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The figure on the cover shows a limit cycle for a relay feedback system.
The plot is logarithmically scaled. Stability of the limit cycle is analyzed
in Example 3 in Paper 2.
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Preface

A conversation heard at a bar in Newcastle, Australia, between a Swedish
graduate student and a local sailor:

— I’m doing research in control.
— What kind of control?
— Automatic control.
— Automatic control of what?
— Oh, of everything. It’s a general theory.

The essence of control theory is its vast applicability, with a focus on sys-
tem theory but not restricted to certain physical or intellectual objects.
It has applications in many and diverse areas, such as chemical process
control, economics, robotics, medicine, and aeronautics. This makes con-
trol engineering a challenging and interesting subject to study (although
occasionally hard to explain to the uninitiated).

This thesis presents and solves some problems that, at a first glance,
might look quite separated. I therefore start with a short story to explain
their relations and why I started to investigate them.

The automatic tuning method for PID controllers based on relay feed-
back was developed in Lund during the eighties. The method has been
successful in a large variety of industrial applications and has resulted
in several patents. It was a natural question to ask if it was possible to
extend the automatic tuning method to multivariable controllers. I was
posed this question when I began my doctoral studies. Quite soon it be-
came apparent that there were many unsolved problems related to the
methodology; problems of both a theoretical and practical nature. They
could roughly be put into two categories: (1) those related to the exis-
tence of oscillations and other behaviors in relay feedback systems and
(2) those related to how multivariable control design could be automated.

I found that such a simple structure as a scalar linear system con-
nected with a sign function in a feedback loop could show a quite compli-
cated, and fascinating, behavior. Analysis of this resulted in further in-
sight, particularly in the fast actions of these systems. This is presented in
the thesis as Paper 1 and Paper 2. The nature of the results are such that
they probably have little effect on the development of automatic tuning
methods, but the results are certainly a contribution to the understanding
of systems with combined continuous and discrete states. Many physical
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Preface

systems have this hybrid nature and it is often imposed on the controller,
for example in supervised control systems.

Multivariable control is difficult to use in practice. The reason for this
is that many theoretical and practical problems related to modeling, de-
sign, and implementation are not solved. One approach is to use different
methods depending on the process dynamics. It is reasonable to classify
processes as “simple” or “difficult.” I did this and I also looked for ways to
judge if the control structure could be simplified for some systems with-
out considerable loss of closed-loop performance. This lead to the result
in Paper 3, where it is shown that some systems are particularly easy
to control even with the simplest type of multivariable controller. The
location of the multivariable zeros are shown to affect the achievable con-
trol performance. To further highlight this I developed a new laboratory
process that has a movable zero. This process is presented in Paper 4.
Finally, a method based on relay feedback experiments was derived for
tuning individual loops in a multivariable system. Paper 5 shows how
such experiments can be performed and what type of information they
give. This work was motivated by the lack of multivariable control de-
sign methods that account for practical constraints such as modeling and
implementation efficiency.

Thesis Outline and Publication History

The thesis consists of an introduction, five papers, and some concluding
remarks. Most of the results presented in the papers have been published
in refereed conference proceedings and are now under review for journal
publication. The contents of each part of the thesis are briefly given in
the following together with references to publications.

Paper 1—Fast switches in relay feedback systems

Linear systems with relay feedback are studied in this paper. It is proved
that there exists multiple fast relay switches if and only if the the sign of
the first non-vanishing Markov parameter of the linear system is positive.
It is also shown that these fast switches can occur as part of stable limit
cycles. Examples with pole excess one, two, and three are presented. A
regular sliding mode can appear as part of the limit cycle for systems
with pole excess one. For pole excess two there will be many fast switches
instead of a sliding mode. Only a few fast switches appear for pole excess
three. The reasons for these behaviors are explained in the paper. Through
an example from the literature, it is also illustrated that approximating
the relay by a saturation with a steep slope can give erroneous results if
it is not done properly.

viii



Thesis Outline and Publication History

The paper is submitted for journal publication as

JOHANSSON, K. H., A. RANTZER, and K. J. ÅSTRÖM (1997): “Fast switches
in relay feedback systems.” Submitted for journal publication.

Some results limited to third-order systems have been published as

JOHANSSON, K. H. and A. RANTZER (1996): “Global analysis of third-order
relay feedback systems.” In Preprints 13th IFAC World Congress,
vol. E, pp. 55–60. San Francisco, CA.

JOHANSSON, K. H. and A. RANTZER (1996): “Global analysis of third-
order relay feedback systems.” Report ISRN LUTFD2/TFRT--7542-
-SE. Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

JOHANSSON, K. H. and A. RANTZER (1995): “Limit cycles in relay feedback
systems.” In 2nd Russian-Swedish Control Conference, St. Petersburg,
Russia.

Paper 2—Limit cycles with chattering in relay feedback systems

This paper is a continuation of Paper 1. It presents a detailed analysis of
linear systems with pole excess one and two under relay feedback. Fast
relay switching instead of a sliding mode appears for pole excess two. This
is denoted chattering. It is shown that chattering can be approximated by
a sliding mode. Stability is proved for limit cycles with chattering. The
stability condition follows as a nontrivial modification of a similar result
for limit cycles with exact sliding modes.

The paper is submitted for journal publication as

JOHANSSON, K. H., A. BARABANOV, and K. J. ÅSTRÖM (1997): “Limit cycles
with chattering in relay feedback systems.” Submitted for journal
publication.

but exists also in the shorter conference version

JOHANSSON, K. H., A. BARABANOV, and K. J. ÅSTRÖM (1997): “Limit cycles
with chattering in relay feedback systems.” Accepted for publication in
Proc. 36th IEEE Conference on Decision and Control. San Diego, CA.

Paper 3—Performance limitations in multi-loop control systems

The effects of open-loop zeros on the achievable performance in a linear
multivariable control system are studied in this paper. The notion of se-
quentially minimum phase is introduced. It means that all the top left
submatrices of a transfer matrix are minimum phase. It is shown that if

ix
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a stable system is sequentially minimum phase and has a certain high-
frequency structure, it can be controlled arbitrarily tight by diagonal feed-
back. Implications on control structure design and sequential loop-closure
are also given.

The paper is submitted for journal publication as

JOHANSSON, K. H. and A. RANTZER (1997): “Performance limitations in
multi-loop control systems.” Submitted for journal publication.

One part of the paper has also been published as

JOHANSSON, K. H. and A. RANTZER (1997): “Multi-loop control of mini-
mum phase processes.” In Proc. 16th American Control Conference.
Albuquerque, NM.

and some related results on performance limitations were presented as

JOHANSSON, K. H. (1996): “Performance limitations in coordinated con-
trol.” In EURACO Workshop on Robust and Adaptive Control of Inte-
grated Systems. Munich, Germany.

Paper 4—A multivariable process with an adjustable zero

This paper presents a new laboratory process that has been developed in
order to illustrate some ideas presented in the thesis. The process is a
quadruple-tank process with two inputs and two outputs. It has interest-
ing dynamics and can be used to illustrate many ideas in multivariable
control. A physical nonlinear model is derived and linearized. The corre-
sponding 2 � 2 transfer matrix is shown to have two finite transmission
zeros. One of them is located in the left half-plane and the other can be
positioned anywhere on the real axis by simply adjusting a valve. This
makes the quadruple-tank process suitable for illustrating control limi-
tations due to nonminimum phase zeros, as those discussed in Paper 3.
System identification and multi-loop control of the process are demon-
strated in the paper.

The paper is submitted to a conference as

JOHANSSON, K. H. and J. L. R. NUNES (1997): “A multivariable laboratory
process with an adjustable zero.” Submitted to 17th American Control
Conference. Philadelphia, PA.

Paper 5—Multivariable controller tuning

This paper discusses how the performance of an existing multivariable
control system can be improved. It is shown that a specific relay feed-
back experiment can be used to obtain suitable process information. The
influence of loop retuning on the overall closed-loop performance is also

x



Thesis Outline and Publication History

derived and interpreted in several ways. The paper ends with an applica-
tion to a model of the quadruple-tank process presented in Paper 4. The
proposed method measures how difficult it is to control the process for one
minimum phase and one nonminimum phase setup.

The paper is submitted to a conference as

JOHANSSON, K. H., B. JAMES, G. F. BRYANT, and K. J. ÅSTRÖM (1997):
“Multivariable controller tuning.” Submitted to 17th American Control
Conference. Philadelphia, PA.

A preliminary version was presented as

JOHANSSON, K. H., B. JAMES, G. F. BRYANT, and K. J. ÅSTRÖM (1997):
“Multivariable controller tuning—some preliminary results.” In Sym-
posium on Quantitative Feedback Theory and Other Frequency-Based
Methods and Applications. Glasgow, Scotland.

An introductory investigation of problems when scalar tuning methods
are extended to multivariable systems is given in

JOHANSSON, K. H. (1993): “Difficulties when Applying SISO Relay Design
Methods to a MIMO system” Report ISRN LUTFD2/TFRT--7506--SE.
Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

Other publications

The introduction of the thesis gives background material and a brief sum-
mary of the contributions of the five papers. Some ideas and examples in
the introduction have appeared earlier. To be specific, the model for the
deaeration process is derived in

JOHANSSON, K. H. (1997): “Modeling and control of a deaeration process.”
Unpublished manuscript.

and some of the discussions on practical aspects of multivariable control
were presented as

JOHANSSON, K. H., T. HÄGGLUND, and K. J. ÅSTRÖM (1994): “An automatic
start-up procedure for multivariable control systems.” In Reglermötet
’94. Västerås, Sweden.

These aspects were further developed in

JOHANSSON, K. H. (1994): “An automatic start-up procedure for multivari-
able control systems.” Report ISRN LUTFD2/TFRT--7526--SE. De-
partment of Automatic Control, Lund Institute of Technology, Lund,
Sweden.
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where also a list with models of real multivariable systems is given, for
example, the heavy oil fractionator presented in the thesis introduction.
The introduction also refers to

JOHANSSON, K. H. and A. RANTZER (1997): “A convergence proof for
relay feedback systems.” Report ISRN LUTFD2/TFRT--7555--SE.
Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

in connection to a discussion on globally attractive limit cycles in relay
feedback systems.

A remark on notation

The thesis consists of five separated papers. The notation in the thesis is
therefore not consistent, but is introduced in each paper. Most of it follows
standard notation in control engineering textbooks.
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Introduction

Oscillations are apparent in everyday life: one’s mood goes up and down;
the sun rises and sets; interest rates increase and decrease etc. Many
technical systems are also oscillating. Some of them are even based on a
swinging component, such as watches, radio transmitters, and gyroscopes.
Two key ingredients in many oscillating systems are feedback and nonlin-
earity. This thesis treats a special type of nonlinear feedback systems that
we call relay feedback systems. It will be shown that such a system may
generate a variety of oscillations. Relay feedback systems have several en-
gineering applications including a recent one in the design of controllers
in process industry. This is the link to the second topic of the thesis: mul-
tivariable control systems. Although in many control applications only a
single variable is considered, there are several systems for which more
than one variable must be controlled simultaneously; examples include
flight control (where altitude, forward speed, and pitch angle are typical
controlled variables) and the deaeration process described later in Exam-
ple 2 (where a liquid level together with a temperature and a pressure are
controlled). Both practical and theoretical aspects of multivariable control
systems will be discussed in the thesis. In particular, the method for tun-
ing single-input single-output (SISO) controllers based on relay feedback
will be generalized to multi-input multi-output (MIMO) controllers and
a new result on performance limitations in decentralized control systems
will be proved.

The intention of this introduction is to give some background and to
motivate the work presented in the following five papers. The introduction
is organized as follows. Multivariable systems are discussed in Section 1.
Three real systems are introduced and some characteristics of linear mul-
tivariable systems and design methods are briefly mentioned. Background
to performance limitation analysis is given in Section 2. Relay feedback
systems are introduced in Section 3 and motivation for their study is pre-
sented. Further motivation is given in Section 4, where automatic tuning
based on relay feedback experiments is discussed.
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Introduction

1. Multivariable Systems

Undesirable interaction between variables is a common problem in in-
dustrial process control. Multivariable controllers are in practice more
difficult to handle than scalar, even though theoretically MIMO and SISO
systems have many similar properties. Research on multivariable control
has focused on mathematical concepts, rather than on dealing with prac-
tical issues. The consequence is that multivariable control design methods
developed during the last twenty years have had a remarkable small influ-
ence on real applications. A possible exception is the growing application
of predictive control in process industry [Brisk, 1993]. However, control
algorithms in such a high-tech application as the Eurofighter 2000 is de-
signed with methods developed decades ago [Fielding, 1997].

In this section we introduce some basic concepts related to control of
multivariable linear time-invariant systems. The presentation, which is
focused on issues related to Papers 3–5, is not exhaustive. The reader is
referred to [Rosenbrock, 1970; Kailath, 1980; Rugh, 1993] for an introduc-
tion to linear systems and to [Rosenbrock, 1974; Maciejowski, 1989; Boyd
and Barratt, 1991; Zhou et al., 1996] for control design methods for such
systems.

The outline of the section is as follows. Three multivariable systems to
be used in several examples are first described. Characteristics, such as
multivariable zeros for linear time-invariant systems, are then introduced.
Finally, some existing design techniques are briefly mentioned.

Examples

It is essential to keep applications in mind even if theoretical aspects of
control are discussed. In this section three models of real multivariable
systems are discussed. The first model is a quadruple-tank process. This
is a new laboratory process which was developed to demonstrate some
ideas in the thesis. It is also suitable for the illustration of many other
multivariable phenomena. It is further discussed in Paper 4 and [Johans-
son and Nunes, 1997]. The second system is a deaeration process. This
process is part of a filling line manufactured by Tetra Pak Processing Sys-
tems AB in Lund. The model is derived in [Johansson, 1997]. A heavy oil
fractionator is also described. This model has been provided as a multi-
variable benchmark problem to the control community by one of the Shell
subsidiaries [Prett et al., 1990]. More examples of multivariable control
problems are given in [Singh, 1987; Siamantas, 1994; Johansson, 1994].

EXAMPLE 1—QUADRUPLE-TANK PROCESS

A picture of the quadruple-tank process is shown in Figure 1. The goal is
to control the level in the bottom two tanks with the help of two pumps.

2



1. Multivariable Systems

Figure 1. The quadruple-tank laboratory process. The water levels in the lower
two tanks are controlled with the help of two pumps.

The process inputs are u1 and u2 (input voltages to the pumps) and the
outputs are y1 and y2 (voltages from level measurement devices). There
are two valves that distribute the flows to the tanks. They are set prior
to an experiment. The valves affect the zeros of the system drastically. In
this way it is possible to make the control problem easy or difficult. The
positions of the valves can be expressed with two parameters γ 1, γ 2 ∈ [0, 1].
With γ 1 � 0 the flow goes only to the upper right tank and with γ 1 � 1
it goes only to the lower left tank. The parameter γ 2 is defined similarly.
From mass balances and Bernoulli’s law we get four nonlinear differential
equations. Linearization of these gives the transfer matrix

G(s) �


γ 1c11

1+ sT1

(1− γ 2)c12

(1+ sT3)(1+ sT1)
(1− γ 1)c21

(1+ sT4)(1+ sT2)
γ 2c22

1+ sT2

 ,

where cij and Ti are positive constants that depend on the cross-section
areas of the tanks and the outlets, the amplification in the actuators
and measurement devices, and the operating point. In Paper 4 two par-
ticular setups are studied, namely (γ 1, γ 2) � (0.70, 0.60) and (γ 1, γ 2) �

3
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T1, q1

T2, q2

h

P

T

kv

Figure 2. An industrial deaeration process for juice packaging. The controlled
variables are tank pressure P, juice temperature T , and juice level h.

(0.43, 0.34). These correspond to

G−(s) �


2.6

1+ 62s
1.5

(1+ 23s)(1+ 62s)
1.4

(1+ 30s)(1+ 90s)
2.8

1+ 90s


and

G+(s) �


1.5

1+ 63s
2.5

(1+ 39s)(1+ 63s)
2.5

(1+ 56s)(1+ 91s)
1.6

1+ 91s

 ,

respectively. It is shown in Paper 4 that G− has no finite right half-plane
zeros but G+ has one zero at 0.013.

The second example is an industrial multivariable process derived in [Jo-
hansson, 1997].

EXAMPLE 2—DEAERATION PROCESS

Figure 2 shows a deaeration process which is part of a production line for
juice packaging. This process removes oxygen from the juice to improve
the quality preservation. The juice, pre-heated to about 55 ○ C, enters the

4
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vacuum chamber from the left. Part of the oxygen content of the juice is
evaporated in the chamber and is removed by the top pump. The juice
leaves the chamber through the bottom pipe and is cooled in a heat-
exchanger and packaged. Main variables are

• the juice level h;

• the tank pressure P;

• the tank temperature T , the inlet temperature T1, and the outlet
temperature T2; and

• the inlet flow q1 and the outlet flow q2.

The controlled variables are h, P, and T . The normal operating point
(h0, P0, T0) is determined such that the evaporation is sufficiently effe-
cient. The system is controlled by manipulating the valve kv (see Figure 2)
and the flow q1.

More variables and parameters to describe a physical model of the
system are needed. Let A(h) be the cross-section area of the tank, V (h)
the liquid volume in the tank, and Vg(h) the gas volume in the tank.
Furthermore, M is the molecular weight of the gas, R is the ideal gas
constant, and Pair the air pressure. The liquid density is denoted ρ , its
heat capacity Cp, and its vapor enthalpy ∆Hvap. Finally, let Wevap be the
mass flow of evaporated liquid and Wpump the mass flow through the upper
pump in Figure 2.

The temperature equals the vapor temperature at normal operation
(evaporation), so T � Tvap(P). The system is described by the differential–
algebraic equation

A(h)dh
dt
� q1 − q2,

τ P(h, T, kv)dP
dt
� −P + Pair − Wpump

kv
+ Wevap

kv

+ PA(h)M
kvRT

dh
dt
+ PVg(h)M

kvRT2

dT
dt

,

τ T(h, q2)dT
dt

� −T + q1

q2
T1 − A(h)T

q2

dh
dt
− ∆Hvap

q2ρ Cp
Wevap,

T � Tvap(P).
Note that the dynamics are of second order, because of the algebraic re-
lation between T and P. The left-hand side dT/dt is explicitly given by
dP/dt, so the variable Wevap is indirectly given by the third equation. The
variables τ P and τ T are given as

τ P(h, T, kv) � Vg(h)M
kvRT

, τ T(h, q2) � V (h)
q2

.

5
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If the liquid is not evaporating the dynamics are of third order:

A(h)dh
dt
� q1 − q2,

τ P(h, T, kv)dP
dt
� −P + Pair − Wpump

kv

+ PA(h)M
kvRT

dh
dt
+ PVg(h)M

kvRT2

dT
dt

,

τ T(h, q2)dT
dt

� −T + q1

q2
T1 − A(h)T

q2

dh
dt

.

Linearizing the equation at an operation point under normal conditions
gives two first-order dynamic equations. They describe level dynamics and
pressure dynamics and are decoupled. The level dynamics are given by an
integrator and the pressure dynamics by a first-order system with time
constant τ P(h0, T0, k0

v). The system thus has the interesting property that
its order may change during the operation.

The third example is an industrial multivariable process from [Prett et al.,
1990].
EXAMPLE 3—HEAVY OIL FRACTIONATOR

A diagram of a heavy oil fractionator is shown in Figure 3. The plant has
three product draws and three side circulating loops. The system has five
inputs and seven outputs. The inputs are the control signals top draw u1,
side draw u2, and bottoms reflux u3, and the disturbances intermediate
reflux u4 and upper reflux u5. The outputs are the compositions of the
top draw product and side draw product y1 and y2, respectively, the top
temperature y3, the upper reflux temperature y4, the side draw temper-
ature y5, the intermediate reflux temperature y6, and the bottoms reflux
temperature y7.

The transfer matrix G of the model has elements

Gij(s) � Kij

1+ sTij
e−sLij , i � 1, . . . , 7, j � 1, . . . , 5,

where

K �



4.05 1.77 5.88 1.20 1.44

5.39 5.72 6.90 1.52 1.83

3.66 1.65 5.53 1.16 1.27

5.92 2.54 8.10 1.73 1.79

4.13 2.38 6.23 1.31 1.26

4.06 4.18 6.53 1.19 1.17

4.38 4.42 7.20 1.14 1.26


6
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T

T

T

A

T

A

T

y1

y2

y3

y4

y5

y6

y7

u1

u2

u3

u4

u5

Figure 3. The Shell heavy oil fractionator is a benchmark control problem with
five inputs and seven outputs.

and

L �



27 28 27 27 27

18 14 15 15 15

2 20 2 0 0

11 12 2 0 0

5 7 2 0 0

8 4 1 0 0

20 22 0 0 0


, T �



50 60 50 45 40

50 60 40 25 20

9 30 40 11 6

12 27 20 5 19

8 19 10 2 22

13 33 9 19 24

33 44 19 27 32


.

The time constants and the time delays are given in minutes.
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Characteristics of linear multivariable systems

The frequency response captures many properties of a scalar linear sys-
tem, such as gain, phase, and robustness. The frequency responses of the
eigenvalues of the transfer matrix may seem to be a natural general-
ization for a multivariable system. However, the eigenvalues do not say
much about signal propagation and they can be extremely sensitive to
small perturbations in the matrix elements. The widely accepted general-
ization of SISO gain is instead obtained through the singular values. The
singular values σ k, k � 1, . . . , m, of an m�m matrix M are the nonnega-
tive square roots of the eigenvalues of M∗M, where the asterisk denotes
conjugate transpose. Each matrix has a singular value decomposition

M � UΣV ∗,

where Σ � diag{σ 1, . . . ,σ m}, σ max � σ 1 ≥ ⋅ ⋅ ⋅ ≥ σ m � σ min, and U and
V are unitary matrices consisting of the singular vectors. The maximal
“amplification” of M is then given by the largest singular value

σ max(M) � sup
x 6�0

uMxu
uxu ,

where u ⋅ u denotes the Euclidean vector norm. See [Golub and van Loan,
1989; Horn and Johnson, 1996] for further properties of singular values.

The singular values of a transfer matrix G(s) captures signal am-
plification and robustness properties of the multivariable system [Doyle,
1992]. Note, however, that there is no natural phase function related to
the singular values. The “gain” or norm of G(s) is given by the largest
singular value

uG(s)u :� σ max
(
G(s))

and for stable systems the frequency peak of this norm is the H∞ norm

uGu∞ :� sup
Re s≥0

uG(s)u � sup
ω∈(0,∞)

uG(iω )u.

If σ max
(
G(s))/σ min

(
G(s)) is large, then G is sensitive to perturbations

in directions associated with the corresponding singular vectors for that
complex frequency s. The difficulty in a linear multivariable control design
problem is in some sense determined by how large this fraction is. This
has been explored in the process control literature [Moore, 1986; Morari
and Zafiriou, 1989] and is illustrated in the following example.

8
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Figure 4. Singular values of the subsystem G3 as a function of frequency for the
heavy oil fractionator.

EXAMPLE 4—HEAVY OIL FRACTIONATOR (CONT’D)
Consider a subsystem of the model of the heavy oil fractionator given in
Example 3. The subsystem is denoted G3 and consists of the inputs u1,
u2, and u3 and the outputs y1, y2, and y3. Figure 4 shows the singular
values of G3(iω ). Note the large difference between σ max(iω ) and σ min(iω )
for small ω . This indicates that the system is sensitive to certain low-
frequency disturbances. These disturbances are connected to directions
related to the singular vectors.

The singular values may give conservative results of performance mea-
sures, because they relate to the worst case. In many applications distur-
bances in certain directions are more likely than others. This can be taken
into account by a transfer matrix weight, see Chapter 3 in [Maciejowski,
1989].

We assume in the following that G is square (m inputs and m out-
puts) and of full normal rank [Zhou et al., 1996]. For some distinct points
s ∈ C, the transfer matrix G might loose rank. These points are called
transmission zeros and we take them as definition of multivariable zeros
[Kailath, 1980; Rugh, 1993].

DEFINITION 1—ZERO

Let (A, B , C , D) be a minimal state-space realization of G. A point z ∈ C
is called a zero of G if there exist complex vectors x,ψ ∈ Cn with ψ ∗ψ � 1

9
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such that  x∗ ψ ∗
 zI − A −B

−C −D

 � 0.

In the following we suppose that the set of poles and the set of zeros are
disjoint and that there is only unit rank loss of G(s) at each zero.

The vector ψ is called the output zero direction and from Definition 1
it follows that ψ ∗G(z) � 0. We notice that ψ is the last column of the
singular vector matrix U from the singular value decomposition of G(z).
Input zero directions can be defined similarly. Zeros in the closed right
half-plane (RHP zeros) are particularly bad for the system, as we will
see in Section 2. These zeros are also called nonminimum phase zeros
(which is actually an abuse of language, because there is no obvious phase
function related to a transfer matrix).

Illustration of zeros in SISO and MIMO systems are often done through
the following two examples from [Rosenbrock, 1970] and [Rosenbrock,
1969], respectively. The elements of the transfer matrix

Ga(s) �


1

s+ 1
2

s+ 3
1

s+ 1
1

s+ 1


have no SISO RHP zeros, whereas Ga has a MIMO zero at +1. All ele-
ments of

Gb(s) �


1− s
(s+ 1)2

2− s
(s+ 1)2

1− 3s
3(s+ 1)2

1− s
(s+ 1)2


have RHP zeros, although Gb is minimum phase. The well-known, but
fundamental, conclusion is that there is no immediate relation between
zeros of a transfer matrix and its submatrices.

Multivariable control design

There exists a variety of multivariable control design methods. They can
roughly be divided into two categories: (1) those developed from a practi-
cal need of extending a single-loop control method to deal with interaction
and (2) those being a theoretical extension of a scalar method that “auto-
matically” introduce attenuation of interactions. In the first category we
have for example decoupling [Ogunnaike and Ray, 1994], various Nyquist
array methods [Rosenbrock, 1974; Maciejowski, 1989], sequential design

10
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methods [Mayne, 1979; Bryant and Yeung, 1996], dynamic matrix con-
trol [Cutler and Ramaker, 1980], and QFT [Horowitz, 1979]. Examples of
methods in the second category are LQG [Anderson and Moore, 1989], H∞
and µ methods [Zhou et al., 1996], and other optimization methods [Boyd
and Barratt, 1991]. Internal model control [Morari and Zafiriou, 1989] is
probably the most commonly used multivariable control design method in
process industry. The method is incorporated in several commercial sys-
tems. Internal model control was developed from dynamic matrix control
and many of its properties have been theoretically analyzed.

No method is supreme for all applications. In general, however, one
can claim that the design methods in the first category are better to deal
with such practical constraints as pre-specified control structures, start-
up procedures, and plant integrity. The methods in the second category
are better understood theoretically.

Even if it is easy to find industrial plants where cross-coupling is ap-
parent, the extensive effort of developing multivariable design methods
have had remarkably little effect on real control systems. Intuitively, it
seems obvious that a system should be easier to control if more manip-
ulative and measured variables are available. It is, however, not trivial
to decide how to use this extra freedom. Many practical problems remain
unsolved. One such problem is initialization of multivariable controllers
[Johansson et al., 1994; Johansson, 1994].

Industrial multivariable control systems have often evolved from many
years of experience from a particular application. We illustrate this by
briefly describing the control system for the deaeration process.

EXAMPLE 5—DEAERATION PROCESS (CONT’D)
The control system for the industrial deaeration process in Example 2 has
two loops: one level control loop and one pressure–temperature control
loop. The level is controlled by a standard PI controller. The pressure and
temperature form a cascade control loop with the pressure in the inner
loop and the temperature in the outer. This configuration, together with
some special arrangements, secures the correct temperature at normal
operation. If the evaporation stops due to a disturbance, the system will
return to normal operation. The control structure is the result of many
modifications based on years of practical experience [Skoglund, 1996].

2. Performance Limitations

System engineers are faced with the problem of designing systems that
fulfill certain specifications. In doing this, it seems natural to first check

11
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if a solution exists. The foundation of communication theory is based on
Shannon’s channel capacity results [Shannon, 1948]. The channel capac-
ity sets an upper bound on achievable performance in a communication
link and, for example, tells how much a system can be improved. In con-
trol engineering fundamental limitations on closed-loop systems have only
recently been investigated, although the subject was discussed already
in the classical textbooks [Bode, 1945; Horowitz, 1963]. Process design
and control design are nowadays often treated simultaneously [Isermann,
1995; Skogestad and Postlethwaite, 1996; Goodwin, 1997]. This has re-
sulted in an increased interest in investigating performance limitations.
Recent extensions to the work by Bode and Horowitz are collected in
[Freudenberg and Looze, 1988; Seron et al., 1997].

