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A Hardware Architecture for Real-Time
Video Segmentation Utilizing
Memory Reduction Techniques

Hongtu Jiang, Hakan Ardo, and Viktor Owall, Member, IEEE

Abstract—This paper presents the implementation of a video
segmentation unit used for embedded automated video surveil-
lance systems. Various aspects of the underlying segmentation
algorithm are explored and modifications are made with potential
improvements of segmentation results and hardware efficiency. In
addition, to achieve real-time performance with high resolution
video streams, a dedicated hardware architecture with streamlined
dataflow and memory access reduction schemes are developed.
The whole system is implemented on a Xilinx field-programmable
gate array platform, capable of real-time segmentation with VGA
resolution at 25 frames per second. Substantial memory band-
width reduction of more than 70% is achieved by utilizing pixel
locality as well as wordlength reduction. The hardware platform
is intended as a real-time testbench, especially for observations of
long term effects with different parameter settings.

Index Terms—Field-programmable gate array (FPGA), mixture
of Gaussian (MoG), video segmentation.

I. INTRODUCTION

UTOMATED video surveillance systems have been

gaining substantial interests in the research community in
recent years. This is partially due to the progress in technology
scaling that enables more robust yet computationally intensive
algorithms to be realized with reasonable performance. The
advantage of surveillance automation over traditional closed
circuit TV (CCTV)-based system lies in the fact that it is a self
contained system capable of automatic information extraction,
e.g., detection of moving objects and tracking. The result is a
fully or semi automated surveillance system, with the potential
of increased usage of mounted cameras and the reduced cost of
human resources for observing the output. Typical applications
may include both civilian and military scenarios, e.g., traffic
control, security surveillance in banks or antiterrorism.
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Crucial to all these applications is the quality of the video
segmentation, which is a process of extracting objects of in-
terest (foreground) from an irrelevant background scene. The
foreground information, usually composed of moving objects,
is passed on to later analysis units, where objects are tracked and
their activities are analyzed. A wide range of segmentation al-
gorithms have been proposed in the literatures, with robustness
aimed for different situations. In [1], comparisons on segmen-
tation qualities are made to evaluate a variety of approaches.
Table I shows five segmentation algorithms that are cited by
many literatures, namely frame difference (FD) [2]-[5], median
filter [6]—[8], linear predictive filter (LPF) [1], [9]-[12], mix-
ture of Gaussian (MoG) [13]-[19] and kernel density estima-
tion (KDE) [20]. Using FD, background/foreground detection
is achieved by simply observing the difference of the pixels be-
tween two adjacent frames. By setting a threshold value, a pixel
is identified as foreground if the difference is higher than the
threshold value, otherwise background. The simplicity of the
algorithm comes at the cost of the segmentation quality. In gen-
eral, bigger regions than the actual moving part are detected as
foreground area. Also it fails to detect inner pixels of a large,
uniformly-colored moving object, a problem known as aper-
ture effect [3]. As more sophisticated algorithms are utilized
aiming for improved robustness and segmentation quality, the
complexity of realizing such systems increases.

In fact, no perfect system exists to handle all kinds of issues
within different background models. For realistic implementa-
tion of such systems, trade-offs have to be made between system
robustness (quality) and system performance (frame rate, res-
olution, etc.). A background model based on pixel wise mul-
timodal Gaussian distribution was proposed in [13] with ro-
bustness to multimodal background situations, which are quite
common in both indoor and outdoor environments. From Table I
it can be seen that the KDE approach has the highest segmen-
tation quality which however comes at the cost of a high hard-
ware complexity and even to a larger extent, increased memory
requirements. These facts, has led us to choose the MoG ap-
proach for the developed system. A multimodal background is
caused by repetitive background object motion, e.g., swaying
trees, flickering of the monitor, etc. As a pixel lying in the re-
gion where repetitive motion occurs, its value will consist of two
or more background colors, i.e., the RGB value of that specific
pixel changes over time. This will result in false foreground de-
tection in most other approaches. Various modifications to the
algorithm for potential improvements are reported [14]-[19].
However, none of these works address the issue of algorithm
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TABLE I
COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS
FD Median LPF MoG KDE
Algorithm performance Fast Fast Medium Medium Slow
Memory requirement 1 Frame | 50 — 300 Frames | 1 Frame of mean | 1 Frame of k Gaussian parameters | n Frames of k Gaussian parameters
Segmentation quality Worst Low Acceptable Good Best
Hardware complexity Very low Medium Low to medium Low High

performance in terms of meeting real-time requirements with
reasonable resolution. In [13], only a frame rate of 11-13 fps is
obtained even for a small frame size of 160 x 120 on an SGI O2
workstation. In our software implementation on an AMD 4400+
processor, a frame rate of 4-6 fps is observed for video se-
quences with 352 x 288 resolution. In addition to performance
issues, we have found no studies on possible algorithm modifi-
cations that could lead to potentially better hardware efficiency.

