycket av det befintliga kunskapsläget om utsläppsbanan och tvågradersmålet. Närmare analyser av regionala och nationella utsläppsbanan behöver givetvis förhålla sig till de globala banorna. Detta illustreras nedan med några enstaka beräkningar av utsläppsbanan, först avseende tvågradersmålet och därefter ett 1,5-gradersmål (kapitel 5). I båda fallen utgår från att det satta temperaturmålet inte ska överskridas ens tillfälligt.

4.3 Sammanfattning av kunskapsläget om utsläppsbanan förenliga med tvågradersmålet

Det bör betonas att dessa värden eller motsvarande värden i andra framställningar inte bör övertolkas. Till exempel är det i regel den kostnadseffektiva utsläppsbanan som ges av den underliggande modelleringen med ”Integrated Assessment Model”-s. Acceptans för en högre kostnad eller introducerande av icke-förutsatt ny teknik eller liknande kan leda till andra specifika siffror. Dessutom, som diskuterats i avsnitt 4.1.4, är kulmineringsår och utsläppsmängder vid specifika år beroende av varandra. Samma sannolikhet för måluppfyllelse skulle kunna uppnås med ett annat kulmineringsår än de som citeras i tabellen ovan under förutsättning att de ärliga utsläppen för år 2020 och/eller 2050 justerades på motsvarande sätt.

14 En utsläppsminkningstakt på 3 % förekommer i den befintliga litteraturen som en måttstock till det som fortfarande är gångbart med hänsyn tagen till politiska och sociala faktorer.
Tabell 4.3.1. Sammanfattande karakteristika av över 200 olika utsläppsbanor som är förenliga med tvågradersmålet med minst 66 % (eller 50 %) sannolikhet, samt förutsätter utsläppminskningstakter på upp till cirka 3 % per år efter de globala utsläppens kulminering.

<table>
<thead>
<tr>
<th>Kulmineringsår</th>
<th>Årliga utsläppen vid 2020 (Gton CO₂ekv)</th>
<th>Årliga utsläppen vid 2050 (Gton CO₂ekv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>66%</td>
<td>2010–2020 26–48</td>
<td>~12–22</td>
</tr>
<tr>
<td>EU EGScience (2010) >66%</td>
<td>~2015 ~44</td>
<td>~11–18</td>
</tr>
</tbody>
</table>

4.4 En scenarioanalys av globala och nationella utsläppsbanor med en svensk modell, MiMiC

banorna som analyserats är i regel ursprungligen framräknande för att nå andra klimatmål, till exempel ett koncentrationsmål för år 2100.

Jämfört med de utsläppsbanor som beräknades i MVB-SOU (2007) skiljer sig MiMiC genom att (i) klimatets tröghet och klimatförändringarnas påverkan på kolcykeln har tagits hänsyn till på ett mer adekvat sätt, (ii) hänsyn tas till partiklars påverkan på den globala medeltemperaturen, och (iii) en kostnadsminimerande metod används för att modellera fram utsläppsreduktioner av CO₂, CH₄ och N₂O.

En effekt av denna skillnad i metodik mellan de andra studierna (MVB-SOU 2007, UNEP 2010, EU EGScience 2010) och MiMiC är att den sistnämnda ger att något högre utsläppsnivåer kan vara förenliga med ett visst klimatmål givet en viss sannolikhet.

4.5 Uppskattning av globala utsläppsbanor enligt MiMiC

Analysen med MiMiC görs för ett antagande på klimatkänsligheten som ger en ungefärlig sannolikhet på 70 % (dvs. förenlig med gruppen >66 %) att tvågradersmålet ska nås.

Denna beräkning ger utsläpp på 46 Gton CO₂ekv 2020 och cirka 22 Gton CO₂ekv år 2050, vilket i grova drag ligger i linje med UNEP (2010), se figur 4.5.1. MiMiC-resultaten och UNEP:s siffror ger tillsammans att

- för att nå tvågradersmålet med en sannolikhet runt 70 % krävs uppskattningsvis att de globala växthusgasutsläppen minskar i storleksordningen 50–60 % från år 2000 till 2050, och minskar med nära 100 % till 2100

Ska sannolikheten beräknas mer noggrant, måste utöver klimatkänsligheten sannolikhetsfördelningar beaktas för bland annat partiklars strålningspåverkan samt den matematiska beskrivningen av kolcykeln och havets värmeupptag.

I figur 4.5.2 jämförs resultaten från MiMiC (en körning med cirka 70 % sannolikhet för att nå tvågradersmålet) med MVB SOU (2007). MiMiC kurvan är närmast identiskt med den kurva som leder till en koncentration på 450 ppm koldioxidekvivalenter, som sägs innebära en cirka 50 % sannolikhet för att nå tvågradersmålet. Även om utsläppsbanorna är väldigt lika, är sannolikheterna för att nå tvågradersmålet något olika. Detta beror på åtminstone tre aspekter. En av dessa är att trögheten i världshaven (alltså tiden det tar att värma upp haven) beaktas mer fullständigt i MiMiC-studien, vilket gör att man kan ha en något högre atmosfärshalt av koldioxidekvivalenter temporärt än man initialt skulle behöva sikta in sig på för att nå den koncentration som långsiktigt är förenlig med en viss långsiktig jämvikttemperaturen (se figur 4.1.1). Den andra faktorn är att den negativa strålningsdrivningen från partiklar är något högre i MiMiC-körningen, vilket gör att något högre koncentration av växthusgaser kan tillåtas. Den tredje skillnaden är att sannolikhetsfördelningarna för klimatkänsligheten är något olika.

Man kan i grova drag utgå från att om sannolikheten är X % att klimatkänsligheten ligger under Y grader, har man en cirka X % chans att nå tvågradersmålet med en utsläppsbanan mot detta mål framtiden med en klimatkänslighet på Y. Det är på så vis sannolikheten att en utsläppsbana är förenlig med ett visst temperaturmål uppskattas i MiMiC.
Figur 4.5.1. En jämförelse mellan en utsläppshana genererade i MiMiC (svart linje) som med cirka 70 % sannolikhet klarar tvågradersmålet och de i UNEP (2010) analyserade utsläppshana som med >66 % sannolikhet klarar tvågradersmålet.

4.6 Uppskattning av nationella utsläppsmål enligt MiMiC

En global utsläppsbana sammanfattar alla länders nationella utsläppsbanan. Nedan beskrivs hur nationella utsläppsbanan (dvs. nationella reduktionsåtaganden) utifrån en *per capita* konvergens) skulle kunna se ut inom ramen för den globala utsläppsbanan framtagen med MiMiC som redovisats ovan.

