
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Real-Time Control Systems with Delays

Nilsson, Johan

1998

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, J. (1998). Real-Time Control Systems with Delays. [Doctoral Thesis (monograph), Department of
Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/a7fa0a2d-09ac-4630-bd35-e9981735db27

Download date: 31. Mar. 2025

Real-Time Control Systems
with Delays

Johan Nilsson

Department of Automatic Control, Lund Institute of Technology

Real-Time Control Systems
with Delays

Real-Time Control Systems
with Delays

Johan Nilsson

Lund 1998

To my parents

Published by
Department of Automatic Control
Lund Institute of Technology
Box 118
S-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--1049--SE

c� 1998 by Johan Nilsson
All rights reserved

Printed in Sweden by Lunds Offset AB
Lund 1998

Contents

Acknowledgments . 7

1. Introduction . 8
Outline of the Thesis and Publications 9

2. Problem Formulation . 13
2.1 Distributed Control . 13
2.2 Networks . 18
2.3 Clock Synchronization . 20
2.4 Related Work . 23

3. Modeling of Network Delays 29
3.1 Network Modeled as Constant Delay 29
3.2 Network Modeled as Delays Being Independent 30
3.3 Network Modeled Using Markov Chain 31
3.4 Sampling of Systems with Network Delays 31

4. Experimental Delay Measurements 35
4.1 CAN . 35
4.2 Ethernet Network . 50
4.3 Summary . 54

5. Analysis and Control with Independent Delays 56
5.1 Closed Loop System . 56
5.2 Analysis . 58
5.3 Simulation of Systems with Network Delays 62
5.4 Optimal Stochastic Control 63
5.5 Example . 72
5.6 Summary . 73

5

Contents

6. Analysis and Control with Markov Delays 76
6.1 Setup . 76
6.2 Analysis . 79
6.3 Proof of Theorem 6.1 . 89
6.4 Optimal Stochastic Control 92
6.5 Proof of Theorem 6.4 . 98
6.6 Summary . 101

7. Special Topics . 102
7.1 Markov Chain with Two Transitions Every Sample . . . 103
7.2 Sampling Interval Jitter 106
7.3 Estimation of Markov State 110
7.4 The MIMO Problem . 111
7.5 Timeout . 116
7.6 Timeout and Vacant Sampling 120
7.7 Asynchronous Loops . 122

8. Conclusions . 125

9. References . 129

A. Kronecker Products . 133
A.1 Definitions . 133
A.2 Basic Rules of Calculation 134

B. Some Results from Probability Theory 135
B.1 Markov Chains . 135
B.2 Conditional Independence 136

6

Acknowledgments

Acknowledgments

I would like to take the opportunity to thank all friends and colleagues
that have given me support and encouragement in my thesis work. Thank
you!

My work has been supervised by Bo Bernhardsson and Björn Witten-
mark. During the work they have continuously provided me with enthu-
siasm, vision, and wisdom. They are outstanding researchers to have as
role models for a PhD-student. During my time at the department and
during the work with this thesis I have also been inspired by Karl Johan
Åström, who is the most skilled engineer I have met.

I would like to express my sincere gratitude to the group at the de-
partment working in the field of real-time systems. My own research has
benefited from them. I would especially like to mention Karl-Erik Årzén,
Anders Blomdell, Klas Nilsson, Leif Andersson, and Johan Eker.

I have had the good fortune to work in a very inspiring environment. It
has been a privilege to work together with the intelligent and friendly col-
leagues at the department. Especially I would like to thank Lennart An-
dersson, Johan Eker, Karl Henrik Johansson, Ulf Jönsson, Jörgen Malm-
borg, Erik Möllerstedt, and Henrik Olsson, with whom I have spent a lot
of time both at work and in leisure hours.

I would like to thank the support staff at the department. Throughout
the years they have been very helpful. Excellent computer facilities have
been provided by Leif Andersson and Anders Blomdell. They have also
served as excellent teachers for me in computer science. The secretariat
of the department has always been run with perfectionism, especially I
would like to mention Eva Schildt for doing a great job. Rolf Braun has
always been very helpful with the laboratory work.

The CAN experimental setup was borrowed from DAMEK Mechatron-
ics Division at the Royal Institute of Technology. I would like to thank
Martin Törngren and Ola Redell at DAMEK for helping me getting the
CAN-platform running.

The work has been partly supported by the Swedish National Board
for Industrial and Technical Development (NUTEK), Project Dicosmos,
Contract 93-3485.

Finally, I am indebted to my parents and family for always supporting
and encouraging me.

J.N.

7

1

Introduction

Control loops that are closed over a communication network get more and
more common as the hardware devices for network and network nodes
become cheaper. A control system communicating with sensors and actu-
ators over a communication network will be called a distributed real-time
control system. In distributed real-time control systems, see Figure 1.1,
data are sent and received by network nodes of different kind and manu-
facturers. Network nodes that are of specific interest for distributed con-
trol are sensor nodes, actuator nodes, and controller nodes. Sensor nodes
measure process values and transmit these over the communication net-
work. Actuator nodes receive new values for the process inputs over the
communication network and apply these on the process input. Controller
nodes read process values from sensor nodes. Using a control algorithm
control signals are calculated and sent to the actuator nodes. The system
setup with a common communication network reduces cost of cabling and
offers modularity and flexibility in system design.

The distributed control setup is powerful, but some caution must be
taken. Communication networks inevitably introduce delays, both due to
limited bandwidth, but also due to overhead in the communicating nodes
and in the network. The delays will in many systems be varying in a ran-
dom fashion. From a control perspective the control system with varying
delays will no longer be time-invariant. As an effect of this the standard
computer control theory can not be used in analysis and design of dis-
tributed real-time control systems. The thesis addresses the problem of
analysis and design of control systems when the communication delays
are varying in a random fashion. Models for communication network de-
lays are developed. The most advanced model has an underlying Markov
chain that generates the probability distributions of the time delays. Mea-
surements of transfer delays are presented for two commercially used net-
works, a CAN-network (Controller Area Network) and an Ethernet net-
work. For the derived network models closed loop stability and evaluation

8

Outline of the Thesis and Publications

Physical process

Actuator node Sensor node

Other usersOther users

Network

Control computer

Figure 1.1 Distributed real-time control system with sensor node, controller node,
and actuator node. The communication network is also used for other applications
in the system.

of a quadratic cost function are analyzed. The LQG-optimal controller is
derived both for a network where the time delays are independent from
sample to sample, and for a network where the probability distribution
functions for the delays are governed by an underlying Markov chain.
The derived controllers use knowledge of old time delays. This can be
achieved by so called “timestamping”, all transfered signals are marked
with the time they were generated. By comparing the “timestamp” with
the internal clock of the controller the time delay can be calculated. It is
shown that the optimal controller is the combination of a state feedback
controller and a Kalman filter, i.e., the separation principle applies.

Outline of the Thesis and Publications

The contents of the thesis are as follows:

Chapter 2: Problem Formulation

This chapter gives an introduction to the problem formulation. A short
review of clock synchronization and networks for distributed control is
also presented. The chapter is concluded with a summary of work related
to this thesis.

Our first study of the problem with varying network delays are pub-
lished in

WITTENMARK, B., J. NILSSON, and M. TÖRNGREN (1995): “Timing problems
in real-time control systems.” In Proceedings of the 1995 American
Control Conference, Seattle, Washington.

9

Chapter 1. Introduction

The problem with distributed real-time control systems was also studied
in my licentiate thesis

NILSSON, J (1996): “Analysis and design of real-time systems with
random delays.” Report ISRN LUTFD2/TFRT--3215--SE. Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Chapter 3: Modeling of Network Delays

Two models for the network delays are developed. The first model is mem-
oryless and assumes that the delays have a constant probability distribu-
tion function. The second model assumes that the probability distribution
functions for the delays are given by an underlying Markov chain. The
models are well suited for analysis and design of distributed real-time
control systems.

The network models were first developed in the licentiate thesis

NILSSON, J (1996): “Analysis and design of real-time systems with
random delays.” Report ISRN LUTFD2/TFRT--3215--SE. Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Chapter 4: Experimental Delay Measurements

Network delay measurements are presented for two commercial networks,
CAN (Controller Area Network) and Ethernet. The networks are shown to
have more or less, depending on load situation, random delays for trans-
missions. This chapter serves as a motivation for studies of the control
problem outlined in Chapter 2, and for use of the models derived in Chap-
ter 3.

Chapter 5: Analysis and Control with Independent Delays

In this chapter the delays are assumed to have a constant probability dis-
tribution function. The network delay model is derived in Chapter 3. Re-
sults are developed to determine system stability and values of quadratic
cost functions given a proposed controller. The LQG-optimal stochastic
control problem is solved. Some examples are given.

The results of this chapter are published in

NILSSON, J., B. BERNHARDSSON, and B. WITTENMARK (1996): “Stochastic
analysis and control of real-time systems with random time delays.” In
Proceedings of the 13th International Federation of Automatic Control
World Congress, San Francisco, California.

NILSSON, J (1996): “Analysis and design of real-time systems with
random delays.” Report ISRN LUTFD2/TFRT--3215--SE. Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

10

Outline of the Thesis and Publications

NILSSON, J., B. BERNHARDSSON, and B. WITTENMARK (1998): “Stochastic
analysis and control of real-time systems with random time delays.”
Automatica, 34:1.

Chapter 6: Analysis and Control with Markov Delays

In this chapter we study a network model having a Markov chain that
gives the probability distribution functions for the delays. Results for eval-
uation of covariances and mean square stability are derived. The LQG-
optimal controller is derived for the Markov communication network. Ex-
amples are given along with the theoretical presentation.

The analysis results are published in

NILSSON, J (1996): “Analysis and design of real-time systems with
random delays.” Report ISRN LUTFD2/TFRT--3215--SE. Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

NILSSON, J., and B. BERNHARDSSON (1996): “Analysis of real-time control
systems with time delays.” In Proceedings of the 35th IEEE Conference
on Decision and Control, Kobe, Japan.

and the LQG-control results are published in

NILSSON, J., and B. BERNHARDSSON (1997): “LQG control over a Markov
communication network.” In Proceedings of the 36th IEEE Conference
on Decision and Control, San Diego, California.

NILSSON, J., and B. BERNHARDSSON (1997): “LQG control over a Markov
communication network.” Submitted for journal publication.

Chapter 7: Special Topics

This chapter contains several subproblems that are connected to the the-
sis. Some are extensions to the theory developed in Chapter 5 and Chap-
ter 6, including sampling interval jitter and setups with multiple sensors
and actuators. A problem that is related to the delay in measurements
is the use of “timeouts”. We present and analyze a controller that uses
a timeout for waiting on a new measurement. Time variations resulting
from use of asynchronous loops are also studied.

The results in this chapter are mainly from

NILSSON, J., B. BERNHARDSSON, and B. WITTENMARK (1997): “Some topics
in real-time control.” Submitted for conference publication.

Chapter 8: Conclusions

In the last chapter conclusions are presented. Extensions and open prob-
lems are discussed.

11

Chapter 1. Introduction

Appendices

The thesis is concluded with two appendices, one on Kronecker products,
and one containing some results from probability theory.

12

2

Problem Formulation

2.1 Distributed Control

We will study the closed loop system depicted in Figure 2.1. The actua-
tors and sensors are connected to a communication network. These units
receive respectively send control information to the centralized controller.
The centralized controller is connected to the network, and communicates
with sensors and actuators by sending messages over the network. Send-
ing a message over a network typically takes some time. Depending on the
network and scheduling policy in the system this transfer time can have
different characteristics. The transfer time can in some setups be nearly
constant, but in many cases it is varying in a random fashion. The length
of the transfer delay can, for instance, depend on the network load, pri-
orities of the other ongoing communications, and electrical disturbances,
Ray (1987). Depending on how the sensor, actuator, and controller nodes
are synchronized several setups can be found. Several previous authors
have suggested control schemes with slightly different timing setups. The
different setups come from whether a node is event-driven or clock-driven.
By event-driven we mean that the node starts its activity when an event
occurs, for instance, when it receives information from another node over
the data network. Clock-driven means that the node starts its activity at
a prespecified time, for instance, the node can run periodically. There are
essentially three kinds of computer delays in the system, see Figure 2.1:

• Communication delay between the sensor and the controller, τ sc
k .

• Computational delay in the controller, τ c
k.

• Communication delay between the controller and the actuator, τ ca
k .

The subscript k is used to indicate a possible time dependence of the

13

Chapter 2. Problem Formulation

Actuator
node Process Sensor

node

Controller
node

Network

h

τ sc
kτ ca

k

τ c
k

u(t) y(t)

Figure 2.1 Distributed digital control system with induced delays, τ sc
k and τ ca

k .
The computational delay in the controller node, τ c

k, is also indicated.

delays.
The control delay, τ k, for the control system, the time from when a

measurement signal is sampled to when it is used in the actuator, equals
the sum of these delays, i.e., τ k � τ sc

k + τ c
k + τ ca

k .
One important problem in this control system setup is the delays,

which are varying in a random fashion. This makes the system time-
varying and theoretical results for analysis and design for time-invariant
systems can not be used directly. One way to get rid of the time varia-
tions is to introduce clocked buffers on the input in the controller node
and the actuator node. If these buffers are chosen large enough, larger
than the worst case delay, the delay for a transfer between two nodes is
deterministic. This scheme was proposed in e.g. Luck and Ray (1990).
Introduction of buffers in the loop means that we sometimes are using
older information than we need to. It is shown in Chapter 5 that this can
lead to a degradation of performance in comparison with an event-driven
setup.

From a sampled-data control perspective it is natural to sample the
process output equidistantly with a sample period of h. It is also natural
to keep the control delay as short as possible. The reason is that time
delays give rise to phase lag, which often degenerate system stability
and performance. This motivation suggests a system setup with event-
driven controller node and event-driven actuator node, which means that
calculation of the new control signal respectively D/A-conversion of the
new control signal takes place as soon as the new information arrives
from the sensor node and the controller node respectively. The timing in
such a system is illustrated in Figure 2.2. A drawback with this setup

14

2.1 Distributed Control

is that the system becomes time-varying. This is seen from Figure 2.2 in
that the process input is changed at irregular times.

Process
output

Process
input

(k− 1)h kh (k+ 1)h

yk

yk

uk

uk

τ sc
k

τ ca
k

Controller
node

signal

Actuator
node

signal

Figure 2.2 Timing of signals in the control system. The first diagram illustrates
the process output and the sampling instants, the second diagram illustrates the
signal into the controller node, the third diagram illustrates the signal into the
actuator node, and the fourth diagram illustrates the process input, compare with
Figure 2.1.

In the subsequent chapters we will analyze and design controllers with
an equidistantly sampling sensor node and event-driven controller and
actuator nodes. We will also make the assumption that the control delay
is less than the sampling period, i.e., τ k ≤ h. This can be motivated in
several ways. From a control point of view, a normal design usually has
0.2 ≤ ω h ≤ 0.6, where h is the sampling period and ω is the natural fre-
quency of the closed loop system, see Åström and Wittenmark (1997). With
a delay equal to one sample this design has a phase lag induced by the
controller, φ lc, of 11○ ≤ φ lc ≤ 34○ . An even larger phase lag would make
many processes hazardous to control. If we have a larger control delay
than the sampling period, h, samples may arrive in a non-chronological
order at the actuator-node. This would make both implementation of algo-
rithms and system analysis much harder. The condition that the control
delay is less than h can be replaced with the assumption that the control
delay may not vary more than h, which also guarantees that samples ar-
rive in chronological order. In Sections 7.5–7.6 we will look at a controller
that does not need the assumption that the delay variation is less than h.
This controller uses a timeout for the arrival of a new measurement. If a

15

Chapter 2. Problem Formulation

(k− 1)h kh

τ sc
k−1 τ ca

k−1 τ ca−b
k−1

τ sc
k

Figure 2.3 Timing plot showing delays during a clock cycle.

timeout occurs, control signal calculation is done based on prediction. A
control scheme with this feature is motivated if the probability function of
the delays have long “tails”. The controller can also be used to detect, and
control, when we lose samples. This phenomena is called vacant sampling.

We will in the following only look at the influences from τ sc
k and τ ca

k .
The effect of τ c

k can be embedded in τ ca
k . We will also assume that we

have the knowledge of how large the previous transfer delays in the loop
were. Ways to implement this feature is discussed in the sequel.

Knowledge of Old Time Delays – Timestamps

Using synchronized clocks in the nodes, delay information can be ex-
tracted by including the time of generation (timestamp) to every message.
Clock synchronization is discussed in Section 2.3. In most networks the
extra network load introduced by the timestamp is negligible in compar-
ison with message and network overhead. The delay information can be
used in the controller node. The timestamp will tell the controller how old
the received measurement is. This information can then be used by the
controller in the control signal calculation.

The controller node can easily calculate τ sc
k by comparing the times-

tamp of the measurement with the internal clock of the controller node.
The controller can also obtain information about τ ca

k−1. In many network
implementations it is possible to get information from the network inter-
face when the last control signal was sent on the network. If this informa-
tion is available, the transfer delay τ ca

k−1 is known when uk is calculated.
Another way to achieve propagation of τ ca

k−1 to the controller is to im-
mediately send a message back from the actuator-node to the controller
containing the transfer time τ ca

k−1. It is, however, not certain that the con-
troller will have received this message when the next control signal is
to be calculated. The timing for the control system between two control
signal calculations is shown in Figure 2.3. We have here introduced the
transfer delay τ ca−b

k for the transfer-time to send back information about
the length of τ ca

k to the controller. The condition that the τ ca
k−1 is known

when we calculate the control signal can in the general case be written

16

2.1 Distributed Control

as

τ sc
k−1 + τ ca

k−1 + τ ca−b
k−1 < τ sc

k + h. (2.1)

We will assume that the sum of the time delays in one control cycle, the
control delay, is less than the sampling interval h. As the control delay
is the sum of τ sc

k and τ ca
k , it is reasonable to assume that each of the

delays is distributed on [0,α h], where α < 0.5. The problem of guaranteed
knowledge of old time delays will be analyzed for some special cases of
communication network behavior.

Total randomness If the communication network gives time delays
that are random and independent it is seen from (2.1) that the condition
on the distribution of the time delays is

α < 1
3

. (2.2)

Total order If we add the requirement that network messages are
transmitted in the order they were generated, the message containing
the length of τ ca

k will always be sent before the next measurement if

α < 1
2

. (2.3)

An implementation of such a system would require something like a global
queue for messages to be sent in the network.

Priority Some communication networks have the possibility to give
messages priorities and guarantee that waiting messages are sent in pri-
ority order. In such a system we can give the message containing τ ca

k−1
a higher priority than the message containing the new measurement yk.
This guarantees knowledge of τ ca

k−1 if

α < 1
2

. (2.4)

Summary of Assumptions

We will make the following assumptions about the control system:

• The sensor node is time-driven. The output of the process is sam-
pled periodically without any scheduling disturbances. The sampling
period is h.

• The controller node is event-driven. The control signal is calculated
as soon as the sensor data arrives at the controller node.

17

Chapter 2. Problem Formulation

• The actuator node is event-driven. The control signal is applied to
the process as soon as the data arrives at the actuator node.

• The communication delays τ sc
k and τ ca

k are randomly varying with
known stochastic properties. The variation of the total time delay,
τ sc

k + τ ca
k , is less than one sampling interval.

• The lengths of the past time delays are known to the controller.

Several models for the time delays will be studied. These are further
discussed in Chapter 3. In Chapter 7 some of the assumptions will be
relaxed. A controller not needing a constant sampling interval will be
investigated in Section 7.2. A controller that can handle longer delays than
a sampling interval is developed in Section 7.5. The controller is based
on timeout for new measurements. The controller node will in this case
sometimes be event-driven, and sometimes clock-driven. This controller
can also be used when we have vacant samples.

2.2 Networks

Communication networks were introduced in digital control systems in
the 1970’s. At that time the driving force was the car industry. The motives
for introducing communication networks were reduced cost for cabling,
modularization of systems, and flexibility in system setup. Since then,
several types of communication networks have been developed. Communi-
cation protocols can be grouped into fieldbuses (e.g. FIP and PROFIBUS),
automotive buses (e.g. CAN), “other” machine buses (e.g 1553B and the
IEC train communication network), general purpose networks (e.g. IEEE
LAN’s and ATM-LAN) and a number of research protocols (e.g. TTP), see
Törngren (1995). Fieldbuses are intended for real-time control applica-
tions, but in some applications other networks may have to be used for
control. For instance, if another network already is used for other func-
tions it could be cost effective to use this network for control too. The
fieldbuses are usually only made for connection of low-level devices. If
high-level function, for instance, a work station, is to be connected, other
networks may be more suitable. There is vast number of communication
protocols and fieldbuses. A short summary is now given of some of the
most used fieldbuses, see also Olsson and Piani (1992) and Tindell and
Hansson (1995).

Foundation Fieldbus

The Foundation Fieldbus was developed by the organization Fieldbus
Foundation, a not for profit organization with over 100 member compa-

18

2.2 Networks

nies, including several major international automation companies. Foun-
dation Fieldbus is released for two speeds, 31.25 kbit/s, and 1 Mbit/s. A
faster bus with bus speed 2.5 Mbit/s, is announced. The low speed bus,
31.25 kbit/s, is intended for replacement of traditional 4 − 20 mA ana-
log signals, without changing the wiring. Each bus can have 32 devices.
By use of bridges a hierarchical network topology can be built. Using a
hierarchical network structure more devices can be connected. Access to
the bus is controlled by a centralized bus scheduler called the Link Active
Scheduler, LAS. During configuration of the fieldbus all devices on the
bus will inform the LAS which data it needs, and at which times the data
is needed. During runtime the LAS will tell the devices to broadcast data
to the bus using a schedule. All subscribers to this data will receive it
simultaneously. Spare time is reserved in the schedule for unscheduled
messages. A system global clock is also distributed on the fieldbus. The
distributed clock will allow connected devices to know the time within
1 ms.

FIP (Factory Instrumentation Protocol)

FIP was developed by a group of French, German, and Italian companies.
FIP uses a twisted pair conductor and the transmission speeds are from
31.25 kbit/s up to 2.5 Mbit/s, depending on the spatial dimension of the
bus. For a transmission speed of 1 Mbit/s the maximum length of the bus
is 500 m. The maximum number of nodes in a FIP network is 256.

In a FIP-network one node acts as bus arbitrator. The bus arbitra-
tor cyclically polls all nodes in the network to broadcast its data on the
network. The inactive nodes listen to the communication and recognize
when data of interest to the node is sent. The FIP-network can be seen
as a distributed database, where the database is updated periodically.

PROFIBUS (Process Fieldbus)

PROFIBUS was developed by a group of German companies and is now
a German standard. A screened twisted pair is used as conductor. The
transfer speed can be from 9.6 kbit/s to 500 kbit/s. The maximum length
of the bus is 1200 m. Up to 127 stations can be connected to the network.
PROFIBUS messages can be up to 256 bytes long. PROFIBUS is a token-
passing network. The nodes are divided into active and passive nodes.
The node which holds the token has the permission to send data on the
network. The token is passed around in the network between the active
nodes. Active nodes can transmit when they hold the token. Passive nodes
need to be addressed by an active node to be allowed to send data on the
network.

19

Chapter 2. Problem Formulation

CAN (Controller Area Network)

CAN was developed by the German company Bosch for the automation
industry. CAN was one of the first fieldbuses and is now in use in cars from
several manufacturers. CAN is defined in the ISO standards 11898 and
11519-1. The transfer speed on the bus can be programmed. The transfer
speed can be 1 Mbit/s if the bus is no longer than 50 m, and 500 kbit/s
if the bus is longer than 50 m. If the cable quality is low, as it can be in
mass produced cars, the maximum transfer speed may be lower. There is
no limit on the number of nodes. A node can start transmitting at any time
if the bus is silent. If several nodes are trying to transmit an arbitration
starts. The node trying to send the message with highest priority gets the
right to use the bus. There are 229 different priority levels for messages.
CAN-controllers can usually be programmed to cause an interrupt when
a message is sent. This feature makes back-propagation of the size of the
delay from controller to actuator, τ ca

k , simple to implement.

Ethernet

Ethernet is one of the most used local area network (LAN) technologies.
It transmits data with the speeds 10 Mbit/s or 100 Mbit/s. Ethernet is
not intended for real-time communications. However, the large number of
installed Ethernets will make it attractive for use in real-time control sys-
tems. There is no central bus controller, instead Ethernet uses a bus access
method called CSMA/CD, Carrier Sense Multiple Access with Collision
Detection. This means that before sending to the network the station lis-
tens to the channel, and when the channel appears to be idle transmission
starts. If several stations start sending to the bus the collision is detected,
and the colliding stations back off, and try a retransmission after a ran-
dom wait. An almost unlimited number of stations can be connected to
an Ethernet. The number of stations is limited by the six bytes address.
The first three bytes are used as a vendor ID, and the last three bytes are
defined by the vendor, so every Ethernet interface has a unique address.
An Ethernet frame, or packet, is between 64 and roughly 1500 bytes in
length. For details about Ethernet, see IEEE (1985). In Section 4.2 delay
measurement experiments using an Ethernet network are presented.

2.3 Clock Synchronization

Clock synchronization is a research area in itself. The purpose of clock
synchronization is to give the internal clocks of two or more nodes cor-
responding values. We will only consider software synchronization, i.e.,
the synchronization signals are sent over the communication network.

