Radioactivity Exploration from the Arctic to Antarctica. Part 5: The Tundra-94 expedition

Persson, Bertil R; Holm, Elis; Josefsson, Dan; Carlsson, kjell-Åke

Published in:
Acta Scientiarum Lundensia

DOI:
10.13140/RG.2.1.5115.0807

2015

Link to publication

Citation for published version (APA):

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Citation: (Acta Scientiarum Lundensia)

Corresponding author:
Bertil R.R. Persson, PhD. MDhc, professor emeritus
Lund University, Dept. of medical radiation physics,
Barngatan 2, S-22185 Lund Sweden
E-mail: bertil_r.persson@med.lu.se
Radioactivity Exploration from the Arctic to Antarctica.
Part 5: The Tundra-94 expedition

Bertil R.R. Persson, Elis Holm¹, Dan Josefsson², and Kjell-Åke Karlsson

Lund University, Dept. of medical radiation physics, S-22185 Lund Sweden
¹Present address: Dept. of Radiation Physics, University of Gothenburg, SE-41345 Gothenburg, Sweden.
²Present address: Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden.

Abstract

The joint Swedish-Russian “Tundra Ecology-94” expedition during 1994 used the large Russian ice-breaking research vessel R/V Akademik Fedorov a platform and went along a coastline of 3500 km— from the Kola Peninsula 10°E to Kolyuchinskaya Bay 173°E. Radioactivity in air, seawater and sediment was explored at various locations along the route.

The average of ⁷Be activity concentration in air over the Arctic Ocean was found to be only about 0.6 mBq.m⁻³ in air close to the Siberian coast-line, however, it was as high as 11 mBq.m⁻³. The activity concentration of ²¹⁰Pb in the air over the Arctic Ocean varies between 37 – 176 μBq.m⁻³. In the air close to the Siberian coastline 71°N 84°E, however, the activity concentration of ²¹⁰Pb in the air was much higher, about 2500 μBq.m⁻³.

Anthropogenic radioactivity in the Arctic originate from nuclear weapons fallout, release from nuclear fuel reprocessing plant, and from the Chernobyl accident. The minimum values of the ¹³⁷Cs activity concentration water along the route of the Tundra were found in South-eastern Barents Sea: 5.3 Bq.m⁻³ of surface-water, and of bottom-water 6.4 Bq.m⁻³. Maximum values were found in the Western Laptevsea: 12.8 Bq.m⁻³ of surface-water, and of bottom-water 5.1 Bq.m⁻³. East of 150 °E the ¹³⁴Cs / ¹³⁷Cs ratios are less than 0.003, indicating that less than 6% of the ¹³⁷Cs originated from the Chernobyl accident.

¹³⁷Cs levels are reduced to values of about 1.4 Bq.m⁻³ in the low salinity water near the mouths of the Ob and Yenisey Rivers. The ¹³⁴Cs / ¹³⁷Cs activity ratio of 0.014 in the freshwater indicates that the Chernobyl component in the river systems is the same (30%) as in the marine waters west of 150 °E.

In surface water the ⁹⁰Sr activity concentration range from 2 to 4 Bq.m⁻³, Maximum values about 3.5 Bq.m⁻³ were found between 100-140 °E. But east of 150 °E the values decreased to about 0.5 Bq.m⁻³ at 170 °E. In bottom water the ⁹⁰Sr activity concentration range from 1.5 at 40 °E to maximum values about 4 Bq.m⁻³ between 100-120 °E. The measured ⁹⁰Sr/¹³⁷Cs ratios in surface water close to a value of 0.14 over a wide range of stations from the Barents to the Laptev Seas. The ¹²⁹I concentration in sea-water along the route of the Tundra expedition decrease from about 20·10^{11} atoms.l⁻¹ at 40 °E, to about 1·10^{11} atoms.l⁻¹ east of 160 °E.

The ²³⁹,²⁴⁰Pu activity concentration in surface seawater decrease from about 10 mBq.m⁻³ to about 1 mBq.m⁻³ east of 160 °E. In bottom seawater it is more evenly distributed between 10⁻⁴ mBq.m⁻³, with minimum at 60-80 °E and maxima at 40°E and 160 °E. Measured ²³⁹Pu/²³⁹,²⁴⁰Pu activity ratios in the water column yield no evidence of any leakage of plutonium from dumped nuclear wastes in the Kara and Barents Seas.

Keywords: Tundra Ecology-94, Akademik Fedorov, ⁷Be, air, Arctic Ocean, Siberian coast-line, ¹³⁷Cs, ¹³⁴Cs / ¹³⁷Cs-ratio, Chernobyl accident, surface water, ⁹⁰Sr, ¹²⁹I, ²³⁹,²⁴⁰Pu, ²³⁸Pu/²³⁹,²⁴⁰Pu-activity ratio.