In this paper, we present a dedicated hardware architecture ca-
pable of real-time segmentation with VGA resolution at 25 fps.
Preliminary results of the architecture were presented in [21].
The architecture is implemented on Xilinx VirtexII pro Vp30
FPGA platform together with a variety of memory access reduc-
tion schemes, which results in more than 70% memory band-
width reduction. Furthermore, various modifications to the al-
gorithm are made, with potential improvements of hardware ef-
ficiency.

The choice of an FPGA as the target platform is mainly moti-
vated from the possibility to perform algorithm changes in late
stages of the system development, provided by the reconfig-
urability aspect. Furthermore, FPGAs gives us real time per-
formance, hard to achieve with DSP processors, while limiting
the extensive design work required for application specific inte-
grated circuits (ASICs). A rather early overview (1999) of com-
puter vision algorithms on FPGAs can be found in [22] while
a more recent evaluation can be found in [23]. Even with the
difference of 6 years, one common conclusion is that dedicated
architectures are in many cases needed to achieve required per-
formance and that reconfigurable platforms are a good way to
achieve it at reasonable design time and cost. Even though ad-
vanced EDA flows exist, there is a considerable amount of re-
quired knowledge regarding hardware architecture design, often
not available in image processing groups. A cooperation be-
tween theoretical and hardware research is therefore a healthy
mix. In this work an automated surveillance system has been
chosen as the target applications. We have found no hardware
architectures for the chosen algorithm that can be used as di-
rect comparison. However, other applications in vision systems
include robotic control [24], [25], medical imaging [26], and
stereo processing [27]. One common challenge is memory size
and bandwidth, as in the presented design often solved with ex-
ternal memories.

The paper is organized as follows. Sections II and III dis-
cuss the original algorithm and possible modifications for
hardware efficiency. The hardware architecture is presented
in Section IV, together with the memory bandwidth reduction
scheme explained in detail. Finally, the results and conclusions
are covered in Sections V and VI.

II. GAUSSIAN MIXTURE BACKGROUND MODEL

In this section the used algorithm is briefly described, for a
more thorough description we refer to [ 13]. The algorithm is for-
mulated as follows: Measured from consecutive video frames,
the values of a particular pixel over time can be regarded as a sto-
chastic process. At any time ¢, what is observed for a particular
pixel at zg, yo is a collection of the most recent measurements
over time

{Xtgs- oy Xt} = {I(x0,y0,%) : to <3 < t} )
where [ is the image sequence. To model such a process, a
Gaussian distribution can be used. Characterized by its mean
and variance values, the distribution represents a location cen-
tered at its mean values in the RGB color space, where the pixel
value is most likely to be observed over frames. A pixel con-
taining several background object colors, e.g., the leaves of a
swaying tree and a road, can be modeled with a mixture of
Gaussian distributions. Each distribution iz, has a weight, w; 4,
that indicates the probability of matching a new incoming pixel,

x;. The probability of observing the current pixel value is

K
P(Xy) = wie n(X, i, Tit) )
=1

where K is the number of Gaussian distributions and 7 is a
Gaussian probability density function. Furthermore, w; ; is the
weighting factor, p; ; is the mean value and 3; ; is the covari-
ance matrix of the ¢th Gaussian at time ¢, which takes the form
of

Yir=o0r-L

i

3)

K is determined by available resources concerning hardware
complexity and memory resources.

A match is defined as the incoming pixel within J times
the standard deviation off the center. In [13] J is set to 2.5,
a value that has also been used in our application. The higher
the weight, the more likely the distribution belongs to the back-
ground. The portion of the Gaussian distributions belonging to
the background is defined to be

b
B = min b|kzlwk>H

“)

where min is used to calculate the minimum number of Gaussian
distributions, b, that satisfies the condition in which the sum of
the weights, w, is less than predefined parameter H, i.e., mea-
suring the minimum portion of the distributions that should be
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(a) Five background pixel distributions in the RGB color space.
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(b) A closer look at the two distributions on the bottom in (a).