20

2.3 Clock Synchronization

Hardware synchronization is also a possibility, for instance, using special
wiring just to distribute a global clock signal in the system. As all commu-
nication between nodes is over the data network, all messages between
nodes will be subject to random delays. Several schemes for synchroniza-
tion are available in the literature, see Christian and Fetzer (1994), van
Oorschot (1993), Schedl (1996). Some of the algorithms are designed for
special application areas. One example is NTP, which is used for clock
synchronization on Internet, see Mills (1991).

Most schemes build on the concept of estimating the difference be-
tween the clocks of two nodes by sending clock-requests back and forth as
described in the following. Let S be the node which wants to estimate its
clock difference to node R. Let the absolute time be ti, let the local time
in node S be tS

i , and let the local time in node R be tR
i . The local clocks

in S and R have a skew to the absolute time such that

tS
i � ti + δ S (2.5)

tR
i � ti + δ R, (2.6)

where δ S and δ R are the clock mismatches. We define the clock offset, δ ,
as

δ � δ R −δ S . (2.7)

From (2.5) and (2.6) it follows that

tS
i � tR

i −δ . (2.8)

The clock offset will have a drift in time due to inaccuracies in the local
clocks. For the moment we assume that δ is constant. The synchronization
sequence starts with a clock-read request from node S to node R, this
message is sent at time tS

a , see Figure 2.4. As node R receives the message
from node S it immediately sends a message back containing the local
clock value tR

b . This message arrives at node S at time tS
c . Introduce TSR

tS
a tR

b tS
c

S R S

Figure 2.4 Clock synchronization sequence. First a request is sent from node S
to node R, then R responds by sending the value of its local clock to S.

21

Chapter 2. Problem Formulation

and TRS as the transfer times for the from S to R and from R to S,
respectively. The transfer times can be written as

TSR � tS
b − tS

a � (tR
b −δ) − tS

a (2.9)
TRS � tS

c − tS
b � tS

c − (tR
b −δ). (2.10)

Assuming that E(TSR − TRS) � 0 we find that

δ � E
{

2tR
b − tS

a − tS
c

2

}
, (2.11)

where E denotes the expectation operator. By repeating the clock synchro-
nization experiment we can find an accurate estimate of δ by (2.11). There
are other clock synchronization algorithms not depending on the assump-
tion E(TSR−TRS) � 0, see van Oorschot (1993). There are also algorithms
addressing fault-tolerant synchronization. These faults can be failures in
the network, in a local clock etc., see Christian and Fetzer (1994). If the
clock offset, δ , is drifting due to inaccuracies in the local clocks, resynchro-
nization must be done after a while. The drift in a clock is often defined
as clock drift ρ . If H(t) is the value of the clock at time t, the following
holds for a time interval [s, t]:

(1−ρ)(t− s) ≤ H(t) − H(s) ≤ (1+ ρ)(t− s). (2.12)

It is claimed in Christian and Fetzer (1994) that clocks in modern com-
puters have ρ of the order 10−5 or 10−6, and high precision quartz clocks
have ρ of the order 10−7 or 10−8. With ρ � 10−6 we would over one hour
have

1h− 3.6ms ≤ H(t+ 1h) − H(t) ≤ 1h+ 3.6ms. (2.13)

These drift values have to be compared with the time scales in the actual
system to determine how often resynchronization must be done to keep an
acceptable clock synchronization in the system. A simple way to estimate
the drift is by calculating how much the clock offset has changed between
two resynchronizations. In Section 4.1 a new clock synchronization algo-
rithm is developed. The new algorithm can be used for both on-line and
off-line clock synchronization. In off-line clock synchronization it suffices
to be able to estimate a clock reading time afterwards. This could, for
instance, be done after an experiment has finished. The new algorithm is
based on least squares estimation, and directly estimates both clock offset
and clock drift.

22

2.4 Related Work

2.4 Related Work

Some work has been done on setups related to the one described in Sec-
tion 2.1. No work by other authors is know on exactly the setup in Sec-
tion 2.1. In this section some of the related work is described.

Make the System Time-Invariant

In Luck and Ray (1990) the closed loop system is made time-invariant by
introduction of buffers at the controller and actuator nodes as illustrated
in Figure 2.5. All nodes are clocked and act synchronized. By making the

...

...

Actuator
node Process Sensor

node

Controller
node

Network

Buffer

Buffer

τ ca
k τ sc

k

u(t) y(t)
h

wk

Figure 2.5 In Luck and Ray (1990) buffers are introduced after the varying com-
munication delays to make the system time-invariant. The buffers must be longer
than the worst case communication delay.

buffers longer than the worst case delay the process state can be written
as

xk+1 � Axk + Buk−∆1 (2.14)
yk � C xk, (2.15)

where ∆1 is the length in samples of the buffer at the actuator node. If the
buffer at the controller node is assumed to have the length ∆2 samples,
the process output available for the controller at time k is wk � yk−∆2 . The
design problem is now reformulated as a standard sampled data control
problem. The information set available for calculation of uk is

Wk � {wk, wk−1, . . . }. (2.16)

23

Chapter 2. Problem Formulation

In Luck and Ray (1990) the LQG-optimal controller,

uk � ξ (Wk), (2.17)

is derived. An advantage with the method is that it handles control delays
that are longer than the sampling period. A serious disadvantage with
the method is that it makes the control delay longer than necessary. In
Chapter 5 it will be shown that performance can be increased by having
event-driven controller and actuator nodes. By using event-driven nodes
we make the control delay smaller, but we get a time-varying system,
which is harder to analyze.

Stochastic Approaches

In Liou and Ray (1991) a scheme with time-driven sensor, time-driven
controller, and event-driven actuator, is studied. The sensor and the con-
troller is started with a time skew of ∆s. The probability that the new
sensor value has reached the controller when the control signal is calcu-
lated, P(τ sc

k < ∆s), is assumed to be known. If τ sc
k > ∆s the new control

signal is calculated without knowledge of the new measurement signal.
The actuator node D/A-converts the new control signal as soon as it is
transmitted to the actuator node. A discrete time augmented plant model
is derived by introducing the delayed signals as states in the augmented
plant model. The augmented plant model can be written as

xk+1 � Akxk + Bkuk, (2.18)

where Ak and Bk are stochastic matrices due to the random communi-
cation delays. The LQ-optimal controller is solved for the problem setup
by (2.18). It is also discussed how to construct a state estimator in the
case when all states are not measured. It is claimed that timestamping
of signals is important for estimation of process state. For the problem
setup in Liou and Ray (1991) it is not known if the combination of op-
timal controller and the proposed state estimator is the optimal output
feedback controller, i.e., if the separation principle applies.

The LQ-controller of Liou and Ray (1991) is used in Ray (1994) to-
gether with a stochastic state estimator. The timing setup is the same
as the one used in Liou and Ray (1991). The estimator is designed to
minimize the variance of the state prediction errors. The combination
of the LQ-controller and the minimum variance estimator is introduced
as the DCLQG-controller, delay compensated LQG. It is stressed that the
separation principle does not hold for the DCLQG-controller, i.e., DCLQG-
controller is a suboptimal control scheme.

24

2.4 Related Work

In Krtolica et al. (1994) control systems with random communication
delays are studied. The delays, from sensor to controller and from con-
troller to actuator, are modeled as being generated from a Markov chain,
see Figure 2.6. Only one of the β i coefficients in Figure 2.6 is one, all the

yk

wk

β 0 β D2

+

∆∆∆ ⋅ ⋅ ⋅

Figure 2.6 The network model used in Krtolica et al. (1994). The sampled signal,
yk, is delayed a number of samples due to communication delay. The controller reads
the signal wk. Only one of the β i coefficients is one, the others are zero.

others are zero. Notice that the delay must be a multiple of the sampling
period, i.e., all nodes are clock driven. It is shown that the closed loop
system can be written as

zk+1 � Hkzk, (2.19)

where Hk depends on the state of the delay elements depicted in Fig-
ure 2.6. The sequence of β i is generated by a Markov chain. Necessary
and sufficient conditions are found for zero-state mean-square exponen-
tial stability. The resulting stability criterion is that the solution of two
coupled (Lyapunov-like) equations need to be positive definite for stability
of the closed loop. The problem formulation and solution used in this ap-
proach has clear connections to the theory of jump linear systems, which
will be reviewed in the next section.

In Chan and Özgüner (1995) a setup using the Ford SCP Multiplex
Network hardware is studied. The communication delay is modeled as
in Figure 2.7. There is a queue of unsent sensor readings at the sensor
node. A simple form of timestamping is done by appending the size of the
queue to every message that is sent from the sensor node to the controller

25

Chapter 2. Problem Formulation

node. It is shown that by this method the controller node can reduce its
uncertainty about which sensor reading it is using down to two possible
cases. By knowing the probability for the two possible cases of delay, a
state estimator is constructed. The sensor node and the controller node are
both time-driven with a skew of ∆sp. It is also shown how pole placement
can be done for the described setup.

yk

ω k

Queue

Single register

Communication link

Figure 2.7 Block diagram of the transmission from the sensor node to the con-
troller node in Chan and Özgüner (1995). The sampled signal yk is delayed during
the transmission to the controller node. The controller reads the sensor value ω k
from a register in the controller node. A simple form of timestamping is done by
appending every message with the size of the queue when the message was sent.

Jump Linear Systems

Jump systems in continuous time was introduced and studied in the 1960’s
by Krasovskii and Lidskii (1961). Jump linear systems can in discrete time
be written as

xk+1 � A(rk)xk + B(rk)uk, (2.20)

where A(rk) and B(rk) are real-valued matrix functions of the random
process {rk}, see Ji et al. (1991). An interesting special case of {rk}-process
is to let {rk} be a time homogeneous Markov chain taking values in a finite
set {1, . . . , s}. The Markov chain has the transition probabilities

P(rk+1 � j t rk � i) � qij ≥ 0, (2.21)

where

s∑
j�1

qij � 1. (2.22)

26

2.4 Related Work

If {rk} is generated by a time homogeneous Markov chain the system is
called a discrete-time Markovian jump linear system. As will be discussed
in Chapter 3 this is an attractive model for control systems with randomly
varying communication delays.

Different notations of stability have been considered for jump linear
systems. The following definition of three stability notions is taken from
Ji et al. (1991).

DEFINITION 2.1—STOCHASTIC STABILITY

For systems (2.20) and (2.21) with uk � 0, the equilibrium point 0 is

Stochastically Stable if for every initial state (x0, r0)

E

{ ∞∑
k�0

txk(x0, r0)t2
∣∣∣ x0, r0

}
< ∞, (2.23)

Mean Square Stable if for every initial state (x0, r0)

lim
k→∞

E
{
txk(x0, r0)t2

∣∣∣ x0, r0

}
� 0, (2.24)

Exponentially Mean Square Stable if for every initial state (x0, r0), there
exist constants 0 < α < 1 and β > 0 such that for all k ≥ 0

E
{
txk(x0, r0)t2

∣∣∣ x0, r0

}
≤ β α ktx0t2, (2.25)

where α and β are independent of x0 and r0.

In Ji et al. (1991) the three stability concepts of Definition 2.1 are shown
to be equivalent. Another, less conservative, stability notion is almost sure
stability. The definition of almost sure stability, from Ji et al. (1991), is

DEFINITION 2.2—ALMOST SURE STABILITY

Systems (2.20) and (2.21) with uk � 0 are said to be almost surely stable,
if for every initial state (x0, r0), we have

P
{

lim
k→∞

txk(x0, r0)t � 0
}
� 1. (2.26)

The stability concepts of Definition 2.1 imply almost sure stability, but
almost sure stability does not imply the stability concepts of Definition 2.1.
This relation is illustrated with an example.

27

Chapter 2. Problem Formulation

EXAMPLE 2.1
Consider a jump linear system with two Markov states and the transition
matrix

Q �
[

1−α α
0 1

]
, (2.27)

where α < 1/2. This system has the property that when it jumps to state 2
it will remain in state 2 forever. Let the system matrices be

A(1) � 2, B(1) � 0,
A(2) � 0, B(2) � 0.

(2.28)

The state xk will grow exponentially as long as we stay in state 1, but
xk will be reset to 0 as soon as we jump to state 2, where we will stay
forever. For this system we have

lim
k→∞

E
{
txk(x0, r0)t2

∣∣∣x0, r0 � 1
}
� lim

k→∞

(
(1−α)k 2k x0

)2
� ∞, (2.29)

which means that the system is not mean square stable. We also have
that

P
{

lim
k→∞

txk(x0, r0)t � 0
}
� 1, (2.30)

which implies that the system is almost surely stable.

Many of the ideas from control theory have been studied for jump lin-
ear systems. The LQ-problem was solved with finite and infinite time
horizon by Sworder (1969) and Wonham (1971). The discrete-time jump
LQ-problem was solved for a finite-horizon by Blair and Sworder (1975).
Extensions of the LQ-problem, such as control of jump linear systems
with Gaussian input and measurement noise, has been done in Ji and
Chizeck (1990). The H∞-control state-feedback problem has been studied
for both continuous- and discrete-time jump linear systems, see de Souza
and Fragoso (1993) and Fragoso et al. (1995), respectively.

All the above mentioned work rely on the availability of the value rk at
time k. If this is not the case, rk has to be estimated. Less work has been
done in this area, see Ji et al. (1991) for a discussion. This problem is also
known as the Hidden Markov Model problem, see Elliot et al. (1995).

An interesting extension of jump linear systems is to let the Markov
chain postulate the distribution of the system matrices A, B etc. instead
of values for these. As an example the states of the Markov chain could
be “Low network load”, “Medium network load” and “High network load”.
This is further discussed in Chapter 3.

28

3

Modeling of Network Delays

Network delays, or network transfer times, have different characteristics
depending on the network hardware and software. To analyze control sys-
tems with network delays in the loop we have to model these. The network
delay is typically varying due to varying network load, scheduling policies
in the network and the nodes, and due to network failures. We will use
three models of the network delay:

• Constant delay,

• Random delay, which is independent from transfer to transfer,

• Random delay, with probability distributions governed by an under-
lying Markov chain.

The validity for theses models when modeling network delays will be com-
mented in the next chapter, where experimental delay measurements are
presented. The control loop usually also contains computational delays.
The effect of these will not be investigated separately, as they can be
embedded in the network delays.

In the last section of this chapter we will study how the controlled
process can be modeled when we have communication delays in the loop.

In Chapter 4 experimental network delay measurements will be pre-
sented, in connection with this, applicability of the models developed in
this chapter will be discussed.

3.1 Network Modeled as Constant Delay

The simplest model of the network delay is to model it as being constant
for all transfers in the communication network. This can be a good model
even if the network has varying delays, for instance, if the time scale in the
process is much larger than the delay introduced by the communication.

29

Chapter 3. Modeling of Network Delays

In this case the mean value or maybe the worst case delay can be used
in the analysis. If this is not the case, wrong conclusions can be drawn
regarding system stability and performance.

One way to achieve constant delays is by introduction of timed buffers
after each transfer. By making these buffers longer than the worst case
delay time the transfer time can be viewed as being constant. This method
was proposed in Luck and Ray (1990). A drawback with this method is
that the control delay becomes longer than necessary. This can lead to
decreased performance as will be shown in Chapter 5.

3.2 Network Modeled as Delays Being Independent

Network delays are usually random. The network delay can have several
sources, for instance,

• waiting for the network to become idle,

• if several messages are pending, the wait can include transmission
of the waiting messages,

• if transmission errors occur, a retransmission can be needed,

• in some networks collisions can occur if two nodes try to send at the
same time, the resolution of this can include a random wait to avoid
a collision at the next try.

As the activities in the system usually are not synchronized with each
other, the number of the above listed delay causes that will occur is ran-
dom. To take the randomness of the network delays into account in the
model, the time delays can be modeled as being taken from a probabilis-
tic distribution. To keep the model simple to analyze one can assume the
transfer delay to be independent of previous delay times. In a real com-
munication system the transfer time will, however, usually be correlated
with the last transfer delay. For example, the network load, which is one
of the factors affecting the delay, is typically varying with a slower time
constant than the sampling period in a control system, i.e., the time be-
tween two transfers. We will allow the model to have different probability
distributions for the delay from sensor to controller, τ sc

k , and for the delay
from controller to actuator, τ ca

k . In Chapter 4 we develop a CAN network
model which uses different distributions for τ sc

k and τ ca
k .

30

3.3 Network Modeled Using Markov Chain

3.3 Network Modeled Using Markov Chain

To model phenomena as network queues, and varying network loads, our
network model needs to have a memory, or a state. One way to model
dependence between samples is by letting the distribution of the network
delays be governed by the state of an underlying Markov chain. Effects
such as varying network load can be modeled by making the Markov
chain do a transition every time a transfer is done in the communication
network. The model is closely related to the models used in jump sys-
tems, see Section 2.4. A difference is that in our network model each state
of the Markov chain postulates probability distributions for τ sc

k and τ ca
k .

In jump linear system each Markov state defines a set of system matri-
ces, {A(rk), B(rk), C(rk), D(rk)}. It can also be noticed that the previously
discussed model, where delays are independent from transfer to transfer,
constitutes a Markov model with only one state. A short discussion of the
theory of Markov chains is given in Appendix B.

EXAMPLE 3.1—SIMPLE NETWORK MODEL

A simple network model capturing different network loads can have three
states, one for low network load, one for medium network load, and one for
high network load. In Figure 3.1 the transitions between different states
in the communication network are modeled with a Markov chain. The
transition probabilities are indicated on the arcs. The transition probabil-
ities are defined as

qij � P
{

rk+1 � j
∣∣ rk � i

}
, i, j ∈ [L, M, H], (3.1)

and will model how frequent changes of the network state will be. Together
with every state in the Markov chain we have a corresponding delay dis-
tribution modeling the delay for that network state. These distributions
could typically look like the probabilistic distributions in Figure 3.2. The
distributions are assumed to have a lower mean if the network has low
load, and a higher mean if the network has a high load. In a realistic
model, the delay variation would probably be smaller for low loads, and
larger for high loads. When the load is low, networks delay are quite de-
terministic, the network is often idle when we want to transmit. When
the network load is high, we can have a short delay, but we could also
have to wait for multiple messages to be sent.

3.4 Sampling of Systems with Network Delays

Continuous-time systems with time-delays are infinite dimensional sys-
tems. A finite dimensional description of the control loop can be formu-

31

Chapter 3. Modeling of Network Delays

L M H

qLL qMM qH H

qLM qM H

qM L qH M

qLH

qH L

Figure 3.1 An example of a Markov chain modeling the state in a communication
network. L is the state for low network load, M is the state for medium network
load, and H is the state for high network load. The arrows show possible transitions
in the system.

L

M

H

Delay

Delay

Delay

Figure 3.2 The delay distributions corresponding to the states of the Markov
chain in Figure 3.1. L is the state for low network load, M is the state for medium
network load, and H is the state for high network load.

lated by sampling of the continuous-time process. Let the controlled pro-
cess be

dx
dt
� Ax(t) + Bu(t) + v(t), (3.2)

where x(t) ∈R n, u(t) ∈R m and v(t) ∈R n. A and B are matrices of appro-
priate sizes, u(t) is the controlled input and v(t) is white noise with zero

32

3.4 Sampling of Systems with Network Delays

mean and incremental covariance Rv. We will treat the MIMO-problem,
multiple input multiple output, in the sense that we allow process out-
puts, and process inputs to be vectors. We will, however, not allow the
different signals within yk and uk to have different delays. This means
that if we have several sensors, the measurements have to be delivered
from the same node. For the actuators it means that all actuators have
to be connected to the same node. The MIMO-problem with individual
delays for the signal is treated in Section 7.4. The timing of the signals in
the system is shown in Figure 3.3. Notice that the control signal segments
are active a varying time. Assume that the delay from sensor to actuator

Process
output

Process
input

(k− 1)h kh (k+ 1)h

yk

yk

uk

uk

τ sc
k

τ ca
k

Figure 3.3 Timing of signals in the control system. The first diagram illustrates
the process output and the sampling instants, the second diagram illustrates the
signal into the controller node, the third diagram illustrates the signal into the
actuator node, and the fourth diagram illustrates the process input.

is less than the sampling period h, i.e., τ sc
k + τ ca

k < h. Integration of (3.2)
over a sampling interval gives

xk+1 � Φxk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1 + vk, (3.3)

33

Chapter 3. Modeling of Network Delays

where

Φ � eAh (3.4)

Γ0(τ sc
k , τ ca

k) �
∫ h−τ sc

k −τ ca
k

0
eAsdsB (3.5)

Γ1(τ sc
k , τ ca

k) �
∫ h

h−τ sc
k −τ ca

k

eAsdsB . (3.6)

The index k is used to indicate sample number, i.e., xk � x(kh). The state
noise vk has zero mean and the variance

R1 � E{vkvT
k } �

∫ h

0
eA(h−s)RveAT (h−s)ds. (3.7)

This is a standard result on sampling of systems with time-delays, see,
for instance, Åström and Wittenmark (1997). The infinite dimensional
continuous-time system has now been reformulated to the time-varying,
finite-dimensional, discrete-time system (3.3). The drawback is that we
do not have direct control over intersample behavior using the discrete-
time model. This is, however, easy to study if needed. Some early work
on modeling of imperfections in sampled data systems, such as random
sampling and imperfect hold etc., was published already 1959, see Kalman
and Bertram (1959).

34

4

Experimental Delay
Measurements

This chapter shows the results of delay measurements from two commu-
nication networks, CAN (Controller Area Network) and Ethernet. The
experiments are done to verify that the statistical assumptions about the
delay distributions are relevant. The experiments also show that the dis-
tribution of communication delays can vary significantly depending on the
setup and the load on the network. The chapter also describes a new clock
synchronization algorithm that can be used for off-line as well as on-line
clock synchronization.

4.1 CAN

The first platform for which delay measurements will be presented is
CAN, Controller Area Network. The experimental platform was four one-
card computers with CAN-controllers connected to a CAN-network. The
network nodes were originally built by the Department of Computer En-
gineering at Chalmers University of Technology. The nodes used in our
experiments were borrowed from the DAMEK Mechatronics Division at
the Royal Institute of Technology.

Setup

The hardware platform used for delay measurements on the CAN-bus was
one-card computers equipped with CAN-controllers. The one-card com-
puters are based on the Motorola MC68340 processor, Motorola (1992).
This is an 8 MHz processor with special properties making it suitable for
embedded systems. The problems with this CPU are that it lacks float-
ing point arithmetics and that it is quite slow. The experimental setup

35

Chapter 4. Experimental Delay Measurements

CPU CPUCPUCPU

CAN-
controller

CAN-
controller

CAN-
controller

CAN-
controller

CAN network

Serial communication

Figure 4.1 The CAN experimental system with the four one-card computers. The
nodes are connected with a twisted pair CAN. Serial communications to the nodes
are used for data collection.

is shown in Figure 4.1. The communication between the four test com-
puters was done on a CAN-bus. Operator interface was done in text ter-
minals on a workstation connected to the nodes with serial connections.
The CAN-communication is handled by a special chip in the nodes, the
CAN-controller. The CAN-controller is interfaced to the CPU and can, for
instance, generate an interrupt when a new message arrives. The CPU
can then read the received message with a memory read operation. The
CAN-controller used was the Intel 82527, Intel (1995).

The programming of the nodes was done using the real-time kernel
from the Department of Automatic Control, Lund Institute of Technology.
This is a C-kernel with a Modula-2 interface, so all programming is done
in Modula-2. The software interface to the CAN-controller is designed to
allow a user specified interrupt handler to be executed when a message
arrives or when a message is sent. This feature makes it possible to get
high resolution in the measurement of send and receive times.

The delay measurement experiment is done by letting one node be
the master node, and one of the other nodes be a slave node. The master

36

4.1 CAN

node periodically sends a message to the slave node. The times when the
messages were sent are stored in the master node. When the slave node
receives a message from the master node its local clock is read. The clock
value is stored in the slave node. Then a message immediately is returned
to the master node. When this message arrives the master reads its local
clock and stores the value. This experiment will result in a number of
triples of clock readings, one for each periodic message sent by the master
node. When the experiment is finished the clock readings are echoed to
the terminals on the workstation, where further data analysis is done.
This experiment is close to the communications done in a system with
distributed I/O. The master node would then be the distributed I/O, and
the slave node would be the controller node. If the time delays were to be
evaluated in a distributed I/O system the local clock readings would be
sent together with each message, see also Section 2.1 on timestamping.
For these timestamps to provide any information to the controller the
system needs to have synchronized clocks. Here it suffices to be able to
correct the local clock readings afterwards. For this purpose a special
algorithm for off-line clock synchronization has been developed, see below.

The CAN-bus can be programmed for several transmission speeds, or
bit rates. The bit rate is limited by, for instance, noise environment, bus
length, and cable quality. The standard bit rates range from 10 kbit/s
to 1 Mbit/s, see CiA (1994). In the experiments we used the bite rate
10 kbit/s. The motive for this relatively slow bit rate is that the node
CPUs are quite slow, and a higher bit rate would give bad resolution in
the time measurements. With a higher bit rate a significant part of the
transmission delay could be the time for the node program to start the
interrupt handler. As the transmission delays mainly is proportional to
the bit rate the delays would scale down with the bit rate if a higher bit
rate is used. This will hold as long as we do not get a large amount of
retransmissions due to a too high bit rate. The measurements obtained
hence reflect the behavior of a high-rate bus quite well.

CAN is a priority based network. The sending of a message on the bus
starts with a wait for the bus to become idle. When the bus becomes idle
an arbitration starts to find which node has the message with highest
priority. The arbitration results in that all nodes except the one with
the message of highest priority stay off the bus. In a CAN network the
message transmission delay, τ , can be split into three parts

τ � τ w + τ hp + τ s, (4.1)

where

• τ w is the wait for an ongoing transmission to end,

37

Chapter 4. Experimental Delay Measurements

• τ hp is the wait for messages with higher priorities to be sent, and

• τ s is the time for the message to be transmitted.