Utöver globala utsläppsbanan presenterades i rapporten från det Vetenskapliga rådet för klimatfrågor (MVB-SOU 2007) relaterade utsläppsbanan för dels EU och dels Sverige, med tvågradersmålet som en utgångspunkt. För att *sannolikt* (baserat på en framtida stabilisering av de långlivade växthusgasernas halter på 400 ppm koldioxidekvivalenter) klara tvågradersmålet konstaterades i rapporten att EU:s och Sveriges utsläpp av växthusgaser, jämfört med 1990 års nivå, bör minska med 30‒40 respektive 20‒25 % till år 2020 och med 75‒90 respektive 70‒80 % till år 2050. Om en högre utsläppsbana med en långsiktig stabilisering på 450 ppm CO₂-ekvivalenter istället används konstaterades det att EU:s och Sveriges utsläpp av växthusgaser, jämfört med 1990 års nivå, bör minska med 20‒30 respektive 5‒15 % till år 2020 och med 65–90 respektive 60–80 % till år 2050.

I EU-kommissionens arbete “A Roadmap for moving to a competitive low carbon economy in 2050” (EC 2011) presenteras utsläppsbanan inom EU som är förenliga med en global utsläppsbana som har en rapporterad sannolikhet runt 60 % att klara tvågradersmålet. I modelleringen som låg till grund för den rapporten fann man att en minskning av EU:s inhemska utsläpp med 27 % till år 2020 och 78 % till år 2050 jämfört 1990 års nivå var i linje med en kostnadseffektiv global utsläppsbana där utsläppen halveras till 2050 jämfört med 1990 års nivå.

Det är oundvikligt att olika länders utsläppsbananer ser mycket olika ut en bra bit framöver. Detta beror på respektive lands utvecklingsnivå, inkomstnivå, befolkningsutveckling och energisystem. Det existerar en rad metoder för att fördela de globala utsläppen mellan olika länder (t ex Gupta m fl 2007, MVB-SOU 2007). En av dessa är ”contraction & convergence” (se Bilaga II), som handlar om att de globala utsläppen minskar (”contract”) och att de på sikt fördelas efter en ”lika utsläpp per person”-princip (”convergence”). Denna metod var en av de som användes i framräkningen av utsläppsmål för Sverige och EU i MVB-SOU (2007).

I beräkningarna nedan ingår dock inte handel med utsläppsrätten, utan beräkningen ska ses som en allokering av utsläppsrätten givet en metod enligt ”contraction & convergence” snarare än faktiska utsläpp. Utsläpp av koldioxid från avskogning och utrikes luft- och sjöfart inkluderas i den globala utsläppsbanan, men inte i de nationella målen. Dessa sektoriella utsläpp antas alltså i analysen hanteras separat, i linje med antaganden i MVB-SOU (2007).

17 Med *sannolikt* menas att utsläppsbanan innebär över 66 % chans för att nå tvågradersmålet.

18 Fördelningsmetoder som innebär att rikare länder generellt sett får ta en större del av det globala ansvaret för utsläppminskningen (t ex sådana som är baserade på landets ekonomiska nivå räknat i BNP/capita) påverkar dock även de reduktionskrav som kan falla på länder som Sverige i större utsträckning än vad exempelvis *per capita*-konvergens gör (jfr. exempelvis MVB-SOU (2007, s. 79)) Detsamma kan gälla till exempel för fördelningsmetoder som bygger på ackumulerade historiska utsläpp.)

<table>
<thead>
<tr>
<th>Region</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>-22 % (-11 %)</td>
<td>-54 % (-48 %)</td>
<td>-74 % (-70 %)</td>
<td>-89 % (-87 %)</td>
</tr>
<tr>
<td>EU</td>
<td>-21 % (-26 %)</td>
<td>-50 % (-53 %)</td>
<td>-66 % (-68 %)</td>
<td>-80 % (-81 %)</td>
</tr>
<tr>
<td>Sverige</td>
<td>-18 % (-21 %)</td>
<td>-42 % (-45 %)</td>
<td>-57 % (-59 %)</td>
<td>-71 % (-72 %)</td>
</tr>
<tr>
<td>Kina</td>
<td>+34 %</td>
<td>-7 %</td>
<td>-31 %</td>
<td>-55 %</td>
</tr>
<tr>
<td>Indien</td>
<td>+81 %</td>
<td>+93 %</td>
<td>+104 %</td>
<td>+81 %</td>
</tr>
<tr>
<td>Latinamerika</td>
<td>+20 %</td>
<td>-6 %</td>
<td>-20 %</td>
<td>-40 %</td>
</tr>
<tr>
<td>Afrika Söder om Sahara exkl. Sydafrika</td>
<td>+75 %</td>
<td>+99 %</td>
<td>+124 %</td>
<td>+113 %</td>
</tr>
</tbody>
</table>

4.7 Betydelsen av utsläpp relaterade till markanvändning och skogsbruk

En betydande del av de antropogena utsläppen härstammar från olika typer av markanvändning och dess förändringar i världen (så kallad "Land Use and Land Use Change", LULUC). Även skogsbruk är relevant i sammanhanget (vilket vidgar begreppet till "Land Use, Land Use Change and Forestry", LULUCF). Skogsbruket kan ge både upptag och utsläpp av koldioxid.

Hur utsläpp relaterade till LULUCF har tagits hänsyn till i olika utsläppsbasestudier varierar (t ex IPCC 2007c, s. 200-203, 207-213). Hur dessa utsläpp hanteras i verkliteten har betydelse.

IPCC (2007c) sammanfattade att åtgärder inom markanvändning och skogsbruk mellan 2000 och 2100 skulle kunna leda till cumulativa kostnadseffektiva utsläppsminskningar på 345–1260 GtCO₂ekv. Åtgärder för att minska avskogning omfattades inte i dessa uppskattningar och osäkerheter angavs vara betydande. När det gäller markanvändningen i syfte att minska de globala växthusgasutsläppen, finns risker med konflikter med hållbar utveckling och bevarande av ekosystem (se även IPCC 2011).

Även om studierna tyder på att de energi-relaterade koldioxidutsläppen är det klart viktigaste för att åstadkomma tillräckliga utsläppsminskningar i linje med tvågradersmålet, spelar storleken av minskningar av andra växthusgasutsläpp samt LULUCF-relaterade utsläpp en väsentlig roll.
5 Utsläppsbanan för att nå ett 1,5-gradersmål

I avsnitt 2 nämndes att i det pågående internationella klimatarbetet förutses en översyn av tvågradersmålet. Detta handlar i mångt och mycket om ett eventuellt lägre temperaturmål om 1,5 grader (t ex AOSIS 2009). I princip kan förstås en utsläppsbana som är förenlig med tvågradersmålet också vara förenlig med ett 1,5-gradersmål, dock med en lägre sannolikhet.

5.1 Uppskattning av globala utsläppsbanan enligt MiMiC

Om en motsvarande sannolikhet efterfrågas, kräver ett 1,5-gradersmål snabbare och större utsläppsminskningar än tvågradersmålet. Ranger m fl (2010) analyserade dessa aspekter och kom fram till att det kan vara mycket svårt att åstadkomma ett 1,5-gradersmål utan att den globala medeltemperaturen under ett antal årtionden blir högre (så kallad "överskjutning"). De scenarier som i deras analys med minst 50 % sannolikhet över tiden ledde till att ett 1,5-gradersmål uppnås karakteriserades av att de globala utsläppen kulminerade senast år 2015, minskade något till 2020, för att därefter falla mellan 3 och 6 % per år. Mot slutet av århundradet var utsläppen nära noll, vilket förutsatte antaganden om negativa utsläpp.