Fig. 1. Background pixel distributions in the RGB color space. Instead of Sphere like distributions, each pixel cluster is rather cylindrical.

accounted for by the background. If a small value is chosen for
H, the background model is usually unimodal.
If a match is found, the matched distribution is updated as

Wit =(1 — @)wr -1 + & ®)
Pt =1 = p)pr -1+ pXy (6)
Ul%,t =(1- P)Uz,t—1 + p(Xe = )T (Xe = pe); (7)

where p, o are the mean and standard deviation respectively
while « is the learning factors and p = (X4, pti+, Xi+) - . The
mean, variance and weight factors are updated frame by frame.
For those unmatched, the weight is updated according to

®)

while the mean and the variance remain the same. If none of
the distributions are matched, the one with the lowest weight is
replaced by a distribution with the incoming pixel value as its
mean, a low weight and a large variance.

wit = (1 — a)wis—1

ALGORITHM MODIFICATIONS

The algorithm works efficiently only in controlled environ-
ments. [ssues regarding algorithm weaknesses in different situa-
tions are addressed in many publications [14]-[16], [18]. In this
section, instead of mainly focusing on improving robustness, we
propose several modifications to the algorithm with the major
concern on their impact on potentially improved hardware effi-
ciency.

A. Color Space Transformation

In theory, multimodal situations only occur when repetitive
background objects are present in the scene. However, this is
not always true in practice. Consider an indoor environment
where the illumination comes from a fluorescence lamp. An ex-
ample of a video sequence from such an environment is taken
given recorded in our lab, where five pixels are picked up evenly
from the scene and measured over time. Their RGB value dis-
tributions are drawn in Fig. 1(a). From the figure it can be seen

that instead of five sphere like pixel distributions, the shapes
of the pixel clusters are rather cylindrical. Pixel values tend to
jump around more in one direction than another in the presence
of illumination variations caused by the fluorescence lamp and
camera jitter. This should be distinguished from the situation
where one sphere distribution is moving slowly towards one di-
rection due to slight daylight changes. Such a case is handled by
updating the corresponding mean values in the original back-
ground model. Without an upper bound for the variance, the
sphere describing the distribution tends to grow until it covers
nearly every pixel in the most distributed direction, thus taking
up a large space such that most of it does not belong to the
distribution [sphere A in Fig. 1(b)]. A simple solution to this
problem is to set an upper limit on the variance, e.g., the max-
imum value of the variance in the least distributed direction.
The result is multimodal distributions represented as a series
of smaller spheres (spheres B-E in the same figure). Although
a background pixel distribution is modeled more precisely by
such a method, additional Gaussian distributions are inferred
which are hardware costly in terms of extra parameter update
and storage. In [28] D. Magee proposed a cylindrical model to
address the issue with primary axes of all distribution cylinders
pointing at the origin. However, more parameters are needed for
each cylindrical distribution than for the spherical counterpart,
i.e., the parameters of a cylindrical distribution contains dis-
tance, two angles, a diameter and the height. Furthermore, it is a
hardware costly computation to transform RGB values to cylin-
drical coordinates, e.g., division and square root. In addition, not
every distribution cylinder is oriented towards the origin, see the
left middle distribution in Fig. 1(a).

To be able to model background pixels using a single distri-
bution without extensive hardware overhead, color space trans-
formation has been investigated. Both HSV and Y C;, C'. spaces
are investigated and their corresponding distributions are shown
in Fig. 2. By transforming RGB into Y C}, C,. space, the correla-
tion among different color coordinates are mostly removed, re-
sulting in nearly independent color components. With varying
illumination environment, the Y component (intensity) varies
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(b) Unpredictable distributions in the H.SV color space.

Fig. 2. Five distributions in Y'C', C',. and HSV color spaces. (a). Most pixel distributions are transformed from cylindrical pixel distributions in RGB color space
into sphere like pixel distributions in Y C, C'. color space. This is due to the correlation that exists among different color components in RGB color space is almost
removed in Y C, C,. color space. (b). With correlated color space as well, HSV color space is no better than RGB color space, unpredictable pixel distributions

appears occasionally.

the most accordingly, leaving C and C,. components (chro-
maticity) more or less independent. In [29], this property is uti-
lized for shadow reduction. Consequently, values of three inde-
pendent components of a pixel in Y C,,C,. color space tends to
spread equally. As shown in Fig. 2(a), most pixel distributions
are transformed from cylinders back to spheres, capable of being
modeled with a single spherical distribution. The transformation
from RGB to Y C},C.. is linear, and can be calculated according
to the following:

Y =16 + 65.481 x R 4 128.553 x G + 24.966 x B (9)
Cp, =128 — 37.797 x R — 74.203 x G + 112.0 x B (10)
Cr, =128 4+112.0 x R —93.786 x G — 18.214 x B.(11)

Only minor hardware overhead with a few extra multipliers and
adders are introduced, where multiplication with constants can
be further utilized to reduce hardware complexity. Simplifica-
tions can be performed to further reduce the number of multi-
plications to 4 [30]. The HSV color space, on the other hand,
also with correlated coordinates, is no better than RGB color
space if not worse. Unpredictable pixel clusters appeared oc-
casionally as shown in Fig. 2(b), which is impossible to model
using Gaussian distributions.

Color space transformation has also been performed on out-
door video sequences where similar results have been observed.
These results are also in line with [28].

Algorithm Simplifications

We propose two simplifications to the algorithm. In the
original algorithm specification, unbounded growing distribu-
tion will absorb more pixels. As a result, the weight of that
distribution will soon dominate all others. To overcome this, in
[13], all updated Gaussian distributions are sorted according
to the ratio w/o. In this way, the distribution with dominant
weight but large variance does not get to the top, identified as
background distribution. In our approach, with Y C,C,. color

space transformation, no upper bound is needed. All distribu-
tions can be simply sorted by their weights only, effectively
eliminating division operations in the implementation.

Another simplification made in the process of foreground/
background detection is that instead of using (4), the determi-
nation can be made by checking the weight of each distribution
separately. This is due to the fact that one pixel cluster will not
spread out in several distributions by the color space transforma-
tion to Y C,C,.. The set of distributions belonging to the back-
ground is modified to be

{k |we > HY . (12)

III. HARDWARE ARCHITECTURE

To perform the algorithm with VGA resolution in real-time,
a dedicated hardware architecture, with a streamlined data flow
and memory bandwidth reduction schemes, is implemented
to address the computation capacity and memory bandwidth
bottlenecks. Due to memory bandwidth limitations, only three
Gaussians are utilized which has been shown to be sufficient
in our test sequences and aught to be sufficient for many
environments, i.e., two background and one foreground distri-
bution. The architecture in itself does not put any restriction
on the number of distribution which could be increased if the
environment so requires. Algorithm modifications covered
in previous sections are implemented with potential benefits
on hardware efficiency and segmentation quality. This is a
large improvement to the previous work [31], [32], where
only 352 x 288 resolution is achieved without any memory
reduction schemes and algorithm modifications. In this section,
a thorough description of the architecture of the segmentation
unit is given, followed by detailed discussions of the memory
reduction schemes.

To give a better understanding of the architecture, a simpli-
fied conceptual block diagram of the whole system is given in
Fig. 3 to illustrate the dataflow within the system. The system
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Fig. 3. Conceptual block diagram of the segmentation unit.

starts at the CMOS image sensor capturing video sequence in
real-time and feeding it to the system through a sensor interface.
The interface is designed to be able to control the parameters
of the image sensor at run-time, e.g., analog gain and integra-
tion time, so that better image quality can be obtained within
different environments. The sensor interface is also responsible
for sampling the image data transferred from off-chip. In our im-
plementation, an over sampling scheme by a higher clock fre-
quency (100Mhz) is used to ensure the accuracy of the image
data. The image data is captured with one color component at
a time, and the three color components are sent to the system
after serial-parallel transformation. To handle different clock
frequencies, input FIFOs, implemented as distributed RAMs,
are used to interface to both the segmentation logic and the VGA
controller where the original video data can be monitored on
a screen. The RGB values are converted into Y C,C,. compo-
nents before entering the segmentation logic block, according
to the algorithm modification above. Each pixel has a number
of corresponding Gaussian distributions and the parameters of
those are stored in off-chip memories (DDR SDRAM) due the
overall amount of data. For each pixel, the Gaussian parameters
are read from the DDR SDRAM and decoded by the param-
eter encoder/decoder. The match and switch unit checks if the
incoming pixel matches any of the existing distributions. The
output from this unit is reordered Gaussian distributions with
the matching distribution switched to a specific port. The match
and switch block is mainly composed of comparators and mul-
tiplexer. The Gaussian distributions are updated according to
the algorithm modifications presented in the previous section.
From this point foreground/background detection can start by
checking the weight of the updated matched Gaussian distribu-
tion. The output is a binary stream to be multiplexed to the mon-
itor, indicating foreground and background pixels with white
and black colors. The updated Gaussian parameters have to be
sorted for use in the next frame, and all distributions should
be ordered according to their weight. This is implemented in
a dedicated sorting network that will be covered in more detail
in Section V. To reduce the heavy memory bandwidth incurred
by accessing off-chip DDR SDRAM that stores one frame of
Gaussian distributions, an encoding/decoding block is designed
by utilizing pixel localities in succeeding neighboring pixels.
This is covered in more detail in Section IV-C.