The delay parts originating from other messages, τ w and τ hp, will depend
on the load on the bus and the message priorities. The transmission delay,
τ s, will depend on the message length and random retransmission. In
CAN a message can range from zero to eight bytes. Together with address
bits and control bits a CAN message transmission ranges from 64 to 128
bits depending on the message length. In practice, the message lengths
differ because “stuff” bits are added during transmission. A “stuff” bit,
with opposite sign, is added if five consecutive bits have the same sign.
This is done to assist the bus synchronization. In the experiments we
used messages with eight bytes. This would allow transmission of both a
measurement and a timestamp. The transmission delay will clearly also
depend on the bus load and the priority of this load. The effect on the
delays of these two parameters are presented later in this section. The
following section presents the off-line clock synchronization method used
in the experiments.

Off-line clock synchronization

The purpose of clock synchronization is to estimate the difference between
the local clocks of two nodes. The synchronization is done by sending clock
requests back and forth between the two nodes, see Section 2.3. For the
experiments in this chapter we do not need the clock correction in real-
time, it suffices to do it off-line, after the experiment has finished. Let S
be the node sending the requests, and R be the node responding to the
requests from S. This is exactly the situation described earlier; there S
would be the distributed I/O, and R would be the controller node. Let the
absolute time be ti, let the local time in node S be tS

i , and let the local
time in node R be tR

i . The local clocks in S and R are assumed to have a
linear growing skew to the absolute time such that

tS
i � ti + δ S + ρ S ti (4.2)

tR
i � ti + δ R + ρ R ti, (4.3)

where δ S and δ R are skews due to different start times of the nodes, and
ρ S and ρ R are clock drifts due to different crystal speeds in the nodes. The
clock drift is varying due to inaccuracies in the clocks, aging, and crystal
temperature variations, see Schedl (1996). Over short time interval, such
as the time to do the delay experiment, the drift parameters ρ S and ρ R

can be considered as being constant. By eliminating ti from (4.2) and (4.3)
it follows that

tR
i � β tS

i +α , (4.4)

38

4.1 CAN

where

α � δ R − 1+ ρ R

1+ ρ S δ S , (4.5)

β � 1+ ρ R

1+ ρ S . (4.6)

Remark: It is seen from (4.6) that clocks having the same speed, ρ S � ρ R,
results in β � 1.

The delay measurement experiment described in Section 4.1 will result
in three time series. The series are:

• The times when a clock request was sent from node S to node R.
Define this series as {tS

a (k)}n
k�1, where the superscript S indicates

that the time is measured by the local clock in node S, and the
superscript n that the experiment contains n data points.

• The times when a clock request was received by node R and im-
mediately echoed back to node S. Define this series as {tR

b (k)}n
k�1,

where the superscript R indicates that the time is measured by the
local clock in node R.

• The times when an answer to a clock request is received by node S.
Define this series as {tS

c (k)}n
k�1.

Let the transfer time from node S to node R, and from node R to node
S, be T SR

k and T RS
k , respectively. The transfer times T SR

k and T RS
k are

measured with the time base of the clock in node S. The off-line clock
synchronization algorithm described in the sequel will need one assump-
tion.

ASSUMPTION 4.1
The transfer times from node S to node R, and from node R to node S,
have the same mean value E(T SR

k) � E(T RS
l) � σ for l, k ∈ [1 . . . n].

Assumption 4.1 is common in network clock synchronization. In Figure 4.2
typical realizations of the three time series are plotted against time mea-
sured by the local clock in node S. The series {tS

a (k)}n
k�1 will, of course,

form a line with unit slope. The series {tS
c (k)}n

k�1 will also be on a line
with unit slope, as this is also read with the clock in node S. Due to the
random transfer time for messages the clock readings in {tS

c (k)}n
k�1 will

be a random time later than the corresponding request time. The times,
measured by the clock in node S, when the requests were handled by node
R are unknown, but we know that in mean they were handled σ after the
corresponding request time. In Figure 4.2 the series {tS

c (k)}n
k�1 is drawn

39

Chapter 4. Experimental Delay Measurements

against the mean clock request handling time, i.e., {tS
a (k) + σ }n

k�1. The
data points in the time series {tR

b (k)}n
k�1 can be written as

tR
b (k) � β (tS

a (k) + T SR
k) +α , (4.7)

and the data points in the series {tS
c (k)}n

k�1 can be written as

tS
c (k) � tS

a (k) + T SR
k + T RS

k . (4.8)

The idea is to evaluate the mean transfer delay, σ , by measuring the
round trip delay, and then to fit a line to the series {tR

b (k)}n
k�1 to estimate

the unknown parameters {δ ,ρ ,σ }. Let the line fitted to the data series
{tR

b (k)}n
k�1 have the equation a + bt, see Figure 4.2. Introduce the mean

transfer time estimate as

σ̂ � 1
2n

n∑
k�1

(
tS
c (k) − tS

a (k)
)

. (4.9)

From (4.7) and (4.8) we get the estimates

α̂ � a (4.10)
β̂ � b (4.11)

With these estimates of α and β , a clock reading in node R can be trans-
formed to a clock reading in node S using (4.4), and vice versa.

The line fitting can, for instance, be done using the least squares al-
gorithm, see Åström and Wittenmark (1997). In the experiments, a and
b where estimated with the least squares method, and σ was estimated
by taking the mean of the round trip delays.

The clock synchronization algorithm, which is believed to be new, can
easily be generalized to an on-line procedure by using recursive least
squares estimation (RLS) with a constant or varying forgetting factor,
see Ljung and Söderström (1983) and Åström and Wittenmark (1997).

System load

The experiments done on the CAN system were performed under several
load conditions. The load was introduced as “dummy” traffic between the
two nodes not involved in the delay measurements. From (4.1) it can be
seen that the delays will depend on, not only how much traffic there is
on the bus, but also on the priority profile of the traffic. The experiment
was performed with the following four load types:

No load The bus was empty except for the experiment.

40

4.1 CAN

tS
a (1) tS

a (2) tS
a (3) tS

a (4) . . . tS
a (n) Time in S-clock

t

a+ bt

a

0

C
lo

ck
re

ad
in

g

b

Figure 4.2 The three series of clock readings. The markings are request
times {tS

a (k)}n
k�1 (�), request bounce times {tR

b (k)}n
k�1 (+), and request return

times {tS
c (k)}n

k�1 (○). The request bouncing times are drawn as if they occurred σ
later than the request time. A line is fitted for estimation of a and b. Here the
request times are drawn as if they were equally spaced, which is not needed for the
method to work.

41

Chapter 4. Experimental Delay Measurements

Periodic message One periodic process was loading the bus,

Periodic messages Several periodic processes were loading the bus.

Random message interval The load process had a random interval be-
tween messages.

In the following the load cases are described in detail, and the results
from the delay measurements are presented.

No load The only bus load was the load from the experiment itself.
The time interval between two requests was designed to be larger than
the round trip delay. In this case the interval was h � 50 ms. This means
that the bus will always be empty when a transmission is initiated. A
constant delay was expected from this experiment, as both τ w � 0 and
τ hp � 0. The delay will only be the part τ s, which originates from the
message transmission. The time to transmit a message will depend on
the message length. In Figure 4.3 and Figure 4.4 measured delays are
displayed for a message length of 4 and 8 bytes. The delays shown are
the sensor to controller delay, τ sc

k , and the controller to actuator delay, τ ca
k .

As seen from Figure 4.3 and Figure 4.4 the delays are almost constant
if the bus is not loaded. In Figure 4.3 a small variation can be seen in
the delays. It appears as a variation in τ sc

k and τ ca
k , but the sum τ sc

k +τ ca
k

is almost constant. The effect probably comes from a varying clock drift
in the local clocks, maybe a varying crystal temperature. This effect is
not corrected for by the clock synchronization described in Section 4.1,
which will only correct for a constant clock drift. A synchronization error
of this size, some tenths of a millisecond, will be seen throughout the
experiments.

The utilization, see Tindell and Hansson (1995), of the bus is defined
as

U �
∑

i

Ci

Ti
, (4.12)

where i is the number of periodic transmissions on the bus, Ci is the
transfer time for this message, i.e., τ s, and Ti is the period for sending
of message i. The utilization is a measure of how much load there is
on the bus. The shortest transfer time for a message can be calculated
from the knowledge of the bit rate on the bus, and from how many bits
a message will be sent as. An 8 bytes long message will be sent as at
least 128 bits. It could possibly be longer if “stuff” bits are needed. The
bit rate is 10 kbits/s, which gives a shortest delay of 12.8 ms. Comparing
with the measured delay mean of 16.2 ms we see that we have a software
overhead in the delays of 3.4 ms. This overhead comes from delay to start

42

4.1 CAN

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.3 Measured delays for sensor to controller, τ sc
k , and from controller to

actuator, τ ca
k . The experiment was the only load on the bus. The messages were 8

bytes long. The delay is almost constant.

the interrupt handler, and to execute the code in the interrupt handler,
such as reading clocks etc. The utilization with message length 8 bytes is

U � 0.0128
0.05

+ 0.0128
0.05

� 0.51. (4.13)

As the utilization is a measure of how much load there is on the bus, the
utilization 0.512 indicates the bus load is low. If the utilization is greater
than 1 the bus has overload.

Periodic message In the next experiment the load was a periodic send-
ing of a “dummy” message with length 8 bytes. The period for the “dummy”
message was around 100 ms. The experiment was performed both with a
higher priority load, and a lower priority load. The measured delays of the
control loop are shown in Figure 4.5 and Figure 4.6. Now the delays are
varying, this comes from the fact that the bus could be occupied when we
want to send a message, giving a nonzero and varying τ w. A surprising
observation is that the delays are not longer in the case with a higher
priority load. The explanation is that there is never a queue of messages,
and hence τ hp � 0. This is because the period of the control loop (50

43

Chapter 4. Experimental Delay Measurements

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.4 Measured delays for sensor to controller, τ sc
k , and from controller to

actuator, τ ca
k . The experiment was the only load on the bus. The messages were 4

bytes long. The delay is almost constant.

ms) is much longer than the time to send. The only occasion when there
could be a queue is when the clock request answer is to be sent. But as
the response to a request takes some time, the load message, if there is
one, will have time to take the bus no matter its priority. From the delay
measurements it can be seen that the delay will have a periodic behavior.
This comes from that all processes on the bus are periodic. The load will
disturb the experiment messages for a time, and then the messages will
not collide for a while, after which the collisions will appear again, and
so on. The utilization for this experiment is

U � 0.0128
0.05

+ 0.0128
0.05

+ 0.0128
0.1

� 0.64, (4.14)

which also is clearly less than 1. Despite the low utilization we get large
variations in the delays.

Periodic messages To get a situation where we could have queued
messages, and hence a nonzero τ hp, we let the load be generated by two
processes. In the experiment we used the load periods 80 ms and 100 ms,

44

4.1 CAN

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.5 Load: One sender with period 100 ms and lower priority. Message
length: 8 bytes.

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.6 Load: One sender with period 100 ms and higher priority. Message
length: 8 bytes. No difference to Figure 4.5, because there is never a queue of mes-
sages.

45

Chapter 4. Experimental Delay Measurements

giving the utilization

U � 0.0128
0.05

+ 0.0128
0.05

+ 0.0128
0.08

+ 0.0128
0.1

� 0.80. (4.15)

The utilization is still less than 1. The measured delays are shown in
Figure 4.7 and Figure 4.8. It is seen that the delays can be substantially
longer in the case where one of the load messages have a higher priority
than the experiment messages. In the experiment where both load pro-
cesses have lower priority it is noticed that the delay for the clock request
answer, τ ca

k , can take two values, either the bus is empty, or the message
will have to wait for one message to be transmitted. In the case with one
load process with higher priority and one with lower priority, the delay
τ ca

k can take three values. The longest wait will occur if the lower priority
message is started when the request is served, and then the high priority
message arrives before the clock request answer is sent. We will get a
shorter delay if just one message is transmitted in between the request
and the answer. If the bus is empty after a request the delay will have
τ hp � 0 and τ w � 0. The other delay, τ sc

k can take any value in an interval,
depending on if there are queued messages when a request is to be sent.
As the load processes are periodic the load pattern will be periodic, which
can be seen in the periodic behavior of the delays.

Random message interval If a random message interval is used for
the load process, the collision pattern is expected to disappear. In Fig-
ure 4.9 the experiment is shown with one load message which has a uni-
formly distributed period on the interval [40, 80]ms. The load message has
higher priority than the experiment messages. As described earlier, the
priority of the load is not expected to influence the delays, as we only have
two processes on the bus. The mean utilization is

E{U} � 0.0128
0.05

+ 0.0128
0.05

+ 0.0128
0.04

∫ 0.08

0.04

1
x

dx � 0.73, (4.16)

which is clearly less than 1. The delay plot in Figure 4.9 shows that the
periodic delay behavior disappears when we have a random period.

Modeling of Delays

The easiest way to get a model of the delays is by estimating the probabil-
ity distribution functions of the delays from the delay measurements. As
an example we will use the delay experiment presented in Figure 4.9. The
load process has a period that is uniformly distributed on [40, 80]ms. The
histograms of the delays are shown in Figure 4.10. From the time series

46

4.1 CAN

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.7 Load: Two senders with periods 80 ms and 100 ms and lower priority.
Message length: 8 bytes.

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.8 Load: Two load processes, one with period 80 ms and higher priority,
and one with period 100 ms and lower priority. Message length: 8 bytes.

47

Chapter 4. Experimental Delay Measurements

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

0 250 500 750 1000
0

0.01

0.02

0.03

0.04

0.05

k

k

τ
sc k

τ
ca k

Figure 4.9 Load: One sender with period rect(40, 80) ms and higher priority. Mes-
sage length: 8 bytes. The delay behavior is non-periodic.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

100

200

300

400

500

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

100

200

300

400

500

F
re

qu
en

cy
F

re
qu

en
cy

τ sc
k

τ ca
k

Figure 4.10 Distribution of the 1000 samples in the experiment. Load: One sender
with period rect(40, 80) ms and higher priority. Message length: 8 bytes.

48

4.1 CAN

τ sc
k

τ ca
k

Figure 4.11 Model of the probability distributions with one load process.

in Figure 4.9 it can be seen that τ sc
k takes several values in the interval

[0.017, 0.031], opposed to τ sc
k which only takes the values 0.016 and 0.028.

This is also seen from the histograms in Figure 4.10. The distributions
can be explained from the experimental setup.

Sensor to Controller Delay When the message is to be sent the bus
can be idle or a message can be under transmission. The probability
for bus idle depends on the period of the load process. It will show up
as a Dirac in the probability distribution function. If the bus is busy
we will get a nonzero τ w but there will never be a queue of messages.
The delay τ w will be uniformly distributed from 0 to the time it takes
to send a message. The parts of the modeled distribution of τ sc

k is
shown in Figure 4.11.

Controller to Actuator Delay The delay from controller to actuator
can only take two values when we have one load process. The reason
for this is that if there was a message waiting when the message
was sent from the sensor, the transmission of the waiting message
starts before the message to the actuator is ready for transmission.
In this case, the delay until the transmission starts will be the time
to transmit the load message. If there is no waiting message the
message to the actuator will be sent immediately after some compu-
tation time in the controller node. The modeled distribution is shown
in Figure 4.11.

By comparing the measured distributions, Figure 4.10, with the model we
see that there is a very good agreement.

49

Chapter 4. Experimental Delay Measurements

The developed model, Figure 4.11, captures the probability distribu-
tion of the time delay in the data, Figure 4.10, very well. What it does not
capture is the time behavior, when there is correlation between consecu-
tive delays. The covariance has been estimated for the experimental data
with deterministic traffic, and with random traffic. In the case with ran-
dom traffic no correlation can be seen between the delays. In the cases
with one or several periodic load processes correlation can be seen be-
tween delays. This type of behavior can be captured with the Markov
models discussed in Chapter 3.

Results

The CAN-bus gives varying delays. Message priorities can be used to
lower the mean delay, but the delay will anyway be varying. The delay
variation depends on the bus utilization, the priority of other messages on
the bus, and if the sending processes are periodic. A simple delay model
can be built by estimating the probability density functions for the delays.
If this model is not sufficient, Markov models can be used. The advantage
with the Markov models is that they can capture behaviors changing with
time.

4.2 Ethernet Network

Delay measurement experiments have also been done using the Ether-
net network at the Department of Automatic Control, Lund Institute of
Technology. This network also serves as network connection for the work
stations at the department, which means that we will not have control of
all network load as in the CAN experiments. The network uses TCP/IP
as communication protocol. This protocol is not intended for real-time ser-
vices, since it lacks, for instance, message priorities. For more information
on Ethernet, see IEEE (1985).

Setup

The experimental setup is shown in Figure 4.12. Experimental data for
the network delays, τ sc

k and τ ca
k , were collected using two networked com-

puters. The sampling interval was set to h � 0.5 s, this means that the
sensor node sends a new measurement to the controller node every 0.5
seconds. After a short delay, due to execution of code in the controller
node, a message containing the new control signal is returned to the dis-
tributed I/O node. All messages sent on the network were transmitted
together with a timestamp. By comparing the timestamps the delays can
be evaluated. Both the controller node and the distributed I/O node were

50

4.2 Ethernet Network

Distributed
I/O

Process

Controller
node

Ethernet Network τ sc
kτ ca

k

Figure 4.12 Experimental setup for the delay measurements using an Ethernet
network. The network delays are τ sc

k and τ ca
k .

implemented on Pentium PCs. The PCs were running Windows NT as op-
erating system. Windows NT is not intended for real-time control, this is
expected to give some unpredictable software overhead in the communi-
cation delays. The experiment programs were written using the Modula-2
real-time kernel from the Department of Automatic Control. The pro-
grams were executed in Windows NT using the real-time priority option.
This is the highest priority a user program can have in Windows NT. As in
the experiments on CAN, clock synchronization was done with the off-line
clock synchronization algorithm, see Section 4.1.

System load

The network used for experiments connects around 40 computers at the
department. It is a 10 Mbit/s network, which means that the transfer
time for a message is quite short. If, for instance, if a message is sent
as 100 bytes, the transmission time is 0.08 ms. The software overhead
in the computer nodes will be much larger than the transmission time.
A network sending collision will occur if two network nodes try to send
at the same time. If a collision is detected the two nodes stay off the
bus for a random time. If the network is not loaded, only the normal
load by computer users at the department is on the network, collisions on
the network are unlikely, and the delays are expected to be constant. If

51

Chapter 4. Experimental Delay Measurements

the load is increased the collision probability will increase. The load can
increase or decrease during an experiment due to actions made by other
users of the network. To increase the load further we started one or two
network intensive applications. The load cases for the experiments were:

Basic load The network load is the load on the network by other users,
and the load introduced by the experiment.

One extra load Extra load was introduced by a network intensive ap-
plication on a computer on the network.

Two extra loads Two extra loads was introduced by two network inten-
sive applications on a computer on the network.

The delay measurements with low load on the network is shown in Fig-
ure 4.13. The delays are quite constant, as expected. In the delay from
sensor to controller a periodic delay variation can be seen, this is expected
to come from software overhead in Windows NT. If the load is increased
by one extra load process on the network, the delay variation increases,
see Figure 4.14, but the delays are still quite constant. The delay mea-
surements from the experiment with two load processes are shown in
Figure 4.15. Here the variations are even larger, a trend in the network
can also be seen in the variations. It looks as if the delays have large
variations for a while, after which the delays are more constant again.

It can be concluded that the delay variations vary with the network
load. If the load during, for instance, one day will vary between the in-
vestigated load cases, the network delays will show several behaviors. As
seen in the plots, both mean delay and the delay variation are influenced
by the network load.

Time variations introduced by Windows NT

During the experiments it was noticed that the periodic process sending
sensor data to the controller node was not executed with a regular inter-
val. The sampling interval was programmed to be 500 ms. The resulting
sampling interval, hk, is shown together with its histogram in Figure 4.16.
The programming style used for the period process is:

VAR t : Time;

GetTime(t);

LOOP

IncTime(t,h);

...

WaitUntil(t);

END;

52

4.2 Ethernet Network

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

k

k

τ
sc k

τ
ca k

Figure 4.13 Delay measurements with low load on the Ethernet network.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

k

k

τ
sc k

τ
ca k

Figure 4.14 Delay measurements with one extra load on the Ethernet network.

53

Chapter 4. Experimental Delay Measurements

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

k

k

τ
sc k

τ
ca k

Figure 4.15 Delay measurements with two extra loads on the Ethernet network.

The use of a time reference ensures that the mean sampling interval will
be correct. For instance, if we get a sampling interval longer than h, it
is likely that the next sampling interval will be scheduled to be shorter
than h. For the used sampling interval, 500 ms, the variation is relatively
small, but it could be more critical if a shorter sampling interval was used.

Results

The Ethernet network gives varying delays if it is loaded. The delay vari-
ations occur when two transmissions collide. A collision results in that
the colliding nodes stays off the bus for a random time, resulting in a
random transmission delay. The delay characteristic depends highly on
the network load. If the network load is varying a Markov chain model
could capture the network delay behavior.

4.3 Summary

In this chapter we have presented delay experiments on two computer
networks. The first was CAN, which is a network intended for real-time
use. The delay behavior could be explained from knowledge about the CAN

54

4.3 Summary

0 500 1000 1500 2000
0.48

0.49

0.5

0.51

0.52

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52
0

200

400

600

800

1000

k

h
k

N
u

m
be

ro
fS

am
pl

es

hk

Figure 4.16 The sampling interval variation introduced by Windows NT. The sam-
pling interval was programmed to be 500 ms. The lower plot shows the histogram
for the sampling interval.

protocol. Even if CAN is intended for real-time use, we get delay varia-
tions. For a case with random load intervals a simple model was built.
The model captured the probability distribution functions of the delays.
More advanced models can be built if dependencies between delays are
taken into account, for instance, using Markov models. The second net-
work used for experiments was Ethernet with the TCP/IP protocol. This
network is not intended for real-time use. When the network is working
with low load the delays are deterministic. If network load is increased
the probability for network collisions increases. When a collision occurs
we get a substantially longer delay. This gives an unpredictable behavior
when the load is high.

The delay measurement experiments use synchronized clocks. A new
off-line clock synchronization algorithm was developed. If the clock syn-
chronization algorithm is implemented with recursive algorithms it can
also be used on-line.

55

5

Analysis and Control with
Independent Delays

To design a controller for a distributed real-time control system it is im-
portant to know how to analyze such systems. We will study the control
system setup described in Section 2.1. We will assume that the sensor
node is sampled regularly at a constant sampling period h. The actuator
node is assumed to be event driven, i.e., the control signal will be used
as soon as it arrives. In this chapter we will develop both analysis meth-
ods and an LQG-design method when the delays have a constant known
probability density function, see Chapter 3.

5.1 Closed Loop System

In Figure 5.1 the control system is illustrated in a block diagram. In this
section we will determine the closed loop system when a linear control law
is used. In Section 5.2 we will analyze closed loop systems. Optimal control
laws are calculated in Section 5.4. The controlled process is assumed to
be

dx
dt
� Ax(t) + Bu(t) + v(t), (5.1)

where x(t) ∈ R n, u(t) ∈ R m and v(t) ∈ R n. A and B are matrices of
appropriate sizes. u(t) is the controlled input and v(t) is white noise with
zero mean and covariance Rv. We will assume that the delay from sensor
to actuator is less than the sampling period h, i.e., τ sc

k + τ ca
k < h. If this

condition is not satisfied control signals may arrive at the actuator in
corrupted order, which makes the analysis much harder. As described
earlier, this condition can be relaxed to a condition on the delay variation

56

5.1 Closed Loop System

Actuator
node Process Sensor

node

Controller
node

Network

h

τ scτ ca

u(t) y(t)

Figure 5.1 Distributed digital control system with induced delays, τ sc and τ ca.

being less than h. The influence from the network is collected in the
variable τ k. For instance τ k can be a vector with the delays in the loop,
i.e., τ k � [τ sc

k , τ ca
k]T . Periodic sampling of (5.1) gives a description of the

system at the sampling instants, see Chapter 3,

xk+1 � Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1 + vk. (5.2)

The output equation is

yk � C xk +wk, (5.3)

where yk ∈R p. The stochastic processes vk and wk are uncorrelated Gaus-
sian white noise with zero mean and covariance matrices R1 and R2 re-
spectively.

A linear controller for this system can be written as

xc
k+1 � Φc(τ k)xc

k + Γc(τ k)yk (5.4)
uk � C c(τ k)xc

k + Dc(τ k)yk, (5.5)

where appearance of τ k in Φc, Γc, C c or Dc, means that the controller
knows the network delays completely or partly. Examples of such con-
trollers are published in Krtolica et al. (1994), Ray (1994), and Nilsson
et al. (1998).

From (5.2) – (5.5) we see that the closed loop system can be written
as

zk+1 � Φ(τ k)zk + Γ(τ k)ek, (5.6)

57

Chapter 5. Analysis and Control with Independent Delays

where

zk �

 xk

xc
k

uk−1

 , (5.7)

Φ(τ k) �

Φ + Γ0(τ k)Dc(τ k)C Γ0(τ k)C c(τ k) Γ1(τ k)
Γc(τ k)C Φc(τ k) 0

Dc(τ k)C C c(τ k) 0

 , (5.8)

ek �
[

vk

wk

]
, (5.9)

and

Γ(τ k) �

 I Γ0(τ k)Dc(τ k)
0 Γc(τ k)
0 Dc(τ k)

 . (5.10)

The variance R of ek is

R � E(ekeT
k) �

[
R1 0

0 R2

]
.