Nedan diskuteras ett exempel av två möjliga utsläppsbanor för ett 1,5-gradersmål (figur 5.1). En är baserad på att ge en cirka 50 % sannolikhet att klara ett sådant temperaturmål och en annan på cirka 70 % ambition. Den bakomliggande metodiken är densamma som i avsnitt 4.5.

![Diagram](image)

Figur 5.1. Globala utsläpp av koldioxidekvivalenter som är förenliga med ett globalt temperaturmål på 1,5°C. De två linjerna motsvarar två olika indikativa sannolikhetsnivåer med vilka de globala utsläppbanorna är förenliga med temperaturmålet.

MiMiC-resultaten antyder att de globala utsläppen

- behöver minska med cirka 100 % till år 2050, för en sannolikhet på cirka 70 % att nå ett 1,5-gradersmål
- behöver minska med över 80 % från 2000 till 2050, för en sannolikhet på cirka 50 % att nå ett 1,5-gradersmål

Dessa utsläppsbanan förutsätter att utsläppen omgående börjar minska och är näere på drygt 40 Gton CO₂ekv år 2020 (om en sannolikhet på cirka 50 % används) och knappt 40 Gton CO₂ekv år 2020 (om en sannolikhet på cirka 70 % används), det vill säga på samma globala nivå som runt år 2000. Detta står i stark kontrast till den nuvarande globala utsläppstrenden
(Friedlingstein m fl 2010), och skiljer sig också avsevärt från befintliga utsläppsminskningsslöften ("pledges") som olika länder hittills har gjort utfästelser om (UNEP [2010], EU EGScience [2010]).

I UNEP (2010) presenterades endast ett fåtal utsläppsbanan som handlade om ett 1,5-gradersmål. Utsläppsbanan från MiMiC ligger i linje med dem.

5.2 Uppskattning av nationella utsläppsbanan enligt MiMiC

Nedan beskrivs hur nationella utsläppsbanan skulle kunna se ut som är förenliga med att klara ett 1,5-gradersmål med en sannolikhet på cirka 50 % respektive cirka 70 %. På samma sätt som i avsnitt 4.7 baseras denna beräkning på en ”contraction & convergence” ansats. Motsvarande globala utsläpp återfinns i figur 5.1.

Såsom för tvågradersmålet som redovisats ovan inkluderas inte heller här handel med utsläppsmätter. Om utsläppshandel inkluderades i modellen skulle det inledningsvis kunna ha visst genomslag i involverade länderns utsläppsbanan, även om den globala totalen inte påverkades. Men med ett krympande utsläppsspårat globe gränsas ländernas möjligheter att via åtgärder i andra länder öka det egna utsläppsspåret.

Utsläpp av koldioxid från avskogning och utrikes luft- och sjöfart inkluderas i den globala utsläppsbanan, men inte i de nationella målen. I stället antas de ligga i en post som måste hanteras separat.

I fallet då ett 1,5-gradersmål ska nås med en sannolikhet på cirka 50 %, visar det sig att utsläppen globalt behöver minska till knappt ett ton CO₂-ekvivalent per person och år till år 2050. För länder som idag har stora per capita utsläpp betyder det givetvis stora absoluta minskningar. Även i utvecklingsländer förrutsete minskade utsläpp per person, men på grund av förhållandevis låga nivåer idag är utsläppsminskningarna mätta per person mycket mindre i absoluta termer, men kan ändå vara stora jämfört med referensbanor. I ett låginkomstland som Indien behöver utsläppen av växthusgaser per person med ungefärliga mått minskas med 75 % fram till 2050 jämfört med idag. Utsläppen per person i EU behöver minskas med en faktor 20 och i Sverige med en faktor 14.

Motsvarande nationella utsläppsnivåer redovisas i tabell 5.2.1. Det visar sig att EU behöver minska utsläppen till 2020 med drygt 25 % under 2005 års nivå och Sverige med knappt 25 % under samma period och samma referenser. Redan år 2030 behöver utsläppen ha minskats med cirka 50 % i Sverige och över 50 % i EU och till år 2050 med cirka 95 %. Valet av basår påverkar givetvis storleken på de relativa minskningarna i och mellan olika länder, vilket också ges ett exempel av i tabellen.

På lång sikt (här avses efter år 2040) gäller att utsläppen i alla nationer/regioner beaktade i studien behöver understiga nivåerna de har idag. På kortare sikt kan dock utsläppen öka något i de fattigare nationerna/regionerna och på kort sikt även i länder med snabb ekonomisk utveckling.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>-27 % (-16 %)</td>
<td>-60 % (-54 %)</td>
<td>-83 % (-81 %)</td>
<td>-97 % (-97 %)</td>
</tr>
<tr>
<td>EU</td>
<td>-26 % (-31 %)</td>
<td>-56 % (-59 %)</td>
<td>-78 % (-80 %)</td>
<td>-95 % (-95 %)</td>
</tr>
<tr>
<td>Sverige</td>
<td>-23 % (-26 %)</td>
<td>-50 % (-52 %)</td>
<td>-72 % (-74 %)</td>
<td>-93 % (-93 %)</td>
</tr>
<tr>
<td>Kina</td>
<td>+26 %</td>
<td>-19 %</td>
<td>-55 %</td>
<td>-89 %</td>
</tr>
<tr>
<td>Indien</td>
<td>+70 %</td>
<td>+68 %</td>
<td>+31 %</td>
<td>-55 %</td>
</tr>
<tr>
<td>Latinamerika</td>
<td>+12 %</td>
<td>-18 %</td>
<td>-44 %</td>
<td>-85 %</td>
</tr>
<tr>
<td>Afrika söder om Sahara, exkl. Sydafrika</td>
<td>+64 %</td>
<td>+73 %</td>
<td>+44 %</td>
<td>-47 %</td>
</tr>
</tbody>
</table>

För en utsläppsbana som klarar ett 1,5-gradersmål med en sannolikhet på cirka 70 % får man i ”contraction & convergence”-beräkningen mindre nationella ökningar och större nationella utsläppsminsknningar, vilket kan förväntas (se tabell 5.2.2).

