
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Design and Implementation of Object-Oriented Model Libraries using Modelica

Tummescheit, Hubertus

2002

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Tummescheit, H. (2002). Design and Implementation of Object-Oriented Model Libraries using Modelica.
[Doctoral Thesis (monograph), Department of Automatic Control]. Department of Automatic Control, Lund
Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 02. Jul. 2025

https://portal.research.lu.se/en/publications/4abd7220-8f4b-48df-bb2d-77a2dda579f9

Design and Implementation of
Object-Oriented Model Libraries
using Modelica

Hubertus Tummescheit

Automatic ControlDepartment of Automatic Control

H
U

BERTU
ST

U
M

M
ESCH

EIT
D

esign and Im
plem

entation of O
bject-O

riented M
odel Libraries using M

odelicaISSN 0280-5316
ISRN LUTFD2/TFRT--1063--SE

Design and Implementation of
Object-Oriented Model Libraries using Modelica

Design and Implementation of
Object-Oriented Model Libraries

using Modelica

Hubertus Tummescheit

Department of Automatic Control
Lund Institute of Technology

Lund, August 2002

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT–1063–SE

c&2002 by Hubertus Tummescheit. All rights reserved.
Printed in Sweden by Bloms i Lund Tryckeri AB.
Lund 2002

Contents

Preface . 7
Acknowledgments . 7

1. Introduction . 9
1.1 Why Modeling is Important 9
1.2 Outline and Contributions 11
1.3 Purpose of Modeling . 13
1.4 A Turbine System . 15
1.5 How the Work Developed 16

2. Modeling Techniques . 19
2.1 Representation of Dynamics 19
2.2 Model Libraries . 39
2.3 Validation and Verification 42
2.4 Physics Based Model Reduction 44
2.5 Modeling Tools . 49

3. The Modelica Language . 52
3.1 Introduction . 52
3.2 Key Features of Modelica 54
3.3 Modelica Basics . 56
3.4 Annotations and Pragmas 68

4. Physical Models for Thermo-Hydraulics 71
4.1 Introduction . 71
4.2 Fluid Transport Equations 73
4.3 Balance Equations . 75
4.4 The General Transport Equation 84
4.5 Thermodynamic Equations of State 84
4.6 Choice of Dynamic State Variables 89
4.7 Turbines and Valves . 96
4.8 Pumps and Compressors 99
4.9 Chemical Reactions . 101

5

Contents

4.10 Solid Structures . 102
4.11 Moving Boundary Models 104
4.12 Void Distribution . 113

5. The ThermoFluid Library . 121
5.1 Introduction . 121
5.2 Basic Ideas . 124
5.3 Control Volumes and Flow Models 127
5.4 Object-Orientation in ThermoFluid 129
5.5 Interfaces . 136
5.6 Base Models . 140
5.7 Partial Components . 151
5.8 Component Models . 154
5.9 Examples . 159
5.10 ThermoFluid Applications 162
5.11 Comparison with Domain Specific Tools 170
5.12 Summary . 176

6. Design of Model Libraries 178
6.1 Introduction . 178
6.2 Means for Library Structuring 180
6.3 Design Patterns for Modeling 191
6.4 Structural Design Patterns 192
6.5 Numerical Design Patterns 197
6.6 Conclusions . 204

7. Recommendations for Future Work 205
7.1 Writing Models . 208
7.2 Model Debugging . 212
7.3 User Interface Issues . 216
7.4 Partial Differential Equations 217
7.5 Extensions to ThermoFluid 219
7.6 Summary . 220

8. Conclusions . 221

9. References . 224

A. Glossary . 237

B. Thermodynamic Derivatives 242
B.1 Fundamental Equations 242
B.2 Transformation of Partial Derivatives 245
B.3 Derivatives in the Two-Phase Region 249

C. Moving Boundary Models . 253
Mass- and Energy Balances . 253

D. Modelica Language Constructs 257

6

Preface

Preface

The subject of this thesis belongs somewhere into the intersection of the
disciplines of Automatic Control, Computer Science and Systems Design
Engineering. The thesis explores the design of object-oriented model li-
braries using the example of a library for thermo-fluid systems. The li-
brary is written in the new, object-oriented modeling language Modelica.
During the time of the library development I was involved in the design of
the Modelica language from an early stage. It was a great pleasure for me
to participate in the design of the language and to pioneer its use. The
enthusiasm of the members of the Modelica Design group for modeling
and simulation problems has been contagious.

The task of writing an interdisciplinary thesis is challenging in terms
of finding the right level of detail for readers with widely differing back-
ground knowledge. Some readers may wish to skip parts of the thesis that
are either not interesting or well known to them. Readers with a special
interest in thermo-fluid models should read Chapter 4, people which are
curious about the ThermoFluid library should read Chapter 5 and model-
ers looking for ideas about object-oriented library design in general may
find Chapter 6 interesting.

Acknowledgments

Writing a thesis is a project that lives from the exchange of ideas and
lively discussions. Many people have helped me in producing this thesis,
through discussions and close cooperation in several projects and by being
joyful colleagues, good friends and keeping my spirits up.

First of all I have to thank the coordinated efforts of three people who
made me come to Lund and stay here: Sven Erik Mattsson who invited me
and got me started, Jonas Eborn for making the team work such a nice
experience and Karl Johan Åström who convinced me to stay and do my
PhD in Lund. Thanks for that, I have a great time here. The collaboration
with Jonas has been a source of inspiration during the whole project.

I am glad to express my sincere gratitude to Karl Johan Åström. His
constructive criticism on several chapters of the manuscript helped to im-
prove its readability. He has created the necessary conditions for a very
stimulating research atmosphere and is a consistent source of enthusi-
asm. It has been a great pleasure and privilege to learn from you. Many
thanks to my other supervisor Anders Rantzer. He has the gift of always
asking the most relevant and interesting questions. His incessant demand
for new chapters of the thesis and valuable comments on the manuscript
helped a lot getting this work done. Many thanks also to other senior

7

staff at the department to acquire the funding for many graduate stu-
dents. Many thanks to all who proofread parts of the manuscript and
gave feedback: Sven Erik Mattsson, Jakob Munch Jensen, Jonas Eborn,
Godela Rossner, Karl Erik Arzén and Johan Åkesson. Special thanks to
my mother for correcting my English under time pressure.

I also wish to thank Falko Jens Wagner for the good time we had
working together with the ThermoFluid library and Jakob Munch Jensen
for many stimulating discussions, good laughs, interesting joint work and
cultural expeditions to Copenhagen’s Theaters and Jazz Clubs.

Special thanks go to the people at Dynasim AB who provided us with
new versions of Dymola as soon as we tested the latest additions to the
Modelica language. Particular thanks to Hans Olsson for his enthusiastic
greetings when receiving a bug report or feature request on the phone.
Special thanks also to all members of the Modelica Association. The dis-
cussions about modeling and language design in a group with such a broad
background has been a valuable source of insight and ideas. I appreciated
the combination of intensive technical discussions and a friendly, relaxed
atmosphere around them.

I wish to thank the Masters students that I supervised, Olaf Bauer,
Antonio Gómez Pérez and Staffan Haugwitz, for many good ideas and con-
tributions. Olaf has done valuable base work for fluid property functions
with his Maple-package for thermodynamic derivatives.

I am grateful to my colleagues at the Department who create a friendly
and inspiring atmosphere. I specially would like to thank the following:
Eva Schildt, Britt-Marie Mårtensson and Agneta Tuszynski for keeping
our spirits up and running the unnoticed background work, Leif Anders-
son and Anders Blomdell for keeping the computers in good health, Sven
Hedlund for his enthusiastic advertisements for running in Skrylle, Mag-
nus Gäfvert for hints about interesting music and Andrey Ghulchak for
organizing the “inspirationsfika”.

Many thanks to the Sunday dinner gang for many nice evenings, lots of
ice-cream, never rejecting a Malt and for almost always doing the dishes
before leaving: Andrey, Shi-Lin, Ari, Beatrice, Stephane, Jenny, Stefan,
Maru and the many guests who came during their visits in Lund.

This project has jointly been supported by Sydkraft AB under the
project name “Modelling and Control for Energy Systems” and by the
National Board for Industrial and Technical Development (NUTEK) pro-
gramme “Complex Systems”, Dnr 96-10653. Their financial support is
gratefully acknowledged.

8

1

Introduction

Abstract

This chapter provides background about modeling of physical sys-
tems in order to explain the need for better tools and languages for
modeling. It is motivated that an important part of engineering know-
how is encoded in system models. This knowledge needs to be stored
in a formal and reusable way.

1.1 Why Modeling is Important

Mathematical models are compact representations of knowledge. Probably
the most important but intangible advantage of modeling is the insight
and increased understanding that the process of modeling gives about a
system. Knowledge is much easier to communicate in the form of a math-
ematical model than with a textual description. Engineering knowledge
and education is to a large extent based on models in different domains.
When this knowledge is made available to the engineering design process,
it helps a great deal to increase safety, quality and economy of that sys-
tem. Modeling is a major part in any engineering development. A model
that is executable in a simulation program is much easier and safer to
work with than the real system. This has been summarized very well by
an executive at one of the largest companies in the process industry:

Modeling and simulation technologies are keys to achieve
manufacturing excellence and to assess risk in unit operations.
As we make our plant more flexible to respond to business op-
portunities, efficient modeling and simulation techniques will
become commonly used tools.

Ralph P. Schlenker, Exxon Chemical

In todays engineering practice, model based analysis, simulation and
design are major pillars in the development of advanced technical prod-

9

Chapter 1. Introduction

The Design Arch

Maintenance
Level of Detail

Realization

Component verification

Version and Configuration Management
Documentation

calibration and verification
System level integration, test

Subsystem level integration
and verification

Detailed feature design
and implementation

System
requirements

Architectural design &
system functional design

Preliminary
feature design

Product verification
and deployment

Des
ig

n

Desig
n R

efin
ement

Verification

Integration
C

alibration

Next P
roduct G

eneration
Sp

ec
ifi

ca
tio

n

Experience Feedback

Figure 1.1 Design arch of product development and life cycle. A similar scheme
is sometimes referred to as design-V.

ucts. Cost savings achieved by avoiding possibly destructive “smoke tests”
of expensive hardware and by doing this test as a model based computer
simulation instead, are a strong driving force for model development. De-
velopment cycles for new technical products are shortened by making de-
velopments in parallel instead of sequential. Emulating a not-yet-existing
piece of hardware on a computer, often in a hardware-in-the-loop (HIL)
configuration, is a standard technique for achieving concurrent engineer-
ing. HIL needs models which are not only accurate representations of re-
ality, but also fulfill stringent performance criteria. The simulation must
be executed in real time, otherwise it is not possible to emulate reality to
a degree that allows meaningful tests, e. g., of control equipment.

Figure 1.1 illustrates the typical phases of development of a techni-
cal product. Almost all phases can to some extent benefit from modeling
and simulation. The models which are needed in the phases often have
different requirements: the change in the level of detail leads to different
models. Modeling language features that help reuse in concurrent engi-
neering and simplify model reduction are important. It is even useful to
be able to keep the structure but exchange the underlying model com-
pletely. On the right hand side of the design arch, hardware-in-the-loop
is a well known means to reduce testing cost. The performance require-
ments are often difficult to achieve. Reuse of models, both throughout the
design process and for the next-generation product, is an important factor
to reduce modeling and simulation costs.

10

1.2 Outline and Contributions

1.2 Outline and Contributions

This thesis discusses the development of an object-oriented model library
for thermo-fluid systems with focus on the structuring and reuse of mod-
els. The development was done in parallel to the development of the under-
lying modeling language, ModelicaTM [Modelica Association, 2002a] which
is specifically designed to facilitate model reuse. This parallel develop-
ment closed the feedback loop between model development and modeling
language development in a very fruitful way. New concepts in the lan-
guage were implemented in the library, experience from the use of the
new concepts was used to refine the language definition and make it more
powerful and easier to use in the next iteration of the language. This in-
terplay of serious model development, structuring of models for reuse and
language design by experts in many engineering domains has helped to
shape Modelica1 into its current form. The process is not finished: mathe-
matical modeling of systems is and will remain to be a challenging activity.
The main contributions in the thesis are the following:

• Model library design. The desire to develop object-oriented, re-
usable physical models has been a driving force of this work which
started before the idea of Modelica was born. The first library was
written in the SMILE language, [Mühlthaler, 2000], jointly devel-
oped by GMD FIRST and the Technical University of Berlin. The
Smile language was oriented more specifically towards the simula-
tion of power plants and was successfully used in a fluidized bed
combined heat and power plant [Buse, 2001] and a combined so-
lar thermal power plant [Tummescheit and Pitz-Paal, 1997]. The
scope of the library was broadened to general thermo-fluid systems
when it was redesigned in Modelica. Experiences were combined
with those gained in the development of the K2 library developed
at Lund University, [Eborn and Nilsson, 1996; Eborn, 1998]. Ear-
lier stages of this work were presented in [Tummescheit and Eborn,
1998; Eborn et al., 1999; Tummescheit et al., 2000; Tummescheit
and Eborn, 2002; Tummescheit, 2000a; Tummescheit, 2000b].

• Modelica language design. The design of the Modelica language
was a joint effort with contributions from many experts in several
engineering domains, computer science and numerical mathematics.
It was a collaborative development that I had the pleasure to par-
ticipate in. An important aspect of the Modelica evolution was the
tight feedback loop between model language design and use of Mod-
elica in real world problems. My special interests here were high

1The TM-sign is omitted from now on to improve readability.

11

Chapter 1. Introduction

level parameters (also called class parameters) and efforts to make
sure that external functions written in C or FORTRAN are easy to
integrate. The result of this work is published in Modelica specifi-
cation [Modelica Association, 2002b]. An early design stage of class
parameters in Modelica is presented in [Tummescheit et al., 1997].

• Models for thermo-fluid systems. Modeling expertise and the
challenge of relevant industrial problems are a necessary background
to test a model library for its usefulness. Thermo-fluid systems is my
area of experience. Thermo-fluid systems have in the past been a
domain where no general purpose modeling tools or languages have
been available2. Two phase flow models like the moving boundary
models presented in Chapter 4 have been of special interest. Pub-
lications on two phase flow models are [Bauer and Tummescheit,
2000; Jensen and Tummescheit, 2002].

• Industrial applications. An important aspect of the work was
the participation in industrial modeling projects, applying the Ther-
moFluid library to a diverse range of real world modeling prob-
lems. Relevant projects were the modeling of combustion for au-
tomotive systems at Ford Motor Company [Tummescheit and Tiller,
2000; Tiller et al., 2000], modeling of fuel cell systems at United
Technologies Research Lab, modeling of a steam distribution net-
work in a paper plant [Lindstrand, 2002] and modeling of CO2 -based
refrigeration cycles. These industrial projects have given useful in-
put to the library and the Modelica language.

The thesis is organized in the following way. This chapter gives an in-
troduction to the background and fundamental aspects of modeling and
simulation of systems. Chapter two presents some modeling techniques.
The development of the Modelica language and a description of the key
features of Modelica that are a necessary prerequisite to understand the
library design discussion follow in chapter three. Chapter four presents
an overview over thermo-fluid models used in the implementation of the
ThermoFluid library, described in the next chapter. Chapter six summa-
rizes the experiences from object-oriented library design. Recommenda-
tions for future work are proposed in chapter seven and conclusions are
drawn in chapter eight.

2There are many simulation tools for thermo-fluid systems, but all with black box models
without possibilities to create new models

12

1.3 Purpose of Modeling

1.3 Purpose of Modeling

Modeling is a rich activity with a broad scope. The focus in this thesis is
on modeling of complex technical systems. Mathematical models of sys-
tems are never done as an intellectual exercise to find the best possible
mathematical representation of reality. Reality is complex, models do not
and should not seek to obtain the same complexity. Models in this thesis
are always done with a purpose, they are developed to answer specific
questions about the system’s behavior and often they are restricted to
certain boundary conditions or inputs to the model. As Marvin Minsky,
[Minsky, 1965] put it:

A model (M) for a system (S) and an experiment (E) is any-
thing to which E can be applied to answer questions about the
system S.

Asking two different questions about the same systems often results in
two different, possibly even entirely unrelated mathematical models which
are best suited to answer the particular questions. It is important to re-
alize that there is no such thing as a perfect model for a system. This is a
widespread belief, based on the idea that with growing sophistication, the
model eventually converges to the system. In the best case, the similar-
ity between the behavior of the model and the modeled system increases
until no difference between the two behaviors can be observed within the
limits of experimental results.

A simple illustration of a set of models with increasing sophistication
are physical pictures of an object with increasing level of detail: sketch,
drawing, black and white photography, color photography, hologram and
sculpture [Preisig, 2001], see Figure 1.2. It is interesting to note in this
context that a simpler representation of reality may be more efficient
in communicating the characteristic features of the system. A drawing
or black and white photography may be better suited to reproduce the
three dimensional features of an object than a color photography which
undeniably has a larger amount of information about the real object. The
term that is usually used to describe model variants of the same system
is model granularity. Granularity refers to the amount of detail that a
model reveals, like magnifying glasses with higher magnification reveal
more spatial details of an object. In modeling for control, the magnifying
glass could refer to a frequency range as well as a finer spatial subdivision.
Different facets of system models may lead to models with a completely
different mathematical representation.

In industrial modeling practice this often results in heated disputes
between departments about how a system model should be done and what
phenomena should be included. The reason is that they want to ask differ-

13

Chapter 1. Introduction

(a) Sketch (b) Pencil Drawing (c) Black&White Photo

Figure 1.2 Different representations of Rodins sculpture “The Thinker”. Inclusion
of a holographic picture was rejected due to budget reasons.

ent questions about the same system, when budgets and time schedules
only allow the development of one model. This procedure often leads to
over-modeling: models contain more details than necessary. As a result,
the combined model may not be the best possible for any of the interest-
ing questions. This typical problem demonstrates a real need for flexible
modeling languages and model libraries, see [Åström, 2002]. The cost of
developing a model is high, therefore we want the same model to answer
as many questions as possible about the system. High level models, often
called meta-models, should provide straightforward ways to switch be-
tween different model implementations. Various terms have been used to
describe this property of models. Multi-facet [Nilsson, 1993] modeling or
multi-paradigm modeling [Mostermann and Vangheluwe, 2000] have been
used to denote models which combine several behavioral descriptions of
a model into a meta-model. A meta-model representation in a computer
tool should present the user with intuitive means to select the model facet
that best answers a particular question.

A typical problem in process engineering is when process design engi-
neers meet control engineers and they try to settle for a common model.
The design engineers want a model that optimally represents the steady
state behavior of the system over the whole operating range. The control
engineers want a model that represents the dynamic behavior of the sys-

14

1.4 A Turbine System

tem in the vicinity of the crossover frequency of the feedback loop. When
controllers with integral action are used, the closed loop gain is infinity at
low frequency and therefore the accuracy of the steady state model is not
important. The dissimilarity of model purposes is frequently not under-
stood by all members of an engineering team. From personal experience
I can say that this problem is a major obstacle for successful teamwork
in engineering projects.

Webster’s dictionary defines “system” as “a regularly interacting or
interdependent group of items forming a unified whole.” The key property
here is the interaction of items. The notion of system thus implies that it
is possible to divide the domain of interest into meaningful subunits. This
observation is the starting point of all work seeking to build libraries of
reusable model parts. It will be a recurring theme in Chapter 6.

1.4 A Turbine System

A micro gas turbine system has recently been modeled in a master’s the-
sis project using the ThermoFluid and other Modelica libraries, [Haug-
witz, 2002]. It is a typical example of a multi-domain system model which
demonstrates the strengths of modeling based on libraries and the need
for flexible models of varying degrees of complexity.

A micro turbine system is a small, compact unit for decentralized gen-
eration of electricity and heat, a so called combined heat and power plant.
The recent de-regulation of the electricity market has spawned the devel-
opment of these types of systems which did not exist a few years ago.
Customized solutions based on micro gas turbines are actively developed
now. The first generation systems where not designed for islanding power
production during blackouts of the electrical grid, but customers request
this additional feature. System models in several degrees of granularity
help to speed up the development process of the more advanced controls
needed for islanding power generation.

For the particular case of this system, accurate steady state models
were available but four types of dynamic models were needed:

• Simple, low order models for control design.

• Models that are suitable for hardware-in-the-loop tests of controllers
for the main, continuous controls.

• Dynamic Models for off-line simulations and tests. These should be
as accurate as possible and should be as close as possible to steady
state models.

15

Chapter 1. Introduction

• Simple models of the gas turbine and all auxiliary systems for de-
tailed testing of the discrete sequential controls of start-up and
safety procedures.

All models are essentially for the same system, but with the focus on
different aspects and with different questions in mind. Clearly, reusability
and sharing of implementation code between these models results in a big
gain in productivity.

The implementation of the system model makes heavy use of many
existing model libraries. Around 95 % of the total model code is from li-
brary models, the rest is divided between creation of new models and
composition of subsystems from libraries and new models. Without heavy
code reuse, the project clearly would have been infeasible for a four month
master’s thesis project. Time was too short to fulfill all wishes for model-
ing, but the first three of the above mentioned models could be realized
and the last remaining model would make complete reuse of the existing
models.

1.5 How the Work Developed

My first attempt of dynamical systems modeling was in a student project
with the goal to model the combined heat and power plant of the Technical
University Hamburg Harburg with SimulinkTM [MathWorks, 2001b]. The
attempt ended with the firm conclusion that the directed, signal based
modeling formalism of block diagrams, the very basis of Simulink, was
completely inadequate for physical systems modeling. That spawned the
search for better tools and more appropriate formalisms.

The next attempt was to use the object-oriented language and the sim-
ulation environment Smile, [Jochum and Kloas, 1994]. It was a joint devel-
opment of the Technical University Berlin and GMD FIRST3. Smile was
under development at the start of the project, a master’s thesis with the
goal to implement an object-oriented model library for power plant sim-
ulation. This attempt was quite successful, but it required a large initial
investment of developing basic models for everything. During the litera-
ture review of dynamic power plant modeling it became obvious that many
models that essentially contained the same or very similar mathematical
models where implemented again and again. The problem was that the
existing models were too unflexible to cope with even minor changes in
the goal of the modeling task. This made it very clear that better methods

3Gesellschaft für Mathematik und Datentechnik, Forschungsinstitut für Rechnerar-
chitektur und Softwaretechnik, Berlin Adlershof.

16

1.5 How the Work Developed

for code reuse in modeling were urgently needed. Smile offered two clear
advantages over earlier FORTRAN based models and Simulink:

• A clean separation between the modeling tool and the solution method
for the model equations.

• An object-oriented, declarative, open and documented language to
describe the model.

The Smile prototype tool was rather primitive: a language, a compiler, a
command line executable and a text editor was all that was available. Still,
the object-oriented features and hierarchical model composition made it
possible to build complex models quickly. The Smile model library is still in
use and has proven to be reusable for very different power plant designs,
see [Buse, 2001], where a pressurized fluidized bed steam power plant is
modeled using the same base models.

Smile had been designed in a Masters thesis [Biersack, 1994] and had
a few essential shortcomings – no structured connectors and a clumsy
implementation of equations – due to lack of modeling experience of the
Smile developers. When the Modelica initiative was started as an attempt
to unify the know-how of the separate groups that had worked on object-
oriented modeling languages, each group with the focus on a particular
engineering domain, it became obvious that this was a great opportunity
to develop a clean, declarative, object-oriented modeling language.

During the first year of the Modelica development, I was involved
in the detailed modeling of a solar thermal central receiver power plant
integrated with a conventional heat recovery boiler [Tummescheit and
Pitz-Paal, 1997] at DLR4 in Cologne. The experiences from this project,
and in this case especially the shortcomings of the currently used tools
and the Smile language, were a valuable asset for the Modelica language
design. In 1998 I joined the Department of Automatic Control at Lund
University as a PhD student.

An interesting facet of the work was the parallel development of the
Modelica language and modeling projects based on model libraries. Work
on either side of the border between language development and use gave
feedback for the work in the other area. A recurring theme was the model-
ing of physical properties of fluids. Most standard commercial packages for
property calculation do not consider the specific requirements for dynamic
simulation. This shortcoming made it necessary to implement physical
property calculations from scratch all too often. Interaction with serious
industrial modeling projects was another important aspect of the thesis
work:

4Deutsches Zentrum für Luft- und Raumfahrt e. V.

17

Chapter 1. Introduction

• Modeling of a solar thermal steam power plant, [Tummescheit and
Pitz-Paal, 1997].

• Combustion engine modeling at Ford Motor Company [Tiller et al.,
2000].

• Fuel cell system modeling in collaboration with United Technologies
Research, UTRC.

• Refrigeration cycles, especially evaporators [Jensen and Tummescheit,
2002] in collaboration with DTU5 and UTRC.

• Modeling of steam networks for a paper plant in collaboration with
Solvina AB, [Lindstrand, 2002].

This interaction was important to make sure that language and library
design were in accordance with real industrial needs. The fuel cell systems
library developed at UTRC is an application that was not included in
the intended use of the ThermoFluid library in its first design iteration,
but is now the largest application library built on top of ThermoFluid.
The object-oriented design has proven flexible enough to add chemical
reactions, membrane diffusion and electrochemistry to the existing library
and still make optimal use of the existing code base.

5Danish Technical University

18

2

Modeling Techniques

Abstract
An overview of the mathematical basics for the representation of

dynamics outlines the scope and needs for a modeling language. Struc-
turing of models in libraries is the other pillar of object oriented mod-
eling. Model calibration and validation is the step that tunes general
purpose models to resemble real systems. Modeling tools define the
framework for the implementation of the mathematics and structure
into reusable building blocks.

2.1 Representation of Dynamics

All models use mathematics as their foundation to express the aspects
of reality that are of interest in building a model. A modeling language
should thus be well suited to express the mathematical formalisms that
are used for modeling. The range of concepts needed to model physical
systems and their man-made controls is very broad. A quick inspection of
existing modeling tools and languages reveals that their design is typically
done in the following way: First choose the appropriate mathematical for-
malism that is needed to express models for a specific purpose and then
the language or tool is designed to handle that case well. Often this deci-
sion is hidden in the choice of an engineering domain which then in turn
leads to the choice of mathematics. Models for simulation are solved using
methods in numerical mathematics. A considerable part of the modeling
effort has to be spent on deriving models that have good numerical proper-
ties. The choice of the model is often strongly influenced by the reliability
or availability of the numerical solution methods. Sometimes particular
numerical methods are also integrated in the modeling language. Some of
the formalisms can also be represented graphically. This can be of great
value to communicate complex model semantics to humans.

Reality is complex and so are the models that are derived in an attempt

19

Chapter 2. Modeling Techniques

to capture the behavior of real systems. For most practical purposes the
models have to be simplified substantially before they are useful. Many
model reduction techniques exist, heuristic ones as well as methods based
on established mathematical methods like singular perturbations, see [Lin
and Segel, 1988]. One of the important simplifications in modeling of dy-
namical systems are time scale abstractions. Three of these time scale
abstractions are very common:

Slow ; constant: features of the system that change much slower than
the current time scale of interest are treated as constants, e. g., age-
ing effects.

Fast dynamics ; steady state: dynamics which settle on a timescale
faster than those of main interest in the model are treated as always
being in steady state.

Short time ; impulse Changes in conserved quantities which happen
in much shorter times than those of interest are treated as jumps.

As presented here, timescale decomposition is used as a heuristic model
simplification procedure by engineers, but it can be formalized using sin-
gular perturbation theory, as will be discussed later in this section.

Physics is very accurate with accounting of fundamental extensive
quantities like mass, momentum and energy. The accounting balance for
these quantities constitutes the core of many physical models. One has to
be aware though, that conservation-like laws often include source terms, a
contradiction to conservation, e. g., for species mass balances in chemical
reactions. The conserved quantity is simply used as an accounting basis
for practical reasons. The advantage of fundamental extensive quantities
is that they are easier to verify. A drift or error in a fundamental exten-
sive quantity gives an estimation of the numerical error of the solution
method.

Modelica was conceived from the beginning to be a domain indepen-
dent language, but with a focus on system dynamics of physical systems.
This leads to a preferred choice of mathematical tools, differential equa-
tions of various flavors. Ordinary differential equations (ODE) deal with
problems with one independent variable, which always represents time in
dynamical systems. Differential algebraic equations (DAE) add algebraic
equations to an ODE. Partial differential equations (PDE) treat problems
with more than one independent variable, usually space and time. The
time scale abstractions and also models of sampled data systems arising
from models of computer controlled systems lead to hybrid – discrete time
and continuous time – systems. Pure discrete time dynamical systems can
be expressed in many formalisms. Some of them, such as finite state ma-
chines, Petri nets and Grafcet, have been considered in the design of the

20

2.1 Representation of Dynamics

Modelica language.

Ordinary Differential Equations

Ordinary differential equations (ODE) are the workhorse for modeling
and simulation of dynamical systems. Nonlinear ODE exhibit an amaz-
ingly rich spectrum of behavior considering that their basic structure is
relatively simple. They are applied to diverse and countless problems in
all natural and social sciences. When the “Method of Lines” discretization
is used, PDE are transformed into ODE with a special structure. System
dynamics is a branch of applied mathematics that has ODE as its main
subject. This branch includes such fashionable subjects as chaos theory
and bifurcations. Beyond all fashion and in line with the main subject of
this thesis they provide the theoretical background for dynamic modeling
of engineered systems. ODEs are very powerful in describing the behav-
ior of such systems in a way that permits both computational exploration
and analysis.

Choosing a notation in accordance with common practice in control
oriented modeling, using a vector of unknowns x ∈ IRn and a vector of
exogenous inputs u ∈ IRp with known time trajectories, an ODE can be
written in state-space form as:

ẋ = f (x, u) (2.1)

and f : IRn =→ IRn, assuming dim(u) = p ≤ dim(x). When used in con-
trol oriented models, a measurement equation is added to the differential
equation:

y = n(x, u) (2.2)

where the vector y ∈ IRm denotes the measurable outputs from the sys-
tem with n : Rn =→ IRm. Particular solutions to ODEs can only be given
when additional information about initial conditions is given. The initial
conditions can be either conditions on the states x(t0) = x0 or conditions
on the state derivatives ẋ(t0) = ẋ0, the second is mostly the steady-state
condition ẋ(t0) = 0. When dim(x) = n, exactly n initial conditions in ei-
ther of the two forms have to be given that permit a unique solution to
x(t0).

Because differential equations can be amazingly complex and are often
difficult to analyze, it is common practice in many engineering disciplines
to linearize them around a stationary point ẋ = 0. Theory for linear sys-
tems is well developed and most powerful control design and analysis
methods use linear ordinary differential equations as their starting point.
The equation is linearized by taking the partial derivatives of the func-

21

Chapter 2. Modeling Techniques

tions f and n with respect to x and u at a point u0, x0, ẋ0 = 0.

∀i, j ∈ 1, 2, ...n, k ∈ 1, 2, ...p, l ∈ 1, 2, ..m

Aij = V fi

V xj
, Bik = V fi

Vuk
Cl j = Vnl

V xj
, Dlk = Vnl

Vuk

(2.3)

This linearized, time invariant ODE (LTI-model) with coefficient matrices
A, B, C, D is the standard model for control design. The linearization is
valid around u0, x0, therefore new variables x̃ = x − x0, ũ = u − u0 and
ỹ = y− y0 are introduced, resulting in

˙̃x = A x̃ +B ũ

ỹ = C x̃ +D ũ
(2.4)

Often D = 0 when the control signal is not directly coupled with the
output. It is also possible to linearize the nonlinear system (2.1–2.2) along
a trajectory for given x0 and u. This is closely related to the way that
numerical methods use to find a solution to (2.1–2.2). The requirement
is that the derivatives Aij etc. exist and are sufficiently smooth along the
trajectory. This results in the linear, time-varying ODE

˙̃x = A(t) x̃ +B(t) ũ

ỹ = C(t) x̃ +D(t) ũ
(2.5)

This simplification captures the behavior of the non-linear ODE much
better than the linearization with constant coefficients along the chosen
trajectory. Model reduction techniques based on trajectory linearizations
are discussed in [Öhman, 1998].

On the numerical side, a lot of research has been done in the last
decades to get high quality numerical approximations to the solutions
of ODE and DAE. Quality refers to the question “How much computing
time is needed to solve a given problem with an upper bound on the
global error of the solution”. Exact answers to this question are difficult
to obtain, but satisfying error bounds for engineering purposes are the
tolerance parameters in most state-of-the-art ODE solvers. The amount
of work that a chosen tolerance requires still has to be found by trial and
error for each problem.

An important classification regarding the numeric behavior of ODE is
the classification as stiff or non-stiff. Naively, a stiff differential equation
has modes at drastically different time scales. Experts in numerical math-
ematics define stiffness using the following operational definition (quoted
from [Hairer and Wanner, 1996], original from [Curtis and Hirschfelder,
1952]): stiff equations are equations where certain implicit methods, in
particular BDF1, perform better, usually tremendously better, than ex-

1Backward Differentiation Formulas

22

2.1 Representation of Dynamics

plicit ones. The problem in classification is that many factors play a role,
among others the smoothness of the solution, the dimension of the system
and the integration interval. The most often quoted factor and undeniably
a very important one is the magnitude ratio of the largest and smallest
eigenvalues of the Jacobian V f /V x. If the magnitude ratio of the largest to
the smallest eigenvalue is a large number, say 1000 or more, the equation
is stiff.

The current situation is that the selection of the right solver for a
given problem requires a lot of experience and basic knowledge about the
system. By engineers it is often regarded as much an art as a science.

Singular Perturbations There is a connection between stiff ordinary
differential equations and differential algebraic equations, the subject of
the next section.

Consider the following model with two groups of time scales

ẋ = f (t, x, z, ε) (2.6a)
ε ż = n(t, x, z, ε) (2.6b)

Here z are the fast states and x are the slow states of a stiff ODE system.
The fast states can be eliminated by letting ε = 0 which implies that
n(t, x̂, ẑ, ε) = 0. Under the assumption that the Jacobian

Vn(t, x, z, ε)
V z

is invertible in the neighborhood of the solution to (2.6a), this equation
can be solved for ẑ(t, x̂, ε). Replacing z in the first equation with this
expression results in the simplified model

˙̂x = f (t, x̂, ẑ, ε) = f̂ (t, x̂, ε).

The technique is called singular perturbation, see [Lin and Segel, 1988].
If the problem is not solved for ẑ(t, x̂, ε), the problem is equivalent to a
DAE of index 1 while the original problem is a stiff ODE system. The
DAE can thus be regarded as the limiting case of ε → 0 of a stiff ODE,
which in many cases is the origin of DAE.