In the following, implementation details of the architec-
ture shown in Fig. 4 are explained with an emphasis on the
parts with algorithm modifications, indicated by shaded area.
With the image data captured and transformed, the match and
switch block tries to match the incoming pixel with Gaussian
distributions obtained from the previous frame. To avoid the
competition between several Gaussian distributions matching
the incoming pixel, only the one with highest likelihood (large
weight) is selected as the matching distribution. A matched
Gaussian is switched to the bottom (3 in the figure). In case no
matching distribution is found, a No_match signal is asserted. If
there is a match, a parameter update should be performed. For
the matched Gaussian distribution, a proposed updating scheme
is implemented with only incrementers/decrementers for the
mean and variance values. Depending on whether the incoming
Y C,C,. value is larger than the mean values, a addition or
subtraction is applied for parameter updating. Similar updating
schemes are utilized for variance update. The proposed param-
eter update results in low hardware complexity by replacing
the hardware costly operations in (6) and (7), e.g., square and
multiplication with large wordlength with incrementer/decre-
menter. Other benefits of the proposed updating schemes are
described in detail in Section IV-B. For the case that no match
is found, a MUX is used together with the No_match signal to
update all parameters for the distribution (3 in the figure) with
predefined values.

A. Sorting

The updated Gaussian parameters have to be sorted for use in
the next frame. In order to reduce hardware complexity found
in parallel sorting networks, such as [33]-[35], while still main-
taining the speed, a specific feature in the algorithm is explored.
By observing that only one Gaussian distribution is updated at
a time and all the distributions are initially sorted, the sorting
of N Gaussian distributions can be changed to rearranging an
updated distribution among N — 1 ordered distributions. As
a result, both the number of sorting stages and the number of
comparators are reduced to only one sorting stage with N — 1
comparators and N MUXes, resulting in both increased speed
and reduced area. The architecture for a sorting network for
five Gaussians is shown in Fig. 5, five distributions are used in-
stead of three to get a more generalized architecture. From the
figure, all unmatched ordered Gaussian distributions are com-
pared with the updated distribution, i.e., three in the figure. The
output of each comparator signifies which distribution is to be
multiplexed to the output, e.g., if the weight of any unmatched
distribution is smaller than the updated one, all unmatched dis-
tributions below the current one is switched to the output at the
next lower MUX. This architecture scales very easily to support
sorting more distributions since the number of stages will not
increase accordingly. Since only three Gaussians are utilized
in our implementation this is a trivial task. However, if future
implementations require more Gaussians per pixel the sorting
architecture will be useful to reduce hardware complexity. A
comparison of hardware complexity between proposed sorting
architecture and other schemes mentioned above is shown in
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Fig. 4. More detailed architecture of the segmentation unit.
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Fig. 5. Sorting architecture. Five Gaussian are sorted according to their weight.
The architecture scales well with increasing number of Gaussian due to its fixed
logic level (one comparator and one MUX).

Table II. The foreground detection is achieved by simply com-
paring the weight of the distribution on the bottom with a pre-
defined parameter H according to the simplifications made in
previous sections. All sorted Gaussian parameters are encoded
and decoded before and after writing to and reading from a DDR
SDRAM, with manipulated data flow controlled by a custom
made DDR controller. The encoding and decoding scheme is
explained in details in Section IV-C.

16
[Mean] *0’——7—

TABLE II
HARDWARE COMPLEXITY WITHIN DIFFERENT SORTING ARCHITECTURE,
WHERE p 1S log, N

Scheme Nr. of Comparators Nr. of Stages
Proposed N-—-1 2
[33] P> —p+4)2°7% -1 | (7)(V)(logy N)?
Odd-even trans. sort O(N) O(N?)
Bitonic Sort O(Nlog N)? O(log N)?