A. Introduction

The joint Swedish-Russian “Tundra Ecology-94” expedition during 1994 along a coastline of 3500 km—from the Kola Peninsula 10°E to Kolyuchinskaya Bay 173°E, used the large Russian ice-breaking research vessel R/V Akademik Fedorov a platform (Figure 5-1). In Table 5-1 is given locations of the various places where we were transferred a shore with helicopters (Figure 5-2).
5-6) or escorted by on Russian atomic Icebreaker (Figure 5-2). In Figure 5-3 is given a diagram of the route of the expedition.

Figure 5-1a.
R/V Akademik Fedorov in the harbour of Gothenburg
loading of the Tundra-94 expedition

Figure 5-1b.
R/V Akademik Fedorov, ready to leave for the
Arctic

Table 5-1
Expedition route and research sites of the "Tundra Ecology-94" expedition

<table>
<thead>
<tr>
<th>Visiting date 1</th>
<th>On return date 2</th>
<th>Site No.</th>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-04</td>
<td>09-08</td>
<td></td>
<td>Gothenburg</td>
<td>57.43°N 11.98°E</td>
</tr>
<tr>
<td>06-08>>09</td>
<td>09-02</td>
<td></td>
<td>Murmansk</td>
<td>68.57°N 44.10°E</td>
</tr>
<tr>
<td>06-10</td>
<td>08-31</td>
<td>1(27)</td>
<td>Kachkovsky Bay. Kola Peninsula</td>
<td>67.30°N 41.00°E</td>
</tr>
<tr>
<td>06-12>>13</td>
<td>08-29>>30</td>
<td>2(26)</td>
<td>North-Eastern Kanin Peninsula</td>
<td>68.15°N 6.00°E</td>
</tr>
<tr>
<td>06-14>>15</td>
<td>08-26>>28</td>
<td>3(25)</td>
<td>Kolguyev Island</td>
<td>69.15°N 50.00°E</td>
</tr>
<tr>
<td>06-15>>16</td>
<td>08-25>>26</td>
<td>4(24)</td>
<td>Pechora Bay</td>
<td>68.5°N 54.00°E</td>
</tr>
<tr>
<td>06-17>>20</td>
<td>08-22>>08-23</td>
<td>5(23)</td>
<td>Western Yamal Peninsula</td>
<td>70.45°N 67.00°E</td>
</tr>
<tr>
<td>06-21>>22</td>
<td>08-20>>21</td>
<td>6 (22)</td>
<td>Belyi Island. Northern Yamal Peninsula</td>
<td>73.00°N 70.00°E</td>
</tr>
<tr>
<td>06-22>>23</td>
<td>08-18>>19</td>
<td></td>
<td>Dickson</td>
<td></td>
</tr>
<tr>
<td>06-23</td>
<td></td>
<td></td>
<td>Arctic Institute Islands</td>
<td>75.00°N, 82.00°E</td>
</tr>
<tr>
<td>06-24>>26</td>
<td>08-15>>17</td>
<td>8(21)</td>
<td>North West of Taymyr Peninsula</td>
<td>76.00°N 94.00°E</td>
</tr>
<tr>
<td>06-27>>28</td>
<td>08-13>>14</td>
<td>9(20)</td>
<td>Chelyuskin Peninsula</td>
<td>77.20°N 102.00°E</td>
</tr>
<tr>
<td>08-29>>30</td>
<td>08-10>>11</td>
<td>10(19)</td>
<td>North-east of Taymyr Peninsula</td>
<td>76.00°N 112.00°E</td>
</tr>
<tr>
<td>07-03>>05</td>
<td></td>
<td></td>
<td>Khatanga rotation point 1</td>
<td>74.00°N 110.00°E</td>
</tr>
<tr>
<td>07-05>>06</td>
<td></td>
<td>11</td>
<td>Olenekskiy Bay</td>
<td>73.15°N 120.00°E</td>
</tr>
<tr>
<td>08-08>>08-08</td>
<td></td>
<td></td>
<td>Tiksi rotation point 2</td>
<td>74.00°N 110.00°E</td>
</tr>
<tr>
<td>08-03>>08-04</td>
<td></td>
<td>12</td>
<td>Yana Delta</td>
<td>71.30°N 136.00°E</td>
</tr>
<tr>
<td>07-10>>11</td>
<td>07-31>>08-02</td>
<td>13</td>
<td>New Siberian Islands</td>
<td>75.00°N 140.00°E</td>
</tr>
<tr>
<td>07-14>>15</td>
<td></td>
<td>14</td>
<td>Lopatka Peninsular, N-W Indigirka</td>
<td>71.45°N 149.00°E</td>
</tr>
<tr>
<td>07-17>>18</td>
<td></td>
<td>15</td>
<td>North-east of Kolyma Delta</td>
<td>71.45°N 158.00°E</td>
</tr>
<tr>
<td>07-20>>21</td>
<td></td>
<td>16</td>
<td>Ayon Island</td>
<td>69.50°N 168.00°E</td>
</tr>
<tr>
<td>07-22>>26</td>
<td></td>
<td>17</td>
<td>South-western Wrangels Island</td>
<td>70.50°N 179.00°E</td>
</tr>
<tr>
<td>07-25</td>
<td>point of return</td>
<td>18</td>
<td>Kolyuchinskaya Bay</td>
<td>67.00°N 173.45°E</td>
</tr>
</tbody>
</table>
Figure 5-2.
The Russian atomic icebreaker approaching To assist Akademik Fedorov in the heavy ice.