The next section investigates properties of the closed loop system (5.6).
Section 5.3 describes how to analyze systems with random delays using
computer simulations. In Chapter 6 the analysis is made for the Markov
network model described in Chapter 3.

5.2 Analysis

As described in Chapter 3, communication delays in a data network usu-
ally vary from transfer to transfer. In this situation the standard methods
from linear time-invariant discrete-time systems cannot be applied. There
are examples where the closed loop system is stable for all constant de-
lays, but give instability when the delay is varying. This section develops
some analysis tools for systems where consecutive delays are random and
independent. First it is investigated how to calculate covariances of sig-
nals generated by (5.6), this naturally leads to a stability criterion for
systems with random and independent delays.

58

5.2 Analysis

Evaluation of Covariance

Let the closed loop system be given by (5.6), where {τ k} is a random
process uncorrelated with {ek}. The form of Φ(τ k) and Γ(τ k) is determined
by the process, the communication network, and the controller structure.
τ k can be a vector consisting of the delay from sensor to controller, τ sc

k ,
and the delay from controller to actuator, τ ca

k . We assume that τ k has
known distribution, and that τ k is independent for different k. This can
be an unrealistic assumption and will be relaxed in Chapter 6, where a
Markov network model is used. To keep track of the noise processes we
collect the random components up to time k in

Yk � {τ 0, ..., τ k, e0, ..., ek}.

Introduce the state covariance Pk as

Pk � E
Yk−1

(zkzT
k), (5.11)

where the expectation is calculated with respect to noise in the process
and randomness in the communication delays. By iterating (5.11) we get

Pk+1 � E
Yk

(zk+1zT
k+1)

� E
Yk

((Φ(τ k)zk + Γ(τ k)ek)(Φ(τ k)zk + Γ(τ k)ek)T
)

� E
Yk

((Φ(τ k)zkzT
k Φ(τ k)T + Γ(τ k)ekeT

k Γ(τ k)T
)

� E
τ k

((Φ(τ k)PkΦ(τ k)T + Γ(τ k)RΓ(τ k)T
)

.

Here we have used that τ k, zk and ek are independent, and that ek has
mean zero. This is crucial for the applied technique to work and indirectly
requires that τ k and τ k−1 are independent. Using Kronecker products, see
Appendix A, this can be written as

vec(Pk+1) � E
τ k
(Φ(τ k) ⊗ Φ(τ k)) vec(Pk) + vec E

τ k
(Γ(τ k)RΓ(τ k)T)

� A vec(Pk) +G , (5.12)

where

A � E
τ k
(Φ(τ k) ⊗ Φ(τ k)), (5.13)

G � E
τ k
(Γ(τ k) ⊗ Γ(τ k)) vec(R). (5.14)

59

Chapter 5. Analysis and Control with Independent Delays

From (5.12) we see that stability in the sense of bounded E(zT
k zk), i.e., sec-

ond moment stability, is guaranteed if ρ (E(Φ(τ k) ⊗ Φ(τ k))) < 1, where
ρ (A) denotes the spectral radius of the matrix A. This stability condition
appeared in Kalman (1962) in a slightly different setting. For a discussion
of the connection between second moment stability and other stability con-
cepts such as mean square stability, stochastic stability, and exponential
mean square stability see Section 2.4.

Calculation of Stationary Covariance

If the recursion (5.12) is stable, ρ (E(Φ(τ k) ⊗ Φ(τ k))) < 1, the stationary
covariance

P∞ � lim
k→∞

Pk (5.15)

can be found from the unique solution of the linear equation

vec(P∞) � E(Φ(τ k) ⊗ Φ(τ k)) vec(P∞) + vec E(Γ(τ k)RΓ(τ k)T). (5.16)

Calculation of Quadratic Cost Function

In LQG-control it is of importance to evaluate quadratic cost functions
like E zT

k S(τ k)zk. This can be done as

E
Yk

zT
k S(τ k)zk � tr E

Yk

zT
k S(τ k)zk � tr(E

τ k
S(τ k) E

Yk−1

zkzT
k), (5.17)

which as k →∞ gives

lim
k→∞

E zT
k S(τ k)zk � tr(E

τ k
S(τ k)P∞). (5.18)

This quantity can now be calculated using the previous result.
Normally we want to calculate a cost function of the form E(xT

k S11xk+
uT

k S22uk). As uk is not an element of the vector zk, see (5.7), this cost
function can not always directly be cast into the formalism of (5.17). A
solution to this problem is to rewrite uk of (5.5) using the output equation
(5.3) as

uk � C c(τ k)xc
k + Dc(τ k)(C xk +wk)

� [Dc(τ k)C C c(τ k) 0] zk + Dc(τ k)wk.

Noting that τ k and wk are independent, and that wk has zero mean, the
cost function can be written as

E
Yk

(xT
k S11xk + uT

k S22uk) � E
Yk

(zT
k S(τ k)zk) + J1,

60

5.2 Analysis

where

S(τ k) �

 S11 0 0

0 0 0

0 0 0

+
 (D

c(τ k)C)T
C c(τ k)T

0

 S22 [Dc(τ k)C C c(τ k) 0]

J1 � tr
(

E
τ k
{Dc(τ k)T S22 Dc(τ k)}R2

)
,

where the first part again is on the form of (5.17).

EXAMPLE 5.1—CONSTANT VS RANDOM DELAY

Consider the control system in Figure 5.2 with one delay τ k in the loop.
The process output is sampled with the sampling period h. We will con-
sider two cases for the delay.

• The delay is constant with the value τ k � h/2.

• The delay is uniformly distributed on the interval [0, h].

Actuator
node Process Sensor

node

Controller
node

h

τ k

Figure 5.2 Digital control system with induced delay.

Let the process be, this can for instance be an inverted pendulum,

Y(s) � 1
s2 − 1

U(s).

Discretizing this at the sampling instants and assuming that white noise
vk affects the state gives

xk+1 � Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1 +
√

hvk, (5.19)

61

Chapter 5. Analysis and Control with Independent Delays

where vk is white noise with variance I and zero mean. The
√

h-factor
comes from sampling of continuous time white noise with the sampling
period h. We will control the process with an LQ-controller which mini-
mizes

J � lim
N→∞

1
N

N∑
k�1

(y2
k + u2

k).

We let the control design take the nominal delay into account by designing
the controller for (5.19) with τ k � h/2. This gives a control law

uk � −L
[

xk

uk−1

]
,

where we partition L as L � [lx, lu]. Assuming that we can measure the
process state the closed loop system can be written as (5.7), where

Φ �
[

Φ − Γ0(τ k)lx Γ1(τ k) − Γ0(τ k)lu

−lx −lu

]
, Γ �

[√
hI

0

]
,

and zk � [xk uk−1]T .
In Figure 5.3 the value of the cost function J is plotted for the two

models of the delay for h ∈ [0, 1]. It is seen that the controller is most
successful in minimizing J when the delay is constant instead of being
spread over an interval. This is not surprising since the controller was
designed assuming a constant delay. From calculations using (5.12) it is
found that the controller fails to stabilize the process for h > 0.785 if the
time delays are randomly varying.

5.3 Simulation of Systems with Network Delays

An alternative to the algebraic analysis of control systems with network
induced delays is to use simulation. This can also be useful in cases when
there are no analytic results available. Typical cases are time domain
responses such as step responses, noise amplification, response to load
disturbances, etc. Simulation can also be used when we want to study
effects of nonlinear elements in the control loop, for example actuator
saturation. An alternative way to evaluate a cost function, which was done
exactly for the linear case in Section 5.2, is to do Monte Carlo simulations
and calculate the mean value of the cost function. In Section 5.5 this
technique is used for an example. A problem with this approach is the

62

5.4 Optimal Stochastic Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

J

h

Figure 5.3 Values of the cost function J for constant delay (full line) and for
uniformly distributed delay (dashed line) vs sampling period for the system in Ex-
ample 5.1.

large number of samples needed to get a small confidence interval for
the cost function. Although this can be lowered using variance reduction
techniques, see Morgan (1984).

5.4 Optimal Stochastic Control

This section deals with controller design for the distributed digital control
system in Figure 5.1. The controlled process is assumed to be

dx
dt
� Ax(t) + Bu(t) + v(t), (5.20)

where x(t) ∈ R n, u(t) ∈ R m and v(t) ∈ R n. A and B are matrices of
appropriate sizes, u(t) is the controlled input and v(t) is white noise with
zero mean and covariance Rv. The influence from the network is collected
in the variables τ sc

k and τ ca
k , which is the delay from sensor to controller

and from controller to actuator. We will assume that the delay from sensor
to actuator is less than the sampling period h, i.e., τ sc

k + τ ca
k < h. We also

assume that old time delays are known when the control signal is calcu-
lated, i.e., when we calculate uk the set {τ sc

0 , . . . , τ sc
k , τ ca

0 , . . . , τ ca
k−1} of time

63

Chapter 5. Analysis and Control with Independent Delays

delays is known. The knowledge of old time delays can for instance be
solved by clock synchronization and timestamping as described in Chap-
ter 2. Sampling (5.20) at the sampling instants determined by the sensor
node, see Chapter 2, gives

xk+1 � Φxk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1 + vk. (5.21)
The output equation is

yk � C xk +wk, (5.22)
where yk ∈R p. The stochastic processes vk and wk are uncorrelated Gaus-
sian white noise with zero mean and covariance matrices R1 and R2 re-
spectively.

If the network delays can be assumed to be constant, (5.21) degen-
erates to the standard process used in sampled data control theory, and
thus the standard design tools can be used for synthesis, see Åström and
Wittenmark (1997).

In this section we assume that the network delays are stochastically
independent, see Chapter 3. First we will solve the LQ-problem for (5.21)
with full state information. Then the optimal state estimator is derived,
and finally the LQG-problem with output feedback is solved. Through a
separation theorem it is seen that the optimal controller is the combina-
tion of the LQ-controller and the optimal state estimator. The parameters
of the optimal controller can be precalculated and interpolated from a
tabular. The proof of the separation property follows the lines for the
delay-free case in Åström (1970). In Section 5.5 the optimal controller is
compared to different control schemes in an example of distributed digital
control.

Optimal State Feedback

In this section we derive the controller that minimizes the cost function

JN � E xT
N QN xN + E

N−1∑
k�0

[
xk

uk

]T

Q
[

xk

uk

]
, (5.23)

where Q is symmetric with the structure

Q �
[

Q11 Q12

QT
12 Q22

]
. (5.24)

Here Q is positive semi-definite and Q22 is positive definite. The solution
is obtained by the same technique as for the standard LQG problem. We
have the following result:

64

5.4 Optimal Stochastic Control

THEOREM 5.1—OPTIMAL STATE FEEDBACK

Given the plant (5.21), with noise free measurement of the state vector xk,
i.e., yk � xk. The control law that minimizes the cost function (5.23) is
given by

uk � −Lk(τ sc
k)
[

xk

uk−1

]
(5.25)

where

Lk(τ sc
k) �(Q22 + S̃22

k+1)−1 [QT
12 + S̃21

k+1 S̃23
k+1]

S̃k+1(τ sc
k) �E

τ ca
k

{
GT(τ sc

k , τ ca
k)Sk+1G(τ sc

k , τ ca
k)
∣∣τ sc

k

}
G(τ sc

k , τ ca
k) �

[
Φ Γ0(τ sc

k , τ ca
k) Γ1(τ sc

k , τ ca
k)

0 I 0

]
Sk �E

τ sc
k

{
FT

1 (τ sc
k)QF1(τ sc

k) + FT
2 (τ sc

k)S̃k+1(τ sc
k)F2(τ sc

k)
}

F1(τ sc
k) �(Q22 + S̃22

k+1)−1
[(Q22 + S̃22

k+1)I 0

−(QT
12 + S̃21

k+1) −S̃23
k+1

]
�
[

I 0

−Lk(τ sc
k)
]

F2(τ sc
k) �(Q22 + S̃22

k+1)−1

 (Q22 + S̃22
k+1)I 0

−(QT
12 + S̃21

k+1) −S̃23
k+1

0 (Q22 + S̃22
k+1)


�

 I 0

−Lk(τ sc
k)

0 I


SN �

[
QN 0

0 0

]
.

Here S̃ij
k+1 is block (i, j) of the symmetric matrix S̃k+1(τ sc

k), and Qij is
block (i, j) of Q.

Proof Introduce a new state variable zk �
[

xk

uk−1

]
. Using dynamic

programming with Sk the cost to go at time k, and with α k the part of

65

Chapter 5. Analysis and Control with Independent Delays

the cost function that cannot be affected by control, gives

zT
k Skzk +α k �min

uk
E

τ sc
k ,τ ca

k ,vk

{[
xk

uk

]T

Q
[

xk

uk

]
+ zT

k+1Sk+1zk+1

}
+α k+1

�E
τ sc

k

min
uk

E
τ ca

k ,vk

{[
xk

uk

]T

Q
[

xk

uk

]
+ zT

k+1Sk+1zk+1

∣∣∣τ sc
k

}
+α k+1

�E
τ sc

k

min
uk


[

xk

uk

]T

Q
[

xk

uk

]
+

 xk

uk

uk−1


T

S̃k+1(τ sc
k)

 xk

uk

uk−1




+α k+1 + tr S11
k+1R1.

The second equality follows from the fact that τ sc
k is known when uk is

determined. The third equality follows from independence of
[

xk

uk

]
and

τ ca
k , and from the definition of S̃k+1(τ sc

k). The resulting expression is a
quadratic form in uk. Minimizing this with respect to uk gives the optimal
control law (5.25). From the assumption that Q is symmetric it follows
that Sk and S̃k are symmetric.

Theorem 5.1 states that the optimal controller with full state information
is a linear τ sc

k -depending feedback from the state and the previous control
signal

uk � −Lk(τ sc
k)
[

xk

uk−1

]
.

The equation involved in going from Sk+1 to Sk is a stochastic Riccati
equation evolving backwards in time. Each step in this iteration will con-
tain expectation calculations with respect to the stochastic variables τ sc

k
and τ ca

k . Under reasonable assumptions, that we will not discuss here, a
stationary value S∞ of Sk can be found by iterating the stochastic Riccati
equation. In practice a tabular for L∞(τ sc

k) can then be calculated to get
a control law on the form

uk � −L(τ sc
k)
[

xk

uk−1

]
,

where L(τ sc
k) is interpolated from the tabular values of L∞(τ sc

k) in real-
time. Notice that the tabular will be one-dimensional.

66

5.4 Optimal Stochastic Control

Optimal State Estimate

It is often impossible to get full state information. A common solution
to this is to construct a state estimate from the available data. In our
setup there is the problem of the random time delays which enter (5.21)
in a nonlinear fashion. The fact that the old time delays up to time k− 1
are known at time k, however, allows the standard Kalman filter of the
process state to be optimal. This is because xk only depend on delays in
the set {τ sc

0 , ..., τ sc
k−1, τ ca

0 , ..., τ ca
k−1}, as seen from (5.21).

When we are to calculate an estimate of xk we assume that we know
old values of the process output and process input. These can simply be
stored in the controller for later use. We also assume that old values of the
transfer delays for process output measurements and control signals are
known. One way to achieve this is by timestamping of signals transferred
in the control system, see Chapter 2. Denote the information available
when the control signal uk is calculated by Yk. This has the structure

Yk � {y0, ..., yk, u0, ..., uk−1, τ sc
0 , ..., τ sc

k , τ ca
0 , ..., τ ca

k−1}.

Notice that the sensor to controller delay τ sc
k at time k and older are

available, but the controller to actuator delays τ ca
k are only known up to

time k− 1.
The state estimator that minimizes the error covariance is given in

the following theorem.

THEOREM 5.2—OPTIMAL STATE ESTIMATE

Given the plant (5.21)–(5.22). The estimator

x̂ktk � x̂ktk−1 + K k(yk − C x̂ktk−1) (5.26)

with

x̂k+1tk � Φ x̂ktk−1 + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1 + Kk(yk − C x̂ktk−1)
x̂0t−1 � E(x0)
Pk+1 � ΦPkΦT + R1 −ΦPkC T [C PkC T + R2]−1C PkΦ

P0 � R0 � E(x0xT
0)

Kk � ΦPkC T [C PkC T + R2]−1

K k � PkC T [C PkC T + R2]−1

minimizes the error variance E{[xk − x̂ktk]T [xk − x̂ktk] t Yk}. The esti-
mation error is Gaussian with zero mean and covariance Pktk � Pk −
PkC T [C PkC T + R2]−1C Pk.

67

Chapter 5. Analysis and Control with Independent Delays

Proof Note that the random matrices in the process (5.21), Γ0(τ sc
k , τ ca

k)
and Γ1(τ sc

k , τ ca
k), are known when the estimate x̂k+1tk is calculated. This

simply follows from the assumption that old time delays are known when
we make the estimate. By this we know how the control signal enters xk+1,
and the optimality of the estimator can be proved in the same way as the
standard Kalman filter for time-varying, linear systems, see Anderson
and Moore (1979). See also Chen et al. (1989).
Remark: Note that the filter gains Kk and K k do not depend on τ sc

k and
τ ca

k . This follows from that τ sc
k and τ ca

k do not enter the matrix Φ.

Optimal Output Feedback

The following theorem justifies use of the estimated state in the optimal
controller.

THEOREM 5.3—SEPARATION PROPERTY

Given the plant (5.21)–(5.22), with Yk known when the control signal is
calculated. The controller that minimizes the cost function (5.23) is given
by

uk � −Lk(τ sc
k)
[

x̂ktk
uk−1

]
(5.27)

with

Lk(τ sc
k) � (Q22 + S̃22

k+1)−1 [QT
12 + S̃21

k+1 S̃23
k+1] , (5.28)

where S̃k+1 is calculated as in Theorem 5.1, and x̂ktk is the minimum
variance estimate from Theorem 5.2.

To prove Theorem 5.3 we will need some lemmas. The first lemma is
from Åström (1970).

LEMMA 5.1
Let E[⋅ t y] denote the conditional mean given y. Assume that the function
f (y, u) � E[l(x, y, u) t y] has a unique minimum with respect to u ∈ U
for all y ∈ Y . Let u0(y) denote the value of u for which the minimum is
achieved. Then

min
u(y)

E l(x, y, u) � E l(x, y, u0(y)) � E
y
{min

u
E[l(x, y, u) t y]}, (5.29)

where E
y

denotes the mean value with respect to the distribution of y.

Proof This is Lemma 3.2 in Chapter 8 of Åström (1970).

68

5.4 Optimal Stochastic Control

LEMMA 5.2
With the notation in (5.26) and under the conditions for Theorem 5.2 the
following holds.

E
τ ca

k ,vk ,wk+1

{[
x̂k+1tk+1

uk

]T

Sk+1

[
x̂k+1tk+1

uk

] ∣∣∣Yk

}

�

 x̂ktk
uk

uk−1


T

S̃k+1(τ sc
k)

 x̂ktk
uk

uk−1

+ tr(R1C T K
T
k+1S11

k+1 K k+1C)

+ tr(R2 K
T
k+1S11

k+1 K k+1) + tr(PktkΦT C T K
T
k+1S11

k+1 K k+1C Φ),

where S11
k is block (1, 1) of the matrix Sk.

Proof The calculations are similar to those in Theorem 5.1. In Theo-
rem 5.2 the state estimate recursion is written as a recursion in x̂ktk−1.
This can by use of the equations in Theorem 5.2 be rewritten as a recur-
sion in x̂ktk.

x̂k+1tk+1 � (I − K k+1C)x̂k+1tk + K k+1 yk+1

� (I − K k+1C){Φ x̂ktk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1
}

+K k+1 {C(Φxk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1 + vk)
+wk+1} . (5.30)

By introducing the estimation error x̃k � xk − x̂ktk, which we know is
orthogonal to x̂ktk from Theorem 5.2, equation (5.30) can be written as

x̂k+1tk+1 � Φ x̂ktk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1

+ K k+1C Φ x̃k + K k+1Cvk + K k+1wk+1. (5.31)
From this it follows that

[
x̂k+1tk+1

uk

]
� G(τ sc

k , τ ca
k)

 x̂ktk
uk

uk−1

+ H

 x̃k

vk

wk+1

 , (5.32)

where

G(τ sc
k , τ ca

k) �
[

Φ Γ0(τ sc
k , τ ca

k) Γ1(τ sc
k , τ ca

k)
0 I 0

]
(5.33)

H �
[

K k+1C Φ K k+1C K k+1

0 0 0

]
. (5.34)

69

Chapter 5. Analysis and Control with Independent Delays

The equality in the formulation of the lemma can now be written as

E
τ ca

k ,vk ,wk+1

{[
x̂k+1tk+1

uk

]T

Sk+1

[
x̂k+1tk+1

uk

] ∣∣∣Yk

}

�

 x̂ktk
uk

uk−1


T

E
τ ca

k

{
GT(τ sc

k , τ ca
k)Sk+1G(τ sc

k , τ ca
k)tτ sc

k

} x̂ktk
uk

uk−1



+ E
vk ,wk+1


 x̃k

vk

wk+1


T

HT Sk+1 H

 x̃k

vk

wk+1

 ∣∣∣Yk


�

 x̂ktk
uk

uk−1


T

S̃k+1(τ sc
k)

 x̂ktk
uk

uk−1

+ tr(R1C T K
T
k+1S11

k+1 K k+1C)

+ tr(R2 K
T
k+1S11

k+1 K k+1) + tr(PktkΦT C T K
T
k+1S11

k+1 K k+1C Φ), (5.35)
where

S̃k+1(τ sc
k) � E

τ ca
k

{
GT(τ sc

k , τ ca
k)Sk+1G(τ sc

k , τ ca
k)tτ sc

k

}
. (5.36)

The first part of the first equality follows from that x̂ktk, uk, and uk−1 are
independent of x̃k, τ ca

k , vk, and wk+1. The second part of the first equality
follows from that H is independent of τ ca

k . The second equality follows
from that x̃k is independent of vk and wk+1.

Proof of Theorem 5.3 By repeated use of Lemma 5.1 we obtain a
dynamic programming recursion for the future loss W . Since knowledge
of x̂ktk and Pktk is a sufficient statistic for the conditional distribution of
xk given Yk and since τ sc

k is known at time k we obtain the functional
equation

W(x̂ktk, Pktk, k) � E
τ sc

k

min
uk

E

{[
xk

uk

]T

Q
[

xk

uk

]
+ W(x̂k+1tk+1, Pk+1tk+1, k+ 1)

∣∣∣Yk

}
� E

τ sc
k

min
uk

E

{[
xk

uk

]T

Q
[

xk

uk

]
+ W(x̂k+1tk+1, Pk+1tk+1, k+ 1)

∣∣∣ x̂ktk, Pktk, τ sc
k

}
. (5.37)

70

5.4 Optimal Stochastic Control

The initial condition for the functional (5.37) is

W(x̂NtN , PNtN , N) � E
{

xT
N QN xN t x̂NtN , PNtN

}
. (5.38)

In (5.37) E
τ sc

k

is brought outside the minimization using Lemma 5.1, i.e.,

τ sc
k is known when we calculate the control signal. We will now show that

the functional (5.37) has a solution which is a quadratic form

W(x̂ktk, Pktk, k) �
[

x̂ktk
uk−1

]T

Sk

[
x̂ktk
uk−1

]
+ sk, (5.39)

and that the functional is minimized by the controller of Theorem 5.1 with
xk replaced by x̂ktk. Using Theorem 5.2 we can rewrite the initial condition
(5.38) as

W(x̂NtN , PNtN , N) � x̂T
NtN QN x̂NtN + tr(QN PNtN), (5.40)

which clearly is on the quadratic form (5.39). Proceeding by induction we
assume that (5.39) holds for k+1 and we will then show that it also holds
for k. We have that

W(x̂ktk, Pktk, k) � E
τ sc

k

min
uk

{[
x̂ktk
uk

]T

Q
[

x̂ktk
uk

]
+ tr(PktkQ11)

+

 x̂ktk
uk

uk−1


T

S̃k+1(τ sc
k)

 x̂ktk
uk

uk−1

+ tr(R1C T K
T
k+1S11

k+1 K k+1C)

+ tr(R2 K
T
k+1S11

k+1 K k+1) + tr(PktkΦT C T K
T
k+1S11

k+1 K k+1C Φ) + sk+1

}
,

(5.41)

where we have used Lemma 5.2 to rewrite E W(x̂k+1tk+1, Pk+1tk+1, k + 1).
Comparing (5.41) with the quadratic form in the proof of Theorem 5.1 we
see that it is minimized by the control law

uk � −(Q22 + S̃22
k+1)−1 [QT

12 + S̃21
k+1 S̃23

k+1]
[

x̂ktk
uk−1

]
, (5.42)

where S̃k+1 is as stated in Theorem 5.1. Using the optimal control in
(5.41) and applying E

τ sc
k

, which can be moved inside [x̂T
ktk uT

k−1], we find

that W(x̂ktk, Pktk, k) is on the quadratic form (5.39). The induction is thus

71

Chapter 5. Analysis and Control with Independent Delays

completed and the criterion is minimized by the controller stated in the
theorem.

Remark: The assumption τ sc
k +τ ca

k < h implies that all measurements are
available and that the control signal can be applied within each sampling
period, i.e., there are no missing measurements or lost control actions.