Remark: in simple cases the heuristic engineering method of using
quasi steady state approximation leads to the same model reduction that
singular perturbation theory provides.

Differential Algebraic Equations

While ODE are the form of differential equations that has gained most at-
tention in engineering numerics, there are few engineering systems which

23

Chapter 2. Modeling Techniques

actually can be described by an ODE without algebraic equations for some
of the variables. A general, non-linear DAE can be written as

F(x, ẋ, y, t) = 0 (2.7)

where x are the variables that appear differentiated and y, the algebraic
variables. In some cases, particularly when the DAE is the result from a
singular perturbation, the DAE can be written in semi-explicit form:

ẋ = f (x, y, t) (2.8a)
0 = n(x, y, t). (2.8b)

From a numerical point of view, most semi-explicit differential algebraic
equations (DAE) can be integrated like ODEs, when the initial condi-
tions are known. An essential requirement for the solution of DAE is
that the initial values x0, z0 are consistent with the algebraic equations
0 = n(x0, y0, t0). Finding initial conditions may be a serious practical prob-
lem. A general assumption to achieve this is that the Jacobian

Vn(x, y)
V y

is invertible in a neighborhood of the solution of (2.8a). Equation 2.8b then
possesses a locally unique solution y = G(x) (“implicit function theorem”)
which inserted into 2.8a reduces that equation to an ordinary differential
system in state space form, see [Hairer and Wanner, 1996]. The equations
2.8a and 2.8b are then said to be of index 1. This procedure is the same
as the second step in the singular perturbation simplification. Another
way to express this is to say that “some DAE are very similar to ODE”
[Pantelides, 2000].

The geometrical interpretation of a DAE compared to an ODE with
the same number of dynamic states n is as follows. Solution trajectories
of the ODE can start on any point in IRn and all points in IRn are part
of a legal solution trajectory. The solution of a DAE is constrained to
the manifold in IRn defined by 0 = n(y, x). All legal solution trajectories
which are consistent with the DAE have to always be on that manifold.
If there are m independent constraints between states, e. g., k = 1 . . . m,
0 = nk(xj , xi), the dimension of the manifold is n−m. If there is exactly
one such constraint, the manifold is a surface of dimension IRn−1 in IRn.

DAE can be linearized in the same way as ODE. To simplify notation,
the DAE is written as

F(ż, z, t)

24

2.1 Representation of Dynamics

where z is the union of x and y. Linearizing around a trajectory z0(t) and
applying the same change of variables as for ODE, z̃(t) = z(t) − z0(t), we
then get

E(t) = dF
dż

A(t) = dF
dz

(2.9)

E(t) z̃
dt
= A(t)z̃+ b(t) (2.10)

If E(t) is regular for all t this is an ODE, but E(t) may change rank
along the trajectory. The matrix λE(t) − A(t) is called a matrix pencil. It
is singular if det(λE(t)−A(t)) is singular for all λ and otherwise regular.

The Notion of Index

The problem of “high index” differential algebraic equations is closely
linked with the idea of object-oriented modeling. This connection may not
be obvious at first sight. Object orientation is perceived as belonging to
the computer science domain while high index DAEs are a mathematical
problem. We are going to look more closely at one of the definitions of
high index. Two examples illustrate how high index problems naturally
arise from the division of systems into subsystems, one of the most impor-
tant features of object orientation and demonstrate the problem to define
consistent initial conditions for such systems.

Figure 2.1 Coupling of thermodynamic control volume and piston

EXAMPLE 1—INITIAL CONDITIONS

Consider the simple system of a gas filled control volume in contact with
a heat reservoir, Figure 2.1, closed by a piston held by a spring. Assuming
that the cylinder is tightly closed, the equations for the control volume

25

Chapter 2. Modeling Techniques

are:

pV = Mnas RT → pV = const T

Mnascv
dT
dt

= −p
dV
dt
+ q

V = V0 + Ax

For the control volume by itself, two initial conditions have to be specified,
typically pressure and temperature.

The force balance on the piston gives

mpiston
d2x
dt2 = kx − pA

where k is the spring constant and A is the piston area. The piston as a
stand-alone model needs two initial conditions, position and speed. When
the system is combined, it is no longer possible to specify four indepen-
dent initial conditions. With given piston position and speed, only the
temperature or the pressure can be specified.

When the gas volume is used for the initial condition of the control
volume, it is obvious that the volume and piston position have to be con-
sistent. While this example is trivial, finding consistent initial conditions
for more complex high index DAE is difficult. Simulation tools for areas
where high index problems are common provide algorithmic aid for find-
ing consistent initial conditions.

Definition: Equation 2.7 has differential index di = m if m is the
minimal number of analytic differentiations

F(x, ẋ, y, t) = 0,
df (x, ẋ, y)

dt
= 0, . . . ,

dm f (x, ẋ, y)
dtm = 0 (2.11a)

such that equations 2.11 can be transformed by algebraic manipulations
into an explicit ordinary differential system ẋ = Φ(x, u) which is called
the “underlying ODE”.

Two practical problems arise with the numerical solution of DAE:

• calculation of consistent initial conditions and

• reliable numerical solution of the trajectories.

The details of the difficulties of the numerical solution are described in
[Hairer and Wanner, 1996]. A few solution methods for DAE are actually
capable of handling high index DAE directly. Another possibility is to use

26

2.1 Representation of Dynamics

the definition (2.11) as a symbolic procedure to reduce a DAE to index 1.
This option offers more and particularly more reliable possibilities for the
numerical solution.

If high index DAE would be a rare exception, they would not deserve
much attention. They are very common, especially when systems are mod-
eled by dividing them into subsystems, the key property of object oriented
model libraries. Because of this, libraries would be useless if the simula-
tion environment could not deal with the index problem. Either the nu-
merical solver has to deal with the index directly – this is limited to cases
of index 2 or 3 – or the simulation tool has to do symbolic index reduction.
Modelica is designed to allow symbolic index reduction. The Dymola2 tool
that was used in the development of the ThermoFluid library does a good
job at detecting and (most often) reduce higher index to index one which
Dymola can integrate, but nonetheless it is valuable to know when and
why high index DAE will occur. The most typical occurrences are:

Simplification: imposing constraints between states (or quantities re-
lated to them) due to a simplifying assumption introduces an index
problem. In process engineering these constraints are often in the
form of “unmodeled” flows, e.g. mass flows which are not calculated
explicitly. Standard cases are

• Incompressibility ; volume constraint

• Phase equilibrium ; constrained sum of volumes.

• Reaction equilibrium ; fixed ratio between concentrations of
components.

Coupling: high index due to coupling of models is a special case of sim-
plification because it arises from idealized couplings, e. g., connect-
ing two capacitors in parallel. The simplification is to assume that
the resistance between them really is zero. In this case the current
between the capacitors is the unmodeled flow. High index due to
coupling is the most important reason why object-oriented modeling
requires automatic handling of high index problems.

Perfect control: Specifying the trajectory of an output variable as a time
function imposes a trajectory constraint on the states and thus also
leads to an index problem.

The problem of high index models is usually discussed in detail in
all modeling courses for process engineering, see [Pantelides, 2000] and
[Preisig, 2001]. The following example demonstrates that high index prob-
lems are often introduced through simplifying assumptions. While this is

2Dymola is a simulation environment using the Modelica language by the Swedish com-
pany Dynasim AB.

27

Chapter 2. Modeling Techniques

ṁev
j−1

ṁev
j

ṁev
j+1

v̇j−1

v̇j

mj = ρ j Vj
msj = cj Vj

Figure 2.2 Series of salt basins

typical and well-known for mechanical and electrical systems, this ex-
ample shows a simple process model of open evaporation basins for salt
harvesting. The example is a variation of an example from [Weiss and
Preisig, 2000]

EXAMPLE 2—SALT BASINS IN SERIES

Consider a series of salt basins as in Figure 2.2. At the top of each basin
are inflows of low concentration salt brine. Water evaporates in each basin
and the outflow into the next lower basin has a higher salt concentration.
It is difficult to model the exact flow into the next basin3, but an adequate
simplification is to assume that the brine volume equals the maximum
value of the basins volume. The brine in the j-th basin is assumed to have
a density that depends on the salt concentration cj . The model for each
basin j, j ∈ 2..N can be written as follows:

ṁj = ρ j−1v̇j−1 − ṁev
j − ρ j v̇j total mass balance (2.12a)

ṁsj = cj−1v̇j−1 − cjv̇j salt mass balance (2.12b)
mj = ρ j Vj mass m (2.12c)

msj = cj Vj salt mass ms (2.12d)
xsj = mj

msj
salt concentration xs (2.12e)

ρ j = n(xsj) function to calculate density ρ (2.12f)

The inflow conditions into the first basin, c0 and v̇0, are known. For
a known evaporation mass flow rate ṁev

j this is a well-posed index two
DAE problem. For each basin, there are 6 variables: m, ms, v̇, xs, ρ and
c (V , ṁev are assumed known), as well as 6 equations. But there are

3The overflows in open air salt basins have irregular geometries.

28

2.1 Representation of Dynamics

no explicit equations for v̇, these have to be calculated from the volume
constraint and the mass balances. By differenting the volume constraint,
the concentration equation and the density definition, it is possible to
compute the volumetric flow explicitly:

v̇j = n′(xsj)(xsj − xsj−1)ρ j−1 + ρ j−1ρ j

ρ2
j−1

v̇j−1 + n
′(xsj)xsj + ρ j−1

ρ2
j−1

ṁj

Modelica was designed to make algorithmic approaches to these trans-
formations possible. The algorithmic conversion to an index one problem
involves detecting the constraint equations and differentiating them sym-
bolically. Two algorithms provide the necessary methods: Pantelides’ algo-
rithm [Pantelides, 1988] and the method of Dummy-Derivatives [Matts-
son and Söderlind, 1993]. A remaining problem is to select which of the
differentiated variables is going to be used by the numerical integrator.

Clearly, the index two DAE with the implicit definition of the volume
flow is much easier to derive than the equation which is the result of
transforming the problem to an index one problem. The algebraic con-
straint is caused by the constant volume assumption. Equations 2.12c,
2.12e and 2.12f have to be differentiated, then it is possible to calculate
v̇j explicitly and reduce the problem to index one.

There are three points to note in the index reduction procedure used
above:

• In spite of two differential equations there is only one independent
state per basin.

• Index reduction involves a global analysis of the equations, the vol-
umetric flow v̇j contains variables from the upstream basin.

• The algorithmic solution and manual index reduction yield the same
solution.

With object-oriented modeling of each basin and local index reduction by
the modeler this would mean that the concentration xsj of the upstream
basin would have to be in the connectors, which is not obvious from the
original equations. Similar problems occur in boiler modeling, see [Åström
and Bell, 2000].

In some engineering domains the presence of a high index DAE is
regarded as a modeling error, which may actually be true. In other do-
mains (electrical and mechanical) high index problems occur naturally
from standard modeling assumptions. These differences lead to drasti-
cally different ways of dealing with the index problem:

29

Chapter 2. Modeling Techniques

• Send the modeler back to the step 1 to resolve the problem with
pen and paper, reformulating the model into an equivalent index 1
problem.

• Build the capacity of recognizing and resolving high index problems
into the modeling tool.

Because Modelica is designed as a multi-domain modeling tool, it has to
support automatic index handling. This does not mean that automatic
index reduction is the silver bullet that solves all high index problems in
the best possible way. There are a few exceptions when manual deriva-
tion of an index 1 problem is preferable to the automatic procedure. This
is the case when the automatic procedure gives results with numerical
disadvantages, at least with the current version of the Modelica language
and the index reduction algorithms in the Dymola tool. Examples of these
rare cases are presented in Chapter 4. But independent of an automatic
handling, model users have to understand the implications of high index
problems in order to provide the right initial conditions.

Partial Differential Equations

Partial differential equations (PDE) are the mathematical formulations
that permits the highest level of detail for system level models. They
provide the tool corresponding to the magnifying glass with the highest
magnification power. PDEs form an essential part of the mathematical
description of physical systems depending on space and time. They arise
in a large number of modeling applications, but are not that common in
systems level modeling. The reason for this is that PDE can have widely
differing properties and that they are much more difficult to deal with
numerically than ODEs. Using PDE for dynamical systems means that
we have at least one more independent variable apart from time. Usually
these are spatial coordinates, but variables can also be distributed in other
dimensions like particle sizes in crystallization processes.

Numerical solutions to PDE for design calculations are used in almost
all engineering disciplines and are established as independent research
areas, e. g., Computational Fluid Dynamics (CFD) and Finite Element
Methods (FEM).

Consider a set of PDEs expressed over the solution domain Ω which is
a compact region in IRm+1 and its boundary δ Ω ∈ IRm, compare Figure 2.3
for a two-dimensional example. If the independent variables are separated
into time t and a vector of spatial variables x, then the dependent variables
u can be written as

u = u(x, t)
where u ∈ IRn, x ∈ IRm and t ∈ IR ≥ 0. In mathematical texts the indepen-
dent space and time variables are usually treated alike, here Ω is used

30

2.1 Representation of Dynamics

:

Solution Domain: Ω

Boundary: δ Ω
n

s

Figure 2.3 Computational domain Ω of a PDE

.

for the union of the spatial dimensions and time. The partial derivatives
are often denoted as follows

(ux)i j = Vui

V xj
, (uxx)i jk = V2ui

V xjV xk
, etc.

For modeling of physical systems, PDEs of second order account for
many important applications. For simplicity of exposition we restrict the
following discussion (adapted from [Logan, 1994]) to one space dimension
x, a single scalar variable u and get

G(x, t, u, ux , ut, uxx , utt, uxt) = 0 (2.13)

where the independent variable x and t lie in some given domain Ω. By
a solution to (2.13) we mean a twice continuously differentiable function
u(x, t) defined on Ω which, when substituted into 2.13 reduces 2.13 to an
identity on the domain Ω. These solutions are called classical or genuine.
When the solutions are extended to include functions which are discon-
tinuous or have discontinuous derivatives, such functions are called weak
solutions. For one-dimensional PDEs the solution of 2.13 can be repre-
sented as a smooth surface in three-dimensional xtu-space lying over the
domain Ω in the xt-plane, as shown in Figure 2.4.

Boundary and Initial Conditions In ordinary differential equations
solutions depend on arbitrary constants. Initial or boundary conditions
fix the arbitrary constant and pick out a unique solution. The situation

31

Chapter 2. Modeling Techniques

5
10

15

Time [ms]

0.2

0.0

0.4

0.6

1.0

1.1

1.2

P
re

ss
ur

e
[b

ar
]

20

0.8

Le
ng

th
 [m

]

Figure 2.4 Graphical representation of the solution to the pressure wave demo
model from the ThermoFluid library. The model simulates a pipe whose back end at
(x = 1) was instantaneously opened to a lower pressure a few milliseconds before
this “snapshot” of spacetime was taken. It represents the space-time diagram of a
pressure wave traveling back and forth in a one-dimensional pipe model. It clearly
shows one characteristic of a hyperbolic PDE, the wave moving from the back end of
the pipe (x = 1) to the front, reflection at the front (x = 0) and traveling towards the
back end again. The slope of the linear ridges between the x- and t axes correspond
to the characteristics, u+ c and u− c with u gas flow speed and c speed of sound.

for PDE is similar. Imposing initial and boundary conditions selects one
from the infinitely many solutions. These auxiliary conditions are usually
suggested by the underlying physical problem or by the type of the PDE.
Conditions on u or its derivatives at t = 0 along segments of the domain
boundary are called initial conditions while conditions along any other
curves of the xt-plane are called boundary conditions. For a well-posed
physical problem, a complete set of initial conditions has to be specified,
i. e. u(x, t = 0) has to be known for all of Ω.

A typical modeling error in PDE problems is to specify non-physical
boundary conditions which lead to an ill-posed problem. For example, in
heat - or electrical problems, a potential (temperature or voltage) has to be
specified somewhere on the boundary, otherwise the level of the potential
is free to float and any potential level would give a mathematical solution.

The mathematical literature traditionally classifies boundary condi-

32

2.1 Representation of Dynamics

tions into three categories:

• Dirichlet boundary conditions: u = n on δ Ω

• Neumann boundary conditions: Vu
Vn = n or Vu

Vs = n on δ Ω

• Robin boundary conditions: Vu
Vn + ku = n, k > 0 on δ Ω

Here n denotes an outward normal vector and s a tangential vector
with respect to the boundary δ Ω at a given point, see Figure 2.3. Dirichlet
boundary conditions can be applied exactly on δ Ω when n is analytic, but
practical problems with Neumann and Robin conditions are that errors
are easily introduced when representing them numerically.

In some interesting problems the calculation of the boundary loca-
tion is part of the problem and not known in advance. Moving boundary
problems are associated with time dependent processes where behavior
changes abruptly at a boundary which changes its location in space. Flame
propagation and phase change problems are typical examples of moving
boundary problems.

Symbolic approaches to the solution of PDE often involve free functions
of a certain type which have to fulfill the boundary conditions. Fourier’s
approach of solving the heat conduction problem was to construct the
solution as an infinite sum of functions all of which fulfill the homogeneous
boundary conditions.

Classification For second order PDEs, a special classification has been
established both from a mathematical standpoint and based on the phys-
ical phenomena that they arise from. From the physical point of view,
there are three types of equations: those that govern diffusion processes,
those that govern wave propagation and those that govern equilibrium
phenomena. Equations of mixed type also occur, but locally for a fixed
point ω ∈ Ω they belong to one of the three categories. Considering a
single, second order PDE of the form

auxx + 2buxt + cutt = d(x, t, u, ux , ut), (x, t) ∈ Ω (2.14)

where a, b and c are continuous functions on Ω and not all of a, b and
c vanish simultaneously at some point of Ω. Also the function d on the
right hand side is assumed to be continuous. The equation is classified on
the basis of its second order derivatives using the discriminant ∆, defined
by ∆ = b2 − ac. Then (2.14) is said to be

hyperbolic if ∆ > 0, a wave propagation equation,

parabolic if ∆ = 0, a diffusion process equation or

elliptic if ∆ < 0, an equilibrium or steady-state process.

33

Chapter 2. Modeling Techniques

In the case of elliptic PDE, time derivatives do not occur and only space
coordinates are independent variables. They are a rare exception in dy-
namical systems modeling. It should be pointed out again that the type
of the equation may change on Ω because ∆ depends on x and t.

Numerical Methods for PDE The numerical solution of PDE is gen-
erally a difficult problem. Solutions are always approximations to the true
mathematical solution of the equation and all the more to the real physics
that they represent. Solutions can be very sensitive to small changes in
parameters or boundary conditions. The situation is not hopeless, there
are several numerical methods which can solve technically relevant prob-
lems reliably. There is active research in the area of solutions to PDE and
from the many methods available only the key features of a few of them
will be discussed.

A generalized concept that comprises the majority of numerical PDE
solution methods is the “Method of Lines”. The methods of lines con-
verts time dependent PDEs into ODEs (or DAEs) with respect to time
by choosing a fixed spatial discretization and usually also a fixed order
approximation to the spatial derivatives of u(x, t). The name “Method of
Lines” is based on the fact that many of these methods approximate the
solution of the equations on a fixed spatial grid of straight lines. Method
of lines as a group name also refers to finite element methods where the
spatial discretization is fixed, but the discretization uses triangles of dif-
ferent sizes. Traditional PDE solvers also use a fixed time discretization,
but in recent years it has become common to use variable time step ODE
solvers for discretized PDE.

The method of lines can provide good numerical approximations to the
solution of PDE in a wide variety of applications. The family of meth-
ods of lines comprises finite difference, finite volume, finite element and
weighted residual methods in which piecewise local or global approxi-
mation functions in the space dimension are used to convert hyperbolic
and parabolic PDE problems into initial value ODE problems. The key
advantage of the “Method of Lines” is twofold:

• It is straightforward to combine subsystem models which are de-
scribed by DAEs or ODEs with PDEs because they are all converted
to the same mathematical form.

• ODE and DAE solvers can be employed for the solution. These
solvers have reached a higher degree of sophistication than PDE
solvers. Many programs are available which permit fast and accu-
rate solutions to large sets of DAE [Petzold, 1982].

The advantage of ODE/DAE solvers is that they use sophisticated algo-
rithms to adjust the time step size and the order of a method in order to

34

2.1 Representation of Dynamics

control the user-specified approximation error [Gustafsson, 1992].
However, the advantage of the method points to the disadvantage: The

DAE solver used for integration in time cannot control or even estimate
the space discretization error. For coarse discretizations the spatial error
can easily be an order of magnitude larger than the (controlled) time dis-
cretization error. There are no general guidelines on how to determine
the spatial discretization such that a computationally efficient and accu-
rate solution is obtained. Trial and error and engineering intuition are
the prevailing methods. Adaptive or moving grid methods are attempts
to handle the spatial discretization error better, but their complexity and
restriction to special classes of problems has discouraged implementation
in general purpose simulation tools [Oh, 1995]. This is one of the problems
in using PDE in systems modeling: there are many special methods for
special cases, which makes implementation of general purpose tools for
all types of PDE prohibitively complex.

Discrete Time and Hybrid Systems

Discrete time dynamic systems arise from the time discretization of con-
tinuous systems or from time scale abstractions of such systems. In phys-
ical systems modeling they are the predominant way to model control
actions of all kind: finite difference equations and discrete time trans-
fer functions for feedback control and particular description formalisms
such as Petri nets, [Murata, 1989; David and Alla, 1992], finite state ma-
chines, [Kohavi, 1978], Grafcet, [Årzén, 1994; Johnsson and Årzén, 1999],
Grafchart [Årzén, 1996; Johnsson, 1999] or State Charts [Harel, 1987]
for sequential control, safety and redundancy management control logic.
Changes of the state of discrete time systems occur only at discrete points
in time.

Most controllers are implemented as digital controllers with algorithms
based on discrete time process models. The controllers often contain pro-
cess models, e. g., in the form of Kalman filters. A discrete time model
can be obtained by sampling the continuous time model. Sampling the
continuous time ODE-model

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t)
at equidistant time instants with sampling interval h results in the dis-
crete time model

x(kh + h) = Φx(kh) + Γ(kh), y(kh) = Cx(kh)

where Φ = eAH and Γ = ∫ h
0 eAs Bds. There are also approximative dis-

cretization methods, including Euler’s method and Tustin’s approxima-

35

Chapter 2. Modeling Techniques

tion. Numerical methods for solving ODEs are mostly based on more so-
phisticated discrete approximations. Further details on discretization of
continuous time models can be found in [Åström and Wittenmark, 1990].

Hybrid systems combine the continuous behavior specified by differ-
ential equations with discontinuous changes specified by discrete event
switching logic or finite difference equations at sample times. For success-
ful modeling of hybrid phenomena, the semantics of the hybrid modeling
language elements have to be well understood. In certain difficult cases
even an understanding of the implementation of the computational solu-
tion procedure are necessary. At least three modeling situations lead to
hybrid phenomena in systems modeling:

• Combination of continuous physical systems with discrete time, com-
puter implemented control logic.

• Discrete approximations to physical phenomena which exhibit steep
changes within short time- or length scales, e. g., the time scale ab-
stractions mentioned in Section 1.3 like colliding objects in mechan-
ics.

• The modeled device changes its characteristic behavior in the inter-
esting range of operation so much that different states or even a
different number of states are needed for an adequate description
of the behavior. An example could be an evaporator that is flooded
with liquid at startup.

Modeling on a macroscopic scale often gives rise to empirical relations
that are piecewise functions. Typical examples are friction, pressure drop
or heat transfer correlations. As long as the relations do not change the
causality of the calculation, these are fairly easy to handle in simulation.
Hybrid phenomena are still the topic of intensive research activity, even
fundamental issues such as the existence and uniqueness of executions
of hybrid automata are not understood in all details. Good introductions
to ongoing research in hybrid systems is found in [Johansson et al., 1999]
and [Zhang et al., 2000].

From the point of view of numerical mathematics, the following clas-
sification can be made:

1. ODE or index 1 DAE where a discrete event or discontinuous func-
tion does not change the index or the size of the state vector.

(a) Only the right hand side of the ODE/DAE changes discontin-
uously, all states are C0 continuous. The values of the states
before and after the event are the same. Computational causal-
ity of algebraic variables in an index 1 DAE might change also.

36

2.1 Representation of Dynamics

(b) The states may change discontinuously through an impulsive
action. Physically, this arises from a time scale abstraction. The
mathematical tool is a Dirac impulse the amplitude of which
has to be calculated. The values of the states after the event
have to be calculated by conditions or extra equations in the
model.

2. ODE or DAE of any index where the index or the number of states
changes after an event. Both of these change the dimension and
possibly the structure of the dynamical problem.

(a) States are added to the state vector. From an implementation
point of view the problem is similar to 1(b) because the new
state needs to be initialized. Algebraic variables may also be
added but this is less problematic.

(b) Constraints on states are introduced during integration and
the index of the DAE changes. Causality might change and
a physically reasonable treatment of the problem may include
Dirac impulses.

In practical terms, the cases 1 are easier to handle than the cases 2,
modeling of them needs both support from the modeling language and
numerical solvers.

The possibility that a system of equations may become singular dur-
ing integration due to topological constraints is a related problem. This
occurs for the pendulum in Cartesian coordinates [Mattsson et al., 2000]
such that a different set of equations has to be used instead. Strictly
speaking this is not a hybrid problem – the system’s numerical condition
gets gradually worse – but the implementation problems are related.

Many hybrid problems can usually be dealt with in an algorithmic
fashion, but the challenge for a modeling language is to describe hybrid
phenomena in an intuitive and completely declarative way. This is a com-
plex task which is partially taken into account in Modelica although it
does not yet offer satisfactory solutions for the more difficult cases above.

The first step in describing hybrid problems in a declarative manner
is to write equations in a way that allows the tool to automatically de-
tect and locate the time of events. This is done with the help of indicator
or crossing functions (see [Cellier, 1991]) which change their sign at the
discontinuity. In Modelica, these crossing functions are automatically gen-
erated from the declarative discontinuity conditions. Users only have to
supply their own crossing functions when the discontinuities are hidden,
e. g., in external programming code.

A particularly annoying problem for practitioners is the phenomenon
of “chattering” which occurs sometimes in case 1a above. It is an unwanted

37

Chapter 2. Modeling Techniques

ε

Figure 2.5 Chattering (ε not to scale)

effect which under certain circumstances is triggered by the exact event
location. On the other hand, the exact event location is a precondition to
high accuracy solution of the system trajectory. A zoom into the solution
trajectory in the case of chattering is given in Figure 2.5. Two different
right-hand sides of the ODE are symbolized by the two vector fields. In
this case both vector fields give a gradient that drives the solution towards
the discontinuity. The solver locates the exact time point on the trajectory
when the discontinuity triggers and restarts the solver with the new right
hand side. Note that omitting the step of locating the discontinuity exactly
leads a large error in the solution trajectory because the wrong vector field
is used for a large part of the time step. The restart is computationally
expensive, multi-step high order methods restart with low order and small
step size. In order to account for small numerical errors, the solver will
not switch back to the old right hand side within a small ε -environment
around the discontinuity. The gradient will drive the trajectory across
the discontinuity again and this repeats for many times. The progress in
simulation gets prohibitively slow and this is experienced as a stand-still
in simulation.

Currently there is no simulation tool which treats the chattering prob-
lem in a satisfying way or would even give a clear diagnosis of the occur-
rence. The pragmatic solution as of today is to change the hybrid model to
a smooth, continuous model, compare Figure 2.6. Physically this is often
an admissible solution because often the hybrid phenomenon is a result
of an abstraction that can equally well be parameterized in a smooth way.
The change in Reynolds number between laminar and turbulent flow is
such a case as well as boundary layers in temperature or velocity fields.

38

2.2 Model Libraries

For certain classes of hybrid systems and for this type of chattering or
“sliding mode” behavior, efficient and accurate simulation methods were
explored in [Malmborg, 1998] and [Mattsson, 1996] using the concept of
Filippov solutions. However, these methods are not general and not im-
plemented in simulation packages yet.

Area with smoothened behaviour

Figure 2.6 Chattering is avoided by smoothing the discontinuity. The Filippov
solution can be visualized by letting the gray area shrink to zero width. The sum of
the vector fields defines the gradient on the boundary.

From a modeling perspective it is very natural to combine DAE de-
scriptions with hybrid phenomena. This leads to many interesting prob-
lems such as DAEs which change their index when a discrete submodel
switches states. There are many interesting research problems stimulated
by such models: some semantic issues related to declarative descriptions
and reliable execution of simulation of the models are still open problems.

2.2 Model Libraries

Model libraries are collections of reusable model parts and subsystems in
a modeling and simulation tool. In object-oriented modeling these parts
will almost always coincide with physical model parts and subsystems.
Model libraries can increase reusability and consequently productivity in
systems modeling substantially. This has been one of the main incentives
in the development of object-oriented model libraries during the last two

39

Chapter 2. Modeling Techniques

decades. In the following discussion we will restrict the subject to physics
based models for engineering systems.

Classification

Model libraries in some form are part of all modern simulation tools. On
the first look, they seem to follow the same ideas: model components can
be dragged from a model palette or browser onto a diagram which is used
to compose a complex system from simpler parts. In terms of their imple-
mentation and usefulness for different purposes, there can be tremendous
differences. Most domain specific modeling tools do not show the details
of the model implementation and a user has to rely on the completeness
and correctness of the documentation. These black box models, even if
they are based on sound physical models, can only serve some simulation
purposes. However, other tasks such as model validation is much more
difficult or even impossible. Internally, different models may be used for
different ranges of parameters or operating conditions. This is for example
the case for the SPICE [Massobrio and Antognietti, 1993], but at least the
source code for the SPICE models is available even if sparse documenta-
tion may make it difficult to comprehend. Trusting black box models can
be a hazard. K. J. Åström has described this in the following way:

The practice of not publishing source code is a factor which
strongly contributes to poor quality (of models). A good analogy
is to ask the question: what would mathematics look like if
theorems were published together with a manual how to use
them and the proofs were hidden as company secrets?

The philosophy behind the Modelica language and other equation based
modeling languages is orthogonal to black box models. Model users should
be able to see all equations that comprise the model. They should also be
allowed to modify and extend the model if necessary for them. Open Code
libraries can be designed with different ideas about their use in mind. In
some domains it is possible to provide a complete set of base models, e. g.,
in the Modelica Multi-Body-Systems (MBS) library. This library is open
and extensible. It was designed to be complete for all common MBS. In
process engineering and thermodynamic systems it is impossible to pro-
vide a library of similar completeness as the MBS library because of a
large number of model assumptions and case-specific empirical correla-
tions which lead to a huge number of models. Therefore, the ThermoFluid
library has been designed from the start to provide base models and struc-
ture to help rapid model development. It is necessarily incomplete, but it
offers hooks and standard-case placeholders for user written model exten-
sions.

Three types of libraries can be distinguished:

40

2.2 Model Libraries

Black Box model libraries This is the most widespread case for com-
mercial domain specific libraries, e. g., in Adams [Adams, 2002],
APROS [Juslin, 1995] and ITISIM [ITI GmbH, 2002].

Open Code model libraries The Modelica Standard Library is a typ-
ical open code library. The standard models are selected in a way
that covers many common cases and defines connectors which are
valid for all models in that domain.

User Extensible Libraries The idea of a user extensible base library
has been explored with the ThermoFluid library. That the concept
works well for a broad range of processes which are only related
through their basic physical phenomena will be clear from the ex-
amples in Chapter 5. User extensible libraries have to be open code
libraries.

The main topic of this thesis is user extensible model libraries. Mod-
elica offers many language constructs that make Modelica particularly
interesting for this type of library development.

Structuring, Interfaces and Decomposition

With the simple guideline that model structuring and interfaces corre-
spond to the equivalent features of the real system, structuring of model
libraries should be trivial. This is not quite true for several reasons. As
soon as hierarchical decomposition is used, the number of levels and the
interfaces between subsystems are debatable. Many levels may give a
completely logical structure but may be cumbersome to browse and use.
Too fine-grained decomposition can result in a large number of models
with good code reuse but it is difficult to get an overview. There are many
possible solutions how the obvious physical quantities in the interface of
a real system e. g., the flange of a pipe, are mapped to a mathematical
model. Structuring is more important when the size of the model libraries
and the organization using them grows. For very large libraries, database-
like search capabilities are necessary, otherwise modelers might prefer to
rewrite a model instead of finding an existing one. This has been recog-
nized as a common occurrence in large companies with many, often poorly
documented models, see [Jeandel et al., 1996].

Many solutions for structuring of model libraries exist and often the
resulting structure reflects personal preferences of the library designer.
The library structure is always a compromise. The developer should take
the prospective users into consideration. If the users want to assemble
systems from subsystems and get simulation results as quickly as possi-
ble, complete subsystems representing parts of the system which are as
large as possible with few parameters will help them most efficiently.

41

Chapter 2. Modeling Techniques

Users which have to develop models by themselves and have to deal
with rapidly changing prototypes under development benefit a lot from
a much more fine-grained structure. They will also prefer a multi-layered
approach which gives them access to all levels of model composition from
basic physical phenomena to subsystems.

A detailed investigation of structuring of object-oriented libraries will
be given in Chapter 6.

2.3 Validation and Verification

Models are developed with the purpose of drawing conclusions about the
real system, either by simulating them with inputs which resemble the
inputs of the real system or by analyzing them. Consequently, the validity
of the model is a very important question. The model must accurately de-
scribe the important physical phenomena of the real system in order to be
of any use. Validation of models is a complicated task. The fundamental
problem is that no model can perfectly capture all aspects of the real sys-
tem, abstraction and simplification are the very nature of modeling. Thus
model validation is always relative to the requirements of the model use.
It is important to recognize that it is impossible to conclusively validate
a model. According to [Popper, 1935], a theory can only be falsified i. e.
proven wrong by experimental tests. By passing any number of tests, a
model is only as yet unfalsified. The art of model validation is thus to
design validation test cases for the model that make sure the model holds
sufficiently well for the interesting aspects of the real system. The part
of model validation that deals with adaptation of parameters to make the
model and the real system match is often called model calibration.

There are two important aspects to the validation of mathematical
models in a computer implementation:

1. Does the model as it is coded in a modeling language correspond
to the mathematical model that it is supposed to represent? This is
called verification or internal validation.

2. Does the model correspond to the real system? This is called valida-
tion, sometimes with the additional attribute external.