![Image of the Russian atomic icebreaker approaching To assist Akademik Fedorov in the heavy ice.](image)

Figure 5-3.
Route of the Tundra-94 expedition with R/V Akademik Fedorov along the Siberian Coastline, with a helicopter tour to Wrangles Island.

B. Material and Methods.

B1. Air sampling

Air filter samples were taken by using an Andersen sampler with the capacity of 100 m3h$^{-1}$ (filter size 0.25x0.25 m membrane filter). An air volume of about 1 500 m3 were collected at a
rate of 100 m3h$^{-1}$ during each sampling occasion. The Andersen sampler was placed close together with a FOA transportable reference high volume air sampler (filter size 0.56x0.56 m. microsorban filter. 1 100 m3h$^{-1}$), previously taken part in an inter calibration of samplers (Vintersved, 1994). The filters were stored on board and then taken the institute at Lund for analysis. The results of the Anderson sampler were normalized to those of the calibrated FOA sampler based on 7Be measurements. FOA nowadays FOI, is a Swedish research institute in the areas of defence and security.

![Figure 5-4. The FOA air sampler](image)

B2. Analysis of the air filters

The filters were measured for 7Be by gamma spectrometry using a high performance Germanium detector (HpGe Canberra). After adding 209Po as radiochemical yield determinant, the samples were wet-ashed by using a mixture of concentrated nitric and per-chloric acids. Polonium was spontaneously deposited on nickel discs, and measured by alpha spectrometry, using surface ion implanted silicon detectors.

Remaining traces of polonium, were removed by anion exchange. The solution was then stored for about 8 months to allow equilibrium in-growth of 210Po from 210Pb. The activity of ingrown 210Po, was then analysed as described above, and finally the activity concentrations of 210Po and 210Pb in air were calculated.

B3. Water sampling

Large volume (200 litre) water samples, were taken from the water cooling system of the ship, and collected in special vessels for precipitation of 137Cs and $^{239+240}$Pu. Continuous sampling of caesium also took place with a separate pump and a pipe hanging from the rail of the ship to about 2 m depth. An in-line system with filters impregnated with Copper-Ferro-Cyanide ($\text{Cu}_2\text{Fe(CN)}_6$) was used to collect Cesium isotopes from the seawater. The filters were dried and brought to Lund for radiochemical analysis. After ashing the filters at 420 °C, the residues were analysed for 134Cs and 137Cs by using a Ge (Li) gamma spectrometer.
Figure 5-5.
Interior of the water laboratory container, with the two 200 litre precipitation vessels to the right and the cartridge filters on the wall to the left.

Figure 5-6.
Bertil Persson and Kjell-Åke Carlsson landed on the tundra after a tour with the Russian helicopter in the back.
Figure 5-6a. View of the tundra

Figure 5-6b. Sampling of the tundra

Figure 5-6a. Closer view

Figure 5-7a. Chelyuskin Peninsula 77.20°N; 102.00°E
Summer lake of the waste accumulated during the winter.

Figure 5-7a. Road at Chelyuskin Peninsula

Figure 5-7a. A mound of flat stones raised by Adolf Erik Nordenskiöld’s expedition in 1878 as a memorial of the visit.

Figure 5-7b. An anchor left by Adolf Erik Nordenskiöld’s expedition in 1878.
C. Results

C1. 210Pb and 7Be in air 1994- June 08 > September 08

In the Figures 5-8a and b are given the activity concentrations of 210Pb (μBq.m$^{-3}$), and 7Be (mBq.m$^{-3}$) in air, measured during 1994-June 8 < September 8 at the joint Swedish-Russian Tundra Ecology-94 expedition.

Figure 5-8 a
Longitudinal distribution of 210Pb air concentration (μBq.m$^{-3}$) during 1994-June 8 < September 8 at the Tundra Ecology-94 expedition. Predicted values in red.

Figure 5-8 b Longitudinal distribution of 7Be air concentration (mBq.m$^{-3}$) during 1994-June 8 < September 8 and the route of the Tundra Ecology-94 expedition. Predicted values in red.