Tabell 5.2.2. Relativa förändringar i årligt utsläppstillstånd för ett antal olika regioner/nationer jämfört med 2005 års nivå och inom parentes för Annex-1 nationer jämfört med 1990 års nivå (i så fall får man att den relativa utsläppsminskningsn är några procentenheter större i EU och Sverige). Nettoutsläpp av koldioxid från avskogning och utrikes luft- och sjöfart ingår inte i siffrorna. Utsläppsnivåerna baseras på en global utsläppsbana som har en sannolikhet på cirka 70 % att klara ett 1,5-gradersmål.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>-37 % (-27 %)</td>
<td>-72 % (-68 %)</td>
<td>-94 % (-93 %)</td>
<td>-100 %</td>
</tr>
<tr>
<td>EU</td>
<td>-36 % (-40 %)</td>
<td>-69 % (-71 %)</td>
<td>-92 % (-92 %)</td>
<td>-100 %</td>
</tr>
<tr>
<td>Sverige</td>
<td>-33 % (-36 %)</td>
<td>-65 % (-66 %)</td>
<td>-90 % (-90 %)</td>
<td>-100 %</td>
</tr>
<tr>
<td>Kina</td>
<td>+9 %</td>
<td>-43 %</td>
<td>-84 %</td>
<td>-100 %</td>
</tr>
<tr>
<td>Indien</td>
<td>+47 %</td>
<td>+18 %</td>
<td>-52 %</td>
<td>-100 %</td>
</tr>
<tr>
<td>Latinamerika</td>
<td>-3 %</td>
<td>-42 %</td>
<td>-81 %</td>
<td>-100 %</td>
</tr>
<tr>
<td>Afrika söder om Sahara, exkl. Sydafrika</td>
<td>+42 %</td>
<td>+22 %</td>
<td>-47 %</td>
<td>-100 %</td>
</tr>
</tbody>
</table>

20 Annex-1-länderna utgörs av de klassiska i-länderna emedan icke-annex-1-länderna utgörs av de ”klassiska” utvecklingsländerna i Asien, Latinamerika och Afrika. Annex 1 är en del av Kyotoprotokollet.
6 Tvågradersmålet respektive ett 1,5-gradersmål

I det här avsnittet jämförs vilka krav på utsläppsminskningar som en skärpning av tvågradersmålet till ett 1,5-gradersmål innebär. Utgångspunkter är beräkningarna gjorda med MiMiC-modellen och baseras i grova drag på att utsläppsbanan för tvågradersmålet ger en sannolikhet på cirka 70 % att klara målet. För utsläppsbanan förenliga med ett 1,5-gradersmål använder vi oss både av utsläppsbanan som ger en cirka 50 % sannolikhet och den med en sannolikhet på cirka 70 % att nå temperaturmålet. Resultaten visas i figur 6.1

Det framgår att de kumulativa utsläppen ska vara mindre och att det därmed behövs större och snabbare utsläppsminskningar för att klara ett 1,5-gradersmål än tvågradersmålet. Vid ett 1,5-gradersmål respektive tvågradersmålet kan de globala utsläppen vara cirka 38 respektive 46 miljarder ton CO₂-ekvivalenter år 2020, och 0 respektive 22 miljarder ton år 2050, för en sannolikhet på cirka 70 % att temperaturmålet ska nås. Om man skulle acceptera en lägre sannolikhet för ett 1,5-gradersmål (circa 50 %) är de globala utsläppsminskningarna 43 miljarder ton CO₂-ekvivalenter år 2020 och 7 miljarder ton CO₂-ekvivalenter år 2050, det vill säga fortfarande betydligt lägre än de för att klara tvågradersmålet med en sannolikhet på cirka 70 %.

Figur 6.1. Koldioxidekvivalentutsläpp (inkluderar CO₂, CH₄ och N₂O) som är förenliga (sannolikhet till måluppfyllelse på cirka 70 % eller cirka 50 %) med ett globalt temperaturmål på 1,5°C respektive 2°C. Se läptexten för övriga antaganden.

Det framgår av tabellerna 4.6 och 5.2.2 hur de globala och olika länderns utsläpp skulle kunna se ut enligt "contraction & convergence", i samband med tvågradersmålet respektive ett 1,5-gradersmål för en sannolikhet på omkring 70 % att nå respektive temperaturmål.

<table>
<thead>
<tr>
<th>Region</th>
<th>Tvågradersmålet, sannolikhet cirka 70 %</th>
<th>1,5-gradersmål, sannolikhet cirka 70 %</th>
<th>1,5-gradersmål, sannolikhet cirka 50 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Världen – CO₂, CH₄ och N₂O</td>
<td>1750</td>
<td>900</td>
<td>1420</td>
</tr>
<tr>
<td>Världen – endast CO₂</td>
<td>950</td>
<td>250</td>
<td>700</td>
</tr>
</tbody>
</table>
7 BECCS – biomassa med kolinfångning

Om de globala utsläppen kulminerar sent och speciellt om de kumulativa utsläppen ska bli förhållandevise låga, visar många beräkningar att det behövs ”negativa utsläpp” om tvågraders målet (och än mer så vid ett 1,5-gradersmål) ska kunna nås. Biomassa med koldioxidinfångning (BECCS) innebär att man fångar in koldioxid vid förbränning av biobränslen (Azar m fl 2010, Edenhofer m fl 2010, van Vuuren m fl 2009, Calvin 2009, van Vuuren m fl 2007). Det finns dock risker förknippade med att förlita sig på att negativa utsläpp i stor skala skulle bli en realitet, då det idag inte finns en enda demonstrationsanläggning. Betydelsen av CCS och BECCS begränsas dock av omfattningen av lagringskapacitet som säkert kan lagra koldioxiden utan läckage i tiotusentals år.

FAKTARUTA

"Geoengineering"

Den andra kategorin handlar om att på något sätt avlägsna växthusgaser från atmosfären. Till exempel genom att havets förmåga att lagra koldioxid stimuleras. Havets biologiska upptag varierar mellan olika havsområden och begränsas av tillgången på kväve, fosfor eller järn. Tillförseln av dessa ämnen på aktuella havsområden skulle således kunna öka kolupptaget. Kunskapsläget tyder dock på att någon väsentlig effekt knappast skulle kunna åstadkommas.

Även metoder som att ”suga ut” koldioxid från atmosfären, att spå på naturliga kemiska vittningsprocesser som konsumerar atmosfäriskt koldioxid i reaktioner med bergarter (t ex genom att blandas kiselrika mineraler i jordbruksmarken), pumpa vatten från djupa havsnivåer upp till ytan, träkol och parasoller i rymden omnämnas i litteraturen.

Givetvis är klimat effekter på livsmedelsproduktion, ekonomisk utveckling (som ju också nämns i FN:s klimatkonventions artikel 2) samt till exempel vattenresurser av avgörande betydelse. Dessa effekter och deras konsekvenser har dessutom ofta en starkt regional karaktär. En diskussion om dessa skulle dock föranleda en diskussion om resiliens och klimatanpassningsåtgärder, vilket ligger utanför denna rapport.

Tabell 8.1 ger en generell översikt av hur kunskapsläget om klimat effekter har fortsatt att utvecklas sedan AR4 (efter EU EGScience 2010, tabell 6.1).

Slutsatser i kunskapsutvecklingen sedan AR4 bekräftar att klimat effekter uppstår redan vid en mindre omfattande global uppvärmning än två grader, men också att riskerna för klimat effekter stiger markant vid större global uppvärmning (t ex Smith m fl 2009, EU EGScience 2010, Gosling m fl 2011).