Results on limitations in SISO and MIMO systems are first recalled
in this section. These then lead to the result in Paper 3 on achievable
performance in systems with a diagonal controller.

Limitations in SISO systems

Most results on performance limitations of linear feedback systems are
derived in terms of achievable sensitivity function. For example, consider
a stable transfer function G with pole excess two or higher. The sensitivity
function for the closed-loop system S � (1 + GC)−1 then satisfies Bode’s
integral ∫ ∞

0
log tS(iω )tdω � 0, (1)

see [Bode, 1945]. If tS(iω )t is less than one for some frequencies, it must
necessarily be greater than one for other frequencies. In the presence
of bandwidth limitations the integral thus imposes design trade-offs be-
tween different frequency bands. These were discussed in the 1989 Bode
lecture [Stein, 1990]. The formula (1) together with complex analysis gives
several similar results. Time-delay systems are studied in [Freudenberg
and Looze, 1987; Gómez and Goodwin, 1997] and nonlinear systems in
[Shamma, 1991; Seron and Goodwin, 1996]. Other fundamental perfor-
mance results include the derivation of “cheap control” in [Qui and Davi-
son, 1993; Seron et al., 1997b]. Performance limitations due to phase
margin specifications are derived in [Åström, 1996] and are applied to
multi-loop design in [Johansson, 1996].

We present an interesting result, which is proved in [Freudenberg and
Looze, 1985], that has been referred to as the waterbed effect [Doyle et al.,
1992]. It shows that if a design method forces the sensitivity to be low in
one frequency region, it necessarily has to be large in another if the open-
loop system has RHP zeros. Consider a process represented by a transfer
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function G and controller given by a transfer function C . Assume that
the loop-gain L :� GC has RHP zeros in {zi}nz

i�1 and RHP poles in {pi}np

i�1
and that it can be factored as

L(s) � L̃(s)B−1
p (s)Bz(s), (2)

where

Bz(s) :�
nz∏

i�1

zi − s
z∗

i + s
, Bp(s) :�

np∏
i�1

pi − s
p∗

i + s
,

and the transfer function L̃(s) is proper and has no RHP zeros or poles.
Introduce for a zero z the function

Θz(ω b) :�
∫ ω b

−ω b

Re
1

z− iω
dω .

Then we have the following result from [Freudenberg and Looze, 1985].

PROPOSITION 1
Consider an open-loop system L, suppose it gives a stable closed-loop
system and that L can be factored as (2). Suppose also that the sensitivity
function S � (1+ GC)−1 � (1+ L)−1 satisfies the design constraint

tS(iω )t ≤ α < 1

for all ω ∈ [0,ω b]. Then, for each RHP zero z of L, we have

uSu∞ ≥
(

1
α

)Θz(ω b)/(π−Θz(ω b))
tB−1

p (z)tπ/(π−Θz(ω b)). (3)

Note that both the bases of (3) are greater than one and their exponents
are positive. Hence, uSu∞ > 1. Furthermore, as α and tBp(z)t decrease,
the right-hand side of (3) increases. In particular, for a system with an
open-loop RHP pole p close to a RHP zero z, the factor tB−1

p (z)t in (3) is
large. As p gets closer to z, the system will have a higher and higher peak
in the sensitivity function.

We illustrate Proposition 1 with an example.

EXAMPLE 6
Consider an open-loop system with a RHP zero at z � 1 and no RHP
poles. Then, (3) becomes

uSu∞ ≥
(

1
α

)Θz(ω b)/(π−Θz(ω b))
(4)
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Figure 5. Estimated lower bound of uSu∞ as a function of the system bandwidth
ω b. The design constraint is tS(iω )t ≤ α < 1 for ω ∈ [0,ω b].

with

Θ(ω b) � −arg
{

1− iω b

1+ iω b

}
.

Figure 5 shows the right-hand side of (4) as a function of the bandwidth ω b
for α ∈ [0.1, 0.9] in step of 0.1. We see that because of the zero at one, the
bandwidth must be less than one if the sensitivity is made small in [0,ω b].
For many practical systems, a reasonable rule of thumb is uSu∞ � 2 or
less [Åström and Hägglund, 1995].
Note that in results such as Proposition 1 the imaginary axis has a
supreme position: a zero has a dramatically different influence depending
on if it is to the left or to the right of the imaginary axis. A similar sen-
sitivity to the zero location is the consequence of a result in [Middleton,
1991]. Middleton’s result is interpreted in the complementary sensitivity
function T � 1− S and says that if T(0) � 1 and the closed-loop system
is stable, then

2
π

∫ ∞

0
log tT(iω )tdω

ω 2 � lim
s→0

dT
ds

+ 2
nz∑

i�1

1
zi

, (5)

where zi are the RHP zeros. We see again that RHP zeros close to the
origin give poor closed-loop performance. For simplicity, assume that the
open-loop system has a double integrator, so that lims→0 dT/ds � 0, and
that L has only the two complex conjugated RHP zeros z1 � x + iy and
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Figure 6. Complex RHP zeros on the circle give the same design limitations ac-
cording to (5).

z2 � x − iy. It follows from (5) that the limitations imposed by the zeros
are proportional to 1/z1 + 1/z2. Hence, all zeros on the circle defined by

1
z1
+ 1

z2
� 1

r

or
(x− r)2 + y2 � r2

are in this sense equally bad. This is illustrated in Figure 6 for r � 1,
where two pairs of zeros affecting the closed-loop performance similarly
in the sense of (5) are shown. Even if these two pairs are located far
from each other, they affect the feedback design in the same way. The
reason for this result is that only the frequency response of the system
is considered. A physical illustration is given in Example 9 in the end of
next section.

Limitations in MIMO systems

Some of the results for limitations in scalar feedback systems have been
generalized to multivariable systems. One of the first formal result was
derived in [Zames, 1981].

It is important to capture the directions associated with each pole and
zero for a MIMO system. If a SISO system has a RHP zero, its effect can
be spread over a frequency band. For a MIMO system there is also the
possibility of distributing the effect of the zero over different inputs and
outputs. This is illustrated in the following. First recall the definition of
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a multivariable zero given by Definition 1 in Section 1. A zero z and its
output direction ψ satisfy ψ ∗G(z) � 0.

An important question is to determine the properties of the plant that
limit the achievable performance. For stable multivariable linear systems
under centralized control it was formally shown by Zames in the classical
paper [Zames, 1981] that there are no limits on the sensitivity function
for a system that has no RHP zeros.

PROPOSITION 2
Consider a stable transfer matrix G with no RHP zeros and a strictly
proper stable transfer function W with no RHP zeros. For every ε > 0
there exists a strictly proper stabilizing and stable controller C such that

uW(I + GC)−1u∞ < ε .

A slight variation of this result is proved as Lemma 2 in Paper 3. A
generalization to unstable open-loop systems is given in [Francis, 1987].
The feedback deterioration related to RHP zeros in multivariable systems
was also derived in [Zames, 1981].

PROPOSITION 3
Consider a stable transfer matrix G with RHP zeros in zi, i � 1, . . . , X, and
a proper stable transfer function W with no RHP zeros. Then for every
proper stabilizing controller C

uW(I + GC)−1u∞ ≥ max
i∈{1,...,X}

tW(zi)t.

We use the laboratory tank process in Section 1 as illustration.

EXAMPLE 7—QUADRUPLE-TANK PROCESS (CONT’D)
Consider the two linear models G− and G+ for the quadruple-tank process
given in Example 1. It is shown in Paper 4 that G− has multivariable zeros
in −0.060 and −0.018 and that G+ has zeros in −0.057 and 0.013.

It follows from Proposition 2 that there exists a stabilizing feedback
controller

C �
C11 C12

C21 C22

 ,

such that the weighted sensitivity uW(I + G−C)−1u∞ can be made arbi-
trarily small. Proposition 3, however, gives that this is not the case for
G+.
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Loop shaping is typically done in the H∞ framework by letting W
be the inverse of the desired frequency response for S and then finding
a stabilizing controller such that uW Su∞ < 1, see [Zhou et al., 1996].
Introduce the weighting function

W(s) � b
s+ a

with a > 0 and b > 0. It follows from Proposition 3 that

uW(I + G+C)−1u∞ > tW(z)t � b
z+ a

,

where z is the unstable zero. If it is required that the sensitivity to static
disturbances should be less than 0.1 (b/a � 10), it follows that the con-
straint a < z/9 must be satisfied. Hence, the sensitivity must only be
attenuated up to approximately a frequency one decade lower than z or
up to 0.0014 rad/s. This happens to be the approximate bandwidth of the
manually tuned system in Paper 4.

Next we present an extension of Proposition 1 to multivariable systems
given in [Gómez and Goodwin, 1996]. Bounds are given on the elements
of S.

PROPOSITION 4
Consider a transfer matrix G with a RHP zero at z and corresponding
output zero direction ψ and let k ∈ {1, . . . , m}. If a stabilizing feedback is
applied such that S satisfies the design constraints

tSik(iω )t ≤ α ik < 1

for all ω ∈ [0,ω b] and i � 1, . . . , m and ψ k 6� 0, then

uSkku∞ ≥
(

1
α kk +

∑n
i�1
i 6�k

α iktψ i/ψ kt

)Θz(ω b)/(π−Θz(ω b))
−

n∑
i�1
i 6�k

uSiku∞tψ i/ψ kt.

(6)

Compare (4) and (6). The freedom given by the extra inputs and outputs
admits a smaller lower bound in the latter case: the base of the first term
in the right-hand side of (6) is smaller than 1/α kk and the second term
reduces the bound even further. Note that this is not the case if the zero
is associated with only one output, that is, ψ i � 0 for all i 6� k. Bristol
coined the term “pinned zeros” for such zeros [Morari and Zafiriou, 1989].
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EXAMPLE 8—QUADRUPLE-TANK PROCESS (CONT’D)
Consider the nonminimum phase model G+ for the quadruple-tank pro-
cess. The zero direction for z � 0.013 is ψ � (−0.63, 0.78)T . In the sense
of Proposition 4, the zero has almost the same association with both out-
puts.

It is important to note that Proposition 4 only tells how a lower bound of
uSkku∞ is related to the zero directions. It is not claimed that uSkku∞ is
close to this bound. It is shown in [Seron et al., 1997] that for a specific
design the sensitivity is influenced by the zero directions in a similar way
as the bound in (6).

The results on performance limitations do not give the full picture.
As pointed out in previous section, the reason for this is that only the
frequency response is evaluated. We illustrate this with an example.

EXAMPLE 9—QUADRUPLE-TANK PROCESS (CONT’D)
Consider again the quadruple-tank process in Example 1. The adjustment
of two valves gives the two parameters γ 1, γ 2 ∈ [0, 1] that define the tube
flows. It is shown in Paper 4 that the linearized model of the system has
a RHP zero if and only if 0 < γ 1 + γ 2 ≤ 1. If the valves are adjusted such
that γ 1 + γ 2 is slightly less than one, the system has a RHP zero close
to the origin and the previous results state that the system is difficult
to control. However, a small change in one of the valves may result in
γ 1+γ 2 greater than one and theoretically no limitations on the achievable
control performance. In practice, of course, the difficulty of controlling the
quadruple-tank process does not change abruptly with a small variation
in one of the valves.

Limitations with diagonal controller

There are few results on performance limitations for control systems with
a special controller structure. This is surprising because bounds on achiev-
able performance as derived previously are natural tools for investigating
different control structures. If the achievable performance is lower for one
structure than another, it is reasonable to also believe that the real sys-
tem performs better with the latter control structure. It is not easy to find
good control structures for decentralized control systems, but the result
in Paper 3 is a step in this direction. First, however, a related result in
[Zames and Bensoussan, 1983] is given.

Zames and Bensoussan noticed that if a transfer matrix G tends to
diagonal at high frequencies, then it is possible to invert its dynamics ar-
bitrarily well by a diagonal controller if G has no RHP zeros. The following
definition is needed.
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2. Performance Limitations

DEFINITION 2—ULTIMATELY DIAGONALLY DOMINANT

A transfer matrix G is called ultimately diagonally dominant if there
exists a diagonal transfer matrix D with no RHP zeros and a constant
α ∈ [0, 1) such that

sup
tst≥R
Re s≥0

uG(s)D−1(s) − Iu → α , R →∞.

Corollary 1 in [Zames and Bensoussan, 1983] gives the following result.

PROPOSITION 5
Consider a strictly proper transfer matrix G with no RHP zeros and a
proper stable transfer matrix W . Assume G is ultimately diagonally dom-
inant with constant α and σ min[G(s)] ≥ η tst−k, tst ≥ R, for some constants
η > 0, R > 0, and an integer k > 0. Then, for every ε > uW(∞)u(1−α )−1

there exists a strictly proper stabilizing and stable diagonal controller
C � diag{C1, . . . , Cm} such that

uW(I + GC)−1u∞ < ε .

The assumptions in Proposition 5 are fulfilled for one of the setups for the
quadruple-tank process.

EXAMPLE 10—QUADRUPLE-TANK PROCESS (CONT’D)
Consider the minimum-phase model G− of the quadruple-tank process in
Example 1. The transfer matrix G− has no RHP zeros, it tends to diagonal
at high frequencies, and σ min[G−(s)] > 0.01/tst for sufficiently large tst.
It thus follows from Proposition 5 that the system can theoretically be
controlled arbitrarily tight with diagonal feedback.

Of course, all systems are not ultimately diagonally dominant.

EXAMPLE 11
The following model of an automotive gas turbine is given in [Winterbone
et al., 1973] and studied in Paper 3:

G(s) �


130� 104s+ 33600� 104

s2 + 392s+ 13900
−5.6s2 + 246s+ 744

s2 + 28.9s+ 24.6
904� 104s+ 28400� 104

s3 + 233s2 + 8610s+ 11900
83.4s+ 6300

s2 + 115s+ 195

 .
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This transfer matrix is minimum phase but not ultimately diagonal.

The system in Example 11 is covered by a result that is proved in Pa-
per 3. There the notion sequentially minimum phase is introduced for a
partitioned transfer matrix

G �



G1

`

`

`

G2

Gm


,

where

Gk :�


G11 . . . G1k

...
...

Gk1 . . . Gkk

 .

DEFINITION 3
A stable transfer function matrix G is sequentially minimum phase if
G1, . . . , Gm have full normal rank and no RHP zeros.

Let the first k− 1 elements of the last row of Gk be denoted

Lk :�
Gk1 . . . Gk,k−1

 .

Assume that Gk for k ∈ {1, . . . , m − 1} has no RHP zeros and that W is
a proper stable transfer function with no RHP zeros. Define the scalars
φ k(W) ∈ [0,∞] as

φ k(W) :� uW−1 LkG−1
k−1u∞

for k � 2, . . . , m. The following result is proved in Paper 3.

PROPOSITION 6
Consider a stable transfer matrix G and a strictly proper stable trans-
fer function W with no RHP zeros. If G is sequentially minimum phase
and φ k(W) is bounded for k � 2, . . . , m, then for every ε > 0 there
exists a strictly proper stabilizing and stable diagonal controller C �
diag{C1, . . . , Cm} such that

uW(I + GC)−1u∞ < ε .
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2. Performance Limitations

EXAMPLE 12
Consider again the model in Example 11. The transfer matrix of the sys-
tem is sequentially minimum phase, because G1 � G11 and G2 � G are
minimum phase. Furthermore, φ 2(W) � uW−1G21G−1

11 u∞ is bounded for
all weighting functions of relative degree one. It is thus shown that the
sensitivity function of the automotive gas turbine model in Example 11
can be reduced arbitrarily, in the sense of Proposition 6, with a stable
diagonal feedback.

Proposition 6 also holds for block-diagonal controllers, where the blocks
C1, . . . , Cm have dimensions corresponding to the matrices G1, . . . , Gm. The
zeros of G1, . . . , Gm for various block sizes can be used to choose input–
output pairing and control structure. Calculating the zeros of submatrices
of the plant for control structure design has been done to some extent.
This is, for example, done in an aero-engine control design in Chapter 12
in [Skogestad and Postlethwaite, 1996]. There exist, however, few formal
results supporting this strategy.

We do not claim that a system that satisfies the conditions in Propo-
sition 6 should be, or even can be, controlled arbitrarily tight in practice.
The result hints that if the conditions are fulfilled then the model prob-
ably does not capture all limitations imposed by the system. There are
either other limitations, such as saturations, that should be considered
or a more accurate model should be estimated. What is encompassed in
the bounds is far from everything that is important for control design.
Therefore, the performance limitations presented in this section are sel-
dom the ultimate goal. This conservativeness is further discussed in the
conclusions.

The assumptions of Proposition 6 can be slightly generalized to cover
some more cases. Factor the weighting function as W � W1W2, for stable
transfer functions W1 and W2. Then,

LkG−1
k−1Sk−1RT

k � W−1 LkG−1
k−1W Sk−1RT

k

� W−1
1 LkG−1

k−1W Sk−1W−1
2 RT

k ,

so that

uLkG−1
k−1Sk−1RT

k u∞ ≤ uW−1
1 LkG−1

k−1u∞ ⋅ uW Sk−1u∞uW−1
2 Rku∞.

This can be used to modify the proof of Proposition 6 (Theorem 1 in Pa-
per 3). The assumption that φ k(W) � uW−1 LkG−1

k−1u∞ should be bounded
can be replaced by the condition that both uW−1

1 LkG−1
k−1u∞ and uW−1

2 Rku∞
should be bounded. The condition on the relative degrees of W , Lk, and
Gk−1 is thus distributed to W , Lk, Gk−1, and Rk. For 2 � 2 systems the
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assumption can be simplified, because for k � 2 we have

uLkG−1
k−1Sk−1RT

k u∞ �
∥∥∥∥G21G12S1

G11

∥∥∥∥
∞
≤
∥∥∥∥G21G12

W G11

∥∥∥∥
∞

⋅ uW S1u∞.

We illustrate this with an example.

EXAMPLE 13
The sequentially minimum phase system

G(s) �


1

s+ 1
1

s+ 1
1

s+ 1
−1

s+ 1


with weighting function W(s) � (s+1)−1 does not satisfy φ 2(W) < ∞, but
it does satisfy ∥∥∥∥G21G12

W G11

∥∥∥∥
∞
� 1 < ∞.

Using the constructive proof in Paper 3, we can derive a stabilizing con-
troller C � diag{C1, C2} that minimizes the weighted sensitivity function
arbitrarily. One possible choice is

C1(s) � s+ 1
(1+ τ s)2 − 1+ δ

, C2(s) � −1
2

⋅
s+ 1

(1+ τ s)2 − 1+ δ
,

where τ ,δ > 0 are sufficiently small. For example, τ � δ � 10−5 gives a
closed-loop system with poles in pi with Re pi < −1 and

uW(I + GC)−1u∞ � 3.8� 10−5.

Diagonal control structures were previously studied. Of course, it is also
interesting to investigate performance limitations for control systems with
other structures. For example, consider a stable 2 � 2 transfer matrix

G �
G11 G12

G21 G22


with no RHP zeros and a triangular controller

C �
C11 0

C21 C22

 .
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3. Properties of Relay Feedback Systems

Then there exist stable transfer functions P1 and P2 such that G11P1 +
G12P2 is stable and has no RHP zeros, compare Proposition 2 in Paper 5.
The transfer matrix

G̃ :�
G11 G12

G21 G22

 P1 0

P2 1

 � G11P1 + G12P2 G12

G21P1 + G22P2 G22


is sequentially minimum phase, because G11P1 + G12P2, G, and P1 0

P2 1


have no RHP zeros. The weighted sensitivity function for G̃ can therefore
be arbitrarily minimized with a stabilizing and stable D � diag{D1, D2}
if ∥∥∥∥ G̃21G̃12

W G̃11

∥∥∥∥
∞
�
∥∥∥∥G12(G21P1 + G22P2)

W(G11P1 + G12P2)
∥∥∥∥
∞
< ∞.

This is the case if the transfer function between the norm bars is proper,
because the numerator is stable and the denominator has no RHP zeros
(provided that W is minimum phase). So if a condition on the relative
degrees of the elements of G and W holds, then the stable and minimum
phase transfer matrix G can be arbitrarily tightly controlled with a stable
triangular controller

C �
C11 0

C21 C22

 �  P1 0

P2 1

 D1 0

0 D2

 .

For example, the relative degree condition holds if the relative degree of
G12 is sufficiently large. Note that there is no requirement that any of the
elements of G should be minimum phase.

3. Properties of Relay Feedback Systems

Oscillations appear in a variety of systems. An example from the financial
world is oscillations in stock indices.

EXAMPLE 14—STOCK INDEX OSCILLATIONS

Stock indices often tend to oscillate. This was, for example, apparent the
last hours prior to the stock market crash in October 19, 1987 [Antoniou
and Garrett, 1993]. It seems reasonable to assume that the stock index
influences the desire of a trader to buy or sell a certain stock. If she buys it
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may effect what other traders do and therefore also the index itself. From
a control engineer’s point of view, the stock market can thus in a naive way
be seen as a feedback system. If the “gain” in this system is sufficiently
high (i.e., the trader’s reaction is large on information about fluctuations
in the stock index), we may expect that the system starts to oscillate. Such
oscillations appeared prior to the October crash. Supporting our feedback
hypothesis, a U.S. presidential task force reported that by using program
trading “few, aggressive, professional market participants can produce
dramatic swings in market prices” [Arnfield, 1988]. A reason for them to
induce oscillations would be that “volatility . . . leads to arbitrage.” Note
the similarity between buy and sell limits in program trading and the
switching conditions for a relay.

Oscillations and limit cycles are studied in many sciences; for example,
oscillations in nonlinear dynamical systems is a large field in applied
mathematics [Guckenheimer and Holmes, 1983]. The relay feedback sys-
tem we will investigate is a particular type of nonlinear system. It consists
of a dynamical system and a sign function connected in feedback. It is not
captured in the class of systems normally discussed in the literature of
nonlinear dynamical systems, because the sign function leads to a discon-
tinuous differential equation.

Relay-based control is the dominating control strategy in practice.
Many control methods with a relay component have evolved throughout
the years. Several applications and some historical comments are given
in Paper 1 and Paper 2. Recent attention is paid to automatic tuning of
PID controllers [Åström and Hägglund, 1995], modeling of quantization
errors in digital control [Parker and Hess, 1971], and analysis of sigma-
delta converters [Aziz et al., 1996]. The relay feedback system can also
be viewed as an extremely simple multi-controller system and thus il-
lustrate some of the behaviors of these systems. Switched controllers are
surveyed in [Morse, 1995] and it is noticed that results of a more quanti-
tative nature are lacking. Morse claims that there is a need “for a better
understanding of the basic properties of switched systems than we have
at present.” The analysis on relay feedback system provided here is a step
in that direction.

Classical analysis of relay feedback system was motivated by elec-
tromechanical systems and simple friction models [Andronov et al., 1965;
Tsypkin, 1984] as well as by aerospace applications [Flügge-Lotz, 1953;
Flügge-Lotz, 1968]. A self-oscillation adaptive system, which has a re-
lay with adjustable amplitude in the feedback loop, has been tested in
several American aircrafts [Schuck, 1959]. An early reference to on–off
control is [Hawkins, 1887] (pointed out in [Bennett, 1993]). Hawkin stud-
ied temperature control and noticed that the relay controller could cause
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Figure 7. System output y and relay output u for chaotic relay feedback system.

oscillations.
Although relay feedback systems have been studied for more than a

century, there are many things that are poorly understood. Simple systems
with relay feedback can show complicated responses as is illustrated with
the following example.

EXAMPLE 15
Consider a system consisting of a linear part y � Gu with

G(s) � − 1
s2 − 0.1s+ 1

and a relay with unit hysteresis defined by

u(t) �


−1, if y(t−) > 1 and u(t−) > 0,
1, if y(t−) < −1 and u(t−) < 0,
u(t−), otherwise

in the feedback loop. A simulation of this system with initial condition
y(0) � ẏ(0) � 0 and u(0+) � −1 is shown in Figure 7. This system was
analyzed and shown to have a chaotic behavior in [Cook, 1985]. A similar
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example but with positive steady-state gain is given in [Holmberg, 1991].

This section consists of three parts. First the definition of a relay feedback
system is given together with a discussion on existence of solutions and
sliding modes. Some results in Paper 1 and Paper 2 are then presented.
Finally, some remarks on hybrid systems are given.

Existence of solutions

Linear systems with relay feedback have been studied for a long time
[Flügge-Lotz, 1953; Andronov et al., 1965]. A fruitful approach has been
to analyze them by harmonic balance, thereby getting estimates of limit
cycle periods and amplitudes, see [Atherton, 1975; Tsypkin, 1984]. An
early application of frequency response analysis is [Ångström, 1861]. Con-
ditions for stability of the origin for relay feedback systems were already
shown in [Anosov, 1959]. From the analysis therein, it follows roughly
that the relay feedback system is stable if the corresponding system with
the relay replaced by a high gain is stable. There are still, however, many
things concerning linear systems with relay feedback that remain to be
investigated.

A linear system with relay feedback is described by the equations

ẋ � Ax+ Bu,
y � C x, (7)
u � − sgn y,

where x ∈ Rn and

sgn y �
{

1, if y > 0,
−1, if y < 0.

The sign function is discontinuous at y � 0, so existence of solutions does
not follow from elementary results about ordinary differential equations.
Properties of solutions of differential equations with general discontinuous
right-hand sides are derived in Chapter 2 in [Filippov, 1988] by consid-
ering differential inclusions. Next, we formally define a solution of (7)
and, by referring to a result in [Filippov, 1988], we state that it exists. By
rewriting (7) as

ẋ � Ax− B sgn(C x) �: f (x),
we get a differential equation with a piecewise continuous right-hand side
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3. Properties of Relay Feedback Systems

given by the function f . Define a set-valued function

F(x) :�


Ax− B , if C x > 0,
Ax+ B [−1, 1], if C x � 0,
Ax+ B , if C x < 0,

so that F(x) is a single point in Rn if C x 6� 0 and otherwise equal to
the segment given by Ax + Bu0 for all u0 ∈ [−1, 1]. A solution to the
relay feedback system is defined as an absolutely continuous function1

that satisfies a differential inclusion given by F.

DEFINITION 4
A solution of the relay feedback system (7) is an absolutely continuous
vector-valued function x(t) such that

ẋ(t) ∈ F
(
x(t))

almost everywhere.

Theorem 2.7.1 in [Filippov, 1988] applied to our system gives existence of
the solution.

PROPOSITION 7
For any x0 ∈ Rn there exists a solution x(t) for t ≥ 0 of the relay feedback
system (7) such that x(0) � x0.

Filippov denotes this solution the “simplest convex definition.” If f is affine
in u (as it is for a linear system with relay feedback), this definition agrees
with the definition using Utkin’s equivalent control [Utkin, 1992]. This is
not always the case for other non-smooth right-hand sides f .

Sliding modes and fast relay switches

Trajectories of the relay feedback system (7) for which y(t) � 0 on a time
interval are called sliding modes (or Filippov solutions). By considering
subsets of the switch plane

S :� {x ∈ Rn : C x � 0}

in which also time derivatives of y vanish, it is possible to define higher-
order sliding modes [Fridman and Levant, 1996]. For the system (7) we
introduce the sliding set of order r as

Sr :� {x ∈ Rn : C x � C Ax � ⋅ ⋅ ⋅ � C Ar−1 � 0}.
1See [Rudin, 1987] for a definition.
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Figure 8. Velocity control system with Coulomb friction.

A part of a solution of (7) that belongs to Sr is then called a sliding mode
of order r.

It is easy to see that if the time it takes to pass from one switch
plane intersection to another is short, then the initial point must be in
the neighborhood of the set S2 � {x ∈ Rn : C x � C Ax � 0}. Theorem 1 in
Paper 1 states that there exists a bounded sequence of points in S giving
two consecutive switches with arbitrarily short switch times if and only
if the first non-vanishing Markov parameter C Ak B is positive. Further-
more, the switch times for consecutive switches are shown to tend to zero
only for systems with pole excess one and two.