Equations of the PLS models for the air concentrations displayed in red in Figure 5-8:

$$C_{^7Be} = 24.65 - 0.207 \cdot \text{Latitude} - 0.016 \cdot \text{Longitude}; \ [\text{mBq.m}^{-3}]$$
Goodness of fit statistics (Variable $C_{^7Be}$): $R^2 = 0.036$

$$C_{^{210}Pb} = 6992 - 44.45 \cdot \text{Latitude} - 14.61 \cdot \text{Longitude}; \ [\mu\text{Bq.m}^{-3}]$$
Goodness of fit statistics (Variable $C_{^{210}Pb}$): $R^2 = 0.176$
Table 5-2a
Average air concentrations of 7Be and 210Pb measured during 1994-June 8 > September 8 at the joint Swedish-Russian Tundra Ecology-94 expedition.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Date</th>
<th>Average</th>
<th>SD</th>
<th>SE</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Be</td>
<td>1994-0605 > 0719</td>
<td>11.4</td>
<td>9.0</td>
<td>3.2</td>
<td>N</td>
</tr>
<tr>
<td>210Pb</td>
<td>1994-0605 > 0719</td>
<td>2373</td>
<td>1029</td>
<td>364</td>
<td>μBq/m³</td>
</tr>
<tr>
<td>7Be</td>
<td>1994-07-19 > 0908</td>
<td>7.2</td>
<td>5.4</td>
<td>2.0</td>
<td>N</td>
</tr>
<tr>
<td>210Pb</td>
<td>1994-07-19 > 0908</td>
<td>2712</td>
<td>2854</td>
<td>1079</td>
<td>μBq/m³</td>
</tr>
</tbody>
</table>

During the Swedish-Russian Tundra Ecology-94 expedition along the Siberian coastline, the average air concentrations of 7Be and 210Pb measured during May-July were 11±3 and 2.4±0.4 mBq.m⁻³ respectively and during July-September they were 7.2±2 and 2.7±1.1 mBq.m⁻³ respectively.

Table 5-2 b
Ratios of average air concentrations of 7Be and 210Pb measured during 1994-June 8 > September 8 at the joint Swedish-Russian Tundra Ecology-94 expedition.

<table>
<thead>
<tr>
<th>Isotope ratio</th>
<th>Date</th>
<th>Average</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Be / 210Pb</td>
<td>1994-0605 > 0719</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7Be / 210Pb</td>
<td>1994-07-19 > 0908</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

C2. 137Cs activity concentration in seawater
The 137Cs activity concentration water along the route of the Tundra expedition is shown in figures 5-9a and 9b respectively. The minimum values were found in South-Eastern Barents Sea: 5.3 Bq.m⁻³ of surface-water, and of bottom-water 6.4 Bq.m⁻³. Maximum values were found in the Western Laptevsea: 12.8 Bq.m⁻³ of surface-water, and of bottom-water 5.1 Bq.m⁻³.

![Figure 5-9a](image_url)

Figure 5-9a. Longitudinal distribution of 137Cs activity concentration in surface seawater along the route of Tundra expedition. Predicted values in read...
Equation of the PLS model for activity concentration in surface water (SW), displayed in red in Figure 5-9:

$$^{\text{SW}}C_{137\text{Cs}} = -44.93 + 0.756\cdot(\text{Latitude}^\circ\text{N}) - 0.035\cdot(\text{Longitude}^\circ\text{E}); \quad \text{[Bq.m}^{-3}\text{]}$$

Goodness of fit statistics: $R^2 = 0.312$

Equation of the PLS model for bottom water (BW):

$$^{\text{BW}}C_{137\text{Cs}} = -2.005 + 0.071\cdot(\text{Latitude}^\circ\text{N}) + 4.49\cdot10^{-5}\cdot(\text{Longitude}^\circ\text{E}); \quad \text{[Bq.m}^{-3}\text{]}$$

Goodness of fit statistics (Variable $^{\text{BW}}C_{137\text{Cs}}$ bottom water): $R^2 = 0.076$

Figure 5-10a. View of the Arctic sea

Figure 5-10b. View of the Arctic sea

Figure 5-10c. View of the Arctic sea

C3. $^{134}\text{Cs}/^{137}\text{Cs}$ activity ratio in sea water

Figure 5-11a.
Longitudinal distribution of $^{134}\text{Cs}/^{137}\text{Cs}$ activity ratio in surface sea-water along the route of Tundra expedition. Predicted values in red
Figure 5-11b.
Longitudinal distribution of 134Cs/137Cs activity ratio in bottom sea water along the route of Tundra expedition. Predicted values in read

Equation of the PLS model for 134Cs/137Cs ratio in surface water (SW):

$\left(\frac{^{134}\text{Cs}}{^{137}\text{Cs}}\right)_{\text{SW}} = -0.011 + 3.98\times10^{-4}\cdot(\text{Latitude } ^\circ\text{N}) - 4.85\times10^{-5}\cdot(\text{Longitude } ^\circ\text{E})$

Goodness of fit statistics (Variable 134Cs/137Cs Surface water): $R^2 = 0.447$

Equation of the model for bottom water (BW):