For models obtained by system identification, validation of the model
structure and parameters are part of the standard procedures in model
development. For linear models the repertoire of systematic validation
methods is rich and well established. The quantitative bounds that char-
acterize the quality of the model give practitioners a good indication about
how much they can trust a model. On the other hand, system identifica-
tion models are inherently limited by being linear.

42

2.3 Validation and Verification

When validating models, there are two questions that have to be put:

• Is the chosen model structure adequate?

• Are the parameters used in the model optimal in some sense when
the model output is compared to measurements of the real system.

In practical terms the questions can usually not be separated like above,
usually parameters are optimized for different model structures and then
the structures are compared with their best-fit parameters. It is obvi-
ous that the choice of the model structure sets limits to the achievable
performance of the model, see [Eborn, 2001]. The most common criterion
for selecting a model structure is Akaike’s Information Criterion (AIC).
It was developed for linear models but can also be applied to nonlinear
models.

The practical problem with model validation for first principle physi-
cal models is that they are non-linear. The mathematics and stochastics
of nonlinear models are much less developed than for linear systems. Pa-
rameter optimization for hybrid-DAE models results in a nonlinear mixed-
integer optimization problem which may be very hard to solve. Therefore,
model calibration for physical models usually involves hand-tuning of pa-
rameters based on trial and error or physical insight. Often model and
system output are compared for typical input signals like step responses.
Because of the current lack of systematic methods, this can be a very
time-consuming activity, but for high quality models there is little chance
to avoid it. The physical parameters of the real system are often not
known accurately and may be impossible to measure directly. The model
is calibrated by hand-tuning such parameters, sometimes with the help
of optimization methods.

One of the few attempts that have been made to bridge this gap be-
tween system identification and physical modeling by developing meth-
ods and tools for gray-box identification i. e. estimation of parameters in
physical models is MoCaVa and its predecessor IDKIT developed at KTH
by Bohlin and coworkers, see [Bohlin, 1991; Bohlin, 1998].

A prototype of an integration of the modeling tool OMOLA and the grey-
box identification tool IDKIT was used to select between different struc-
tures for a non-linear drum boiler model. [Åström and Bell, 2000] had
developed a series of simple drum boiler models of second, third and forth
order. The third and forth order models were compared in [Sørlie and
Eborn, 1997; Sørlie and Eborn, 1998]. The results demonstrate that sys-
tematic model calibration can give very good agreements between model
and real system and that the integration of a modeling and identification
tool accelerates the work flow. Nonetheless this has not become industrial
practice, mainly due to the lack of easy-to-use, integrated tools.

43

Chapter 2. Modeling Techniques

It is obvious from the definition of library models and validation that
external validation of library models is not possible because they do not
represent any particular real system. The internal validation on the other
hand is very important because users of the library rely on the internal
validation when they select models. In practical terms internal validation
for library models means that the implemented model corresponds to its
documentation4 . Automated regression tests and cross checking numerical
results with analytic ones where these exist for special cases are tools that
can be used to obtain a high quality internal validation of library models.

2.4 Physics Based Model Reduction

The main purpose of dynamic models is to capture the dynamic behavior of
a system. When the model is to be used for control, the dynamic accuracy
of the model is important in the vicinity of the crossover frequency of the
feedback loop and less important at other frequencies. When controllers
with integral action are used, the closed loop gain is infinity at ω = 0 and
therefore the accuracy of the open loop gain at ω = 0 is not important, nei-
ther are the properties at frequencies that are higher than the crossover
frequency. As a motivating example, an investigation of a model reduc-
tion from the electrical domain will be presented as a general, but simple
case of dynamic model reduction. Often the question arises whether it
is possible to lump energy storage of two closely connected physical sub-
models into one unit or not. The Modelica language and in particular the
Dymola simulation tool allow to design model libraries where the tedious
part of such model reduction procedures is handled automatically be the
tool when the user chooses model combinations that call for this simpli-
fication. The details of how this works in thermo-hydraulic cases will be
presented in the following.

Example: An Electrical Circuit

The example consists of the simple electric circuit in Figure 2.7. The
source voltage is the input to the system, the voltage over the capaci-
tor C2 is the output. The system can be transformed into a linear state
space system with the voltages of the two capacitances as states. The

4Note that it is well possible for a model to pass an external validation with respect to a
real system and to fail the internal validation.

44

2.4 Physics Based Model Reduction

Ground

R=1

R2

R=1

R1

C1 C2VS1 C=2 C=1 Vout
Vin

Figure 2.7 Simple electrical circuit with two capacitors.

linear system becomes:

ẋ = Ax +Bu

y = Cx
x =

(
vC1

vC2

)

A =
(
− R1+R2

C1C2R1

1
C1R2

− 1
C2R2

− 1
C2R2

)
, B =

(
1

C1R1

0

)
, C = (0 1)

with the transfer function

vout

vin
= 1

C1C2R1 R2s2 + s(R1(C1 + C2) + C2R2) + 1
.

The system stores energy in the two capacitors. The question of inter-
est is now: under which circumstances is it possible to describe the system
with one capacitor of the capacitance C1+C2 instead of two? A simple way
to do the model reduction is to neglect the resistance and set R2 = 0. The
transfer function simplifies to

vout

vin
= 1

sR1(C1 + C2) + 1
.

This has the effect to lump the capacitors into one with the sum of the orig-
inal capacitances. Observe that a second order linear ODE system where
we simply set R2 = 0 is singular. In the DAE-framework this is easy to
treat. From R2 = 0 we have that vC1 = vC2, the constraint equation, com-
pare Section 2.1, of the index 2 DAE. The index reduction can be handled
automatically, resulting in a reduced order ODE system. The singularity

45

Chapter 2. Modeling Techniques

0 200 400 600 800 1000
Resistance of R2

-12

-10

-8

-6

-4

-2

0

M
ag

ni
tu

de
of

th
e

E
ig

en
va

lu
es

Eigenvalues of the System as a Function of R2

SlowEigenvalue

Fast Eigenvalue

Lumped Eigenvalue

Figure 2.8 Eigenvalues of dynamics matrix A for the electrical system in Fig-
ure 2.7

problem of the higher order ODE formulation is avoided. This feature of
the DAE formulation can also be exploited for model order reduction for a
non-zero, but small R2. For a choice of parameters R1 = 1000, C1 = 0.002
and C2 = 0.001 we look at the eigenvalues of A (Figure 2.8) and the Bode
plot (Figure 2.9) of the transfer function as R2 decreases. As can be seen
from Figure 2.8, one eigenvalue is around 1/3 whereas the other goes to
infinity as R2 gets small. For comparison, the constant eigenvalue result-
ing from a simplified circuit with R2 = 0 and and a lumped capacitor with
C = C1+C2 is also shown. From the look at the eigenvalues it seems to be
possible to neglect the resistance R2 for values of R2 < 500. Observe that
the eigenvalues are independent of the choice of inputs and outputs. An
inspection of the bode plot in Figure 2.9 for the chosen input- and output
signals reveals that the justification of the model reduction depends on
the frequency content of the input signal. It is clear from the bode plot
that the closed loop bandwidth is the limiting factor that determines for
which values of R2 it is possible to use the simplified system. It is clearly
not advisable to neglect any of the energy stores C1 or C2 which are of
the same order of magnitude. After this short excursion into the electrical
domain, a similar situation for thermodynamic models is explored.

46

2.4 Physics Based Model Reduction

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

−150

−100

−50

0

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−180

−135

−90

−45

0

R2 = 500
R2 = 50
R2 = 0.0

Figure 2.9 Bode Plots of the electrical system in Figure 2.7 for different values
of R2

Heat Exchangers

The type of model reduction presented in the previous example seems
natural in that case. When the example is transferred to heat exchangers
instead, the equivalent model reduction is not commonly used. Excep-
tions are special purpose low order models like the drum boiler model by
[Åström and Bell, 2000]. This model reduction refers to an interesting case
from Section 4.10 of combining a solid structure with a fluid when both the
boundary layer heat resistance and the metal resistance are neglected. In-
stead of having separate energy balances for the wall and the fluid, these
are combined into one energy store, equivalent to the lumping of the ca-
pacitors in the last example. Equating the temperatures Tf luid1 = Tm (see
Figure 4.6) gives the wanted result. Again, an index two DAE system is
the result where Tf luid1 = Tm is the constraint equation which is used to
calculate the heat flow when differentiated. This means, similarly as in
the electrical case, that the heat flow resistance is set to zero. Assuming
for now that the fluid uses pressure p and specific enthalpy h as states

47

Chapter 2. Modeling Techniques

and that the thermodynamic equation of state is explicit in these states,
the temperature difference can be expressed as

dT
dt

= VT
Vp

∣∣∣∣
h

dp
dt
+ VT
Vh

∣∣∣∣
p

dh
dt

(2.15)

in the one phase region and as

dTsat

dt
= dTsat

dp
dp
dt

(2.16)

in the two phase region, where the temperature does not depend on the
enthalpy. Usually the temperature is calculated via a function and not
an equation. In current Modelica implementations, functions can not be
differentiated unless a derivative function is written by the user and the
annotation for function derivatives (see Section 3.4) is used to convey
the derivative information to the simulator. If this is implemented in the
model library, the model reduction is automatic whenever a user connects
a fluid control volume and a resistance-free wall model without an ex-
plicit heat transfer law between them. The validity of doing this model
reduction depends on the parameters of the actual physical system: in a
condenser with very high heat transfer coefficients this assumption is usu-
ally valid for the condensing flow. The same holds for most walls in contact
with boiling or condensing two phase flow. Focusing on the energy stor-
age point of view this model reduction is equivalent to lumping two fluid
control volumes into one volume. The lumping of small control volumes
into a larger one is done routinely without questioning that simplification
technique. With regard to the energy storage the example of lumping the
solid and fluid energies is identical to the case of the capacitors.

Another case where this model reduction is particularly useful is mod-
eling of thermal stresses during load changes in power plants. In that case
the situation is slightly different: The metal mass has to be discretized in
radial direction in order to model thermal stress. The innermost section
of the metal in contact with the fluid is then modeled to have the same
temperature as the fluid. The speed of possible load changes is limited
by the thermal stress in the thick-walled metal mass. The thermal stress
is proportional to the temperature difference between the innermost and
outermost metal fiber.

In the case of the drum boiler derived in [Åström and Bell, 2000] the
model reduction is not made by the simulation tool but by the model
developer: this is an error-prone procedure which should be avoided.

While the automatic model reduction presented here is possible and
desirable, it does not fully fit together with other aspects of library organi-
zation and is not the most efficient solution possible. In current Modelica

48

2.5 Modeling Tools

it is neither very convenient nor very efficient to provide derivative func-
tions like the one for the temperature in all cases. Problems arise when
one wants to organize the medium properties in records because deriva-
tives have to be provided for all other record members, most of which are
unneeded. When evaluating the derivative, the function for calculating
temperature from pressure and enthalpy has to be re-evaluated. This is
inefficient for steam tables where those functions are computationally ex-
pensive. Concerning the automatic generation of derivatives there is room
for improvement both in the Modelica language and the Dymola tool.

2.5 Modeling Tools

Modeling tools provides means to bridge the gap between a conceptual
model of a physical system and computer code that makes it much eas-
ier to communicate the conceptual model to other people. Modeling is an
activity which requires knowledge of several domains: the application do-
main, numerical mathematics and computer science. Modeling tools can
be designed to support model development, identification, selection, exe-
cution, visualization, calibration and validation. Some notable cases are
noted below:

• Symbolic tools help in the model derivation and development, e. g.,
Mathematica [Wolfram, 1990] and Maple [Char et al., 1992]

• Model databases and modeling tools built around model libraries
help in model composition and selection of pre-defined models, e. g.,
Omola [Nilsson and Eborn, 1994], Dymola [Brück et al., 2002] and
MathModelica5 [Fritzson et al., 2002].

• Tools for model execution is an area that is covered by all simulation
tools. All tools also offer some form of visualization of results. Matlab
[MathWorks, 2001a] and Simulink [MathWorks, 2001b] are probably
the most widely spread general purpose tools of this class.

• Calibration and validation tools. Tools for systematic comparison
of results from physical model simulation with measurements and
optimization of parameters are much less common. A promising ap-
proach is demonstrated with MoCaVa [Bohlin, 1998].
gEST [PSEnterprise, 2002] offers estimation features for physical
models and is to some extent coupled with the gPROMS [Barton
and Pantelides, 1994] modeling environment.

5MathModelica is another simulation environment using the Modelica language. Math-
Modelica is developed by the Swedish Company MathCore AB

49

Chapter 2. Modeling Techniques

• Expert systems and meta-modeling tools like [Gensym, 1992] or
DoME [Honeywell, 2002] are designed to build modeling tools. They
do not offer support for creation of all of the above classes of tools.

And, last but not least, many people would still name pen and paper
as their most important modeling tools. Pen and paper aside, even with a
clear conceptual model of a system, the modeling process contains many
detailed steps that can be automated. Todays accelerated development
process forces engineers to take as much advantage of that as possible. A
seamless change from manual to automatic or computer-aided modeling
is still in an early development stage. The practical problem is still that
no single tool or suite of tools currently offers an integrated approach that
supports all of the phases in model development and model evolution along
the design arch, see Figure 1.1 equally well. MathModelica [Fritzson et al.,
2002] is an attempt to offer a broad range of capabilities and in particular
extensibility.

One central task that current modeling tools are only beginning to take
care of is the complexity management that is necessary to successfully cope
with the growing complexity of engineering systems. Complexity is diffi-
cult to define, it may refer to completely different meanings in different
contexts

• Large amounts of data that need to be collected and converted to
the right format before it ends up as usable parameters of a model
and result in data handling complexity.

• Team work of many people with heterogeneous backgrounds working
in the same modeling project gives organizational complexity.

• Mathematical complexity with respect to analysis has nothing to do
with the size of the system. Three coupled equations may exhibit
very complex behavior which is extremely difficult to analyze.

• Large equation systems cause computational complexity. In spite
of the continuous growth of computer resources, the growth rate of
interesting problems keeps up the same pace.

Todays traditional modeling tools are not designed to handle all of
these aspects of complexity at the same time. The lack of tool support for
these tasks makes modeling an unnecessarily expensive endeavor. CAD
(Computer Aided Design) tools are much more widespread in industry and
almost all product data is available in some form in CAD-data. Currently
there are no tools that could extract this data and bring them into a form
that can be used by system modeling and simulation tools. This means
that it is usually done by error-prone hand-transformation. The problem
with this approach is the existence of too many different standards for

50

2.5 Modeling Tools

data exchange (at least one per engineering domain), most of which are
either outdated by the rapid technological development, not supported any
longer or not yet finalized. Hopefully there will be a consolidation in data
formats in the future, until then partial solutions for specific models will
have to do. Dymola can use some standard CAD files for visualization,
but higher level data extraction like calculating volumes or areas which
are parameters in the model is not supported. Similarly, many simulation
tools allow a limited form of data exchange with other computer based
design tools.

Ad-hoc approaches borrowed from related domains are often used to
fill in missing tool features. Evolution of models over time and version
management can be done with standard version control systems for soft-
ware design like CVS (Concurrent Versioning System)6. CVS has been
used successfully in the development of the ThermoFluid library and it is
used in companies dealing with large model libraries, but yet there is no
integration with any modeling tool.

Advanced mathematical analysis of models is only done in research
and advanced development departments, but there the same model has
to be coded again in different tools for each purpose. Even if part of the
transformation is automatized, this process is cumbersome and modeling
work needs to be repeated.

Compared to mainstream computer usage, systems modeling is an un-
common activity with a relatively small user base. Compared to other
engineering computer tools like CAD, there is still a long way to go un-
til modeling tools achieve the same level of integration into the design
process as other computerized design automation tools.

6CVS is a freely available version control system with graphical clients for most comput-
ing platforms. It can be downloaded from http://www.cvshome.org.

51

3

The Modelica Language

Abstract

Modelica is a publicly available, object-oriented language for mod-
eling of large, complex, and heterogeneous physical systems. It is
maintained and improved by the Modelica Association. Models in
Modelica are described by differential, algebraic and discrete equa-
tions which are mapped to a mathematical description form called
hybrid DAE. This chapter illustrates the most important features of
Modelica. Basic principles and those key properties of Modelica which
are important for library design will be described.

3.1 Introduction

Languages should make it easy and natural to express ideas. Computer
languages and mathematics have to express ideas unambiguously. Ideas
in special disciplines are much easier to describe in a language that en-
codes these ideas as efficiently as possible. This is one of the reasons for
the existence of so many different computer languages. Object-oriented
modeling has many features which are similar to object-oriented program-
ming, but also other features which are substantially different. A glossary
of the special terms of object orientation with an emphasis on the differ-
ences between object-oriented modeling and programming is given in Ap-
pendix A. The first occurrence of a term defined in the glossary is marked
with a triangle and typeset in Bslanted font. Keywords of the Modelica
language are typeset in bold on a gray background, other Modelica code
uses the normal font on gray background .

Mathematical modeling of systems definitely is a discipline that gains
by having a language that is adapted to its particular needs. It is a
discipline with challenging and diverse problems which makes it hard
to define a language that is both easy to use and powerful enough to
cope with complex problems. In spite of the long experience with mod-

52

3.1 Introduction

eling, object-oriented modeling techniques are still under development.
This necessarily leads to an iterative design of languages and libraries.
The design of Modelica took advantage of the experiences from a number
of predecessor languages: Dymola [Elmqvist, 1978], Omola [Andersson,
1994], Smile [Jochum and Kloas, 1994], Object-Math [Viklund and Fritz-
son, 1995], NMF [Sahlin et al., 1996], U.L.M. [Jeandel et al., 1996] and
SIDOPS+ [Breunese and Broenink, 1997]. The concurrent development
of the Modelica language and Modelica libraries has fostered many im-
provements in the language. Designing a special purpose programming
language with a variety of partly contradictory requirements for users
which are usually not programming experts is not an easy task. The cur-
rent version of Modelica, 2.0, [Modelica Association, 2002b] has come a
long way in improving Bdeclarative mathematical modeling from, e. g.,
FORTRAN77. In spite of its age and the fact that it was designed as a
general purpose language, FORTRAN is probably still the computer lan-
guage with the largest available code base for physical models.

The Modelica development, like all standardization efforts in areas
with rapid technological progress, has to live with one major dilemma.
Standards that companies are willing to invest in need to be stable, and
should be backed by an accepted international standardization body. If
there is evolution, the cost of adapting to the evolution has to be foresee-
able. On the other hand, if the language does not follow the progress in
its field, it will be obsolete before it has been fully established. This phe-
nomenon has been observed often in computer science related standards.
There are techniques which can help avoid this trap, a clear plan of future
milestones is a good start.

It is a declared goal for the Modelica initiative to make model writing
simpler for modelers. Simpler is not easy to define in an unambiguous way
and many would prefer cheaper or easier to maintain etc., but it is easy to
agree on the principle that a model language should be as close as possible
to the natural form in which modeling knowledge is available: equations
and diagrams in text books. Unfortunately, computer languages in general
– and Modelica is no exception – have a long way to go to reach the flexibil-
ity of natural languages. The difference originates mainly in the implicit
context knowledge that helps humans to disambiguate the meaning of
natural languages. A special purpose declarative language like Modelica
uses context knowledge in mathematics, numerical methods and special
algorithms to allow tools to translate a declarative model into efficient,
computer executable code. Even with a well designed modeling language,
there are enough traps and pitfalls in simulation that can cause trouble
through complete failure or very slow simulations. Modeling of physical
systems covers such a broad range of applications and knowledge that it
seems a hopeless endeavor to code that knowledge into the semantic rules

53

Chapter 3. The Modelica Language

of a modeling language at the current state of the art. The alternative to
implicit knowledge in the modeling language or simulation environment
is to build the knowledge more explicitly into a model library. These two
ways of representing the modeling knowledge are complementary and
both are needed.

The following sections give a short overview over the main features of
the Modelica language. They assume some familiarity with object-oriented
concepts. Readers which have not seen Modelica before are recommended
to consult an introductory text like the Modelica tutorial [Modelica Asso-
ciation, 2000b] or [Tiller, 2001].

3.2 Key Features of Modelica

Mathematical modeling of systems imposes two main requirements on
modeling languages. The language has to be able to express the mathe-
matics required to define system behavior and needs powerful structuring
properties to cope with complex interconnected systems. Object-oriented
modeling languages combine these two properties in a unique way. Ob-
ject orientation is a well established principle of programming languages
and most modern programming languages make use of its features. Equa-
tions as language elements only occur in dedicated modeling languages
and in the languages of computer algebra systems, e. g., Mathematica
[Wolfram, 1990]. The main property that makes equations attractive for
modeling is that they represent the system behavior in a declarative way.
A declarative representation of system behavior does not determine how
something is calculated, instead it defines what it is. Declarative descrip-
tions are therefore more flexible, but the compiler or tool that works with
that knowledge representation needs the capability to derive a procedural
description that can be executed on a computer.

Modelica’s key features can be classified to belong to either of the
categories behavior definition or model structuring:

• Language features to describe the mathematical behavior of sys-
tems.

Equations are needed to express the mathematics of models in a
declarative way. It is important to realize the difference be-
tween Bequations and assignments. Assignments fix the com-
putational causality, equations do not. Vectors and matrices can
be part of the expressions in equations, with the usual mathe-
matical restrictions for compatible dimensions and sizes. Mod-
elica can handle ordinary differential and difference equations
and differential algebraic systems. All types of equations can,

54

3.2 Key Features of Modelica

however, not be expressed in Modelica. Integral and partial dif-
ferential equations are not yet part of the language.

Algorithms are not a declarative way to represent behavior, but
sometimes this “escape mechanism” is the most efficient way
to encode behavior. Discrete logic control algorithms are con-
veniently expressed as Modelica Balgorithms and they can be
identical to the one used in the real control hardware. In some
cases a hand-written algorithm may be more efficient than the
equations transformed by a tool compiler.

Functions are a language construct to Bencapsulate an algorithm
so that the algorithm can be reused anywhere. The input-output
relation of a function is fixed and given in the function declara-
tion. When functions are used inside equation systems, they can
nonetheless be used to calculate an input from a given output.

External functions are only a minor feature in the language de-
sign, but the consequence of being able to reuse well tested
legacy code and interface to a multitude of scientific software
libraries is an important facet to ease the transition to equation
based modeling.

• Language features for managing complexity, structuring models and
promoting flexibility in a safe way.

Models are the Modelica equivalent of Bclasses in object-oriented
programming languages. They are the main structural units in
system modeling. A model is the blueprint of a model Binstance
or Bcomponent.

Strong typing is a successful technique to reduce risk for errors
in programming languages. Strong typing is a means to define
data types as precisely as possible. In physical modeling, this
can for example be achieved by declaring a variable to be a
temperature in Kelvin instead of a plain real variable.

Hierarchical structuring by composing complex models from sim-
pler parts is used in all systems-oriented modeling tools, not
only in object-oriented ones. It is a fundamental requirement
for organizing structured models. Interaction between elements
on the same hierarchical level is achieved by Bconnectors. Con-
nect statements are transformed into equations.

Inheritance is a key feature for code reuse in object-oriented lan-
guages. Behavior shared between similar models is coded in a
Bbase class. A specialized Bchild class Binherits this part of
its definition from its base class.

55

Chapter 3. The Modelica Language

Class parameters are a way of parameterizing a model by declar-
ing some of its components as exchangeable against similar
components. The replacement components have to fulfill com-
patibility conditions which are defined by the declaration of the
original component.

Formal definitions are essential elements of computer languages. The
formal definition of the Modelica language, [Modelica Association, 2002b],
is publicly available on the Internet. It defines the syntax and semantics
of Modelica models, but does not provide a reference implementation for
simulation. Modelica is only a language: in order to run a simulation, the
Modelica model has to be translated into executable code by a compiler
and linked to a numerical integrator capable of handling differential alge-
braic equations with events. A Modelica compiler flattens the hierarchical
structure of a Modelica model using equations from components and con-
nect statements into a flattened equation system. Dymola from Dynasim
AB is the Modelica compiler and simulation environment that was used
to develop ThermoFluid. Another Modelica environment is MathModelica
from MathCore AB.

The Modelica Association continues to improve the language and the
design meetings are open to interested participants. They are announced
on the web site http://www.Modelica.org.

3.3 Modelica Basics

Predefined Data Types

Modelica has five basic, Bbuilt-in data types. The predefined Btypes con-
tain internal attributes to characterize them more precisely. The attributes
use the names RealType, IntegerType, BooleanType, StringType and Enum-
Type to refer to corresponding machine representations.

Real Real variables are the dominant data type in physical systems mod-
eling. In Modelica, real variables have a number of attributes for
distinguishing them.

• The RealType attribute value holds the value of the real vari-
able. It is accessed without Bdot-notation.

• The StringType quantity attribute specifies the physical quan-
tity of the real variable: Real L(quantity="Length")

• The StringType unit attribute permits to specify the unit of
real variables: Real T(quantity="Temperature" unit="K") . Us-

56

3.3 Modelica Basics

ing the additional attribute displayUnit, a different unit can be
used for plotting.

• The RealType attributes min and max allow to set limits to the
range of a variable.

• With the RealType nominal attribute, a modeler can define an
order of magnitude of the variable for scaling purposes.

• The attributes BooleanType fixed and RealType start are used
to specify initial values or initial guesses to variables.

• The BooleanType attribute enable has default true. It is de-
fined for all classes. It is used to determine whether outputs of
functions are computed or not.

• The parameter attribute stateSelect is of the predefined enu-
meration type StateSelect. It is used to guide the state selection
mechanism in the index reduction, see Section 2.1.

Integer Integer variables have the same attributes as Reals except for
nominal. The value, start, min and max attributes are of machine
representation IntegerType.

Boolean Boolean has the attributes quantity (StringType), and value,
fixed and start (BooleanType).

String String variables have the value, start and quantity attributes, all
of them are StringType.

Enumeration Enumerations have been added to Modelica in version 2.0.
They represent an ordered collection of named items. For every new
enumeration type defined by type E = enumeration(e1,e2, .. en) , a
conceptual simple type is defined containing an attribute constant
EnumType e1=. . . for each of e1 . . . en. The remaining parts of the
enumeration type definition resemble the definition for Integer.

An array variable can be declared by appending dimensions after the class
name or after the component name. It is also possible to declare an array
type, e. g., for a transformation matrix.

Real[3] position , velocity ; // array dimension follows class, Pascal−style
Real acceleration [3]; // array dimension follows variable, C−style
type Transformation = Real[3,3]; // this declares a 3� 3 matrix type
Transformation myTransform; // this declares a 3 � 3 matrix
Real[3,2,10] table ; // a three−dimensional array.

The extensive use of the additional attributes is a programming style
element that contributes considerably to better readability and safety of
model code. In Dymola’s Modelica implementation, unit attributes are

57

Chapter 3. The Modelica Language

checked for connectors, making it impossible to connect e. g., a pressure
to a temperature. The nominal attribute is used for scaling and the min
and max attributes are also checked against violation.

Structure of a Simple Model

The mathematical behavior of models is programmed using the basic
types. Modelica programs are built from models, the Modelica synonym for
classes in object-oriented programming. From a class definition, a Model-
ica compiler can create any number of objects called instances. The model
is used as a blueprint by the compiler to create an Bobject which contains
instances of the elements defined in the model. These elements can be
built-in types or models, defining a hierarchical tree structure. The leaves
of that tree structure are the five built-in Modelica types listed above.
The data structure of Modelica models is similar to that of many object-
oriented programming languages. The following listing demonstrates a
simple model using only built-in data types.

model LimiterAndSwitch "an example of Modelica’s data types"
Real signal(start=0.0) "a variable named signal of built−in type Real";
Real limited "a limited signal" ;

protected // the following declarations are protected
Integer count(start=0) "an Integer variable counting switches to true";
parameter Real ulimit=1.0 "upper limit: a parameter";
parameter Real llimit=−1.0 "lower limit: another parameter";
parameter String message="this model is trivial" "an example string";

public // The next declaration is public
Boolean switch(start=true) "a Boolean variable initialized to true";

equation // this is the start of an equation section
// the der−operator means time derivative: der(x)= dx/dt with t =time
1/1.2∗der(signal) = Modelica.Math.cos(time); //using a library function cos
limited = if signal > ulimit then ulimit else if signal < llimit then llimit

else signal;
switch = if signal > ulimit then false else true;

algorithm // this is the start of an algorithm section
if edge(switch) then

count := count + 1; /∗ this is an assignment statement ∗/
end if;

end LimiterAndSwitch;

Listing 3.1 A model demonstrating Modelica’s basic data types, equations and
algorithms

The listing contains a number of Modelica elements which will be ex-
plained below.

There are three types of comments in the code: C-style comments
until the end of the line as in //comment 1 , enclosed comments as in

58

3.3 Modelica Basics

/*comment 2 */ and string-comments "comment 3 " which are used in
graphical user interfaces.

A Modelica model consists of two sections: a declaration section defin-
ing all data fields and an implementation section defining the behavior.
The declarations can be either Bpublic (the default) or Bprotected. Pro-
tected variables can only be used inside a model and in Bderived classes,
public elements can be accessed from an outer hierarchical level using
dot-notation. The keywords public and protected are section head-
ings. This means that they are valid for all following declarations until a
new section heading.

The implementation section can be composed of either equation or
algorithm sections. In Modelica 2.0 there are also initial equation
and initial algorithm sections for defining the behavior at the start of
a simulation. Equations are a declarative definition of the model behav-
ior. Modelica equations can consist of arbitrary Modelica expressions on
both sides of an = sign. The “flattened” equations from a Modelica model
form a “hybrid DAE”, i. e. a differential algebraic equation allowing some
variables to have jumps or discontinuous derivatives at some places, as
in the equation above for the variable limited . The semantics of hybrid
models are treated in more detail later in this section.

Another way of distinguishing real variables is with respect to their
variablity during the transient analysis of a model:

• Variables with the discrete -Bprefix can only change at discrete
points in time, at so called events.

• The prefix parameter has two meanings. These are:

– BParameters are constant during continuous time integration.
It is possible to compute the values of parameters during ini-
tialization or in optimization problems.

– Parameters are picked up by graphical user interfaces, users
influence the behavior of models mainly via parameters.

• A constant variable is similar to a parameter with the difference
that constants can not be changed after they have been declared.
They can be used to represent mathematical constants, for example
constant Real PI=4*arctan(1);

The variability of Integer and Boolean variables is always discrete.
Other Bprefixes in Modelica are input and output . They are used

in situations where the computational causality is fixed, e. g., for func-
tion declarations and in models with known input-output behavior called
blocks. The flow -prefix will be discussed later in this section.

59

Chapter 3. The Modelica Language

Variability and other prefixes are very useful for applying semantic
checks to the model. Errors caused by violating the semantic restrictions
imposed by prefixes can be diagnosed with understandable error mes-
sages.

Continuous Time Models

As a prototype example of a continuous time system, let us take a look at
a state space system:

block StateSpace "a simple state space system"
parameter Real A[:,:] = {{0,−1},{1, −2}}; // A is initialized
parameter Real B[size(A, 1), :]; // B is declared in C−style
parameter Real[:, size(A, 2)] C; // C is declared in Pascal−style
parameter Real D[size(C, 1), size(B, 2)];
input Real u[size(B , 2)];
output Real y[size(C , 1)];

protected
Real x[size(A , 2)];

equation
der(x) = A∗x + B∗u; // note that in these equations
y = C∗x + D∗u; // A∗x means matrix times vector etc.

end StateSpace;

This example demonstrates a number of continuous time modeling fea-
tures of Modelica:

• Matrices are declared by using square braces after the variable name
or after the type name. Dimensions are separated with commas.
Arrays can have any number of dimensions.

• Curly braces are delimiters for array initialization. Array elements
and dimensions are separated by commas.

• A colon in the size declaration means that the size is unspecified.

• The size-operator returns the size of an array variable. The argu-
ment n to size(A,n) denotes the dimension whose size is returned.

• The * , + and - -signs are overloaded for matrix operations. Matrix
operations are only defined when the matrix sizes are compatible.

• The expression der(X) means derivative with respect to time of the
variable X. If der() is applied to an array, it is applied to all elements
of the array.

An important feature of equations is that they do not preclude the com-
putational causality of the calculation. An equation u = R*i can be used
to compute either i or u or R .

60

3.3 Modelica Basics

Apart from equations, Modelica offers functions for defining model be-
havior. Functions use assignments in algorithms instead of equations.

function LimitAbove "keeps input smoothly below an upper limit"
input Real x "input";
input Real limit "upper limit";
input Real slimit "start limiting function value asymptotically";
output Real xlim "limited output";

algorithm
assert(startlimit < limit,"startlimit has to be smaller than final limit");
if x < startlimit then

xlim := x;
else

xlim := limit−(limit−slimit)∗exp((1.0/(limit−slimit))∗(stlimit−x));
end if;

end LimitAbove;

The function illustrates some additional features of Modelica:

• All inputs and outputs to a function have to be declared with the
respective prefixes.

• Algorithms are used to specify what a function computes. Inside
algorithms, assignment statements, := , have to be used.

• Modelica has assert -statements to check for illegal conditions. If
the condition in an assert -statement evaluates to false, the message
contained in the string-argument is printed.

• Modelica has the same control-flow statements as most program-
ming languages: for-loops, do-loops and conditional execution. For
details, see [Modelica Association, 2000a] and [Modelica Association,
2000b].

The function can be used as follows:

limited = LimitAbove(time,10,8);

The variable limited will rise linearly until it reaches the value 8 and
then asymptotically approach 10.

Hybrid Models

Some hybrid modeling constructs have been used in the previous exam-
ples without explanation. Currently there are four ways to express hybrid
phenomena in Modelica equations:

• Conditional expressions or if-expressions,

• conditional equations or if-clauses,

61

Chapter 3. The Modelica Language

• conditional evaluation or when-clauses and

• discrete time operators

A natural way to define impulses in physical modeling would be to de-
fine Dirac impulses as a genuine language construct. This is currently
discussed in the Modelica Association and tested with prototype imple-
mentations.