Another contribution in Paper 1 is to show that a segment with fast
switches can be part of a limit cycle. The simplest case is when first-order
sliding is part of the limit cycle. We illustrate with a simple model of a
velocity control system with Coulomb friction.

EXAMPLE 16—STICK-SLIP MOTION

Consider the velocity control problem given by

dv
dt
� u− F,

where v is the velocity of a mechanical device of unit mass, u is the
control force and F is the friction force. The control system is illustrated
in Figure 8 with G(s) � 1/s. If no friction is present (i.e., F � 0), the
integrating control law u � C(vref − v) with

C(s) � 3s2 + 2s+ 1
s(s− 1)

gives a closed-loop response with settling time of about six seconds (with
a bit too large over-shoot). A friction force F � sgn v induces a stable os-
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Figure 9. Stick-slip motion in a mechanical control system. The velocity v vanishes
part of the limit cycle period.

cillation as shown in Figure 9. Such an oscillation in a mechanical system
is called stick-slip motion.

Similar examples but with a more realistic friction model and choice
of controller parameters are given in Chapter 4 in [Olsson, 1996].
A necessary and sufficient condition for local stability of the type of limit
cycle shown in Figure 9 is proved in Paper 2, by deriving the Jacobian
of the Poincaré map consisting of one sliding mode part and one smooth
part. The main contribution of that paper, however, is to show that the
same method is applicable also for systems that do not have an exact
sliding mode. It is shown that the system

ẋ �



−a1 1 0 . . . 0

−a2 0 1 0
...

. . .
...

−an−1 0 0 1

−an 0 0 ⋅ ⋅ ⋅ 0


x+



0

1

b1

...

bn−2


u,

y �
1 0 ⋅ ⋅ ⋅ 0

 x

can give fast sign shifts in x2 under relay feedback. These fast switches are
denoted chattering and they are shown to occur close to the second-order
sliding set S2. More precisely, if x1(0) � 0, x2(0) is small, and tx3(0)t < 1,
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then it is proved that the peaks of the chattering is given by

x2(tk) � (−1)kx2(0) exp
[− (a1 − b1)tk/3

](1− x2
3(tk)

1− x2
3(0)

)1/3
+ ε (x2(0); tk),

where ε (x2(0); tk)/x2(0) → 0 as x2(0) → 0. Using this result, it is possible
to prove local stability of limit cycles with chattering in a similar way
as for limit cycles with sliding modes. In particular, it is shown that the
complicated Poincaré map with the chattering in x2 need not be included
in the stability analysis, but it is sufficient to study a sliding mode part
and a smooth part. A limit cycle with chattering is shown on the front
cover, where the chattering variables x1 and x2 are given with logarithmic
axis. From discussions in Paper 1 it follows that chattering cannot exist
for systems with pole excess higher than two. In a sense, the fast behavior
in linear systems with relay feedback is completely characterized by the
results in Paper 1 and Paper 2.

Hybrid systems

A hybrid system is a dynamical system with both continuous and dis-
crete states. An early reference using the term “hybrid” in this context is
[Witsenhausen, 1966] (as pointed out in [van der Schaft and Schumacher,
1996]). There exist several abstract models capturing various hybrid sys-
tems, for surveys see [Branicky et al., 1994; Morse, 1995]. A general model
presented by Branicky and colleagues consists of a number of vector fields
and a transition map. Each vector field defines the system dynamics in a
certain set and the transition map tells when the trajectory jumps from
one set to another. The deaeration process is an example of a physical
system of inherent hybrid nature.

EXAMPLE 17—DEAERATION PROCESS (CONT’D)
The model for the deaeration process described in Example 2 has as dis-
crete state the Boolean variable evaporation, which is true if the liquid
in the chamber is evaporating and false otherwise. If evaporation is true,
the continuous states are h and P. The temperature T is then given by the
algebraic equation that relates it to pressure. If instead evaporation is
false, then there are three continuous state variables h, P, and T . Hence,
the dimension of the continuous state vector is two at evaporation and
three at non-evaporation.

Many hybrid models do not allow changes in the state dimension. One
such model is the following given in [Tavernini, 1987]:

ẋ(t) � f
(
x(t), u(t)),

u(t) � ν
(
x(t), u(t−)). (8)
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Here x is a continuous state taking values in Rn and u is a discrete state
taking values in an index set I . This system captures many applications
in engineering as well as in other sciences. The model fits, for example,
computer-controlled systems. It also covers the multi-control structure
discussed in [Morse, 1995], where a “supervisor” makes a decision on
what controller to run based on process inputs and outputs. Many existing
control algorithms have this structure.

Relay feedback systems on the form

ẋ � f (x, u),
y � c(x), (9)
u � − sgn y

belongs to all classes of hybrid systems previously discussed. In a relay
feedback system the dynamics are only switched between two vector fields
f (x, 1) and f (x,−1). It is thus, in some sense, the simplest of all hybrid
systems. It is interesting to characterize the behavior in such a prototype
system to be able to understand more complicated hybrid systems.

The switch characteristic in a physical model is sometimes derived
from a simplification of a complex model. For example, rather than using
a sophisticated function that describes the relation between current and
voltage for an electrical diode, an ideal diode model that only consists of
a switch may be preferred. In this context it is important to note that the
solution of the non-smooth differential equation (9) may depend on the
definition of the sliding mode. (Recall from the previous discussion that
if the vector field f is not affine in u, there can be an ambiguity of the
solution of (9).) Reducing complexity may thus introduce a model with
a non-unique solution. This raise questions connected to modeling and
simulation, see [Mattson, 1996; Malmborg and Bernhardsson, 1996].

4. Automatic Tuning Using Relay Feedback

A particular application of relay feedback is the automatic tuning method
proposed in [Åström and Hägglund, 1984a]. It was motivated from the
industrial need of a simple and robust method for tuning PID controllers.
Recent reports on the status of control in industry include [Bialkowski,
1992; Ender, 1993; Hersh and Johnson, 1997]. These papers emphasize
the need for methods of retuning loops that perform poorly.

Because of the limited knowledge of control design methods in pro-
cess industry, it is highly desirable to have simple tuning methods. Most
model-based design algorithms require a significant amount of engineer-
ing knowledge: some parameters have to be adjusted in a non-trivial way
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until a satisfactory design is achieved. This is, for example, the case when
locating closed-loop poles in a pole-placement design or choosing weight-
ing matrices in H2 and H∞ designs. If we accept to reduce the generality
of the model-based design methods, it is possible to derive more restricted
methods for designing controllers. To emphasize these restrictions we use
the term tuning rather than design.

A survey on relay feedback methods for both scalar and multivariable
controller tuning is given in [Åström et al., 1995]. Paper 5 gives also a
quite broad overview. Therefore, we include in this section only a short
introduction to the original method and illustrate some of the difficulties
that may appear in the multivariable case. Finally, a discussion on open
problems is given.

Tuning of SISO controllers

A classical paper on controller tuning is [Ziegler and Nichols, 1942]. Ziegler
and Nichols pointed out that tuning of PID controllers for many indus-
trial processes can be based on the ultimate period Tu and the corre-
sponding gain Ku. The ultimate gain Ku is defined as the value “above
which any oscillation will increase to some maximum amplitude, and be-
low which an oscillation of any size will diminish.” For a system of the
form G(s) � K exp(−sL)/(1 + sT), with K , L, T > 0, this means that
the ultimate point is the outer most point for which the Nyquist curve
intersects the negative real axis. Ziegler and Nichols gave three simple
formulas for the parameters in a PID controller. Translated to the con-
troller parameterization

C(s) � K
(

1+ 1
Tis

+ Tds
)

they are

K � 0.6Ku, Ti � 0.5Tu, Td � 0.125Tu, (10)

see [Åström and Hägglund, 1995]. Later Ziegler and Nichols’ formulas
have been improved [Hang et al., 1991; Åström and Hägglund, 1995],
but the basic idea, that from a simple experiment automatically derive
controller parameters, remains.

Controller parameters can be automatically tuned by the device shown
in Figure 10. The switch is first set to relay mode and the ultimate period
Tu and the ultimate gain Ku are obtained from the likely induced oscilla-
tion. Then the controller parameters can be automatically calculated from
formulas as (10) and the switch finally set to controller mode. The main
advantages with the relay feedback method for automatic tuning are that
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_
G

PID

Figure 10. Automatic tuning of PID controller using relay feedback.

• the estimated model will have high accuracy in the important region
around the cross-over frequency for the open-loop system;

• the experiment is done in closed-loop; and

• no prior knowledge about the process dynamics is needed.

These are some of the reasons for why the method works well in practice.
It is adopted by many manufactures [Åström and Hägglund, 1995]. A his-
torical review of the development of the relay autotuner at Lund Institute
of Technology is given in Chapter 7 in [Dagnegård and Hägglund, 1996].

The reason for that the limited information provided by a single oscil-
lation is sufficient in many applications is that often a remarkable simple
and crude model of the plant is enough to gain improved control per-
formance. The amount of process information required for control is dis-
cussed in [Persson, 1992]. A more accurate model in terms of higher-order
dynamics may not be sufficiently cost effective. Bellman pointed out that
“it should be constantly kept in mind that the mathematical system is
never more than a projection of the real system on a conceptual axis”
(page 186 in [Bennett, 1993]). For many industrial process control prob-
lems, experience has shown that it suffices to let the “axis” be low-order
linear models, such as first-order lags with a time delay.

The relay feedback experiment can easily be modified to give more
than one point on the Nyquist curve by adding a filter in series with the
relay. This is further discussed in Paper 5. Combining the filtering with
a relay connected between the system output and reference input is done
in [Schei, 1992]. Versions of the relay tuning method for scalar controllers
include [Friman and Waller, 1995], wherein the relay is replaced with
other nonlinearities, and [Levant, 1997], wherein the transient prior to
the steady oscillation is used to improve the estimate. Uncertainty bounds
for robust control are estimated via relay feedback experiments in [Smith

33



Introduction

0 50 100 150 200

−2

0

2

0 50 100 150 200

−0.5

0

0.5

y3

y4

time [min]
Figure 11. A decentralized relay experiment that gives a complex oscillation for
the heavy oil fractionator model.

and Doyle, 1993]. Examples of non-relay tuning methods are given in
[Gawthrop and Nomikos, 1990; Woodyatt and Middleton, 1997].

Tuning of MIMO controllers

As quality demands increase, interacting control loops become more and
more important. There is a need for simple tuning methods also for MIMO
controllers. It is therefore natural to try to extend the relay feedback
method to multivariable systems. Several attempts exist in the literature,
see [Åström et al., 1995], [Wang et al., 1997], and Paper 5 for references.
Most of these methods are limited to diagonal controllers consisting of m
PID controllers, where m is the number of inputs and outputs.

In the multivariable methods for relay tuning either one relay or m
relays are used simultaneously. In the first case, relay experiments similar
to the scalar experiment are applied in a sequential manner: one loop
is put under relay feedback and its controller parameters are adjusted,
then another loop is put under relay feedback and its parameters are
adjusted etc. until all m loops have been tuned. This type of tuning is, for
example, described in [Hang et al., 1993; Friman, 1997]. In the method
with m relays, all loops are put under relay feedback simultaneously.
This is sometimes called a decentralized relay experiment. Under the
assumption that a pure oscillation with one frequency occurs in all loops,
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Figure 12. Another decentralized relay experiment that gives a complex oscilla-
tion for the heavy oil fractionator model.

controller parameters can be derived [Palmor et al., 1995; Wang et al.,
1997].

A major advantage with the sequential tuning method is that it is
based on the scalar relay experiment, which are known to work well in
practice. A decentralized relay experiment can give extremely complex
oscillations for models of real plants, as is illustrated by the following
example.

EXAMPLE 18—HEAVY OIL FRACTIONATOR (CONT’D)
Consider Shell’s model of an oil fractionator in Example 3. Connect re-
lays with unit amplitude and hysteresis equal to 0.01 in the configuration
(1–1,2–2,3–3,4–4,5–5), that is, relay between process input 1 and output 1,
process input 2 and output 2 etc. Such an experiment gives a complicated
response. The outputs y3 and y4 are shown in Figure 11 after the tran-
sients have disappeared. The relay configuration (1–6,2–7,3–3,4–4,5–5)
gives the y1 and y5 responses in Figure 12. It is not a simple task to draw
conclusions from experiments of this type.

It is shown in [Wang et al., 1997] that the decentralized relay method
works in a number of simulated examples. However, adding the com-
plexity of a real system, it seems rather unlikely that a plant operator
would accept the excitation of relays in all loops simultaneously (for exam-
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ple, such excitation is rarely tolerable in pulp and paper industry [Adler,
1994]).

Paper 5 introduces a new method for retuning individual control loops
in a multivariable controller. The control can be a decentralized PID con-
troller or a centralized MIMO controller. The method is based on single-
relay experiments and is therefore related to the sequential methods pre-
viously mentioned.

Lack of theory

Many methods for controller tuning based on relay feedback work very
well both in simulations and in real implementations. This holds in par-
ticular for the original method developed by Åström and Hägglund. Still,
there are several unsolved problems regarding application of the relay
feedback methods. A major one is concerned with analysis of relay feed-
back systems.

All systems do not posses a limit cycle oscillation when they are put
under relay feedback. This may seem obvious from a system theoretical
point of view, but there are certainly many misunderstandings or exag-
gerated statements in the literature like “It is well known that a SISO
system in closed-loop with a relay controller oscillates in a limit cycle
whose amplitude and frequency are related to the characteristics of the
critical point on the Nyquist plot” [Semino et al., 1996]. Many systems do
oscillate with such an amplitude and frequency, but not all. An example
of the latter is given in Example 16. The following fundamental problem
is still open:

What is the class of systems that give a unique and stable limit cycle
under relay feedback?

This question was indeed the starting point for part of the work in this
dissertation. Some answers exist for special classes of systems. Systems
of low order are studied in [Holmberg, 1991]. It is, for example, shown
that the transfer function

G(s) � K
1+ sT

e−sL

with relay feedback gives a globally attractive limit cycle under mild as-
sumptions. This is also shown for general stable infinite-dimensional sys-
tems with impulse responses of a certain shape in [Megretski, 1996].

A simple method to investigate the global behavior of a stable linear
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system with relay feedback

ẋ � Ax+ Bu,
y � C x,
u � − sgn y

is to study a set recursion

Xk � g(Xk−1).
Here Xk is a connected set in S+ :� {x ∈ S : C Ax − C B > 0}, where
S :� {x ∈ Rn : C x � 0} is the switch plane. The function g : S+ → S+ is
the map from one switch plane intersection to the next one reflected in
the origin. If the recursion is initialized with

X0 � {x ∈ S : C Ax− C B � 0} ∪ {x ∈ S : C Ax− C B > 0, txt ≤ R},
for a sufficiently large R, then the global behavior will be captured. This
follows from that A is a Hurwitz matrix and tut ≤ 1, so there exists a
globally attractive and invariant ball {x : txt ≤ R}, compare [Hsu, 1990].
The method is easy to visualize for systems of order three and less, as
is illustrated with the following example from [Johansson and Rantzer,
1996a].
EXAMPLE 19
Consider the system

ẋ �


−1 0 0

−1 −2 0

3 −3 −3

 x+


1

1

0

u,

y �
0 0 1

 x.

Then, S � {x : x3 � 0} and S+ � {x ∈ S : x1 > x2}. Let X0 be a semicir-
cle disc with radius 80. Figure 13 shows the set recursion under four
iterations. The first diagram shows X0 together with X1 (drawn with
thicker lines), the second X1 and X2 etc. In the last diagram the fixed
point x∗ � (0.45, 0.30, 0) is marked by an asterisk. The contraction is re-
markably fast, in particular during the first two iterations. This agrees
with the behavior of first-order and second-order systems with time-delay
analyzed in [Holmberg, 1991] and the practical experience of relay feed-
back control discussed in [Åström and Hägglund, 1984].
For a class of third-order systems it is possible to prove global area con-
traction as the one shown in Figure 13, see [Johansson and Rantzer,
1996a; Johansson and Rantzer, 1996b].
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Paper 1

Fast Switches in
Relay Feedback Systems

Karl Henrik Johansson, Anders Rantzer,
and Karl Johan Åström

Abstract
Relays are common in automatic control systems. Even linear systems
with relay feedback are, however, far from fully understood. New results
are given about the behavior of these systems via a state-space approach.
It is proved that there exist multiple fast switches if and only if the sign
of the first non-vanishing Markov parameter of the linear system is pos-
itive. Fast switches are shown to occur as part of stable limit cycles. An
analysis is developed for these limit cycles that illustrates how they can
be predicted.
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1. Introduction

Analysis of relay feedback systems is a classical topic in control theory.
The early work was motivated by relays in electromechanical systems and
simple models for dry friction. The design of relay controllers in aerospace
applications [Flügge-Lotz, 1953; Flügge-Lotz, 1968] gave inspiration to the
development of the self-oscillating adaptive controller in the 1960s. Re-
cently new interest of relay feedback appeared due to the idea of using
relays for tuning simple controllers in [Åström and Hägglund, 1984]. By
simply replacing the controller by a relay, measure the amplitude and
frequency of the possible oscillation, and out of these derive the controller
parameters, a robust control design method is obtained. Although this
method is now widely used in industry [Åström and Hägglund, 1995],
there are several issues that need further theoretical analysis. One prob-
lem is to characterize those systems that will give a unique globally at-
tractive limit cycle. This problem is important because it gives the class
of systems when relay tuning can be used. The idea of putting the plant
under relay feedback is also used in other applications. In [Smith and
Doyle, 1993] perturbation bounds are estimated for robust control de-
sign and in [Lundh and Åström, 1994] it is shown how initialization of
adaptive controllers can be done. Quantization in digital control can be
analyzed with relay feedback methods. Limit cycles due to quantizers
are reported in [Parker and Hess, 1971]. Relays are key components in
variable-structure systems, see [Utkin, 1987]. More applications of relays
in control systems are given in [Tsypkin, 1984; Åström, 1995]. The mono-
graph [Andronov et al., 1965] is an early classical reference (first edition
published in Russian in 1937) discussing oscillations in relay feedback
systems using phase-plane analysis.

Analysis of linear systems with relay feedback is a nontrivial task.
The major reference about relay control systems [Tsypkin, 1984] surveys
a number of analysis methods and results. For example, an intuitive sta-
bility condition is given therein. It says roughly that if a linear system is
stable with arbitrarily large proportional feedback, it is also stable with
relay feedback. The statement is formally proved in [Anosov, 1959]. Other
applicable stability results, valid for a more general class of nonlinearities,
are given in [Yakubovich, 1964]. A non-smooth Lyapunov stability theory
is developed in [Shevitz and Paden, 1994]. Relay feedback systems often
tend to a limit cycle. Methods for estimating oscillation frequency and
amplitude are thoroughly discussed in [Tsypkin, 1984], see also [Ather-
ton, 1975; Mees, 1981]. It is important to note that all these frequency
methods are derived under the assumption that a limit cycle exists. To
tell in general if a relay feedback system actually converges to a limit
oscillation is an open problem. In [Yakubovich, 1973] a frequency condi-
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tion is used to give sufficient conditions for a certain type of oscillations.
For second-order systems, convergence analysis can be done in the phase-
plane. Stable second-order nonminimum phase systems can in this way
be shown to have a globally attractive limit cycle [Holmberg, 1991]. In
[Megretski, 1996] it is proved that this also holds for systems having an
impulse response sufficiently close, in a certain sense, to a second-order
nonminimum phase system.

Relay feedback systems may exhibit several interesting behaviors. The
main contribution of our work is to investigate some of these behaviors
and state a number of new results to improve the understanding of linear
systems with relay feedback. Particular emphasis is on fast switches and
their properties. It is shown that a necessary and sufficient condition for
multiple fast switches is that the sign of the first non-vanishing Markov
parameter is positive. This result can be seen as a generalization of the
existence of regular (or first-order) sliding modes in relay feedback sys-
tems discussed in [Tsypkin, 1984; Filippov, 1988]. The condition for fast
switches in third-order systems is given in [Johansson and Rantzer, 1996].
Here, the condition is generalized to systems of arbitrary order. An appli-
cation of the result is to predict fast switches as part of limit cycles. This
is done in the latter part of the paper, where it is also shown how these
complicated limit cycles can be analyzed using Utkin’s equivalent control
[Utkin, 1987].

There exists necessary and sufficient conditions for local stability of
limit cycles in the literature. Two important ones are given in [Åström
and Hägglund, 1984a] and [Balasubramanian, 1981], respectively. The
conditions are recalled here and it is shown that they are equivalent if
the pole excess of the linear system is greater than one.

The outline of the paper is as follows. Some notations and assumptions
are given in Section 2. In Section 3 two conditions for local stability of limit
cycles are compared. The main result on multiple fast switches is given
in Section 4. Some analyses of generic systems to gain extra insight are
done in Section 5. Section 6 presents systems of various pole excesses that
exhibit limit cycles with fast switches.

2. Preliminaries

Consider a relay feedback system that consists of a linear system G and
a relay defined as follows. The system G is a strictly proper transfer
function with scalar input u and scalar output y. Let a minimal state-
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space representation of G be given by

ẋ � Ax+ Bu,
y � C x,

(1)

where x � (x1, . . . , xn)T ∈ Rn. The relay feedback is defined by

u � − sgn y �
{
−1, if y > 0,
1, if y < 0,

(2)

so the relay does not have hysteresis. The switch plane S is the hyperplane
of dimension n− 1 where the output vanishes, that is,

S :� {x : C x � 0}.

On either side of S the feedback system is linear: if C x > 0 the dynamics
are given by ẋ � Ax − B , and if C x < 0 we have ẋ � Ax + B . We also
introduce the notation

S+ :� {x ∈ S : C Ax− C B > 0}.

Because the linear dynamics on each side of S have fixed points equal to
±A−1 B (if A is nonsingular), positive steady-state gain guarantees the
trajectories not to tend to any of these two fixed points, and thus ensures
a relay switch to occur.

The differential equation (1)–(2) is only applicable for x 6∈ S . By letting
u ∈ [−1, 1] for x ∈ S , the solution can still be a continuous function which
satisfies (1)–(2) everywhere, for further discussion see [Yakubovich, 1973]
and [Filippov, 1988].

Intuitively, it seems reasonable to approximate a relay by a satura-
tion with steep slope. This is done in [Tsypkin, 1984]. There are, however,
subtleties when taking the limit as the slope tends to infinity. If this limit
is not dealt with properly, erroneous results may be derived. An illus-
tration is given when discussing Balasubramanian’s stability condition in
Section 3.

Let the Poincaré map g � g(x) : S+ → S+ be the map from one switch
plane intersection x to next switch plane intersection z reflected in the
origin, so that g(x) � −z. If A is non-singular, we have

g(x) � −eAh(x)x+ (eAh(x) − I)A−1 B , (3)

where h(x) is the switch time, that is, the unique time it takes to go
between the consecutive intersections x and −g(x). Recall that the first
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non-vanishing Markov parameter C Ak B determines the pole excess (rel-
ative degree) of G. For example, C B � 0 if and only if the pole excess of
G is greater than one.

Let φ (t, x0) denote a trajectory of (1)–(2) starting in x0. A closed orbit
is a trajectory such that φ (t1, x0) � φ (t2, x0) for some t1 < t2. A point p is
a limit point of the trajectory if there exists a sequence {tk}, with tk →∞
as k → ∞, such that φ (tk, x0) → p as k → ∞. The set of all limit points
is the limit set of the trajectory and is denoted L. A limit set that is a
closed orbit is a limit cycle. The limit cycle is simple if it has exactly two
intersections with the switch plane S . It is symmetric if x ∈ L implies that
−x ∈ L. The limit cycle is called globally attractive if it is the limit set of
all possible trajectories.

The main results are in the following stated as theorems. A result
known from the literature or of less importance is stated as a proposition.

3. Stability of Limit Cycles

An important behavior of relay feedback systems is that they often tend
to a stable oscillation. In this section a necessary and sufficient condition
is given for local stability of a limit cycle. The condition was derived in
[Åström and Hägglund, 1984a; Åström, 1995] and is here compared to a
similar result in the literature.

An obvious question is whether it exists relay feedback systems that
do not have a unique stable limit cycle. For higher-order systems it does,
as shown by the following example.

EXAMPLE 1
Let

G(s) � (s+ 1)2
(s+ 0.1)3(s+ 7)2 .

Depending on the initial conditions, the relay feedback system tends to
either a slow or a fast limit cycle. In Figure 1 the relay output u is shown
for the two cases after the initial transient has disappeared. Analysis
shows that the limit cycles are locally stable, see Example 3.

A describing function analysis [Atherton, 1975] gives in this case the cor-
rect qualitative result.

If φ ∗(t, x0) is part of a stable simple limit cycle, and thus φ ∗(t, x0) ∈ L
for all t ≥ 0, then the intersections with S equals ±x∗ ∈ L, where x∗

is a fixed point of g, that is, x∗ � g(x∗). Hence, solving the equation
x � g(x) gives candidates for simple limit cycle intersections with S+. If
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Figure 1. Two stable limit cycles for the system in Example 1.

A is nonsingular, the solution is given by

x � (eAh(x) + I)−1(eAh(x) − I)A−1 B . (4)

The following proposition is proved in [Åström and Hägglund, 1984a;
Åström, 1995] by the classical approach of studying small perturbations
of the Poincaré map g.

PROPOSITION 1
Consider the relay feedback system (1)–(2) with nonsingular A. If there
exists a simple limit cycle with period 2h∗, then

f (h∗) :� C(eAh∗ + I)−1(eAh∗ − I)A−1 B � 0. (5)

The limit cycle is stable if and only if all eigenvalues of

Wa :�
(

I − wC
Cw

)
eAh∗ , w � 2(eAh∗ + I)−1eAh∗

B (6)

are in the open unit disc.

Note that f (0) � 0, so the trivial solution h∗ � 0 always satisfies the
necessary condition (5). It is easy to show that this is the only solution
for first-order systems and for second-order systems with no zeros. Hence,
these systems exhibit no simple limit cycles under relay feedback.
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Stability of limit cycles is also studied in [Balasubramanian, 1981]. The
relay feedback system is rewritten as a periodically time-varying linear
system, which gives the following result.

PROPOSITION 2
Consider the relay feedback system (1)–(2) with C B � 0. If there exists
a simple limit cycle with period 2h∗, then the limit cycle is stable if and
only if one eigenvalue of

Wb :� exp
(
− 2B C

Cw

)
exp(Ah∗), w � 2(eAh∗ + I)−1eAh∗

B

is on the unit circle and the others are in the open unit disc.

From (4) it follows that Cw � C Ax∗ + C B , where x∗ ∈ S+ corresponds
to the switch plane intersections of the limit cycle. If C B 6� 0, the output
y possesses a discontinuity at the relay switches. It was suggested in
[Balasubramanian, 1981] that a similar result to Proposition 2 holds for
C B 6� 0, if Wb is replaced by

Ŵb � exp
(

B C
[(C e−Ah∗

w)−1 − (Cw)−1]) exp(Ah∗),

compare [Wadey and Atherton, 1986] and [Atherton, 1993]. Note that w
is the velocity immediately prior to the switch. The expression for Ŵb is
obtained simply by replacing (Cw)−1 by the harmonic mean immediately
before and after the switches. This is, however, not correct as illustrated
by the following example.

EXAMPLE 2
Consider the system

G(s) � β s+ 1
(s+ 1)(s+ 2)

with state-space representation

ẋ �
 0 −2

1 −3

 x+
 1

β

u,

y �
 0 1

 x,

and relay feedback. Let β � −1. The equation (5) has only one positive
solution h∗ � 1.76. The eigenvalues of Wa are 0 and −0.03 for h∗, so
a locally stable limit cycle is predicted. In contrast, the eigenvalues of
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Ŵb are −0.02 and −31.38. It is possible to show that the system has a
globally attractive limit cycle, for example, see [Holmberg, 1991]. Hence,
Ŵb erroneously predicts a locally unstable limit cycle.

Next, we show that Propositions 1 and 2 are equivalent if C B � 0. First,
note that if C B � 0, then

exp
(
− 2B C

Cw

)
�

∞∑
k�0

(−2)k
k!(Cw)k (B C)k � I − 2B C

Cw
,

so that

Wb �
(

I − 2B C
Cw

)
eAh∗ . (7)

PROPOSITION 3
Consider Wa and Wb as previously defined and assume C B � 0. Then,
Wa has one eigenvalue equal to 0 and Wb has one eigenvalue equal to −1.
Furthermore, λ /∈ {−1, 0} is an eigenvalue of Wa if and only if λ is also
an eigenvalue of Wb.