$\left(\frac{^{134}\text{Cs}}{^{137}\text{Cs}}\right)_{\text{BW}} = -0.042 + 8.89\times10^{-4}\cdot(\text{Latitude } ^\circ\text{N}) – 9.37\times10^{-5}\cdot(\text{Longitude } ^\circ\text{E})$

Goodness of fit statistics (Variable 134Cs/137Cs Bottom water): $R^2 = 0.913$

C4. 90Sr activity concentration in seawater

The 90Sr activity concentration in seawater along the route of the Tundra expedition is shown in figures 5-13a and b respectively. In surface water the 90Sr activity concentration range from 2 to 4 Bq.m$^{-3}$. Maximum values about 3.5 Bq.m$^{-3}$ were found between 100-140 $^\circ$E. But east of 150 $^\circ$E, the values decreased to about 0.5 Bq.m$^{-3}$ at 170 $^\circ$E.

Figure 5-12a Longitudinal distribution of the 90Sr activity concentration in surface seawater along the route of Tundra expedition. Predicted values in read
In bottom water the 90Sr activity concentration range from 1.5 at 40 °E to maximum values about 4 Bq.m$^{-3}$ between 100-120 °E.

Equation of the PLS model for 90Sr activity concentration in Surface water (SW):

$^{SW}C_{90Sr} = -7.910 + 0.153 \cdot (\text{Latitude}^\circ\text{N}) + 9.6 \cdot 10^{-5} \cdot (\text{Longitude}^\circ\text{E});$ [Bq.m$^{-3}$]

Goodness of fit statistics: $R^2 = 0.16$

Equation of the PLS model 90Sr activity concentration in Bottom Water (BW):

$^{BW}C_{90Sr} = -0.873 + 0.052 \cdot (\text{Latitude}^\circ\text{N}) + 0.0025 \cdot (\text{Longitude}^\circ\text{E});$ [Bq.m$^{-3}$]

Goodness of fit statistics: $R^2 = 0.21$

Figure 5-12b Longitudinal distribution of the 90Sr activity concentration in surface and bottom seawater along the route of Tundra expedition. Predicted values in read

Figure 5-13a Longitudinal distribution of the 90Sr/137Cs activity ratio in surface seawater along the route of Tundra expedition.
Figure 5b Longitudinal distribution of the $^{90}\text{Sr} / ^{137}\text{Cs}$ activity ratio in bottom seawater and the route of Tundra expedition.

C5. ^{129}I concentration in seawater

The ^{129}I concentration in sea-water along the route of the Tundra expedition is shown in Figure 5-14. The concentration decrease from about $20 \cdot 10^{11}$ atoms.l^{-1} ($2 \cdot 10^{15}$ atoms.m^{-3}), \approx 3 picomolar, to about $1 \cdot 10^{11}$ atoms.l^{-1} east of 160 $^\circ$E.

Figure 5-14 Longitudinal distribution of ^{129}I concentration in surface seawater and the route of Tundra expedition. Predicted values in read.
PLS Model parameters for 129I concentration in surface seawater:

$$SWC_{^{129}I} = -25.529 + 0.580 \cdot (\text{Latitude} \, ^{\circ}N) - 0.065 \cdot (\text{Longitude} \, ^{\circ}E); \left[10^{14} \text{ atoms.m}^{-3}\right]$$

Goodness of fit statistics: $R^2 = 0.311$

C6. $^{239+240}$Pu activity concentration in seawater

The $^{239+240}$Pu activity concentration in surface and bottom seawater along the route of Tundra expedition are given in Figure 3-15a and b respectively. In surface seawater the $^{239+240}$Pu activity concentration decrease from about 10 mBq.m$^{-3}$ to about 1 mBq.m$^{-3}$ east of 160 $^{\circ}$E.

![Figure 5-15a. $^{239+240}$Pu activity concentration in surface seawater along the route of Tundra expedition. Predicted values in read.](image)

In bottom seawater the $^{239+240}$Pu activity concentration is more evenly distributed between 10 - 4 mBq.m$^{-3}$, with the minimum at 60-80 $^{\circ}$E and maxima at 40$^{\circ}$E and 160 $^{\circ}$E.

![Figure 5-15b. $^{239+240}$Pu activity concentration in bottom seawater and the route of Tundra expedition.](image)
Equation of the model PLS model for activity concentration of 239,240Pu in Surface water (SW):

$$SW_{C_{239,240Pu}} = 5.948 + 0.028 \cdot (\text{Latitude}^\circ \text{N}) - 0.043 \cdot (\text{Longitude}^\circ \text{E}) \; [\text{mBq.m}^{-3}]$$

Goodness of fit statistics (Variable $SW_{C_{239,240Pu}}$): $R^2 = 0.471$

Equation of the PLS model for 239,240Pu Bottom water (BW):

$$BW_{C_{239,240Pu}} = 30.96 - 0.331 \cdot (\text{Latitude}^\circ \text{N}) - 0.0028 \cdot (\text{Longitude}^\circ \text{E}) \; [\text{mBq.m}^{-3}]$$

Goodness of fit statistics (Variable $BW_{C_{239,240Pu}}$): $R^2 = 0.432$

C7. 137Cs and $^{239+240}$Pu activity concentration in sediment

The integrated sediment activity of $^{234+240}$Pu was measured in samples taken at sampling sites specified in Table 5-3, and the results are displayed in Figure 5-16a and b.