\(^{21}\) Häri menas med "effekt" en förändring i någon verksamhet, närings, ekosystem eller dylikt som orsakas av klimatförändringar. "Konsekvens" är följd av effekten i förhållande till hållbar utveckling inklusive livsmedelförsörjning, ekonomisk utveckling och biologisk mångfald, men också ekosystemtjänster och dylikt.

Temperaturhöjningsangivelserna är ungefärliga och relativa den förindustriella perioden (IPCC 2007b).

<table>
<thead>
<tr>
<th>Klimateffekt</th>
<th>AR4</th>
<th>Enligt studier sedan AR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuster</td>
<td>>2-3°C: miljontals fler människor kan drabbas av översvämningar</td>
<td>Överensstämmelse med AR4 om att Sydostasien kommer att drabbas väst. Likartade uppskattningar av hur många som kan drabbas globalt.</td>
</tr>
<tr>
<td>Ekosystem och biologisk mångfald</td>
<td>2°C: risken för utdöende ökar för 20-30 % av (djur- och växt) arter</td>
<td>Ökande kunskapsunderlag som stöder slutsatsen om att risken för utdöende ökar för 20–30% av världens djur- och växter vid en global temperaturhöjning som överstiger 2–3°C. Bland annat finns det mer kunskap om Amazonsregionen, skogen och havsförsurningens betydelse.</td>
</tr>
<tr>
<td></td>
<td>>2,5°C: den landbaserade biosfären blir en netto kolkälla</td>
<td>Överensstämmelse med de huvudsakliga slutsatserna i AR4.</td>
</tr>
<tr>
<td>Vattenresurser</td>
<td>1–1,5°C: 0,4–1,7 miljarder fler människor utsätts för ökad vattenbrist ("water stress")</td>
<td>Mer kunskap om koldioxidens fertiliseringseffekt på grödor, med antydningar av att de associerade positiva effekterna är mindre än tidigare uppskattats. Studierna betonar också de negativa effekterna av högre temperatur, marknära ozon samt skadeinsekter och ogräs.</td>
</tr>
<tr>
<td>Livsmedel</td>
<td>>1,5°C: negativa effekter på låga latituder och för vissa grödor. Positiva effekter i en del andra regioner</td>
<td>Mer kunskaper om möjliga positiva och negativa effekter av mildare vintrar och varmare somrar i olika regioner. Bekräftelse av resultat i AR4 om snittbärares spridning. Betydelsen av icke-klimatberoende faktorer betonas för denguefeber och malaria.</td>
</tr>
<tr>
<td>Hälsa</td>
<td>>1°C: ökad belastning till följd av undernäring och diarrésjukdomar >3°C: betydande belastning på hälsovården</td>
<td>Bildade proportioner av varje man som sörjer och hur varje region det kan betyda för att människor kan kunna öka deras hälsa.</td>
</tr>
</tbody>
</table>

8.1 Havsförsurningen

Havsförsurningen är en direkt följd av ökande koldioxidutsläpp till atmosfären. En del av dessa utsläpp upplöses i havet, vilket leder till minskade pH-värden och därmed en försurningad effekt (jfr figur 8.1). Jämfört med de förindustriella pH-värdena i havet (cirka 8,2) observeras det idag ett pH-värde på 8,1. Eftersom pH-värdena följer en logaritmisk skala, är denna förändring i relativa termer 30 %. Under 2000-talet, om utsläppen inte betydligt minskar från referensbanor, kan havets pH-värde sjunka ytterligare mot 7,8 (baseras på SRES A2 utsläpp; Feely m fl 2009), vilket skulle motsvara en relativ försurning av världshavet med 150 %.

Feely m fl hänvisar också till resultat enligt vilka delar av Ishavet redan vid 2020 kan bli ogästvänligt för vissa organismer (Steinacher m fl 2009), vilket skulle spreda sig till hela Ishavsområdet vid 2050. I de sydliga haven runt Antarktis skulle samma utveckling ske, men

Rummukainen m fl (2010, s. 23-24) förde en kort diskussion om havsförsurningen. Det konstaterades att även om den fysikaliska effekten har varit känd sedan länge, har forskningen om havsförsurningens effekter på kolecykeln och speciellt ekosystem fått fart först under de senaste åren. Detta återspeglas i framväxten av den vetenskapliga litteraturen om havsförsurningens effekter (se t ex Doney m fl 2009, ACE CRC 2011).

Havsförsurningens effekter på marina arter och ekosystem kommer att ske samtidigt som dessa påverkas av bland annat högre temperatur och ökande syrebrist (Hoffmann och Schellnhuber 2009). De sammanlagda effekterna är mycket dåligt kända, men en minskning av den marina biologiska mångfalden ter sig som mycket tänkbar och därmed även konsekvenser för hvarsrelaterad livsmedelproduktion och förändringar i havets funktion som naturlig kolsänka (se diskussionen i Gosling m fl 2011).

För att återkoppla till debatten om geoengineering, kan man påpeka att havsförsurningen inte skulle bli avhjälp av sådana geoengineeringsmetoder som handlar om att skärma av jordytan från solstrålning. Däremot skulle en minskande atmosfärskifte av koldioxid minska havsförsurningen, eftersom koldioxidens halt i atmosfären och i havet har en gemensam balans.

![Figure 8.1](https://tos.org/oceanography/issues/issue_archive/issue_pdf%20%2822_8%29)

Figure 8.1 Förändringar av koldioxidhalten i luften (ppmv) och ythavet (μatm) samt av ythavets pH vid Hawaii (övre del av figur 1 i Feely m fl 2009)

8.2 Havsnivån

Vid en global uppvärmning höjs den globala havsnivån dels på grund av havsvattnets värmeutvidgning ("termisk expansion"), dels på grund av att landbaserad is i form av olika typer av glacialer småler av. Ösäkerheter om den globala havsnivåhöjningen är framför allt förenade till hur den landbaserade isen och speciellt Grönlands och Antarktis landisar påverkas av den

22 Tillgänglig på http://tos.org/oceanography/issues/issue_archive/issue_pdf%20%2822_4%29
globala uppvärmningen. Rummukainen m fl (2010, s. 18-22) sammanfattade studier som utgivits efter AR4 och noterade att dessa generellt antydde snabbare förluster av landisar och en snabbare/större global havsnivåhöjning fram till 2100 än vad resultat som underbyggde AR4 uppvisade. Rummukainen m fl påpekade också dels att de nya data som presenterats i studierna, och som antyder ökad avsmältning, täcker en kort period och att trendens robusthet återstår att bekräftas, dels att nya projektioner av den globala havsnivåns framtid påverkade baseras på empirisk eller sem.empirisk metodik utifrån observationer hittills, vilket brukar ge större framtidstydigheter än vad dagens globala klimatmodeller ger. Det är en debatterad fråga i vilken mån sådana empiriska relationer ger en bra representation också i framtiden när klimatet hamnar allt längre utanför det som beskrivs i tidigare observationer. Good m fl (2011, s. 283-285) hänvisar till olika studier om mekanismer som kan ligga bakom den senaste årens ökad avsmältning och uruppvärmning i Grönland. Till exempel kan en del av dessa processer bero på effekten av varmare havsvatten på glaciärer nära stranden. När glaciärerna minskar och drar sig tillbaka, upphör mekanismen att verka (t ex Sole m fl 2008). Mekanismerna som handlar om isens dynamik ter sig tämligen komplexa (t ex Sundal m fl 2011, Schoof 2010). Resultat från empirisk och semiempirisk modeller kan således eventuellt ge tydligare indikatorer av den övre gränsen av möjliga havsnivåhöjningar än beskriva hela spännvidden (jfr t ex IPCC 2010, s. 2).