The simplest way to define discontinuous behavior is by using condi-
tional expressions:

limited = if signal > ulimit then ulimit else
if signal < llimit then llimit
else signal;

Conditional expressions are a behavioral declaration of hybrid phenom-
ena. They are equivalent to the following mathematical definition:

limited =

ulimit if signal > ulimit

signal if llimit ≤ signal ≤ ulimit

llimit if signal < llimit

Conditional equations are another way to express hybrid behavior. All
branches in the if-clause have to contain the same number of equations.
For example, piece-wise linear systems can be expressed as:

model PieceWise "a piece wise linear system"
parameter Integer n=2, m=2, p=2 "sizes of state, input and output vector";
Real x[n], u[m], y[p] "state , input and output vector";
. . . // matrix−declarations for A1, B1, C1, A2, ,B2, C2 omitted

equation
if x[1] > 0 then

der(x) = A1∗x + B1∗u;
y = C1∗x;

else
der(x) = A2∗x + B2∗u;
y = C2∗x;

end if;
end PieceWise;

Modelica also defines conditional equations which are only evaluated
when a condition becomes true, i. e. when-clauses are not valid at all
times as other equations. The reinit -operator can only be applied to dy-
namic states and is used to model impulsive changes. The pre() -operator
can only be applied to discrete-time expression. The expression pre(y)
returns the “left limit” y(tpre) of variable y(t) at a time instant t. Real

62

3.3 Modelica Basics

variables assigned inside when-clauses are discrete-time expressions, the
same holds for variables of type Integer and Boolean. The bouncing ball
example demonstrates when-clauses and two operators for discrete be-
havior:

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravitational constant";

Real h, v "height and velocity";
equation

der(h) = v;
der(v) = −g;
when h <= 0 then

reinit(v,−e∗pre(v)); // when the ball touches the ground
end when; // the velocity is re−initialized

end BouncingBall

The when-clause is evaluated once each time the expression h<=0 be-
comes true.

Hierarchical Structure

Modelica models can be much more complex than the simple examples
above. Composition of complex, structured models is achieved via a compo-
nent oriented architecture and a restricted type of class called connector .
In Modelica, connection points between subsystems are abstracted to have
no extension. This allows to unify Kirchhoff’s current and voltage law,∑

i

I = 0 Vi = Vj

to a generalized network approach. The same rules apply to potential type
variables like voltage and flow-type variables like current in all engineer-
ing domains. In mechanics, forces sum to zero and positions are equal,
the mass- and energy flows in fluid flow sum to zero and pressures are
equal at connection points. Variables of flow type are marked with the
flow -prefix.

Model composition and reuse will be illustrated with simple mechan-
ical models similar to the ones in the Translational library, a part of the
Modelica Standard Library. In Modelica, libraries are called Bpackages.
Packages can get access to the definitions of other packages using the
import statement. In the example, we will use the Modelica.SIunits
package which provides predefined types for physical modeling. The first
model that should be defined for every physical library is the connector.

package OneDExample "1−dimensional translational mechanical components"

63

Chapter 3. The Modelica Language

import Modelica.SIunits; // makes predefined types known
connector Flange "1D translational flange"

SIunits.Position s "absolute position of flange";
flow SIunits.Force f "cut force directed into flange";

end Flange;
. . .

end OneDExample;

The next step for designing library models is to find some practical ab-
stractions for reusable base models. Two models characterizing transla-
tional mechanical components are the following Rigid and Compliant
models.

partial model Rigid "Rigid connection of two translational 1D flanges"
SIunits.Position s "center of component (s=flange_a.s+L/2=flange_b.s−L/2)";
parameter SIunits.Length L=0 "length of component between flanges";
Flange flange_a, Flange_b

equation
flange_a.s = s − L/2;
flange_b.s = s + L/2;

end Rigid;
partial model Compliant "Compliant connection of 2 translational 1D flanges"

Flange flange_a, flange_b;
SIunits.Distance s_rel "relative distance (= flange_b.s − flange_a.s)" ;
flow SIunits.Force f "force , positive in direction of flange axis R";

equation
s_rel = flange_b.s − flange_a.s;
flange_b.f = f ;
flange_a.f = −f;

end Compliant;

Note the keyword partial . It indicates that these models are not com-
plete. Additional behavior has to be added before a well-defined model is
obtained. The definitions of these base classes is reused in derived classes,
for example a model for a sliding mass. Inheritance of all features of the
base class Rigid is achieved using the extends keyword.

model SlidingMass "Sliding mass with inertia"
extends Rigid;
parameter SIunits.Mass m=1 "mass of the sliding mass";
SIunits.Velocity v "absolute velocity of component";
SIunits.Acceleration a "absolute acceleration of component";

equation
v = der(s);
a = der(v);
m∗a = flange_a.f + flange_b.f; // known since Newton’s times

end SlidingMass;

64

3.3 Modelica Basics

Similarly, models for a spring and a damper are defined. In order to
get a system that has dynamics, a periodic external force is added. The
schematic for the complete system is shown in Figure 3.1. The signal block
and the force in Figure 3.1 use a connector type for signals. The force
model acts as an interface between a signal-based system part and the
physical part using the mechanical flange for connections. The Modelica

Sine

Force SlidingMass

Spring

Damper

Fixed

Figure 3.1 Schematic of a simple translational mechanical system.

code for the system is very simple, consisting of the component declara-
tions and the connect-statements. It also shows how to refer to library
models and uses Bmodifications to models to assign values to parameters
and set initial conditions.

model simpleSystem "a simple mechanical system"
SlidingMass slidingMass(

L=1, m=1.23, // modification to the original model parameters
s(start=−0.5), // the inital position is now −0.5
v(start=0.0)); // the inital velocity is set to 0.0

Spring spring(s_rel0=1, c=10000);
Damper damper{d=10.0};
Fixed fixed(s0=1.0);
Force force;
Modelica.Blocks.Sources.Sine sine(freqHz={15.9155}); // a library model

equation
connect(sine.outPort,force.inPort);
connect(force.flange_b,slidingMass.flange_a);
connect(slidingMass.flange_b,spring.flange_a);
connect(spring.flange_a,damper.flange_a);
connect(spring.flange_b,damper.flange_b);
connect(spring.flange_b,fixed.flange_b);

end simpleSystem;

The connect -statements are transformed into equations, taking the flow -
prefix into account. The zero-sum rule for flow variables has to take all
flows at a given connection point into account. In the spring-damper case

65

Chapter 3. The Modelica Language

the generated equations from the connection between the sliding mass,
the spring and the damper become:

slidingMass.flange_a.f + spring.flange_a.f + damper.flange_a.f = 0

slidingMass.flange_a.s = spring.flange_a.s

slidingMass.flange_a.s = damper.flange_a.s

The forces at the connection sum to zero, the positions are equal.

Modelica Class Parameters

A key feature that makes Modelica a flexible modeling language while
maintaining safety from modeling errors are class parameters. Class pa-
rameters make it possible to parameterize models in a high-level fashion,
exchanging submodels or even whole subsystems for a type-compatible
replacement. Type compatibility ensures as far as possible that the re-
placement model is adequate and works correctly. The Modelica type sys-
tem is based on concepts for subtyping in object-oriented general purpose
programming languages introduced in [Abadi and Cardelli, 1996]. In that
reference, a calculus for object-oriented programming languages is de-
veloped and used to prove theoretical properties of computer languages.
Some of the proofs concern the soundness of high level programming con-
cepts like class parameters. Due to the differences in the semantic def-
initions of object-oriented computer programs and Modelica models, no
final conclusions can be drawn from the soundness of class parameters
in object-oriented programming (OOP) and in object-oriented modeling
(OOM).

• The semantics of a Modelica model are defined by a mixed system
of differential-algebraic and discrete equations, a “hybrid DAE” as
defined in [Modelica Association, 2000a].

• The semantics of a computer program is defined by communicat-
ing objects executing methods operating on data defined inside the
objects.

In spite of the fact that the formal methods presented in [Abadi and
Cardelli, 1996] apply only partly to a modeling language, the adaption
of strong typing using a proven type system offers clear advantages.

Simplifying, one can claim that the data structures represented by
an object-oriented model and an object-oriented program are very simi-
lar. Actions, operations and the time evolution of their states are, how-
ever, different. The type safety offered in OOM by adapting a type system
designed for OOP thus only considers the data structure of the model
and not its equations. This becomes clear when looking at the definition

66

3.3 Modelica Basics

of Btype compatibility in [Modelica Association, 2000a], quoted in Ap-
pendix D. In simple words one can say that the replacement model must
contain at least the same data elements as the original model, but it may
also contain additional elements. This has to hold for the complete tree
of a hierarchical data structure. There are no requirements regarding the
equations.

EXAMPLE 1—STIRRED TANK

Consider the following example: A modeler uses a stirred tank model from
a commercial model library in a system model of a chemical plant, but
after the first trial runs he realizes that the library model omits physical
phenomena which are important in the particular case. He declares the
tank component to be Breplaceable and builds his own model instead. The
effects of the different models have to be investigated with a simulation of
the whole system. According to Modelica semantics, the model can only be
redeclared to be of his newly developed class if the class of the new tank is
a subtype of the existing one. Because equations can not be removed from
a model once they are inherited, it is very likely that the new model can
not be constructed by inheriting from the existing one. But the modeler
can build a type-compatible model (hopefully with heavy reuse of library
models) to obtain a type-compatible replacement tank model. Usage of
Bredeclaration makes it straightforward to compare the results of the
two models in the system context.

The replaceable tank can be defined and used as follows:

model StirredTank
parameter Real A = 1.0 "a parameter";
. . . // rest of the model omitted

end StirredTank;
replaceable StirredTank stirredTank(A=2.0) extends SimpleTank;

replaceable indicates that the submodel can be exchanged, StirredTank
is the default class of the component stirredTank and the statement
extends SimpleTank defines the constraining class. All legal replace-
ments to the component stirredTank have to be type-compatible to the
class SimpleTank . The redeclaration in a system model can look like this:

model BigSystem
. . .
ReactionSubSystem subSys(redeclare AdvancedTank stirredTank);

end BigSystem;

The redeclaration changes the original class of component stirredTank to
AdvancedTank . This is done in a modification to a subsystem which is a
component of a larger system. Note that the modification (A=2.0) of the
parameter A from the original declaration is retained.

67

Chapter 3. The Modelica Language

The concept of type-compatible replaceable models has been used exten-
sively in the ThermoFluid library. In most cases the data structures of
a set of type-compatible models are identical, but the equations are dif-
ferent. This covers the very common case of constitutive equations. The
ThermoFluid library has been a test-bed for the development of high level
parameters in Modelica.

3.4 Annotations and Pragmas

The Modelica language has a particular construction to store information
which is not associated with the model semantics of a hybrid differen-
tial algebraic equation. The keyword annotation is used for describing
the graphical representation and other additional information about the
model. Some of the Bannotations can be regarded as Bpragmas: hints to
Modelica tools which can be used to improve the numerical efficiency.

Graphical Annotations

An important feature for the user-friendliness of object-oriented modeling
is a representation for graphical model composition. It is highly desirable
that the on-screen representation of a system resembles the customary en-
gineering schematics as closely as possible. In a standardized language,
the graphical appearance of models should be transportable between dif-
ferent tools. Modelica has chosen a particular way of using annotations
for this purpose. The structure of annotations is defined in the grammar
and the basic parts of graphical annotations are standardized. Tools may
define additional annotations for fancier graphics, e. g., animations, which
are silently ignored by tools which do not understand them.

The one-dimensional mechanical system model in Figure 3.1 looks on
screen as in that figure. The annotations to display the graphics have been
omitted from the example code. For hierarchical models, the graphical
representation has to store the following information:

• An iconic picture of the model to be used as a placeholder for the
model as part in a larger system.

• The connectors of the model have to be visible in that representation.
They are used to graphically connect the model to other models.

• The model can be composed from several other models. The diagram
of the graphical composition has to be stored as well.

The usual way to get an overview over a system would be to take a look
at the composition or diagram-layer. Deeper levels of the hierarchy are
browsed by opening the lower level models.

68

3.4 Annotations and Pragmas

The two Modelica tools which are currently available, Dymola and
MathModelica, use different graphical model editors. Models can be ex-
changed between the tools without problems and the graphical informa-
tion is retained.

Parameterization Annotations

The high level parameters described in Section 3.3 make models very flex-
ible. This flexibility needs to be supported by a suitable graphical equiv-
alent that makes it available to model users graphically. For a user that
does not know the internals of a library, it may be a substantial effort to
find all models which are type-compatible to a given replaceable model.
Not all users want to remember and use the Modelica syntax. A library
developer knows all compatible models in the library and can use the
following annotation to make all choices known to a tool:

model FlexibleSystem
replaceable Spring spring(c=10e5) extends Compliant

annotation(choices(choice(redeclare NLSpring spring(c=12e5,c2=42)
"a nonlinear spring"),

choice(redeclare SpringDamper spring(c=10e5,d=10)
"spring damper combination")));

end FlexibleSystem;

This annotation assumes the existence of two model classes NLSpring
and SpringDamper which have to be type-compatible to the Compliant
model from Section 3.3. A graphical user interface can pick up these
choices and provide intuitive means for switching between the models.

Derivative Annotations

Modelica has been designed to permit the symbolic manipulation of the
model equations. Functions, in particular external functions, are more dif-
ficult to handle symbolically than equations. Derivatives of Modelica func-
tions are useful for several purposes, e. g., to calculate symbolic Jacobians
in non-linear equation systems and for the index reduction mechanism.
An annotation is used to make Modelica tools aware of the existence of
analytic derivatives for a Modelica function. Here is a trivial example:

function rad2deg "conversion function between radians and degree"
input Real rad;
output Real deg;

algorithm
deg := 180.0∗rad/Modelica.Constants.PI;
annotation (derivative=rad2deg_der); /∗ the derivative function is called

rad2deg_der. The name must be found in the same scope as rad2deg. ∗/
end rad2deg;

69

Chapter 3. The Modelica Language

The only way of getting the derivative of the function without knowing it
analytically is to take numerical derivatives. Numerical derivatives are
less accurate than symbolic ones and it can be difficult to guess the right
perturbation to the input. In that sense the derivative annotations are like
compiler pragmas, they give hints for better performance and accuracy.

This chapter has given a brief overview over the most important Mod-
elica features. A far more complete overview with many examples is the
book by Tiller (2001). The most recent version of the Modelica Specifica-
tion, currently version 2.0 [Modelica Association, 2002b], is the author-
itative document concerning the language definition. It is available for
download on the Internet at http://www.modelica.org.

70

4

Physical Models for
Thermo-Hydraulics

Abstract

Modelica is a language designed for physical modeling from first
principles. In this chapter the fundamentals of thermodynamic and
hydraulic models are developed from the laws of conservation of the
extensive quantities mass, momentum and energy. Thermodynamics
offers many different possibilities of expressing these conservation
laws in terms of intensive or extensive variables. Properties and rea-
sons for the choice of these secondary variables are mainly governed
by numerical considerations and the availability of thermodynamic
property relations. The availability of computationally efficient phys-
ical property functions with an appropriate complexity for the problem
at hand is in most practical cases a factor that has the strongest influ-
ence on the choice of the model. Models for valves, turbines, pumps
and solid structures are briefly outlined. Finally, a special class of
models called moving boundary models is developed at the end of the
chapter.

4.1 Introduction

The conservation equations can be written in two forms: the differen-
tial and integral forms of the general conservation equations. The details
of the working form of these equations differ considerably between en-
gineering domains, in spite of being based on the same principles. The
conservation equations can either be written in intensive variables or ex-
tensive variables. Extensive properties depend on the amount of matter,
like mass or energy, intensive properties are defined by the ratio of ex-
tensive properties that do not depend on the amount of mass, e. g., the
density ρ. The different purposes of the models in e. g., fluid dynamics and

71

Chapter 4. Physical Models for Thermo-Hydraulics

process engineering lead to different simplifying assumptions and differ-
ent numerical methods such that the final models have little in common
on first sight. The problem with the project of trying to design a physical
base library which is applicable to a range of engineering domains is to
find a unifying framework which “keeps everybody happy”. One possibil-
ity to do this is to be able to postpone simplifying assumptions in a way
permitting the user to select them when the model is used. The modeling
software has to be able to generate efficient code from the more general
models. The ThermoFluid library currently covers a substantial subset of
the necessary physical phenomena of thermo-fluid systems. The goal was
to focus on those model assumptions that are important for the design
and analysis of system dynamics. Even then there is a necessity for more
or less detailed models. Three fundamental distinctive features of models
need attention:

Temporal resolution The range of timescales covered by the continuous
dynamics of a single model has to be restricted to a reasonable range
for the problem of interest.

Spatial resolution Lumped or zero-dimensional models are common for
system modeling, but certain applications make it necessary to in-
crease the spatial resolution to 1, 2 or even 3 dimensions. A restric-
tion to low spatial resolution is called for to reduce the computational
cost and it usually helps the understanding of the system to reduce
complexity.

Physical resolution In systems models, not all of the physics in a given
process need to be modeled for all purposes. If a pressure controller is
to be designed, it may be unnecessary complex to consider reactions
or changes in composition. Replaceable Objects in Modelica make
it possible to disregard that part of the dynamics which is not of
interest in a certain context.

These features together with the constant desire to make modeling
more efficient through reuse leads to a very important quality of a library
model: the model should be polymorphic1 with respect to the required
spatial and temporal resolutions of its problem domain.

The distinctive feature of the “finite volume method” that is used later
on for solving these equations is the formal integration of the fluid flow
equations over the finite volumes of the solution domain. The derivation
of the equations is done as follows: the governing partial differential equa-
tions are developed in the differential form which is then integrated over a
finite control volume with fixed or varying size, depending on the purpose
of the model.

1see definition in Appendix A

72

4.2 Fluid Transport Equations

All fluid properties are functions of time and space, but to avoid too
cumbersome a notation, the explicit dependence on time and space co-
ordinates is omitted and instead of ρ(x, t), the shorthand notation ρ is
used.

4.2 Fluid Transport Equations

The conservation of the extensive quantities mass M , energy E and mo-
mentum I in a problem domain with given volume V is the mathematical
basis for modeling of single phase fluids. For mixtures of single phase
fluids, the mass M is replaced by the vector of component masses M. In
non-equilibrium multi phase fluids, which will not be considered here, the
conservation laws have to be expressed for each phase separately with ex-
change terms between the phases. In order to justify the assumption of
homogeneous fluid properties, the thermodynamic state of a fluid particle
will be described by the infinitesimal quantities of volume dV , mass dM ,
momentum dI and energy dE. It is often more appropriate to use specific
variables, representing a quantity dΨ per unit mass

ψ = dΨ
dM

The specific values of volume, momentum and energy are therefore

v = dV
dM

w = dI
dM

e = dE
dM

in which w is the velocity of the fluid. The reciprocal value of the specific
volume is the density

ρ = 1
v
= dM

dV
The energy dE may be split up into internal and kinetic energy

dE = dU + dEkin

which gives two more specific values

u = dU
dM

ekin = hwh2
2

where u quantifies the mechanical energy of the molecules in a motionless
fluid. The overall specific energy becomes

e = u+ ekin

73

Chapter 4. Physical Models for Thermo-Hydraulics

The ThermoFluid library is designed from the beginning with system
simulation in mind and therefore restricted to a one dimensional dis-
cretization of the flow field or lumped parameter models which are a
reasonable approximation for most technical systems with internal flow.
Initially an arbitrary shape of the control volume will be assumed, but be-
cause of the assumption of one dimensional flow the most general form of
a discretized one-dimensional flow channel will be used in the next step,
deriving the discretized variables. The shape, shown in Figure 4.1, serves
as an approximation to a slice of infinitesimal length of any flow channel
which can be approximated by a one-dimensional flow field.

E W

� A

m = ρ A∆z

z

∆z

(ρwA)E (ρwA)W

Figure 4.1 Geometry of a one-dimensional flow channel

One important point in the procedure of deriving the momentum and
energy balance is that these two have to be consistent: the work done on
the fluid by a force that is taken into account in the momentum balance
has to be included in the energy balance. If this is not done, transforma-
tions of the equations to other working forms, e. g., to an entropy balance,
will contain non-physical entropy production terms. If no such transfor-
mation is done it can be justified to neglect certain terms. It is a common
approach to neglect the work of the gravitational field in the energy bal-
ance. Here, a general dilemma in modeling becomes obvious: neglecting a
term will always reduce the range of validity of the model somehow, but
often the order of magnitude of such a term compared to the important
ones is so small, that the size of the neglected term is much smaller than

74

4.3 Balance Equations

the remaining uncertainties in the model. Fortunately the symbolic pro-
cessing in Modelica allows decisions to remain undecided until the model
is used in a concrete application. A boolean variable for inclusion of a
term will remove the term if it is not needed and thus cause no burden
during simulation.

4.3 Balance Equations

Integration over the infinitesimal values dΨ of a control volume yields
the overall, arbitrary quantity Ψ

Ψ =
∫

dΨ =
∫

M
ψ dM =

∫
V

ρψ dV

The rate of change of a quantity is written as

dΨ
dt

= d
dt

∫
V

ρψ dV

Application of the Leibnitz rule [Hetsroni, 1982] yields the general trans-
port theorem:

dΨ
dt

=
∫

V

V(ρψ)
V t

dV +
∫

A
ρψwAn dA (4.1)

The first term on the right hand side represents the rate of change of a
quantity Ψ for a control volume keeping its shape; the derivative operator
can thus be put under the integral. The second term accounts for the
rate of change of Ψ due to a displacement of the volume’s surface A.
Therein, wA denotes the local velocity of surface displacement, while n is
the unit normal vector of the surface (outward direction is positive). The
scalar product wAn yields the component of wA normal to the surface,
see Figure 4.2.

The influence of the second term becomes obvious when inserting ψ =
v, which gives the rate of change of volume

dV
dt

=
∫

A
wAn dA

The Leibnitz rule serves to switch between different approaches of balanc-
ing: In an Eulerian approach, the control volume is considered as fixed,
wA = 0, and the second term in (4.1) disappears. In a Lagrangian ap-
proach, the surface velocity equals the velocity of the fluid particles on

75

Chapter 4. Physical Models for Thermo-Hydraulics

.

w

n

w

n

wA

AA

V

dA

.

Figure 4.2 Velocities on a surface element. Nomenclature: wA: velocity of control
volume boundary, w: fluid velocity, n: normal vector, dA: infinitesimal element of
boundary surface.

the surface, wA = w; in that case no particle enters or leaves the control
volume, which therefore contains permanently the same particles. Besides
these two approaches, wA may be defined in any way that makes sense
for the definition of a control volume.

The Leibnitz rule will now be applied to the quantities mass, momen-
tum and energy, leading to the basic balance equations.

Mass Balance

For ψ = 1 the general transport theorem rule (4.1) yields the mass bal-
ance

dM
dt

=
∫

V

Vρ
V t

dV +
∫

A
ρwAn dA (4.2)

In a Lagrangian approach, wA = w, the control volume contains a con-
stant mass, thus ∫

V

Vρ
V t

dV +
∫

A
ρwn dA = 0

which essentially describes the conservation of mass and is also known
as the continuity equation. Solving this equation for the first term and
inserting it into (4.2) gives

dM
dt

=
∫

A
ρ(wA −w)n dA (4.3)

Since no mass is created or destroyed, the term on the right hand side
represents the flow of mass through the surface of the control volume, i.e.

76

4.3 Balance Equations

the mass flow rate
ṁ :=

∫
A

ρ(wA −w)n dA

which, in this definition, is positive for a flow of mass into the control
volume. For simple geometries with n fixed boundaries and flow perpen-
dicular to the surface this evaluates simply to the sum of the mass flows
with the above sign rule:

dM
dt

=
n∑
i

ṁi (4.4)

For multi-component fluids, the same derivation can be repeated for the
vector of component masses. The result for non-reacting systems is the
equivalent, but using vectors of masses and mass flows instead of scalars.
When chemical reactions occur, the species masses are not conserved any
more, only the total mass. The mass conservation equation can still be
written in a similar form, but now includes a reaction source term:

dMx

dt
=

n∑
i

ṁi + rM (4.5)

Mx is the vector of component masses, m the vector of component mass
flows and rM vector of mass source terms. In process engineering it is
very common to use mole based units for mass and energy conservation
instead of mass based ones because this form links more naturally to the
stoichiometry of the reactions, see Section 4.9.

Often the mass balance is written in terms of the density. Taking into
account the geometry of a flow channel as in Figure 4.1 which is symmet-
rical around its axis where the two areas at E and W are perpendicular
to the flow direction, the integrals can be evaluated after changing the
order of integration and differentiation. Using:

V
V t

∫
V

ρ dV = V
V t
(ρ A∆z) and∫

A
ρwAn dA = (ρwA)E − (ρwA)W = V

V z
(ρwA)∆z,

and dividing by ∆z the result is:

V
V t
(ρ A) = V

V z
(ρwA) (4.6)

The vector quantities used in the general case are now replaced by scalars
because of the restriction to one-dimensional flow.

77

Chapter 4. Physical Models for Thermo-Hydraulics

Momentum Balance

The general transport theorem, (4.1), evaluated for ψ = w, yields the
momentum balance

dI
dt
=
∫

V

V(ρw)
V t

dV +
∫

A
ρw(wAn) dA (4.7)

According to Newton’s second law, the momentum of body with constant
mass (wA = w) increases due to the sum of the applied forces∫

V

V(ρw)
V t

dV +
∫

A
ρw(wn) dA =

∑
F (4.8)

It is common to distinguish between body forces and surface forces. If
gravity is the only body force taken into account, the force on a mass dM
becomes dF n = gdM , where g is the constant vector of the acceleration
due to gravity. Integration results in the overall gravity force

F n =
∫

V
ρg dV = Mg (4.9)

The surface forces are usually split up into the pressure force and the
friction force. The pressure force acts opposite to the unit normal vector,
dF p = −pndA, causing an overall force on the surface of an amount

F p = −
∫

A
pn dA (4.10)

The friction force of an infinitesimal small element, caused by viscous and
turbulent forces, is expressed by use of a stress tensor

T =

 τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33

where 1, 2, 3 are the Cartesian coordinates and τ ji denotes the shear stress
in direction of i on a surface j = const. Multiplication with the unit normal
vector n yields the stress force vector on a surface element, dF F = TndA.
Integration gives

F F =
∫

A
Tn dA =

∫
A

∑
i, j

τ ji(ne j)ei dA (4.11)

78

4.3 Balance Equations

where ei is the unit vector in direction of i. Pressure and friction forces
are also present inside the volume, but cancel themselves out and thus
have no influence on the momentum of the control volume as a whole.
Solving (4.8) for the first term and inserting it into (4.7) yields

dI
dt
=
∫

A
ρw(wA −w)n dA+ F n + F p + F F (4.12)

The first term on the right hand side accounts for the convective transport

E

W

(ρw2A)
W

(ρw2A)
E

z ∆z

ϕ

Figure 4.3 One-dimensional flow channel and pressure forces

of momentum. Taking a closer look at the integrals again for the simple,
one-dimensional flow channel with constant volume in Figure 4.3, the
following simplifications can be made:

V
V t

∫
V

ρw dV = V
V t
(ρwA∆z),∫

A
ρwwAn dA = (ρw2 A)E − (ρw2 A)W = V

V z
(ρw2 A)∆z,∫

V
ρg dV = ρncosφ A∆z= Fn∫
A

p dA =
{

lim
∆z→0

p2 A2 − p1 A1

∆z
− A2 − A1

∆z
p̄
}

∆z

= V
V z
(pA) − p

VA
V z

= A
Vp
V z

and∫
A

Tn dA = FF.

79

Chapter 4. Physical Models for Thermo-Hydraulics

The friction force is calculated via empirical pressure drop laws because
an evaluation of the integral in (4.11) is only possible for very simple
flow fields not commonly found in reality. The derivation of the pressure
integral for the flow channel of length ∆z makes use of the assumption of
a linear change in pressure on the area between the faces E and W .

Using the continuity equation, ṁ = ρwA and introducing the vari-
able I for the momentum, the equation can be brought into the following
discretized form:

I =
∫

V
ρw dV =

∫
∆z

∫
A

ρw dAdz = ṁ∆z

∆z
dṁ
dt

= dI
dt
= İ1 − İ2 + p1 A1 − p2 A2 − FF − Fn (4.13)

This form of the equation still leaves an important implementation detail
unspecified: how should the momentum fluxes İ1 and İ2be evaluated?
The approximation for the flux terms has considerable influence on the
numerical stability properties of the momentum balance which, if the
friction term FF is small, has eigenvalues close to the imaginary axis.
Different methods of calculating these terms are described in textbooks
dealing with numerical fluid dynamics, see [Versteeg and Malalasekera,
1995]. Implementation of the momentum balance model are treated in
Section 5.6.

Energy Balance

Applying the Leibnitz rule (4.1) with ψ = e yields the rate of change of
energy

dE
dt

=
∫

V

V(ρe)
V t

dV +
∫

A
ρewAn dA (4.14)

The energy of a closed system (wA = w) is, according to the first law of
thermodynamics, increased only by an addition of heat and work. If Q̇
denotes the heat flux and P denotes the power, this gives∫

V

V(ρe)
V t

dV +
∫

A
ρewn dA =

∑
P+

∑
Q̇ (4.15)

The power P is the integral of the local power dP, which is the local work
per unit time dP = dW/dt. The work results from the movement of a
particle along a line dz, caused by a force dF acting on the particle. The
work is the component of the force in direction of the movement times the
length, i.e. the scalar product dW = dF dz. The quotient of dz and time
dt is the flow velocity vector w, thus

P =
∫

dP =
∫

dW
dt

=
∫

dF dz
dt

=
∫
wdF

80

4.3 Balance Equations

Inserting the forces introduced in the previous section yields

Pn =
∫

V
ρgw dV

Pp = −
∫

A
pwn dA

Pτ =
∫

A
Twn dA

When solving (4.15) for the first term and inserting it into (4.14) one
obtains

dE
dt

=
∫

A
ρe(wA −w)n dA+ Pn + Pp + Pτ + Q̇ (4.16)

where the first term on the right hand side quantifies the convective trans-
port of energy.

The evaluation of the terms in the energy balance for the control vol-
ume in Figure 4.1 will follow two paths in order to show a complete energy
balance and one where the kinetic energy terms are neglected and only
the internal energy is considered. The models that are implemented in
the ThermoFluid library were designed for processes where the kinetic
energy is usually such a small fraction of the total energy that this sim-
plification is justified. As one example, the role of the kinetic energy in a
steam power plant is examined. Typical values for the specific enthalpy
in a steam power plant are between 1000 and 3500 kJ/kn. Maximum
speeds are around 30 m/s with a total upper limit of 50 m/s. This results
in a ratio of specific energies of (0.5 w2)/h � 0.5�10−5−0.5�10−4. Even
inside turbines with much higher flow speeds, the error is only a few per-
cent. The relative importance does not justify the inclusion of the kinetic
energy terms in the cases considered.

The purpose of certain flow equipment like diffusers and nozzles is
the recovery or generation of kinetic energy. Models for this equipment
are currently not part of the library. They can easily be added when the
kinetic energy is included in the energy balance.

The change of the total energy in the control volume is now expressed
in terms of inner and kinetic energy:

dE
dt

= dU
dt

+ dEkin

dt
= V
V t

∫
V

ρ
(

u+ w2

2

)
dV

The integral over the area for the convective terms setting wA = 0 (Eu-

81

Chapter 4. Physical Models for Thermo-Hydraulics

lerian approach with fixed control volume) evaluates to:

V
V t

∫
V

ρ
(

u + w2

2

)
dV = V

V t

[
ρ
(

u+ w2

2

)
A∆z

]
∫

A
ρ
(

u+ w2

2

)
wn dA = V

V z

[
ρw
(

u + w2

2

)
A
]

∆z

Taking into account that the velocity is zero at the channel wall:∫
A
wnp dA = (w2p2 A2 −w1p1 A1) = V

V z
(wpA)∆z∫

V
ρgw cosφ dV = ρnw cosφ A∆z

Pτ =
∫

AE ,AW

Twn dA � 0

The forces which apply at the wall perform no work because the pipe
wall is fixed. That means that Pτ is the work of the normal shear stresses
at AE and AW which are negligible. Pτ is not the power due to friction
which does not appear in an overall energy balance. Friction does not
affect the overall energy, but causes transformation of kinetic energy to
internal energy within the fluid.

For the control volume in Figure 4.1 and a single phase fluid it is of no
importance to include the pressure work for a variable size volume. For
a control volume with variable volume like a cylinder in a compressor or
motor, another power is part of the equation:

PdV = p
dV
dt

(4.17)

Because of symbolic processing in equation based languages, there is no
disadvantage to include this term in the general base classes: it will only
be used when dV/dt �= 0. The same is true for dissipative work Wdiss,
which has not been included in the derivation of the flow channel but
may be included in lumped volumes like a stirred tank reactor.

Using the above integrals, replacing u+ p/ρ with the enthalpy h and
dividing by the length ∆z, the final energy balance is obtained:

V
V t

[
ρ
(

u+ w2

2

)
A∆z

]
+ V
V z

[
ρw
(

h+ w2

2

)
A
]

∆z =

Q̇
∆z
− ρnw cosφ A∆z (4.18)

82

4.3 Balance Equations

Resolving this equation into one equation for kinetic energy and one for
inner energy is difficult. In order to do so with a physical model, a veloc-
ity profile has to be assumed for the flow channel. With a given, constant
velocity profile for laminar flow or a turbulence model, see e. g., [Versteeg
and Malalasekera, 1995], it would be possible to calculate the dissipation
rate of kinetic energy and evaluate the integrals in the following equa-
tions:

dEkin

dt
= −

∫
A1,2

ρw
2

2
wn dA+ Pn −

∫
V

wi
Vp
V zi

dV +
∫

V
wi
Vτ ji

V zj
dV (4.19)

dU
dt

= −
∫

A1,2

ρuwn dA+ Q̇ −
∫

V
p
Vwi

V zi
dV +

∫
V

τ ji
Vwi

V zj
dV (4.20)

The last two terms in (4.19) quantify the rate of change of kinetic energy
due to surface forces. The related terms in (4.20) cause a deformation of
the fluid particles. The deformation work cannot be stored as potential
energy, but is irreversibly transformed into heat, and thus increases the
internal energy [Guyon et al., 1997]. (4.20) is equivalent to

dU
dt

= −
∫

A1,2

ρuwn dA+ Q̇ + Pp +
∫

V
wi
Vp
V zi

dV +
∫

V
τ ji
Vwi

V zj
dV

The last term therein is positive – otherwise internal energy would be
transformed into kinetic energy, which violates the second law of ther-
modynamics. The pressure integral is negative, since a negative pressure
gradient is required to overcome the friction. For simplicity and following
similar order-of-magnitude arguments as for the kinetic energy it will be
assumed that both integrals sum up to approximately zero.∫

V
wi
Vp
V zi

dV +
∫

V
τ ji
Vwi

V zj
dV � 0

For a simple, lumped control volume with n connections to the surround-
ings, including pressure-volume and dissipative work, heat transfer and
heat contributions from reactions, the inner energy balance becomes:

dU
dt

=
n∑

i=1

Hi + p
dV
dt
+Wdiss + Q̇HT + Q̇reac (4.21)

where Hi = ṁ hi,upstream is always calculated with the specific enthalpy
from the control volume upstream of the connection. If the enthalpy of
formation from reactions has to be included explicitly or not depends on
the definition of the specific enthalpy of the components. This issue is
discussed in more detail in Section 4.9.