Table 5-3

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Water depth</th>
<th>Activity 137Cs</th>
<th>$^{234+240}$Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$^\circ$N</td>
<td>$^\circ$E</td>
<td>m</td>
<td>[Bq/m²]</td>
<td>[Bq/m²]</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>14</td>
<td>66</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>76</td>
<td>11</td>
<td>93</td>
<td>34</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>75</td>
<td>8</td>
<td>129</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>21</td>
<td>74</td>
<td>50</td>
<td>137</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>70</td>
<td>16</td>
<td>170</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 5-16a

Measured and predicted, integrated sediment activity of $^{234+240}$Pu at specific sampling stations (see below). Predicted values in read.
Equation of the model for predicted integrated sediment activity, S_{ED}^A, of $^{239+240}\text{Pu}$ [Bq/m²] in sediment:

$$S_{\text{ED}}^A_{239+240\text{Pu}} = -115.2 - 0.215 \cdot (\text{Longitude}^\circ\text{E}) + 2.23 \cdot (\text{Latitude}^\circ\text{N})$$

Goodness of fit statistics ($S_{\text{ED}}^A_{239+240\text{Pu}}$): $R^2 = 0.852$

Equation of the PLS model for predicted integrated sediment activity, S_{ED}^A, of ^{137}Cs [Bq/m²] in sediment (S_{ED}):

$$S_{\text{ED}}^A_{137\text{Cs}} = -473.3 - 1.486 \cdot (\text{Longitude}^\circ\text{E}) + 14.66 \cdot (\text{Latitude}^\circ\text{N}); [\text{Bq.m}^{-2}]$$

Goodness of fit statistics (Variable 137Cs [Bq/m²]): $R^2 = 0.069$

D. Discussions

D1. Beryllium-7 activity concentrations in the Arctic air

The activity-concentration of ^7Be in air in the Arctic air as summarized in Table 5-4 varies between 2 - 4.9 mBq.m³ with average 2.8 ± 0.3 mBq.m³ (Buraglio et al., 2001, Kulan, 2006, Paatero and Hatakka, 2000, Baskaran and Shaw, 2001, Dibb and Jaffrezo, 1993). The average of ^7Be activity concentration in air over the Arctic Ocean was, however, only about 0.6 mBq.m³. In contrast the activity concentration of ^7Be in air close to the Siberian coast-line as high as 11 mBq.m³ (Persson, 2013).
Table 5-4. Summary of atmospheric 7Be concentrations in Arctic and sub-Arctic air