5.5 Example

Consider the following plant, both plant and design specifications are
taken from Doyle and Stein (1979),

dx
dt
�
[

0 1

−3 −4

]
x+

[
0

1

]
u+

[
35

−61

]
ξ (5.43)

y � [2 1] x+η ,

where ξ (t) and η (t) have mean zero and unit incremental variance. The
control objective is to minimize the cost function

J � E lim
T→∞

1
T

∫ T

0
(xT HT Hx+ u2)dt,

where H � 4
√

5
[√

35 1
]
. The sampling period for the controller is cho-

sen as h � 0.05. This is in accordance with the rule of thumb that is
given in Åström and Wittenmark (1997). The time delays, τ sc

k and τ ca
k ,

are assumed to be uniformly distributed on the interval [0,α h/2] where
0 ≤ α ≤ 1.

The stationary cost function will be evaluated and compared for four
different schemes:

• an LQG-controller neglecting the time delays,

• an LQG-controller designed for the mean delay,

• the scheme with buffers proposed in Luck and Ray (1990),
• the optimal controller derived in Section 5.4.

The first design is done without taking any time delays into account.
The process and the cost function are sampled to get discrete time equiva-
lents, and the standard LQG-controller is calculated. This gives the design

L �
[

38.911

8.094

]T

, K �
[

2.690

−4.484

]
, K �

[
2.927

−5.012

]
.

72

5.6 Summary

This choice of L, K and K gives the following closed loop poles

sp(Φ − ΓL) � {0.700± 0.0702i}
sp(Φ − K C) � {0.743, 0.173}.

Even if these looks reasonable, a Nyquist plot of the loop transfer func-
tion reveals a small phase margin, φ m � 10.9○ . The small phase margin
indicates that there could be problems to handle unmodeled time delays.
Numerical evaluation of (5.13) gives the stability limit α crit � 0.425 for
the controller neglecting the time delays.

The second design takes account of the mean delay, α h/2, by being
designed for a process containing the mean delay.

The scheme in Luck and Ray (1990) eliminates the randomness of the
time delays by introduction of timed buffers. This will, however, introduce
extra time delay in the loop. The design for this scheme is done in the
same way as in the standard LQG-problem.

The fourth scheme we will compare with is the optimal controller de-
scribed in Section 5.4. Notice that the optimal state estimator gains K
and K will be the same for the optimal controller as if the time delays
were neglected. The feedback from the estimated state will have the form

uk � −L(τ sc
k)
[

x̂k

uk−1

]
.

The stationary cost function has been evaluated for the four schemes
by solving the linear equation (5.16). For comparison the stationary cost
has also been evaluated by Monte Carlo simulation, calculating the mean
cost during 2 ⋅104 simulated samples. The results agree very well, see Fig-
ure 5.4. From Figure 5.4 it is seen that the controller neglecting the time
delays fails to stabilize the process for α > α crit. The optimal controller
outperforms the scheme proposed in Luck and Ray (1990).

5.6 Summary

In this chapter we have developed methods for analysis and design for
real-time control systems with induced network delays. The network delay
model implied that delays have a known probability distribution and that
the delays are mutually independent. The analysis results were done by
formulating the closed loop system as

zk+1 � Φ(τ k)zk + Γ(τ k)ek. (5.44)

73

Chapter 5. Analysis and Control with Independent Delays

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Design neglecting time delays

Scheme by Luck-Ray

Optimal controller

Mean delay controller

α

L
os

s

Figure 5.4 Exact calculated performance (solid lines) of the four schemes, and
simulated performance (dashed lines) of system (5.43) as a function of the amount
of stochastics in the time-delays. The time-delays are uniformly distributed on
[0,α h/2]. For α > 0.425 the controller neglecting the time delays fails to stabi-
lize the process.

The analysis results give methods for evaluation of signal covariances,
and mean square stability.

The LQG-optimal control problem was solved in three steps. First it
was shown that the optimal state feedback has the form

uk � −Lk(τ sc
k)
[

xk

uk−1

]
, (5.45)

where τ sc
k is the delay from sensor to controller. Secondly, the minimum

error variance state estimator was derived. By use of timestamps we as-
sumed that old network delays are known when we make the estimate.
This lead to the conclusion that the standard Kalman filter is optimal. As
the third piece it was show that the separation principle can be used, i.e.,
the combination of optimal state feedback and optimal state estimate is
optimal in the output feedback case. The resulting controller is easy to

74

5.6 Summary

implement on-line. The feedback gain L(τ sc
k) can, for instance, be inter-

polated from a one dimensional tabular.
The chapter was concluded with a design example where the optimal

controller was compared with some controllers from the literature. The
optimal controller was shown to outperform the other controllers in the
example.

75

6

Analysis and Control with
Markov Delays

As described in Chapter 3 a more realistic model for communication de-
lays in data networks is to model the delays as being random with the
distribution selected from an underlying Markov chain. In this chapter
some analysis and design tools for these systems are developed. First
variances of signals and stability of the closed loop are studied for a sys-
tem with a Markov chain which makes one transition every sample. Then
the LQG-optimal controller is derived. In Section 7.1 the analysis results
are generalized to the case when the Markov chain makes two transitions
every sample, this to allow for the state of the Markov chain to change
both when sending measurement and control signals.

6.1 Setup

The Markov Communication Network

The network delays are collected in the variable τ k, where τ k is a ran-
dom variable with probability distribution given by the state of a Markov
chain. For instance, τ k can be a vector with the delays in the loop, i.e.,
τ k � [τ sc

k , τ ca
k]T . The Markov chain has the state rk ∈ {1, ..., s} when τ k is

generated. The Markov chain then makes a transition between k and k+1.
The transition matrix for the Markov chain is Q � {qij}, i, j ∈ {1, ..., s},
where

qij � P(rk+1 � j t rk � i).
Introduce the Markov state probability

π i(k) � P(rk � i), (6.1)

76

6.1 Setup

and the Markov state distribution vector

π (k) � [π 1(k) π 2(k) . . . π s(k)] .

The probability distribution for rk is given by the recursion

π (k+ 1) � π (k)Q
π (0) � π 0,

where π 0 is the probability distribution for r0.
Let Yk denote the σ -algebra generated by the random components up

to time k, i.e.,

Yk � {e0, ..., ek, τ 0, ..., τ k, r0, ..., rk},

where ei is the noise in the process. That the probability distribution of
τ k is assumed given by the state rk of the Markov chain means that

P(τ k ∈ F t Yk−1, rk) � P(τ k ∈ F t rk)

for all measurable sets F. Markov chains with continuous observation
densities will be used. For Example 3.1 with varying network load we
will have the probability distribution functions

fi(τ k) � P(τ k t rk � i)

for i ∈ [L, M, H] corresponding to low, medium, and high load on the
network. Note that discrete observation densities are covered as a special
case obtained by letting fi be a Dirac function.

Closed Loop Sampled System

The controlled process is assumed to be linear of the form

dx
dt
� Ax(t) + Bu(t) + v(t), (6.2)

where x(t) ∈ R n, u(t) ∈ R m, v(t) ∈ R n and where A and B are matrices
of appropriate sizes. The controlled input is denoted by u(t) and v(t) is
white noise with zero mean and covariance Rv. As a simplification we
will assume that the delay from sensor to actuator always is less than
the sampling period h, i.e., τ sc

k + τ ca
k < h. If this condition is not satisfied

control signals may arrive at the actuator in corrupted order, which makes
the analysis much harder.

77

Chapter 6. Analysis and Control with Markov Delays

Remark: The assumption that the delays from sensor to actuator are less
than h can be changed to that the variation in the delays from sensor to
controller are less than h. This generalization requires that the process
state is extended with some more old control signals.

The influence from the network is collected in the variable τ k, which
has a probability distribution governed by an underlying Markov chain.
Discretizing (6.2) at the sampling instants, see Chapter 3, gives

xk+1 � Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1 + vk, (6.3)

where

Φ � eAh (6.4)

Γ0(τ sc
k , τ ca

k) �
∫ h−τ sc

k −τ ca
k

0
eAsdsB (6.5)

Γ1(τ sc
k , τ ca

k) �
∫ h

h−τ sc
k −τ ca

k

eAsdsB . (6.6)

The output equation is

yk � C xk +wk, (6.7)

where yk ∈R p. The stochastic processes vk and wk are uncorrelated Gaus-
sian white noise with zero mean and covariance matrices R1 and R2,
respectively.

A general linear controller for system (6.3)–(6.7) can be written as

xc
k+1 � Φc(τ k, rk)xc

k + Γc(τ k, rk)yk (6.8)
uk � C c(τ k, rk)xc

k + Dc(τ k, rk)yk, (6.9)

where appearance of τ k and rk in Φc, Γc, C c or Dc, means that the
controller knows the network delays and network state completely or
partly. Examples of such controllers are given in Krtolica et al. (1994),
Ray (1994), and Nilsson et al. (1998).

From (6.3) – (6.9) we see that the closed loop system can be written
as

zk+1 � Φ(τ k, rk)zk + Γ(τ k, rk)ek, (6.10)

78

6.2 Analysis

where

zk �

 xk

xc
k

uk−1

 , (6.11)

Φ(τ k, rk) �

Φ + Γ0(τ k)Dc(τ k, rk)C Γ0(τ k)C c(τ k, rk) Γ1(τ k)
Γc(τ k, rk)C Φc(τ k, rk) 0

Dc(τ k, rk)C C c(τ k, rk) 0

 ,

(6.12)

ek �
[

vk

wk

]
, (6.13)

and

Γ(τ k, rk) �

 I Γ0(τ k)Dc(τ k, rk)
0 Γc(τ k, rk)
0 Dc(τ k, rk)

 . (6.14)

The variance R of ek is

R � E(ekeT
k) �

[
R1 0

0 R2

]
.

6.2 Analysis

Stability and Covariances

In this section we will study how to evaluate stability and covariances for
the closed loop system (6.10). The trick to avoid combinatorial explosion
is to use the Markov property to collect past information in a small num-
ber of variables. There are several ways to do this. For completeness we
present four different ways that are pairwise dual. One possibility is to
introduce the conditional state covariance as

Pi(k) � E
Yk−1

(
zkzT

k t rk � i
)

, (6.15)

and

P̃i(k) � Pi(k)π i(k) � E
Yk−1

(
zkzT

k 1rk�i
)

, (6.16)

79

Chapter 6. Analysis and Control with Markov Delays

where 1A is a function which is 1 on (the measurable event) A, see
Appendix B for a short review of the 1-function. The state covariance
P(k) � E(zkzT

k) is given by

P(k) �
s∑

i�1

Pi(k)π i(k) �
s∑

i�1

P̃i(k). (6.17)

The following theorem gives a forward recursion to evaluate P̃i(k).

THEOREM 6.1
Let zk be given by a Markov driven linear system with continuous proba-
bility densities, then the covariance matrices P̃i(k) in (6.16) are given by
the forward recursion

P̃j(k+ 1) �
s∑

i�1

qij E
(

ΦP̃i(k)ΦT + π i(k)ΓRΓT
∣∣∣rk � i

)
. (6.18)

Proof The proof of Theorem 6.1 is presented in Section 6.3.

It is also possible to obtain a different recursion by conditioning on rk−1
instead of on rk. With the definition

Pi(k) � E
Yk−1

(
zkzT

k 1rk−1�i
)

. (6.19)

one easily obtains

Pj(k+ 1) � E

(
Φ

(
s∑

i�1

qij Pi(k)
)

ΦT + π j(k)ΓRΓT
∣∣∣rk � j

)
. (6.20)

It is easily shown that the relation

P̃i(k) �
s∑

j�1

qjiPj(k) (6.21)

holds between P̃i(k) and Pj(k). There are also two dual backwards recur-
sions that evaluate future loss. If we define

Ṽ (k, i, z) � E

(
N∑

t�k

zT
t Qzt

∣∣∣rk � i, zk � z

)
. (6.22)

80

6.2 Analysis

we get that Ṽ (k, i, z) � zT S̃i(k)z+ α̃ i(k) where

S̃i(k) � Q + E

ΦT

 s∑
j�1

qij S̃j(k+ 1)
Φ

∣∣∣rk � i

 (6.23)

α̃ i(k) �
s∑

j�1

qij tr E
(

ΓT S̃j(k+ 1)ΓR
∣∣∣rk � i

)
+

s∑
j�1

qijα̃ j(k+ 1). (6.24)

An alternative is to condition on rk−1, i.e.,

V (k, i, z) � E

(
N∑

t�k

zT
t Qzt

∣∣∣rk−1 � i, zk � z

)

One then gets V (k, i, z) � zT Siz+α i(k) where

Si(k) � Q+
s∑

j�1

qij E
(

ΦT Sj(k+ 1)Φ
∣∣∣rk � j

)
(6.25)

α i(k) �
s∑

j�1

qij

(
tr E

(
ΓT Sj(k+ 1)ΓR

∣∣∣rk � j
))

+
s∑

j�1

qijα j(k+ 1). (6.26)

Using the Kronecker and vec notation the recursions above can be
written as standard linear recursions. This is exemplified in the following
corollary.

COROLLARY 6.1
The vectorized state covariance matrix P̃(k) satisfies the recursion

P̃(k+ 1) � (QT ⊗ I)diag(A i)P̃(k) + (QT ⊗ I)(diag(π i(k)) ⊗ I)G. (6.27)

81

Chapter 6. Analysis and Control with Markov Delays

where

A i � E
τ k
(Φ(τ k) ⊗ Φ(τ k) t rk � i) G i � E

τ k

(
Γ(τ k)RΓT(τ k) t rk � i

)

P̃(k) �


vec P̃1(k)
vec P̃2(k)

...

vec P̃s(k)

 G �


vecG1

vecG2

...

vecGs

 ,

where P̃i(k) � E(zkzT
k 1rk�i).

Proof The proof of Corollary 6.1 is presented in Section 6.3.

The iterations described above are closely related to the Viterbi algorithm
used to determine the most probably state history of Hidden Markov Mod-
els. The recursion gives a lattice (or so called Trellis) structure that can
be used to efficiently implement the computations, see Rabiner (1989).

From (6.27) it is seen that the closed loop will be stable, in the sense
that the covariance is bounded, if the matrix (QT ⊗ I)diag(A i) has all
its eigenvalues in the unit circle. The connections between stability in
covariance and other stochastic stability criteria for jump linear systems
are discussed in Feng et al. (1992).

This result generalizes the results in Ji et al. (1991) and Gajic and
Qureshi (1995) in the sense that we let the Markov chain postulate the
distribution of Φ(τ k) and Γ(τ k), while Ji et al. (1991) and Gajic and
Qureshi (1995) let the Markov chain postulate a deterministic Φ(τ k) and
Γ(τ k) for every Markov state. The results in Gajic and Qureshi (1995) are
for the continuous time case.

Calculation of Stationary Covariance

We will assume that the Markov chain is stationary and regular, see
Appendix B. This assures that

lim
k→∞

π (k) � π∞

exists and is independent of π (0). The stationary distribution π∞ of the
Markov chain is then given uniquely by

π∞Q � π∞, and
s∑

i�1

π∞i � 1.

82

6.2 Analysis

In the stable case the recursion (6.27) will converge as k →∞,

P̃∞ � lim
k→∞

P̃(k).

When (6.27) is a stable linear difference equation it follows that P̃∞ will
be the unique solution of the linear equation

P̃∞ � (QT ⊗ I)diag(A i)P̃∞ + (QT ⊗ I)(diag(π∞i) ⊗ I)G.

The stationary value of E(zkzT
k) is given by

P∞ � lim
k→∞

E(zkzT
k) � lim

k→∞

s∑
i�1

E(zkzT
k t rk � i)P(rk � i) �

s∑
i�1

P̃∞i ,

where P̃∞i is the corresponding part of P̃∞, see Corollary 6.1.

Calculation of Quadratic Cost Function

In LQG-control it is of importance to evaluate quadratic cost functions
like E zT

k S(τ k, rk)zk. This can be done as

E
Yk

zT
k S(τ k, rk)zk � tr

(
E
Yk

zT
k S(τ k, rk)zk

)
� tr

(
s∑

i�1

π i(k)E
Yk

(
zT

k S(τ k, rk)zk

∣∣∣rk � i
))

� tr

(
s∑

i�1

P̃i(k)Eτ k

(
S(τ k, i)

∣∣∣rk � i
))

(6.28)

which as k →∞ gives

lim
k→∞

E zT
k S(τ k, rk)zk � tr

(
s∑

i�1

P̃∞i E
τ k

(
S(τ k, i)

∣∣∣rk � i
))

. (6.29)

This quantity can now be calculated using the previous result.
Normally we want to calculate a cost function of the form E(xT

k S11xk+
uT

k S22uk). As uk is not an element of the vector zk, see (6.11), this cost
function can not always directly be cast into the formalism of (6.28). A
solution to this problem is to rewrite uk of (6.9) using the output equation
(6.7) as

uk � C c(τ k, rk)xc
k + Dc(τ k, rk)(C xk +wk)

� [Dc(τ k, rk)C C c(τ k, rk) 0] zk + Dc(τ k, rk)wk.

83

Chapter 6. Analysis and Control with Markov Delays

Noting that τ k and wk are independent, and that wk has zero mean, the
cost function can be written as

E(xT
k S11xk + uT

k S22uk) � E(zT
k S(τ k, rk)zk) + J1,

where

S(τ k, rk) �

 S11 0 0

0 0 0

0 0 0


+

 (D
c(τ k, rk)C)T

C c(τ k, rk)T
0

 S22 [Dc(τ k, rk)C C c(τ k, rk) 0]

J1 � tr

(
s∑

i�1

π i(k)E(Dc(τ k, i)T S22 Dc(τ k, i))R2

)
,

where the first part again is on the form of (6.28).
EXAMPLE 6.1—VARIABLE DELAY

Consider the closed loop system in Figure 6.1. Assume that the distribu-

Actuator
node Process Sensor

node

Controller
node

h

τ k

Figure 6.1 Digital control system with induced delay. The time-delay τ k is deter-
mined by the state rk of the Markov chain in Figure 6.2

tion of the communication delay τ k from controller to actuator is given
by the state rk of a Markov chain. The Markov chain has two states, see
Figure 6.2. The delay is

τ k �
{

0 if rk � 1,

rect(d− a, d+ a) if rk � 2,
(6.30)

84

6.2 Analysis

1 2

1− q1

1− q2

q2q1

Figure 6.2 Markov chain with two states. State 1 corresponds to no delay, and
state 2 corresponds to a time-delay in the interval [d−a, d+a], see Equation (6.30).

where rect(d − a, d + a) denotes a uniform distribution on the interval
[d − a, d + a]. It is also assumed that d − a > 0 and d + a < h. The
controlled process is 

dx
dt
� x+ u+ e

y � x.

Let the control strategy be given by uk � −Lxk. Discretizing the process
at the sampling instants determined by the sensor we get

xk+1 � Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1 + Γeek,

where

Φ � eAh � eh,

Γ0(τ k) �


∫ h

0
eAsdsB � eh − 1, if rk � 1,∫ h−τ k

0
eAsdsB � eh−τ k − 1, if rk � 2,

Γ1(τ k) �


0, if rk � 1,∫ h

h−τ k

eAsdsB � eh − eh−τ k , if rk � 2.

Introduce the closed loop state zk as

zk �
[

xk

uk−1

]
.

The closed loop system can then be written as

zk+1 � A(τ k)zk + Γ(τ k)ek,

85

Chapter 6. Analysis and Control with Markov Delays

where

A(τ k) �
[

Φ − Γ0(τ k)L Γ1(τ k)
−L 0

]
Γ(τ k) �

[
Γe

0

]
.

Stability of the closed loop system is determined by the spectral radius of
(QT ⊗ I)diag(A i), where

A1 � A(0) ⊗ A(0),
A2 � E

τ k
(A(τ k) ⊗ A(τ k) t rk � 2)

and the transition matrix for the Markov chain is

Q �
[

q1 1− q1

1− q2 q2

]
.

Figure 6.3 shows the stability region in the q1 − q2 space for h � 0.3,
d � 0.8h, a � 0.1h and L � 4. This corresponds to a control close to
deadbeat for the nominal case. In Figure 6.3 the upper left corner (q1 � 1
and q2 � 0) corresponds to the nominal system, i.e., a system without
delay. The lower right corner (q1 � 0 and q2 � 1) corresponds to the
system with a delay uniformly distributed on [d− a, d+ a]. As seen from
Figure 6.3 the controller does not stabilize the process in this case. When
q1 � q2 the stationary distribution of the state in the Markov chain is
π 1 � π 2 � 0.5. In Figure 6.3 this is a line from the lower left corner to the
upper right corner. Note that if the Markov chain stays a too long or a too
short time in the states (i.e., if q1 � q2 � 1 or q1 � q2 � 0) the closed loop
is not stable, but for a region in between the closed loop is stable (i.e., if
q1 � q2 � 0.5).

EXAMPLE 6.2—VACANT SAMPLING - TWO HEURISTIC CONTROL STRATEGIES

Consider the digital control system in Figure 6.4. Due to sensor failure or
communication problem samples can be lost. This is called vacant sam-
pling. Vacant sampling is modeled with a Markov chain, see Figure 6.2. If
the Markov chain is in State 2 the sample is lost, and State 1 corresponds
to normal operation. Let the process be

dx
dt
� x+ u+ e

y � x.

Discretizing the process at the sampling instants we get

xk+1 � Φxk + Γuk + Γeek.

86

6.2 Analysis

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q 1

q2

Stable

Unstable

Figure 6.3 Stability region in q1 − q2 space for the system in Example 6.1. Here
r1 corresponds to a Markov state with no time delay and r2 to a state with uniform
delay on [d− a, d+ a]. A non-optimal controller uk � −4xk is used.

Actuator Process Sensor

Controller

h

Figure 6.4 Digital control system.

We will now compare two heuristic control strategies. The first is given
by uk � −Lxk if we get a new sample, and uk � uk−1 if the sample is lost.
The closed loop system will be

zk+1 � A(rk)zk + B(rk)ek,

87

Chapter 6. Analysis and Control with Markov Delays

where

zk �
[

xk

uk−1

]

A(rk) �


[

Φ − ΓL 0

−L 0

]
if rk � 1,[

Φ Γ
0 I

]
if rk � 2

B(rk) �
[

Γe

0

]
.

The sampling period is chosen to h � 0.3, and the noise variance such
that Γe � 1. The feedback is designed to minimize the nominal LQ cost
function, i.e., assuming rk � 1,

J � lim
N→∞

1
N

N∑
k�1

(xkxT
k + ukuT

k).

This gives uk � −Lxk, where L � 1.776. Using (6.27) we can determine
stability and calculate stationary performance. The stability region and
level curves for J in the q1− q2 space are shown in Figure 6.5. Note that
we fail to stabilize the system if we have long periods with lost samples
(large q2).

The second choice of controller is to use state feedback when the sensor
is working, and in case of sensor failure use feedback from an estimated
state x̂k. An estimate of xk can be formed as

x̂k+1 �
{

xk+1 if rk � 1,

Φ x̂k + Γuk if rk � 2.

The closed loop system will be

zk+1 � A(rk)zk + B(rk)ek,

where

zk �
[

xk

x̂k

]

A(rk) �


[

Φ − ΓL 0

Φ − ΓL 0

]
if rk � 1,[

Φ −ΓL

0 Φ − ΓL

]
if rk � 2,

B(rk) �
[

Γe

0

]
.

88

6.3 Proof of Theorem 6.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q 1

q2

Unstable

10

20

50 100

Figure 6.5 Stability region and level curves for J in the q1 − q2 space for Exam-
ple 6.2. The level curves are plotted for J � {10, 20, 50, 100, ∞(thick)}.

The stability region and level curves for J in the q1−q2 space are shown in
Figure 6.6. In Figure 6.5 and Figure 6.6 the upper left corner corresponds
to the nominal case without lost samples. The lower right corner corre-
sponds a system where all samples are lost, of course the controllers fail
to stabilize the system in this region. It can be seen from Figure 6.5 and
Figure 6.6 that the stability region of the closed loop system is increased
using the second control with an estimator. There are however regions in
the q1−q2 space where the first controller is better. In Figure 6.7 the area
where the controller without prediction outperforms the controller using
prediction is shown. This is not surprising, although the controller using
prediction has a larger stability area it is not an optimal controller.

6.3 Proof of Theorem 6.1

We will need the following property of τ k and zk.

LEMMA 6.1—CONDITIONAL INDEPENDENCE LEMMA

The random variables τ k and zk are conditionally independent relative rk,

89

Chapter 6. Analysis and Control with Markov Delays

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q 1

q2

Unstable

10

20

50 100

Figure 6.6 Stability region and level curves for J in the q1 − q2
space with controller using prediction. The level curves are plotted for
J � {10, 20, 50, 100, ∞(thick)}. Compare with Figure 6.5. Note that the sta-
bility region is increased using the second control with an estimator.

i.e.,

E
Yk

(f (τ k)g(zk) t rk � i) � E
Yk

(f (τ k) t rk � i)E
Yk

(g(zk) t rk � i),

for all measurable functions f (⋅) and g(⋅).
Proof The proof is based on Chapter 9.1 of Chung (1974), especially
Theorem 9.2.1. The conditional independence property follows by Theo-
rem 9.2.1 of Chung (1974) and from the fact that

P(τ k ∈ E t zk , rk � i) � P(τ k ∈ E t rk � i).
This is a consequence of (6.10) and the fact that zk is measurable with
respect to Yk.

Remark: zk and τ k are generally not independent.
We will also need the following Markov property.

LEMMA 6.2
Under the stated Markov assumptions it holds that

E
Yk

(f (zk, τ k) t rk+1 � j , rk � i) � E
Yk

(f (zk, τ k) t rk � i),

90

6.3 Proof of Theorem 6.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q 1

q2

Unstable

Second controller best

First controller best

Figure 6.7 Regions in the q1−q2 space where the two controllers are performing
best. Remember that none of the controllers are optimal.

where f (⋅) is a measurable function.