83

Chapter 4. Physical Models for Thermo-Hydraulics

4.4 The General Transport Equation

The approach used in fluid dynamics a slightly different from the one pre-
sented in the previous section: the basis for the equations is the transport
of an intensive property in a flow field, diffusion is added to the physical
phenomena that are part of the basic description and the similarities be-
tween the intensive forms of the conservation equations for mass, energy
and momentum are used to derive a general transport equation for a vari-
able φ . It is obvious from the source term that this accounting equation
is not based on a fundamental conservation law. φ can be used for any
scalar quantity which is transported with the flow, e. g., temperature or
pollutant concentration. The general transport equation is described by
four terms: Vρφ

V t
+∇ ⋅ (ρφw) = ∇ ⋅ (Γ∇2φ) + Sφ (4.22)

In words this can be expressed as:

Rate of
increase of φ in
fluid element

+
Net rate of flow
of φ out of fluid
element

=
Rate of
increase of φ
due to diffusion

+
Rate of
increase of φ
due to sources

The first three terms defined above are well defined, but the source term
usually serves as a collection of cross-coupling terms to other balance
equations and is also often used to correct for numerical artefacts in-
troduced through the discretization of the divergence terms. The above
representation holds independently of the dimension of discretization and
applies equally to an infinitesimal control volume and when each term is
integrated over a finite size control volume.∫

CV

Vρφ
V t

+
∫

CV
∇ ⋅ (ρφw) =

∫
CV
∇ ⋅ (Γ∇2φ) +

∫
CV

Sφ

For the standard equations in process engineering, φ = 1 gives the mass
balance, φ = w results in the momentum balance and φ = h gives the
energy balance.

From a thermodynamic point of view another characterization can be
be made for the terms in (4.22). The terms on the left hand side describe
the reversible thermodynamics and the terms on the right hand side con-
tain terms of irreversible thermodynamic phenomena.

4.5 Thermodynamic Equations of State

In order to close the system of equations mathematically, two types of ma-
terial laws are needed: a correlation between velocity gradients and shear

84

4.5 Thermodynamic Equations of State

stresses, most often the assumption of a Newtonian fluid, and a thermo-
dynamic equation of state (EOS). The latter of these relations originates
from the assumption that the transients of the system under consider-
ation are much slower than the time that a fluid needs to reach ther-
modynamic equilibrium. The assumption of thermodynamic equilibrium
is very common in thermodynamic models. It holds very well for single
phase systems, but for two phase systems with fast dynamics, thermody-
namic non-equilibrium is sometimes taken into account. The deviation of
the phases from equilibrium is the physical driving force for the phase
change mass transfer.

The existence of an EOS can be derived directly from the First and Sec-
ond Law of thermodynamics, written in differential form in (4.23–4.24),
when the reversible limit is taken for system changes between equilib-
rium states in the Second Law2. When the First and Second Law for
simple systems consisting of n distinct chemical species are integrated
over an infinitesimal time interval dt:

dU = dQ − dW +
n∑

i=1

hidMi (4.23)

dSnen = dS − dQ
T0

−
n∑

i=1

sidMi ≥ 0 (4.24)

and reversible changes are assumed (dSnen = 0 and dW = dWrev = pdV),
the equations can be combined into the following form:

dU = TdS − pdV +
n∑

i=1

(h− Ts)dMi (4.25)

If a molar description and basis is used for all variables, the dependence
of the energy on three different potentials is even more obvious:

dU = TdS− pdV +
n∑

i=1

µ idNi (4.26)

where µ i is the chemical potential of species i. This form of the combined
law proclaims the existence of a function of (n+ 2) variables

U =U(S, V , N1, N2, ..., Nn) where (4.27)
2A rigorous derivation is given in [Bejan, 1997], chapter 4. The definition of thermody-

namic equilibrium is closely connected to the derivation of an equation of state and the
assumption of reversibility.

85

Chapter 4. Physical Models for Thermo-Hydraulics

T = VU
VS

∣∣∣∣
V ,,N1,N2 ,...,Nn

−p = VU
VV

∣∣∣∣
S,N1 ,N2 ,...,Nn

µ i = VU
VNi

∣∣∣∣
S,V ,N1,...,Ni−1,Ni+1 ,...,Nn

From this fundamental relation in energy representation, a variety of
other forms can be derived. Equations are called fundamental because
they contain the complete thermodynamic property information of the
fluid. Using this derivation of an equation of state, it is now possible to
give a simple explanation of thermodynamic equilibrium: In a system in
thermodynamic equilibrium, the values of the potential variables p, T and
µ i are homogeneous throughout the system. Thermodynamic equilibrium
is thus equivalent to the “perfect mixing” assumption.

In order to get a reasonable parameterization, fundamental relations
are calculated for pure chemical species and mixing rules are applied to
construct multi-component relations. These material laws give an alge-
braic relation between the thermodynamic variables pressure p, temper-
ature T , density ρ, specific energy u, enthalpy h, entropy s, free energy f
and free enthalpy n. As can be seen from (4.27), T and p can be calculated
by symbolically differentiating the EOS. The enthalpy is then obtained
from h = u + pv, other properties follow from further differentiation or
non-linear combinations of known variables.

Three further fundamental equations can be derived by applying the
Legendre transformation [Bejan, 1997] to the above combined First and
Second Law of thermodynamics. Loss of information through the coordi-
nate change is avoided when applying the Legendre transformation, de-
tails about how to apply the transformation to thermodynamic functions
are given in Appendix B. The further fundamental equations are:

• the Helmholtz free energy F = F (T , V , Ni),
• the Gibbs free enthalpy G = G (T , p, Ni),
• the enthalpy fundamental equation H = H (S, p, Ni).

Most often these fundamental equations are derived for single species
properties and intensive variables as u(s, v), f (T , v), n(T , p) and h(s, p).
For numerical reasons they are also normalized, mostly with the critical
values of pressure, temperature or density as normalization factors. For
high-accuracy EOS, the Helmholtz energy function is the most popular
form closely followed by the Gibbs free energy n(T , p) because temper-
ature T , density ρ = 1/v and pressure p are the most easily measured

86

4.5 Thermodynamic Equations of State

thermodynamic variables. The basic u(s, v) or h(s, p) which use the non-
measurable entropy as one of their base variables are more of theoretical
interest. Equations of state are derived by adapting coefficients in high-
order two-dimensional polynomials, sometimes augmented with nonlinear
terms, to measurement data, see [Span, 2000].

A practical approach with a long history which is very popular in pro-
cess engineering is to use pressure – volume – temperature correlations,
mostly cubic equations of state of the general form:

p = RT
V − b

− ΘV −η
(V − b)V 2 + δ V + ε

(4.28)

where R is the gas constant, T is the temperature and V is the volume,
Θ, b > V ,η,δ and ε may be constants including 0 or they may vary with T
and/or composition. They are also based on easily measurable quantities
but the cubic EOS have the disadvantage that they are not fundamental
equations. In order to calculate all fluid properties, the heat capacity in
the ideal gas state is needed in addition. It can be shown that the combi-
nation of a p(V , T) surface and a function for the heat capacity cp = cp(T)
in the ideal gas state are equivalent to a fundamental equation. The at-
tractive feature of cubic EOS is that they allow relatively good property
estimates with few parameters, namely the critical values of temperature
Tc, pressure pc and specific volume vc. Numerical features of cubic EOS
in combination with dynamic simulation are discussed in Section 4.6.

The simplest form of an EOS is the Ideal Gas Law

pV = N R T

with the general gas constant R. In the simplest form it is complemented
with a constant cp and sometimes called Perfect Gas Law. For ideal gases
cp and h are functions of temperature only. The following relations are
used to calculate the caloric properties:

cp(T) = f (T) (4.29)

h(T) = h0 +
∫ T

T0

cp(T)dT (4.30)

s(T , p) = s0 +
∫ T

T0

cp(T)dT
T
− R ln

p
p0

(4.31)

Note that the pressure dependent part of the specific entropy is identical
for all ideal gases, only the temperature dependent part depends on the
gas.

87

Chapter 4. Physical Models for Thermo-Hydraulics

Implemented forms of these material laws in the ThermoFluid library
are the Ideal Gas Law, the steam tables for water and high accuracy
property functions for some refrigerants. The steam tables use both Gibbs
functions n(T , p) and Helmholtz functions f (T , d) in different regions of
the input coordinates T and p. The development of these equations of
state is a complex task, using non-linear optimization techniques to fit
the thermodynamic surface to available measurements, see [Span, 2000].
The generation of such property models on numerically efficient form is
often the most troublesome area in simulation of thermodynamic flow
problems, especially when high accuracy models are required. This prob-
lem is also well known in process industry, where the quality of fluid
property routines is a limiting factor for simulation accuracy in spite of a
large number of commercially available medium property databases. The
optimal situation for modelers and control engineers would be to have a
spectrum of options ranging from simple, but computationally efficient to
complex, high accuracy EOS models with a free choice of primary vari-
ables.

For steam power plants the situation has improved recently with the
standardization of the IAPWS/IF973. The IF97 splits the region of validity
of the steam tables into 5 regions, three of them use a Gibbs equation,
one uses a Helmholtz equation and the two-phase region is defined by a
saturation pressure curve and the adjoining fundamental equations. Even
for the steam tables, an alternative with lower computational cost for
online computations for control tasks is not available, but highly desirable.

Another, related problem with the available models is that they are
not designed to be used in dynamic simulation. For dynamic computa-
tions, efficiency is of higher priority than for steady state calculation or
generation of tables. The main issues are:

• Computational efficiency is improved a lot if iterative routines are
replaced by explicit computations. One type of iterations is avoided
when the dynamic states of the thermodynamic model are identical
to the input variables of the equation of state. Usually, there is no
choice on the side of the equation of state (the only exception are
the IF97 steam tables), but it is possible to apply a non-linear trans-
formation to the mass and energy balance, see Section 4.6, to use
the transformed version with any pair of intensive thermodynamic
variables. The transformations require knowledge of certain thermo-
dynamic derivatives used in the Jacobian matrix. These derivatives
can easily be computed analytically from the equation of state, but
are not included in standard implementations.

3The standard of the “Industrial Formulation of the properties of Water and Steam” is
described in detail in [Wagner and Kruse, 1998].

88

4.6 Choice of Dynamic State Variables

• Calculation of phase equilibria is mostly done iteratively, but ac-
cording to Gibbs’ phase rule the dimensionality of the equilibrium
subspace is one less than that of the full thermodynamic surface. The
phase equilibrium is defined implicitly via the equality of the values
of the Gibbs’ free enthalpy for both phases, e. g., n(T , p, X)liquid =
n(T , p, X)vapor for a multi-component fluid. Often it is possible to
calculate a very accurate approximation to the equilibrium surface,
which can be used from a library of stored definitions or generated
on the fly before the start of the dynamic simulation.

• Most functional models of the thermodynamic surface are by de-
sign singular at the critical point. For robust dynamic simulations,
a workaround which does not have non-physical side-effects on the
simulation result has to be worked out. This and similar implemen-
tation issues will be the topic of Chapter 6.

Implementation issues of the medium property calculations are discussed
in Section 5.6.

This discussion about efficiency of the medium property calculation,
combined with the derivation of the basic balance equation in Section 4.3
leads to an interesting question: which choice of state variables will give
the most efficient and reliable simulation results?

4.6 Choice of Dynamic State Variables

A clean and straightforward way of modeling thermodynamic and process
systems is to always use the conserved extensive quantities as dynamic
states: component (or total) mass, inner energy and momentum. Unfor-
tunately there are several choices of fundamental extensive quantities
which can be chosen as states, even from this puristic perspective, see
[Weiss and Preisig, 2000] and [Westerweele and Preisig, 2001]. The situ-
ation gets worse if simulation efficiency, integration of existing code and
other software limitations are taken into account in addition. An ideal
situation would be to write models always as conservation laws for fun-
damental extensive quantities and have the simulation tool take the deci-
sion which numerical formulation is most appropriate. The optimal choice
of states this might even change during one simulation run. For modeling
of transient two-phase flows, there is a long tradition of transforming the
equations to state variables which are numerically efficient, see [Kolev,
1986]. In the following, a couple of efficiency motivated model reformula-
tions are presented. Currently, Modelica tools can not perform this type
of of model reformulation automatically4.

4They can theoretically be handled by the current version of Dymola (4.2), but rewriting

89

Chapter 4. Physical Models for Thermo-Hydraulics

Single Component Fluids

In order to be as general as possible, the derivations will be done for
a control volume of variable size, first for single component fluids and,
equivalent in the single phase case, fluid mixtures with fixed mass com-
position. The change of volume dV is usually caused by moving systems
parts like an engine piston.

d
dt

 M

U

V

 =

∑n
i ṁ∑n

i q̇conv,i +
∑l

j q̇trans f er, j − pdV
dt

dV

 =

dM
dt

dU
dt
dV
dt

 (4.32)

In a first step, this equation is written in the intensive variables density
ρ and specific inner energy u and the volume.

d
dt

 ρ
u

V

 =

1
V 0 − ρ

V

− u
M

1
M

u
V

0 0 1

 d
dt

 M

U

V

If pressure and enthalpy are chosen as states, the first law and the mass
balance can be rewritten into these states as follows:

d
dt

 ρ
u

V

 =

Vρ
Vp

∣∣∣
h

Vρ
Vh

∣∣∣
p

0

Vu
Vp

∣∣∣
h

Vu
Vh

∣∣
p 0

0 0 1

︸ ︷︷ ︸

Jacobian Matrix J

d
dt

 p

h

V

 (4.33)

To obtain differential equations for pressure and enthalpy (4.33) must be
solved for the derivative of (p, h)

d
dt

 p

h

V

 = J−1 d
dt

 ρ
u

V

existing EOS-implementations in such a way that an automatic choice of states can be done
by Dymola is a lot more work than the manual coordinate transformation presented in this
section. Another possibility would be to extend Modelica’s annotations for functions with
more details about derivatives into specific directions.

90

4.6 Choice of Dynamic State Variables

The inverse of the Jacobian is computed as

J−1 = 1
det J

Vu
Vh

∣∣
p − Vρ

Vh

∣∣∣
p

0

− Vu
Vp

∣∣∣
h

Vρ
Vp

∣∣∣
h

0

0 0 Vρ
Vp

∣∣∣
h

Vu
Vh

∣∣
p −

Vρ
Vh

∣∣∣
p

Vu
Vp

∣∣∣
h

with the determinant

det J = Vρ
Vp

∣∣∣∣
h

Vu
Vh

∣∣∣∣
p
− Vρ
Vh

∣∣∣∣
p

Vu
Vp

∣∣∣∣
h

It is possible to reduce the partial derivatives of u to the ones of ρ
by using u = h − p/ρ, but this rewrite does not improve the clarity of
the model. It may be useful for implementation though, if only the ρ-
derivatives are available5.

Equivalent derivations can be done for pressure and temperature as
states and for density and temperature. The advantage of the latter two
forms is that there are many medium property models which are explicit
in these variables. This avoids a non-linear system of equation in a cen-
tral part of the model and is therefore very efficient. In order to simplify
notation, the volume is assumed constant in these derivations.

d
dt

(
ρ
u

)
=
 1 0

Vu
Vρ

∣∣∣
T

Vu
VT

∣∣
ρ

︸ ︷︷ ︸

Jacobian Matrix

d
dt

(
ρ
T

)

For ideal gases this simplifies further because, Vu/VρhT = 0 and further
it is common to write Vu/VT hρ = cv, the heat capacity at constant volume.
Solving for density and temperature yields:

d
dt

(
ρ
T

)
= J−1 d

dt

(
ρ
u

)
,

with the inverse of the Jacobian:

J−1 = 1
cv

 cv 0

− Vu
Vρ

∣∣∣
T

1

5Note: this way of writing the transformations to select suitable state variables assumes

that some other part of the model is able to calculate the partial derivatives in the matrix
efficiently. In ThermoFluid, the medium models compute the needed derivatives.

91

Chapter 4. Physical Models for Thermo-Hydraulics

Because of the dependence between pressure and temperature in the
two phase region, these two variables can, under the assumption of ther-
modynamic equilibrium, not be used as dynamic states. But outside the
two phase region they have the advantage that these two variables are
often readily available from measurements.

d
dt

(
ρ
u

)
=

Vρ
Vp

∣∣∣
T

Vρ
VT

∣∣∣
p

Vu
Vp

∣∣∣
T

Vu
VT

∣∣
p

︸ ︷︷ ︸

Jacobian Matrix

d
dt

(
p

T

)

For ideal gases the above simplifies again as Vu
Vp

∣∣∣
T
= 0 and Vu

VT

∣∣
p = cv.

Solving for pressure and temperature yields:

d
dt

(
p

T

)
= J−1 d

dt

(
ρ
u

)
. (4.34)

Writing the same physical model of a fluid in a control volume in three
different ways may seem nothing more than an academic exercise, but if
we look at the numerical implications of the combination of a thermody-
namic EOS and one of the above dynamic equations into a DAE, there are
two reasons for using different models in different situations. The goal of
the reformulation is to arrive at a model in which the dynamic states are

• explicit inputs to the EOS (in the cases of {ρ, T , V} and {p, T , V}
as states) or

• make use of the shape of the EOS to choose numerically favorable
state coordinates in the case of {p, h, V}.

The shape of the EOS can be such that a small error in one of the states
(e. g., with an implicit equation for the EOS which is solved numerically
only to a certain accuracy) results in a large error of other variables
calculated via the EOS. If liquids have to be modeled as compressible,
the density (equivalently, the total mass) have the property that a small
numerical error in them is amplified via a gain given by Vp/Vρhh to the
corresponding pressure given by the EOS. The pressure in turn influences
strongly the mass flows into the control volume and the change in mass in
the next time step. The result is a fluctuation in the pressures and mass
flows that looks like a noise signal for moderate tolerance choices of the
integration routine. Thus, density is a bad choice of state variable in the
liquid region. A good visualization of this property is given by the plots

92

4.6 Choice of Dynamic State Variables

Density as a Function of Enthalpy and Pressure

200

1000

2000

4000 1

0.1

1

10

100

1000

Density [kg/m3]

Enthalpy [kJ/kg]
100

1000
10

Pressure [bar]

400

x = 0

x = 1

Figure 4.4 EOS for water: density as a function of pressure and specific enthalpy.
Used with permission from [Mühlthaler, 2000].

of the EOS for water in Figure 4.4 and 4.5. Note the logarithmic scales
for all variables, which are necessary to catch the technically interesting
region.

Multi-Component Fluid Mixtures

For multi-component flows, the number of possible choices for the dynamic
states gets larger and the availability of numerically robust and simple
definitions for the EOS gets worse. For the EOS, the basis are the EOS of
the single components which are combined using empirical mixing rules.
A detailed presentation of mixing rules is found in [Poling et al., 2001].
Most of the equations of state which are in use in process engineering are
cubic6 equations of state of the general form

p = RT
V − b

− a
V 2 + ubV +wb2 (4.35)

where a, b, u and w are component specific constants, R is the gas constant,
T is the temperature and V is the volume. This is a simplified version of
(4.28) assuming that η = b. It can easily be seen that this equation can
not be made explicit in variables which can be used as dynamic states,

6These equations are called cubic because they can be transformed into a cubic polynomial
in the compressibility, see [Poling et al., 2001].

93

Chapter 4. Physical Models for Thermo-Hydraulics

Pressure as a Function of Density and Enthalpy

0.1

0.1
1

10
100

1000
10000

200

10000 bar

1000

300

100

30
10

3

1 bar

2000
4000

1000

Enthalpy [kJ/kg]Density [kg/m3]

1000
100

10
1

Pressure [bar]

400

Figure 4.5 EOS for water: pressure as a function of density and specific enthalpy.
The strong variations of pressure in the liquid region caused by small density varia-
tions are obvious from this plot of the density-pressure-enthalpy surface. Used with
permission from [Mühlthaler, 2000].

e. g., p and T . It can be rewritten to a cubic equation in the compressibility
Z (see [Poling et al., 2001]), but this equation has three solutions in some
areas and only one of them is physically meaningful. A non-linear system
of equations is therefore not avoidable, but selecting T instead of U as
one of the dynamic states reduces the system of equations to dimension
one, solving for p. A common choice of property computations for static
calculations is to treat p as an input in the calling structure, using the
compressibility form of the cubic EOS. This gives a non-linear system
of equations if the volume V is a known input (constant or, in piston
engines, a state). The derivative Vp/VV hT can be calculated analytically
to improve efficiency when solving for p with a Newton iteration.

When dealing with mixtures of components, both mass- and mole based
models can be used, they are fully equivalent. Rewriting the inner energy
and mole amounts into temperature and moles as dynamic states is done
as follows (block-matrix notation, boldface for vectors and matrices):

d
dt
=

 Nn

U

V

 =

In,n 0n,1 0n,1
dU
dNi

∣∣∣
T ,V 1,n

dU
dT

∣∣
N,V

dU
dV

∣∣
N,T

0 0 1

 d
dt

 N
T

V

 (4.36)

The inverse of the Jacobian is used again to make this model explicit in

94

4.6 Choice of Dynamic State Variables

the mole vector, the temperature and the volume:

J−1 = 1
dU
dT

∣∣
N,V

In,n 0n,1 0n,1

− dU
dNi

∣∣∣
T ,V 1,n

− dU
dT

∣∣
N,V − dU

dV

∣∣
N,T

0 0 1

The structure of the Jacobian inverse reveals that only the equation for
the inner energy is transformed into one for the temperature. The equa-
tions for the moles remain unchanged from (4.36).

The same transformation can be applied equivalently for component
masses. By exchanging moles Ni with component masses Mi and deriva-
tives with respect to Ni with derivatives with respect to Mi, (4.36) is the
same for a component mass based model.

The generality and multi-purpose formulation of the models makes
it difficult to recognize the underlying PDE in the above equations. A
variable size volume is rarely assumed in PDE models and only used in
lumped control volume models, but this makes it possible to use the same
Modelica classes for both cases with different parameters and boundary
conditions. Transformation into different forms of states makes it difficult
to see the connection between these equations and the balance equations
in Section 4.3. Furthermore, PDE formulations are usually written in
intensive variables for an infinitesimal control volume. A comparison to
the PDE-formulation in (4.4) reveals the following differences:

• Diffusion is neglected because it does not apply to lumped parameter
models. Inside distributed models it is a trivial extension to add
diffusion to the mass- or energy flow terms.

• The derivations take extensive quantities as the fundamental de-
scription and only change to intensive ones if necessary for improv-
ing efficiency.

• The transport equations for energy and mass (or component masses)
are regarded as vector equations allowing a change of coordinates
involving both of them. This is not done in computational fluid dy-
namics.

• Source terms and in/outflow terms are lumped together for the
change of coordinates.

The different forms of the dynamic state equations for mass and energy
are implemented in BaseClasses.StateTransforms , see Section 5.6.

Some other modeling packages, like gPROMS for process modeling,
recommend differing guidelines for writing lumped and distributed pa-
rameter models. The gPROMS developers recommend to write lumped

95

Chapter 4. Physical Models for Thermo-Hydraulics

parameter models in extensive variables and distributed parameter mod-
els in intensive variables7. This corresponds to the prevailing presenta-
tion of lumped and distributed parameter models in the literature. On the
other hand, this precludes the savings in coding and maintenance effort
which is a major motivation behind object-oriented library development.
Differing guidelines for these two cases are incompatible with the Ther-
moFluid principle of unifying lumped and distributed parameter models.

4.7 Turbines and Valves

Models for turbines and valves share many properties with respect to the
modeling of the fluid passing through them. In models for turbines and
valves it is common to neglect mass- and energy storage, they are flow
models, see Section 5.6 They cause a pressure drop across them in the flow
direction and choking occurs for high mass flows in turbines and valves.
Turbines convert flow enthalpy into mechanical energy of the shaft while
valves change the thermodynamic state of the fluid along paths that lead
to lower pressure.

Turbine Stages

The mass flow through a group of turbine stages is calculated from the
well-known Stodola steam-cone equation:

µT = C1 ⋅
√

1− Π2
T (4.37)

where the variables are

µT : the reduced mass flow, µT = ṁ
√

Tin

pin

ΠT : the pressure ratio between turbine inlet and outlet, ΠT = pout

pin

C1 : a constant dependent on the nominal conditions

(4.37) computes the mass flow for a turbine with an infinite number of
stages. In practice this holds well for power plant steam turbines near
normal operating conditions. The practical meaning is that the mass flow
is much smaller than the mass flow at choking conditions. When tur-
bines are modeled in more detail or gas turbines with few stages are
modeled, this simplification causes large errors. The disadvantages of the

7Per volume quantities are the most usual choice for chemical engineering problems.

96

4.7 Turbines and Valves

Stodola equation can be avoided with an improved relation developed by
Linnecken, see [Cordes, 1963]. The mass flow is calculated as

µT = C2 ⋅
√
(1− Πk)2 − (ΠT − Πk)2 (4.38)

with a constant C2 analogous to (4.37). In the case of an infinite number
of stages, Πk = 0, this equation reduces again to the Stodola steam-cone.

The critical pressure ratio can according to [Cordes, 1963] be approxi-
mated to

Πcrit =
[

n− 1
2 ⋅ Λ

+ 1
] n

1−n

(4.39)

n = κ
κ −ηp ⋅ (κ − 1) . (4.40)

The gradient parameter Λ depends on the number of stages. Reference
values for Λ are listed in Table 4.1 The polytropic exponent n can be
calculated from the relation between isentropic and polytropic efficiencies,

ηs = 1− Πηp⋅ κ−1
κ

1− Π κ−1
κ

.

For pressure ratios different from nominal conditions, the isentropic ef-
ficiency falls below the nominal isentropic efficiency ηs,0 and can be ap-
proximated by

ηs =
[

1− kα ⋅
(

Π0

Π
− 1
)2
]

⋅ ηs,0.

The characteristic constant kα depends on the number of stages and Π0.
[Cordes, 1963] reports a range of kα � 0.1 . . . 1.5.

Valves and Orifices

Gas flow in valves and orifices is usually modeled along two idealized
thermodynamic paths:

• Isentropic flow is the limiting case of a reversible flow.

• Isenthalpic flow can be characterized as giving the maximum in-
crease in entropy for a given pressure drop. In isenthalpic flow, pres-
sure energy is irreversibly dissipated to inner energy.

Most thermodynamic texts emphasize the isentropic case, even though
this is only a good approximation for nozzles operated near the design

97

Chapter 4. Physical Models for Thermo-Hydraulics

number of stages gradient parameter Λ

1 0.5 . . . 1.0

2 0.3 . . . 0.5

3 0.25 . . . 0.3

4 and more 0.25

Table 4.1 Reference values for Λ from [Linnecken, 1957]. The higher values are
for impulse turbines, the lower ones for reaction turbines.

point. A control valve that is half open is much closer to the isenthalpic
case.

A nozzle designed for subsonic flow limits the flow speed at the neck
of the nozzle to the speed of sound. When the pressure ratio gets larger
than the Laval pressure ratio, speed and mass flow stay constant at their
maximum independent of the pressure ratio. The Laval pressure pL is a
function of the isentropic exponent κ :

pL

p0
=
(

κ + 1
2

) κ
1−κ

, (4.41a)

The flow function Ψ for isentropic flow through a nozzle is a function of
the pressure ratio and defined as:

Ψ =
√

κ
κ − 1

√(
p
p0

) 2
κ

−
(

p
p0

) κ+1
κ

if
p
p0
≥ pL

p0
(4.41b)

Ψ = Ψmax =
√

κ
κ + 1

(
2

κ + 1

) 1
κ−1

if
p
p0
< pL

p0
(4.41c)

Index 0 stands for the entry properties assumed to be at zero flow
speed. When the nozzle equation is used in a control valve with a variable
cross section area AV (y), the mass flow is a function of the valve position
y, the inlet properties and the flow function Ψ

ṁV = AV (y)Ψ
√

2p0ρ0 (4.42)

Numerical difficulties arise when the nozzle equation is used at flow
speeds close to zero due to the singular derivative of the root function.
In ThermoFluid this is avoided by using an interpolating polynomial in-
stead of the root function in a user-definable region around zero flow.

98

4.8 Pumps and Compressors

The calculation of the enthalpy at the outlet follows from the assump-
tion of an isentropic path to be

hs = f (sin f low, pout f low) (4.43)
The computation of hs is the same for turbines and isentropic valves. Even
for ideal gases the exact solution of the isentropic enthalpy requires solv-
ing a non-linear equation. For ideal gases, κ is only weakly dependent on
temperature. It is feasible to use an average κ to get a good approximation
to the isentropic enthalpy change:

hout,s = hin + κ
κ − 1

(
pin

din

)((
pout

pin

) κ−1
κ

− 1.0

)
.

An exact solution to the isentropic enthalpy can be found by iteratively
solving the EOS used for property calculations using (4.43).

Isenthalpic flow can be modeled in a simpler way. A simple pressure
loss model that is easy to adapt to measurements and works even for
large variations in density is:

ṁ
ṁ0

=
√

∆p
∆p0

⋅
ρ
ρ0

Again, the root function is replaced by a polynomial with finite derivative
in a small region around zero flow speed. The density dependence can be
omitted for nearly incompressible fluids or small density variations.

Base classes for turbines and valves are implemented in the pack-
age PartialComponents , except for calculations of the isentropic enthalpy
change which are found in sub-packages of MediumModels , see Chap-
ter 5.

4.8 Pumps and Compressors

The characteristic behavior of pumps and compressors in their stable op-
erating range is captured by graphical maps or data tables. The map
consists of two steady-state relationships describing the normalized pres-
sure ratio to mass flow map and the efficiency for all stable compressor
or pump operating points. There are two ways to represent this type of
maps:

• Use data-intensive, piece-wise approximations to the data, e. g., bi-
cubic spline interpolation or similar methods. When the data is avail-
able, this is the most accurate way to compute the maps.

99

Chapter 4. Physical Models for Thermo-Hydraulics

• Non-dimensionalized relations for turbo machinery using much fewer
parameters from nominal operating points can be scaled to the ac-
tual machine.

The second method has the advantage that it is often easier to extend to
the unstable operating range of the machine where usually no measure-
ments can be obtained.

One simple example of an expression of a normalized characteristic
curve for turbo-pumps from [Pfleiderer and Petermann, 1991] which is
also easy to adapt to a specific pump using manufacturer data is

∆pn = R1nn + 2R2nnVn − R3 hVnhVn (4.44)
where, pn, nn and Vn are normalized variables for pressure p, revolu-
tion rate of the pump n and volume flow rate V . The design point is
(pn, nn, Vn) = (1, 1, 1) and represents the pump in normal operation. This
relationship works correctly in the case of back flow through the pump,
in so called surge operation. For system level simulation it may be more
important to capture the behavior in the unstable operating region qual-
itatively correct than to capture the stable behavior as accurately as pos-
sible.

More advanced dimensionless models of pumps which can also scale
pump geometries of similar pump types to different sizes have not been
implemented in ThermoFluid, they can be found in most books on pumps
like [Pfleiderer and Petermann, 1991].

The main modeling challenge for compressors, similar to that of pumps,
consists in a numerically robust and accurate representation of the so
called “compressor map”, which is given graphically or as tabulated data.
Smooth interpolation of these tables with two-dimensional splines would
be a suitable way to implement this form of data, but currently no such
implementation is available in Modelica.

Several systems containing compressors have been modeled using the
ThermoFluid library, but the models were specifically adapted to a specific
compressor map using function approximations. The models are therefore
not well suited for a general model library.

Similar to pumps it is possible to compute off-design behavior of multi-
stage axial compressors using non-dimensionalized models. Methods us-
ing nominal per-stage values of pressure ratio, mass flow, isentropic effi-
ciency and revolution rate to obtain corresponding values for the overall
machine at all working conditions are called “stage composition meth-
ods”8. They are described in [Gašparović and Stapersma, 1973] and [Herzke,
1983] where the later author even includes rotating stall and surge oper-
ation.

8translated from German: “Stufenaufbauverfahren”.

100

4.9 Chemical Reactions

Base classes for pumps are implemented in PartialComponents.Pumps
with some ready-to-use components for water in Components.Water .

4.9 Chemical Reactions

Modeling of chemical reactions can be done in two ways, either by using
kinetic expressions for the reaction rates or by assuming that the reactions
are much faster than all other dynamics so that chemical equilibrium can
be assumed. This is similar to thermodynamic phase equilibrium or a
quasi steady-state assumption for the momentum dynamics.

Currently only kinetic reactions are implemented in the ThermoFluid
library, mainly because it is easier to obtain numerical robustness with
dynamic reaction models when some concentrations are close to zero.

We assume that a number of nr reactions take place simultaneously
in a lumped or discretized control volume. The rate r j of reaction j de-
notes the number of moles of reaction taking place per unit time and unit
volume. Several reactions can contribute to either produce or consume
component i, so that the actual rate at which a component is produced or
consumed gets

rNi = V
nr∑
j=1

ν i j r j (4.45)

where ν i j is the stoichiometric coefficient of component i in reaction j,
with positive values for products and negative for reactants.

The mass balance given in (4.5) is repeated here after changing to a
molar basis:

dN
dt

=
n∑
k

ṅk + rN (4.46)

where the elements of the molar production term rN are computed ac-
cording to (4.45).

Energy conservation in reacting systems has to make sure that the
“heat of reaction”, or, more precisely, enthalpy of formation is taken into
account correctly. There is often a slight misconception about these terms
because some software implementations do not make it very clear what
type of enthalpy they return from function calls.

The convention in chemical systems modeling is to set the reference
specific enthalpy for pure chemical elements in their naturally occurring
form at standard conditions (25○C and 1 bar pressure) to zero. This means
that di-atomic gases like O2 have zero enthalpy at standard conditions,
elements which do not form such molecules like Fehave zero enthalpy
for single atoms. When elements in their natural states react with each

101

Chapter 4. Physical Models for Thermo-Hydraulics

other, the energy of the newly formed chemical bonds differs from the
original energy at the same standard conditions. This enthalpy difference
is called enthalpy of formation or heat of reaction. The specific enthalpy
that was used in the parts of this thesis dealing with non-reacting flows
contains an arbitrary integration constant. The value of that constant for
any species does not matter in non-reacting systems, but it can be set to
a value that simplifies modeling of reactions.