I AR4 (IPCC 2007a) sammanfattades att den globala havsytenivån – för en rad klimatscenarier som allmänt översteg två graders uppvärmning – skulle kunna stiga med mellan 0,18 och 0,59 meter mellan 1990 och 2095. För en global temperaturhöjning på cirka två grader var intervallet 0,18–0,38 meter. Utöver effekten av havets volymexpansion på grund av uppvärmningen ingick även bidrag från avsmältning av landbaserade isar. Däremot noterade man att det inte fanns tillräckliga underlag för att bedöma huruvida landisavsmältningen skulle accelerera mera framöver.

Sammanfattningsvis kvarstår betydande osäkerheter om hur stor den globala havsnivåhöjningen blir till år 2100, och osäkerheterna är förstås stora också på längre sikt. Senare resultat om de landbaserade isarna visar ändå att de kommer att ge ett bidrag som gör de högre värdena i intervallet 0,18–0,59 meter i AR4 mer tänkbara än de lägre värdena. Detta uttryckts även av Gosling m fl:s (2011) genomsyn av nyare forskningslitteratur.

8.3 Biologisk mångfald

Direkta effekter av klimatförändringar kan leda till förändringar av både landbaserade och marina ekosystemens struktur och funktion, förhållanden mellan olika arter och deras utbredning samt ökad risk för utrotnings (Maclean och Wilson 2011). Konsekvenserna torde huvudsakligen leda till en minskad biologisk mångfald, även om osäkerheterna är stora både när det gäller hur klimatet påverkar mångfalden och vilka åtgärder som behöver vidtas för att bevara mångfalden trots ett ändringa klimat (Pereira m fl 2010).

Utöver arters basala förmåga att flytta – eller inte – kan deras spridning i spåren av klimat-betingelsernas förändringar begränsas av topografsiska faktorer och markanvändning (t ex Forero-Medina m fl 2010). Detta kan till exempel gälla endemiska arter som lever högt i bergstrakter. Men fragmentering av naturliga habitat orsakad av mänsklig aktivitet kan också leda till att arters förmåga att reagera på klimatförändringen genom att ändra utbredningsområde begränsas. Kombinationen av klimatförändring och förlust av naturliga habitat för organismer gör att specialiserade arter kan påverkas mer än generalister (Clavel m fl 2011). Till exempel har finska studier visat att vanliga fjärilar kan anpassa sin utbredning till ett förändrat klimat, medan hotade fjärilsarter som lever i mer fragmenterade miljöer inte kan detta (Pöyry m fl 2009). Å andra sidan kan klimatförändringar leda till ökad spridning av invasiva arter (Walther m fl 2009). Möjligheten att förutsäga förändringen i utbredning av enskilda arter, t.ex. i relation till deras grad av specialisering, är dock fortfarande låg (Angert m fl 2011).

dock också att en sådan kompensation kan vara övergående, och ge upphov till en plötslig förändring längre fram.

I IPCC (2007b) konstaterades även att en större global medeltemperaturhöjning än 2-3 grader jämfört med den förindustriella perioden associerades med en sannolik ökad risk för utrotning av omkring 20‒30 % (av de studerade) växt- och djurarterna. Även detta har bekräftats ytterligare (se t ex Warren m fl 2010, samt diskussionen i Gosling m fl 2011).

Hur olika arter och därmed ekosystem påverkas beror givetvis hur anpassningsbara de är. Mycket av kunskapsläget bygger på observationer av olika arter och ekosystems respons på den globala uppvärmningen under de senaste årtiondena. Möjligheten att modellera framtidsprojektioner begränsas av osäkerheten om mekanistiska samband mellan klimatet och dels fenologi, dels arters spridning. Också osäkerheten kring hur interaktioner mellan arter påverkas om till exempel vissa arters utbredning visar på större förändring än andra, leder till svårigheter när det gäller förutsägelser (Schweiger m fl 2008).

8.4 Vad innebär tvågradersmålet för Arktis?

I jämförelse mellan olika världsrégioner visar klimatprojektioner en speciellt stor uppvärmning i Arktis både över land och över Ishavet. Denna region diskuteras närmare nedan, i enlighet med denna rapports syfte.

Många för Arktis speciellt viktiga klimatprocesser och återkopplingar är komplexa och starkt icke-linjära, vilket medför osäkerheter i uppskattnings av regionala klimatförändringar. Att temperaturförändringar kommer att bli större i Arktis än i andra regioner och på jorden är i stort dock väletablerat. En viktig orsak till detta är att det finns en så kallad förstärkningsmekanism ("feedback") som handlar om is och snö. Snö- och istäcken påverkas av uppvärmning, vilket i sin tur påverkar energibalanseen på land och till havs. Resultatet kallas allmänt "Arctic amplification" (t ex Serreze m fl 2009). En sådan regional förstärkning syns även i klimatobservationer, men bidrag från de olika processerna återstår att kvantifieras ytterligare. Ökade värmetransporter till Arktis, på grund av en mer syd-nordlig luftcirkulation till Arktis (t ex Overland och Wang 2010) är en annan faktor som bidrar till "Arctic amplification".

2008). Nya regionala klimatstudier (Koenigk m fl 2011), understryker att enstaka år uppvisar betydligt större minskningar än vad gäller den långsiktiga trenden (se figur 8.4).

Påverkar ny kunskap tidigare slutsatser?

Jämfört med kunskapsläget några år bakåt i tiden, är det idag klart att de globala utsläppen håller på att öka mer än det som tidigare föreställts (Friedlingstein m fl 2010). En konsekvens av detta är att det rimligen har blivit svårare att åstadkomma en tidig kulmen för de globala utsläppen. Tidigare framtagna utsläppsscenarier har i sin tur minskat i aktualitet.

Kunskapsläget om klimatkänsligheten som redovisades i AR4 (IPCC 2007a) står sig väl även idag. Ny forskning om hur naturliga kolsänkor och kolkällor påverkas av klimatförändringar tyder på att nettoupptaget av koldioxid i terrestra system kan bli mindre än tidigare uppskattats.

Framtida uppdateringar av kunskapsläget om klimatkänsligheten (t ex Schwartz m fl 2010) och kolcykeln kan leda till behov av att justera dagens bild av hur stora de kumulativa antropogena utsläppen kan få bli om ett visst temperaturmål ska kunna nås. Nya naturvetenskapliga kunskaper om riskerna med geoengineering samt utvecklingen av ny teknik för att åstadkomma negativa utsläpp kan påverka bedömningarna av vilka utsläppsbanor som är förenliga med antagna temperaturmål.