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Lat</th>
<th>Long</th>
<th>Be-7 Arithm. Mean mBq.m$^{-3}$</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>910728-0906</td>
<td>Arctic Ocean</td>
<td>82.07</td>
<td>51.00</td>
<td>0.62</td>
<td>0.52</td>
</tr>
<tr>
<td>910907-1004</td>
<td>Arctic Ocean</td>
<td>84.36</td>
<td>-2.32</td>
<td>0.51</td>
<td>0.33</td>
</tr>
<tr>
<td>940605-0908</td>
<td>N Siberian coast</td>
<td>71</td>
<td>84</td>
<td>11.4</td>
<td>9.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Lat</th>
<th>Long</th>
<th>Pb-210 Average µBq.m$^{-3}$</th>
<th>SD</th>
<th>Po-210 Average µBq.m$^{-3}$</th>
<th>SD</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Uppsala. Sweden</td>
<td>59.88</td>
<td>17.63</td>
<td>4.7</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972-1995</td>
<td>Sweden</td>
<td>59.88</td>
<td>17.63</td>
<td>4.8</td>
<td>2.4</td>
<td></td>
<td></td>
<td>(Kulan, 2006)</td>
</tr>
<tr>
<td>1972-2003</td>
<td>Sweden, Kiruna</td>
<td>67.84</td>
<td>20.34</td>
<td>1.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td>(Kulan, 2006)</td>
</tr>
<tr>
<td>1972-2003</td>
<td>Sweden, Grindsjön</td>
<td>59.07</td>
<td>17.82</td>
<td>2.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td>(Kulan, 2006, Aldahan et al., 2008)</td>
</tr>
<tr>
<td>1972-2003</td>
<td>Sweden, Ljungbyhed</td>
<td>56.08</td>
<td>13.23</td>
<td>2.5</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995-1997</td>
<td>Finland Sodankyla</td>
<td>67.37</td>
<td>26.65</td>
<td>2.5</td>
<td>2.0</td>
<td></td>
<td></td>
<td>(Paatero, 2000)</td>
</tr>
<tr>
<td>1996</td>
<td>Alaska USA Poker Flat</td>
<td>65.13</td>
<td>-147.48</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>(Baskaran and Shaw, 2001)</td>
</tr>
<tr>
<td>1996</td>
<td>Alaska USA Eagle</td>
<td>65.9</td>
<td>-141.20</td>
<td>2.2</td>
<td>1.0</td>
<td></td>
<td></td>
<td>(Baskaran and Shaw, 2001)</td>
</tr>
<tr>
<td>1988-1989</td>
<td>Dye3</td>
<td>65.18</td>
<td>43.82</td>
<td>2.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td>(Dibb and Jaffrezo, 1993)</td>
</tr>
<tr>
<td>1988-1990</td>
<td>Barrow</td>
<td>71.30</td>
<td>-156.77</td>
<td>1.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td>(Dibb and Jaffrezo, 1993)</td>
</tr>
<tr>
<td>1988-1991</td>
<td>Kap Toban</td>
<td>70.42</td>
<td>-21.97</td>
<td>2.4</td>
<td>1.3</td>
<td></td>
<td></td>
<td>(Dibb and Jaffrezo, 1993)</td>
</tr>
<tr>
<td>1988-1992</td>
<td>Nord</td>
<td>81.36</td>
<td>-16.40</td>
<td>2.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td>(Dibb and Jaffrezo, 1993)</td>
</tr>
<tr>
<td>1988-1993</td>
<td>Thule</td>
<td>77.50</td>
<td>-69.33</td>
<td>3.7</td>
<td>1.9</td>
<td></td>
<td></td>
<td>(Dibb and Jaffrezo, 1993)</td>
</tr>
<tr>
<td>1997-2004</td>
<td>Summit, Greenland</td>
<td>72.575</td>
<td>-27.55</td>
<td>2.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td>(Dibb, 2007)</td>
</tr>
</tbody>
</table>

a(Persson, 2013).

D2. 210Pb activity concentrations in the Arctic air

Observations of the activity concentration of 210Pb in the air over the Arctic ocean as summarized in Table 5-5, varies between 37 – 176 µBq.m$^{-3}$ (Persson and Holm, 2013, McNeary and Baskaran, 2003, Dibb and Jaffrezo, 1993, Dibb, 2007, Paatero et al., 2003, Samuelsson et al., 1986). In 1991 we found the average activity concentration of 210Pb over the Arctic Ocean to be 40±4 µBq.m$^{-3}$. In the air close to land masses the activity concentration of 210Pb in the air increase to 269- 2712 µBq.m$^{-3}$ (McNeary and Baskaran, 2003, Baskaran and Shaw, 2001, Dibb and Jaffrezo, 1993); with the highest values of about 2500 µBq.m$^{-3}$ at the Siberian coastline (Persson and Holm, 2013).

Table 5-5. Activity concentrations (µBq.m$^{-3}$) of 210Pb recorded at different locations during the Tundra-94 expedition.

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Lat °N</th>
<th>Long °E</th>
<th>Pb-210 Average µBq.m$^{-3}$</th>
<th>SD</th>
<th>Po-210 Average µBq.m$^{-3}$</th>
<th>SD</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>940605>0703</td>
<td>Siberian Tundra</td>
<td>71</td>
<td>84</td>
<td>2373</td>
<td>364</td>
<td>2044</td>
<td>870</td>
<td>This work</td>
</tr>
<tr>
<td>940704>0908</td>
<td>Siberian Tundra</td>
<td>71</td>
<td>84</td>
<td>2712</td>
<td>1079</td>
<td>2336</td>
<td>994</td>
<td>This work</td>
</tr>
</tbody>
</table>
D3. 137Cs activity distribution

The minimum values of the 137Cs activity concentration water along the route of the Tundra were found in South-eastern Barents Sea: 5.3 Bq.m^{-3} of surface-water, and of bottom-water 6.4 Bq.m^{-3}. Maximum values were found in the Western Laptev sea: 12.8 Bq.m^{-3} of surface-water, and of bottom-water 5.1 Bq.m^{-3}.

East of 150°E the 134Cs / 137Cs ratios are less than 0.003, indicating that less than 6% of the 137Cs originated from the Chernobyl accident.

The 134Cs / 137Cs activity ratio of 0.014 in the freshwater indicates that the Chernobyl component in the river systems is the same (30%) as in the marine waters.