Proof: Combining (6) and (7), straightforward calculations give

Wb � Wa − e−Ah∗ wC
Cw

eAh∗ .

From the equalities

Wae−Ah∗
w � 0, (8)

(Wb + I)e−Ah∗
w � 0,

it follows that e−Ah∗w is an eigenvector of Wa corresponding to the eigen-
value 0 and an eigenvector of Wb corresponding to the eigenvalue −1.

Assume v is a left eigenvector of Wa corresponding to an eigenvalue
λ 6� 0. Then,

vT Wb � vT Wa − vT e−Ah∗ wC
Cw

eAh∗

� vT Wa − λ−1vT Wae−Ah∗ wC
Cw

eAh∗

� vT Wa,
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Figure 2. The solutions of the equation f (h) � 0, given in (5), yield possible limit
cycle periods. For the system in Example 3 there exist four solutions (including
h � 0).

where the last equality follows from (8). Hence, vT Wb � λvT , so λ is also
an eigenvalue of Wb. Next, assume instead v is a left eigenvector of Wb
corresponding to an eigenvalue λ 6� −1. Then, similar to above,

vT Wa � vT Wb + vT e−Ah∗ wC
Cw

eAh∗

� vT Wb + (λ + 1)−1vT(Wb + I)e−Ah∗ wC
Cw

eAh∗

� vT Wb

� λvT

and the proof is complete.

Proposition 3 thus show that if C B � 0, the stability criteria in Proposi-
tion 1 and Proposition 2 are equivalent. Note, however, that Proposition 1
is valid even if C B 6� 0.

EXAMPLE 3
Consider the relay feedback system in Example 1. Figure 2 shows the
function f in (5) as a function of h. The zero-crossings are at 0, 0.66, 3.32,
and 12.80, so these are candidates for limit cycle periods. The eigenvalues
with maximum magnitude of Wa and Wb (excluding the eigenvalue in −1
of Wb) for the four cases are 1, 0.60, 1.42, and 0.64, respectively. Only the
second and the fourth zero-crossings thus come from a locally stable limit
cycle. Note that we cannot draw any conclusions about convergence.
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C B > 0 C x > 0

C x < 0

S
p−p+

C B < 0 C x > 0

C x < 0

S
p+p−

Figure 3. Switch plane S and trajectories close to S for second-order system with
C B 6� 0. The points p+ and p− indicate where the trajectories change directions.
There exist first-order sliding modes if and only if C B > 0.

4. Existence of Fast Switches

A necessary and sufficient condition for the existence of multiple fast relay
switches is proved in this section. There are interesting similarities to the
condition for sliding modes. We start by recalling a well-known result.

If the vector fields on both side of the switch plane are pointing to-
wards the plane, the trajectories will be driven to the plane and then
slide along it. This sliding behavior is called a regular or a first-order
sliding mode and is treated thoroughly in [Filippov, 1988]. See [Fridman
and Levant, 1996] for a definition of higher-order sliding modes. The ex-
istence of first-order sliding modes in linear systems with relay feedback
can simply be determined from studying ẏ � C Ax ± C B close to S . We
see that depending on the value of C B , a classification of the directions of
the trajectories divide the switch plane into two or three regions. Sliding
modes exist if there is a region in S , such that the vector fields on both
sides are pointing towards S . We illustrate with a second-order example.

EXAMPLE 4
Consider the same system as in Example 2, that is,

G(s) � β s+ 1
(s+ 1)(s+ 2)
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with state-space representation

ẋ �
 0 −2

1 −3

 x+
 1

β

u,

y �
 0 1

 x,

and relay feedback. Then S equals the x1-axis, see Figure 3. Let p+ and
p− be the solutions of the equations

C Ax+ C B � 0, C Ax− C B � 0,

respectively. These are the points where the trajectories change directions,
and they are given by p+ � (−β , 0) and p− � (β , 0). For C B � β > 0
there exist sliding modes, whereas for C B < 0 the region between p+ and
p− is repelling. The region vanishes if C B � 0.

The condition in the example for existence of sliding modes directly gen-
eralizes to systems of order n > 2. Then p+ and p− denote hyperplanes
of dimension n − 2, which still divide the switch plane into two or three
regions. The following well-known result is for example pointed out on
page 436 in [Tsypkin, 1984], see also [Filippov, 1988].
PROPOSITION 4
Consider the relay feedback system (1)–(2) with order n ≥ 2. There exist
first-order sliding modes if and only if C B > 0.

If C B < 0 we can conclude that there exist no arbitrarily fast relay
switches.

Next, we consider systems with C B � 0. Figure 4 shows trajectories
close to {x ∈ S : C Ax � 0} for a third-order system with C AB > 0 and
C AB < 0. The tick marks indicate

C A2χ− − C AB � 0, C A2χ+ + C AB � 0,

that is, the points x on the line {x ∈ S : C Ax � 0} such that ÿ � 0.
Solid trajectories are above the switch plane (C x > 0) and dashed under
(C x < 0). The figure suggests that consecutive switch times h(⋅) can be
arbitrarily short if and only if C AB > 0. A proof will be given next that for
systems of arbitrary order to have multiple fast switches, it is necessary
and sufficient for the first non-vanishing Markov parameter to be positive.

THEOREM 1
Consider the relay feedback system (1)–(2) with order n ≥ 3. Define
k ∈ {1, . . . , n− 2} such that C AXB � 0 for X � 0, . . . , k− 1 and C Ak B 6� 0.
Then, there exists a bounded sequence {xm}∞m�1 with xm ∈ S+ such that
h(xm) + h(g(xm)) → 0 as m →∞ if and only if C Ak B > 0.
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C AB > 0
χ−

χ+

S+

C AB < 0
χ+

χ−

S+

Figure 4. The sign of the first non-vanishing Markov parameter determines the
existence of multiple fast switches. Here the trajectories close to the second-order
sliding set {x ∈ S : C Ax � 0} for a third-order system with C B � 0 are shown. We
have C x > 0 above the switch plane and C Ax > 0 to the right of the line. Multiple
fast relay switches occur if and only if C AB > 0.

Proof: Let φ−(t, x), t > 0, denote the trajectory of ẋ � Ax − B starting
in x at time t � 0. For x ∈ S+, Taylor expansion gives

Cφ−(t, x) � C Axt+ ⋅ ⋅ ⋅+ C Akx
tk

k!

+ (C Ak+1x− C Ak B) tk+1

(k+ 1)! +O(tk+2).
(9)

Sufficiency: Assume C Ak B > 0. Then,

Cφ−(t0, 0) � −C Ak B
tk+1
0

(k+ 1)! +O(tk+2
0 ) < 0,

for t0 > 0 sufficiently small. For a fixed such t0, we have Cφ−(t0, x̃) < 0
for all x̃ ∈ S+ with tx̃t sufficiently small. Consider a fixed such x̃. Then,
there exists a small t ∈ (0, t0) such that Cφ−(t, x) > 0, because C Ax̃ > 0.
In between t and t0 a switch thus occurs. Hence, we have that h(x) → 0
as x → 0 in S+ and therefore also g(x) → 0. The same type of argument
gives that h(g(x)) → 0.

Necessity: Assume there exists a bounded sequence {xm}∞m�1, xm ∈ S+,
such that h(xm) + h(g(xm)) → 0 as m → ∞. After replacing {xm}∞m�1
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with a suitable subsequence, we can assume that there exists x̂ ∈ S with
C Ax̂ � 0 such that xm → x̂. It is obvious that g(xm) → −x̂. Now, assume
C A2 x̂ > 0. Then, there exists t1 > 0 such that

Cφ−(t, x̂) � C A2 x̂
t2

2
+O(t3) > 0,

for t ∈ (0, t1). Hence, Cφ−(t, xm) > 0 for all t ∈ (0, t1) and m suffi-
ciently large. However, this contradicts that h(xm) → 0 as m → ∞ and
Cφ−(h(xm), xm) � 0. Hence, C A2 x̂ ≤ 0. A similar argument for g(xm)
gives C A2 x̂ ≥ 0, so we have C A2 x̂ � 0. In the same way, C AX x̂ � 0 for
every X ∈ {1, . . . , k}. The same type of argument applied to term k+ 1 in
(9) gives

C Ak+1 x̂− C Ak B ≤ 0, C Ak+1 g(x̂) − C Ak B ≤ 0,

or equivalently

C Ak+1 x̂ ≤ C Ak B , −C Ak+1 x̂ ≤ C Ak B .

Hence, C Ak B ≥ 0 and the result follows.

REMARK 1 It follows from the proof that multiple fast switches only occur
close to {x ∈ S : C AXx � 0, X � 1, . . . , k} in the region tC Ak+1xt < C Ak B .

The following example illustrates multiple fast switches in a third-order
system.

EXAMPLE 5
Consider the system

G(s) � ζ − s
ζ (s+ 1)3

with state-space representation

ẋ �


−3 1 0

−3 0 1

−1 0 0

 x+


0

−1/ζ
1

u,

y �
 1 0 0

 x,

and relay feedback. Figure 5 shows two trajectories starting close to the
origin for ζ � −4 and ζ � 1, respectively. As predicted by Theorem 1, mul-
tiple fast switches occur when C AB � −1/ζ > 0 but not when C AB < 0.
Compare Figure 4 and Figure 5.
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Figure 5. Clockwise trajectories with initial conditions close to the origin for
the third-order system in Example 5. Multiple fast switches exist if C B � 0 and
C AB > 0 (ζ < 0). The system performs a large number of fast switches with slowly
growing amplitude. If C B � 0 and C AB < 0 (ζ > 0) there are no fast oscillations.
Both trajectories converge to a limit cycle.

The trajectories tend to a limit cycle for both systems. Figure 6 shows
the limit cycle period 2h as a function of the zero ζ . The dashed line cor-
responds to the limit cycle for the system 1/(s + 1)3. The relay feedback
system is stable for ζ ∈ (−3, 0). Local analysis around the limit cycle, as
described in Section 3, gives in agreement with Figure 5 that the conver-
gence is faster if ζ � −4 than if ζ � 1. Note, however, that the results in
Theorem 1 are independent of the existence of limit cycles.

60



5. Nature of Fast Switches

−20 −10 0 10 20
0

2

4

6

8

10

ζ

2h

Figure 6. The limit cycle period as a function of zero location in Example 5.

5. Nature of Fast Switches

Having established that the sign of the first non-vanishing Markov pa-
rameter determines if there will be fast switches, we will now investigate
the nature of the fast switches in more detail. It turns out that the be-
havior is given by the pole excess and a number of the first non-vanishing
Markov parameters. It was already mentioned that there will be a first-
order sliding mode if the pole excess is one and C B > 0. In this section,
we study the nature of fast switches for systems with pole excess two,
pole excess three, and higher-order pole excess.

Pole excess two—many fast switches

There exist initial conditions that give a large number of fast switches if
C B � 0 and C AB > 0. The generic case is represented by the double
integrator

ẋ �
0 1

0 0

 x+
0

1

u,

y �
1 0

 x.

Assume the trajectory of this system with relay feedback passes the switch
plane at time t � 0 at

x(0) �
0 x20

T
, x20 > 0.
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Then, until next switch

x1(t) � x20t− t2

2
,

x2(t) � x20 − t.

The first equation gives that the first switch occurs at h1 � 2x20. Between
the first and the second switch we have

x1(h1 + t) � x20t− h1t+ t2

2
,

x2(h1 + t) � x20 − h1 + t,

so the second switch time is h2 � 2(h1 − x20) � 2x20. Hence, hk � 2x20

for all k > 0, so a double integrator with relay feedback has a limit cycle
with any period.

Next, consider the system

G(s) � K
s(s+ a) , K > 0,

and let the relay be approximated with a steep slope. Then, a root-locus
argument predicts fast oscillations with increasing amplitude if a < 0 and
fast oscillations with decreasing amplitude if a > 0. The double integrator
with a neutral stable oscillation corresponds to a � 0.

A higher-order system with zeros {zi}, poles {pi}, and pole excess two
can be written as

G(s) � K
∏n−2

i�1 (s− zi)∏n
i�1(s− pi) � K

∏n−2
i�1 (1− zi/s)

s2
∏n

i�1(1− pi/s) .

A series expansion in 1/s gives the terms that dominate the behavior of
the system for high frequencies. Hence,

G(s) � K
s(s+ a) , (10)

where

a �
n−2∑
i�1

zi −
n∑

i�1

pi.

The behavior of the system is thus governed by the sign of the parameter
a � C A2 B/K . The oscillations are unstable for a < 0, neutral for a � 0,
and damped for a > 0. We illustrate with a simulation.
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Figure 7. Fast oscillations for systems with pole excess two. The oscillations are
unstable, neutral, or damped, depending on the parameter a in (10).

EXAMPLE 6
Consider the system in Example 5:

G(s) � ζ − s
ζ (s+ 1)3 .

Here, a � ζ + 3. Figure 7 shows the output y for a � −1, 0, 1 and initial
condition x(0) close to the origin.

Pole excess three—few fast switches

Systems of pole excess higher than two cannot have fast oscillations as the
ones shown in Figure 7. A triple integrator represents the fast behavior
in systems of pole excess three. Therefore, consider the system

ẋ �


0 1 0

0 0 1

0 0 0

 x+


0

0

1

u,

y �
1 0 0

 x,

with relay feedback. Assume the trajectory of the system passes the switch
plane at time t � 0 at

x(0) �
0 x20 x30

T
, x20 > 0.
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Then, until next switch

x1(t) � x20t+ x30
t2

2
− t3

6
,

x2(t) � x20 + x30t− t2

2
,

x3(t) � x30 − t.

Because x1(h1) � 0, the first switch time fulfills the equation

h2
1 − 3x30h1 − 6x20 � 0.

Continued evaluation of the state-space system gives at the second switch
instant, where x1(h1 + h2) � 0, that

h2
2 + 3(x30 − h1)h2 + 6x20 + 6x30h1 − 3h2

1 � 0.

By solving for x20 and x30 in these two equations, we get

x20 � h1
h2

2 − h2
1 − 2h1h2

6(h1 + h2) ,

x30 � 2h2
1 − h2

2 + 3h1h2

3(h1 + h2) .

Because x20 > 0, we have h2
2 − h2

1 − 2h1h2 > 0 and thus h2 > (1+
√

2)h1.
Repeated evaluation yields

hk > (1+
√

2)k−1h1.

This estimate gets tighter as the initial state approaches the origin. We
can conclude that there is a substantial increase in switch time after each
iteration for a triple integrator.

Higher-order systems with pole excess three can be analyzed via a se-
ries expansion similar to the one in previous section. At high frequencies,
these systems respond as a triple integrator. In particular,

G(s) � K
s2(s+ a) , K > 0.

From a root-locus argument, we see that any fast behavior is unstable
regardless of the sign of a.
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Higher-order pole excess—fewer fast switches

The increase in switch time is even higher for systems with pole excess
larger than three. Consider an integrator of order n

ẋ �



0 1 0 . . . 0

0 0 1 0
...

. . .
...

0 0 0 1

0 0 0 . . . 0


x+



0

0
...

0

1


u,

y �
1 0 0 . . . 0

 x,

and introduce the partitioned matrices

 1 α (t)
0 V (t)

 :� eAt �



1 t 1
2 t2 . . . 1

(n−1)! t
n−1

0 1 t . . . 1
(n−2)! t

n−2

...
. . .

...

0 0 0 t

0 0 0 . . . 1


and

 β (t)
γ (t)

 :�
∫ t

0
eAτ Bdτ �



1
n! t

n

1
(n−1)! t

n−1

...
1
2 t2

t


.

Let the initial state

x(0) �
 0

ξ 0


lie on the switch plane and assume ξ 0

1 > 0, so that the trajectory passes
through S+. Then, we have

x(t) �
 α (t)ξ 0 − β (t)

V (t)ξ 0 − γ (t)

 , 0 < t < h1,

where h1 is the first switch time. Hence,

α (h1)ξ 0 � β (h1), (11)
ξ 1 � V (h1)ξ 0 − γ (h1).
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Furthermore, for the second switch time h2,

α (h2)ξ 1 � −β (h2),
ξ 2 � V (h2)ξ 1 + γ (h2),

so that

α (h2)V (h1)ξ 0 � α (h2)γ (h1) −β (h2). (12)

Continued evaluation gives

α (hk)V (hk−1) ⋅ ⋅ ⋅ V (h1)ξ 0

� α (hk)V (hk−1) ⋅ ⋅ ⋅ V (h2)γ (h1) −α (hk)V (hk−2) ⋅ ⋅ ⋅ V (h3)γ (h2) + . . .

− (−1)kα (hk)V (hk−1)γ (hk−2) + (−1)kα (hk)γ (hk−1) − (−1)kβ (hk).

Stacking n−1 of these equations yields a linear equation in ξ 0. An analysis
similar to the preceding for the triple integrator is therefore possible. It
results in lower bounds on the switch times hk. The analysis is particular
simple if we assume the initial condition ξ 0 � (ξ 0

1 , 0, . . . , 0). Then, (11)
gives h1ξ 0

1 � hn
1/n! or

h1 � n! n−1

√
ξ 0

1 .

Hence, for small initial states, the switch time increases considerably
with the number of integrators n. Furthermore, (12) gives after some
calculations (

1+ h1

h2

)n

� 2+
(

h1

h2

)n−1

+
(

h1

h2

)n

.

Therefore, for h1 much smaller than h2, we have the formula

h2 � ( n
√

2− 1)−1h1.

Analysis that gives similar results can be done assuming other initial
states ξ 0.

The fast behavior in systems with pole excess greater than or equal
to three is thus unstable. The number of fast switches following a given
initial state decrease with increasing pole excess.

Summary

The pole excess is important to characterize the solutions in relay feedback
systems. With pole excess one there can be first-order sliding modes. For
the system 1/s2 there will be limit cycles of arbitrary period. The limit

66



6. Fast Switches in Limit Cycles

cycles are not asymptotically stable. For systems of higher order with pole
excess two, the behavior can be understood from a series expansion. In
a similar way, the fast switches in any system of pole excess k > 0 can
be analyzed by studying an integrator of order k. There is, however, a
particular difference between consecutive fast switches for systems with
pole excess two and systems with pole excess three or higher.

Note that the dimension of the subspace that the trajectories approach
decreases with increasing pole excess: a first-order sliding mode takes
place in a hyperplane of dimension n − 1, the fast oscillation for system
with pole excess two approaches a hyperplane of dimension n − 2 etc.
These hyperplanes correspond to the sliding sets defined in [Fridman and
Levant, 1996]. The first-order sliding set is equal to S , the second-order
sliding set is equal to {x ∈ S : C Ax � 0}, the third-order sliding set is
equal to {x ∈ S : C Ax � C A2x � 0} etc. Only systems with pole excess
one and two can have stable sliding sets in the sense that a trajectory
tends to the corresponding sliding set.

6. Fast Switches in Limit Cycles

Sliding modes and fast switches can be part of a stable limit cycle. A
necessary condition for this is that the assumptions in Proposition 4 or
Theorem 1 hold, that is, that the first non-vanishing Markov parameter
is positive. We show next how the various fast oscillations discussed in
the previous sections can be part of limit cycles. It is the pole excess of
the system that determines the kind of fast behavior the limit cycle will
contain.

Pole excess one—limit cycles with first-order sliding modes

Consider a relay feedback system (1)–(2) with C B > 0. Proposition 4
gives that there exist first-order sliding modes. This sliding can be part
of a stable limit cycle.

Suppose that the limit cycle consists of one smooth part and one sliding
mode part. Furthermore, suppose that the smooth part starts at time
t � 0 in x0 � x(0) with C Ax0 � C B . The trajectory of the system will
then follow the dynamics ẋ � Ax−B . Assume that the trajectory hits the
switch plane at t � tsm in x1 � x(tsm) with tC Ax1t < C B . A sliding mode
x̄ can then be defined that describes the solution in S . This is done by
replacing u with

ū � −C Ax̄
C B

,

such that C ˙̄x � C Ax̄ + C Bū � 0, see [Utkin, 1987; Filippov, 1988]. The
variable ū is called the equivalent control. The dynamics of the sliding
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mode are given by

˙̄x � PAx̄, (13)

where

P :� I − B C
C B

(14)

is a projection matrix fulfilling C P � 0 and PB � 0. Hence, the projection
is such that C x̄(t) � 0 until C Ax̄(t) � −C B . If the limit cycle is symmetric
and simple, it leaves the switch plane at time tsm+ tsl at x(tsm+ tsl) � −x0.
We have the following necessary condition for the described limit cycle.

PROPOSITION 5
Consider the relay feedback system (1)–(2) with C B > 0. If there exists
a simple symmetric limit cycle with a first-order sliding mode and period
time 2h∗, then

f1(tsm, tsl) :� C(eAtsm ePAtsl + I)−1(eAtsm − I)A−1 B � 0,

f2(tsm, tsl) :� C A(ePAtsl eAtsm + I)−1ePAtsl(eAtsm − I)A−1 B + C B � 0,

where h∗ � tsm + tsl. Here, tsm is the time for the smooth part of the
trajectory, and tsl is the sliding mode time.

Proof: Using the notation introduced above, we have that

x1 � eAtsm x0 − (eAtsm − I)A−1 B ,

−x0 � x(tsm + tsl) � ePAtsl x1.

Solving for x1 gives

x1 � (eAtsm ePAtsl + I)−1(eAtsm − I)A−1 B , (15)

so f1(tsm, tsl) � 0 follows from C x1 � 0. Furthermore,

x0 � −ePAtsl(eAtsm ePAtsl + I)−1(eAtsm − I)A−1 B

�−(ePAtsl eAtsm + I)−1ePAtsl(eAtsm − I)A−1 B ,
(16)

so f2(tsm, tsl) � 0 follows from C Ax0 � C B .

REMARK 2 The points where a limit cycle hits and leaves the switch
plane are given by (15) and (16), respectively.
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REMARK 3 Using C x0 � 0 instead of C x1 � 0 in the proof, gives an
equivalent condition. This follows because C ePAtsl � C and thus

C ePAtsl(eAtsm ePAtsl + I)−1 � C(eAtsm ePAtsl + I)−1.

The solutions of the equations f1(t1, t2) � 0 and f2(t1, t2) � 0 give candi-
dates for switch times. This is illustrated in Example 7, compare Exam-
ple 3 in Section 3.

To get some more insight, we adopt the state-space representation

ẋ �



−a1 1 0 . . . 0

−a2 0 1 0
...

. . .
...

−an−1 0 0 1

−an 0 0 . . . 0


x+



1

b2

...

bn−1

bn


u,

y �
1 0 0 . . . 0

 x,

(17)

where we normalized such that C B � 1 > 0. Note that C x � x1 and that
x ∈ S implies C Ax � x2. Moreover,

PA �



0 0 0 . . . 0

b2a1 − a2 −b2 1 0
...

. . .
...

bn−1a1 − an−1 −bn−1 0 1

bna1 − an −bn 0 . . . 0


,

so the sliding dynamics

ż �


−b2 1 . . . 0

...
...

−bn−1 0 1

−bn 0 . . . 0

 z, z :�
 x̄2 . . . x̄n

T

are unstable if and only if the polynomial b(s) � sn−1 + b2sn−2 + ⋅ ⋅ ⋅ +
bn−1s+ bn is unstable. The sliding time tsl depends on the zeros of b. We
have the following well-known result.

PROPOSITION 6
Consider the relay feedback system (1)–(2) with C B > 0. Its sliding mode
defined by (13) is stable if and only if the zeros of (1) are in the left half-
plane.
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Figure 8. Clockwise limit cycle with sliding mode. The dashed line in the switch
plane illustrates the line {x ∈ S : C Ax � 0} and the solid lines illustrate
{x ∈ S : tC Axt � C B}. Note the points ±x0 and ±x1, where the limit cycle leaves
and hits the switch plane, respectively.

EXAMPLE 7
Consider

G(s) � (s−ζ )2
(s+ 1)3 , ζ > 0 (18)

with state-space representation

ẋ �


−3 1 0

−3 0 1

−1 0 0

 x+


1

−2ζ
ζ 2

u,

y �
 1 0 0

 x.

Then, b(s) � (s − ζ )2 has an unstable zero in ζ . Let ζ � 1. The equa-
tions f1(tsm, tsl) � 0 and f2(tsm, tsl) � 0 in Proposition 5 have the solution
(tsm, tsl) � (4.04, 0.39). This corresponds to

x0 �


0.00

1.00

3.35

 , x1 �


0.00

0.47

−3.42

 ,
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and agrees with the simulated (clockwise) limit cycle shown in Figure 8.
The sliding dynamics are given by

ż �
 2ζ 1

−ζ 2 0

 z.

For a sufficiently large ζ there will be no sliding modes.

Limit cycles with sliding modes are also reported in [Atherton et al., 1985]
and [Atherton, 1993]. Note that there exists no stable system of lower
order than three that gives a limit cycle with a first-order sliding mode.

Pole excess two—limit cycles with many fast switches

Theorem 1 gives that systems with pole excess two have multiple fast
switches if and only if C AB > 0. Next, it is shown that these systems may
have a limit cycle, where part of the limit cycle is such a fast oscillation.

Let C B � 0 and C AB > 0. For small x1 and x2, the states of
the relay feedback system can be approximated by the averaged state
variable x̄. This is done through replacing u in the original equation by
ū � −C A2 x̄/C AB . Then,

˙̄x �
(

I − B C A
C AB

)
Ax̄.

Adopting the state-space representation (17) but with

B �
0 1 b3 . . . bn

T
,

it is easy to see that this second-order sliding mode evolves in an n − 2-
dimensional subspace. It is close to this subspace the fast oscillations
appear. The averaged dynamics are stable if the zeros of the linear system
are stable. Furthermore, we have that the fast behavior can only persist
as long as tC A2xt < C AB from Remark 1 of Theorem 1. Similar to the
analysis of limit cycles with first-order sliding modes, the duration of the
fast oscillations can be estimated. We illustrate with an example.

EXAMPLE 8
Consider

G(s) � (s−ζ )2
(s+ 1)4 , ζ > 0
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Figure 9. Limit cycle with fast oscillations for system with pole excess two. The
two loops are clockwise. The dashed line in the switch plane illustrates the sec-
ond-order sliding set {x ∈ S : C Ax � 0}.

with state-space representation

ẋ �


−4 1 0 0

−6 0 1 0

−4 0 0 1

−1 0 0 0

 x+


0

1

−2ζ
ζ 2

u,

y �
 1 0 0 0

 x.

Let ζ � 0.2. Figure 9 shows the limit cycle in the subspace (x1, x2, x3).
The averaging analysis above gives that the fast oscillations should be
in the two-dimensional subspace (x1, x2). This is illustrated in Figure 10,
where the fast oscillations around the line {x ∈ S : C Ax � 0} � {x : x1 �
x2 � 0} are magnified. Figure 11 shows the four states during the fast
oscillations. In agreement with the preceding analysis, the oscillations
start at C A2x � −C AB and end at C A2x � C AB , that is, at x3 � −1
and x3 � 1, respectively. The state x4 is approximately constant during
the fast oscillations.
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Figure 10. A closer look at the fast oscillations in the limit cycle. The dashed line
is the second-order sliding set {x ∈ S : C Ax � 0}.
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Figure 11. Fast oscillations in a limit cycle for system with pole excess two. The
fast oscillations start at x3 � −1 and end at x3 � 1.
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Figure 12. Convergence to a limit cycle for a system with pole excess three. The
output y � x1 of the linear system and the output u of the relay are shown.

Pole excess three—limit cycles with few fast switches

The analysis done for systems of pole excess one and two also carries over
to systems of higher-order pole excess. Next, we show an example of a
system with pole excess three, which has a limit cycle with a few fast
switches each period.

EXAMPLE 9
Consider

G(s) � (s−ζ )2
(s+ 1)5 , ζ > 0

with state-space representation

ẋ �



−5 1 0 0 0

−10 0 1 0 0

−10 0 0 1 0

−5 0 0 0 1

−1 0 0 0 0


x+



0

0

1

−2ζ
ζ 2


u,

y �
 1 0 0 0 0

 x.