If the arbitrary constant in the latent enthalpy is taken to be the
enthalpy of formation of that chemical component, changes in mass due
to reactions will contribute exactly the correct enthalpy of formation that
is generated or consumed by the reaction. For reacting flows, the energy
balance needs not to be changed because no separate contribution for the
enthalpy of formation has to be included.

In conclusion, the energy conservation in chemical reaction systems is
taken care of automatically if the enthalpy of formation is included in the
latent specific enthalpy. This is the case for the ideal gas property models
in the ThermoFluid library. When external property calculations are used
with the library, this should be assured in the same way.

Expressions for computing the reaction rate r j are in general functions
of the thermodynamic state, mostly temperature, pressure and composi-
tion:

r j = r j(T , p, x), j = 1 . . . nr

Usually these functions are empirical or semi-empirical and they rely
on substantial experimentation. The uncertainties involved with reaction
rates are often considerable, which is one of the main reasons to use the
assumption of chemical equilibrium. Chemical equilibrium models are not
yet included in the ThermoFluid library.

Implementation of chemical reactions is treated in Section 5.6, the base
class for kinetic reactions is included in package BaseClasses.Reactions
and an example of a very fast reaction is described in Section 5.9.

4.10 Solid Structures

Models for pipe walls and other solid structures which are in thermal
contact with the fluids are simple to treat. Two phenomena are of interest
when modeling solids: their capacity to store heat and their resistance to
heat transfer. In system level models it is common to have simple models
where one of these effects is neglected or the capacity or the resistance of
a wall are lumped with the capacity or resistance of the fluid in contact.
For example,when measurements are used to estimate the resistance of
the separating wall in a heat exchanger, only the total resistance of the

102

4.10 Solid Structures

0.5 Rw

Tf luid1

Tf luid2Tm

Ta

Tb

Q̇a Q̇b

Figure 4.6 Heat resistances and capacitances in a heat exchanger wall.

two fluid boundary layers and the wall can be estimated. Neglecting the
lumping of fluid - and wall properties, the following model types for walls
are common:

• A wall with negligible mass, without any capacity or resistance just
to separate two fluids

• A wall without capacity but including one lumped resistance for the
metal and the boundary layers.

• A lumped wall model without resistance with heat capacity.

• A lumped wall model including resistance. For this type of model it
makes sense to split the heat transfer resistance of the wall into two
equal parts. The temperature at the wall surface is different from
the average temperature of the wall.

• Discretized wall models with a sequence of heat capacities and re-
sistances. The discretization is perpendicular to the dominant heat
flow direction.

All these models can be discretized in the direction of flow, but they
are usually modeled neglecting heat flow in that direction so that the only
interaction between the neighboring discretized wall parts is via the fluid.
The choice of model is governed by the ratio of the heat capacity param-
eters of the wall and the fluid in contact. The most common model for

103

Chapter 4. Physical Models for Thermo-Hydraulics

system simulation is a wall model with a lumped heat capacity but with-
out resistance. The heat resistance in the metal is often small compared
to the heat resistances in the fluid boundary layers. A simple lumped
model which even permits a temperature dependent heat capacity can be
written as

m
d(CpT)

dt
=
∑

Q̇. (4.47)

The different possibilities are illustrated in Figure 4.6.

• In the case of no wall resistance, the heat flows Q̇ are calculated in
fluid boundary layer models,

• In the case with resistance only in the metal wall, the heat flow is
calculated from the temperature difference Q̇a = 0.5Rw(Tm − Ta)
where the variables are explained in Figure 4.6 and Rw is the total
resistance of the wall.

• When the resistances of the boundary layer are neglected, Tf luid1 =
Ta and Tf luid2 = Tb.

• If both resistances are taken into account, the model is described
by a system of equations for the heat flows between wall and fluid.
The system is linear when the heat transfer coefficient α of the fluid
boundary layer is constant.

The common lumped wall models without resistance will be explored
further in the next section. A particularly interesting special case is ob-
tained when wall models are combined with a control volume model with
neglected heat resistances in boundary layer and metal, see the model
reduction example in Section 2.4.

4.11 Moving Boundary Models

The models described in the previous sections are general purpose models
for fluid flow using lumped or distributed parameters. The generality of
the models makes them well suited for model libraries, but in many situa-
tions these models are far from optimal for dynamic purposes. Distributed
parameter models are in general not well suited for control design, where
low order models are preferable. Steady state oriented models of thermo-
fluid systems put large emphasis into getting pressure drop and heat
transfer equations correct: the accuracy of those often does not matter
very much for control purposes, except when feed forward control is used.
A controller with integral action will bring the system to the desired oper-
ating point even if the model on which the controller is based is not very

104

4.11 Moving Boundary Models

accurate at steady state. Physical phenomena at much higher frequencies
than the bandwidth should be neglected altogether for the sake of simplic-
ity. Model accuracy is needed most for the eigenvalues of the linearized
system in the vicinity of the desired closed loop bandwidth. The important
lesson from modeling of fluid systems for control is that this feature can
often be achieved with models which are lower order and simpler than
distributed parameter models. Even worse, the standard distributed pa-
rameter models are in some cases particularly unsuited for describing the
model in the frequency range of the control. Plant design engineers know
that distributed parameter models are good at predicting steady state
performance but fail to recognize their shortcomings for control design.

A particular example of low order models which are superior to dis-
tributed models for control design are a class of models which are usually
classified as moving boundary models of two phase flows. The main idea
of these models is that they make use of the observation that in two phase
flows, the physical behavior differs a lot between the liquid single phase,
two phase and gas single phase regions. A modeling idea using this ob-
servation uses control volumes with variable sizes. These models capture
the behavior in the volume and the boundaries of the regions.

Moving boundary models as a low order alternative to distributed pa-
rameter models have been used by other authors before, e. g., a model for
incomplete vaporization [Beck and Wedekind, 1981], several variants of
two region dry expansion evaporator models in [He and Liu, 1998], [He
et al., 1997], [He et al., 1994] and [He et al., 1995] and a three region
model by Bittanti et al. [Bittanti et al., 2001].

Moving Boundary Equations

The distribution of liquid and gas in a typical evaporator looks approxi-
mately like in Figure 4.7. Some technically relevant variants of this gen-
eral form are:

Once through boilers. The flow patterns are illustrated in Figure 4.7
with subcooled inflow and superheated outflow, but the flow is usu-
ally vertical and upward.

Risers in drum boilers. They always have vertical up-flow in the risers
and incomplete evaporation with subcooled inflow and two phase
flow at the outlet.

Dry expansion evaporators are typical for household and commercial
refrigeration systems. The inflow is usually in the two-phase region
and the control variable of interest is the superheat, the tempera-
ture difference between the outflow temperature and the saturation
temperature.

105

Chapter 4. Physical Models for Thermo-Hydraulics

��

��
��
��
��

.

.
Ḣin

ṁin

Ḣout

ṁout

Q̇

Figure 4.7 Horizontal flow of gas and liquid in an evaporator.

The physical phenomena found in two phase flows are complex and the
special literature about it provides many very detailed models with fine-
grained classification of flow patterns. For low order models it is natural
to choose three regions: subcooled, two phase and superheated. The three
model types that correspond to the three applications listed above are:

Three-zone models consist of a subcooled, a two phase and a super-
heated region.

Two-zone flooded evaporator models have a subcooled and a boiling
two phase region.

Two-zone dry expansion evaporators start with two phase flow at
the inlet, followed by a superheated region.

The detailed derivation of these models follow the same pattern: the
mass- and energy balance equations are integrated over a control volume
of variable size.

For the fluid mass balance we start from (4.6) and for the fluid energy
balance with (4.15). The energy balance for the metal is also based on
(4.15) with the additional assumption of a constant heat capacity. The
momentum balances are replaced by a static relation of pressure drop
at the outflow because their time constants are outside the bandwidth of
interest for control. The result is a set of differential algebraic equations
for the boundaries of the regions and for the averages of the variables
that characterize the storage of mass and energy in the central volume.
For the convenience of reading the next section, notation for the moving
boundary model equations is provided in Table 4.2.

To integrate the equations over the central volume it is necessary to
make assumptions about the distributions of mass and energy inside that
volume. Reasonable distributions are obtained by using essential param-
eters from a detailed investigation of inhomogeneous, distributed models.
The distribution of mass depends on the void fraction, presented in Sec-
tion 4.12.

106

4.11 Moving Boundary Models

Roman and Greek Letters

A area h enthalpy

Cw heat cap. of wall ṁ mass flow

t time q heat flux

D diameter L length

v velocity z length coordinate

S slip ratio x mass fraction

α heat transfer coeff. ρ density

γ void fraction ω pump speed

µ density ratio Φ dissipation function

η liquid fraction Ψ vapor generation rate

Subscripts

1 subcooled i inner

2 two-phase in inlet

3 superheated l saturated liquid

12 interface 1-2 o outer

23 interface 2-3 out outlet

amb ambient r refrigerant

n saturated gas w wall

w1 subcooled wall w2 two phase wall

w3 superheated wall f fluid

Double subscripts are used for some flows.

q′w11 means: heat flux from subcooled wall to region 1 fluid

Superscripts

′ flux per length ∗ normalized variable

Table 4.2 Notation for moving boundary models.

By neglecting work terms like viscous stresses, axial conductance and
assuming a single heat transfer interaction the energy balance (4.15) can

107

Chapter 4. Physical Models for Thermo-Hydraulics

be simplified to
V(Aρh− Ap)

V t
+ Vṁh

V z
= q′wf (4.48)

A simplified energy balance for the wall is obtained by setting all convec-
tion terms in (4.48) equal to zero, assuming two heat transfer terms and
neglecting the axial conductance, hence

CwρwAw
VTw

V t
= −q′wf + q′ambw (4.49)

The heat flows per pipe length, q′, can usually be calculated using a con-
stant heat transfer coefficient. For the subcooled wall section this gets:

q′w11 = α iπ Di(Tw − Tf) (4.50)
q′ambw1 = α oπ Do(Tamb − Tw) (4.51)

Equations (4.6), (4.48) and (4.49) are the balance equations, which will be
integrated over the three regions to give the general three region lumped
model for a two-phase heat exchanger, see Figure 4.8. The detailed deriva-
tion for the three-zone model is presented below. The derivation of the
other models is similar.

Tw1 Tw2 Tw3

L1 L2 L3

ṁoutṁin

houthin

ṁ12, hl ρl ṁ23, hn ρn

T1, h1 ρ1 T3, h3 ρ3
T2 = Tn = Tl

Tamb

Figure 4.8 Schematic of the three region moving boundary model.

Mass Balance for the Subcooled Region

Consider the three region model outlined in Figure 4.8. This model is
representative for a once-through boiler. Integration of the mass balance
(4.6) over the subcooled region gives∫ L1

0

V(Aρ)
V t

dz+
∫ L1

0

Vṁ
V z

dz = 0 (4.52)

108

4.11 Moving Boundary Models

Integrating the second term and differentiating the resulting equation
gives for a constant area pipe:

A
d
dt

∫ L1

0
ρdz− Aρ(L1)dL1

dt
+ ṁ12 − ṁin = 0.

The density at the interface ρ(L1) is equal to the saturated liquid density
ρl . Pressure and mean enthalpy are chosen as the states in the subcooled
region. The mean enthalpy is defined as

h̄1 = 1
2
(hin + hl)

where hin is known from the boundary conditions and hl is a function of
the pressure. The mean density and temperature in the subcooled region
is approximated by

ρ̄1 = 1
L1

∫ L1

0
ρdz � ρ(p, h̄1) T̄1 � T(p, h̄1).

Using the above expressions, the mass balance for the subcooled region
can be written as

A
[(

ρ̄1 − ρl
)dL1

dt
+ L1

dρ̄1

dt

]
= ṁin − ṁ12. (4.53)

The term dρ̄1/dt is calculated using the chain rule:

dρ̄1

dt
=V ρ̄1

Vp

∣∣∣
h

dp
dt
+ V ρ̄1

V h̄1

∣∣∣
p

dh̄1

dt

=
(V ρ̄1

Vp

∣∣∣
h
+ 1

2
V ρ̄1

V h̄1

∣∣∣
p

dhl

dp

)dp
dt
+ 1

2
V ρ̄1

V h̄1

∣∣∣
p

dhin

dt

The term dhin/dt is determined from the boundary conditions to the
evaporator model. Inserting this expression into the mass balance (4.53),
gives the final version of the mass balance for the subcooled region

A
[
(ρ̄1 − ρl)dL1

dt
+ L1

(V ρ̄1

Vp

∣∣∣
h
+ 1

2
V ρ̄1

V h̄1

∣∣∣
p

dhl

dp

)dp
dt

+ 1
2

L1
V ρ̄1

V h̄1

∣∣∣
p

dhin

dt

]
= ṁin − ṁ12.

(4.54)

109

Chapter 4. Physical Models for Thermo-Hydraulics

Energy Balance for the Subcooled Region

Integration of the energy balance (4.48) over the subcooled region gives

∫ L1

0

V(Aρh− Ap)
V t

dz+
∫ L1

0

Vṁh
V z

dz =
∫ L1

0
q′w1ldz. (4.55)

For a constant area pipe and heat flow per length q′, integration over the
length and subsequent differentiation result in:

A
d
dt

∫ L1

0
ρhdz− Aρ(L1)h(L1)dL1

dt
− AL1

dp
dt

= ṁinhin − ṁ12hl + L1q′w11.
(4.56)

Using

ρ̄1h̄1 � ρ1h1 =
∫ L1

0
ρhdz

and expanding equation (4.56) gives the expression for the energy balance
of the subcooled region:

1
2

A

[(
ρ̄1(hin + hl) − 2ρlhl

)dL1

dt
+
(

ρ̄1 L1 + V ρ̄1

Vh

∣∣∣
p

)dhin

dt

+ L1

{
ρ̄1

dhl

dp
+ (hin + hl) ⋅

(V ρ̄1

Vp

∣∣∣
h
+ 1

2
V ρ̄1

Vh

∣∣∣
p

dhl

dp
− 2
)}dp

dt

]
= ṁinhin − ṁ12hl + L1q′w11

(4.57)

Superheated and Two Phase Zones

The derivation of the mass- and energy balances for the superheated and
two phase regions follow the same pattern. The integrals are expanded,
mean values are introduced which are defined by the integrals and deriva-
tives of the density are expanded into derivatives of pressure and specific
enthalpy. The details of the derivation are presented in Appendix C. The
final results for the superheated region becomes:

A
[

L3

(1
2
V ρ̄3

V h̄3

∣∣∣
p

dhn
dp

+ V ρ̄3

Vp

∣∣∣
h

)dp
dt
+ (ρn − ρ̄3)dL1

dt
+ (ρn − ρ̄3)dL2

dt

+ 1
2

L3
V ρ̄3

V h̄3

∣∣∣
p

dhout

dt

]
= ṁ23 − ṁout.

(4.58)

110

4.11 Moving Boundary Models

The energy balance for the superheated region reads

A
[(

ρnhn − 1
2

ρ̄3(hn + hout)
)(dL1

dt
+ dL2

dt

)
+ L3

[1
2
(hn + hout)

(1
2
V ρ̄3

V h̄3

∣∣∣
p

dhn
dp

+ V ρ̄3

Vp

∣∣∣
h

)
+ 1

2
ρ̄3

dhn
dp

− 1
]dp

dt
+
(1

2
ρ̄3 L3 + 1

4
V ρ̄3

V h̄3

∣∣∣
p
(hn + hout)L3

)dhout

dt

]
= ṁ23hn − ṁouthout + L3q′w33

(4.59)

The mean properties of the superheated region are calculated in the same
way as in the subcooled region. Thus

h̄3 = 0.5(hn + hout), ρ̄3 � ρ(p, h̄3) and T̄r3 � T(p, h̄3).

The heat fluxes between the pipe wall and the two phase zone respec-
tively superheated zone are calculated as in (4.50) with the appropriate
substitutions in the variables:

q′w33 = π Diα i3(Tw3 − T̄r3) (4.60)
q′w22 = π Diα i2(Tw2 − Tr2) (4.61)

The flow in the two-phase region is assumed to be at equilibrium con-
ditions with a mean density of ρ̄ = γ̄ ρn+(1−γ̄)ρl , where the void fraction
is defined as γ = Avap/A. The average void fraction is defined as

γ̄ = 1
L2

∫ L1+L2

L1

γ dz.

The central assumption for the following derivation is that γ̄ changes
much slower in time than the other variables such that it can be treated as
a constant when differentiated with respect to time. This precludes using
the model for fast pressure transients. A detailed model of the calculation
of the void fraction is derived in section 4.12. The mass balance for the
two-phase region becomes

A
{
(ρl − ρn) L1

dt
+ (1− γ̄)(ρl − ρn)dL2

dt

+ L2

(
γ̄ dρn

dp
+ (1− γ̄)dρl

dp

)dp
dt

}
= ṁ12 − ṁ23.

(4.62)

111

Chapter 4. Physical Models for Thermo-Hydraulics

and the energy balance for the two-phase region is given by

A

{
L2

[
γ̄ d(ρnhn)

dp
+ (1− γ̄)d(ρl hl)

dp
− 1
]dp

dt
+
[
γ̄ ρnhn + (1− γ̄)ρlhl

]dL1

dt

+
[
(1− γ̄)(ρlhl − ρnhn

)]dL2

dt

}
= ṁ12hl − ṁ23hn + L2q′w2p

(4.63)
The derivative of the properties at the phase boundaries are written in a
short notation and can be rewritten as e. g., d(ρnhn)/dp = hn(dρn/dp) +
ρn(dhn/dp). Both d(ρnhn)/dp and d(ρlhl)/dp are functions of only pres-
sure because they are on the phase boundary.

Energy Balance for the Wall Regions

Integration of the wall energy equation (4.49) from α to β gives∫ β

α
CwρwAw

VTw

V t
dz =

∫ β

α
α iπ Di(Tr − Tw)dz

+
∫ β

α
α oπ Di(Tamb − Tw)dz

(4.64)

Integrating, assuming constant wall properties and rearranging gives the
general energy balance for a wall region:

Cwρw Aw

[
(β −α)dTw

dt
+ (Tw(α) − Tw

)dα
dt
+ (Tw − Tw(β)

)dβ
dt

]
= (β −α)q′wf − (β −α)q′ambw.

(4.65)

For the wall region adjacent to the subcooled region α = 0 and β = L1,
which gives

CwρwAw

[
L1

dTw1

dt
+ (Tw1 − Tw(L1)

)dL1

dt

]
= L1q′w1l − L1q′ambw1.

(4.66)

The wall temperature in the model is discontinuous at L1 giving

Tw(L1) = Tw2 for
dL1

dt
> 0

Tw(L1) = Tw1 for
dL1

dt
≤ 0

(4.67)

Similar expressions are derived for the walls adjacent to the two-phase
and the superheated regions.

112

4.12 Void Distribution

Two Zone Models

When the evaporation is incomplete or the fluid inflow is in two-phase
conditions, only two zones are needed. The models are similar to the
three-zone model above and many of the equations are valid unchanged.
The subcooled and superheated zone and their adjacent metal models are
identical for the three-zone model and for the two-zone model which has
the corresponding zone. The details of the two phase model are different
for the three types of models. For the two variants of the two-zone model,
the schematic of the three zone model in Figure 4.8 can be imagined to be
cut in the two phase zone. The left part of the cut figure corresponds to
a flooded evaporator configuration and the right part to a dry expansion
evaporator.

The detailed derivation for all the equations of the five different zone
types (one subcooled zone, one superheated zone, three different types of
two phase zones) needed in the above three models is a tedious exercise
that follows the same ideas in all cases: integrate the balance equations
over a variable size control volume and write all occurring derivatives
in terms of derivatives of pressure and specific enthalpy, because this is
the most suitable pair of inputs to medium property calculations. The
models are currently integrated into the ThermoFluid library. They can be
combined with all medium property descriptions capable of handling two
phase flows, currently water, CO2 and refrigerant R134a. The models are
designed as building blocks for low order two phase flow system models.
Which model is best suited to a given situation and whether model order
reduction as presented in Section 2.4 is appropriate has to be decided
separately.

4.12 Void Distribution

Introduction

Fluid flow in evaporators, which typically have a constant cross section
area along the flow path, has to be accelerated by a factor equal to the
density ratio between liquid and gas. This follows from the continuity
equation

ṁ = ρwA.

Heterogeneous flow means the assumption of equal flow speeds of gas
and liquid, heterogeneous flow denotes models with different speeds for
the phases.

113

Chapter 4. Physical Models for Thermo-Hydraulics

Neglecting effects from the surface tension and
forces due to mass transfer between the phases,
the pressure drops along the flow path and is
homogeneous in both phases at any given cross
section. The pressure drop is the main driv-
ing force of the flow. This means that the gas
and liquid phases are subject to the same accel-
eration force between two given points on the
flow path. In well-mixed flow patterns, e. g., bub-
bly flow at the beginning of the boiling zone,
the acceleration of the two phases is approxi-
mately the same. When the flow is separated
like in annular flow, which is the case for most
of the length of the evaporator, the much lighter
gas phase is accelerated faster than the liq-
uid phase. A graphical representation of this
flow features is given in figures 4.9 and 4.10.
One consequence of the difference in flow speeds
which does have significant influence on the
slow part of the evaporator dynamics is the
resulting distribution between gas and liquid.
This distribution is described by the void frac-
tion along the pipe, γ (z), which for the case of
lumped parameter models is integrated from the
beginning to the end of the evaporation zone. If
instead of the complex changes in flow patterns
in a real pipe, averaged uniform flow properties
are used, the resulting gas-liquid distribution
looks like in Figure 4.13, where the heteroge-
neous flow solution is compared to the most of-
ten used assumption of homogeneous flow.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

w

γ A

ṁ′′
ṁ′

w′

w′′

∆w

Figure 4.9 Flow
pattern in vertical
two-phase flow.

Steady State Profile

The void fraction derived in this section is used to obtain a good estimate
of the fluid mass in the evaporator. For a given pressure, the total mass
depends on the void fraction of the pipe. The void fraction is calculated
as the integral of the void fraction profile over the evaporator length. The
normalized void fraction profile depends on the velocity ratio between the
phases and the pressure. For the derivation of a γ (z)-profile, a couple of
assumptions are necessary:

1. All assumptions for the derivation of the moving boundary model

114

4.12 Void Distribution

��
��
��
��

��

w

γ A

(1− γ)A

ṁ′′

ṁ′

w′
w′′

∆w

Figure 4.10 Flow pattern in horizontal two-phase flow. The gas moves faster, due
to gravity it is accumulated at the top.

also apply to the derivation of the void fraction profile, in particular
that the pressure is assumed constant along the pipe.

2. The profile can be evaluated under steady state conditions. For the
purpose of slow, start-up transients as well as for linearization pur-
poses this does not pose any restrictions. This means in particular
that the pressure is in steady state.

3. The steam generation rate Ψ′ is uniform over the evaporator length.

4. The slip velocity ratio S = un/ul between the gas and the liquid
velocities is evaluated under steady state conditions. Two cases are
treated: (1) S is constant along the evaporator length, giving a sym-
bolic solution of the profile. (2) S = S(γ , µ). Many slip correlations
can be transformed to this functional dependence. This leads to a
numerical solution of the void fraction profile. A slip velocity ra-
tio different from one distinguishes this model from other moving
boundary models in the literature.

The key assumption here is that the profile retains its shape during tran-
sients. This excludes sharp gradients in the inflow velocity and large am-
plitude pressure disturbances. The importance of the void fraction in two
phase process dynamics has often been emphasized, compare e. g., the
drum boiler model in [Åström and Bell, 2000]. A similar derivation to the
one presented here but assuming a slip velocity ratio of one has been
published in [Bittanti et al., 2001].

Under the above assumptions, the following coupled ODE boundary
value problem holds:

ρl
V(Alul)
V z

= −Ψ′ and

ρn
V(Anun)
V z

= Ψ′.
(4.68)

115

Chapter 4. Physical Models for Thermo-Hydraulics

Ψ′ is the net generation of saturated steam per unit length in [kn/(ms)],
Al and An are the cross sectional areas taken up by liquid and vapor
respectively and the densities are independent of the length coordinate
because we assumed no pressure loss and steady state conditions for the
pressure. This equation is normalized by setting A = Al + An = 1 and
letting the length of the evaporation zone run from zero to one. The cross
section area An(z) is now equivalent to the liquid volume fraction γ (z).
Then, replacing ul with u and un with Su and dividing by ρl , the following
normalized equations are obtained:

V((1− γ)u)
V z

= −Ψ∗

µS(z)V(γ u)
V z

= Ψ∗
(4.69)

where

Ψ∗ = Ψ′

ρl A
, and µ = ρn

ρl
.

The boundary conditions at the length coordinates z = 0 and z = 1 are

γ (0) = 0, γ (1) = 1. (4.70)

Two slip correlations are going to be investigated more closely. A simple
one allowing the symbolic solution of 4.69 and 4.71 and a more complex
and realistic one. For complex slip correlations, the void profiles and their
integrals have to be calculated numerically.

When the slip S is assumed constant along the pipe, equations (4.69),
and the boundary conditions can be solved symbolically to give the follow-
ing function for γ (z):

γ (z) = z
Sµ + z(1− Sµ) . (4.71)

The influence of the slip ratio S on the void fraction in the evaporation
zone, γ can be estimated from the plot in Figure 4.11. A constant slip
ratio based on the minimization of total kinetic energy is the one from
Zivi, first published in [Zivi, 1964] but quoted from [Whalley, 1987].

Looking at the flow patterns in Figure 4.9 and from physical intuition
it is clear that a constant slip ratio is not realistic at the onset of boiling.
Initially, the flow speed of the phases will be the same and along the
pipe the gas velocity and slip will increase. Only few of the numerous slip
correlations are derived to hold for all possible flow patterns. A simple
correlation which fulfills this criterion is the one from Levy, [Levy and

116

4.12 Void Distribution

0 0.2 0.4 0.6 0.8 1
Normalized Length z

0

0.2

0.4

0.6

0.8

1

V
oi

d
fr

ac
tio

nΓ

Void FractionΓHzL for S= 1, 3, 5, and 7 andΜ = 0.02

S = 8.0

S = 5.0

S = 3.0

S = 1.0

Figure 4.11 Void Fraction γ (z) along the normalized evaporation zone for µ =
0.02.

Abdollahian, 1982] as reported in [Wang, 1991]. In its original form it
relates void fraction, steam mass flow rate and density ratio, but can be
rewritten as a slip correlation:

S(γ , µ) = 1− γ +
√

1+ 2γ (µ−1 − 1)
2− γ µ

. (4.72)

This slip correlation reduces to S = 1 at the beginning of of the boiling
region and increases monotonically to an upper limit which is a function
of µ. Using the slip correlation (4.72) does not allow a symbolic solution
of the profile equations, but it is straightforward to find a numerical so-
lution for a fixed µ. The influence of either choosing a constant slip ratio
or a variable slip ratio as the one in (4.72) on the void fraction profile is
not large. Figure 4.12 gives an indication of the typical influence of the
different slip ratios. The plot is at the maximum difference of the inte-
grated void fraction using the correlation of Zivi (independent of γ) and
the correlation of Levy.

One important conclusion that can be drawn from the more realis-
tic Levy slip correlation is that the cases of evaporators with incomplete
evaporation – typically between 5 % and 20 % of the total mass flow evap-
orate – and dry-expansion evaporators with two-phase inflow have very
different slip ratios for the same pressures. For incomplete evaporation
and low outlet steam qualities the slip ratio is so close to one that the slip
influence can safely be neglected.

117

Chapter 4. Physical Models for Thermo-Hydraulics

0 0.2 0.4 0.6 0.8 1
Dimensionless Length z

0

0.2

0.4

0.6

0.8

1

vo
id

fr
ac

tio
nΓ

at
Μ

=
0.

2

Fixed Slip HZiviL S = 1.7

Averaged Slip HLevyL S = 1.4

Variable Slip HLevyL S = 1.0 .. 1.7

Figure 4.12 Comparison of void fraction profiles for fixed and variable slip corre-
lations.

Average Void Fraction

The average void fraction γ̄ is computed as the integral over the normal-
ized profile along the pipe. In the case of constant slip S, γ (z) can be
integrated symbolically to give:

γ̄ =
∫ 1

0
γ (z)dz = 1+ Sµ (ln(Sµ) − 1)

(Sµ − 1)2 . (4.73)

This γ̄ (p, S) can only be used together with the dynamic model from the
previous section when its time derivative, dγ̄ /dt, can be neglected. This
holds for slow pressure transients. Slow means here that transients from
the momentum balances for gas and liquid, which are the origin of the
velocity slip, relax on a faster timescale than the transient of interest.

The density ratio µ(p) is a simple function of the pressure, but for
the slip ratio S many empirical correlations are available. For a closed
symbolic solution, a slip ratio which is independent of the local void or
steam mass fraction has to be chosen. A simple and appealing correlation
is the one from Zivi (1964), cited from [Whalley, 1987]. It minimizes the
total kinetic energy flow along the pipe:

S = un
ul
=
(

ρl

ρn

)1/3
= µ1/3 (4.74)

Using this slip correlation, the average void fraction in the pipe becomes a
function of the density ratio µ(p) which is a function of pressure. Inserting

118

4.12 Void Distribution

��
��
��
��

��

z
h

om
og

en
eo

u
s

vapour

q.

liquid

h
et

er
og

en
eo

u
s

γ A

w′′

whom

Figure 4.13 Approximate gas-liquid distribution in a pipe

S = µ(1/3) into (4.73),

γ̄ (p) =
∫ 1

0
γ (p, z)dz =

(
1
µ

)2/3((
1
µ

)2/3
− 1− 2

3 ln
(

1
µ

))
((

1
µ

)2/3
− 1
)2 . (4.75)

With Levy’s slip correlation it is not possible to solve the boundary value
problem given by (4.69) symbolically. But it is possible to obtain a nu-
merical representation of the average void fraction γ̄ with the following
steps:

• Create a sufficiently fine grid of physically realistic values for the
density ratio µ, e. g., from 0.005 to 1.0.

• For all fixed µ, solve (4.69) with the slip correlation (4.72) numeri-
cally, obtaining a numerical profile in the form of pairs of numbers
(z, γ (z)) with z in the interval (0, 1) for each µ.

• Integrate numerically over all profiles to get

γ̄ (µ) =
∫ z=1

z=0
γ (z, µ)dz.

• Approximate the pairs of numbers (µ, γ̄ (µ)) obtained by integration
with an analytic function. Rational function approximations work
well in this particular case.

This procedure has been followed using the combined symbolic and nu-
merical tool Mathematica [Wolfram, 1990]. Using one of the built-in opti-
mization tools for rational function approximation, the following function

119

Chapter 4. Physical Models for Thermo-Hydraulics

0 0.2 0.4 0.6 0.8 1
Density RatioΜ

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

d
V

oi
d

F
ra

ct
io

nΓ��
Average voidΓ�� using Zivi’s slip correlation

Average voidΓ�� using Levy’s slip correlation

Figure 4.14 Difference of the average void fractions obtained from Levy’s and
Zivi’s slip correlation.

can be obtained for γ̄ (µ)9:

0.98582+ 567.884 µ + 20924.2 µ2 + 53923.6 µ3

1+ 612.285 µ + 26266.8 µ2 + 98848.6 µ3 + 17480.6 µ4 + 7596.18 µ5

The deviation of this approximation from any of the densely grided nu-
merical function values is less than 0.01 %. The deviation from the simpler
average void γ̄ (µ) using the simpler slip correlation from Zivi is less than
3.5 % For lower density ratios the difference is negligible, see Figure 4.14.

9Only the six most significant digits are shown

120

5

The ThermoFluid Library

Abstract

This chapter describes the current state of the ThermoFluid library,
formerly called ThermoFlow library. The library is still under active
development. Where appropriate, possible improvements over the cur-
rent status will be pointed out. Finally, some industrial and academic
examples that use the ThermoFluid library are briefly presented.

5.1 Introduction

There are Modelica libraries for mechanical systems, electrical systems,
block diagrams and basic mathematical functions. A base library for mod-
eling and simulation of thermo-fluid systems has been a missing extension
to expand the range of applications for Modelica. A thermo-hydraulic base
library should cover the basic physics of flows of fluids and heat transfer.
It also needs to cover models for properties of fluids like water, air, impor-
tant technical gases and refrigerants. The original ThermoFlow library
was not designed to handle chemical reactions, but the object-oriented
design made it possible to add reactions without changing the existing
models. The library has been successfully applied in several application
areas, e. g., power generation plants, fuel cell systems, steam distribution
networks and refrigeration systems. The applications have been made by
both academic and industrial groups.

s The general goal of the library is to provide a framework and ba-
sic building blocks for modeling thermo-hydraulic and process systems in
Modelica. For obvious reasons it is impossible to provide model compo-
nents for every conceivable application for this class of systems. The pri-
mary goal of the library is to provide a base library with common model
parts without limiting the freedom of the user to extend and adapt the
library for a particular application. For the same reason, more emphasis

121

Chapter 5. The ThermoFluid Library

has been put on the basic parts of the library, such as physical property
models and control volumes, than on components for all possible applica-
tions. The focus of the library is on models of compressible, homogeneous
one- and two-phase flows1. Incompressible flows are simpler to deal with
and are also not part of ThermoFluid, a library for incompressible flow is
described in [Fabricius and Badreddin, 2002]. The models in the library
are designed for system level simulation, not for detailed simulation of
components, which is usually done in CFD packages. The models are thus
discretized in one dimension or even lumped parameter approximations.

Initially, designing models for reuse takes considerably more time than
use-once models, but the pay-back comes quickly, often after the second
related modeling task. It has to be said that designing models for reuse
adds complexity to the modeling process and for model development it is
often a better approach to first develop and test the model and when it
works, is tested and documented it should be refactored into parts which
are useful for reuse in a library. This was how the ThermoFluid library
developed: the models have been known and used for many years. Based
on the experience from long time model use the task was then to struc-
ture equations, variables and components in such a way that the resulting
building blocks are handy for as broad a range of modeling tasks as pos-
sible.