Proof From Theorem 9.2.1 of Chung (1974) it follows that an equivalent
condition is

P(rk+1 � j t f (zk, τ k) , rk � i) � P(rk+1 � j t rk � i).
The validity of this condition follows directly from the Markov property.

We will use the fact that if f and A are independent given B then

E(f 1A) �
∑

B

P(A t B)E(f 1B) (6.31)

with A being the event that rk+1 � j and B the event rk � i and f �
zk+1zT

k+1. For the proof of (6.31), see Theorem B.3. We have

P̃j(k+ 1) � E
Yk

{
zk+1zT

k+1 1rk+1�j
}

� E
Yk

{(
Φ(τ k)zkzT

k ΦT(τ k) + Γ(τ k)ekeT
k ΓT(τ k)

)
1rk+1�j

}
�

s∑
i�1

qij E
Yk

{(
Φ(τ k)zkzT

k ΦT(τ k) + Γ(τ k)ekeT
k ΓT(τ k)

)
1rk�i

}
. (6.32)

91

Chapter 6. Analysis and Control with Markov Delays

By vectorizing P̃j(k+ 1) and using the Conditional independence lemma,
Lemma 6.1, we get

vec P̃j(k+ 1) �
s∑

i�1

qijA i vec P̃i(k) +
s∑

i�1

qijπ i(k) vecG i,

where A i and G i are as stated in Corollary 6.1. Rewriting the sums as
matrix multiplications and using Kronecker products, the recursion can
be written as the linear recursion

P̃(k+ 1) � (QT ⊗ I)diag(A i)P̃(k) + (QT ⊗ I)(diag(π i(k)) ⊗ I)G, (6.33)

which completes the proof.

6.4 Optimal Stochastic Control

Optimal State Feedback

In this section we solve the control problem set up by the cost function

JN � E xT
N QN xN + E

N−1∑
k�0

[
xk

uk

]T

Q
[

xk

uk

]
, (6.34)

where

Q �
[

Q11 Q12

QT
12 Q22

]
. (6.35)

is symmetric, positive semi-definite, and Q22 is positive definite. The so-
lution of this problem follows by the same technique as for the standard
LQG problem. We have the following result:

THEOREM 6.2—OPTIMAL STATE FEEDBACK

Given the plant (6.3), with noise free measurement of the state vector xk,
i.e., yk � xk, and knowledge of the Markov state rk. The control law that
minimizes the cost function (6.34) is given by

uk � −Lk(τ sc
k , rk)

[
xk

uk−1

]
(6.36)

92

6.4 Optimal Stochastic Control

where, for rk � i, i � 1, . . . , s, we have

Lk(τ sc
k , i) �(Q22 + S̃22

i (k+ 1))−1 [QT
12 + S̃21

i (k+ 1) S̃23
i (k+ 1)]

S̃i(k+ 1) �E
τ ca

k

GT
s∑

j�1

qij Sj(k+ 1)G
∣∣∣τ sc

k , rk � i


G �

[
Φ Γ0(τ sc

k , τ ca
k) Γ1(τ sc

k , τ ca
k)

0 I 0

]
Si(k) �E

τ sc
k

(
FT

1 QF1 + FT
2 S̃i(k+ 1)F2

∣∣∣rk � i
)

F1 �
[

I 0

−Lk(τ sc
k , rk)

]

F2 �

 I 0

−Lk(τ sc
k , rk)

0 I


Si(N) �

[
QN 0

0 0

]
.

S̃ab
i (k) is block (a, b) of the symmetric matrix S̃i(k), and Qab is block (a, b)

of Q.

Proof Introduce a new state variable zk �
[

xk

uk−1

]
. Using dynamic

programming with Si(k) the cost to go at time k if rk � i, and with α i(k)
the part of the cost function that cannot be affected by control, gives

zT
k Si(k)zk +α i(k)

� min
uk

E
τ sc

k ,τ ca
k ,vk


[

xk

uk

]T

Q
[

xk

uk

]
+ zT

k+1

s∑
j�1

qij Sj(k+ 1)zk+1

∣∣∣ rk � i


+

s∑
j�1

qijα j(k+ 1)

� E
τ sc

k

min
uk

E
τ ca

k ,vk


[

xk

uk

]T

Q
[

xk

uk

]
+ zT

k+1

s∑
j�1

qij Sj(k+ 1)zk+1

∣∣∣τ sc
k , rk � i


+

s∑
j�1

qijα j(k+ 1)

93

Chapter 6. Analysis and Control with Markov Delays

� E
τ sc

k

min
uk


[

xk

uk

]T

Q
[

xk

uk

]
+

 xk

uk

uk−1


T

S̃i(k+ 1)

 xk

uk

uk−1

 ∣∣∣ rk � i


+

s∑
j�1

qijα j(k+ 1) + tr
s∑

j�1

qij S11
j (k+ 1)R1.

The second equality follows from the fact that τ sc
k is known when uk is

determined. The third equality follows from independence of
[

xk

uk

]
and

τ ca
k , and from the definition of S̃i(k + 1). The resulting expression is a

quadratic form in uk. Minimizing this with respect to uk gives the optimal
control law (6.36). From the assumption that Q is symmetric it follows
that S(k) and S̃i(k) are symmetric.

The result is closely related to both standard LQ-results and the LQ-
result of Chapter 5. The difference is that the optimal control law uses
knowledge about the delays, τ sc

k , and the delay generating system, rk.
Theorem 6.2 states that the optimal controller with full state information
is a linear feedback depending on τ sc

k and rk

uk � −Lk(τ sc
k , rk)

[
xk

uk−1

]
.

The equation involved in going from Sj(k+1) to Si(k) is a coupled Riccati
equation evolving backwards in time. Each step in this iteration will con-
tain expectation calculations with respect to the stochastic variables τ sc

k
and τ ca

k . Under reasonable assumptions, that we will not discuss here, a
stationary value S∞i of Si(k) can be found by iterating the stochastic Ric-
cati equation. In practice a tabular for L∞(τ sc

k , rk) can then be calculated
to get a control law on the form

uk � −L(τ sc
k , rk)

[
xk

uk−1

]
,

where L(τ sc
k , rk) is interpolated from the tabular values of L∞(τ sc

k , rk) in
real-time.

EXAMPLE 6.3—VARIABLE DELAY LQ-DESIGN

Consider the process setup in Example 6.1. This is a system where we
can use the derived synthesis method. The design is made by setting up

94

6.4 Optimal Stochastic Control

a cost function to be minimized. Here we will use (6.34) with

Q11 � C T C � 1 Q12 � 0 Q22 � 1.

In the example τ sc
k � 0 and we only have statistical information about the

control delay when we calculate the control signal. The optimal control
will be

uk � −L(rk)
[

xk

uk−1

]
,

where rk is the state of the Markov chain. The Markov chain state is
assumed known when the control signal is calculated. Solving the coupled
Riccati equations in Theorem 6.2 gives L(rk). In Figure 6.8 the LQ-cost
is evaluated in the q1 − q2 space for h � 0.3, d � 0.8h and a � 0.1h.
Compared to the controller used in Example 6.1, Figure 6.3, we see that
this controller stabilizes the system for all q1−q2 values. From Figure 6.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

q 1

q2

9

9

10
11

12
13

14

Figure 6.8 Level curves for the cost function in q1 − q2 space for the system in
Example 6.3. The minimal value is 8.66, which is attained for (q1 � 1, q2 � 0). The
following level curves are {9, 10, 11, 12, 13, 14}.

it can be observed that the most advantageous cases for control is when
q1 is close to 1, and when both q1 and q2 are close to 0. In both these
cases we have what can be called a “close to deterministic system”. If q1

95

Chapter 6. Analysis and Control with Markov Delays

is close to 1 we will be in the no delay state most of the time. In the other
case where both q1 and q2 are small we will switch between state 1 and
state 2 almost every sample, which could be characterized as a periodic
deterministic system with a period of 2 samples.

Optimal State Estimate

It is often impossible to get full state information. A common solution
to this is to construct a state estimate from the available data. In our
setup there is the problem of the random time delays which enter (6.3)
in a nonlinear fashion. The fact that the old time delays up to time k− 1
are known at time k, however, allows the standard Kalman filter of the
process state to be optimal. This is because xk only depends on delays in
the set {τ sc

0 , ..., τ sc
k−1, τ ca

0 , ..., τ ca
k−1}, as seen from (6.3).

Denote the information available when the control signal uk is calcu-
lated by Yk. This has the structure

Yk � {y0, ..., yk, u0, ..., uk−1, τ sc
0 , ..., τ sc

k , τ ca
0 , ..., τ ca

k−1, r0, ..., rk}.

Notice that the sensor to controller delay τ sc
k at time k and older are

available, but the controller to actuator delays τ ca
k are only known up to

time k− 1.
The state estimation problem considered is exactly the same as the

state estimation problem considered in Theorem 5.2. The key is that old
time delays are known when the state estimate is calculated. The state
estimator that minimizes the error covariance is given in the following
theorem.

THEOREM 6.3—OPTIMAL STATE ESTIMATE

Given the plant (6.3)–(6.7). The estimator

x̂ktk � x̂ktk−1 + K k(yk − C x̂ktk−1) (6.37)

with

x̂k+1tk � Φ x̂ktk−1 + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1 + Kk(yk − C x̂ktk−1)
x̂0t−1 � E(x0)
Pk+1 � ΦPkΦT + R1 −ΦPkC T [C PkC T + R2]−1C PkΦ

P0 � R0 � E(x0xT
0)

Kk � ΦPkC T [C PkC T + R2]−1

K k � PkC T [C PkC T + R2]−1

96

6.4 Optimal Stochastic Control

minimizes the error variance E{[xk − x̂ktk]T [xk − x̂ktk] t Yk}. Note that
the filter gains Kk and K k do not depend on τ sc

k and τ ca
k . Moreover, the

estimation error is Gaussian with zero mean and covariance Pktk � Pk −
PkC T [C PkC T + R2]−1C Pk.

Proof See proof for Theorem 5.2.

Optimal Output Feedback

The optimal controller satisfies the separation property and is given by
the following gain-scheduled controller.

THEOREM 6.4—SEPARATION PROPERTY

Given the plant (6.3)–(6.7), with Yk known when the control signal is
calculated. The controller that minimizes the cost function (6.34) is given
by

uk � −Lk(τ sc
k , rk)

[
x̂ktk
uk−1

]
(6.38)

with

Lk(τ sc
k , rk) � (Q22 + S̃22

i (k+ 1))−1 [QT
12 + S̃21

i (k+ 1) S̃23
i (k+ 1)] ,

(6.39)

where S̃i(k) is calculated as in Theorem 6.2, and x̂ktk is the minimum
variance estimate from Theorem 6.3.

Proof The proof is presented in Section 6.5.

It is easy to see that this controller reduces to the optimal controller
previously known, see Ji et al. (1991), when the probability distributions
reduce to Dirac functions, i.e., when each Markov state has a deterministic
Φ, Γ, C vector associated with it.

The separation property is important for use of Theorem 6.2 and The-
orem 6.3. The properties that make the separation principle valid are the
following.

• The knowledge of old time delays together with the assumption
on noises to be Gaussian white noises makes {x̂ktk, Pktk} sufficient
statistic, i.e., all historical information is collected in {x̂ktk, Pktk}.

• The process is linear, which makes the state feedback controller
linear.

Together the above properties make the separation principle, as known
from LQG-theory, valid.

97

Chapter 6. Analysis and Control with Markov Delays

6.5 Proof of Theorem 6.4

To prove Theorem 6.4 we will need some lemmas. We will use Lemma 5.1,
which also was used in the proof of the separation principle in Chapter 5.
The following lemma corresponds to Lemma 5.2 in Chapter 5.

LEMMA 6.3
With the notation in (6.37) and under the conditions for Theorem 6.3 the
following holds.

s∑
j�1

qij E
τ ca

k ,vk ,wk+1

{[
x̂k+1tk+1

uk

]T

Sj(k+ 1)
[

x̂k+1tk+1

uk

] ∣∣∣Yk, rk � i

}

�

 x̂ktk
uk

uk−1


T

S̃i(k+ 1)

 x̂ktk
uk

uk−1

+ s∑
j�1

qij

(
tr(R1C T K

T
k+1S11

j (k+ 1)K k+1C)

+ tr(R2 K
T
k+1S11

j (k+ 1)K k+1) + tr(PktkΦT C T K
T
k+1S11

j (k+ 1)K k+1C Φ)
)

,

where S11
j (k) is block (1, 1) of the matrix Si(k).

Proof The calculations are similar to those in Theorem 6.2. In Theo-
rem 6.3 the state estimate recursion is written as a recursion in x̂ktk−1.
This can by use of the equations in Theorem 6.3 be rewritten as a recur-
sion in x̂ktk.

x̂k+1tk+1 � (I − K k+1C)x̂k+1tk + K k+1 yk+1

� (I − K k+1C){Φ x̂ktk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1
}

+K k+1 {C(Φxk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1 + vk)
+wk+1} . (6.40)

By introducing the estimation error x̃k � xk − x̂ktk, which we know is
orthogonal to x̂ktk from Theorem 6.3, (6.40) can be written as

x̂k+1tk+1 � Φ x̂ktk + Γ0(τ sc
k , τ ca

k)uk + Γ1(τ sc
k , τ ca

k)uk−1

+ K k+1C Φ x̃k + K k+1Cvk + K k+1wk+1. (6.41)
From this it follows that

[
x̂k+1tk+1

uk

]
� G(τ sc

k , τ ca
k)

 x̂ktk
uk

uk−1

+ H

 x̃k

vk

wk+1

 , (6.42)

98

6.5 Proof of Theorem 6.4

where

G(τ sc
k , τ ca

k) �
[

Φ Γ0(τ sc
k , τ ca

k) Γ1(τ sc
k , τ ca

k)
0 I 0

]
(6.43)

H �
[

K k+1C Φ K k+1C K k+1

0 0 0

]
. (6.44)

The sought equality can now be written as

s∑
j�1

qij E
τ ca

k ,vk ,wk+1

{[
x̂k+1tk+1

uk

]T

Sj(k+ 1)
[

x̂k+1tk+1

uk

]
t Yk, rk � i

}

�

 x̂ktk
uk

uk−1


T

E
τ ca

k

GT(τ sc
k , τ ca

k)
s∑

j�1

qij Sj(k+ 1)G(τ sc
k , τ ca

k) t rk � i


 x̂ktk

uk

uk−1



+ E
vk ,wk+1


 x̃k

vk

wk+1


T

HT
s∑

j�1

qij Sj(k+ 1)H

 x̃k

vk

wk+1

 ∣∣∣Yk


�

 x̂ktk
uk

uk−1


T

S̃i(k+1)

 x̂ktk
uk

uk−1

+ s∑
j�1

qij tr Sj(k+1)H

 Pktk
R1

R2

 HT ,

(6.45)

where

S̃i(k+ 1) � E
τ ca

k

GT(τ sc
k , τ ca

k)
s∑

j�1

qij Sj(k+ 1)G(τ sc
k , τ ca

k) t rk � i

 .

(6.46)

The first part of the first equality follows from that x̂ktk, uk, and uk−1
are uncorrelated with x̃k, τ ca

k , vk, and wk+1. The second part of the first
equality follows from that H is independent of τ ca

k . The second equality
follows from that x̃k is independent of vk and wk+1.

By repeated use of Lemma 5.1, and the knowledge that x̂ktk is a suffi-
cient statistic for the conditional distribution of xk given Yk, we find the

99

Chapter 6. Analysis and Control with Markov Delays

functional equation

Wi(x̂ktk, k) � E
τ sc

k

min
uk

E

{[
xk

uk

]T

Q
[

xk

uk

]

+
s∑

j�1

qij Wj(x̂k+1tk+1, k+ 1)
∣∣∣Yk, rk � i, rk+1 � j


� E

τ sc
k

min
uk

E

{[
xk

uk

]T

Q
[

xk

uk

]

+
s∑

j�1

qij Wj(x̂k+1tk+1, k+ 1)
∣∣∣ x̂ktk , τ sc

k , rk � i, rk+1 � j

 . (6.47)

The initial condition for the functional (6.47) is

Wi(x̂NtN , N) � E
{

xT
N QN xN t x̂NtN , rN � i

}
. (6.48)

In (6.47) E
τ sc

k

is brought outside the minimization using Lemma 5.1, i.e.,

τ sc
k is known when we calculate the control signal. We will now show that

the functional (6.47) has a solution which is a quadratic form

Wi(x̂ktk, k) �
[

x̂ktk
uk−1

]T

Si(k)
[

x̂ktk
uk−1

]
+α i(k), (6.49)

and that the functional is minimized by the controller of Theorem 6.2 with
xk replaced by x̂ktk. Using Theorem 6.3 we can rewrite the initial condition
(6.48) as

Wi(x̂NtN , N) � x̂T
NtN QN x̂NtN + tr(QN PNtN), (6.50)

which clearly is on the quadratic form (6.49). Proceeding by induction we
assume that (6.49) holds for k+1 and we will then show that it also holds
for k. We have that

Wi(x̂ktk, k) � E
τ sc

k

min
uk

{[
x̂ktk
uk

]T

Q
[

x̂ktk
uk

]
+ tr(PktkQ11)

+

 x̂ktk
uk

uk−1


T

S̃i(k+ 1)

 x̂ktk
uk

uk−1

+ s∑
j�1

qij

(
tr(R1C T K

T
k+1S11

j (k+ 1)K k+1C)

+ tr(R2 K
T
k+1S11

j (k+ 1)K k+1) + tr(PktkΦT C T K
T
k+1S11

j (k+ 1)K k+1C Φ)
+α j(k+ 1))} , (6.51)

100

6.6 Summary

where we have used Lemma 6.3 to rewrite E Wj(x̂k+1tk+1, k+1). Comparing
(6.51) with the quadratic form in the proof of Theorem 6.2 we see that it
is minimized by the control law

uk � −(Q22 + S̃22
i (k+ 1))−1 [QT

12 + S̃21
i (k+ 1) S̃23

i (k+ 1)]
[

x̂ktk
uk−1

]
,

(6.52)

where S̃i(k+ 1) is as stated in Theorem 6.2. Using the optimal control in
(6.51) and applying E

τ sc
k

, which can be moved inside [x̂T
ktk uT

k−1], we find that

Wi(x̂ktk, k) is on the quadratic form (6.49). The induction is thus completed
and the criterion is minimized by the controller stated in the theorem.

6.6 Summary

In this chapter we have developed methods for analysis and design of
distributed real-time control systems with induced network delays. The
network delay model was that the delays have a known probability distri-
bution given by an underlying known Markov chain. The analysis results
were derived by formulating the closed loop system as

zk+1 � Φ(τ k, rk)zk + Γ(τ k, rk)ek, (6.53)

where τ k is a vector with the network delays, and rk is the state of the
Markov chain. The analysis results give methods for evaluation of signal
covariances, and mean square stability.

The LQG-optimal control problem was solved in three steps. First it
was shown that the optimal state feedback has the form

uk � −Lk(τ sc
k , rk)

[
xk

uk−1

]
, (6.54)

where τ sc
k is the delay from sensor to controller, and rk is the state of

the Markov chain. Secondly, the minimum error variance state estimator
was derived. By use of timestamps we assumed that old network delays
are known when we make the estimate. As a result of this, the standard
Kalman filter is optimal. As the third step it was shown that the separa-
tion principle can be used, i.e., the combination of optimal state feedback
and optimal state estimate is the optimal output feedback controller. A
restriction with the optimal controller is that the Markov state is used in
the control law. A solution to this problem could be to use an estimated
Markov state in the controller. This is further discussed in Section 7.3.

101

7

Special Topics

The theory of Chapter 5 and Chapter 6 has many possible extensions and
generalizations. It can also be used on some problems where the time vari-
ations do not come from a varying network delay. Most sections of this
chapter extend some of the results in Chapter 5 and Chapter 6. Other
sections treat related problems. In Section 7.1 the analysis results of Sec-
tion 6.2 are generalized to a network model that makes two transitions
between two sampling instants. This models the network closer. In Sec-
tion 7.2 the LQG-results of Chapter 5 are generalized to the case with
a varying sampling interval. The LQG-optimal controller of Chapter 6
uses the state of the Markov chain in the control law. In Section 7.3 a
solution based on estimated Markov state is presented. The LQG-optimal
controllers derived so far require that all measurements come from the
same sensor node, and that all actuators are connected to the same ac-
tuator node. In Section 7.4 the LQG-optimal controller of Chapter 5 is
generalized to the case where measurements come from several different
sensor nodes, and several actuator nodes are used. The concept of “time-
out” is sometimes used in computer science. Can control performance be
increased using a timeout for measurements? In Section 7.5 a controller
using timeout is derived. It is also shown how to analyze systems with
timeouts. A closely related problem is missing samples, or vacant samples.
A controller for the case with vacant samples is derived in Section 7.6 . In
industrial distributed control systems it is common to find asynchronous
loops. For instance, different sampling intervals are used for sampling of
inputs, and mirroring of signals over fieldbuses. This, together with the
lack of clock synchronization, leads to variations in the control delay for
these systems. In Section 7.7 a typical example is studied by simulations.

102

7.1 Markov Chain with Two Transitions Every Sample

7.1 Markov Chain with Two Transitions Every Sample

In the Markov network model used in Chapter 6 the Markov chain makes
one transition every sample. If we want the Markov model to make a
transition between sending of the measurement signal and sending of the
actuator signal we can model this by introducing extra states. In Exam-
ple 3.1 we could have the states, LL, LM, LH, M L, etc. Corresponding
to low load when sending the measurement and low load sending the ac-
tuator signal, etc. The problem with this model is that we need s2 states
in the Markov chain, where s is the number of network states. To model
the situation in the communication network more closely we can let the
Markov chain make two transitions between successive samples, one tran-
sition for each message being sent in the communication network. With
this approach the Markov chain only need to have 2s number of states.
Let the Markov chain be divided into two groups of states, one group
Rsc that generates the probability distributions for delays from sensor to
controller, and one group Rca of states that generates the probability dis-
tributions for delays from controller to actuator. The transitions between
states are then such that the state of the Markov chain will alter between
the two groups of states, see Figure 7.1. In this section we will generalize
the analysis results in Section 6.2 to the network model doing two tran-
sitions every sample. The optimal control results in Section 6.4 should
be possible to generalize using the same method. When we transmit the

i

j m

RcaRsc

...
...

Figure 7.1 Transitions between the two sets of states. First a transition is made
from state i ∈ Rsc to state m ∈ Rca, then a transition is made from m ∈ Rca to
j ∈ Rsc .

data package containing yk the state of the Markov chain will be rsc
k , and

when uk is transmitted the state will be rca
k . The probability distribution

of τ sc
k is given by rsc

k , and the distribution of τ ca
k by rca

k . Let the closed loop

103

Chapter 7. Special Topics

system be (6.10) with

τ k � [τ sc
k τ ca

k] ,
rk � [rsc

k rca
k] .

To simplify writing we introduce the notation

Φk � Φ(τ k, rk)
Γk � Γ(τ k, rk),

for the matrices in the closed loop system. Introduce the Markov state
probabilities

π sc
j (k) � P(rsc

k � j)
π ca

j (k) � P(rca
k � j).

Collect the random components up to time k in

Yk � {e0, ..., ek, rsc
0 , ..., rsc

k , τ sc
0 , ..., τ sc

k , rca
0 , ..., rca

k , τ ca
0 , ..., τ ca

k }.

Introduce the conditional state covariance

Pi(k) � E
Yk−1

(
zkzT

k t rsc
k � i

)
and

P̃i(k) � π sc
i (k)Pi(k) � E(zkzT

k 1rsc
k �i).

The following theorem gives a procedure to evaluate P̃i(k).

THEOREM 7.1
The vectorized state covariance matrix P̃(k) satisfies the recursion

P̃(k+ 1) � (QT ⊗ I) blockmi(qimA im)P̃(k) + G̃, (7.1)

where

A im � E
τ ca

k ,τ sc
k

(Φk ⊗ Φk t rca
k � m, rsc

k � i) ,

G im � E
τ ca

k ,τ sc
k

(
ΓkRΓT

k t rca
k � m, rsc

k � i
)

,

vec Gj �
s∑

m�1

qmj

s∑
i�1

qimπ sc
i (k) vecG im,

104

7.1 Markov Chain with Two Transitions Every Sample

P̃(k) �


vec P̃1(k)
vec P̃2(k)

...

vec P̃s(k)

 , G̃ �


vec G1

vec G2

...

vec Gs

 ,

and blockmi(A(m, i)) means the block matrix with elements A(m, i) in
block position (m, i) for m, i ∈ {1, ..., s}.
Proof Using the Markov property lemma, Lemma 6.2, we get

P̃j(k+ 1) � E
Yk

{zk+1zT
k+1 1rsc

k+1�j}

� E
Yk

{(ΦkzkzT
k ΦT

k + ΓkekeT
k ΓT

k) 1rsc
k+1�j}

�
s∑

m�1

s∑
i�1

E
Yk

{(ΦkzkzT
k ΦT

k + ΓkekeT
k ΓT

k) 1rsc
k+1�j 1rca

k �m 1rsc
k �i}

�
s∑

m�1

qmj

s∑
i�1

qimπ sc
i (k)EYk

{
ΦkzkzT

k ΦT
k

+ΓkekeT
k ΓT

k t rsc
k+1 � j , rca

k � m, rsc
k � i

}
�

s∑
m�1

qmj

s∑
i�1

qimπ sc
i (k)EYk

{
ΦkzkzT

k ΦT
k

+ΓkekeT
k ΓT

k t rca
k � m, rsc

k � i
}

.