Let ζ � 0.12 and x(0) � (0, 1, 0, 0, 0). The convergence to the stable limit
cycle is complicated as shown in Figures 12 and 13.
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Figure 13. The state variables x2, . . . , x5 converging to a limit cycle for a system
with pole excess three.
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Figure 14. A few fast switches occur each period of the limit cycle. These start
and stop at x4 � ±1, that is, when tC A3xt � C A2 B . (The state x5 is not shown
here, but it is approximately constant during the fast switches.)

The limit cycle characteristics can, however, be predicted also in this
case. Figure 14 shows x1, . . . , x4 during the limit cycle. Because the pole
excess is three, the fast switches do not last long. Only nine relay switches
occur each time the fast switches appear. Note, as we may expect, it is the
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points where tC A3xt � C A2 B that determines when the fast switching
starts and ends. In this example they correspond to x4 � ±1. The state
x5 is approximately constant during the fast switch phase.

7. Conclusions

The problem of characterizing behaviors in relay feedback systems has
been addressed. It was motivated by a number of examples from the lit-
erature, where the main one was the automatic tuning procedure of PID
controllers using relay feedback by Åström and Hägglund. Another moti-
vation for the study of relay feedback systems is their connection to hybrid
systems [Morse, 1995]. The system we have considered can be viewed as
a simple hybrid system that consists of only one discrete state.

The main result of the paper was a complete characterization of all
relay feedback systems that have initial states that give multiple fast re-
lay switches. It was shown that multiple fast switches exist if and only
if the first non-vanishing Markov parameter is positive. The nature of
the fast behavior was further investigated. It was shown that there is a
fundamental difference between systems of pole excess one, pole excess
two, and pole excess greater than two. The fast behavior of these systems
can be studied via relay feedback of an integrator, double integrator, and
a higher-order integrator. The results on fast switches were applied to
analysis of limit cycles, where part of the limit cycle consists of a num-
ber of fast switches. Future work will include stability analysis of these
limit cycles. Local stability analysis of limit cycles without fast switches
was also done. It was proved that two conditions in the literature are
equivalent in most cases.
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Paper 2

Limit Cycles with Chattering in
Relay Feedback Systems

Karl Henrik Johansson, Andrey Barabanov,
and Karl Johan Åström

Abstract
Several interesting behaviors occur in relay feedback systems. One of
them is a limit cycle where part of the limit cycle consists of fast relay
switches. This chattering is analyzed in detail and conditions for approx-
imating it by a sliding mode are derived. Stability conditions are proved
for limit cycles with regular sliding modes as well as with chattering.
Simulated examples illustrate these new results.
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1. Introduction

Relay-like functions are used in many control systems. Mechanical and
electromechanical systems were an early motivation for studying relay
feedback systems [Andronov et al., 1965; Tsypkin, 1984]. Lately there has
been renewed interest due to a variety of applications, for example, auto-
matic tuning of PID controllers [Åström and Hägglund, 1995], modeling
of quantization errors in digital control [Parker and Hess, 1971], analysis
of sigma-delta converters [Aziz et al., 1996], design of variable-structure
systems [Utkin, 1992], and investigation of hybrid systems [Morse, 1995].

Consider a linear time-invariant system with relay feedback. The lin-
ear system has scalar input u and scalar output y and it is described
by

ẋ � Ax+ Bu,
y � C x,

(1)

with x ∈ Rn. Let G(s) � b(s)/a(s) be the transfer function of the system.
The relay feedback is defined by

u � − sgn y �
{
−1, if y > 0,
1, if y < 0,

(2)

so the relay does not have hysteresis. The switch plane S is the hyperplane
of dimension n− 1 where the output vanishes, that is, S � {x : C x � 0}.

It is well-known that a linear system with relay feedback can show sev-
eral interesting phenomena. Some of them can be analyzed with frequency
methods [Atherton, 1975; Tsypkin, 1984]. However, more complicated be-
haviors such as sliding modes must be treated with other mathematical
tools [Filippov, 1988; Utkin, 1992; Fridman and Levant, 1996]. There exist
trajectories having arbitrarily fast relay switches even if an exact sliding
mode is not part of the trajectory. It was shown in [Johansson et al.,
1997] that a necessary and sufficient condition for this is that the first
non-vanishing Markov parameter is positive. In the same paper, it was
shown through simulations that this type of chattering can be part of a
stable limit cycle. The main contribution of this paper is to give condi-
tions for existence and stability of such a limit cycle. In particular, it is
shown to be sufficient to study a second-order sliding mode instead of the
complicated map that describes the chattering.

The paper is organized as follows. Sliding sets and sliding modes are
recalled in Section 2. Section 3 gives a result on approximation of chat-
tering by sliding modes. In Section 4 this result is used to show existence
and stability of limit cycles with chattering. Stability conditions for limit
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cycles with first-order sliding modes are also shown. Conclusions are given
in Section 5. All proofs are collected in Appendix.

2. Sliding Modes

We follow the terminology of [Fridman and Levant, 1996; Levant, 1997]
and define the first-order (or regular) sliding set as

S1 :� {x : C x � 0} � S

and the second-order sliding set as

S2 :� {x : C x � C Ax � 0}.

Trajectories of (1)–(2) in these sets are defined in the sense of Filippov,
that is, they are defined as solutions satisfying almost everywhere a differ-
ential inclusion corresponding to (1)–(2), see [Filippov, 1988]. A first-order
sliding mode is defined as this motion on S1 and a second-order sliding
mode as the motion on S2. Higher-order sliding modes can be defined
similarly. It is, however, shown in [Johansson et al., 1997] that a sys-
tem (1)–(2) with pole excess greater than two do not have any solutions
converging to higher-order sliding sets. Therefore, these systems are not
discussed further. Let Σ1 � (A, B1, C) and Σ2 � (A, B2, C) represent the
state-space system (1) with parameterizations given by

A �



−a1 1 0 . . . 0

−a2 0 1 0
...

. . .
...

−an−1 0 0 1

−an 0 0 ⋅ ⋅ ⋅ 0


,

B1 �
1 b1 ⋅ ⋅ ⋅ bn−1

T
,

B2 �
0 1 b1 ⋅ ⋅ ⋅ bn−2

T
,

C �
1 0 ⋅ ⋅ ⋅ 0

 ,

where A is assumed to be nonsingular. Note that Σ1 and Σ2 are normalized
such that C B � 1 and C AB � 1, respectively. For the system (1)–(2) a
first-order sliding mode only exists if C B > 0 and a second-order sliding
mode only if C B � 0 and C AB > 0, so for Σ1 there exists a first-order
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sliding mode whereas for Σ2 there exists a second-order sliding mode. For
systems with pole excess two, the initial data that give a sliding mode lie
in a set with lower dimension than for systems with pole excess one. This
means basically that an exact second-order sliding will never occur. Still
there can exist trajectories with arbitrarily fast relay switches which wind
around the second-order sliding set. We call this phenomenon chattering
and it is analyzed in next section.

There are several ways to derive a sliding mode. For a general non-
smooth system they do not necessarily agree, but they do so for linear
systems with relay feedback [Filippov, 1988]. A convenient way to derive
the sliding modes is to replace u in (1) by an equivalent control ueq ∈
[−1, 1] that impose restrictions on y and the derivatives of y, see [Utkin,
1992]. For Σ1 the equivalent control is ueq � −C Ax/C B � −x2, because
x1 � 0 for the first-order sliding mode. This gives the first-order sliding
mode for Σ1 as x1 � 0 together with the solution of

ẇ � F1w,

where w � (xi)ni�2 and

F1 �



−b1 1 0 ⋅ ⋅ ⋅ 0

−b2 0 1 0
...

. . .
...

−bn−2 0 0 1

−bn−1 0 0 ⋅ ⋅ ⋅ 0


. (3)

The sliding mode is thus stable (w → 0) if all zeros of Σ1 are in the open
left half-plane. It follows from ueq � −x2 and 1 ≤ ueq ≤ 1 that the sliding
mode occurs only for tx2t < 1.

The sliding mode for Σ2 can be derived similarly. It is given by x1 �
x2 � 0 and the solution of

ẇ � F2w,

where w � (xi)ni�3 and

F2 �



−b1 1 0 ⋅ ⋅ ⋅ 0

−b2 0 1 0
...

. . .
...

−bn−3 0 0 1

−bn−2 0 0 ⋅ ⋅ ⋅ 0


. (4)

A second-order sliding mode occurs only for tx3t < 1.
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3. Chattering

It was mentioned in the previous section that an exact sliding mode will
not occur for systems with pole excess two, because S2 is of lower di-
mension. Still, arbitrarily fast relay switches can occur, which we call
chattering. For the parameterization given by Σ2 the chattering variables
are x1 and x2, whereas x3, . . . , xn are smooth variables. “Chattering” dis-
cussed here should not be mixed up with fast relay switches occurring in
systems with relay imperfections such as hysteresis. The system descrip-
tion here is exact and the chattering can be described as a trajectory close
to a second-order sliding mode in S2.

A trajectory for Σ2 with relay feedback that starts at a point x(0)
with x1(0) � 0, tx3(0)t < 1, and x2(0) sufficiently small will wind around
the set S2. This follows from Theorem 1 given next, which states a first-
order approximation for the amplitude of this chattering. A necessary and
sufficient condition for the stability of the chattering is also obtained.

THEOREM 1
Consider Σ2 with order n ≥ 3 under relay feedback (2). Assume x1(0) � 0,
x2(t) is small, and tx3(t)t < 1 for t ∈ [0, T]. Let the switch times be denoted
by tk, k ≥ 1, so that x1(tk) � 0. Then the chattering variable x1 satisfies

1
tx2(0)t sup

t∈[0,T]
tx1(t)t → 0, as tx2(0)t → 0

and the envelope of the peaks of the chattering variable x2 is given by

x2(tk) � (−1)kx2(0) exp
[− (a1 − b1)tk/3

]
�
(

1− x2
3(tk)

1− x2
3(0)

)1/3
+ ε 1(x2(0); tk),

(5)

where ε 1(x2(0); tk)/x2(0) → 0 as x2(0) → 0 uniformly for all k with
tk ∈ [0, T].

Proof: See Appendix.

REMARK 1 The chattering can be stable or unstable. Theorem 1 gives a
simple necessary and sufficient condition for stability:

a1 > b1.
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This requirement is equivalent to the heuristic condition given in Section 5
in [Johansson et al., 1997]. Therein it is argued that for high frequencies

G(s) � K
s(s+ a1 − b1) , K > 0,

so a root-locus argument gives that the chattering is stable if and only if
a1 − b1 > 0.

REMARK 2 The solution of a linear system depends continuously on the
initial data. This gives that the smooth variables xsm � (xi)ni�2 are close
to the corresponding sliding mode w(t):

xsm(t) � w(t) + ε 2(x2(0); t),
ẇ(t) � F2w(t),

for t ∈ [0, T], where ε 2(x2(0); t)/x2(0) → 0 as x2(0) → 0 and F2 is given
by (4).
The following result is a formula for the number of switches on a chatter-
ing trajectory.

THEOREM 2
Given the assumptions in Theorem 1, the number of switches on the in-
terval [0, T̃] is equal to

K � 1
tx2(0)t

[
1
2

(
1− x2

3(0)
)1/3

∫ T̃

0
exp

[(a1 − b1)t/3
](

1− x2
3(t)
)2/3 dt

+ ε 3(x2(0); T̃)
]

,
(6)

where ε 3(x2(0); T̃) → 0 as x2(0) → 0 uniformly for T̃ ∈ [0, T].

Proof: See Appendix.

REMARK 3 Equation (5) captures the behavior of chattering quite well.
Consider a chattering solution that starts with x1 and x2 small and tx3t
close to one. Because x2 changes rapidly in comparison with x3, Equa-
tion (5) tells that x2 oscillates with exponentially decreasing amplitude.
The length of the switch intervals will decrease as x2 decreases. As tx3t
approaches one it follows from (6) that the interval between switches in-
creases again. Note that (5) and (6) are not proved for tx3(t)t → 1 and that
they are singular for tx3(0)t � 1. This will be subject to further research.
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Figure 1. Chattering for a fourth-order system (solid) together with envelope
estimate from Theorem 1 (dashed). The chattering ends when x3(t) becomes greater
than one.

EXAMPLE 1
Consider

G(s) � (s−ζ )2
(s+ 1)4

with state-space representation

ẋ �


−4 1 0 0

−6 0 1 0

−4 0 0 1

−1 0 0 0

 x+


0

1

−2ζ
ζ 2

u,

y �
1 0 0 0

 x

and let ζ � 0.2. Figure 1 shows a simulation of the system that starts
in x(0) � (10−10, 0.010,−0.5, 1.0) (solid line) together with the continuous
estimate of the envelope of x2(t) obtained from Theorem 1 (dashed lines).
The chattering ends when x3(t) becomes greater than one. Note that the
switch periods increase close to the end point of the chattering, as was
mentioned in Remark 3. The estimated number of switches from Theo-
rem 2 is K � 151, whereas the true number is 152.
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x0 � x(0) x1 � x(tsm) x2 � x(tsm + tsl)

Xsm

Zsl

Figure 2. The variables defining the map Z, which consists of one smooth part
Xsm and one sliding mode part Zsl.

4. Stability of Limit Cycles

First-order sliding modes and chattering can be part of stable limit cycles.
Necessary and sufficient conditions for local stability of these limit cycles
are given in this section.

We start by defining a limit cycle. Let φ (t, x0) denote a trajectory of
(1)–(2) starting in x0. A closed orbit is a trajectory such that φ (t1, x0) �
φ (t2, x0) for some t1 < t2. A point p is a limit point of the trajectory if there
exists a sequence {tk}, with tk →∞ as k →∞, such that φ (tk, x0) → p as
k →∞. The set of all limit points is the limit set of the trajectory and is
denoted L. Finally, a limit cycle is a limit set that is a closed orbit. The
limit cycle is symmetric if x ∈ L implies that −x ∈ L and it is simple if L
intersects S only twice.

Limit cycles with first-order sliding modes

Simulated limit cycles where part of the trajectory is a first-order sliding
mode are given in [Wadey and Atherton, 1986; Johansson et al., 1997].
Stability and existence of these limit cycles can be straightforwardly an-
alyzed by studying a Poincaré map that consists of a smooth part and a
sliding mode part. Here we do this and derive its Jacobian.

Consider Σ1 with relay feedback and suppose b(s) has zeros in the
open right half-plane. Then the sliding mode is unstable so every sliding
mode ends in a point with tx2(t′)t � 1. The smooth part of the limit cycle
starts at a point x � (xi)ni�1, such that (x1, x2) � (0, 1) if x3 > 0 and
(x1, x2) � (0,−1) if x3 < 0. The set of such points is symmetric and for
that reason we only consider x2(t′) � +1. For any vector z � (xi)ni�3 with
x3 > 0 we define the following variables illustrated in Figure 2:

• Xsm(t, z) is the trajectory of the closed-loop system with initial data
x0 � (0, 1, zT)T ;
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• tsm(z) is the first positive instant for a switch of Xsm(t, z);
• ysm(z) ∈ R and zsm(z) ∈ Rn−1 are the components of the first switch

point, i.e., x1 � x(tsm(z)) � (ysm(z)T , zsm(z)T )T ;

• Zsl(t, z) for t > tsm(z) is the trajectory of a sliding mode, which starts
at the point zsm(z);

• tsl(z) is the sliding mode time, that is, the smallest t for which the
end point (vi)n−1

i�1 :� Zsl(t+ tsm(z), z) satisfies the conditions tv1t � 1
and v1v2 > 0; and

• Z(z) � −v1(vi)ni�2 is the last n−1 components of the final point with
sign determined by v1.

The map Z is nonlinear, but consists of two linear parts parameterized by
two scalars tsm and tsl. The smooth part is from x0 to x1 and the sliding
mode is from x1 to x2, see Figure 2. Let P1 denote the projection P1(x)ni�2 �
(x)ni�3, P2 the projection P2(x)ni�1 � (x)ni�2, and P3 the projection P3(x)ni�1 �
(x)ni�3. Moreover, let e1 be the unit row vector of length n − 1 with unity
in the first position. We then have the following result.

THEOREM 3
Consider Σ1 with order n ≥ 3 under relay feedback (2). Assume there
exists a symmetric simple limit cycle with a first-order sliding mode. Let
x0 �: (0, χ T)T be the fixed point of the map Z defined above, let x1, tsl,
and tsm be the corresponding parameters of this map, and let F1 be given
as (3). Then the limit cycle is stable if and only if all eigenvalues of

W1 � P1

(
I − F1χe1

e1 F1χ

)
eF1tsl P2

(
I − (Ax1 − B)C

C(Ax1 − B)

)
eAtsm PT

3 (7)

are in the open unit disc.

Proof: See Appendix.

REMARK 4 For limit cycles without sliding modes tsl � 0 and Theorem 3
reduces to Theorem 3.1 in [Åström, 1995].
The definitions of x0, x1, and x2 give two nonlinear equations in tsl and
tsm. These may have several solutions. One or more can correspond to a
stable limit cycle with sliding mode, see [Johansson et al., 1997].
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EXAMPLE 2
It was shown in [Johansson et al., 1997] that

G(s) � (s− 1)2
(s+ 1)3 (8)

with state-space representation

ẋ �


−3 1 0

−3 0 1

−1 0 0

 x+


1

−2

1

u

y �
1 0 0

 x

exhibit a limit cycle with first-order sliding mode under relay feedback
with tsl � 0.39 and tsm � 4.04. Theorem 3 gives that the limit cycle is
stable because W1 � −0.033.

Limit cycles with chattering

Next we show that limit cycles with chattering can be analyzed similar
to limit cycles with first-order sliding modes. Conditions for existence and
stability of chattering limit cycles are derived.

Consider Σ2 with relay feedback and assume that all poles are stable
and that one or more zeros are unstable. We also assume that the sliding
time is much longer than the period of the fast oscillations in the chat-
tering variables (x1, x2). Otherwise there will be no chattering, because
the chattering stops when tx3(t)t > 1 and this will happen after a small
number of switches. Note that the second-order sliding mode is slow, if
the unstable zeros of b(s) are close to the origin.

Let us now translate some of the terminology of limit cycles with first-
order sliding modes to chattering limit cycles. Every second-order sliding
mode ends in a point with tx3(t′)t � 1. The smooth parts of the limit cycle
always start at a point x � (xi)ni�1, such that the subvector (x1, x2, x3)
is close to (0, 0, 1) (if x4 ≥ 0) or (0, 0,−1) (if x4 ≤ 0). We only consider
x3(t′) � +1. The variables defined prior to Theorem 3 are easily modified.
For example, z � (x4, . . . , xn)T with x4 > 0 and x0 � (0, 0, 1, zT)T . The
Jacobian W2 of Z is given by (7) with F1 replaced by F2 and obvious
changes of matrix dimensions. The map Z still consists of a smooth part
and an exact second-order sliding mode part.

To prove stability of a chattering limit cycle, we need to confirm that
the chattering is sufficiently close to a second-order sliding mode. The
analysis of chattering in the previous section showed that the chattering
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variable x2 can be approximated to a high accuracy by a product of an
exponential function and a gain, where the gain depends on the smooth
variable x3 as stated in Theorem 1. If this exponential function is de-
creasing, there is contraction in the chattering variable x2 and therefore
also in the chattering variable x1. The smooth state variables can then
be approximated by the differential equation for the sliding mode. The
accuracy is proportional to the amplitude of x2. If the differential equa-
tion for the smooth state variables also gives a contraction, then the two
contractions give a Lyapunov function for the full system. Such a system
has a stable limit cycle containing one smooth and one chattering part.
This is formulated in the following theorem.

THEOREM 4
Consider Σ2 with order n ≥ 4 under relay feedback (2). Assume the cor-
responding polynomial a(s) is stable, b(s) is unstable, G(0) > 0, and that
the following conditions hold:

1. The map Z has a fixed point z0 and the matrix W2 has all eigenvalues
in the open unit disc;

2. The inequality a1 > b1 is satisfied; and

3. The first component of eAt(0, 0, 0, (z0)T)T is positive for all t > 0.

If all zeros of b(s) are sufficiently close to the origin (compared to the zeros
of a(s)), then there exists a symmetric stable limit cycle with chattering.
The limit cycle is close to the trajectory Xsm(t, z0) for t ∈ [0, tsm(z0)] and
the n − 2 smooth variables of the limit cycle are close to Zsl(t, z0) for
t ∈ [tsm(z0), tsm(z0) + tsl(z0)].

Proof: See Appendix.

REMARK 5 Theorem 4 states that it is sufficient to study the map Z that
consists of a second-order sliding mode part and a smooth part, instead of
the complicated map that describes a chattering part and a smooth part.

REMARK 6 The assumptions on the steady-state gain G(0) > 0 and
the zeros of G(s) close to the origin have the following geometric inter-
pretations. The stationary point for ẋ � Ax − B2 is x̂ � A−1 B2. Hence,
G(0) � −C A−1 B2 > 0 is equivalent to that C x̂ < 0, so positive steady-
state gain guarantees a relay switch to occur. Furthermore, the stationary
point x̂ belongs to the hyperplane {x : C A2x− C AB2 � 0} � {x : x3 � 1}.
A Taylor expansion shows that C A−1 B2 is small, if all zeros of G(s) are
close to the origin compared to the poles. The trajectory of the system will
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Figure 3. Limit cycle with chattering for a system with pole excess two. The
dashed line is the second-order sliding set S2.

approach a point close to where (x1, x2, x3) � (0, 0, 1). The assumptions of
Theorem 1 is thus fulfilled if all zeros are close to the origin.

The assumptions of Theorem 4 are not very restrictive. The key conditions
are that the zeros of b(s) should be small (yielding a long sliding mode)
and that there should exist a stable stationary point for the associated
quasi-linear map. The other conditions are, for example, always fulfilled
for the following fourth-order case.

LEMMA 1
Suppose the dimension of the system is n � 4. If all zeros of a(s) are real
and stable and all zeros of b(s) are unstable, then Conditions 2 and 3 of
Theorem 4 are satisfied.

Proof: See Appendix.

Convergence to a limit cycle with chattering for a fourth-order system
was shown by simulations in [Johansson et al., 1997]. Next, it is proved
formally by application of Theorem 4 and Lemma 1 that it is stable.

EXAMPLE 3
Consider again the system in Example 1. The parameter ζ � 0.2 gives
zeros that are sufficiently close to the origin to give a limit cycle with
chattering. Figure 3 shows the limit cycle in the subspace (x1, x2, x3). The
fast oscillations in the chattering mode are magnified in Figure 4. Figure 5
shows the four state variables during the chattering mode. In agreement
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Figure 4. A closer look on the winding around the second-order sliding set S2
(dashed line).
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Figure 5. Chattering in a limit cycle for a system with pole excess two. The chat-
tering starts at x3 � −1 and ends at x3 � 1.

with the analysis above, the chattering mode starts at x3(t) � −1, ends at
x3(t) � 1, and x4(t) is almost constant. Similar derivations as described
in Example 2 give tsm � 7.5 and tsl � 4.3, whereas simulations give a
smooth time of 7.4 and and chattering time of 4.2. The fixed point of Z
is z0 � 0.54, which is approximately the value of x4 in Figure 5 when
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x3 becomes greater than one. The Jacobian W2 � −0.0025 is stable, so
therefore the chattering limit cycle is stable.

5. Conclusions

Trajectories winding around a second-order sliding set in relay feedback
systems were described. Conditions for existence and stability of this chat-
tering were derived. Limit cycles with chattering were also discussed and
stability conditions for both limit cycles with first-order sliding modes and
chattering were obtained.

Chattering occurs in systems with pole excess two. This type of phe-
nomenon can, however, not occur in systems with higher-order pole ex-
cess. It can be understood intuitively, because a system whose first non-
vanishing Markov parameter M is of order k behaves similar to M/sk. A
double integrator gives a limit cycle with arbitrarily fast period, whereas
higher order integrators are unstable under relay feedback, see [Johans-
son et al., 1997] for further details. Simulation therein shows that for
systems with pole excess three, there exist limit cycles with only a few
extra switches each period.

The examples were simulated in OmSim, a simulation package for
continuous-time and discrete-event dynamical systems [Andersson, 1994].
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Appendix

Proof of Theorem 1: Assume x1(0) � 0, x2(0) is small, and tx3(0)t < 1. For
t > 0 up to next switch instant, it holds that

x(t) � eAtx(0) + (eAt − I)A−1 Bu

� x(0) + t
(
Ax(0) + Bu

)+ t2

2

(
A2x(0) + ABu

)
+ t3

6

(
A3x(0) + A2 Bu

)+ κ (t)t4,

where u � ±1 is constant and

tκ (t)∣∣ ≤ max
ξ∈(0,t)

∥∥eAξ A3(Ax(0) + Bu
)∥∥/24.

Note that it follows from C AB � 1 > 0 that there will be a next switch if
x2(0) is sufficiently small. For the sake of simplicity, introduce the notation

α 1 :� C Ax(0) � x2(0),
α 2 :� C A2x(0) + C ABu � x3(0) + u− a1x2(0) � x3(0) + u,

α 3 :� C A3x(0) + C A2 Bu � x4(0) + b1u− a1(x3(0) + u),
where the last equation holds if the order n ≥ 4. If n � 3 this equation
and the following still holds, but with x4 � 0. Note that α 1u � −tα 1t < 0
and that α 1α 2 < 0. Now assume that t is the next switch instant, that is,
C x(t) � x1(t) � 0. Then it holds that

0 � x1(t) � α 1t+α 2t2/2+α 3t3/6+O(t4), (9)
C Ax(t) � x2(t) � α 1 +α 2t+α 3t2/2+O(t3), (10)

for small t. Introduce t0 as an approximation of t to the accuracy of O(t3)
through the equation

α 1 +α 2t0/2+α 3t2
0/6 � 0. (11)

Then, because
1

1+√1− β
� 1

2
+ 1

8
β +O(β 2),

for small β , we get

t0 � 4tα 1t
tα 2t +

√
α 2

2 − 8α 1α 3/3
� 2tα 1t
tα 2t

(
1+ 2

3
⋅

α 1α 3

α 2
2
+O(α 3

1)
)

(12)
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as x2(0) � α 1 → 0. It is obvious from this expression that t0 has the
same order as α 1 as α 1 → 0. For this reason the expressions O(tk) and
O(α k

1) are equivalent for every k > 0. In particular, from (9) we have that
x1(τ ) � O

(
x2

2(0)
)

as x2(0) → 0 for all τ ∈ [0, t], which proves the first
equation in the theorem. In the following, it will be shown that x2(t) is
proportional to x2(0) and (5) will be derived.

Let α̃ 1 :� x2(t) be the starting point for the next part of the trajectory
in the chattering mode between two successive switches. The map α 1 @→
α̃ 1 describes the envelope of x2(t) in the chattering mode. By substituting
t with t0 and taking into account that α 1α 2 < 0 at any switch point, we
get from (10) and (11) that

α̃ 1 � α 1 +α 2t0 − 3(α 1 +α 2t0/2) +O(α 3
1) � −2α 1 − 1

2
α 2t0 +O(α 3

1).

Then, (12) gives

α̃ 1 � −α 1

(
1− 2

3
α 1α 3

α 2
2

)
+O (α 3

1) � −α 1

(
1+ α 3

3α 2
t+O(t2)

)
, (13)

where the last equality follows from (9). The variable x2(t) thus shifts
sign in successive switch points. After neglecting these sign shifts, the last
equation looks very similar to a one-step iteration of a numerical solution
to a differential equation. Next, we show that such a differential equation
exists and that it describes the envelope of x2(t) at the switch instants tk.
It is surprising that this equation can be analytically integrated.

Consider three successive switch points at the time instants 0, t, and
t+t̃. The relay output u has opposite sign in the intervals (0, t) and (t, t+t̃).
This influences α 2, so that it shows a gap in two successive switch points.
After two switches, however, α 2 is close to its initial value. Denote x2 in
three successive switch points by α 1, α̃ 1, and ˜̃α 1, respectively. Denote by
α̃ 2 and α̃ 3 the corresponding values for α 2 and α 3. It was proved above
that

α̃ 1 � −α 1(1+ γ ) +O (α 3
1), γ :� −2

3
⋅

α 1α 3

α 2
2

,

˜̃α 1 � −α̃ 1(1+ γ̃ ) +O (α̃ 3
1), γ̃ :� −2

3
⋅

α̃ 1α̃ 3

α̃ 2
2

.