To make the library general and extensible, the design must accom-
modate different choices of fluid properties, single- or multi component
fluids, one- or two phase flows and constitutive equations. It has to be
emphasized that, especially in the area of fluid flow, different assump-
tions about the importance of terms in the general equations can lead to
models which are very different mathematically. The library offers only a
limited selection of assumptions, which nonetheless should cover a broad
range of applications. The most fundamental of these assumptions is a
singular perturbation applied to the full conservation equations, as de-
scribed in Section 2.1. The momentum balance is reduced to an algebraic
equation because it typically evolves on a faster timescale than the other
equations. This assumption is far-reaching for the library design, because
the flow of momentum in the full, dynamic momentum balance requires
momentum flow as a variable in the connectors.

For the ThermoFluid library it was decided to neglect all kinetic en-
ergy terms, as discussed in Section 4.3. The decision is based on the order
of magnitude of the kinetic terms in the typical applications that Ther-
moFluid was designed for. This has a number of consequences for the type
of applications which can be tackled using the library: the models will
obey the basic assumptions taken for the base models and if these are not

1Non-homogeneous two phase flows and multi-phase flows are not covered.

122

5.1 Introduction

library files lines of code packages models

Modelica 33 22165 29 258

Electrical 19 6145 9 78

MultiBody 19 7451 8 96

ThermoFluid 89 31251 98 1084

Table 5.1 Statistics for various Modelica libraries. Note that the Electrical library
is a sub-library of the Modelica Standard Library.

justified, new models have to be derived. In this context it is very impor-
tant to realize one of the features of object oriented modeling: coupling
models which were derived based on different assumptions will result in
the violation of one of the conservation laws. In some cases the order of
magnitude of the terms that violate the conservation equations is smaller
than typical numerical errors, in others they may be of significant size.

This chapter focuses on the object-oriented structure of the library and
examples that show how the library can be used. The underlying physical
models are documented in Chapters 4, B and C. This reflects also the
work process when creating model libraries. A modeler must be familiar
with the underlying physical phenomena and the key components of the
library. Only with a clear “mind map” of the models it is possible to identify
elements of the library that are useful in many different contexts.

Some ideas for previous versions of the thermo-hydraulic base library
have previously been presented in [Tummescheit and Eborn, 1998; Eborn
et al., 1999; Tummescheit, 2000a; Tummescheit, 2000b]. Object-oriented
component based modeling in various modeling languages has been dis-
cussed in [Wagner, 2000; Mühlthaler, 2000; Nilsson, 1993].

There are several issues which make modeling of thermo-fluid systems
different to modeling in other engineering domains. The subproblem of
fluid properties is complex by itself: 50 % of the code in ThermoFluid
deals with fluid properties, see the statistics in Table 5.1. Many variants
of model assumptions are possible and commonly used. The MultiBody
library is more complete for the modeling of multi body systems than the
ThermoFluid library is for thermo-fluid systems but it is only � 25 % of
the size, taking lines of code as the measure. This is mainly due to two
facts: complex property functions and many model variants.

There is considerable public interest in the library. On average there
are about 70 downloads per month since the library has been published
on the Internet. The library has been used in a number of applications

123

Chapter 5. The ThermoFluid Library

by users from industry and academia. Feedback from the users has influ-
enced the development of the library.

5.2 Basic Ideas

In the design of a model library, a few central decisions have to be made
early in the work. Compromises are inevitable which means that there
are solutions which differ in some details but cover approximately the
same applications.

• Flexibility vs. Complexity. A library exclusively built for drag-and-
drop flow sheet modeling is simple to use. A more flexible library,
allowing for user choices and modifications, is inevitably more com-
plex but can cover much wider applications.

• Small, specialized vs. broad scope. The trade-off is similar to the
above. Large libraries require more learning time than small com-
pact ones.

• Numerical efficiency vs. simplicity of the models. Symbolic methods
for model transformations can not always find the numerically best
form of the equations. When the transformation to a numerically
favorable form is done by hand, the generality of the model is often
reduced.

The ThermoFluid library was initially intended to be flexible with a broad
scope. This leads to too large complexity for occasional users or for small
projects. Several applications indicated that a hierarchical structure with
more specialized application libraries built on top of ThermoFluid is useful
for larger projects. For a particular application, it would be better to have
a small, high level application library that is built on top of ThermoFluid.

The basic design principles of the ThermoFluid library are:

• One unified library both for lumped and one-dimensional distributed
parameter models,

• Models should be valid for the complete operating range including
start-up and shut-down sequences whenever possible. This requires
support for bidirectional flow in all models.

• High level parameterization of all constitutive equations in flow and
process models. This comprises fluid property submodels, pressure
loss and heat transfer correlations and also reaction rates in reaction
submodels.

• initialization procedures are provided for all standard cases, but
users can easily build models with customized initialization proce-
dures by calculating parameters at initial time.

124

5.2 Basic Ideas

• Common alternatives for assumptions (e. g., influence of gravity) can
be selected from the user interface.

pipi-1 pi+1

hihi-1 hi+1
ṁi ṁi+1

qconv,i qconv,i+1

inlet outlet

mass and energy

momentum

Figure 5.1 Staggered grid discretization. The control volumes for mass/energy
and momentum are translated relative to each other. The variables pi, hi denote
pressure, specific enthalpy in volume i, and ṁi, qconv,i mass and energy flow between
volumes i-1 and i.

The first guideline constrains the discretization method used in the dis-
tributed parameter models. Only the so-called “staggered grid” method,
illustrated in Figure 5.1, gives a useful model in the lumped parameter
case. In this method, [Harlow and Welch, 1965], all fluxes are calculated
on the border of a control volume and the intensive quantities are calcu-
lated in the center of a control volume. The method is a special case of the
finite volume method, [Patankar, 1980], which is commonly used for one-
dimensional discretizations. In the standard implementation that is used
in the ThermoFluid library there is one disadvantage: the spatial deriva-
tives are only accurate to first order. This is often sufficient for system
simulation. Due to the modular character of the library the discretization
can easily be refined if this high precision is required.

It is interesting to note that a lumped approximation of the finite
volume method is used in almost all commercial simulation packages that
deal with fluid flow or process simulation. The only difference in process
simulators is that usually the upstream component is used to calculate
the flow into the next process. This is equivalent to combining one control
volume type model with one flow model.

The ability to handle reversing flows requires extra information in the
connectors. This would not be necessary for infinitesimally small control
volumes but is caused by two properties of convective flows:

• Convection-dominated processes are inherently asymmetrical. The
properties at any given point are dominated by the properties up-
stream of that point. This is a fundamental difference to diffusion
processes which are symmetrical.

125

Chapter 5. The ThermoFluid Library

qconv

ṁ

hmix

hout

hin = qconv
ṁ

flow direction
heat transfer

Figure 5.2 Illustration of the properties at connectors for bidirectional flow. In the
presence of heat transfer, the average properties which appear in both connectors of
a volume can differ a lot from the properties of the inflow stream. This is a property
of the ideal mixing assumption of lumped control volumes. The inflow enthalpy
hin = hout is never calculated because the energy balance uses qconv. The convected
heat flow qconv is calculated as qconv = (hout + ∆h)ṁ). For isentropic throttles,
∆h = 0. The properties in the connectors depend on the location, not on the flow
direction. This is in contrast to usual conventions in flow-sheeting simulators, but
is an unavoidable consequence of models capable of handling reversible flows. The
model code is given in Section 5.4.

• Spatial discretization of a PDE needs to take the asymmetry into
account. This can be done either by an asymmetric discretization
scheme in the case of Finite Difference Methods or by integration
over a finite size control volume in the case of Finite Volume Meth-
ods.

In the Finite Volume Method, transported properties such as enthalpy and
composition have to be included twice in connectors in some way. Depend-
ing on the flow direction, either the upstream or the downstream proper-
ties have to be used in the balance equations.This has been achieved by
including convective heat flow and component mass flows in the connec-
tors. The information needed for the balance equations is thus contained
in variables that depend on the flow direction, i. e. mass flow and convec-
tive heat flow. The transport properties in the connector are always taken
from the closest control volume, see Figure 5.2.

The choice of state variables has a significant influence on numerical
efficiency. For single component flows different pairs of state variables are
possible, e. g., {p, h}, {p, T} or {ρ , T}. The state variables can be chosen
to fit the purpose of the model. The basic entity of the library, the control
volume, is constructed by multiple inheritance from four parts.

• The balance submodels define all interfaces and contributions to the
mass and energy balance. The heat- and mass transfer object in
the balance submodel makes it possible to add an arbitrary number

126

5.3 Control Volumes and Flow Models

of heat transfer areas or mass transfer phenomena to the model
without changing the basic equations, see in detail in Section 5.6.

• The partial thermal model contains dynamic state equations derived
from conservation laws of mass and energy.

• The partial hydraulic model contains the mass flow equation that is
defined as either a static or a dynamic momentum balance.

• The last part of a control volume model are the initial condition
specifications.

This composition is detailed in Figure 5.5 and Section 5.4. The property
calculations form an exchangeable submodel in the partial thermal model.
The details of the physical models are presented in Section 5.6.

5.3 Control Volumes and Flow Models

Lumped approximations of thermo-fluid systems use two types of abstrac-
tions which work well for a large class of real process equipment. Large
volume equipment is modeled by storage of mass and energy in a con-
trol volume. Equipment with small volumes but high power densities like
pumps, turbines, valves, short pipes and orifices have a negligible mass
and energy storage but often large changes in pressure and sometimes
kinetic energy. Large volume equipment is of control volume type, small
volume equipment is of flow model type. This separates the basic con-
servation equations into two model types: the dynamic mass- and energy
balances are modeled in control volume models and the quasi steady state
or dynamic momentum balance is modeled in flow models. These abstrac-
tions have traditionally been used in all black-box simulation packages
for thermo-fluid systems. Traditionally the models have to be used in an
alternating sequence for several good reasons:

• Combining two volume models without a flow model in-between
leads to an index two DAE problem, compare Section 2.1. Automatic
index reduction procedures can handle this, but this would require
differentiable property calculation routines which are usually not
available. They are also very cumbersome to implement. In con-
trast to mechanical systems where the introduction of a DAE-index
through couplings is natural, direct coupling of two control volume
type models is a sign of poorly chosen subsystem boundaries. One
volume model with the sum of the volumes is a simpler and better
solution.

127

Chapter 5. The ThermoFluid Library

• Combination of two flow models can lead to a rather unpleasant
non-linear system of equations. This is not a big problem but it
reduces robustness unnecessarily. If flow resistance parameters are
going to be identified from plant data, flow models in series lead to
over-parameterized models and should be avoided for that reason.

For these reasons the ThermoFluid library follows the same convention of
alternating flow and volume models even if models in Modelica could be
written so that they can be combined in an arbitrary order. Disregarding
this rule leads by design to an error. If necessary, two flow models can be
coupled directly by including a zero volume control volume between the
flow models.

Distributed models using the finite volume method have the property
of alternating flow models and control volumes by definition, this follows
from the derivation of the method, see [Patankar, 1980]. For a static mo-
mentum balance the situation is completely identical to alternating con-
trol volume and flow models, but for a dynamic momentum balance there
is a slight conceptual difference. The momentum balance is also formu-
lated for a control volume, but the control volume is staggered by half a
grid distance with respect to the control volumes for the mass and energy
balance. Half of the fluid mass of the upstream and half of the downstream
control volume of the flow channel are used in the momentum balance.
A visual representation of the staggered grid discretization is shown in
Figure 5.1.

Static flow models are prevailingly used in system simulation where
the thermal behavior is the main concern. The dynamic momentum bal-
ance is useful for pressure wave propagation studies in a system which is
mainly modeled with distributed models. It is possible to add other types
of flow models to the existing structure, e. g., a momentum balance for
variable cross-sectional area along the flow channel.

The different kinds of lumped and distributed models in the Ther-
moFluid library are shown in Figure 5.3. In order to guide users to follow
the rule of alternating models, the two connectors are visually different.
Always connecting different connectors guarantees that the simulation
problem is well specified and that unnecessary non-linear equation sys-
tems are avoided.

When systems with very large control volumes are modeled, e. g., sim-
ple models of steam distribution systems, it is advantageous to replace
very small volumes with a zero-volume model in order to avoid numerical
stiffness. From the computational viewpoint these act like real volumes.
Zero-volume models compute the state variables of ordinary control vol-

128

5.4 Object-Orientation in ThermoFluid

Control Volume Flow Model

Lumped Models

Lumped Composite Model

Discretized Model

Figure 5.3 Lumped, composite and discretized model objects. Lumped compos-
ite models are composed from an alternating sequence of control volume and flow
models in a container model. The equations in a discretized model are interleaved
control volume and flow model equations. Identical boundary conditions are needed
for lumped composite and distributed models: flows at the outlined and potentials
at the filled connectors.

umes algebraically from the conditions

dM
dt

= 0,
dU
dt

= 0.

5.4 Object-Orientation in ThermoFluid

The basic concepts of object-oriented modeling languages have been treated
in Chapter 3. In this section we will give examples of how these concepts
are applied in practice in the ThermoFluid library.

The main idea of the ThermoFluid library is to provide an extensi-
ble basis for a robust thermo-hydraulic component library. The library is
divided into five main parts:

Interfaces define the types of connectors used in the library. The flow
connectors are of two different types; either with a static or dynamic
flow description. For easy accessibility and inter-operability between
different Modelica base libraries, the Interfaces package is always
directly beneath the top level package.

129

Chapter 5. The ThermoFluid Library

Icons define the graphical appearance and the positioning of connectors
for the classes in the Components package.

BaseClasses are the central part of models, the basic physical equations
for a control volume: balance equations, state transformations and
medium models. This is by far the largest package in ThermoFluid.
All base classes are abstract and only the functions are usable “as
is”, without further programming.

PartialComponents contain common code for component models, they
allows code sharing and simplifies maintenance. Partial components
are composed from base classes. While base classes are building
blocks, partial components are almost complete models where few
building blocks are missing.

Components are the user part of the library, models that can be used to
build a system for simulation by graphical composition. Some com-
ponents are composed of simpler components, they form a hierarchy
of models and subsystems by themselves.

ThermoFluid

PartialComponents ComponentsIconsInterfaces BaseClasses

Figure 5.4 Top level package structure of the ThermoFluid library. The graphical
symbols are explained in Appendix A.

These parts are illustrated in Figure 5.4. The ThermoFluid library
makes systematic use of object-oriented structuring concepts in order to
achieve reuse on the level of basic physical phenomena. This can be com-
pared with traditional flow-sheet simulation packages that provide reuse
on the level of engineering components like pumps and heat exchangers.
Partial components and base classes offer two additional levels of model
reuse on a more fine-grained level. The structuring mechanisms that are
used in ThermoFluid are the same as in object-oriented programming:

Generalization is a strategy to handle complexity by classification of
models and code sharing. Modelica offers

• inheritance and

• parameterization of generic class

130

5.4 Object-Orientation in ThermoFluid

as important concepts for code reuse.

Decomposition is a divide-and-conquer strategy to deal with complexity.
In Modelica, decomposition can be achieved in two ways, either using

• multiple inheritance or

• component aggregation.

The language tools are not completely orthogonal to the concepts, multi-
ple inheritance can also be classified as partial generalization and class
parameterization is also applicable to components. In the following sub-
sections we will give examples of how these features are applied in the
ThermoFluid library. A critical discussion of the experiences with object-
oriented modeling in Modelica and an attempt to deduce general guide-
lines is found in Chapter 6.

Generalization

Inheritance A simple example of generalization is to identify common
sets of variables and interfaces. Also some aspects of behavior are com-
mon for a large class of quite different models. A general feature for flow
equipment is the bi-directional convective heat transport, which can be
expressed as

partial model FlowModelBase
extends FlowVariables;
Boolean a_upstream "flow direction: true if positive at port a";
extends TwoPort;

equation
// for static flow, a_upstream depends on p2 − p1

// for dynamic flow, a_upstream depends on sinn(ṁ)
// the equation for a_upstream is deferred to a derived class.
a.q_conv = if a_upstream then mdot∗a.h else mdot∗b.h;

end FlowModelBase;

Notice that the specification of the flow direction, a_upstream , and
the mass flow, mdot , is postponed until later. For quasi steady state flow,
the value of the Boolean variable a_upstream should not be based on the
sign of the mass flow because a_upstream and mdot would end up in
a mixed Boolean-Real equation system. Since the calculation of the mass
flow depends on the type of flow equipment used, this additional informa-
tion has to be provided in a derived class. For example, a quasi steady
state flow resistance with a linear expression for pressure losses can be
derived as:

131

Chapter 5. The ThermoFluid Library

model LinearOrifice "linear pressure loss − mass flow correlation"
extends FlowModelBase;

equation
a_upstream = a.p > b.p; //steady state flow
mdot = mdot0/dp0∗(a.p−b.p);

end LinearOrifice;

The mass flow depends on the parameters mdot0, dp0 and the pres-
sure difference over the valve.

The selection of equations that are included in a base class has to be
done very carefully because equations can not be replaced or altered. The
only way to change equations is when the equation is to encapsulate it in
a replaceable component and replace the component.

Class Parameterization Class parameterization is a form of general-
ization due to the restrictions on replacement classes, compare Chapter 3.
Type compatibility enforces the constraining class to be a generalization
of all classes that can be supplied as a replacement class.

As an example for class parameterization in ThermoFluid we take the
FlowModel from Section 5.6. Any flow model needs a loss model for the
frictional pressure drop. In order to make the class FlowModel as gen-
eral as possible, only a generic flow model is specified during base class
implementation.

partial model FlowModel "flow model with generic pressure loss"
replaceable model

PressureLoss = GenericPressureLossModel;
extends PressureLoss;
. . .

end FlowModel;

The GenericPressureLossModel does not have to contain any equa-
tions, but for practical reasons (and as a base class for inheritance in
specialized pressure loss models) it contains the variables that are com-
mon to all pressure loss models.

In specialized classes, the generic pressure loss model is then replaced
by a more adequate model, which contains the equation(s) for computing
the actual pressure loss.

model BlasiusPipe "Pipe using Blasius’ pressure loss correlation"
extends TwoPort;
extends Balances;
extends FlowModel(redeclare PressureLoss = BlasiusPlossModel);

end BlasiusPipe;

132

5.4 Object-Orientation in ThermoFluid

Strictly speaking it is not necessary to use a replaceable base class for
the pressure loss as above, it would be equally possible to use a replace-
able component. In Modelica, this looks as follows:

partial model AlternateFlowModel "replaceable component flow model"
replaceable BlasiusPloss ploss extends GenericPressureLossModel;

end AlternateFlowModel;

In the alternative form of AlternateFlowModel a component ploss of
type BlasiusPloss is declared. Possible replacements are constrained to be
subtypes of GenericPressureLossModel . The functionality is the similar
as in FlowModel , with two differences:

• The AlternateFlowModel has a default class BlasiusPLoss and re-
placement objects are constrained to be type compatible to Generic -
PressureLossModel , the constraining class. The GenericPressure -
LossModel is a partial model , therefore classes using FlowModel
can not be instantiated without redeclaring the pressure loss model.
AlternateFlowModel can be used directly because of an instantiable
default class.

• Variables inside the ploss-component in AlternateFlowModel have
to be accessed by dot-notation, e. g., as in:
ploss.dp = ploss.k*ploss.mdotˆ 2
This makes equations more difficult to read.

The last point, enhanced readability of equations, is one reason to use
replaceable base classes similar to the FlowModel example above. This
example also illustrates that the language means for decomposition and
generalization have some overlap.

Decomposition

Decomposition can be achieved by declaring instances of models in a com-
pound model or through multiple inheritance. Both types of decomposition
are used in the central elements of ThermoFluid, control volumes and flow
models. Composition of compound models from submodels is also called
aggregation. In ThermoFluid this is mainly used as assembly of physical
phenomena into a complete model. In order to demonstrate decomposition
with a larger example, the models for assembling a distributed pipe are
presented.

Model Structure of a pipe A control volume formulation of a pipe
uses all code structuring means described above. It can be decomposed
into the following individual parts:

133

Chapter 5. The ThermoFluid Library

Balance equations take care of all mass- and energy interaction of the
volume.

Thermal state equations use the mass and energy balances to define
dynamic state equations and include a replaceable property model.

A flow model formulates the momentum balance and includes a friction
pressure loss correlation.

Initialization code that defines typical initial conditions.

An heat transfer law. Heat transfer is optional because a simple pipe
is often modeled as adiabatic.

A geometry record. The pipe models in system level models are often
abstractions from more complex flow geometries. The geometry has
to be parameterized in such a way that the simplified model param-
eters can be approximated.

Decomposition makes use of multiple inheritance and composition from
parts. For a pipe model this is illustrated in Figure 5.5. The base class for
all types of pipes is a vectorized sequence of control volume and flow mod-
els which inherits from four base classes. Components are symbolized by
smaller blocks inside the puzzle bits. The darker top level class inherits
from one partial component and adds a geometry parameterization and a
heat transfer law as components. The heat transfer law connects to the
HeatAndMass object via a HeatFlow connector.

These parts are modeled individually using the following classes:

partial model TwoPort "base class for models with two flow interfaces"
parameter Integer nspecies(min=1) "number of chemical components";
Interfaces.FlowA a(nspecies=nspecies) "design−inflow";
Interfaces.FlowB b(nspecies=nspecies) "design−outflow";

end Balances;

partial model TwoPortLumped "mass− and energy balances"
extends TwoPort;
extends ThermoBaseVars(n=1) "variable definitions";
replaceable HeatObject heat(n=1) "heat transfer object";
equation

// contributions to mass− and energy balances
dM_x[1, :] = a.mdot_x + b.mdot_x;
dU[1] = a.q_conv + b.q_conv − p[1]∗der(V[1]) + heat.Q_s[1];
dM[1] = sum(dM_x[1,:]);

. . . // further code omitted
end Balances;

134

5.4 Object-Orientation in ThermoFluid

Initialize

balance

geo

flow

vectorized in variables

thermal

medium

base
classes

generalized
pipe model

co
m

po
se

d
by

finalized
pipe model

geometry
m

ul
tip

le
 in

he
rit

an
ce

S
in

gl
e

in
he

rita
nce

A
dd

 &
 re

pla
ce

 co
mponents

Figure 5.5 Composition of a generalized pipe model in ThermoFluid. The three
bottom levels are composed via multiple inheritance in a control volume class. This
is specialized in a next step to a concrete pipe model, specifying the type of fluid,
geometry and heat transfer mechanism. Initialization can be seen as a mixin class,
defining a part of the behavior more precisely. Initialization of the flow model is
only needed for a dynamic momentum balance.

partial model ThermalModel_xy "state equations for example states x and y"
replaceable model Medium = CommonRecords.StateVariables_xy;

equation
der(x) = A∗dM + B∗dU + C∗der(V); //real coefficients depend on states
der(y) = D∗dM + E∗dU + F∗der(V);
. . . // further code omitted

end ThermalModel_xy;

The state variables x and y are for illustration, the pairs which are actu-
ally implemented are presented in Section 4.5, where also the coefficients
A–F of the state transformation are given.

partial model Initialization_xy "initialization"
parameter Integer n(min=1) "number of cv’s";
SIunits.Pressure[n] p(start=init.p0, fixed=false) "pressure";

initial equation
der(p) = zeros(n);

135

Chapter 5. The ThermoFluid Library

. . . // further code omitted
end Initialization_xy;

The variables that are chosen as states are often known at initial time
and they tend to give well-behaved equation systems. It is convenient to
relate the initialization to the states, but this is not a requirement.

partial model FlowModel
extends TwoPort;
dz∗der(mdot) = dG + (a.p − b.p)∗A − dp∗A;
. . . // the momentum balance

end FlowModel;

and aggregation of these base classes leads to a general description of a
control volume, e. g., a pipe

partial model Pipe_xy "base class of pipe models with states x,y"
extends Balances; // heat transfer connector etc.
extends ThermalModel_xy; // the dynamic states
extends Initialization_xy; // covers typical initial conditions
extends FlowModel; // contains a replaceable pressure loss model

end Pipe;

By the Modelica keyword extends the new model Pipe_xy inherits the
attributes of all base classes. Common parts of the base classes are only
inherited once. The parts which are inherited multiple times have to be
identical, which is important due to the possibility of modifications of
base classes along the inheritance paths. This may lead to the unpractical
consequence that identical modifications have to be applied to several of
the inherited classes in order to render them identical.

Some examples have shown how object-oriented constructs of the Mod-
elica language are applied in ThermoFluid. The constructs are used through-
out the library structure to facilitate code sharing and make the library
more flexible. In Chapter 6 it is investigated in more detail how to apply
Modelica’s language features to the design of model libraries.

5.5 Interfaces

Interfaces between submodels are fundamental in the design of a library.
The choice of the interfaces is a crucial step in the design of a reusable
model library. Some of the requirements for interfaces originate from the
underlying mathematics, others follow from software engineering consid-
erations. For domains which deal with only one type of energy transport
there are widely accepted solutions of interface variables. Usually, this

136

5.5 Interfaces

is a potential or an “across” variable and one flow or “through” variable
whose product gives the power flow at the interface. This solution is the
simplest possible interface which fulfills the requirement that energy is
conserved in the component. Domains which deal with more than one type
of energy or flows based on interacting potentials and with mass transport
have more choices, but the following guidelines can be useful:

• It must be possible to express correct boundary conditions for the
model. This requirement is clear for PDE models but it is equivalent
for ODEs derived from PDEs describing conservation laws.

• Interfaces should in general be as small as possible. They should not
carry more information than necessary. Sometimes this may conflict
with minimizing numerical effort when variables have to be calcu-
lated in two components instead of one.

• interface variables should have good physical interpretations that
are familiar to the user. They can be measured variables and are
often related to boundary conditions.

The guideline to use the across variable with potential character and the
corresponding through variable breaks down for heat conduction when the
last guideline is used. The correct solution according to the principle of
conjugate effort and flow variables, see [Cellier, 1991], for heat conduction
in solids is to use temperature and entropy flow, but engineers are not
familiar with entropy flow and it is not measurable.

For thermo-fluid systems the design of connectors is not as straightfor-
ward as is e. g., for electrical systems. One connector has to carry several
flows and transmit several potentials. A further complication is that the
true physical potentials that are the driving force for a phenomenon, e. g.,
the chemical potential, are often replaced by other, approximative quan-
tities for practical reasons. It is often convenient to use extra variables in
connectors to avoid redundant property calculations. A boundary layer for
mass- or heat transfer can be implemented as a separate submodel and
certain fluid properties are needed within the boundary layer submodel,
but for both coding and computational efficiency it is a disadvantage to
have two identical or overlapping property calculation functions in the
boundary layer and the control volume representing the free stream.

In summary, for thermo-fluid models there are several possible defini-
tions of connectors. The choice in ThermoFluid has proven practical and
in case that more variables need to be communicated between submodels,
this can be handled via definition equations in modifications, see Chap-
ter 3.

The connector for quasi-steady state single- or multi component flows
contains the variables:

137

Chapter 5. The ThermoFluid Library

connector BaseFlow "connector for quasi steady−state flow"
parameter Integer nspecies(min=1);
parameter String MediumType = "unspecified" ;
SIunits.MassFraction mass_x[nspecies];
SIunits.Pressure p;
SIunits.SpecificEnthalpy h;
flow SIunits.MassFlowRate mdot_x[nspecies];
flow SIunits.Power q_conv;
SIunits.Density d;
SIunits.Temperature T;
SIunits.SpecificEntropy s;
SIunits.RatioOfSpecificHeatCapacities kappa;

end BaseFlow;

The quantities are number of components, a string for the fluid type
and the further types are self-explaining and taken from the Model-
ica.SIunits library. The variable set in the Static.BaseFlow connector is
not minimal but it has been chosen in the above way for efficiency rea-
sons. Fluid property calculations are expensive and via including density,
entropy and ratio of specific heats in the connector, fluid property calcu-
lations can be omitted in simple flow models.

In the case of a dynamic momentum balance, the standard flow con-
nector is extended with

connector BaseFlow "connector for dynamic flow"
. . . // up to here identical with the static connector
flow SIunits.MomentumFlux G_norm;
SIunits.MomentumFlux dG;

end BaseFlow;

The momentum flux Gnorm is originally a three dimensional vector which
has been reduced to a scalar due to the one dimensional character of the
library. The variable dG is an approximation of the spatial derivative
of the momentum flux which allows to connect submodels with dynamic
momentum flow without loss of accuracy at the connectors.

The definition of the HeatFlow connector is

connector HeatFlow "discretized heat flow connector"
parameter Integer n;
SIunits.Temperature[n] T;
flow SIunits.Power[n] q;

end HeatFlow;

where n stands for the spatial discretization, T [n] for the temperature
and q[n] for the heat flow.

138

5.5 Interfaces

In the ThermoFluid library it is possible to model chemical reactions in
a reaction subcomponent. The reaction subcomponent uses Modelica flow
semantics for the molar net flows of reactants and products. The reaction
components use the following connector definition:

connector ChemFlow "connector for reaction submodels"
parameter Integer n, nspecies;
parameter String MediumType="unspecified" ;
SIunits.Temperature[n] T "temperature";
SIunits.Pressure[n] p "pressure";
SIunits.Concentration[n,nspecies] conc "concentration";
flow SIunits.Power[n] q "heat of reaction";
flow SIunits.MolarFlowRate[n,nspecies] rZ "product + reactant flows";

end ChemFlow

The variables in the ChemFlow connector are discretization number n,
number of components nspecies, the fluid type, temperature, pressure,
concentrations of the components, component specific enthalpies, molar
flow rates and heat generation from the heat of reaction. In the standard
ThermoFluid implementation, the heat of formation of the reaction is taken
care of by including it in the specific enthalpy so that the heat flow q = 0.
Under some circumstances, e. g., when reactions take place in a porous
catalytic layer, it may be better to treat the heat of reaction separately.
For those cases, q is included in the ChemFlow connector.

A connector for mass diffusion for semi-permeable membranes is de-
fined similarly, here the partial pressures of the components are the po-
tential variables causing the diffusion mass flow.

connector DiffusionFlow "connector for membrane diffusion"
parameter Integer n, nspecies;
parameter String MediumType="unspecified" ;
SIunits.Temperature[n] T "temperature";
SIunits.SpecificEnthalpy[n] dHMx "change of enthalpy";
SIunits.Pressure[n,nspecies] pp "partial pressures" ;
flow SIunits.MassFlowRate[n,nspecies] rM "diffusion mass flow";
flow SIunits.Power[n] q "heat flow through membrane";

end DiffusionFlow

Apart from the basic connectors it is useful to provide shell models
for typical configurations of connectors, e. g., two BaseFlow connectors
and a HeatFlow connector for a control volume with heat transfer. All
standard connectors configurations composed from the basic connectors
above for control volumes, pipes, junctions, heat exchangers and reservoirs
are predefined in the Interfaces package.

There is a particular shortcoming in the Dymola user interface that
influences the class structure of ThermoFluid. When multiple inheritance

139

Chapter 5. The ThermoFluid Library

is used, only the graphics contained in the first inherited class are used
in the user interface. This means that care has to be taken to make sure
that all connectors and the model icon are defined in the first class in
declaration order.

5.6 Base Models

The sub-library BaseModels is by far the largest and most important
part of the ThermoFluid library. Base models are models of physical phe-
nomena which form a clear conceptual unit but can not be simulated
by themselves. A base model is the smallest unit of reuse in the Ther-
moFluid library. The implementation parts of different base models have
no overlap, but they often use identical or largely overlapping sets of vari-
able declarations. This is a technique to apply multiple inheritance in the
composition of models in a straightforward way.

Model developers that want to build new application libraries on top
of ThermoFluid have to understand the content and structure of the base
models. This section together with the description of how to assemble
control volume models in Section 5.7 should give a model developer all in-
formation required to build special purpose models while reusing existing
code.

The simpler parts of BaseModels are:

• CommonRecords collects sets of variables which are used by more
than one base class. Base classes with wisely selected sets of common
variables makes it easy to use type compatibility for replaceable
classes,

• The package CommonFunctions provides utility functions for ther-
modynamic models.

• Package InitialConditions defines standard cases for the specifica-
tion of initial conditions.

• ThermoFluidInitLimits sets reasonable defaults of nominal, mini-
mum and maximum values for all variable types used in the Ther-
moFluid library. These may have to be overridden in derived classes.

These models are largely self-explanatory and don’t need to be described
in detail.

Balance Equations

The submodels for the balance equations take all contributions to the
mass- energy and momentum balances for a control volume into account.

140

5.6 Base Models

This is a straightforward exercise, but the design has to be done carefully
to be flexible for later additions to the model. The basic responsibility of
the balance submodel is to add the contributions from the BaseFlow con-
nectors to the balance equations. It would be possible to vectorize all Flow
and HeatFlow connectors and make one balance submodel for almost all
connector configurations, but this does not work well for graphical com-
ponent usage. Each connector which is used for graphical model composi-
tion in a user interface needs a distinct position in the component layout.
For the case of the BaseFlow connectors, all common configurations are
therefore provided in the Balance sub-library. The important cases for
graphical layout are TwoPort and ThreePort . To use the same solution
for all possible combinations of heat transfer, reactions and membrane
diffusion connectors would lead to a huge number of classes that could
never cover all cases. The basic flow classes contain instead a component
which allows addition of transfer phenomena and interfaces later, as an
add-on.

The basic balance equation of a control volume with two connectors is
implemented as

dM_x = a.mdot_x + b.mdot_x + rM;
dU = a.q_conv + b.q_conv + Q_s;

This means that rM and Qs , corresponding to the source terms in (4.5)
and (4.20) should be unspecified in the general base class, and specified
at a later stage when the balance class is reused in the model of a specific
component. When there are no reactions or heat interaction with the vol-
ume there is no need for any source terms. In this case the model should
provide a default value of zero production.

In Modelica it is not possible to change an equation after it has been
introduced into the model or “overwrite” it as it is e. g., in the SMILE

language. One way to prepare models for adding user defined heat- or
mass transfer phenomena later is to use the Modelica connect semantics to
add contributions from heat transfer, reaction or diffusion processes that
are added to the default behavior of the control volume. Equations can
not be changed or expanded after they are defined. A special construction
is required to overcome a seemingly contradictory situation: a production
term should be zero by default, but without writing this explicitly into the
model. This contradiction can be solved with unconnected flow connectors:
a flow variable has a zero default value in an unconnected connector, see
Chapter 3. Therefore it is possible to use an object as a gateway to the
balance equations, the HeatAndMass -object. Heat and mass transfer laws
can be added as components to derived classes or the connectors in the
HeatAndMass -object can be connected to additional outside connectors

141

Chapter 5. The ThermoFluid Library

Equilibrium Reaction

Kinetic Reaction

Heat and Mass Object

Heat TransferHeat Transfer

Heat Transfer

Figure 5.6 Schematic of the HeatAndMassObject with heat interaction and re-
action objects (no diffusion and work connectors present).

directly.
In the reaction objects, the mass flows have to be calculated with the

signs such that reactants flow into the reaction object and products flow
back into the control volume. Because mass flows are flow-type variables,
the sum of these flows at the connector is 0. Therefore, products are com-
puted with a negative sign in the reaction object, resulting in a positive
flow into the control volume.