In the fourth equality we have used that

E(f 1A 1B 1C) � E(f t A B C)P(A t B C)P(B tC)P(C).
Vectorizing P̃j(k + 1) and using the conditional independence lemma,
Lemma 6.1, we get

vec P̃j(k+ 1) �
s∑

m�1

qmj

s∑
i�1

qimA im vec P̃i(k)

+
s∑

m�1

qmj

s∑
i�1

qimπ sc
i (k) vecG im.

Using matrix notation and Kronecker products, see Appendix A, this lin-
ear recursion can be written as the Lyapunov recursion (7.1), which com-
pletes the proof.

From (7.1) it is seen that the closed loop will be stable, in the sense that
the covariance is finite, if the matrix (QT ⊗ I) blockim(qimA im) has all its
eigenvalues inside the unit circle.

105

Chapter 7. Special Topics

7.2 Sampling Interval Jitter

In some systems sampling of the process outputs is done with an irregular
interval. One such example was described in Section 4.2, where it was no-
ticed that the sampling interval for a process implemented in Windows NT
was randomly varying around the nominal value. A similar effect can be
seen in industrial control systems where the user can not directly setup
sampling intervals. In these systems process outputs are stored in the
computer memory with a fixed period. If the controller runs with another
period the variation will appear as a random sampling interval. See also
Section 7.7 for a discussion on time variations due to asynchronous loops.

In this section we will study the control system in Figure 7.2. We
will use the network model where delays are independent from sample
to sample, see Section 3.2. It is also assumed that the process output
is sampled with a non-constant interval, hk. This problem without the
variations in sampling period, i.e., hk � h, was studied in Chapter 5. The
sensor to controller delay and controller to actuator delay are denoted τ sc

k
and τ ca

k , respectively. We assume the random sequences {τ sc
k }, {τ sc

k }, and
{hk}, are stochastically independent with known probability distributions.
As in earlier chapters we make the assumption τ sc

k +τ sc
k < hk. This means

that control actions will arrive at the actuator node in correct order. We

Actuator
node Process Sensor

node

Controller
node

Network

hk

τ sc
kτ ca

k

Figure 7.2 Control system with distributed I/O. The sampling is done with the
irregular interval hk. The network delays are τ sc

k and τ ca
k .

will also assume that old delays and old sampling intervals are known to
the controller. This can be achieved by timestamping of the messages sent
in the system, see Chapter 2. This means that when uk is calculated the
following delays and sample intervals are known to the controller node:

{τ sc
0 , ..., τ sc

k , τ ca
0 , ..., τ ca

k−1, h0, ..., hk−1}.

106

7.2 Sampling Interval Jitter

Assumptions on the continuous time process to be linear with process
noise, gives the discrete time process

xk+1 � Φ(hk)xk + Γ0(hk, τ sc
k , τ ca

k)uk

+ Γ1(hk, τ sc
k , τ ca

k)uk−1 + Γv(hk)vk, (7.2)

where x ∈ R n is the process state and u ∈ R m the input. Here the time
discretization is done at the sampling instants. The output equation is

yk � C xk +wk, (7.3)

where yk ∈R p. The stochastic processes vk and wk are uncorrelated Gaus-
sian white noise with zero mean and covariance matrices R1 and R2,
respectively.

We solve the LQG-problem set up by the cost function

JN � E xT
N QN xN + E

N−1∑
k�0

[
xk

uk

]T

Q
[

xk

uk

]
, (7.4)

where

Q �
[

Q11 Q12

QT
12 Q22

]
(7.5)

is symmetric, positive semi-definite, and Q22 is positive definite. The so-
lution of the stochastic optimal control problem follows the method that
was used in Chapter 5.

THEOREM 7.2—OPTIMAL STATE FEEDBACK

Given the plant (7.2), with noise free measurement of the state vector xk,
i.e., yk � xk. The control law that minimizes the cost function (7.4) is

uk � −Lk(τ sc
k)
[

xk

uk−1

]
(7.6)

107

Chapter 7. Special Topics

where

Lk(τ sc
k) �(Q22 + S̃22

k+1)−1 [QT
12 + S̃21

k+1 S̃23
k+1]

S̃k+1(τ sc
k) � E

hk ,τ ca
k

(
GT Sk+1G tτ sc

k

)
G �

[
Φ(hk) Γ0(hk, τ sc

k , τ ca
k) Γ1(hk, τ sc

k , τ ca
k)

0 I 0

]
Sk �E

τ sc
k

(
FT

1 (τ sc
k)QF1(τ sc

k) + FT
2 (τ sc

k)S̃k+1(τ sc
k)F2(τ sc))

F1(τ sc
k) �

[
I 0

−Lk(τ sc
k)
]

F2(τ sc
k) �

 I 0

−Lk(τ sc
k)

0 I


SN �

[
QN 0

0 0

]
.

S̃ij
k is block (i, j) of S̃k(τ sc

k), and Qij is block (i, j) of Q.

Proof The theorem is proved by dynamic programming. The proof is a
simple generalization of Theorem 5.1.

If the complete process state is not measured, a Kalman filter is used for
estimation. The varying system matrix gives a time varying Kalman filter.
Denote the information available to the controller when control signal uk

is calculated by Yk. This has the structure

Yk � {yk, yk−1, ..., τ sc
k , τ sc

k−1,, τ ca
k−1, τ ca

k−2, ..., hk−1, hk−2, ..., uk−1, uk−2, ...} .

The estimator minimizing the estimation error variance is given by the
following theorem.

THEOREM 7.3—OPTIMAL STATE ESTIMATE

Given the plant (7.2)–(7.3). The estimator

x̂ktk � x̂ktk−1 + K k(yk − C x̂ktk−1) (7.7)

108

7.2 Sampling Interval Jitter

with

x̂k+1tk � Φ(hk)x̂ktk−1 + Γ0(hk, τ sc
k , τ ca

k)uk

+ Γ1(hk, τ sc
k , τ ca

k)uk−1 + Kk(yk − C x̂ktk−1)
x̂0t−1 � E(x0)
Pk+1 � Φ(hk)PkΦT(hk) + Γv(hk)R1ΓT

v (hk)
−Φ(hk)PkC T [C PkC T + R2]−1C PkΦ(hk)

P0 � R0 � E(x0xT
0)

Kk � Φ(hk)PkC T [C PkC T + R2]−1

K k � PkC T [C PkC T + R2]−1

minimizes the error variance E{[xk− x̂k]T [xk− x̂k] t Yk}. The estimation er-
ror is Gaussian with zero mean and covariance Pktk � Pk−PkC T [C PkC T+
R2]−1C Pk.

Proof The proof follows from the same ideas as was used in Theo-
rem 5.2. The complete knowledge of the matrices Φ(hk), Γ0(hk, τ sc

k , τ ca
k),

and Γ1(hk, τ sc
k , τ ca

k), when x̂k+1tk is calculated makes the standard Kalman
filter for time-varying systems optimal.

A consequence of the varying sampling interval formulation is that the
Kalman filter will be time-varying. This can easily be seen in the state
recursion for Pk. In the case of a constant sampling interval, hk � h, the
Pk-equation will be a time invariant state equation, and the filter gains
will converge to stationary values. For an implementation of the Kalman
filter this means that the state estimation error covariance recursion, Pk,
needs to be updated every sample. This recursion involves several table
lookups and could be costly to implement. This complication introduced by
non-periodical sampling encourages use of periodical sampling of process
outputs.

In case of output feedback the LQG-optimal controller is given by the
following theorem.

THEOREM 7.4—SEPARATION PROPERTY

Given the plant (7.2)–(7.3). The controller that minimizes the cost func-
tion (7.4) is given by

uk � −Lk(τ sc
k)
[

x̂ktk
uk−1

]
(7.8)

with Lk(τ sc
k) as in Theorem 7.2, and where x̂ktk is the minimum variance

estimate from Theorem 7.3.

109

Chapter 7. Special Topics

Proof The proof is a simple generalization of Theorem 5.3.

7.3 Estimation of Markov State

The LQG-optimal controller for Markov communication network was de-
rived in Chapter 6. The optimal controller was written as

uk � −Lk(τ sc
k , rk)

[
xk

uk−1

]
, (7.9)

where τ sc
k is the delay from sensor to controller and rk is the state of the

Markov chain postulating probability distributions for the delays. If the
state of the Markov chain can not be measured, a suboptimal controller
including estimation of Markov state can be used. Several estimators of
the Markov state have been proposed in the literature, see Rabiner (1989)
and Elliot et al. (1995). What makes the proposed estimators different
is the objective the estimator optimizes. One common estimator is the
maximum likelihood estimator, which has the objective

r̂k � max
j�1,... ,s

P(rk � j tTk), (7.10)

where Tk is the known delays when the control signal is calculated, i.e.,

Tk � {τ sc
k , τ ca

k−1, τ sc
k−1, . . . , τ ca

0 , τ sc
0 }. (7.11)

Notice that when the control calculation is made τ sc
k is known, but τ ca

k
is unknown. The estimation objective (7.10) gives the estimator which
maximizes the expected number of correct Markov states. A drawback
with (7.10) is that the estimated state sequence may not even be a valid
state sequence. Other approaches, see Rabiner (1989), optimizes number
of correct pairs (rk, rk+1), or triples (rk, rk+1, rk+2), etc.

Our setup has a small difference to the standard case found in the
literature. When we make an estimate of the Markov state we have two
new delay measurements, τ ca

k−1 and τ sc
k , where the first has a distribution

given by rk−1 and the latter has a distribution given by rk. The evaluation
of the probability for the Markov chain to be in state rk can be split in
two parts. The first part updates the probability for the state being rk by
using the measurement τ ca

k−1. The second part updates the probability for
the state being rk by using τ sc

k . The probability for the Markov chain to
be in state rk given the observed delays can be updated as

P(rk � j tTk) �
P(τ sc

k t rk � j)∑s
i�1 qij P(rk−1 � i tτ ca

k−1,Tk−1)∑s
j�1{P(τ sc

k t rk � j)∑s
i�1 qij P(rk−1 � i tτ ca

k−1,Tk−1)} ,

(7.12)

110

7.4 The MIMO Problem

where

P(rk−1 � i tτ ca
k−1,Tk−1) �

P(τ ca
k−1 t rk−1 � i)P(rk−1 � i tTk−1)∑s

i�1 P(τ ca
k−1 t rk−1 � i)P(rk−1 � i tTk−1) . (7.13)

The estimator uses a lattice structure, where the estimator state is P(rk �
j tTk), j � {1, . . . , s}. If the probability distribution functions for the de-
lays have a continuous part, fi(τ k), the estimator (7.12)–(7.13) has to be
modified. The modification can be done by discretizing the distribution
function fi(τ k) as

P(τ k ± dτ) � 2 fi(τ k) dτ , (7.14)

where dτ is chosen to reflect the resolution in the delay measurements
and delay models. Using the described Markov state estimator together
with the optimal controller in Chapter 6 results in a suboptimal controller.
Properties of this controller is not investigated in the thesis. The resulting
system of process, controller, network, and Markov state estimation, will
be hard to analyze. One possible way of analysis could be to handle the
system as being an adaptive system adapting to the network state, then
methods from the area of adaptive control could be tried.

Another important problem is how to identify a Markov chain model
from delay measurements, i.e., finding the number of Markov states, s,
transition probabilities, qij , and the probability distribution functions for
the delays in each Markov state. The area of identification of hidden
Markov models is a large active research area, see Rabiner (1989) for
a review.

7.4 The MIMO Problem

In this section we relax the assumption that we only have one sensor
node and one actuator node. The generalization will be made for the LQG-
optimal controller in Section 5.4, but a similar generalization can be done
in the case with a Markov chain controlling the delays. We will study
the MIMO, multiple input multiple output, control problem in Figure 7.3.
Contrary to the control problem in Section 5.4 every signal transfered in
the system may have an individual delay. We assume that there are p
sensor nodes, and m actuator nodes. Let the controlled process be

dx
dt
� Ax(t) + Bu(t) + v(t), (7.15)

111

Chapter 7. Special Topics

h

Process

Controller
node

Networkτ ca1
k τ ca2

k τ cam
k τ sc1

k τ sc2
k τ scp

k

. . .

. . .

. . .

. . .

Actuator nodes Sensor nodes

Figure 7.3 MIMO control system with several sensor nodes and actuator nodes.
The transmission delays are random with individual values. Sampling of the process
outputs are done synchronized for the sensor nodes.

where x(t) ∈ R n, u(t) ∈ R m and v(t) ∈ R n. Here A and B are ma-
trices of appropriate sizes, u(t) is the controlled input and v(t) is white
noise with zero mean and incremental covariance Rv. We will assume
that sampling in the sensor nodes are done synchronized with the pe-
riod h. The measurement signals are immediately after sampling sent to
the controller node. The p measurement signals will have individual ran-
dom delays, τ sci

k , i ∈ {1, . . . , p}, to the controller node. When all measure-
ments have arrived at the controller, new control signals are calculated
and sent to the actuator nodes. The control signals will have random de-
lays, τ cai

k , i ∈ {1, . . . , m}, to the actuator nodes. We assume that all delays
in the system have constant known probability distributions. This corre-
sponds to the network model in Section 3.2. Introduce the longest sensor
to controller delay, τ̄ sc

k , as

τ̄ sc
k � max(τ sc1

k , τ sc2
k , . . . , τ scp

k). (7.16)

We will assume that all nodes have synchronized clocks. This will be
needed both for synchronized sampling, and for timestamping of signals.
By use of timestamping we assume that all old delays are known to the
controller node. Discretizing the process in the sampling instants gives

xk+1 � Φxk + Γ0(τ̄ sc
k , τ ca1

k , . . . , τ cam
k)uk

+ Γ1(τ̄ sc
k , τ ca1

k , . . . , τ cam
k)uk−1 + vk, (7.17)

112

7.4 The MIMO Problem

where

Φ � eAh (7.18)
Γ0(τ̄ sc

k , τ ca1
k , . . . , τ cam

k) � [Γ1
0(τ̄ sc

k , τ ca1
k) . . . Γm

0 (τ̄ sc
k , τ cam

k)] (7.19)
Γ1(τ̄ sc

k , τ ca1
k , . . . , τ cam

k) � [Γ1
1(τ̄ sc

k , τ ca1
k) . . . Γm

1 (τ̄ sc
k , τ cam

k)] (7.20)

Γi
0(τ̄ sc

k , τ cai
k) �

∫ h−τ̄ sc
k −τ cai

k

0
eAsdsB (7.21)

Γi
1(τ̄ sc

k , τ cai
k) �

∫ h

h−τ̄ sc
k −τ cai

k

eAsdsB . (7.22)

The state noise vk has zero mean and the variance

R1 � E(vkvT
k) �

∫ h

0
eA(h−s)RveAT (h−s)ds. (7.23)

The measurement signals are

yk � C xk +wk, (7.24)

where yk ∈R p. The stochastic process wk is uncorrelated with vk and has
zero mean and covariance matrices R2. As in the previous chapters we
assume that the control delay, or the control delay variation, is less than
a sampling interval, i.e.,

max(τ sc1
k , τ sc2

k , . . . , τ scp
k) +max(τ ca1

k , τ ca2
k , . . . , τ cam

k) < h. (7.25)

We will solve the LQG-control problem set up by the cost function

JN � E xT
N QN xN + E

N−1∑
k�0

[
xk

uk

]T

Q
[

xk

uk

]
, (7.26)

where Q is symmetric with the structure

Q �
[

Q11 Q12

QT
12 Q22

]
. (7.27)

Here Q is positive semi-definite and Q22 is positive definite.
The solution of this problem follows by the same technique as was

used in Chapter 5.

113

Chapter 7. Special Topics

THEOREM 7.5—OPTIMAL STATE FEEDBACK

Given the plant (7.17), with noise free measurement of the state vector xk,
i.e., yk � xk. The control law that minimizes the cost function (7.26) is
given by

uk � −Lk(τ̄ sc
k)
[

xk

uk−1

]
(7.28)

where

Lk(τ̄ sc
k) �(Q22 + S̃22

k+1)−1 [QT
12 + S̃21

k+1 S̃23
k+1]

S̃k+1(τ̄ sc
k) � E

τ ca1
k ,... ,τ cam

k

(
GT Sk+1G

∣∣τ̄ sc
k

)
G �

[
Φ Γ0(τ̄ sc

k , τ ca1
k , . . . , τ cam

k) Γ1(τ̄ sc
k , τ ca1

k , . . . , τ cam
k)

0 I 0

]
Sk � Ē

τ sc
k

(
FT

1 (τ̄ sc
k)QF1(τ̄ sc

k) + FT
2 (τ̄ sc

k)S̃k+1(τ̄ sc
k)F2(τ̄ sc

k)
)

F1(τ̄ sc
k) �(Q22 + S̃22

k+1)−1
[(Q22 + S̃22

k+1)I 0

−(QT
12 + S̃21

k+1) −S̃23
k+1

]
�
[

I 0

−Lk(τ̄ sc
k)
]

F2(τ̄ sc
k) �(Q22 + S̃22

k+1)−1

 (Q22 + S̃22
k+1)I 0

−(QT
12 + S̃21

k+1) −S̃23
k+1

0 (Q22 + S̃22
k+1)


�

 I 0

−Lk(τ̄ sc
k)

0 I


SN �

[
QN 0

0 0

]
.

Here S̃ij
k+1 is block (i, j) of the symmetric matrix S̃k+1(τ̄ sc

k), and Qij is
block (i, j) of Q.

Proof The proof is a simple generalization of the proof for Theorem 5.1.
The idea is to replace τ sc

k with τ̄ sc
k , and τ ca

k with τ ca1
k , . . . , τ cam

k .

A similar generalization can be used for the Kalman filter. Again the
Kalman filter relies on the knowledge of old time delays.

114

7.4 The MIMO Problem

THEOREM 7.6—OPTIMAL STATE ESTIMATE

Given the plant (7.17)–(7.24). The estimator

x̂ktk � x̂ktk−1 + K k(yk − C x̂ktk−1) (7.29)

with

x̂k+1tk �Φ x̂ktk−1 + Γ0(τ̄ sc
k , τ ca1

k , . . . , τ cam
k)uk

+ Γ1(τ̄ sc
k , τ ca1

k , . . . , τ cam
k)uk−1 + Kk(yk − C x̂ktk−1)

x̂0t−1 �E(x0)
Pk+1 �ΦPkΦT + R1 −ΦPkC T [C PkC T + R2]−1C PkΦ

P0 �R0 � E(x0xT
0)

Kk �ΦPkC T [C PkC T + R2]−1

K k �PkC T [C PkC T + R2]−1

minimizes the error variance E{[xk− x̂k]T [xk− x̂k] t Yk}. The estimation er-
ror is Gaussian with zero mean and covariance Pktk � Pk−PkC T [C PkC T+
R2]−1C Pk.

Proof The proof is a simple generalization of the proof for Theorem 5.2.
The idea is to replace τ sc

k with τ̄ sc
k , and τ ca

k with τ ca1
k , . . . , τ cam

k .

THEOREM 7.7—SEPARATION PROPERTY

Given the plant (7.17)–(7.24). The controller that minimizes the cost func-
tion (7.26) is given by

uk � −Lk(τ̄ sc
k)
[

x̂ktk
uk−1

]
(7.30)

with Lk(τ sc
k) as in Theorem 7.5, and where x̂ktk is the minimum variance

estimate from Theorem 7.6.

Proof The proof is a simple generalization of the proof for Theorem 5.3.
The idea is to replace τ sc

k with τ̄ sc
k , and τ ca

k with τ ca1
k , . . . , τ cam

k .

Sending of signals in the system will be synchronized. For instance, when
the process outputs are sampled all sensor nodes want to use the network
at the same time. This leads to a dependence between τ sci

k , i ∈ {1, . . . , p}.
This dependence can, however, be modeled by making a model for τ̄ sc

k from
data measured under operation of the control system. The argument also

115

Chapter 7. Special Topics

holds for τ cai
k , i ∈ {1, . . . , m}, which also will be correlated. If τ cai

k is mod-
eled under control system operation these dependencies can be captured.
For instance, in priority based networks the messages will always be sent
in the same order, the priority order.

Other control principles can also be interesting for the MIMO prob-
lem. If the controlled process has several modes with large differences in
time constants it could be advantageous to sample process outputs with
different sampling intervals. It could also be possible to calculate new
control signals with different intervals for the actuators. In this case we
could use a multirate controller. For a discussion on multirate control,
see Feuer and Goodwin (1996). Here are several open questions worthy
of further investigation.

7.5 Timeout

In this section we will investigate if there is a reason to introduce the
concept of “timeout” from a control perspective. Is it always beneficial to
wait for a new measurement before doing control? If not, how do we design
a controller that uses a timeout, and how long should this timeout be?

Problem Formulation and Design

Consider controlling the process in Figure 7.4, where τ k is a random delay
with probability distribution function fτ (t). Assume that control signal

Actuator
node Process Sensor

node

Controller
node

h

τ k

Figure 7.4 Control system with random delay from sensor to controller.

calculation is made when a new measurement arrives at the controller
node, but never later than kh + τ o. The time τ o can be considered as a
timeout for the wait on a new measurement. If the controlled process is

116

7.5 Timeout

a continuous-time time-invariant linear process, the sampled process can
be written as

xk+1 � Φxk + Γ0(τ o
k)uk + Γ1(τ o

k)uk−1 + Γvvk, (7.31)

where

τ o
k � min(τ k, τ o) (7.32)

With this problem formulation τ o is one of the design parameters in the
controller design. The idea for controller design is to do control based on
prediction if we get a timeout. The control instants have the probability
distribution function

fτ o(t) � Ψ(0, τ o, t) fτ (t) +
∫ h

τ o
fτ (s) dsδ (t− τ o), (7.33)

where

Ψ(a, b, t) �
{

0 if t < a or t ≥ b,

1 if a ≤ t < b.
(7.34)

If we at these instants would have the latest measurement yk available,
the LQG-optimal controller would be

uk � −L(τ k)
[

x̂ktk
uk−1

]
. (7.35)

The measurement yk is, however, not available when there is a timeout.
The newest measurement we will have is yk−1. This leads to the idea of
using the control structure

uk �


−L(τ k)

[
x̂ktk
uk−1

]
if τ k < τ o,

−L(τ o)
[

x̂ktk−1

uk−1

]
if τ k ≥ τ o.

(7.36)

If we get a timeout we assume that the measurement will arrive later that
sampling interval. When it arrives x̂k+1tk is computed for use in the next
control calculation. Either x̂k+1tk will be used directly as a state estimate,
or if a new measurement arrives before the timeout it will be used together
with the estimator (5.26) . This means that no measurements are thrown
away. A generalization to the case with lost samples, vacant sampling, is
discussed in Section 7.6.

117

Chapter 7. Special Topics

Analysis

In the previous section we formulated a suboptimal controller design. To
help to choose the timeout in the design procedure we will analyze the
resulting closed-loop system for different choices of the timeout, τ o. The
system using timeout can be written as a Markov chain model with two
states, see Figure 7.5. The first state is modeling τ k ≤ τ o, and the second

1 2q1

1− q1

1− q2

q2

Figure 7.5 Markov chain with two states. State 1 is modeling normal operation,
and state 2 is modeling timeout.

state is modeling timeout. The Markov chain has the transition matrix

Q �
[

1− Pto Pto

1− Pto Pto

]
, (7.37)

where

Pto � P(τ k > τ o) �
∫ h

τ o
fτ (s) ds (7.38)

is the timeout probability. The probability distribution functions for τ o
k

associated with the states in the Markov chain are

f1(t) � 1
1− Pto

Ψ(0, τ o, t) fτ (t) (7.39)
f2(t) � δ (t− τ 0), (7.40)

for the Markov states, respectively. The closed-loop system using the de-
scribed controller and timing setup can be written on the form

zk+1 � Φ(τ o
k, i)zk + Γ(τ o

k, i)ek, (7.41)

118

7.5 Timeout

where

zk �

 xk

uk−1

x̂ktk−1

 (7.42)

ek �
[

vk

wk

]
(7.43)

Φ(τ o
k, 1) � Φto +

 Γ0

0

Γ0

 L1 K C [−I 0 I] (7.44)

Γ(τ o
k, 1) � Γto +

 Γ0

0

Γ0

 L1 K [0 −I] (7.45)

Φ(τ o
k, 2) � Φto (7.46)

Γ(τ o
k, 2) � Γto (7.47)

Φto �

 Φ Γ1 − Γ0 L2 −Γ0 L1

0 −L2 −L1

K C Γ1 − Γ0 L2 Φ − Γ0 L1 − K C

 (7.48)

Γto �

 Γv 0

0 0

0 K

 , (7.49)

where the shortened notation

Γ0 � Γ0(τ o
k)

Γ1 � Γ1(τ o
k)

L1 � L:,1:n(τ o
k)

L2 � L:,n+1:n+m(τ o
k),

has been used. The notation L:,a:b is used to indicate the sub-matrix of L
having the columns a to b. This system can be analyzed with the method
of Theorem 6.1. The analysis method gives tools for stability analysis,
covariance evaluation, and quadratic cost function evaluation. In the con-
troller design this analysis has to be done for a number of timeouts to find
the optimal timeout. The design technique and properties of the controller
will be illustrated with a simple example.