B. Wordlength Reduction

Slow background updating requires large dynamic range for
each parameter in the distributions, since parameter values are
changed slightly between frames but could accumulate over
time. According to (6) and (7), the mean and variance of a
Gaussian distribution is updated using a learning factor p. The
difference of mean and variance between current and previous
frame is derived from the equation as

Ay =pg — ple—1 = p(Xt — pe—1) and (13)
AE :Ut? - 01,2—1
=p((Xe —p)" (X =) —0p—1) . (14)

Given a small value of p, e.g., 0.0001, a unit difference be-
tween the incoming pixel and the current mean value results in a
value of 0.0001 for A,,. To be able to record this slight change,
22 bits have to be used for the mean value, where 14 bits ac-
counts for the fractional part. Empirical results have shown that
the Gaussian distributions usually are a sphere with a diameter
of less than 10. Therefore, an upper bound for the variance is
set to 16 and a maximum value of A, becomes p X J X 0 =
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(a) The original parameter updating scheme in presence of

relatively fast light changes. Red color component values (solid
line) of a pixel over frames are plotted together with updated

mean values for the red color channel (diamond line).
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(d) A closer look at the zoom in area.

relatively fast light changes. Red color component values (solid
line) of a pixel over frames are plotted together with updated

mean values for the red color channel (star line).

Fig. 6. Results from both the original parameter updating scheme and the proposed parameter updating schemes.

0.0001 x 2.5 x /16 = 0.001, which can be represented by 10
bits (.J is the same as in Section II). Using a wordlength lower
than that, no changes would ever be recorded. In practice, the
bits for the fractional parts should be somewhere in between
10-14 bits and 7-14 for the mean and variance, respectively.
Together with 16 bits weight and integer parts of the mean and
the variance, 81-100 bits are needed for a single Gaussian distri-
bution. To reduce this number, a wordlength reduction scheme
is proposed. From (13), a small positive or negative number is
derived depending on whether the incoming pixel is above or
below the current mean. Instead of adding a small positive or
negative fractional number to the current mean, a value of 1 or
—1 is added. The overshooting caused by such coarse adjust-
ment could be compensated by the update in the next frame.
The result is that without illumination variation, the mean value
will fluctuate with a magnitude of 1, negligible since the diam-
eter of the Gaussian distribution is usually more than 10.

In a relatively fast varying illumination environment, e.g., 25
RGB value changes in a second, fast adaptation to new lighting
conditions is also enabled by adding or subtracting ones in
consecutive frames. Fig. 6(c) shows the experimental results
of the coarse updating in a varying lighting room, where the
light is turned up and down. The parameter updating scheme
specified in the original algorithm is also drawn in Fig. 6(a)

for comparison. A closer look at the two schemes is given in
Fig. 6(d) and (b). From Fig. 6(a), it is clear that the original
parameter updating does not work well in the presence of fast
light changes, i.e., slow parameter updating (diamond line
in the figure) will not keep track of the pixel value changes
(solid line in the figure). Finally, the Gaussian distribution
will not be able to match the incoming pixel values, in which
case Gaussian distribution replacement takes place instead of
parameter updating. The coarse updating scheme on the other
hand relieves the problem to certain extent, where consecutive
ones are added or subtracted to keep track of the relatively fast
changes.

From these figures, it can be seen that the proposed coarse
updating scheme works fine in both slow and relatively fast
light changing situations. It keeps track of the relatively fast
value changes in the dynamic scene while fluctuates around a
constant value in the latter static scene. However, with the pri-
mary goal to reduce wordlength, the coarse parameter updating
scheme results in limited improvements to the segmentation re-
sults. Nearly no visual difference can be observed in the seg-
mented results from the two schemes.

With coarse updating, only integers are needed for mean spec-
ification, which effectively reduce the wordlength from 18-22
down to 8 bits. Similar approach can be applied to the variance
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Fig. 7. Gaussian distribution similarity as modeled by cube overlapping.

(a step value of 0.25 is used instead), resulting in a wordlength
of 6 bits, where 2 bits account for fractional part. Together with
the weight, the wordlength of a single Gaussian distribution can
be reduced from 81-100 to only 44 bits, i.e., over 43% reduc-
tion even compared to the extreme case of 81 bits. In addition,
less hardware complexity is achieved as a bonus since multipli-
cation with the learning factor p is no longer needed.

Thus, the proposed scheme enhance the algorithmic perfor-
mance while at the same time reduce both memory bandwidth
and computational complexity.