Therefore, after two successive switch points,

x2(t+ t̃) � x2(0)
[
1+ γ + γ̃ +O

((t+ t̃)2)].
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Straightforward calculations using (12)–(13) and α 2α̃ 2 � x2
3(0) − 1 show

that

t+ t̃ � 4tα 1t
1− x2

3(0)
+O(α 2

1). (14)

Furthermore,

γ + γ̃ � 4tα 1t
3(1− x2

3(0))2

�
[

a1
(
x2

3(0) − 1
)+ b1

(
x2

3(0) + 1
)− 2x3(0)x4(0)

]
+O(α 2

1)

� (t+ t̃)
[

b1 − a1

3
− 1

3
⋅

2x3(0)
(
x4(0) − b1x3(0)

)
1− x2

3(0)
]
+O(α 2

1).

This gives the differential equation associated with the peak values of the
chattering variable x2(t) as

˙̄x2(t) � x̄2(t)
[

b1 − a1

3
− 1

3
2x̄3(t)

(
x̄4(t) − b1 x̄3(t)

)
1− x̄2

3(t)
]

,

where (x̄i)ni�3 � w is the solution to the sliding mode equation ẇ � F2w
with F2 given by (4). We have

˙̄x3(t) � x̄4(t) − b1 x̄3(t).

Therefore, the associated differential equation can be rewritten as

d
dt

log
(
x̄2(t)

) � b1 − a1

3
+ 1

3
d
dt

log
(
1− x̄2

3(t)
)
.

Integration of this equation leads to the formula for x2 and the proof is
completed.

Proof of Theorem 2: Introduce a slower time τ associated with the number
of switches on a trajectory. The monotonous function t � t(τ ) indicates the
switch times with an integer argument: t(k) � tk is switch instant number
k. Equation (14) in the proof of Theorem 1 states that the increments of
this function can be approximated as

t(k+ 2) − t(k) � 4
∣∣x2
(
t(k))∣∣

1− x2
3

(
t(k)) +O

(
x2

2

(
t(k))).
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Because the increments are small as x2 → 0, the function t(τ ) can be
approximated by the solution of the differential equation

d
dτ

t̄(τ ) � 2
∣∣x̄2
(
t̄(τ ))∣∣

1− x̄2
3

(
t̄(τ )) .

The inverse function τ � τ (t) satisfies

d
dt̄

τ (t̄) � 1− x̄2
3(t̄)

2tx̄2(t̄)t .

It remains now only to substitute x̄2 with the expression given in Theo-
rem 1 and integrate over t̄.

Proof of Theorem 3: Consider a simple symmetric limit cycle with sliding
mode. Let its initial point be x0 � (0, 1, (z0)T)T and let the sliding mode
start in x1 and end in x2 � −x0. Furthermore, let the sliding time and the
smooth time be tsl and tsm, respectively. To derive the Jacobian W1, we
study a trajectory starting in a perturbed initial point x0 + (0, 0, (δ 0)T)T .
Let its next intersection with S be in x1 + δ 1 after time tsm + δ sm. Taylor
expansion gives

δ 1 � eAtsm(Ax0 − B)δ sm + eAtsm PT
3 δ 0 +O

(t(δ sm, δ 0)t2).
Because Cδ 1 � 0, we get asymptotically

(δ 1
i )ni�2 � P2

(
I − (Ax1 − B)C

C(Ax1 − B)

)
eAtsm PT

3 δ 0. (15)

Consider the trajectory from x1 + δ 1 to x2 + δ 2 and let the time it takes
be tsl + δ sl. Then,

(δ 2
i )ni�2 � F1eF1tsl(x1

i )ni�2δ sl + eF1tsl(δ 1
i )ni�2 +O

(t(δ sl, δ 1)t2).
Because e1(δ 2

i )ni�2 � 0, asymptotically

(δ 2
i )ni�3 � P1

(
I − F1(1, (z0)T )T e1

e1 F1(1, (z0)T )T
)

eF1tsl . (16)

Equations (15) and (16) together with χ � (1, (z0)T)T complete the proof.

The following lemma is used in the proof of Theorem 4.
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LEMMA 2
Consider a sequence of stable state-space systems

ẋk � Axk − Bk
2 ,

yk � C xk,
(17)

where
Bk

2 �
 0 1 bk

1 . . . bk
n−2

T

with bk
i bounded and bk

i → 0 as k → ∞ for i � 1, . . . , n − 2, and B∞
2 �

(0, 1, 0, . . . , 0)T . Let xk(0) � (0, 0, 1, zT)T be a fixed initial point and τ k > 0
equal the first time instant xk

1(t) � 0 or infinity if this never occurs. If the
first component of eAt(0, 0, 0, zT)T is positive for all t > 0, then

eAτ k(xk(0) − A−1 Bk
2 ) → 0 as k →∞.

Proof: Because A is stable, the solution of (17) is

xk(t) � eAt(xk(0) − A−1 Bk
2 ) + A−1 Bk

2

with

A−1 Bk
2 �



0

0

1
...

bk
n−3


− bk

n−2

an



1

a1

a2

...

an−1


and

xk(0) − A−1 Bk
2 �


0

0

0

z− (bk
i )n−3

i�1

+
bk

n−2

an



1

a1

a2

...

an−1


�: ψ k + bk

n−2

an
φ .

Thus, we have

ψ̄ k
1(τ k) + bk

n−2

an

[
φ̄ 1(τ k) − 1

]
� 0, (18)
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where ψ̄ k(t) � eAtψ k and φ̄ (t) � eAtφ . It follows from (18) and the assump-
tion that the first component of eAt(0, 0, 0, zT)T is positive that τ ∞ � ∞.
Moreover, due to that (17) is a stable linear system, xk(t) converges to
x∞(t) uniformly on [0,∞). Hence, τ k → ∞ as k → ∞ and the result fol-
lows.

Proof of Theorem 4: The first claim to prove is that the vector ysm(z0)
is sufficiently small. (We omit the argument z0 in the sequel.) Consider
the initial system with constant input u � −1. The entries b1, . . . , bn−2

are small by the assumptions, because all zeros of b(s) are close to the
origin. The time tsm > 0 is defined as the instant when x1(t) � 0. It exists
because G(0) > 0, see Remark 6. We have

x(tsm) � eAtsm(x(0) − A−1 B2) + A−1 B2.

Lemma 2 gives that

eAtsm
(
x(0) − A−1 B2

)→ 0

as bi → 0 for all i � 1, . . . , n− 2. Moreover,

A−1 B2 �



0

0

1
...

bn−3


− bn−2

an



1

a1

a2

...

an−1


.

Hence, ysm is small if the zeros of b(s) are close to the origin. The chat-
tering thus appears close to the trajectory x(t) with initial data x(0) �
(0, 0, 1, (z0)T)T .

The chattering is described by Theorem 1, because x2(t) is infinitely
small as bi → 0 for all i � 1, . . . , n − 2. In particular, the chattering
variables x1(t) and x2(t) decay exponentially and the peak values of x2(t)
are proportional to exp[−(a1−b1)t/3]. Hence, we have a contraction of the
chattering variables. Moreover, the time tsl of the chattering mode tends
to infinity as the zeros of b(s) tend to the origin.

The smooth variables (xi)ni�3 can be approximated during the chatter-
ing by the sliding mode ẇ � F2w, w � (x̄i)ni�3, where F2 is given by (4).
This trajectory is thus close to Zsl(t).

We have shown so far that the trajectory x(t) of the relay feedback
system which starts in x(0) � (0, 0, 1, zT)T tends to the trajectory

x̄(t) �
{

Xsm(t), 0 ≤ t ≤ tsm,
(0, 0, Zsl(t)T)T , tsm < t ≤ tsm + tsl
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as the zeros of b(s) tend to zero. In particular, the end point x(tsm + tsl)
is close to the point (0, 0,−Z(z0)T)T .

Finally, concerning stability of the limit cycle, we consider the Jacobian
W2. By assumption, it defines a contraction in a neighborhood of z0, and
by continuity it remains stable in some neighborhood of z0. For every
x � (x1, x2, zT)T with tx1t, tx2t, and tz− z0t small, define f (x) as the final
switch plane intersection of the chattering starting in x. Then the map f
is a contraction

t f (x1) − f (x2)tP ≤ γ tx1 − x2tP , 0 < γ < 1,

with some appropriate metric P. Therefore the stationary point exists and
is locally stable.

Proof of Lemma 1: Because all zeros of b(s) � s2 + b1s+ b2 are unstable,
we have b1 < 0. Condition 2 is obviously satisfied.

To check Condition 3, note that

x0 � (0, 0, 0, x4 − b1)T � (x4 + tb1t)(0, 0, 0, 1)T

with x4+ tb1t > 0. The first entry of the vector x(t) � eAt(0, 0, 0, 1)T is the
impulse response of a system with transfer function

1
a(s) �

1
(s+ λ 1) ⋅ ⋅ ⋅ (s+ λ 4) ,

where −λ i are the zeros of a(s). The impulse response has the property

L−1{a−1(s)} � e−λ 1t ∗ ⋅ ⋅ ⋅ ∗ e−λ 4t > 0,

where L−1 denotes the inverse Laplace transform and ∗ convolution. This
completes the proof.
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Paper 3

Performance Limitations in
Multi-Loop Control Systems

Karl Henrik Johansson and Anders Rantzer

Abstract
Fundamental limitations in decentralized control design imposed by mul-
tivariable zeros are considered. It is shown that arbitrary bandwidth can
be obtained with a stable block-diagonal controller, if certain subsystems
of the open-loop system have no zeros in the right half-plane and a high-
frequency condition holds. Implications on control structure design and
sequential loop-closure methods are discussed.
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1. Introduction

Industry faces a huge number of interacting control loops. The last three
decades a variety of multivariable control design methods have been de-
veloped. Almost all of these are based on the assumption of a centralized
control structure. However, for most industrial plants it is impossible to
implement a centralized controller. Start-up schemes, identification ex-
periments, and communication nets are only some issues that are consid-
erable harder to face with centralized controllers than with decentralized,
or multi-loop, controllers. Multi-loop control is the absolutely dominating
structure in practice.

It is natural to look for fundamental limitations in a control system.
In particular, this is motivated for multi-loop systems, because there is
a great lack of theoretical results supporting control design methods for
these systems. There exist formulas for performance limitations for cen-
tralized control systems. Extending results of Bode [Bode, 1945], implica-
tions of right half-plane (RHP) poles and zeros on achievable closed-loop
performance for these systems are shown in [Zames, 1981; Zames and
Francis, 1983; Holt and Morari, 1985; Freudenberg and Looze, 1988; Seron
et al., 1997]. For example, it is proved that for multivariable systems with
no RHP zeros, the sensitivity function can be made arbitrarily small with
a centralized controller.

Our main contribution is to connect multivariable zeros to closed-loop
performance for multi-loop systems. Performance is measured through a
weighted sensitivity function [Freudenberg and Looze, 1988; Zhou et al.,
1996]. Sequentially minimum phase is introduced as when the top left sub-
matrices of the open-loop system are minimum phase. It is then shown
that if an open-loop system is sequentially minimum phase and a condi-
tion on the relative degree of the subsystems holds, then the sensitivity
can be arbitrarily reduced with a diagonal controller. An earlier sufficient
condition for sensitivity reduction via multi-loop control was proved in
[Zames and Bensoussan, 1983]. Their analysis was limited to systems di-
agonal at high frequencies, but other assumptions were weaker. Results
on achievable performance for decentralized systems were also given in
[Ünyelioǧlu and Özgüner, 1994].

The outline of the paper is as follows. Notation and some preliminary
results are given in Section 2. In Section 3 a new condition is presented
for arbitrarily sensitivity reduction for systems with no RHP zeros under
multi-loop control. For systems with RHP zeros an upper bound on the
performance loss due to decentralization is shown in Section 4. Results on
the connection between sequential control design and multivariable zeros
are presented in Section 5. The concluding remarks in Section 6 cover
connections to relative gain array analysis.
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2. Preliminaries

Notation and some preliminary results are presented in this section.

Notation

Let the square transfer matrix G represent a system with equal number
of inputs uj and outputs yi. The elements of G are denoted Gij , i, j �
1, . . . , m, and can be scalar transfer functions as well as transfer matrices.
We only consider proper G with full normal rank [Zhou et al., 1996]. For
the top left submatrix of G, the notation

Gk :�


G11 . . . G1k

...
...

Gk1 . . . Gkk


is used, and the first k − 1 elements of the last row and column of this
matrix are denoted as

Lk :�
Gk1 . . . Gk,k−1

 ,

Rk :�
G1k . . . Gk−1,k

 ,
(1)

respectively. We consider a block diagonal control law u � −Cy, where
C � diag{C1, . . . , Cm} and Ci is a transfer matrix of dimension one or
higher, corresponding to the size of Gii.

Our main result concerns stable systems. Therefore, recall that a sta-
ble open-loop system G remains stable after interconnection with feedback
controller C , if and only if C(I +GC)−1 is stable and the closed-loop sys-
tem is well-posed, that is, I + C(∞)G(∞) is nonsingular [Zhou et al.,
1996, page 119]. The sensitivity function is defined as

S :� (I + GC)−1

and for the subsystems we use the notation

Sk :� (I + GkC̄k)−1,

where C̄k :� diag{C1, . . . , Ck}. We only need the simplest definition of a
multivariable right half-plane (RHP) zero.
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DEFINITION 1
A RHP zero of a stable transfer matrix G is a point z in the closed right
half-plane for which rank G(z) is smaller than the normal rank of G.

If a transfer matrix does not have any RHP zeros it is called minimum
phase and otherwise nonminimum phase. The norm uAu of a matrix A is
its largest singular value and for transfer matrices we define

uGu∞ :� sup
Re s≥0

uG(s)u.

Background

Frequency-weighted sensitivity functions are widely used in practice; for
example, loop-shaping is often done based on shaping the sensitivity and
complementary sensitivity functions [Freudenberg and Looze, 1988; Zhou
et al., 1996]. In control design, the weights are chosen to reflect frequency
contents in, for example, disturbances and perturbations. Closed-loop per-
formance limitations have been quantified in terms of weighted sensitiv-
ity functions in [Zames, 1981; Zames and Bensoussan, 1983; Zames and
Francis, 1983]. This will also be the framework for our analysis.

Recall the Youla parameterization [Francis, 1987].

LEMMA 1
Let G be a stable transfer matrix. All proper stabilizing controllers are
given as

C � (I − QG)−1Q � Q(I − GQ)−1,

where Q is a proper stable transfer matrix.

The following lemma is a slight variation of Corollary 6.2 in [Zames, 1981].

LEMMA 2
Consider a stable transfer matrix G with no RHP zeros and a strictly
proper stable transfer function W with no RHP zeros. For every ε > 0
there exists a strictly proper stabilizing and stable (centralized) controller
C such that

uW(I + GC)−1u∞ < ε

and uW−1Cu∞ is bounded.

Proof: Let d be a positive integer such that [sdW(s)G(s)]−1 is proper.
Consider

Ĉ(s) � G−1(s)
(1+ τ s)d − 1

,
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where τ > 0 is chosen such that

uW(I + GĈ)−1u∞ �
∥∥∥∥W(s)(1+ τ s)d − 1

(1+ τ s)d
∥∥∥∥
∞
< ε .

The closed-loop system has all poles in −τ and Ĉ has all poles uniformly
distributed on a circle intersecting the origin and −2/τ . In order to get a
stable controller let

C(s) � G−1(s)
(1+ τ s)d − 1+ δ

.

For δ > 0 sufficiently small, it follows by continuity that the closed-loop
system is stable,

uW(I + GC)−1u∞ �
∥∥∥∥W(s)(1+ τ s)d − 1+ δ

(1+ τ s)d + δ

∥∥∥∥
∞
< ε ,

and that C has all poles in the open left half-plane. The proof is complete
because W−1C is stable and proper.

Lemma 2 should be considered together with the lower bound on sensi-
tivity reduction given as Theorem 4 in [Zames, 1981], which is restated
next.

PROPOSITION 1
Consider a stable transfer matrix G with RHP zeros in zi, i � 1, . . . , X, and
a proper stable transfer function W with no RHP zeros. Then for every
proper stabilizing controller C

uW(I + GC)−1u∞ ≥ max
i∈{1,...,X}

tW(zi)t.

Proposition 1 provides a lower bound for multi-loop control of systems
with RHP zeros. No controller can give a tight feedback if a RHP zero of
G is located in a heavily weighted part of the right half-plane.

3. Sequentially Minimum Phase

This section is devoted to a new theorem on minimization of the sensitivity
function under multi-loop control. The theorem is proved using sequen-
tial control design. It turns out that certain submatrices of G should be
minimum phase.
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DEFINITION 2
A stable transfer function matrix G is sequentially minimum phase if
G1, . . . , Gm have full normal rank and no RHP zeros.

Under the assumption that Gk−1, k ∈ {2, . . . , m}, has no RHP zeros and
W is a proper stable transfer function with no RHP zeros, introduce the
scalar φ k(W) ∈ [0,∞] as

φ k(W) :� uW−1 LkG−1
k−1u∞,

where Lk is given by (1).

EXAMPLE 1
The transfer matrix

G(s) �


1

s+ 1
1

s+ 1
1

(s+ 2)2
1

(s+ 1)2


is sequentially minimum phase, because G1(s) � (s + 1)−1 and G2(s) �
G(s) have no RHP zeros. Furthermore, φ 2(W) is bounded for all weighting
functions of relative degree less than two, because

φ 2(W) � uW−1G21G−1
11 u∞ �

∥∥∥∥W−1(s) s+ 1
(s+ 2)2

∥∥∥∥
∞
< ∞.

A symmetric definition of φ k(W) including Rk instead of Lk arises in a
natural way, if the input sensitivity function Si � (I + C G)−1 is studied
instead of the output sensitivity function So � (I +GC)−1. See [Freuden-
berg and Looze, 1988] and [Zhou et al., 1996] for interpretations of Si and
So. Next we state our main result.

THEOREM 1
Consider a stable transfer matrix G and a strictly proper stable transfer
function W with no RHP zeros. If G is sequentially minimum phase and
φ k(W) is bounded for k � 2, . . . , m, then for every ε > 0 there exists
a strictly proper stabilizing and stable controller C � diag{C1, . . . , Cm}
such that

uW(I + GC)−1u∞ < ε .

Proof: See Appendix.
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REMARK 1 Note that if Gk for k < m has a RHP zero, then after per-
mutation of inputs and outputs (the new) G1, . . . , Gm do not necessarily
have any RHP zeros. An obvious algorithm for control structure design
can be derived, where the inputs and outputs are permuted until a suit-
able sequence G1, . . . , Gm is found. During the search, the structure of
the controller may change in the sense that the dimensions of C1, . . . , Cm

may vary, and thus the number of blocks m. A centralized controller cor-
responds to m � 1, in which case Theorem 1 corresponds to Lemma 2 in
Section 2 and Corollary 6.2 in [Zames, 1981].

REMARK 2 The condition on φ k(W) being bounded has a natural con-
nection to engineering practice. In multi-loop design it is often preferable
to close the fastest loops first. Consider, for example, a system with two
scalar inputs and two scalar outputs and a weighting function W(s) �
a(s+ a)−1, a > 0. Then G is sequentially minimum phase if G11 has rela-
tive degree smaller than G21, that is, G11 is faster than G21 in the sense
that G21 suppresses high-frequency signals better than G11. Compare with
Example 1.

REMARK 3 A similar statement for systems being diagonal at high fre-
quencies is proved in [Zames and Bensoussan, 1983]. Then there is no
requirements on the zeros of G1, . . . , Gm−1 or on φ k(W). The system in
Example 1 satisfies the assumptions of Theorem 1, but is not ultimately
diagonally dominant. Decentralized two-by-two controllers that minimize
uS1(iω )u are considered in [Ünyelioǧlu and Özgüner, 1994].
Control design was analyzed in [O’Reilly and Leithead, 1991] for the sys-
tem in the following example.

EXAMPLE 2—AUTOMOTIVE GAS TURBINE

The estimated model for the automotive gas turbine in [Winterbone et al.,
1973] is given by

G(s) �


130� 104s+ 33600� 104

s2 + 392s+ 13900
−5.6s2 + 246s+ 744

s2 + 28.9s+ 24.6
904� 104s+ 28400� 104

s3 + 233s2 + 8610s+ 11900
83.4s+ 6300

s2 + 115s+ 195

 .

The inputs are fuel mass flow and nozzle flow area, and the outputs are
turbine inlet temperature and gas generator speed. The system G has
no RHP poles or zeros. The zero of G11 is also stable and, furthermore,
φ 2(W) is bounded for all weighting functions W of relative degree one.
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Hence, the sensitivity function can be made arbitrarily small in the sense
of Theorem 1.

If a system fulfills the assumptions in Theorem 1, theoretically a multi-
loop controller can give arbitrarily tight control. In practice, however, the
region in which the model is accurate gives the performance limitations.
Hence, fulfilled assumptions imply that effort should be put into inves-
tigations of nonlinearities, such as actuator limitations, and unmodeled
high-frequency dynamics.

4. Right Half-Plane Zeros

It is well-known that RHP zeros impose restrictions on the achievable
closed-loop performance. Proposition 1 in Section 2 gave an interpreta-
tion of these restrictions in achievable sensitivity reduction. This section
presents a result on how close to the estimate for centralized control sys-
tems in Proposition 1 we can get with a decentralized design.

Consider a partially closed system having the first k − 1 loops closed
and the last m− k+ 1 loops open. Let the controller be

C̄k−1 � diag{C1, . . . , Ck−1}
and suppose it stabilizes Gk−1. Introduce Hk � Hk(C1, . . . , Ck−1) as the
transfer matrix between uk and yk for this partially closed system. We
define H1 :� G11 and for k � 2, . . . , m it follows that

Hk � Gkk − LkC̄k−1Sk−1RT
k . (2)

(The argument of Hk showing the dependency of the controller is omitted
for convenience.) Note that C̄k−1Sk−1 is stable because the partially closed
system is stable, and thus Hk is stable if G is stable. It is easy to show
that if Gk−1 is nonsingular, then

Hk � Gkk − LkG−1
k−1(I − Sk−1)RT

k , k � 2, . . . , m. (3)
We also use the notation

Ĥk :� Gkk − LkG−1
k−1RT

k , k � 2, . . . , m. (4)

Note that Ĥk is not necessarily proper and that Ĥk does not depend on
the controller C .

Next we combine Proposition 1 with the idea of Theorem 1 to state a
result that gives an upper bound on the minimal weighted sensitivity for
a decentralized control system with open-loop RHP zeros.

108



5. Zeros and Sequential Loop-Closure

THEOREM 2
Consider a stable transfer matrix G and a strictly proper stable transfer
function W with no RHP zeros. If Gm−1 is sequentially minimum phase,
φ k(W) is bounded for k � 2, . . . , m, and Cm is strictly proper and stabilizes
Ĥm with uW−1Cmu∞ bounded, then for every δ > 0 there exists a strictly
proper stabilizing controller C � diag{C1, . . . , Cm} such that

uW(I + GC)−1u∞ < uW(I + ĤmCm)−1u∞
(
1+ φ m(W)uWu∞

)+ δ .

Proof: See Appendix.

REMARK 4 Lemma 4 in Section 5 implies that Ĥm has the same RHP
zeros as G. The limitations imposed by Ĥm are in this sense similar to
the limitations faced at a centralized control design for G. Theorem 2
gives a connection between sensitivity reduction using decentralized and
centralized control for some open-loop systems that have RHP zeros.

REMARK 5 If Lm � 0, which for example holds when G is upper trian-
gular, then uW Su∞ < uW(I + ĤmCm)−1u∞ + δ . Decentralization impose,
of course, no extra limitations on the sensitivity reduction in this case.

5. Zeros and Sequential Loop-Closure

Closing one control loop at a time is for many practical reasons the dom-
inating way of designing control systems in industry. There exist, how-
ever, only few systematic design methods based on such a sequential loop-
closure [Mayne, 1979; Bryant and Yeung, 1996]. From a theoretical point
of view, this kind of approach have several limitations compared to an ap-
proach with all loops closed simultaneously. Nevertheless, it is interesting
to quantify the fundamental properties of the sequential method. In this
section results on the connection between sequential loop-closure design
and multivariable zeros are derived.

A key result for sequentially closed loops is the following simple fact.

LEMMA 3
Consider a stable transfer matrix G. If Ck(I+HkCk)−1, with Hk defined in
(2), is stable for all k � 1, . . . , m, then C � diag{C1, . . . , Cm} stabilizes G.
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Proof: Let C̄k � diag{C1, . . . , Ck}. Application of

 A B

C D

−1

�
 A−1 0

0 0

+ A−1 B

−I

 (D − C A−1 B)−1
C A−1 −I


(5)

gives, with appropriate matrix partitioning and the assumption that all
inverses exist,

C̄k(I + GkC̄k)−1 �
 C̄k−1 0

0 Ck

 I + Gk−1C̄k−1 RT
k Ck

LkC̄k−1 I + GkkCk

−1

�
 C̄k−1(I + Gk−1C̄k−1)−1 0

0 0


+
 C̄k−1(I + Gk−1C̄k−1)−1RT

k

−I

Ck(I + HkCk)−1

�
 LkC̄k−1(I + Gk−1C̄k−1)−1 −I

 .

Hence, if Ck(I+HkCk)−1 and C̄k−1(I+Gk−1C̄k−1)−1 are stable, then C̄k(I+
GkC̄k)−1 is stable. Because C̄1(I +G1C̄1)−1 � C1(I + H1C1)−1 and Ck(I +
HkCk)−1 is stable for all k � 1, . . . , m, mathematical induction proves the
result. Well-posedness follows similarly.

REMARK 6 The single condition that Ck(I + HkCk)−1 is stable does not
imply that the whole closed-loop system is stable after k loops closed. The
opposite is, of course, true: If the system is stable after k loops closed,
then Ck(I + HkCk)−1 is stable because

 0 I
 C̄k(I + GkC̄k)−1

0

I

 � Ck(I + HkCk)−1.

The following result is a slight generalization of Theorem 5.2.7 in [Rosen-
brock, 1970].

LEMMA 4
Consider a transfer matrix G and let k ∈ {2, . . . , m}. If loops 1 to k−1 are
closed such that Sk−1(s0) � 0 for some s0 ∈ C and Gk−1(s0) is nonsingular,
then

det Hk(s0) � det Gk(s0)
det Gk−1(s0) .
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Proof: Equation (3) with Sk−1(s0) � 0 gives

det Hk(s0) � det(Gkk − LkG−1
k−1RT

k )(s0).
The equation

det
 A B

C D

 � det A det(D − C A−1 B)

applied to

Gk �
 Gk−1 RT

k

Lk Gkk


then leads to

det Gk(s0) � det Gk−1(s0)det Hk(s0),
which gives the result.

Lemma 4 relates zeros of the subsystem Gk to zeros in loop k. Hence, if
all loops but one have tight control, the achievable performance in that
loop will be given by the zeros of G. This consequence was exposed in
Theorem 2. A result similar to Lemma 4 holds even if we only know that
Sk−1(s0) is small.

THEOREM 3
Consider a transfer matrix G. Let k ∈ {2, . . . , m} and s0 ∈ C. If Gk(s0) is
nonsingular and loops 1 to k− 1 are closed such that

uSk−1(s0)u ⋅ uGk(s0)u ⋅ uG−1
k (s0)u < 1,

then

uH−1
k (s0)u < uG−1

k (s0)u
1− uSk−1(s0)u ⋅ uGk(s0)u ⋅ uG−1

k (s0)u .

Proof: Introduce the matrix

Γk :�
Gk−1 (I − Sk−1)RT

k

Lk Gkk

 .

Then

Γ−1
k (s0) �

(
Gk −

 0 Sk−1RT
k

0 0

)−1

(s0)

� G−1
k

(
I −

0 Sk−1RT
k

0 0

G−1
k

)−1

(s0).
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Recall that uFu < 1 implies u(I − F)−1u ≤ (1− uFu)−1. Hence, because

uSk−1RT
k u ⋅ uG−1

k u ≤ uSk−1u ⋅ uGku ⋅ uG−1
k u < 1,

we have

uΓ−1
k (s0)u < uG−1

k (s0)u
1− uSk−1(s0)u ⋅ uGk(s0)u ⋅ uG−1

k (s0)u .