119

Chapter 7. Special Topics

EXAMPLE 7.1—DOYLE-STEIN WITH TIMEOUT

Consider the following plant, both plant and design specifications are
taken from Doyle and Stein (1979),

dx
dt
�
[

0 1

−3 −4

]
x+

[
0

1

]
u+

[
35

−61

]
ξ (7.50)

y � [2 1] x+ Dw η ,

where ξ (t) and η (t) have mean zero and unit incremental variance. The
control objective is to minimize the cost function

J � E lim
T→∞

1
T

∫ T

0
(xT HT Hx+ u2) dt,

where H � 4
√

5
[√

35 1
]
. The sampling period for the controller is cho-

sen as h � 0.05. This is in accordance with the rule of thumb given in
Åström and Wittenmark (1997). The time delay from sensor to controller,
τ k, is assumed to be uniformly distributed on the interval [0, h].

The achieved cost will be evaluated for different values of the timeout,
τ o, in the interval [0, h]. The controller design and analysis is done with
the previous described method. In Figure 7.6 the cost is plotted against
the timeout. With τ o � h the design corresponds to a design without a
timeout. The case with τ o � h and Dw � 1 is the case that was compared
to other design methods in Section 5.5. For the cases of low measurement
noise, small Dw, the cost function has its minimum at τ o � h, so no
timeout is needed. For cases with more measurement noise, Dw � {3, 4},
controller performance is increased using a timeout. The intuition is that
we do not gain anything by waiting for a noisy measurement, it is better
to do control based on prediction.

The example demonstrates that performance in some situations can be in-
creased by use of timeout. It is, however, not known if the controller (7.36)
with timeout is optimal in any sense. The described control methodology
can be extended to include a random delay from controller to actuator.

7.6 Timeout and Vacant Sampling

In the previous section we assumed that the measurement arrives at
the controller node even if we get a timeout. If we get a timeout the
measurement is used for state estimation at the next control instant.
This section discusses what can be done if a measurement does not always
arrive. This problem is known as vacant sampling. This can also be used to
handle delay distributions with very long tails, in which case long delays
will be considered as a vacant sample.

120

7.6 Timeout and Vacant Sampling

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

Dw � 1

Dw � 2

Dw � 3

Dw � 4

τ o

J

Figure 7.6 Cost vs timeout for Dw � {1, 2, 3, 4}. Notice that for Dw � {3, 4} the
cost function has a minimum. In these cases the optimal timeout is less than h.

Design

The state feedback part of the control law can be done as in Section 7.5.
The state estimation part has to be revised. The vacant sample can be
seen as measurement with infinite variance, R2 � ∞, which makes the
implementation of the Kalman filter feasible. This will also require a third
state in the Markov chain to model a vacant sample. The states in the
Markov chain will model:

• normal operation,

• timeout, but measurement can be used next sample, and

• vacant sample, measurement lost.

A difference to the case without vacant sampling is that the Kalman filter
will be time varying. We need to keep track of the state estimation error
covariance, Pk, which will be a state in the controller.

121

Chapter 7. Special Topics

Analysis

The varying gains in the Kalman filter, Kk and K k, make the close loop
system nonlinear in the state Pk. This makes it impossible to use an anal-
ysis method analog to the one used in Section 7.5. In this case methods for
analysis, except simulation, are unknown to the author. Possible analysis
methods can perhaps be found in the field of adaptive control. Never-
theless, the described controller design method seams reasonable. The
described controller is a small extension of the controller in Section 7.5,
which was shown to perform well in Example 7.1.

7.7 Asynchronous Loops

In this section we study another source of random time variations in real-
time control systems. A problem occurring in commercial control systems
is time variations due to asynchronous loops. As an example we will study
the control system in Figure 7.7. The control system has two units, an I/O-

Controller

I/O

Fieldbus

m1

m2 m3

m4

Figure 7.7 Control system with asynchronous loops.

module and a controller, which communicate using a fieldbus. In the I/O-
module the process output is AD-converted and written in the memory

122

7.7 Asynchronous Loops

cell m1 every 250 ms. The I/O-module also reads the memory cell m4 and
DA-converts the value to the process input. This is also done every 250 ms.
The fieldbus mirrors the memory cell m1 in the I/O-module to the memory
cell m2 in the controller module. The controller memory cell m3 is mirrored
to the I/O-module memory cell m4. The fieldbus mirroring is done every
256 ms, and is asynchronous to the activities in the controller and I/O-
module. The controller is executed with a period of h, it reads the process
output from memory cell m2 and writes the new control signal to memory
cell m3.

This type of setup with asynchronous periodic activities is common
in commercial control systems with distributed I/O and control. As no
global clock is used in the system the periodic activities will drift relative
to each other. In some cases loops can also be closed on an even higher
level, where we would have even more asynchronous loops in series. In
this case the higher level could, for instance, be a plant-wide Ethernet
with limited real-time capabilities.

The setup above gives a system with varying delay from sensor to
actuator. We will look at the variations in the control delay, the time from
when a measurement signal is sampled to when it is used in the actuator.
In Figure 7.8 a typical sequence of control delays is plotted. The delay
sequence was captured by simulating the system in Figure 7.7. The signal
mirroring other the fieldbus was assumed to be instant, i.e., the fieldbus
delays were neglected. If activities on the bus are not synchronized, which
can be done using a schedule, we will also get a delay variation from
transfers on the fieldbus. In the simulated sequence the sampling interval
was h � 1.1s. The pattern of delays will vary over time due to the varying
synchronization of the loops. The loop skew will be varying over time
as no global clock is used in the system. The local clocks will also have
differences in speed, which will give the delay sequence a very long period.
Even if each loop have an updating interval of 250ms, 256ms, or 1.1s, the
total control delay can be slightly greater than 2.1s, the sum of the periods,
if the loops have the most unfavorable synchronization.

The described time variations can lead to decreased control perfor-
mance if the size and variation of the delay variations is not negligible
compared to the time constants in the loop. More work can certainly be
done on modeling of the delays originating from asynchronous loops. An
accurate model of this timing behavior will also make it possible to do
better controllers for these systems. The delays can be modeled using the
network models of Chapter 3. The methods of Chapter 5–6 can then be
used for analysis and controller design.

123

Chapter 7. Special Topics

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sample Number

C
on

tr
ol

D
el

ay

Figure 7.8 A typical sequence of control delays in the system with asynchronous
loops.

124

8

Conclusions

This thesis has presented a control problem that arises when control loops
are closed over a communication network, as is being more and more com-
mon. The communication network introduces time delays in the control
loop. The network induced time delays can have effect on system stability
and performance.

Modeling Two delay models have been studied:

• Random delays that are independent from transfer to transfer,

• Random delays with probability distribution functions governed by
an underlying Markov chain.

The model including a Markov chain has the attractive property of making
modeling of trends in the network delays possible. These trends can, for
instance, arise due to varying network load. The delay models where ver-
ified by delay measurement experiments on two commercially used net-
works, CAN (Controller Area Network) and Ethernet. An off-line clock
synchronization algorithm for estimation of clock-offset and clock-drift
was derived. The clock synchronization algorithm can be reformulated as
an on-line synchronization algorithm. The experiments show that network
delays are varying if the network is loaded. The experimental measure-
ments show that both models can be useful in modeling of network delays.

Independent Delays Using a linear controller it was shown that the
closed loop can be written as

zk+1 � Φ(τ k)zk + Γ(τ k)ek, (8.1)

where the stochastic properties of τ k depend on the network model. A
Lyapunov recursion was found for evaluation of signal covariances in the
closed loop system. A condition for mean square stability followed directly

125

Chapter 8. Conclusions

from the Lyapunov recursion. The LQG-problem was studied. A separation
theorem was shown for the LQG-optimal controller. This means that the
optimal controller is the combination of the optimal state feedback, and
the optimal state estimator. The optimal controller uses knowledge of old
time delays. These can be calculated using timestamps on messages sent
in the network.

Markov Delays When the probability distributions of the delays are
generated from a Markov chain the closed loop system can be written as

zk+1 � Φ(τ k, rk)zk + Γ(τ k, rk)ek, (8.2)

where τ k is the network delay and rk is the state of the Markov chain.
Using a lattice structure for the covariance, a Lyapunov recursion for
evaluation of covariances of signal in the system was found. A stability
criterion for mean square stability followed directly from the Lyapunov re-
cursion. The LQG-problem was solved by splitting it into a state feedback
problem and an optimal state estimation problem. The optimality of the
combination of state feedback and optimal state estimator was proven in
a separation theorem. The optimal controller uses knowledge of old time
delays together with the knowledge of the state of the Markov chain.

If the state of the Markov chain is unknown it has to be estimated.
The combination of LQG-controller and Markov state estimator will not
be the LQG-optimal controller.

Special Topics Several possible extensions and generalizations to the
basic problem have been presented. The network model was extended to
a model that makes one transition when sending measurement, and one
transition when sending control signal. This closer models the real net-
work, which can change state at any time. The LQG-controller was also
generalized to the case with random sampling interval. This behavior
was noted for one of the experimental setups. The controller for varying
sample interval will be more complicated than the controller for equidis-
tant sampling. The reason for this is that in this case the estimation er-
ror recursion needs to be updated every sample. The LQG-controller was
generalized to the case with multiple sensor and actuator nodes. This con-
troller calculates a new control signal when measurements have arrived
from all sensor nodes. The controller uses timestamps for calculation of
old time delays. If the delays have long “tails” a controller with timeout
can be beneficial. A suboptimal controller using timeout was proposed.
The proposed timeout controller is shown to outperform other controllers
if we have much measurement noise. A closely related problem is va-
cant sampling, which is detected with a timeout. The timeout controller

126

is useful also in cases with vacant samples. Finally, time delay variations
originating from use of asynchronous loops was studied. Asynchronous
loops inevitable introduce varying time delays. This was exemplified with
a simulation of the timing in a typical industrial controller.

Main Contributions

The main contributions of this thesis are

• The problem of control using distributed real-time control systems
has been structured and studied. Earlier approaches exist, for in-
stance, Luck and Ray (1990), Liou and Ray (1991), Ray (1994), and
Krtolica et al. (1994), but this thesis gives methods that allow com-
parison with earlier results within a common structure.

• Using the methods developed in the thesis, distributed real-time con-
trol systems can be analyzed and controllers can be designed taking
the timing behavior into account. The results are nice generaliza-
tions of well known theory for sampled-data control. Engineers with
background in sampled-data control will recognize the similarities
with the case without delays.

• The importance of timestamps are pointed out. This allows an ap-
proach where the history of the system is considered known.

• The problem with vacant samples has been studied. It was also
shown that a distributed real-time control system can gain in per-
formance by using a timeout.

Open Problems

There are several interesting problems in the area of distributed real-time
control systems still to be solved. Some of the problems not treated in this
thesis are:

• Throughout the thesis, except for the controller with timeout, we
have assumed that the delay variation is less than a sampling in-
terval. How can controllers be designed if the delay variations can
be longer than a sampling interval? One motivation for keeping the
delay less than a sampling interval is that if we have a fieldbus, only
one message can be on the network at each time. If we have a longer
delay than a sampling interval a measurement signal yk would be
waiting for the sending of yk−1. In this case maybe we should send
yk instead of yk−1, and consider yk−1 as a vacant sample. However,
in other network types we can think of messages arriving in another
order than the order of sending.

127

Chapter 8. Conclusions

• The properties of the controller with timeout is not completely stud-
ied. For instance, when do we gain by using a timeout?

• Special models of delay variations in asynchronous loops need to be
developed. One possibility could be to use a Markov model. Using
better models better controllers can be designed for these systems.

• The mathematical treatment of when the Riccati-iteration in the
LQG-design will converge is not studied in this thesis. As in standard
LQG-theory this would probably lead to conditions on both the cost
function, and on the controlled process.

• LMI-formulations have been found for the standard LQG output
control problem. For the case with jump linear system an LQG-
formulation has been found for the state feedback problem, see Rami
and Ghaoui (1996). Can LMI-formulations be found for the Riccati
equations in this thesis?

• The hidden Markov case, where the state of the Markov chain is
unknown, is not treated in the thesis. A method for prediction of
controller performance when using an estimated Markov state would
be very useful. This problem is very hard. An interesting study would
be to try theory from adaptive control.

128

9

References

ANDERSON, B. and J. MOORE (1979): Optimal Filtering. Prentice-Hall,
Englewood Cliffs, N.J.

ÅSTRÖM, K. J. (1970): Introduction to Stochastic Control Theory. Academic
Press, New York. Translated into Russian, Japanese and Chinese.

ÅSTRÖM, K. J. and B. WITTENMARK (1997): Computer-Controlled Systems,
third edition. Prentice Hall.

BERMAN, A. and R. J. PLEMMONS (1969): Theory of Matrices. Academic
Press, New York.

BLAIR, W. P. and D. D. SWORDER (1975): “Feedback control of a class
of linear discrete systems with jump parameters and quadratic cost
criteria.” International Journal of Control, 21:5, pp. 833–841.

CHAN, H. and Ü. ÖZGÜNER (1995): “Closed-loop control of systems over
a communications network with queues.” International Journal of
Control, 62:3, pp. 493–510.

CHEN, H.-F., P. R. KUMAR, and J. H. VAN SCHUPPEN (1989): “On Kalman
filtering for conditionally Gaussian systems with random matrices.”
Systems & Control Letters, pp. 397–404.

CHRISTIAN, F. and C. FETZER (1994): “Probabilistic internal clock synchro-
nization.” In Proceedings of the Thirteenth Symposium on Reliable
Distributed Systems.

CHUNG, K. L. (1974): A Course in Probability Theory. Academic Press,
New York.

CIA (1994): “CiA draft standard 102 version 2.0.” http://can-cia.de/.

DE SOUZA, C. E. and M. D. FRAGOSO (1993): “H∞ control for linear systems
with Markovian jumping parameters.” Control-Theory and Advanced
Technology (C-TAT), 9:2, pp. 457–466.

129

Chapter 9. References

DOYLE, J. C. and G. STEIN (1979): “Robustness with observers.” IEEE
Transaction on Automatic Control, AC-24:4, pp. 607–611.

ELLIOT, J. E., L. AGGOUN, and J. B. MOORE (1995): Hidden Markov Models,
Estimation and Control. Springer-Verlag.

FENG, X., K. A. LOPARO, Y. JI, and H. J. CHIZECK (1992): “Stochastic
stability properties of jump linear systems.” IEEE Transaction on
Automatic Control, 37:1, pp. 38–52.

FEUER, A. and G. GOODWIN (1996): Sampling in Digital Signal Processing
and Control. Birkhäuser.

FRAGOSO, M. D., J. B. R. DO VAL, and D. L. PINTO, JR. (1995): “Jump linear
H∞ control: the discrete-time case.” Control-Theory and Advanced
Technology (C-TAT), 10:4, pp. 1459–1474.

GAJIC, Z. and M. T. J. QURESHI (1995): Lyapunov Matrix Equation in
System Stability and Control. Academic Press.

HALMOS, P. R. (1958): Finite-Dimensional Vector Spaces. D. Van Nostrand
Company, Inc.

IEEE (1985): “IEEE 802.3 Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) access method and physical layer specifica-
tions.”

INTEL (1995): 82527 Serial Communications Controller, Architectural
Overview.

JI, Y. and H. J. CHIZECK (1990): “Controllability, stabilizability, and
continuous-time Markovian jump linear quadratic control.” IEEE
Transactions on Automatic Control, 35:7, pp. 777–788.

JI, Y., H. J. CHIZECK, X. FENG, and K. A. LOPARO (1991): “Stability
and control of discrete-time jump linear systems.” Control-Theory and
Advanced Applications, 7:2, pp. 447–270.

KALMAN, R. E. (1962): “Control of randomly varying linear dynamical sys-
tems.” Proceedings of Symposia in Applied Mathematics, 13, pp. 287–
298.

KALMAN, R. E. and J. E. BERTRAM (1959): “A unified approach to the
theory of sampling systems.” Journal of the Franklin Institute, 267:5,
pp. 405–436.

KRASOVSKII, N. N. and E. A. LIDSKII (1961): “Analytic design of controllers
in systems with random attributes, I, II, III.” Automation and Remote
Control, 22:9–11, pp. 1021–1025, 1141–1146, 1289–1294.

130

KRTOLICA, R., Ü. ÖZGÜNER, H. CHAN, H. GÖKTAS, J. WINKELMAN, and M. LI-
UBAKKA (1994): “Stability of linear feedback systems with random com-
munication delays.” International Journal of Control, 59:4, pp. 925–
953.

LANCASTER, P. (1969): Theory of Matrices. Academic Press, New York.

LIOU, L.-W. and A. RAY (1991): “A stochastic regulator for integrated com-
munication and control systems: Part I - Formulation of control law.”
Transactions of the ASME, Journal of Dynamic Systems, Measurement
and Control, 113, pp. 604–611.

LJUNG, L. and T. SÖDERSTRÖM (1983): Theory and Practice of Recursive
Identification. MIT Press, Cambridge, Massachusetts.

LUCK, R. and A. RAY (1990): “An observer-based compensator for dis-
tributed delays.” Automatica, 26:5, pp. 903–908.

MILLS, D. (1991): “Internet time synchronization: the network time
protocol.” IEEE Transactions on Communications, 39:10, pp. 1482–
1493.

MORGAN, B. J. T. (1984): Elements of Simulation. Chapman and Hall.

MOTOROLA (1992): MC68340 User’s Manual.

NILSSON, J., B. BERNHARDSSON, and B. WITTENMARK (1998): “Stochastic
analysis and control of real-time systems with random time delays.”
Automatica, 34:1.

OLSSON, G. and G. PIANI (1992): Computer Systems for Automation and
Control. Prentice-Hall, Englewood Cliffs, New Jersey.

RABINER, L. R. (1989): “A tutorial on hidden Markov models and selected
applications in speech recognition.” Proceedings of the IEEE, 77:2,
pp. 257–286.

RAMI, A. R. and L. E. GHAOUI (1996): “LMI optimization for nonstandard
Riccati equations arising in stochastic control.” IEEE Transactions on
Automatic Control, 41:11, pp. 1666–1671.

RAY, A. (1987): “Performance evaluation of medium access control proto-
cols for distributed digital avionics.” Transactions of the ASME, Jour-
nal of Dynamic Systems, Measurement and Control, 109, December,
pp. 370–377.

RAY, A. (1994): “Output feedback control under randomly varying dis-
tributed delays.” Journal of Guidance, Control, and Dynamics, 17:4,
pp. 701–711.

131

Chapter 9. References

SCHEDL, A. V. (1996): Design and Simulation of Clock Synchronization in
Distributed Systems. PhD thesis, Techniche Universität Wien, Institut
für Technische Informatik.

SWORDER, D. D. (1969): “Feedback control of a class of linear systems with
jump parameters.” IEEE Transactions on Automatic Control, 14:1,
pp. 9–14.

TINDELL, K. and H. HANSSON (1995): “Real time systems and fixed priority
scheduling.” Technical Report. Department of Computer Systems,
Uppsala University.

TÖRNGREN, M. (1995): Modelling and design of distributed real-time
control applications. PhD thesis, Royal Institute of Technology, KTH,
Sweden.

VAN OORSCHOT, J. (1993): Measuring and Modeling Computer Networks.
PhD thesis, Delft University of Technology.

WONHAM, W. M. (1971): “Random differential equations in control theory.”
Probabilistic Methods in Applied Mathematics, pp. 131–212.

132

A

Kronecker Products

This appendix contains the definition of Kronecker product and some re-
sults for calculation with Kronecker products. For a more thorough dis-
cussion, see Halmos (1958) and Lancaster (1969).

A.1 Definitions

Let A ∈ R m�n and B ∈ R p�q. The Kronecker product A ⊗ B ∈ R mp�nq is
defined as

A⊗ B �


a11 B a12 B . . . a1n B

a21 B a22 B . . . a2n B
...

...
. . .

...

am1 B am2 B . . . amn B

 , (A.1)

where aij are the elements of A. Let X ∈R m�n, with the structure

X � [X1 X2 . . . Xn] . (A.2)

The vectorized form of X , vec{X} ∈ R mn�1, is defined by stacking the
columns into a vector as

vec{X} �


X1

X2

...

Xn

 . (A.3)

133

Chapter A. Kronecker Products

A.2 Basic Rules of Calculation

The Kronecker product fulfills the following rules of calculation:

α A⊗ β B � αβ (A⊗ B), α , β ∈R (A.4)
(A+ B) ⊗ C � A⊗ C + B ⊗ C (A.5)
A⊗ (B + C) � A⊗ B + A⊗ C (A.6)
A⊗ (B ⊗ C) � (A⊗ B) ⊗ C (A.7)
(A⊗ B)T � AT ⊗ BT (A.8)

(A⊗ B)(C ⊗ D) � AC ⊗ B D (A.9)
(A⊗ B)−1 � A−1 ⊗ B−1. (A.10)

The proofs follow directly from the definition of Kronecker products.

LEMMA A.1

vec{AX B} � (BT ⊗ A) vec{X}. (A.11)

For a proof see Lancaster (1969).

134

B

Some Results from
Probability Theory

B.1 Markov Chains

This section presents some results on Markov chains. See Berman and
Plemmons (1969), and Elliot et al. (1995) for a more thorough discussion
on Markov chains.

The Markov process is characterized by having a state. This implies
that if its state is given at a time t, its future evolution is independent of
the history that gave the state at time t.

DEFINITION B.1—MARKOV PROCESS

A sequence of random variables x(t) is said to be a Markov process or to
posses the Markov property if the associated probability measure has the
property

P(x(tn + h) t x(t1), x(t2), . . . , x(tn)) � P(x(tn + h) t x(tn)), (B.1)

where ti < tn for i � 1, ..., n− 1.

DEFINITION B.2—MARKOV CHAIN

A finite Markov chain is a Markov process that takes values {rk} in a
finite set S � {1, 2, . . . , s}, with transition probabilities

P(rk+1 � j t rk � i) � qij . (B.2)

135

Chapter B. Some Results from Probability Theory

The transition probabilities, qij , fulfill qij ≥ 0 for all i, j ∈ S , and

s∑
j�1

qij � 1. (B.3)

Introduce the Markov state probability distribution

π (k) � [π 1(k) π 2(k) . . . π s(k)] , (B.4)
where π i(k) is the probability that the Markov chain state at time k is i.
The probability distribution for rk is given by

π (k+ 1) � π (k)Q (B.5)
π (0) � π 0, (B.6)

where π 0 is the distribution for r0.
A Markov chain is said to be regular if the transition matrix Q is a

primitive matrix. A primitive matrix fulfills Qk ≫ 0 for a positive integer
k, A ≫ B denotes that the matrix elements satisfies aij > bij . That a
Markov chain is regular means that all states will be possible to reach in
the future, there are no “dead ends” in the Markov chain.

If a Markov chain is primitive the stationary probability distribution
π∞ � limk→∞ π (k) is given uniquely by

π∞ � π∞Q, (B.7)
where π∞ is a probability distribution.

B.2 Conditional Independence

Stochastic independence of two events X and Y is usually defined by

P(X&Y) � P(X)P(Y), (B.8)
where P(X) is the probability that event X occurs. A weaker condition on
two events is conditional independence.

DEFINITION B.3—CONDITIONAL INDEPENDENCE

X and Y are said to be conditional independent relative to Z if

P(X&Y t Z) � P(X t Z)P(Y t Z). (B.9)

The following theorem is often useful when conditional independence of
two events are to be shown.

136

B.2 Conditional Independence

THEOREM B.1
The following three conditions for X and Y being conditional independent
relative to Z are equivalent

1. P(X&Y t Z) � P(X t Z)P(Y t Z)
2. P(X t Y&Z) � P(X t Z)
3. P(Y t X&Z) � P(Y t Z)

Proof We will use the following three equalities in the proof.

P(X&Y&Z) � P(X t Y&Z)P(Y&Z)
� P(X t Y&Z)P(Y t Z)P(Z) (B.10)

P(X&Y&Z) � P(Y t X&Z)P(X&Z)
� P(Y t X&Z)P(X t Z)P(Z) (B.11)

P(X&Y&Z) � P(X&Y t Z)P(Z) (B.12)

1 > 2: Use Condition 1 in (B.12), and compare with (B.10).
2 > 3: Use Condition 2 in (B.11), and compare with (B.10).
3 > 1: Use Condition 3 in (B.11), and compare with (B.12).

Theorem B.1 can also be formulated using random variables and expected
values.

THEOREM B.2
Let x and y be random variables which are conditionally independent
relative to z. The following relations hold for all measurable functions
f (⋅) and g(⋅).

1. E(f (x)g(y) t z) � E(f (x) t z)E(g(y) t z)
2. E(f (x) t y, z) � E(f (x) t z)
3. E(f (y) t x, z) � E(f (y) t z)

Proof This is proven by use of Theorem B.1 and the technique in Chap-
ter 9.1 of Chung (1974).
Using the 1-function we will formulate another formula for conditional
independent variables. The 1-function is defined as:

137

Chapter B. Some Results from Probability Theory

DEFINITION B.4—1-FUNCTION

1A is a function which is 1 on (the measurable event) A.

Easy calculations give the following rules for calculations using the 1-
function.

E(1A) � P(A) (B.13)
E(1A tB) � P(AtB) (B.14)

E(f 1A) � P(A)E(f tA) (B.15)

THEOREM B.3
If f and A are independent given B then

E(f 1A) �
∑

B

P(A t B)E(f 1B). (B.16)

Proof

E(f 1A) �
∑

B

P(B)E(f 1A tB)

�
∑

B

E(1A tB)P(B)E(f tB) �
∑

B

P(A t B)E(f 1B) (B.17)

138

ISSN 0280–5316
ISRN LUTFD2/TFRT--1049--SE