C. Pixel Locality

In addition to wordlength reduction, a data compression
scheme for further bandwidth reduction is proposed by uti-
lizing pixel locality for Gaussian distributions in adjacent
areas. We classify “similar” Gaussian distributions in the fol-
lowing way: from the definition of a matching process, each
Gaussian distribution can be simplified as a cube instead of a
sphere in the Y C,C),. color space. The center of the cube is
composed of Y'(},C,. mean values whereas the border to the
center is specified by J = 2.5 times the variance. One way to
measure the similarity between two distributions is to check
how much the two cubes overlap. If the overlap takes up a
certain percentage of both Gaussian cubes, they are regarded
as “similar”. The whole idea is illustrated in Fig. 7. The reason
for such a criteria lies in the fact that a pixel that matches one
distribution will most likely match the other. The percentage
is a threshold parameter that can be set to different values for
different situations.

In the architecture, two similar distributions are treated as
equivalent. By only saving non overlapping distributions to-
gether with the number of equivalent succeeding distributions,
memory bandwidth is reduced. Various threshold values are
selected to evaluate the efficiency for the memory bandwidth
reduction. With a low threshold value where less overlap-
ping Gaussian distributions are regarded as the same, more
savings could be achieved. However, more noise is gener-
ated due to increasing mismatches. Fortunately, such noise is
found non-accumulating and therefore can be reduced by later
morphological filtering [37], [38]. Fig. 8 shows the memory
bandwidth savings over frames with various threshold values.
The simulation results are obtained from MATLAB, with four
video sequences provided by AXIS [36] which represent both
indoor and outdoor scenes. The sequences are selected to reflect

a range of real-world environments with possible difficulties
for many segmentation and tracking algorithms. The scene
“stairs” comprises people moving up and down stairs randomly
where gradual illumination changes together with shadows are
the major disturbing factors. The scene “hallway” focus on a
scenario with people moving closer or further away from the
camera, i.e., the foreground object size is varying over time.
The scene “trees” address the issue of quasi-static environments
where a swaying tree is present as the dynamic background
object. Finally, the scene “parklot” presents an environment
with walking people and moving cars of different size. Gradual
illumination as well as “waking” foreground objects is also
within the focus. It can be seen from the sequences, memory
reductions scheme works robustly within different real-world
environments with variation only in the beginning due to varied
foreground actives. During initialization phase, only back-
ground pixels are present, which exhibit high similarity within
neighboring pixels. With foreground objects entering the scene,
part of Gaussian distributions are replaced, which results in
the decrease of number of similar Gaussian distributions. The
trends will continue until it reaches a certain point where most
pixel locations contain a foreground distribution. The decrease
will flatten out in the end since more foreground objects always
replace the distribution that represents a foreground pixel.
Foreground objects activities can vary in different video scenes,
e.g., continuous activities in Fig. 8(a) where people going up
and down the stairs all the time, and the two peak activity
periods around frames 600-900 and frames 2100-2500 in
Fig. 8(b), where people walk by in two discrete time periods. In
the long run, the bandwidth savings tends to stabilize (around
50%-75% depending on threshold value) after the initialization
phase. Another test sequence is also experimented in our lab.
Similar results are observed as shown in Fig. 9. The quality of
the segmentation results before and after morphology is shown
in Fig. 10, where it is clear that memory reduction comes at the
cost of segmentation quality. Too low threshold value results in
clustered noises that would not be filtered out by morphological
filtering, which is shown in Fig. 10(c). In this implementation,
a threshold value of 0.8 is selected, combined with wordlength
reduction scheme, a memory bandwidth reduction of over 70%
is accomplished. To evaluate long term effects of memory
bandwidth reduction scheme, FPGA platform is required to
collect data in real time.

IV. RESULTS

The segmentation unit is prototyped on an Xilinx VirtexII
vp30 development board, as shown in Fig. 11. The board comes
with one DDR memory slot with customized on board signal
traces that minimize the skew between different signals. Virtex
I vp30 is equipped with two on-chip PowerPC embedded
processor cores. The number of on-chip block RAMs is 136,
with 2448 Kb in total. A custom-made PCB extension board
is mounted on the FPGA board to support an image sensor.
The whole design is partitioned into 3 clock domains and asyn-
chronous FIFOs are used to interface blocks different clocks. A
KODAK KAC-9648 CMOS sensor [39] is used to capture color
images stream into the FPGA platform. Real time segmentation
performance is achieved on video sequences with 3 Gaussian
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Fig. 9. Memory bandwidth reductions achieved in an indoor test video se-
quence. Left: memory bandwidth reductions with various threshold values are
given over frames. It shows memory bandwidth savings tend to stabilize after
initialization phase. Right: Stabilized memory bandwidth reductions against
threshold value. Lower threshold value results in better bandwidth reductions
at the cost of introducing more noises in the segmented image.

distributions per pixel. With the proposed memory reduction
schemes, off-chip memory bandwidth is reduced by more than
70%. A summary of the whole design is given in Table III.