Applying the estimate∥∥∥∥∥
 A B

C D

−1
∥∥∥∥∥ ≥ u(D − C A−1 B)−1u

to Γ−1
k gives uΓ−1

k (s0)u ≥ uH−1
k (s0)u, which completes the proof.

Theorem 3 states that if neither Gk lose rank in s0, nor does Hk provided
that the feedback of the subsystem Gk−1 is sufficiently tight and Gk is
bounded. Note that the assumption uSk−1u ⋅uGku ⋅uG−1

k u < 1 is equivalent
to that uSk−1u < 1/κ (Gk), where κ (Gk) :� uGku ⋅ uG−1

k u is the condition
number, well-known as a measure of how close a matrix is to singularity.
The condition number of the open-loop system κ (G) is suggested for plant
assessment and for choosing input–output pairing in [Morari and Zafiriou,
1989].

6. Conclusions

New results on performance limitation of multi-loop control systems have
been presented. Sequentially minimum phase was introduced as when
the top left submatrices of the open-loop system are minimum phase. The
main theorem said that for stable systems any bandwidth is achievable
with multi-loop control, provided that the system is sequentially minimum
phase and a condition on the relative degree of the subsystems holds. The
zeros of G1, . . . , Gm−1 can be seen as the the cost of choosing a certain
control structure, and, hence, give suggestions for solutions to the con-
trol structure design problem. There exist only few systematic methods
to compare decentralized and centralized control structures. Our result
give suggestions on how to derive such a method, where the zeros of the
subsystems of G should be considered. Another recent method is given
in [Freudenberg and Middleton, 1996]. RHP zeros of open-loop subsys-
tems also set constraints for stabilization of unstable plants [Davison and
Wang, 1985].
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7. References

The transfer matrices Hk and Ĥk arising in the preceding analysis
have connections to the relative gain array (RGA). The RGA was intro-
duced by Bristol [Bristol, 1966] and is today a standard tool for interac-
tion analysis in chemical process control [Morari and Zafiriou, 1989]. For
simplicity, consider a system with two inputs and two outputs. Then the
dynamic RGA is represented by the transfer function

λ :� G11G22

G11G22 − G12G21
.

It follows from (4) that λ � G22/Ĥ2. Hence, the RGA can be interpreted as
the fraction between G22 and H2 under infinitely tight feedback in loop
one. Theorem 1 provides a sufficient condition for applicability of RGA
analysis. Note, however, that Proposition 1 suggests that if there exist
RHP zeros close to the imaginary axis, the RGA analysis might be less
appropriate.
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Appendix

Theorems 1 and 2 are proved in this appendix. Notations and results
from Sections 4 and 5 as well as the following two lemmas are used in
the proofs.
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LEMMA 5
Let k ∈ {2, . . . , m} and suppose I + HkCk is nonsingular. Then

Sk �
 Sk−1 0

0 0

+ Sk−1RT
k Ck

−I

 (I + HkCk)−1
 LkC̄k−1Sk−1 −I

 .

Proof: The equality follows from the matrix equation (5) applied to

Sk � (I + GkC̄k)−1 �
 S−1

k−1 RT
k Ck

LkC̄k−1 I + GkkCk

−1

using
I + HkCk � I + GkkCk − LkC̄k−1Sk−1RT

k Ck.

LEMMA 6
Consider a stable transfer matrix Gk and a strictly proper stable trans-
fer function W with no RHP zeros. Assume Gk is sequentially minimum
phase, φ X(W) is bounded for X � 2, . . . , k, and that C̄k−1 stabilizes Gk−1.
Let Ck be given as Ck � (I − QĤk)−1Q with Q proper and stable, Ĥk be
defined by (4), and uW−1Cku∞ be bounded. If uW Sk−1u∞ is sufficiently
small, then C̄k stabilizes Gk and

uW Sku∞ ≤ uW Sk−1u∞ +
(
1+ uW Sk−1u∞ ⋅ uGu∞ ⋅ uW−1Cku∞

)
� uW(I + ĤkCk)−1u∞

(
1−φ k(W)uW Sk−1u∞ ⋅ uQu∞

)−1

� [1+ φ k(W)
(uWu∞ + uW Sk−1u∞

)]
.

Proof: We start by showing closed-loop stability. Note that

Hk − Ĥk � LkG−1
k−1Sk−1RT

k

is stable and that

uLkG−1
k−1Sk−1RT

k u∞ � uW−1 LkG−1
k−1W Sk−1RT

k u∞
≤ φ k(W) ⋅ uW Sk−1u∞ ⋅ uGu∞ < ∞.

Because Hk is proper, this gives that Ĥk is proper. Hence, Ck(I+HkCk)−1

is stable for all uW Sk−1u∞ sufficiently small, because Q � Ck(I+ ĤkCk)−1

is stable. 1 Closed-loop stability follows from Lemma 3.
1A crucial point here and in the remaining part of the proof is that Gk−1 has no RHP

zeros. If Gk−1 has a RHP zero, then there does not exist any stabilizing controller C̄k−1 such
that uW Sk−1u∞ is arbitrarily small, see Proposition 1.
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From Lemma 5 we then have that

uW Sku∞ ≤ uW Sk−1u∞ +
(
1+ ∥∥Sk−1RT

k Ck
∥∥
∞
)

� uW(I + HkCk)−1u∞
(
1+ ∥∥LkC̄k−1Sk−1

∥∥
∞
)
.

(6)

Each of the right-hand side expressions of (6) is estimated next. First,

uSk−1RT
k Cku∞ ≤ uW Sk−1u∞ ⋅ uGu∞ ⋅ uW−1Cku∞.

Second,

uW(I + HkCk)−1u∞ � uW(I − ĤkQ)(I − (Ĥk − Hk)Q
)−1u∞

≤ uW(I + ĤkCk)−1u∞
(
1− uLkG−1

k−1Sk−1RT
k Qu∞

)−1

≤ uW(I + ĤkCk)−1u∞
(
1−φ k(W) ⋅ uW Sk−1u∞ ⋅ uQu∞

)−1,

if uW Sk−1u∞ is sufficiently small. Finally, for the last expression of (6) we
have

uLkC̄k−1Sk−1u∞ ≤ uW−1 LkG−1
k−1u∞ ⋅ uW Gk−1C̄k−1Sk−1u∞

� φ k(W)uW(I − Sk−1)u∞
≤ φ k(W)

(uWu∞ + uW Sk−1u∞
)
.

Proof of Theorem 1: We prove by mathematical induction that for every
ε X, X ∈ {1, . . . , m}, there exists a strictly proper stabilizing and stable
controller C̄X � diag{C1, . . . , CX} such that

uW(I + GXC̄X)−1u∞ < ε X. (7)

Lemma 2 gives that this is true for X � 1. Suppose it holds also for
X � 2, . . . , k − 1. From the assumptions and Lemma 4 it follows that
Ĥk has no RHP zeros. Lemma 2 gives that for every δ k > 0 there ex-
ists a strictly proper and stable Ck such that Ck(I + ĤkCk)−1 is stable,
uW−1Cku∞ bounded, and

uW(I + ĤkCk)−1u∞ < δ k.

Hence, by first choosing δ k > 0 and then ε k−1 > 0 sufficiently small, we
obtain from Lemma 6 that for every ε k > 0 there exists a stabilizing and
stable controller C̄k such that uW Sku∞ < ε k. The induction completes the
proof.
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Proof of Theorem 2: Lemma 4 gives that Ĥm is stable. Because φ m(W) is
bounded, we get as in the proof of Theorem 1 that Ĥm is proper. It is thus
no restriction to assume that Cm � Q(I − ĤmQ)−1, where Q is proper
and stable. Theorem 1 gives that for every ε > 0 there exists a strictly
proper controller C̄m−1 � diag{C1, . . . , Cm−1} stabilizing Gm−1 such that
uW Sm−1u∞ < ε . From Lemma 6 we get

uW Su∞ ≤ ε + (1+ εuGu∞ ⋅ uW−1Cmu∞
)uW(I + ĤmCm)−1u∞

� (1−φ m(W)εuQu∞
)−1[1+ φ m(W)(uWu∞ + ε )]

≤ uW(I + ĤmCm)−1u∞
(
1+ φ m(W)uWu∞

)+ δ (ε ),

where δ (ε ) → 0 as ε → 0. Closed-loop stability follows from Lemma 3.
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Paper 4

A Multivariable Process
with an Adjustable Zero

Karl Henrik Johansson and José Luís Rocha Nunes

Abstract
A novel multivariable laboratory process that consists of four intercon-
nected water tanks is presented. The linearized dynamics of the system
have a multivariable zero that is possible to move along the real axis by
changing a valve. The zero can be placed in both the left and the right
half-plane. In this way the quadruple-tank process is ideal for illustrating
many concepts in multivariable control, particularly performance limita-
tions due to multivariable right half-plane zeros. Accurate models are
derived from both physical and experimental data and multi-loop control
is illustrated.
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1. Introduction

There is an increased industrial interest in the use of multivariable control
techniques. They are needed to achieve improved performance of complex
industrial processes [Shinskey, 1981]. Therefore, it is important to in-
clude multivariable methods in the control curriculum. Of course, true
understanding and engineering skills are only obtained if these concepts
are illustrated in laboratory exercises. However, few multivariable lab-
oratory processes have been reported in the literature. Mechanical sys-
tems such as the helicopter model [Mansour and Schaufelberger, 1989;
Åkesson et al., 1996] and the active magnetic bearing process [Vischer
and Bleuler, 1990] have been developed at ETH in Zürich. Davison has
developed a water tank process, where multivariable water level control
and temperature–flow control can be investigated [Davison, 1985]. Some
multivariable laboratory processes are commercially available, for exam-
ple from Quanser Consulting in Canada, Educational Control Products in
U.S., and Feedback Instruments and TecQuipment in U.K.

This paper describes a new laboratory process that consists of four
interconnected water tanks and two pumps. The system is shown in Fig-
ure 1. Its inputs are the voltages to the two pumps and the outputs are
the water levels in the lower two tanks. This quadruple-tank process is a
simple interconnection of two double-tank processes, which are standard
processes in many control laboratories [Åström and Östberg, 1986; Åström
and Lundh, 1992]. The setup is thus simple, but still the process can illus-
trate interesting multivariable phenomena. The linearized model of the
quadruple-tank process has a multivariable zero, which can be located in
either the left or the right half-plane by simply changing a valve. Control
performance limitations due to zero locations can be derived from complex
analysis [Freudenberg and Looze, 1988; Seron et al., 1997]. These illus-
trate fundamental restrictions on the possible choice of closed-loop system.
For example, right half-plane zeros impose restrictions on the sensitivity
function: if the sensitivity is forced to be small in one frequency band, it
has to be large in another, possibly yielding an overall bad performance.
The fundamentals for what can be achieved with linear control have also
received industrial interest and application [Stein, 1990; Goodwin, 1997].

The outline of the paper is as follows. A nonlinear model for the
quadruple-tank process based on physical data is derived in Section 2.
It is linearized and some properties of the linear model is emphasized. In
Section 3 linear models are estimated from experimental data and they
are compared to the physical model. Simple multi-loop PI control of the
quadruple-tank process is performed in Section 4 and some concluding
remarks are given in Section 5.

120



2. Physical Model

Figure 1. The quadruple-tank laboratory process shown together with a new con-
troller interface running on a Pentium PC.

2. Physical Model

In this section we derive a mathematical model for the quadruple-tank
process from physical data.

A schematic diagram of the quadruple-tank process is shown in Fig-
ure 2. The target is to control the level in the lower two tanks with two
pumps. The process inputs are v1 and v2 (input voltages to the pumps)
and the outputs are y1 and y2 (voltages from level measurement devices).
Mass balance for one of the tanks gives

A
dh
dt
� −qout + qin,

where A denotes the cross-section of the tank, h ≥ 0 the water level,
and qin ≥ 0 and qout ≥ 0 the inflow and outflow of the tank, respectively.
Bernoulli’s law yields qout � a

√
2gh, where a is the cross-section of the

outlet hole and g is the acceleration of gravity.
The flow through each pump is split proportional to how a valve is

adjusted, see Figure 2. Assume that the flow generated by the each pump
is proportional to the applied voltage v and let qL be the flow going to the
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v1 v2

y1 y2
Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2

Figure 2. The quadruple-tank laboratory process. The water levels in Tank 1 and
Tank 2 are controlled by two pumps. When changing the position of the valves, the
location of a multivariable zero for the linearized model is moved.

lower tank and qU the flow going to the upper tank. Then

qL � γ kv, qU � (1− γ )kv, γ ∈ [0, 1].

The parameter γ is determined from how the valve is set. Combining these
equations for the interconnected tanks gives

dh1

dt
� − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ 1k1

A1
v1,

dh2

dt
� − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ 2k2

A2
v2,

dh3

dt
� − a3

A3

√
2gh3 + (1− γ 2)k2

A3
v2,

dh4

dt
� − a4

A4

√
2gh4 + (1− γ 1)k1

A4
v1,

(1)

where subscript i of ai, Ai, and hi represents Tank i, ki and vi corresponds
to Pump i, and γ i to the flow through Pump i. The measured level signals
are proportional to the true levels, that is, y1 � kch1 and y2 � kch2. The
parameter values of the laboratory process are given in Table 4.1. The
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2. Physical Model

A1, A3 [cm2] 28

A2, A4 [cm2] 32

a1, a3 [cm2] 0.071

a2, a4 [cm2] 0.057

kc [V/cm] 0.50

g [cm/s2] 981

Table 4.1 Parameter values of the laboratory process.

pump gains k1 and k2 vary slightly with the operating point. Their values
are given when discussing the operating points next.

Operating points

For a stationary operating point (h0, v0), the differential equations in (1)
give that

a3

A3

√
2gh0

3 �
(1− γ 2)k2

A3
v0

2,

a4

A4

√
2gh0

4 �
(1− γ 1)k1

A4
v0

1,
(2)

and thus

a1

A1

√
2gh0

1 �
γ 1k1

A1
v0

1 +
(1− γ 2)k2

A1
v0

2,

a2

A2

√
2gh0

2 �
(1− γ 1)k1

A2
v0

1 +
γ 2k2

A2
v0

2.

It follows that there exists a unique constant input (v0
1, v0

2) giving the
steady-state levels (h0

1, h0
2) if and only if the matrix

M �
 γ 1k1 (1− γ 2)k2

(1− γ 1)k1 γ 2k2

 (3)

is non-singular, that is, if and only if γ 1 + γ 2 6� 1. The singularity is
natural. In stationarity, the flow through Tank 1 is γ 1q1 + (1− γ 2)q2 and
the flow through Tank 2 is γ 2q2 + (1 − γ 1)q1. If γ 1 + γ 2 � 1, these flows
equal γ 1(q1 + q2) and (1− γ 1)(q1 + q2), respectively. The stationary flows
through Tank 1 and Tank 2 are thus dependent, and so must the levels
also be.
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P− P+
(h0

1, h0
2) [cm] (12.4, 12.7) (12.6, 13.0)

(h0
3, h0

4) [cm] (1.8, 1.4) (4.8, 4.9)
(v0

1, v0
2) [V] (3.00, 3.00) (3.15, 3.15)

(k1, k2) [cm3/Vs] (3.33, 3.35) (3.14, 3.29)
(γ 1, γ 2) (0.70, 0.60) (0.43, 0.34)

Table 4.2 Parameter values for the minimum phase operating point P− and the
nonminimum phase point P+.

The model and control of the quadruple-tank process are studied at
two operating points: P− at which the system will be shown to have min-
imum phase characteristics and P+ at which it will be shown to have
nonminimum phase characteristics. The operating points correspond to
the parameter values in Table 4.2.

Linearization

Introduce the variables xi :� hi − h0
i and ui :� vi − v0

i . The linearized
state-space equations are then given by

dx
dt
�



− 1
T1

0
A3

A1T3
0

0 − 1
T2

0
A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4


x+



γ 1k1

A1
0

0
γ 2k2

A2

0
(1− γ 2)k2

A3

(1− γ 1)k1

A4
0


u,

y �
 kc 0 0 0

0 kc 0 0

 x,

(4)

where the time constants are

Ti � Ai

ai

√
2h0

i

g
, i � 1, . . . , 4.
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The corresponding transfer matrix is

G(s) �


γ 1c1

1+ sT1

(1− γ 2)c1

(1+ sT3)(1+ sT1)
(1− γ 1)c2

(1+ sT4)(1+ sT2)
γ 2c2

1+ sT2


with

c1 � T1k1kc

A1
, c2 � T2k2kc

A2
.

Multivariable zeros

The multivariable zeros are in our case the zeros of the numerator poly-
nomial of the rational function

det G(s) � c1c2

γ 1γ 2
∏4

i�1(1+ sTi)

[
(1+ sT3)(1+ sT4) − (1− γ 1)(1− γ 2)

γ 1γ 2

]
.

The transfer matrix G thus has two finite zeros for γ 1, γ 2 ∈ (0, 1]. A root-
locus argument gives that one of them is always in the left half-plane, but
the other can be located either in the left or the right half-plane. Introduce
a parameter η ∈ [0,∞) as

η :� (1− γ 1)(1− γ 2)
γ 1γ 2

.

If η is small, the two zeros are close to −1/T3 and −1/T4, respectively.
Furthermore, one zero tends to−∞ and one zero tends to +∞ as η →∞. If
η � 1 one zero is located at the origin. This case corresponds to γ 1+γ 2 � 1,
which is also the condition for that the matrix M in (3) is singular. It
follows that the system is nonminimum phase for

0 < γ 1 + γ 2 ≤ 1

and minimum phase for
1 < γ 1 + γ 2 ≤ 2.

Recall from Table 4.2 that γ 1+γ 2 � 1.30 > 1 for P− and γ 1+γ 2 � 0.77 < 1
for P+.

For the two operating points P− and P+ we have the following time
constants and zeros:
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Figure 3. Validation of the linear physical model G−. The outputs from the model
(dashed lines) together with the outputs from the real process (solid lines) are
shown in the minimum phase setting.

P− P+
(T1, T2) (62, 90) (63, 91)
(T3, T4) (23, 30) (39, 56)
Zeros (−0.060,−0.018) (−0.057, 0.013)

The dominating time constants are thus similar in both operating condi-
tions. The physical modeling gives the two transfer matrices

G− �


2.6

1+ 62s
1.5

(1+ 23s)(1+ 62s)
1.4

(1+ 30s)(1+ 90s)
2.8

1+ 90s

 , (5)

G+ �


1.5

1+ 63s
2.5

(1+ 39s)(1+ 63s)
2.5

(1+ 56s)(1+ 91s)
1.6

1+ 91s

 . (6)

Figures 3 and 4 show simulations of these two models compared to real
data obtained from identification experiments discussed in next section.
The inputs are pseudo-random binary sequences (PRBSs) with low ampli-
tudes, so that the dynamics are captured by the linear models. The model
outputs agree very well with the responses of the real process.

A multivariable RHP zero may influence the achievable performance
for only part of the system. The reason for this is that a multivariable
zero is associated with a direction. The output direction ψ of a single zero
z is a complex vector of unit length defined from

ψ ∗G(z) � 0,
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Figure 4. Validation of the linear physical model G+. The outputs from the model
(dashed lines) together with the outputs from the real process (solid lines) are
shown in the nonminimum phase setting.

where the asterisk denotes conjugate transpose. If the output direction
for a RHP zero has more than one non-zero element, the effect of the
zero can be distributed to the outputs associated with these elements
by proper control design. Corollary 4.3.4 in [Seron et al., 1997] suggests
this in terms of minimizing the H∞ norm of elements of the sensitivity
function. A consequence of this result is that the deterioration resulting
from a RHP zero may not be so bad for MIMO systems as for SISO. This
is not the case if the output direction has only one non-zero element. A
related result is given as Corollary 13.2-2 in [Morari and Zafiriou, 1989]
saying that if z is the only zero and element k of ψ is non-zero, then the
complementary sensitivity function can be chosen such that z only shows
up in diagonal element k. The influence of the zero thus cannot only be
distributed, but also (if it is preferable) concentrated to one loop.

From (5) and (6) we see that neither G− nor G+ have a zero with unit
vector direction. A multivariable control design for G+ can thus move
the effect of the RHP zero to either of the loops and the full freedom of
multivariable control can be utilized. This will not be pursued further.
Let it suffice to mention that the quadruple-tank process is well suited
for testing multivariable design methods.

3. System Identification

The physical model derived in previous section is now compared to a
model estimated using standard system identification techniques [Ljung,
1987; Johansson, 1993].

Both SIMO and MIMO identification experiments were performed with
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Figure 5. Identification experiment using two uncorrelated PRBS signals as in-
puts for the minimum phase setting.

PRBS signals as inputs. Collected data from a MIMO experiment for the
minimum phase setting are shown in Figure 5. The levels of the PRBS
signals were chosen so that the process dynamics were approximately
linear.

Black-box and gray-box identification methods were tested using Mat-
lab’s System Identification Toolbox [Ljung, 1997]. Linear SISO, MISO, and
MIMO maps were identified in ARX, ARMAX, and state-space forms. All
model structures gave similar responses to validation data. Here we only
present some examples of the results. We start with a black-box approach.
Figure 6 shows validation data for the minimum phase setting together
with a simulation of a state-space model derived with the sub-space al-
gorithm N4SID [Van Overschee and De Moor, 1994; Ljung, 1997]. The
state-space model has three real poles corresponding to time constants 8,
41, and 113. It has one multivariable zero in −0.99. Validation data and
simulation for the nonminimum phase case are given in Figure 7. This
model is of fourth order and has time constants 11, 31, 140, and 220. Its
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Figure 6. Validation of state-space model for the minimum phase setting. Outputs
from identified model (dashed) together with the outputs from the real process
(solid) are shown.
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Figure 7. Validation of state-space model for the nonminimum phase setting. Out-
puts from identified model (dashed) together with the outputs from the real process
(solid) are shown.

two zeros are located in −0.288 and 0.019. The validation results in Fig-
ures 6 and 7 are of similar quality as the results for the physical models
shown in Figures 3 and 4. Note that the minimum phase setting gives
an identified model with no RHP zero, whereas the nonminimum phase
setting gives a dominating RHP zero (i.e., a RHP zero close to the origin
compared to the time scale given by the time constants).

Gray-box models with structure fixed to the linear state-space equa-
tion (4) gave similar validation results as the previously shown. Because
of the fixed structure, the number of poles and zeros are the same as for
the physical model. For the minimum phase setting we have time con-
stants (T1, T2, T3, T4) � (96, 99, 32, 39) and zeros at −0.045 and −0.012,
whereas for the nonminimum phase setting we have (T1, T2, T3, T4) �
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Figure 8. Multi-loop control structure with two PI controllers C1 and C2.

(77, 112, 53, 55) and zeros 0.014 and −0.051. The zeros agree very well
with the ones derived from the physical model.

4. Multi-Loop Control

The multi-loop control structure shown in Figure 8 are next applied to
the real process as well as to nonlinear and linear process models. PI
controllers of the form

CX(s) � KX

(
1+ 1

TiXs

)
, X � 1, 2

are tuned manually based on the linear physical models (5) and (6).
For the minimum phase setting P− the controller parameters (K1, Ti1) �

(3.0, 30) and (K2, Ti2) � (2.7, 40) are easily obtained. They give reason-
able performances as shown in Figure 9, where the responses are given
for a step in the reference signal r1. The top four plots show control of
the simulated nonlinear model in (1) (dashed lines) and control of the
identified linear state-space model (solid). The four lower plots show the
responses of the real process. The discrepancies between simulations and
the true time responses are small.

It is hard to find good controller parameters for the nonminimum
phase setting P+. The controller parameters (K1, Ti1) � (1.5, 110) and
(K2, Ti2) � (−0.12, 220) stabilize the process, but give much slower re-
sponses than for the minimum phase setting, see Figure 10. Note the
different time scales compared to Figure 9. The settling time is approxi-
mately ten times longer for the nonminimum phase setting. The control
signal u2 seems to be noiseless. This is due to the low gain K2. It is no co-
incidence that K2 is chosen negative. Because det G+(0) < 0, there exists
no multi-loop PI controller with K1 � K2 > 0 that stabilizes the system,
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Figure 9. Results of PI control of minimum phase system. The upper four plots
show simulations with the nonlinear physical model (dashed) and the identified
linear model (solid). The four lower plots show experimental results.
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Figure 10. Results of PI control of nonminimum phase system. Same variables
are shown as in Figure 9. Note the ten times longer time scale.
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see Theorem 14.3-1 in [Morari and Zafiriou, 1989]. Even if the controller
gains are small the closed-loop system will be unstable.

5. Conclusions

A new multivariable laboratory process has been described. The quad-
ruple-tank process seems to fulfill the following criteria stated in [Kheir
et al., 1996]:

[The control laboratory’s] main purpose is to provide the connec-
tion between abstract control theory and the real world. There-
fore it should give an indication of how control theory can be
applied and also an indication of some of its limitations.

More precisely it was shown that the quadruple-tank process is well suited
for illustrating performance limitations in multivariable control design
caused by RHP zeros. This followed from that the linearized model of
the process has a multivariable zero that in a direct way is connected
to the physical position of two valves. Models from physical data and
experimental data were derived and they were shown to have responses
similar to the real process. Decentralized PI control showed that it was
much more difficult to control the process in the nonminimum phase case
than in the minimum phase case.

The experiments described in this paper have been performed using
the PC interface shown in Figure 11 [Nunes, 1997], which has been devel-
oped in the man-machine interface generator InTouch from Wonderware
Corporation. The interface is connected to the real process as well as to
a real-time kernel [Andersson and Blomdell, 1991], where the nonlinear
model of the process can be simulated. This gives a flexible experimen-
tal platform where controllers can be designed in Matlab, loaded into the
interface, simulated with the nonlinear model, and finally tested on the
real process.

Ongoing work includes multivariable controller design for the quad-
ruple-tank process. For example, a new multivariable controller tuning
method based on relay feedback experiments will be tested on the process
[Johansson et al., 1997]. Also other control design methods will be tried.
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Paper 5

Multivariable Controller Tuning

Karl Henrik Johansson, Ben James,
Greyham F. Bryant, and Karl Johan Åström

Abstract
The problem of tuning individual loops in a multivariable controller is
investigated. It is shown how the performance of a specific loop relates to
a row in the controller matrix. Several interpretations of this relation are
given. An algorithm is also presented that estimates the model required
for the tuning via a relay feedback experiment. The algorithm does not
need any prior information about the system or the controller. The results
are illustrated by examples.
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1. Introduction

Poorly tuned control loops represent a large economic cost for industry
[Ender, 1993]. It has been claimed that only twenty percent of the loops
in pulp and paper industry reduce variability [Bialkowski, 1992]. Control
parameters are often set to default values or are manually tuned in an
ad hoc way. The reason for this is that there is a great lack of tools for
tuning industrial controllers systematically. Nowadays there exist meth-
ods for automatic tuning of SISO control loops, which have been widely
accepted and implemented in several commercial controllers [Åström and
Hägglund, 1995]. Many control loops are, however, coupled and the in-
teraction has to be considered in the control design to gain improved
performance [Shinskey, 1981]. Most modern multivariable control design
methods require a full model of the process [Maciejowski, 1989]. In many
cases such a model is not available and physical modeling or system iden-
tification may require a prohibitive engineering effort. Furthermore, it is
hard, or impossible, to impose a certain control structure on standard mul-
tivariable design methods. Therefore, there is a need for simple methods
of tuning multivariable controllers; particularly methods that compromise
optimality for engineering efficiency.

This paper focus on the problem of retuning an existing multivariable
control system. A framework is developed where it is possible to derive
the influence of retuning one loop on the overall closed-loop performance.
A badly tuned loop can in this way be improved by changing certain
elements of the controller matrix. Tuning a loop corresponds to changing
a row in the controller matrix; hence, to solve a SIMO control design
problem. The idea is that this description can be exploited in conjunction
with the designer’s knowledge of the process to achieve the desired closed-
loop performance and robustness specifications. Several quantities useful
for estimating the influence of a controller row on the closed-loop system
are derived in the paper. The information required for this type of design
is also discussed together with how this information can be obtained. It is
shown that no prior knowledge of the process dynamics or of the controller
dynamics is needed, if a modeling experiment based on relay feedback is
used.