Ny information kan dock tillgodogöras enbart om det finns beredskap till att omvärdera och justera antagna klimatmål (t ex Schmidt m fl 2011). Ju längre utsläppsminskningar senareläggs, desto mindre blir flexibiliteten för kursjusteringar längre fram, eftersom det finns begränsningar hur snabbt utsläpp kan minskas.
10 Slutsatser

Denna genomgång bekyser kunskapsläget för klimatarbetet ur ett naturvetenskapligt perspektiv, utifrån det uppdraget som regeringen gav till SMHI i slutet av maj 2011 (M2011/2166/Kl). Fokus ligger på: (i) hur ny kunskap och nya forskningsresultat påverkar slutsatserna i tidigare sammanställningar om klimatförändringar och klimateffekter, (ii) vetenskapliga förutsättningar för det så kallade tvågradersmålet, och (iii) vetenskapliga förutsättningar för ett 1,5-gradersmål.

De huvudsakliga slutsatserna är följande:

- **kunskapsläget om klimatkänsligheten som redovisades i AR4 (IPCC 2007a) står sig väl även idag. Ny forskning om hur naturliga kolsänkor och kolkällor påverkas av klimatförändringar tyder dock på att nettoupptaget av koldioxid i terrestra system kan bli mindre än tidigare uppskattats**

- **jämfört med när AR4 publicerades finns det idag betydligt fler studier och underlag om utsläppsanor som framförallt avser tvågradersmålet**

- **åtgärder för att minska utsläpp av kortlivade klimatpåverkande luftföroreningar såsom troposfäriskt ozon och sot kan ge väsentliga bidrag till att begränsa den globala uppvärmningen på kort sikt, men de förhindrar inte den långsiktiga uppvärmningen**

- **ju senare de globala utsläppen kulminerar, desto mindre blir sannolikheten för att tvågradersmålet uppnås. För att kunna uppnå tvågradersmålet med förhållandevis hög sannolikhet (i storleksordningen 70 %) behöver de globala växthusgasutsläppen nå sin kulmen under de närmaste 5–10 åren och vid år 2050 ha minskat med cirka 50–60 % jämfört med år 2000**

- **det finns olika modeller för hur de globala utsläppsminskningar kan fördelas mellan olika regioner och länder. Dessa baseras inte på naturvetenskapliga principer utan är beroende av politiska och andra ställningstaganden**

- **beräkningar baserade på att länder per capita utsläpp konvergerar år 2050 och att tvågradersmålet ska nås med en sannolikhet i storleksordningen 70 % ger att de svenska utsläppen behöver minska med cirka 20 % till år 2020 och 70 % till 2050 jämfört med år 2005. Motsvarande siffror för EU är cirka 25 % respektive cirka 80 %. Nettoutsläpp av koldioxid från avskogning och utrikes luft- och sjöfart ingår inte i dessa siffror**

- **ett lägre temperaturmål, till exempel 1,5 grader, förutsätter betydligt mer omfattande utsläppsminskningar och kan vara onåbart utan ett tillfälligt överskridande**

- **ska ett 1,5-gradersmål uppnås utan överskutning och med en sannolikhet på cirka 50 % behöver de globala utsläppen vända nedåt inom de närmsta åren. Vid år 2050 behöver de globala utsläppen ha minskat med cirka 80 % jämfört med 2000. En sannolikhet på cirka 70 % förutsätter att de globala utsläppen hamnar runt noll år 2050**

- **beräkningar baserade på att länder per capita utsläpp konvergerar år 2050 och att ett 1,5-gradersmål ska nås med en sannolikhet på cirka 50 % ger att de svenska utsläppen behöver minska med cirka 25 % till år 2020 och drygt 90 % till 2050 jämfört med 2005 års utsläpp. Motsvarande siffror för EU är cirka 30 % respektive drygt 90 %. Nettoutsläpp av koldioxid från avskogning och utrikes luft- och sjöfart ingår inte i dessa siffror**

- **det råder osäkerhet kring vilka klimatefekter som uppstår vid olika temperaturmål, men det är vältablet att klimatefekter i vissa regioner, bland annat i Arktis, kan bli stora även om tvågradersmålet uppnås. En begränsad global uppvärmning minskar riskerna med klimatefekter, men även om tvågradersmålet uppnås, stiger havsnivån, havsförsurning och det kan bli olika betydande effekter på den biologiska mångfalden**
Referenser

Friedlingstein, P. m fl 2006. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. *J. Climate* 19, 3337-3353.

Isbell, F. m fl. 2011. High plant diversity is needed to maintain ecosystem services. Nature (Online 10 augusti 2011. Doi:10.1038/nature10282)

Ranger, N. m fl 2010. *Mitigating climate change through reductions in greenhouse gas emissions: is it possible to limit global warming to no more than 1.5°C?* Policy Brief August 2010. Grantham Institute on Climate Change and the Environment, Centre for Climate Change Economics and Policy and MetOffice, 17 s.

Schwartz, S. E. m fl 2010. Why hasn’t Earth warmed as much as expected? *J. Climate* 23, 2453-2464.

The Copenhagen Diagnosis 2009. Updating the world on the Latest Climate Science. Allison m fl. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia, 60 s.

Bilaga I: The MiMiC model

The MiMiC model (Multigas Mitigation Climate model; Johansson et al. 2006) is an integrated climate-economy model that emulates the global response of more detailed climate models as well as energy-economy models. Emissions of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) are determined endogenously so that the net present value abatement cost of stabilizing the global average surface temperature at an exogenously set level (e.g., 1.5°C or 2°C) above the pre-industrial level is minimized.

The model can be run for centuries with annual or longer time steps and calibrated for the historical period.

Scenario and economic module

Baseline emissions for the well-mixed greenhouse gases CO₂, CH₄, and N₂O for the period 2015-2100 are taken from the IIASA B2 scenario, which is an updated version of the SRES B2 (Riahi et al. 2006, IIASA 2009), and is characterized by medium population growth and medium per capita economic growth. After 2100 the baseline emissions are assumed to remain constant and eventually decline. However, this constraint will never be binding in the MiMic-based stabilization scenarios here; the cumulative carbon emissions are considerably less than 5000 Gton C. CO₂ emissions from land use change follow the IIASA B2 baseline scenario.

The economic module estimates the costs of reducing emissions of greenhouse gases through the use of so called marginal abatement cost functions (see Johansson et al. 2006 for details). Abatement of emissions is only allowed from the year 2015 and onwards.

Constraints on how fast emissions can fall over a given period of time are also implemented in the model so that the emissions do not fall at a higher rate than what have been observed in several energy-economy models, i.e. the emissions do not fall at higher rate than about 3 % of the emission level in year 2000, in line with EU EGScience (2010) and UNEP (2010). However, in the case when the climate sensitivity is 4.5°C and with the 1.5°C target for the global average surface temperature above the pre-industrial level the constraints have been relaxed so that the optimization model can find a solution.