In Table IV, a summary of the hardware complexities of
different blocks is given. It can be seen that algorithm mod-

(a) (b) (c)

Fig. 10. Results before and after morphological filtering for different thresh-
olds. (a) Original result. (b) Threshold of 0.8. (c) Threshold of 0.4.

ifications results in a relatively low hardware complexity in
parameter updating block, which merely occupies 8% of the
total utilized resources. Furthermore, the hardware complexity
of sorting and color space transformation is low after opti-
mization. However, the memory reduction scheme with pixel
locality is relatively costly in hardware where a relatively large
number of multiplications are needed to calculate the cube vol-
umes. However, for video application it is often advantageous
to trade memory bandwidth for arithmetic complexity. The
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Fig. 11. Segmentation hardware is prototyped on an Xilinx VirtexII vp30
FPGA development board. A DDR memory is used for storing one frame of
Gaussian parameters. A KODAK KAC-9648 CMOS sensor [39] is used to
capture color image stream into the FPGA platform.

TABLE III
DESIGN SUMMARY

| FPGA Utilization |

Nr. of Slices Nr. of Flip Flops Nr. of DCMs | Nr. of BRAMs
6107 4273 5 84
[ Clock Domains |
100Mhz 16Mhz 25Mhz
Sensor interface & DDR controller | Segmentation | VGA controller

| System Parameters |

Throughput Frame rate Nr. Gaussians
170MB/s 25 3

Resolution
640 x 480

DDR controller contributes to a large part of the whole design
due to complicated memory command and data signal ma-
nipulations, clock schemes, and buffer controls. Block RAMSs
are used as data buffers to support DDR burst read and write
operations. The 24 BRAMs used for the DDR controller can
be reduced by using low depth Gaussian parameter buffers to
write/read to the off-chip DDR memory. However, the number
of burst operations to DDR memory is increased which causes
overhead. There is a tradeoff between DDR performance and
on-chip buffer size and with different DDR parameters, the
optimum buffer size would vary. A dedicated VGA controller is
designed streaming output data into a monitor where the results
from different stages of the logic can be viewed. The VGA
controller consumes most of the on-chip memory resources,
but is not really a part of the segmentation algorithm. Dual-port
block RAMs are used as video RAMS in the VGA controller,
which are shared by different blocks of the complete surveil-
lance system to display the results from different stages on a
monitor. Thus, the memory requirements directly dedicated to
the algorithm is low while the DDR and VGA controller utilize
a substantial amount of memory.

V. CONCLUSION

A real-time video segmentation unit is implemented on a
Xilinx FPGA platform capable of 25 fps at VGA resolution.
By utilizing combined memory reduction schemes, off-chip
memory access can be reduced by over 70%. With real time
performance, tracking schemes can be evaluated in varied envi-
ronments for system robustness testing. For the implementation
of the hardware units, memory usage is identified as the main
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TABLE 1V
HARDWARE COMPLEXITY FOR DIFFERENT BLOCKS WITHIN SEGMENTATION
UNIT
Logic Block Nr. of Slices (%) | Nr. Block RAMs

Match 253 (4%) 0
Switch 652 (11%) 0
Parameter Update 483 (8%) 0
Pixel Locality 1530 (25%) 0
Sensor Interface 540 (9%) 3
Sorting 355 (6%) 0
DDR controller 1599 (26%) 24
RGB2Y Cy,Cr 181 (3%) 0
VGA controller 377 (6%) 57

bottleneck of the whole system, which is common in many
image processing systems. This is especially true for segmenta-
tion since most algorithms operates in pixel-wise structures. To
address the issue a joint memory reduction scheme is proposed
by utilizing pixel locality and wordlength reduction. By mea-
suring similarity of neighboring Gaussian distributions with
overlapping volume of two cubes, threshold can be set to clas-
sify Gaussian similarities. Wordlength reduction is as important
for memory bandwidth reduction. By utilizing coarse parameter
updating scheme, wordlength for each Gaussian parameters are
reduced substantially, which effectively decrease the memory
bandwidth to off-chip memories. Careful tradeoffs should be
made based on different application environments. Algorithm
modifications are of great importance for the efficiency of the
hardware implementation.
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