In existing work on extending the auto-tuning method for SISO control
systems developed in [Åström and Hägglund, 1984] to MIMO systems, ei-
ther one relay is used for each experiment by closing one loop at a time
[Hang et al., 1994; Friman and Waller, 1994; Vasnani, 1994; Shen and Yu,
1994] or all loops are set under relay feedback simultaneously [Zhuang
and Atherton, 1994; Vasnani, 1994; Palmor et al., 1995; Wang et al., 1997].
A major drawback with the latter approach is that instead of giving sta-
tionary limit cycles the relays can induce very complicated oscillations
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[Vasnani, 1994; Johansson, 1997]. There exist no results in terms of plant
data for when this may or may not happen. Based on a successful relay
experiment a controller is designed. Most authors limit the control struc-
ture to a decentralized configuration of SISO PID controllers [Zgorzelski
et al., 1990; Vasnani, 1994; Zhuang and Atherton, 1994; Shen and Yu,
1994; Palmor et al., 1995]. Decoupling design is derived in [Friman and
Waller, 1994; Wang et al., 1997]. Tuning cascade controllers (MISO con-
trollers) is considered in [Hang et al., 1994]. For a survey on relay feedback
methods see [Åström et al., 1995].

In the present paper we use relay feedback experiments for tuning a
general multivariable controller. We choose a type of single-relay exper-
iment due to its robustness. The approach allows freedom in the choice
of control structure and multivariable design method. This means that a
decentralized PID controller can be used if the system is easy to control,
whereas a MIMO controller might be better in other situations. The pro-
posed method covers some of the preceding proposals from the literature,
and can be seen as a formalization or generalization of some of them. For
example, conditions for closed-loop stability using the suggested method
are derived.

The philosophy of treating a multivariable design problem as a series
of single-loop designs underlies various well-established design method-
ologies, such as sequential loop-closure and dominance design. It is also
the way most multivariable control designs are done in practice [Mayne,
1979; Bryant and Yeung, 1996]. The sequential methods have the ad-
vantage of being able to deal with control structure constraints. Tuning
methods for SISO controllers in MIMO systems are discussed in [Luy-
ben, 1986; Gawthrop and Nomikos, 1990; Desbiens et al., 1996] and in
many textbooks in process control such as [Seborg et al., 1989; Morari
and Zafiriou, 1989]. One common approach is to detune controller param-
eters derived using SISO design techniques [Niederlinski, 1971; Toh and
Devanathan, 1993]. This may, however, give a too low bandwidth. See
[Maciejowski, 1989] for a survey on control design methods.

The outline of the paper is as follows. Section 2 presents some results
that are useful for loop tuning. Retuning a row in the controller matrix is
formalized. In Section 3 it is shown that the required information about
the system can be obtained from an experiment with relay feedback. Sec-
tion 4 describes an application to a model of a new laboratory process.
Some concluding remarks are given in Section 5.
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Figure 1. Multivariable feedback system.

2. Loop Tuning

Suppose that a multivariable control system with unsatisfactory closed-
loop performance is given, for example, a loop may have too low a band-
width yielding slow responses. The basic idea is to adjust certain elements
of the controller matrix in order to improve the closed-loop behavior. In
general, such an adjustment will affect all loops in the system. The chal-
lenge is to obtain this effect on the desired loop without degrading the
performance of the other loops. This section gives results which enables
the designer to compute the effect of an adjustment of a single loop on
the overall closed-loop behavior.

Notation

Assume that there exists a stable closed-loop system as in Figure 1, com-
prising a process G and a nominal controller K , both with m inputs
and m outputs. Denote the manipulated variable or process input u �
(u1, . . . , um)T , the controlled variable or process output y � (y1, . . . , ym)T ,
and the reference or set-point r � (r1, . . . , rm)T . The controller matrix K
acts on the error signal e � (e1, . . . , em)T � r − y. Hence, y � Gu and
u � K e. The aim of the tuning procedure is to improve the performance
of one loop by adjusting appropriate elements of the controller matrix.
Without loss of generality, consider loop m and define the following par-
titions:

G �
m−1 1

m G1 G2

, K �


m

m−1 K1

1 k

. (1)

Partition the signal vectors u � (ūT , um)T , y � ( ȳT , ym)T , r � (r̄T , rm)T ,
and e � (ēT , em)T correspondingly, so that ū � (u1, . . . , um−1)T etc. Then

um � ε T
m K e � ke � k1e1 + ⋅ ⋅ ⋅+ kmem,
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Figure 2. Opening of control loop m for controller row retuning.
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Figure 3. Contribution of controller row k. The dashed box corresponds to H.

where ε T
m � (0, . . . , 0, 1) and ki, i � 1, . . . , m, are the elements of k. Row

m of the controller matrix K thus contains the coupling from the error
e to the control signal um. Figure 2 shows the closed-loop system with
the signal path um broken. Any sensible choice of the controller row k
that improves the performance of loop m, requires at least knowledge of
the SIMO transfer matrix from um to e in this partially open system. We
denote this transfer matrix

H � −(I + G1 K1)−1G2,

and assume that it is stable. The block diagram of Figure 3 shows ex-
plicitly the contribution of controller row m to the feedback control of the
system. The transfer matrices of the full multivariable closed-loop system
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can easily be described in terms of those for the system with H acting as
a process and k as a controller. In other words, the multivariable control
design problem for G is reduced to a SIMO control problem for H with
MISO controller k.

Parameterization

It is simple to calculate the effect of new or redesigned controller row
elements of the single-loop opening approach. If loop m is opened, the
input sensitivity function Si :� (I + K G)−1 and the output sensitivity
function So :� (I + GK )−1 are replaced by

S̃i :�
(

I +
 K1

0

G
)−1

�
 (I + K1G1)−1 −(I + K1G1)−1 K1G2

0 1

 ,

S̃o :�
(

I + G
 K1

0

)−1

� (I + G1 K1)−1,

respectively. We can also express Si in terms of S̃i:

Si � S̃i(I + ε mkGS̃i)−1.

If S̃i is partitioned similar to G � (G1, G2), so that

S̃i �
m−1 1

m S̃i1 S̃i2

,

then
H � −S̃oG2 � −GS̃i2.

The diagonal element m of the sensitivity matrix Si captures much of the
performance in loop m. By the definition of H and k, we have that

ε T
mSiε m � 1

1− kH
.

Knowledge of H alone is thus sufficient to compute the transfer function
for loop m that results from a particular choice of k.

The closed-loop transfer matrices are affine functions in the Youla pa-
rameter Q :� (I+K G)−1 K if G is stable [Maciejowski, 1989]. For example,
the sensitivity and complementary sensitivity matrices with reference to
process inputs are Si � I −QG and Ti � QG, respectively, and the corre-
sponding matrices with reference to process outputs are So � I−GQ and
To � GQ. The closed-loop transfer matrices are also affine functions in

q :� k
1− kH

.
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This 1 � m vector of transfer functions is the Youla parameter for the
partially open system. Some calculations gives the relation between q
and Q as

Q �
 K1

0

 (I + G1 K1)−1 +
 K1 H

1

 q(I + G1 K1)−1.

Parameterization of stabilizing controller rows and columns are studied
in [James and Bryant, 1995].

Nyquist theorem

Naturally, any adjustment of controller row m must be made in such a
way that the closed loop system remains stable. The following proposi-
tion states a Nyquist stability result concerning this. First, let DN de-
note the usual Nyquist contour encircling the right half-plane (RHP) and
N ( f (s), z) the number of clockwise encirclements of the point z by the im-
age of the contour DN under the map f as it is traversed in a clockwise
direction.

PROPOSITION 1
Assume the closed-loop system is stable with controller row k. Let k be re-
placed by k̂, where k̂ is such that no unstable modes are cancelled and that
the number of open-loop RHP poles does not change. Then the adjusted
closed-loop system remains stable if and only if

N (1− k̂H , 0) �N (1− kH , 0).

Proof: Because

det(I + K G) � (1− kH)det
(

I +
 K1

0

G
)
� (1− kH)det(I + K1G1),

application of the generalized Nyquist stability theorem [Maciejowski,
1989] with respect to the return difference I + K G establishes the re-
sult.

By introducing new controller row entries it is possible to obtain a MIMO
control system with more freedom than the corresponding decentralized
control system. The following result follows from application of classical
pole placement [Shaked and MacFarlane, 1977; Bryant, 1985].
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PROPOSITION 2
If g1 and g2 are two scalar transfer functions with no common RHP poles
or zeros, then there exist two scalar transfer functions k1 and k2 such
that g1k1 + g2k2 has no RHP zeros.

Although the result illustrates an advantage of using MIMO control in-
stead of SISO control, the limitations due to RHP zeros cannot be circum-
vented by a multivariable controller. Restrictions on performance imposed
by multivariable zeros are derived in [Zames, 1981]. It is shown that in-
dependent of the controller structure, there are bounds on the achievable
sensitivity function. However, in [Seron et al., 1997] it is shown that these
bounds are less severe if a centralized multivariable controller structure
is used. The effect of a multivariable zero can be assigned to certain con-
trol loops by such a controller. The effect of a zero can also be distributed
among several loops.

Example

The row tuning procedure is illustrated on the Rosenbrock system

G �


1− s
(s+ 1)2

2− s
(s+ 1)2

1− 3s
3(s+ 1)2

1− s
(s+ 1)2

 .

This system is known to have severe interactions, which makes it difficult
to control by two SISO controllers. Let the system initially be controlled
by

K �


8s+ 10

20s
0

0
6s+ 10

10s

 .

This multi-loop PI controller gives quite poor control with oscillatory set-
point responses. Assume that the second loop is to be retuned. Straight-
forward calculations give

H �


5s2 − 10s

5s3 + 8s2 + 6s+ 1
15s4 + 15s3 − 17s2 − 18s− 1

15s5 + 54s4 + 81s3 + 63s2 + 24s+ 3

 .

The transfer function H2 has a RHP zero in 1.09, which hence impose
restriction on the performance achievable with a SISO controller in the
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Figure 4. Second diagonal element of Si for original (dashed line) and retuned
(solid line) system.

second loop. To improve the response of the second loop a PD element is
introduced; the second controller row is replaced by

k �
 4s+ 2

s+ 10
6s+ 10

10s

 .

Figure 4 shows the second diagonal element of the input sensitivity func-
tion for the initial control system and the improved system. Step responses
are shown in Figure 5. A unit step in r1 is applied at t � 1 and a unit
step in r2 at t � 50. As predicted, the response of y2 is improved consid-
erably. A retuned second loop may, of course, deteriorate the response in
the first loop. Figure 5 shows that this in not the case in this particular
example. If there would have been a performance loss in the first loop, it
could have been retuned in a similar way as the second. This sequential
way of tuning controllers is often used in practice.

Why controller rows and not columns?

A system parameterization in controller rows were given in this section. A
dual representation for controller columns exist. The elements of control
column m describe the coupling between controller input em and controller
output u. Column control design is then governed by the partially open
system from u to em, with the feedback path from ym open. It turns out,
as we will see in next section, that the row formulation is best suited for
experiments with relay feedback. It is thus the choice in this paper.

145



Paper 5. Multivariable Controller Tuning

0 50 100

0

1

2

3

0 50 100

0

1

2

3

0 50 100

−2

0

2

4

0 50 100

−2

0

2

4

y1 y2

u1 u2

time time
Figure 5. Step responses for original (dashed) and retuned (solid) system.

3. Relay Experiment

A relay feedback experiment is a simple and robust way of doing closed-
loop identification. The setup for the original SISO experiment is simply
to replace the SISO controller by a relay [Åström and Hägglund, 1984].
For a large class of systems the relay induces a stationary oscillation.
The frequency of this oscillation and its amplitude can be used for tuning
SISO PID controllers similar to Ziegler and Nichols’ method [Ziegler and
Nichols, 1942]. After the PID parameters are derived, the relay is replaced
by the tuned controller.

The main advantages of an identification experiment based on relay
feedback are (1) that the frequency of the excitation signal is near the
cross-over frequency of the open-loop system, (2) that the experiment is
done in closed loop, and (3) that no prior knowledge about the process
dynamics is needed. The frequency of the relay output is close to optimum
in the sense that it is in the band where the estimated model has to be
accurate to support a satisfying control design. Even if no controller is
present in the loop during the experiment, the relay itself gives a high-
gain feedback. This means, for instance, that the process is automatically
kept close to its operating point during the experiment.

A drawback with the original relay feedback experiment is its lack of
excitation. Because only a square-wave of a single frequency enters the
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Figure 6. Three important points on the Nyquist curve.

process, only models such as

G(s) � K
1+ sT

e−sL

can be estimated. (The steady-state gain K is easily estimated from a
step-response experiment or by adding a bias to the relay output [Wang
et al., 1997].) If more complex models are needed, we must have a wider
frequency band of excitation. Next we introduce a modification of the stan-
dard relay experiment, by simply estimating two points on the Nyquist
curve instead of one.

Extended relay experiment

It is well-known that with a filter in series with the relay, any point on
the Nyquist curve can be estimated using relay feedback [Åström and
Hägglund, 1995]. This idea has been explored for SISO systems in [Schei,
1992; Schei, 1994]. Persson [Persson, 1992] investigated the amount of
process information needed for control design in number of points and
their location on the Nyquist curve. Three crucial points are marked with
crosses in Figure 6. Point 1 is determined by a standard relay experiment,
whereas Point 2 is determined from an experiment with a relay and an
integrator in series. Figure 7 shows an extended relay experiment applied
to a SISO system. The filter W is initially set to W � 1 and then to
W � 1/s. Together with steady-state data, this information is sufficient
to derive a model of the form

G(s) � b0s+ b1

s3 + a1s2 + a2s+ a3
. (2)
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_
GW

Figure 7. Extended relay feedback experiment for SISO system.

The controller tuning described in Section 2 is based on knowledge
of the column vector H. The set-up for an extended relay experiment to
identify H is shown in Figure 8, compare with Figures 3 and 7. The block
with ε T

m picks out error signal em. The relay is thus connected between
Wem and um. This gives an oscillation with frequencies determined by
Hm, which is typically the most important transfer function for controller
tuning in loop m. From measuring ē and em, we can estimate all elements
of H. We summarize the method in the following algorithm.

ALGORITHM 1—SIMO RELAY EXPERIMENT

1. Set W � 1 and wait for a stationary oscillation. Measure the fre-
quency ω 1 and derive the response for each element Hi.

2. Set W � 1/s and wait for a stationary oscillation. Measure the fre-
quency ω 2 and derive the response for each element Hi.

3. Freeze the relay output and wait for steady-state and derive the
steady-state gains for each element Hi.

4. Estimate Hi as in (2) based on the responses and the corresponding
frequencies ω 1 and ω 2.

The amounts of time required for a stationary oscillation in Step 1 and
Step 2 are small. Experiments show that stationarity is often reached
after three–four relay switches.

Because of measurement noise, the relay must have hysteresis in all
practical implementations. The estimated points on the Nyquist curve will
then differ slightly from Point 1 and Point 2 in Figure 6. This can be easily
compensated, see [Åström and Hägglund, 1995].

Note that Algorithm 1 automatically gives highest priority to the last
element of H in the sense that the excitation frequencies are adjusted to
suit Hm. This means also that if H1, . . . , Hm−1 give small responses around
the cross-over frequency of Hm, then the estimates of H1, . . . , Hm−1 are
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Figure 8. Relay experiment for identifying H.

probably poor. However, because the elements are small, the lack of accu-
racy has only a small influence on the control performance. This simple
measure of the size of Hi in three frequency points indicates if multi-loop
SISO control is sufficient or not. This is illustrated by the examples in
next section.

If more than one loop is initially poorly tuned or if a second loop is
affected by the tuning procedure of loop m, it might be necessary to repeat
the tuning for the other loops. After m relay experiments, a model of
the system G can be derived from the obtained data. The procedure is
illustrated for a system with m � 2 loops. Let H1 � H with H defined as
above and let H2 equal the corresponding column when the second loop
is closed instead of the first. Then we have G � (G1, G2) with

G1 � (I − H1k2)H2

k1 H1k2 H2 − 1
, G2 � (I − H2k1)H1

k1 H1k2 H2 − 1
,

where k1 and k2 are controller row one and two, respectively. A variety
of multivariable control design methods can be applied to the estimated
G. Note that the same information can be obtained from two closed-loop
relay experiments, where the relay is first connected between r1 and y1

and then between r2 and y2. No signal paths in the existing control system
have to be opened. This approach may be chosen if no loop openings of
the existing control system are tolerated.
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u1 u2

y1 y2

Figure 9. The quadruple-tank laboratory process. The water levels in the lower
two tanks are controlled with the help of two pumps.

4. Example

In this section the retuning procedure is applied to a multivariable level
control problem. The considered system is the quadruple-tank laboratory
process consisting of four water tanks shown in Figure 9. Modeling and
control of the real process is described in [Johansson and Nunes, 1997].
Here we use a normalized model. The two valves are set prior to an
experiment. In this way it is possible to make the control problem easy
or difficult. The positions of the valves can be interpreted in terms of two
parameters γ 1, γ 2 ∈ [0, 1]. With γ i � 0 the flow goes only to the upper
tank and with γ i � 1 the flow goes only to the lower tank. The linearized
system that maps pump flows to tank levels has the transfer matrix

P �


γ 1c11

1+ sT1

(1− γ 2)c12

(1+ sT1)(1+ sT3)
(1− γ 1)c21

(1+ sT2)(1+ sT4)
γ 2c22

1+ sT2

 ,
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Figure 10. Extended relay experiment for minimum phase system. The error sig-
nal e1 (dashed) is negligible compared to e2 (solid).

where Ti and cij depend on the cross-section areas of the tanks, the cross-
section areas of the outlets, and the operating point. Here we study a
normalized model with cij � 5 and Ti � 1. We model the dynamics in the
actuators and measurement devices as first-order lags 10/(s+10), so that
the open-loop system is given by

G � 500
(s+ 10)2


γ 1

s+ 1
1− γ 2

(s+ 1)2
1− γ 1

(s+ 1)2
γ 2

s+ 1

 .

It can be shown that G has a RHP zero if and only if γ 1 + γ 2 ∈ (0, 1], see
[Johansson and Nunes, 1997]. Next we study the system for one setting
without a RHP zero and one with a RHP zero.

Minimum phase system

Let γ 1 � γ 2 � 4/5. Then G has zeros in −5/4 and −3/4, so the sys-
tem is minimum phase. Let K � diag{1, 1} be the initial controller. The
response of the extended relay experiment described in Algorithm 1 is
shown in Figure 10. The response of e1 is small compared to e2. This
is further illustrated in Figure 11, where the small crosses are the esti-
mated frequency points for H1 and the large crosses the points for H2.
The dashed curves are the Nyquist curves for the true systems, whereas
the solid curve is a third-order estimate of H2.
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Figure 11. Nyquist curves of H for minimum phase system. The crosses are esti-
mated frequency points from relay feedback experiments. The small crosses corre-
spond to H1 and the large to H2. A third-order estimate of H2 is also shown (solid
line). The frequency response of H1 is negligible compared to the response of H2.

The result from the relay experiment indicates that we can neglect the
influence of H1 and simply retune the last element of k. The PI controller

k �
 0

2s+ 3
s


gives the poles −41.9 and −2.2± 4.6i for the second diagonal element of
Si. Note that the tuning here corresponds to applying SISO methods. For
this example the MIMO characteristics of the system are insignificant.

Nonminimum phase system

Let us now change the valves so that γ 1 � γ 2 � 2/5. Then G has ze-
ros in −5/2 and 1/2, so the system is nonminimum phase. Let K �
diag{−0.1, 0.1} be the initial controller. Figure 12 shows the result of the
relay experiment. The estimated Nyquist curves (solid) are shown in Fig-
ure 13, together with the true ones (dashed). We see that the interaction
is severe, so it is probably not sufficient to only retune the second loop. If
a relay experiment is also done in the first loop, it is straightforward to
derive a multivariable controller, for example based on decoupling.

5. Conclusions

It was shown how a poorly tuned multivariable controller can be retuned
through a simple closed-loop experiment based on relay feedback and con-
troller row design. In particular, the case with one bad loop was discussed.
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Figure 12. Extended relay experiment for nonminimum phase system. The error
signals e1 (dashed) and e2 (solid) are of the same magnitude.

−4 −3 −2 −1 0 1

0

0.5

1

1.5

2

2.5

Im

Re

Figure 13. Nyquist curves of H for nonminimum phase system. The crosses are
estimated frequency points from relay feedback experiments. The small crosses cor-
respond to H1 and the large to H2. Third-order estimates of H1 and H2 are also
shown (solid lines). The frequency responses of H1 and H2 are of the same magni-
tude.

The standard SISO relay feedback experiment in [Åström and Hägglund,
1995] was extended to give better excitation and a more accurate model,
which seems to be necessary for many MIMO control designs. Several
results on how a row in the controller matrix affects the closed-loop per-
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formance were derived. No fully automatic procedure was described in the
sense of automatic tuning for SISO systems. It is believed that this can
only be done if the considered class of systems is more limited than in this
paper. It was pointed out through an example that for “simple” multivari-
able control systems the proposed method agrees with automatic SISO
tuning. For “difficult” MIMO control problems the method still provides a
solid ground for controller design.
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Concluding Remarks

Several problems related to relay feedback, multivariable control, and
automatic tuning were discussed in this thesis. A number of new results
were proved, but unsolved problems and important questions were also
pointed out. In these concluding remarks we first briefly summarize the
main contributions of the thesis and then we discuss various extensions.
An affiliation list of the coauthors of the papers is also included.

1. Main Contribution

Relay feedback and multivariable control are two topics in control en-
gineering that present many interesting problems. In the thesis it was
demonstrated that it is theoretically challenging to investigate even such
an apparently simple system as a scalar linear system with relay feed-
back. The work was motivated by several applications. In particular, au-
tomatic controller tuning played a central role. It was also claimed that
widespread industrial use of multivariable control requires attention to
several unsolved problems of theoretical as well as of practical nature.
Questions related to choice of controller structure and modeling for sim-
ple control design were discussed. The main contributions of the thesis
are

• analysis of fast oscillations in linear systems with relay feedback;

• a stability condition for a new type of limit cycle in such systems;

• a new result on achievable performance for linear multivariable sys-
tems with diagonal feedback;

• a novel multivariable laboratory process with a transmission zero
that can be located anywhere on the real axis; and

• an extension of SISO automatic controller tuning to MIMO systems
via a relay experiment for retuning individual control loops.

All these issues are important. For example, fundamental limitations in
control systems are significant. They identify what properties that limit
the achievable performance of a system and they can therefore be used

157



Concluding Remarks

in process design. It is important to understand the behaviors of relay
feedback systems. For example, conventional simulation tools may give a
totally wrong representation of the fast oscillations. Furthermore, there
exists no exact condition when the automatic tuning method works.

2. Ideas for Future Work

In this section we propose research problems that are natural extensions
of the results presented in the thesis. Some general problems concerning
relay feedback and multivariable control are mentioned and a particular
generalization of a result in Paper 1 is discussed.

Relay feedback

There exist few results that describe the behavior of switched systems, al-
though such systems are widely used, for example, in supervisory control
and in various hierarchical control systems. A linear system under relay
feedback is a special class of switched systems with a simple character-
istic. It is natural to ask similar questions for nonlinear systems under
relay feedback as was done for linear systems in Paper 1 and Paper 2. A
nonlinear system under relay feedback is defined by the equations

ẋ � f (x, u),
y � c(x), (3)
u � − sgn y,

where f and c are smooth functions. The proof of Theorem 1 in Paper 1
on fast switches was based on a Taylor expansion of the step response of
the linear part of the system. Therefore it seems promising to generalize
to a local result for the nonlinear counterpart (3). In particular, if f is
affine in u, so that f (x, u) � a(x) + b(x)u with smooth functions a and b,
then C AX+1x± C AXB studied in the proof of Theorem 1 will be replaced
by LX+1

a c(x) ± Lb LX
ac(x), where Lac is the Lie derivative of c along a, see

[Isidori, 1989; Nijmeijer and van der Schaft, 1990]. The first non-vanishing
Markov parameter C Ak B thus corresponds to Lb Lk

ac(x).
It is interesting to study oscillations in affine nonlinear systems with

relay feedback. One problem is to state existence of initial conditions that
gives a sequence of consecutive switch times that tends to zero. The an-
swer for the linear case was given in Paper 1, where this was shown to
happen only for systems with relative degree one and two. For an affine
nonlinear system the relative degree can be defined roughly as the number
of differentiations of the output that are needed before the input appears
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explicitly, see Chapter 4 in [Isidori, 1989]. For systems with relative de-
gree one, a first-order sliding mode occurs if the vector fields on both sides
of the switch surface S � {x ∈ Rn : c(x) � 0} are pointing towards S [Fil-
ippov, 1988]. Stability of second-order sliding modes is derived in [Malm-
borg, 1998]. For third-order sliding modes a natural approach seems to be
to transform the relay feedback system in a neighborhood of a considered
point x0 into

ż1 � z2,
ż2 � z3,
ż3 � a1(z) + b(z)u,
ż4 � a2(z),

...

żn � an−2(z),
y � z1,
u � − sgn y.

(4)

This is possible if the system has relative degree three in a neighborhood
of x0, see Proposition 4.1.4 in [Isidori, 1989]. Equation (4) can be analyzed
similar to the linear system in Paper 1. The idea is that a sign shift in
u has to propagate through three integrators, which was shown to be
unstable under relay feedback in Paper 1. Therefore, it is a reasonable
conjecture that under mild assumptions the nonlinear affine systems of
relative degree three and higher do not yield multiple fast switches.

It is a challenging problem to develop analysis and simulation tools
for hybrid systems. Using a recent simulation tool [Andersson, 1994], new
phenomena in dynamical systems with a discrete state were shown in the
thesis. In systems with several relays, the intersection of switch surfaces
gives possibility to new behaviors that remain to be analyzed [Alexander
and Seidman, 1995]. For large hybrid systems, like the hierarchical hybrid
control system studied in connection to intelligent vehicle highway sys-
tems [Varaiya, 1993], other types of simulation tools have been developed
[Bodbole et al., 1994].

Multivariable control

Much effort should be spent to close the gap between practical and theo-
retical multivariable control. This can be done (1) by development of bet-
ter theoretical understanding of existing industrial multivariable methods
and (2) by experimenting with academic MIMO methods in practice.

An example of theoretical investigation of an existing method is the
analysis of the relative gain array (RGA). The RGA was introduced in
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[Bristol, 1966] as a simple tool for control structure design and was de-
veloped from heuristic reasoning. Recently some of its properties have
been investigated by relating the RGA to theoretical control performance
measures, for example, see [Nett and Manousiouthakis, 1987; Morari and
Zafiriou, 1989; Hovd, 1992]. Some conclusions about applicability of RGA
analysis for systems with RHP zeros were drawn in Paper 3 and in
[Manousiouthakis et al., 1986]. From the framework in Paper 3, it ap-
pears possible to modify the RGA to better handle a broader range of
systems such as those with bandwidth limitations, see [Arkun, 1987] and
[Johansson, 1996] for two different approaches.

There are many ways to improve the practical use of multivariable
design methods. All model-based design methods depend on efficient and
reliable modeling and identification methods. Paper 5 provided a step in
this direction, by presenting a simple and robust experiment for identi-
fying part of the dynamics of a multivariable plant. However, more work
has to be done to combine this method with control design.

The derivation of multivariable performance limitations caused by a
certain controller structure or control design method is an interesting
problem. Some progress was made in the thesis. An open problem is to
define a criteria to judge the relative merits of centralized and decentral-
ized control. Some preliminary results on this subject in connection to two
applications are given in [Freudenberg and Middleton, 1996]. A discussion
of the performance deterioration due to a RHP zero for decentralized and
centralized designs was made in Paper 3.

The performance limitations given in Section 2 of the introduction and
in Paper 3 are conservative. It is, however, possible to reduce the conser-
vativeness by imposing shapes on the bounds of the sensitivity function
and the complementary sensitivity function. Some rules of thumb for the
choice of closed-loop bandwidth using this approach was derived in [Mid-
dleton, 1991] for scalar systems. Multivariable extensions, which relate to
both process and controller structure, would be useful. Another open prob-
lem is performance limitations for systems with saturation constraints.

The question whether there are any potential benefits of using a hybrid
controller for a linear system is asked in [Feuer et al., 1997]. The question
is not answered in general, but it is shown through examples that some
linear systems have inherent properties that cannot be removed even with
a hybrid controller. The problem formulation gives a glance at the open
field of hybrid control.
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