D4. 90Sr activity distribution

The relative magnitudes of 90Sr inputs to the Arctic Ocean differ from those for 137Cs for the same sources. The 137Cs/90Sr activity ratio of 35 reported for Chernobyl fallout was sufficiently high that 90Sr inputs from this source can be considered to be negligible (Aarkrog, 1988). The present fallout concentration in the oceans is assumed to be about 1.6 Bq/m3 (Dahlgaard, 1995). Sellafield represents a major 90Sr source term, which similar to 137Cs, attained a maxima in the late 1970's and has decreased substantially since that time. An important additional source of 90Sr to the Siberian seas is associated with river runoff from fallout, discharges from nuclear reprocessing plants and inputs from accidental releases of 90Sr, such as the Khystym accident on 29 September 1957 at Mayak, USSR (Lollino et al., 2014). The greater mobility of 90Sr compared to 137Cs in freshwater environments results in reduced 90Sr residence times in soils and more rapid transport through the drainage basin to marginal seas. By using the record of reported 90Sr discharges, transport times of less than 10 y and transfer factors of 10 Bq.m$^{-3}$ per PBq.a$^{-1}$ the Sellafield contribution to Barents Sea water is estimated to be approximately 0.5 Bq.m$^{-3}$ in 1994 (Gray et al., 1995). The addition of a fallout component of approximately 1.6 Bq.m$^{-3}$ is not sufficient to give the values ($> 3 \text{ Bq.m}^{-3}$) measured in the Kara and Laptev Seas. These results suggest an additional contribution of the order of 1-2 Bq.m$^{-3}$ to 90Sr concentrations on the Siberian shelves. Contributions from riverine sources will generally only play a minor role since most the salinities are too high.

The 90Sr/137Cs fallout ratio in seawater is approximately 0.7 while Sellafield discharge results give an average cumulative decay corrected 90Sr/137Cs ratio of 7 between 1980 and 1992 (Gray et al., 1995, Dahlgaard et al., 1995). The measured 90Sr/137Cs (non-Chernobyl) ratios in surface water (Figure 5-13) are also close to a value of 0.14 over a wide range of stations from the Barents to the Laptev Seas, despite the observation above that much of this signal is from Sellafield. Clearly, the 90Sr input from the Russian river systems has been sufficiently large to reduce the 137Cs/90Sr activity ratio to values similar to fallout levels. Bottom waters show slightly higher ratios indicating a Sellafield contribution. Calculations as above applying known transfer factors and transport times reveal, however, that direct transport will not notably effect the fallout ratio. Instead the Sellafield activity must be of an older date, reflecting a longer half-life on the shelf than expected, or recirculated from the central Arctic Ocean.
D5. \(^{129}\)I distribution

The decreasing gradient in \(^{129}\)I activity, east of the Barents Sea to the Laptev Sea, reflects the general increase in \(^{129}\)I discharges since the 1980’s. The sharp decrease in \(^{129}\)I concentrations at 150 °E indicates that the front between Atlantic and Pacific origin water has been encountered. In the 1980s, this front was located over the Lomonosov Ridge, but has shifted to its present position over the Mendelyev Ridge (McLaughlin et al., 1996, Smith et al., 1998). The relatively low radionuclide levels measured in the East Siberian Sea are typical of fallout values associated with Pacific-origin water transported into this region from the Bering Sea.

D6. \(^{239}+^{240}\)Pu activity distribution

Plutonium activity concentrations and isotopic ratios, measured along the Siberian Shelf and in the Central Arctic Ocean, indicate that it mainly originates from global fallout of atmospheric nuclear weapons tests. This demonstrate that plutonium fallout of atmospheric nuclear weapons tests, deposited at mid-latitudes in the North Atlantic in the late-1950s and early-1960s, have found their way to the Arctic interior and beyond (Kershaw and Baxter, 1995, Josefsson, 1998); Herrmann, 1998 #473).

Measured \(^{238}\)Pu/\(^{239,240}\)Pu activity ratios in the water column yield no evidence of any leakage of plutonium from dumped nuclear wastes in the Kara and Barents Seas. Were leakage of plutonium to occur in the future from dumped nuclear wastes in the Kara and Barents Seas, it is likely that some of it will be transported through the Eurasian Shelf and into the Central Arctic with the Transpolar Drift, on a timescale of one to two decades, eventually exiting the Arctic through Fram Strait.

The geographical distribution of plutonium indicate that a broad peak that appears to have passed through the North Pole recently. We attribute this peak to the plutonium ‘signal’ that entered the Arctic following the period of maximal fallout deposition referred to above. The distribution is consistent with the well-established pattern of water-mass circulation in the Arctic, bearing in mind the limited number of plutonium observations available.

E. References

KULAN, A. 2006. Seasonal Be-7 and Cs-137 activities in surface air before and after the Chernobyl event. *Journal of Environmental Radioactivity*, 90, 140-150.

PERSSON, B. R. R. & HOLM, E. 2013. 7Be. 210Pb. and 210Po in the surface air from the Arctic to Antarctica. *INCOPoPb-2013 conference, Mangalore University*.