The future radiative forcing for fluorinated gases, stratospheric O₃, tropospheric O₃ and surface albedo is assumed to follow the RCP3PD scenario (van Vuuren et al. 2011). The direct and indirect global average radiative forcing of anthropogenic aerosols follows the path presented in RCP3PD. However, the forcing levels in each year are scaled up or down with a constant the value which is set so that the squared difference between the modeled global average surface temperature and the historical measured global average surface temperature is minimized.

Since MiMiC is a cost-minimizing model, future costs have to be made comparable with costs occurring now. Discounting is used for this and the discount rate is set to 5 % per year. This rate is typically used in the integrated assessment models that were assessed in UNEP (2010), EU EGScience (2010), IPCC (2007c) and van Vuuren and Riahi (2011). The value for the discount rate is not of critical importance in this study since the emissions pathway is constraint by the rate of changed constraint for the emissions (about 3 %/year) and the temperature stabilization target. Had the discount rate been somewhat lower (higher) emissions would have been reduced slightly more (less) early on and slightly less (more) at the end of the century.

Gas cycles

For the ocean uptake of CO₂, a non-linear response function from Joos et al. (1996) is used. We adopt the use of the response function estimated for the Princeton 3-D carbon cycle model. This approach is an efficient representation of the carbon cycle that takes into account the change in the CO₂ buffer factor of the ocean surface layer when the partial pressure of CO₂ is altered.

For the terrestrial sink a non-linear response function from Tanaka (2008) is used. The carbon fertilization factor β is set to 0.55, and the carbon fertilization is assumed to depend logarithmically on atmospheric CO₂ concentration.
Temperature feedbacks on the carbon cycle are taken into account in MiMic. When the global average surface temperature increases, the uptake of CO₂ in oceans will drop and the rate of respiration of organic carbon in the ecosphere will increase, both having the affect that larger fraction of the anthropogenically emitted CO₂ will stay in the atmosphere. For the temperature effect on carbon chemistry in oceans we use the same approach as Joos et al. (2001). For the temperature effect on carbon in ecosystem we adopt a Q10 approach with parameters based on Tanaka (2008).

The response of this representation of the carbon cycle has been assessed. It gives responses in line with those obtained from more complex carbon cycle models (Friedlingstein et al. 2006).

CH₄ and N₂O concentrations are modeled using the global mean mass-balance equations in Ehhalt et al. (2001), taking into account the feedback effect CH₄ has on its own atmospheric lifetime.

Radiative forcing

The equations for radiative forcing are the expressions given in IPCC’s Third Assessment Report (Ramaswamy et al. 2001). We include the indirect forcing effect of methane on tropospheric ozone and the concentration of stratospheric water vapour.

Energy balance model and global average surface temperature

A global average Energy Balance Model (EBM) is used to estimate the temperature response of changes in radiative forcing. The EBM that is used in the optimization is a three-box model which consists of a mixed ocean-atmosphere layer, an intermediate ocean layer and a bottom ocean layer. This three-box EBM model is calibrated to emulate a linear Upwelling Diffusion EBM (UDEBM) with polar overturning. The main assumptions for the UDEBM is the climate sensitivity, which is either 2.3 or 4.5°C, a heat diffusivity of 2 cm² s⁻¹, upwelling rate of 4 m/year and a ratio of polar water warming to average ocean warming of 0.2. The assumptions are in line with standard assumptions for UDEBMs, see Raper et al. (2001), Meinshausen et al. (2011), Baker and Roe (2009), Hoffert et al. (1980), and Shine et al. (2005). The response of our UDEBM has been assessed, and it gives a response close to that obtained by MAGICC for similar levels for the heat diffusivity and the climate sensitivity. This is an indication that our model works well in the sense that it reproduces results from more advanced climate models. MAGICC is calibrated to emulate three-dimensional AOGCMs (Meinshausen et al. 2011).
Bilaga II: “Contraction & convergence”

In the “contraction & convergence” calculation, anthropogenic CH₄, N₂O and CO₂ emissions do now include those from land use change and international bunkers fuels. How land use change emissions and emissions from international bunkers will be treated in future international climate treaties is an open issue. The fluorinated gases included in the Kyoto Protocol are not included either. The reason for this is that these gases are not explicitly represented in MiMiC. The effect of this exclusion is not decisive for the results as these gases only make up less than 2% of the global greenhouse gas emissions (in 2005; CAIT 2011). Population estimates and scenarios are based on the IIASA B2 scenario (IIASA 2009).

The CAIT-WRI emissions database is the main source of emissions data here. Emissions of CH₄ and N₂O are for 2005, while emissions of CO₂ are for 2007 (these are the last years for emissions data was available at the time of construction of the model; CAIT 2011). Since the contraction & convergence calculation here is based on the convergence starting in 2013, emission data is constructed for the intermediate years from the last year of data in CAIT. This scenario is based on latest reporting to the UNFCCC for EU, Sweden and USA (EEA 2010; US EPA 2011). Beyond the last reporting year the emissions, they were assumed to remain constant throughout to 2013 for these Annex-1 countries/regions. For China, India, Latin America, Sub-Saharan Africa (without South Africa), other Annex-1 countries and other non-Annex-1 countries the CO₂ emissions from fossil fuel use were estimated from actual emissions growth rates between 2007 and 2008 from IEA (2010) and estimated growth rates from the International Energy Outlook’s reference scenario (EIA-DOE 2010). The CH₄ and N₂O emissions were assumed to remain constant at their 2005 level until 2013.
SMHI:s publiceringar

SMHI ger ut sju rapportserier. Tre av dessa, R-serierna är avsedda för internationell publik och skrivs därför oftast på engelska. I de övriga serierna används det svenska språket.

<table>
<thead>
<tr>
<th>Seriernas namn</th>
<th>Publiceras sedan</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMK (Report Meteorology and Climatology)</td>
<td>1974</td>
</tr>
<tr>
<td>RH (Report Hydrology)</td>
<td>1990</td>
</tr>
<tr>
<td>RO (Report Oceanography)</td>
<td>1986</td>
</tr>
<tr>
<td>METEOROLOGI</td>
<td>1985</td>
</tr>
<tr>
<td>HYDROLOGI</td>
<td>1985</td>
</tr>
<tr>
<td>OCEANOGRAFI</td>
<td>1985</td>
</tr>
<tr>
<td>KLIMATOLOGI</td>
<td>2009</td>
</tr>
</tbody>
</table>

I serien KLIMATOLOGI har tidigare utgivits:

1. Lotta Andersson, Julie Wilk, Phil Graham, Michele Warburton, (University KwaZulu Natal) (2009)
 Local Assessment of Vulnerability to Climate Change Impacts on Water Resources in the Upper Thukela River Basin, South Africa – Recommendations for Adaptation

2. Gunn Persson, Markku Rummukainen (2010)
 Klimatförändringarnas effekter på svenskt miljömålsarbete

 En studie av framtida flödesbelastning på Stockholms huvudavloppssystem