Medium Property Routines

For simulation of thermo-hydraulic systems, it is necessary to have accu-
rate models for the thermodynamic properties of the fluid that is flowing
in the system. For the purpose of dynamic system simulation, the follow-
ing criteria have to be met:

• Accuracy
• Speed
• Robustness

In some areas there exist recommended formulations (IAPWS/IF97 for
water, [Wagner and Kruse, 1998]) or de facto standards (NIST-REFPROP
routines for refrigerants, [McLinden et al., 1998]) that define the state of

142

5.6 Base Models

the art and are expected by users. For process engineering, interfaces to
property database systems are indispensable for getting access to prop-
erties of commonly used substances. External function call interfaces in
Modelica make it possible to use external property databases via simple
wrapper functions. Available routines and most medium property models
in the literature (see, e. g., [Reid et al., 1987]) are designed with station-
ary calculations in mind, therefore they have to be extended to include
some needed extra derivatives for dynamic calculations.

Proper adaptation of property calculations to dynamic simulation can
help to speed up simulations a lot. Whenever possible the medium prop-
erties should be non-iterative, which is the case when they are explicit
functions of the dynamic states. This is easy to achieve for the steam
tables, where the industrial standard formulation, IAPWS-IF97, has ex-
plicit routines for a variety of input variables (pressure and temperature,
enthalpy or entropy). The complete industrial steam tables with many
special adaptations for fast dynamic simulation are implemented in the
ThermoFluid library. Inverse functions and high accuracy approximations
to the phase boundary are exclusively available for water and steam prop-
erties.

Two Phase Properties Huge amounts of computation time can be
saved by pre-computing the phase boundaries off-line and use an auxil-
iary equation for it. Vapor-liquid equilibrium calculations (VLE) for cubic
and other medium models have to be performed iteratively and numeri-
cally, either by using Maxwell’s criterium or by calculating the condition
that Gibbs’ free energy is equal for both phases. Performing such calcu-
lation at each step of the simulation leads to very large simulation time.
In order to calculate medium properties inside the two-phase region, it
is for non-transient states sufficient to know the properties on the phase
boundaries and interpolate with the vapor mass fraction x. An efficient
implementation of medium properties for pure components requires that
VLE are calculated before the simulation and that VLE data is approxi-
mated either with a suitable function or with smooth spline interpolation.
For the media listed above, high accuracy approximations are either avail-
able in the standard formulation (e. g., partially for water and CO2) or
provided in the base library.

The phase boundaries require special attention: the derivatives of most
properties are discontinuous across the phase transition, as illustrated in
Figure 5.7. A change of the phase of fluids in a control volume has there-
fore to be implemented as a discrete variable which restarts the integra-
tion routine. This is a requirement for robustness and efficiency in most
normal cases, but it can lead to unexpected “sliding mode” behavior. Con-
tinuously differentiable trajectories of the enthalpies in a control volume

143

Chapter 5. The ThermoFluid Library

0.0001

0.001

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

P
ar

tia
l D

er
iv

at
iv

e
∂ρ

/∂
h p

 in
 k

g2 /J
m

3

Enthalpy in kJ/kg

∂ρ/∂hp at 1 bar
∂ρ/∂hp at 10 bar
∂ρ/∂hp at 50 bar

∂ρ/∂hp at 100 bar
∂ρ/∂hp at 200 bar
∂ρ/∂hp at 250 bar

Figure 5.7 Partial derivative Vρ
Vh

∣∣∣
p

of water.

may lead to density changes with a discontinuous derivative. The density
influences several terms in the momentum balance such that the mass
flow changes with a phase change. The result is that phase changes may
lead to chattering of the phase, as discussed in Section 2.1. The chattering
is an artefact from the spatial discretization of the momentum balance.
There are two ways to avoid this problem:

• Modify the momentum balance so that no spatial derivatives are
taken over the phase boundary. This requires that the phase bound-
ary is identified and that the grid is adjusted accordingly. This works
well as has been demonstrated in [Heusser, 1996], but the model be-
comes quite complex.

• Modify the property calculations to be continuously differentiable
across the phase boundary. This can be used for all fluid types, but
results in non-linearities with very steep gradients.

Either of these solutions would be valuable additions to improve the ro-
bustness of ThermoFluid for two phase flows.

Ideal Gases The data and basic formulas for the implementation of
ideal gas properties have been taken from [Gordon and McBride, 1994].
The properties are specifically designed for high temperature applications
like combustion. All gas properties can be computed from polynomial-like

144

5.6 Base Models

functions with some rational and logarithmic terms for the specific en-
thalpy h, specific entropy s and specific heat capacity cp. The temperature
range of the polynomials is split into two intervals, one for the temper-
ature range 200 K – 1000 K and the next from 1000 K to 6000 K. The
functions have the following form:

h(T) = RT

(
− a1

T2 + a2
log(T)

T
+

7∑
i=3

ai
Ti−3

i− 2
+ b1

T

)

s(T) = R

(
− a1

2T2 −
a2

T
+ a3 log(T) +

7∑
i=4

ai
Ti−3

i− 3
+ b2

)

cp(T) = R

(
7∑

i=1

aiTi−3

)

The coefficients ai and bi are given in [Gordon and McBride, 1994] for each
temperature interval. The functions are continously differentiable at the
matching point of 1000 K2. Reference enthalpy at ISO standard conditions
of 25 ○C and enthalpy of formation are also included in the data. The
specific enthalpy and entropy are obtained by integrating the specific heat
capacity, using the formulas given in (4.29). The enthalpy of formation is
included with the latent specific enthalpy because this simplifies modeling
of equilibrium reactions considerably, see [Pantelides, 2000]. The ideal gas
properties are much simpler than the multi-parameter equations of state.
Therefore they are implemented as equations, not as functions. This has
considerable advantages if symbolic manipulation of the formulas has to
be applied.

Implementation Notes Almost all high accuracy pure fluid property
calculations are based on dimensionless forms of the fundamental Helm-
holtz or Gibbs energy. The reason for this is that the primary variables
of these formulations are most easily accessible through measurements,
see details in [Span, 2000]. The necessary computational steps for trans-
forming the fundamental equation into the needed properties follow a
fixed scheme. The property calculations in ThermoFluid follow this scheme
which makes it straightforward to add new properties with little effort.
The steps are:

• Compute the fundamental equation3 (FEQ) together with its first
2The original report contains data for many more substances which have not been im-

plemented. The parameterization for some fluids in the data is different from the format
presented here.

3The functional forms of the fundamental equations are rather complicated. They are not
repeated here, but references to their original publication are given below.

145

Chapter 5. The ThermoFluid Library

two derivatives into both directions, including the mixed derivative,
and return all values in a record.

• From the fundamental equation and the normalization constants,
all needed properties can be calculated using transformation rules
using functional determinants, as described in Appendix B.

Both steps are implemented as functions for all properties needed in Ther-
moFluid models. When the fundamental equations have the same param-
eter structure, as is the case for many refrigerants, the same FEQ serves
for many fluids.

From a user point of view it would be nice to hide implementation
details like e. g., the type of the FEQ with the help of another abstraction
layer. For water and steam a high level interface is implemented which
hides the messy details of the IAPWS/IF97 and simply provides properties
for standard modeling cases.

Currently high-accuracy medium models are implemented for the whole
fluid region for water [Wagner and Kruse, 1998], carbon dioxide [Span
and Wagner, 1996] and R134a [Tillner-Roth and Baehr, 1994]. More re-
frigerant properties will soon be available. Modelica language support
for computations using structured data and nested function calls pass-
ing large amounts of data has improved since the first implementation
of the medium properties. In Modelica 2.0, some parts of the property
calculations could be done more elegantly and more generally.

To summarize, the medium properties that are provided with this li-
brary:

• are adapted for use with dynamic simulations.
• use non-iterative, auxiliary equations for the calculation of VLE.
• are highly accurate for water, CO2 and R134a.
• include ideal gas properties for a wide variety of gases.

Flow Models

Flow models are base classes for all equipment that is modeled with neg-
ligible hold-up of mass. Typical examples are valves, orifices, compressors,
turbine stages and pumps. Static and dynamic versions of the momentum
balance for distributed models described in Section 4.3 are also imple-
mented in the FlowModel sub-library.

The FlowModel base classes contain the general parts for these mod-
els, but not those equations that are the central characteristic of a flow
component. One of the fundamental features of the ThermoFluid library
is that it allows bi-directional flow. This may seem odd for components
like pumps and turbines, but a pump may be switched off and have a re-
verse pressure gradient at the start-up of a flow network. In that case the

146

5.6 Base Models

pump acts like an orifice with a very high pressure resistance. Reverse
mass flow in pumps and compressors during surge operation is important
in the analysis of their dynamic behavior. A common base-class can be
used for all of the above components that checks the flow direction and
makes sure that the upstream properties are used. The modeler that uses
the base classes does not have to ensure that mass- and energy balances in
the neighboring control volumes are fulfilled. This is achieved by applying
two rules:

• The upstream value of any property transported with the the flow
e. g., density, is used inside the component.

• The energy flow is calculated from the upstream specific enthalpy
and the change of specific enthalpy in the component.

A practical problem related to bi-directional flow is the question whether
or not a flow reversal has to be handled as a discrete event. This depends
on model parameters and the speed of transients and can therefore not
be fixed once and for all in the library models. Fast gradients in certain
flow networks work better with events because a flow reversal in one
network branch can cause sharp gradients or even discontinuous deriva-
tives in mass- and energy balances of the adjacent control volumes. The
possibility of discontinuous derivatives depends on the type of the spa-
tial discretization scheme used. Currently, upwind- and centered finite
differences are implemented for discretized models. Slow flow reversals
in discretized models are smooth in the derivatives, so that in practice
simulation is faster when events are omitted. In the limiting case of the
PDE, the derivatives are smooth.

Under certain circumstances in network branches with zero flow, events
can lead to chattering, as illustrated in Section 2.1. The library offers both
options via a Boolean variable generateEventForReversal which is set to
false by default.

partial model FlowModel
. . . // declarations omitted

equation
if generateEventForReversal then

dir = if mdot > 0 then 1 else −1; // event is caused
else

dir = noEvent(if mdot > 0 then 1 else −1); // no event occurs
end if;
T = noEvent(if dir > 0 then a.T else b.T); // no further events
d = noEvent(if dir > 0 then a.d else b.d); // generated here
. . . // more equations;

end FlowModel;

Listing 5.1 Flow Model Code.

147

Chapter 5. The ThermoFluid Library

For simple models of turbines and pumps there are also flow models
which allow only one flow direction. They use an assert statement to
make sure that derived models do not calculate a negative mass flow
which violates an assumption of the base class. If a pump component
based on such a base class is switched off during simulation time, the
modeler has to make sure that the variable mdot is positive at all times.

State Variable Transformations

The balance equations collect changes in mass and energy through convec-
tion or other phenomena in the algebraic variables dM (change of mass)
and dU (change of inner energy), but they do not introduce the state
equations which are used by the integrator. The choice of state variables
is a performance question, as discussed in detail in Section 4.6 and is
coupled to the availability of medium property routines. The ThermoFluid
library offers a selection of models with different dynamic states which
should provide a good choice for most practical applications. The deriva-
tions of the different forms of dynamic state variables from the canonical
form of the mass- and energy balance is presented in section 4.5. The in-
terdependence of the property calculations and the dynamic states is re-
flected in the inheritance structure connecting the StateTransformations
and MediumModels sub-libraries: one class from each package and for
each group of state variables inherits from the same base class in the
package CommonRecords . The pairs of classes deal with the same vari-
ables, but the calculation is split into two submodels, see Figure 5.8. The
StateTransformations.Model_xy submodel computes the states x and y
and the MediumModels.Fluid.Model_xy model computes all other needed
fluid properties. Here, x and y are placeholders for possible state vari-
ables like pressure p and temperature T .

It should be pointed out that the coupling of the dynamic states and
the property routines as presented above is not necessary, but it results
in models which are computationally efficient and easy to initialize.

Chemical Reactions

Chemical reactions are implemented as submodels which are connected to
the HeatAndMass -object. This design makes it possible to treat complex
reactions modularly and to combine several reactions in a control volume
graphically. It is also possible to add more complex or less important
reactions later in the modeling process. The reaction object and interfaces
are designed to handle both kinetic and equilibrium reactions even though
equilibrium reactions have not yet been included in the library.

The empirical three-parameter Arrhenius equation (5.1) is the most
popular form of an empirical rate equation. Parameters for this mecha-
nism are tabulated for many reactions in standard chemical engineering

148

5.6 Base Models

ThermalModel
+state variables x, y

MediumModel
 replaceable base class
+Calc_pro(x,y): function

StateTransform
+State_equations(pro,x,y): equation

ControlVolume

PropertyRecord
+d: SIunits.Density
+T: SIunits.Temperature

 1

Figure 5.8 Inheritance structure of the Medium and StateTransform models.

handbooks.
k(T) = ATbe−EA/RuT (5.1)

The parameters A, b and EA are vectorized with the number of reactions
nr as lengths. Note in the code in Listing 29 that the BaseObject does
not make any assumption about the reaction rate reacRate , only the gen-
eral relation between reaction rate, stoichiometry and overall component
generation rate is included. The special case of the Arrhenius reaction is
implemented in a derived class.

package Reactions
import Modelica.SIunits;
partial model BaseObject "base class for all dynamic reactions"

parameter Integer n, nc, nr;
SIunits.MolarReactionRate[n,nr] reacRate;
parameter SIunits.SpecificEnthalpy[nc] compHf;
parameter StoichiometricNumber[nr,nc] stoich=zeros(nr,nc);

equation
for i in 1:n loop // per component reaction rates

r.rZ[i ,:] = transpose(stoich)∗reacRate[i ,:]; // rZi =
∑nr

j=1 ν i j r j

end for;
end BaseObject;
partial model Basic "Simple Arrhenius reaction"

extends BaseObject;
parameter CommonRecords.Rate[nr] A0;
parameter Real[nr] b;

149

Chapter 5. The ThermoFluid Library

parameter SIunits.MolarInternalEnergy[nr] Ea;
Concentration[n,nc] conc;

equation
for i in 1:n loop

for j in 1:nr loop
rateK[i, j] = A0[j]∗r.T[i]^b[j]∗exp(−Ea[j]/R/r.T[i]); // A0, j Tb

i e−
Eaj
RTi

concC[i, j] = product(conc[i,rIndex[j ,:]]);
reacRate[i ,:] = rateK[i, j]∗concC[i, j];

end for;
end for;

end Basic;
end Reactions;

Listing 5.2 The Reactions Package.

The example of a hydrogen–oxygen combustion in Section 5.9 demon-
strates how the base class is used to model a specific reaction mechanism.

Constitutive Equations

The constitutive equations are empirical relations like heat flow and pres-
sure drop correlations and characteristics of machinery. They are typically
formulated as characteristic equations for individual components, often
algebraic equations but they can also be differential equations. These
constitutive equations should be replaceable or left unspecified in a
base class, in order to have a general model of a component that can
be used in different situations. Exchanging the model for the character-
istics or adding the missing equation in a derived model completes the
model. From the point of view of high reusability of library components,
constitutive equations are difficult to organize for several reasons:

• There is a large number of empirical equations and often two equa-
tions for the same phenomenon are based on different sets of mea-
sured input variables. Implementation of the practical part of the
published equations is a huge effort.

• Constitutive equations are rather small units for reusable objects.
Heat transfer equations e. g., compute the Nusselt number Nu from
geometric and thermodynamic variables. In Modelica, replaceable
function is a construct that is well suited for small, reusable units
of behavior, but functions have disadvantages as discussed in Chap-
ter 3. A replaceable component can be used instead. Both solutions
require more implementation overhead than seems appropriate at
first sight.

• Some equations are published as graphical maps or data tables for
interpolation. A flexible solution has to be open for completely dif-
ferent implementations for one equation type.

150

5.7 Partial Components

It is clear that a model library can not contain all desirable equa-
tions. Not many equations are actually implemented in ThermoFluid, but
the most important pressure drop equations are available. Pressure drop
and heat transfer equations are implemented as replaceable compo-
nents. For them it would be an enormous improvement in the ease-of-use
if Modelica tools would implement the choices annotation, described in
Chapter 3. The code for pressure drops and heat transfer laws for a pipe
model from the ThermoFluid-library is illustrated in the following listing.

model PipeDS "Distributed base pipe model"
extends ControlVolumes.Volume2PortDS_ph(

. . . // some modifications omitted
redeclare model PressureLoss = PressureDrop.PressureLossD

(dp0=char.dp0, mdot0=char.mdot0));
replaceable TransferLaws.Basic HeatRes
(n=n,Aheatloss=geo.Aheat) extends TransferLaws.Ideal

. . . // further code omitted
equation

connect(q,heat.q);
connect(q,HeatRes.qb);
connect(qa,HeatRes.qa);

end PipeDS;

Listing 5.3 Pressure Loss and Heat Transfer Models in a Pipe.

The pipe model inherits from a general distributed control volume. The
PressureLoss model that has been declared in the base class is exchanged
with a more suitable one via the redeclare command. A replaceable
heat transfer law is added to the model. The replaceable heat transfer
law is declared and connected to HeatAndMass - object via a heat flow
connector q . The code shows also how to propagate parameters into sub-
components.

5.7 Partial Components

Partial components are models which are almost complete for use in sim-
ulation, but some details of the behavior need to be specified by the user
in order to make the model complete and well-defined. Partially defined
models are a logical consequence of using inheritance and collecting com-
mon behavioral parts of a group of similar models in a superclass. The
Modelica language and object oriented design supply a rich repertoire of
possibilities to define an almost complete model. Common means to leave
parts of the model unspecified are:

151

Chapter 5. The ThermoFluid Library

pipe

Heat exchanger
shell side

Plug flow
reactor

Long adiabatic

Discretized
Control
Volume

Figure 5.9 Selection of partial models as base classes.

• A model without default values for structural parameters. Structural
parameters have an influence on the number of equations or the
structure of the equation system, they have to be assigned a value
before the model is compiled. The assignment of values to structural
parameters is a requirement if the equation system is manipulated
symbolically before compilation.

• Incomplete models simply do not implement all equations that are
needed for a complete model. This is the most common way of cre-
ating partial models. For the convenience of the model developers
that have to fill in the gaps, the model should contain as much of
the final model as possible.

• A model with replaceable components or class parameters where the
default class of the component or class parameter is a partial model.
Before the class can be used, the default has to be redeclared to a
model which is complete.

• Combinations of the above are also partial models.

Mathematical modeling of systems offers an incredibly broad spectrum
of possibilities for modeling the same system in different ways. Nonethe-
less, there are some basic properties of the system that all dynamic models
should include. Using a control volume as an example it is obvious that
most models of technical equipment that contain a fluid have to fulfill a
mass and an energy balance. On the other hand, there is an rich diver-
sity of physical properties and heat transfer equations that can be used
together with that model. Consequently, a partial control volume that does

152

5.7 Partial Components

either not define the variable parts or declares replaceable placeholders,
is a model that has a high likelihood of being reused. The main idea is
thus to define partial models at branching points where as much com-
mon behavior as possible is included in the model, but parts which would
exclude a group of other models to use the same code should not be in-
cluded see Figure 5.9. There are many ways to define such classes, but
with modeling experience in an application domain it is not difficult to
select common features for partial models.

The packages for partial models in PartialComponents are:

• Package ControlVolumes includes lumped and distributed control
volume models. Missing or replaceable parts are a geometry pa-
rameterization, a physical property model, pressure loss and heat
transfer models.

• ThreePorts are lumped control volumes with three BaseFlow con-
nectors which are mainly used for flow junctions or splitters. The
unspecified parts are the same as for control volumes.

• Package Reservoirs implements thermodynamic reservoirs. They
do not include property calculations. Including a property model in
reservoirs is strictly speaking not necessary, but it simplifies the
parameterization for model users.

• Package Turbines provides turbine stage models that usually need
further assembly, see Section 5.8, and do not implement equations
for the efficiency.

• Package Pumps includes base classes for simple pumps and inter-
faces for controlling them. Missing details are pump characteristics
and fluid property calculations.

• Compressors have some base classes for compressors. The com-
pressor package needs more work for a practical implementation of
base classes for compressors.

• Package Valves contains base classes for isentropic and isenthalpic
throttles. Medium specific isentropic enthalpies are unspecified.

• Package Sensors implements common code for sensor models, ex-
cluding the characteristic behavior of specific sensor types e. g., the
typical first order dynamics of thermocouples.

The emphasis of the ThermoFluid library has been on the dynamic be-
havior of fluids. Most of the work has been spent on all types of control vol-
umes, while the models for equipment have been kept simple. The partial
components for flow equipment, e. g., pumps, compressors and turbines,

153

Chapter 5. The ThermoFluid Library

��
��
��
���

PPPPPPPPP

Figure 5.10 Example system using a heat exchanger consisting of two pipes, a
wall and 4 connectors. In order to simulate it, all flow connectors are connected to
reservoirs as boundary conditions.

cover only a fraction of the models that would be useful for a comprehen-
sive process engineering or power plant modeling library. ThermoFluid
contains standard cases for simple models which cover the basic needs for
system models.

5.8 Component Models

The aim of the development of the ThermoFluid-library was not a pol-
ished component library for a small application field, but to create a basic
reusable structure for a broad range of applications. The existing libraries
in Components have been implemented for demonstration purposes and
to demonstrate how code reuse based on partial models can be used in
practice. This section presents some of these components and modeling
guidelines for their assembly.

Heat exchangers

Heat exchangers are modeled using base components from the library.
Real heat exchangers can have complex geometries and flow patterns,
but for system simulation they can be approximated well with one pipe
each for the cold and hot fluid and a wall in-between. All of these parts can
be modeled with a variety of details, but the overall structure is always
similar to Figure 5.10.

Heat exchangers can either be lumped or distributed. In the distributed
case the heat transfer model uses a simple temperature difference be-

154

5.8 Component Models

tween the individual elements of the distributed pipes. The lumped case
is either based on this simple model or uses the logarithmic mean tem-
perature.

A different approach to heat exchanger modeling that elegantly and
efficiently uses advanced object-oriented modeling constructs has been
presented in [Mattsson, 1997]. The heat exchanger is cut into discrete
slices perpendicular to the axis of both flow channels (which are assumed
to be in parallel). An array of such slices is modeled as an array of com-
ponents in Modelica. An instance of the heat exchanger can be initialized
with the number of slices as a parameter which gives the discretization
of the heat exchanger. The authors of ThermoFluid feel however that the
approach of building up a heat exchanger from the physical components
hot side, cold side and wall gives more flexibility and better reuse in a
library which uses these components also in other models.

Reservoirs

Reservoirs are used to add boundary conditions to other components or
systems of components. Two types of boundary conditions have to be spec-
ified: either the flows of mass, energy and momentum or the potentials
given by the thermodynamic state. The reservoirs provide boundary con-
ditions in accordance with these two types:

• either the thermodynamic state, using any of the combinations of
variables listed in Section 4.6. These models are called reservoirs.

• A model computing the flows of mass, energy and momentum at the
boundary. These models are called sources.

The latter boundary condition can be realized using a reservoir defining
the thermodynamic state connected to a simple orifice model. The advan-
tage of that way of specifying flow boundary conditions is that the steady
state pressure has to be in the interval defined by the boundary reser-
voirs. The second type of reservoirs connects to the HeatFlow -connectors
and again, either the potential or the flow can be specified. In order to
give a uniform interface to boundary conditions, all variables defining the
boundary conditions can be set via signals, too. For variables like pressure
where discontinuous boundary conditions are non-physical and lead to nu-
merical problems, the input signal is interpreted as the time derivative
of that condition. The sample system in Figure 5.10 contains 2 controlled
sources and 2 sinks. Thermodynamic reservoirs are also called "infinite
reservoirs", because the thermodynamic conditions do not vary over time
as mass and energy leave or enter the reservoir.

155

Chapter 5. The ThermoFluid Library

Flow Splitters- and Junctions

Correct modeling of flow splitters and junctions (from now on referred to
as T-nodes) for reversible flows in all connecting branches is not difficult
conceptually, but there are three different choices of doing it with models
from the ThermoFluid library which have implications with respect to
numerical robustness and performance. The cases of quasi steady state
and dynamic momentum balance differ significantly because a correct
modeling of the momentum balance in T-nodes requires a two-dimensional
geometry. For quasi steady state flow, the three options are:

A Do not use a dedicated model at all. Instead, simply connect two flow
models to the inflow of a volume in the case of a junction and two to
the outflow in the case of a splitter. This is the preferred procedure
for most cases in system modeling. It works for splitting or joining
an arbitrary number of streams, not only two.

B Use a normal control volume with a small, compressible volume and
three flow connectors, called Volume3Port .

C Use an idealized control volume with 0 volume and without dynamic
states, called Ideal3Port .

Case A is preferable in most cases due to its simplicity. It has only one
slight disadvantage which is the consequence of the ideal mixing assump-
tions in control volumes and only gives noticeable errors for short periods
after flow reversals. For example if a hot liquid is mixed with a cold liquid
and the mixture is discharged into a much colder, perfectly mixed control
volume, then the temperature at the mixing point after a short flow re-
versal is the temperature of the cold control volume. This temperature
can be quite different from the mixing temperature. The same potential
problem occurs in case C.

Case B is the physically most detailed model and is well suited for
mixing of flows. It has one numerical disadvantage: because all other
volumes in a system are usually much larger, the system gets very stiff.
For modeling for control it has the additional disadvantage that it adds
dynamic states to the overall system. Case B should therefore only be
used for detailed modeling of mixing processes.

Case III is the physically most reasonable model when the difference
between in the volume in the T-node and other volumes is large. Numeri-
cally it may be more difficult to solve in some cases because the pressure in
the T-node ends up in a non-linear equation system. The mixing enthalpy
is calculated as:

hmix = ∀ (ṁi > 0)
∑

i hiṁi∑
i ṁi

(5.2)

156

5.8 Component Models

Figure 5.11 Modeling options for T-nodes. Taking advantage of the flow semantics
and omitting explicit models is often the best solution. All three cases handle bi-
directional flows.

This expression could easily be written directly in Modelica, but in the
ThermoFluid library it is assembled symbolically from the equations for
reversible flows in the adjacent flow models. It works for all configura-
tions of inflow and outflow in any of the connected branches, but it fails
numerically if all flows are zero. This can be handled by a simulation
tool in a heuristic manner because the denominator goes to zero at the
same time by checking for this condition and keeping the value from the
previous time step.

T-nodes for dynamic flow are more difficult to model correctly. The
problem is to have data for friction losses for all possible flow configura-
tions. In the ThermoFluid library there are simple models which neglect
the losses in the T-node and add or split the momentum in the same ratio
as the mass flows. This is an adequate model for smoothly shaped T-nodes
near their design flow conditions.

Turbines and Compressors

Multi-stage turbines and compressors are built up from turbine and com-
pressor stage models, as described in Section 4.7 and Section 4.8, and
control volumes between them. As an example, consider the schematic
in Figure 5.12 showing the high pressure stage and first intermediate
pressure stage of a typical steam turbine. There are bleed mass flows to

157

Chapter 5. The ThermoFluid Library

the pre-heaters between the stages. These flow splits are one reason that
makes it numerically advantageous to model the rather small volumes
between the stages as real control volumes. The method of modeling tur-
bines as a series of stage models and control volumes has a long tradition,
see [Traupel, 1977] and [Gašparović and Stapersma, 1973]. It fits natu-
rally into the scheme of flow models and volumes used in ThermoFluid.
There is a numerical difficulty associated with this scheme. Taking (4.6)
for a constant volume, neglecting the enthalpy derivative and normalizing
the variables with their nominal values we get

τ TS
p∗

dt
= ṁ∗

in − ˙m∗
out, τ TS = Vρ

Vp

∣∣∣∣
h

V

Due to the very small volumes between turbine stages, the time constant
τ TS is much smaller than any other time constant in the system and thus
renders the system very stiff. There are two possible remedies:

• set the volumes to zero which eliminates the states and introduces
algebraic variables instead or

• make the volumes larger than they are in order to increase the time
constants, but keep them small enough so that the mass storage
effects in the turbine are still one or two orders of magnitude faster
than the time constants of interest.

pCV 3

h in
p in

min
.

volume 1 volume 2

volume 3

HP − stage

mturbine valve
.

mHP − valve
.

hCV 1

pCV 1

TCV 1

hCV 2

pCV 2

TCV 2

hCV 3

pCV 3

TCV 3

mHP − stage
.

PHP

mstage 1
.

Pstage 1

hCV 3

mpreheat
.

hCV 3
pCV 3

mstage 2
.

Figure 5.12 High- and medium pressure parts of a steam turbo group.

The first remedy might seem more logical at first sight because the
volumes are a lot smaller than other volumes in the system, but due to
the tap-off flows to the pre-heaters and the non-linear turbine mass flow
equations a large and difficult to solve non-linear system of equations

158

5.9 Examples

appears. Large steam turbines may have up to 10 tap-off locations. If all
of them are modeled as massless control volumes, all pressure levels and
mass flows from the condenser via the pre-heaters to the high pressure
end of the boiler are connected in one large non-linear equation system.
Therefore, the method of enlarging the actual volumes is preferable and
has been used successfully, see [Thumm, 1989]. Thumm investigated the
control response to the fastest possible step changes of load demand for
large steam power plants and even in that case the turbine time constants
could be enlarged by up to two orders of magnitude without influencing
the result notably.

The same paradigm of alternating stages and volumes can be used
for large axial compressors. The problematic numerics are actually only
associated to the pressures and mass flows. For low order models it is
therefore possible to only model the pressure in the volumes and simplify
the energy balance to be in steady-state, hout = hin.

5.9 Examples

This section shows some more complete examples of models that use Ther-
moFluid from the examples package. They are the result of small model-
ing projects were written to demonstrate and document the use of base
classes. Not all examples are described in detail, but the complete model
code and documentation is available for download at
http://www.control.lth.se/˜ hubertus/ThermoFluid.

Combustion of Hydrogen

The HeatAndMass -object as a means to include heat and mass transfer
processes and reactions has been described in Section 5.6. An example of
the use is included in the examples package of the ThermoFluid library.
Using the model is straightforward, but to appreciate how it works, under-
standing of the Modelica flow -semantics and the workings of the reaction
object presented in Section 5.6 is required.

The partial model Basic , see Section 5.6 implements the standard
form of the Arrhenius reaction in a general way for a parameterized num-
ber of reactions. The reaction rates are calculated from the Arrhenius
equation in (5.1) using the concentrations and rate parameters. To use
the reaction component, like the kinetic reaction in Figure 5.6, the user
only needs to specify the parameters. The stoichiometry matrix is con-
structed as shown in Table 5.2. The parameters are vectorized with the
number of reactions nr as lengths. A reaction vessel is built by extend-
ing from a control volumes model which includes a replaceable reaction

159

Chapter 5. The ThermoFluid Library

object that defaults to the Arrhenius reaction. All parameters are passed
in a modification. The matrix rIndex is of size nr � norder, number of
reactions times maximum order of any reaction in the model. Each row
in rIndex stands for one reaction, the entries give the indices of the reac-
tant components in the property array. This is clearly an example where
the use of an enumeration data type would render the code more readable.

model ReactionVessel
extends PartialComponents.ControlVolumes.Volume2PortRS_pTM(

nspecies=7,
geo(V=vol),
redeclare model Medium = GasMix,
reaction(n=1,

nspecies=7,
nr=8,
A0={1.2e11,1.8e7,15,460,100,1.5e4,6.4e5,1e5},
b={−1,0,2,1.6,1.6,1,−1,−1},
Ea=1000∗{69,0,32,78,14,72,0,0},
rIndex={{1,5,8},{4,6,8},{2,4,8},{3,5,8},{2,6,8},
{3,4,8},{7,5,5},{7,4,4}},

stoich={{−1,0,0,1,−1,1,0},{1,0,0,−1,1,−1,0},
{0,−1,0,−1,1,1,0},
{0,1,−1,0,−1,1,0},{0,−1,1,0,1,−1,0},
{0,0,−1,−1,0,2,0},
{0,1,0,0,−2,0,0},{1,0,0,−2,0,0,0}}));

end ReactionVessel;

Listing 5.4 Specifying a reaction model via modifications to a base class

To construct models of other types of reactions the reaction BaseObject
can be reused. The customized reaction model needs to add expressions
for the reaction rates, either by adding equations or by calling a rate
function. In this way packages of reactions can be built and reactions can
graphically be added to standard reactor models.

We consider the combustion of hydrogen and oxygen into water. In a
simple setting, see Figure 5.13, the system consists of a reservoir supply-
ing the reactants, a reactor volume and a sink for the product flow. A heat
source is added to provide the heat necessary to ignite the mixture.

The complete set of sub-reactions for this process involves a large num-
ber (> 40) of very fast reactions, see [Turns, 1993]. Here we only consider
the 8 main reactions, involving the components { O2, H2, H2O, O, H,
OH, Ar}. Argon is included as an inert gas. The included reactions are
listed in Table 5.2. The corresponding stoichiometry matrix and reaction
rate parameters have been coded into a Basic reaction object inside the
GasCV reaction vessel.

160

5.9 Examples

Figure 5.13 Schematic of example system with H2–O2 reaction.

The result plots show clearly that the reactions are extremely fast once
they start. They saturate when all H2 is burned and the flow through the
volume reaches steady state. After the initial ignition, a steady inflow
of premixed gases leads to a steady combustion with plenty of surplus
oxygen. The speed of the reactions makes the system very stiff. The whole
simulation shown in Figure 5.14 spans only a few milliseconds.

An Attemperator

The attemperator example demonstrates how to use the ThermoFluid com-
ponents for flue gas and water and steam. Two heat exchangers are built
up which are then combined with an injector and a controller to form
the attemperator unit. The attemperator realizes the temperature con-

H+ O2 → OH+ O

OH+ O → H+ O2

O+ H2 → OH+ H

H2O + H → H2 + OH

H2 + OH → H2O + H

H2O + O → 2 OH

2 H+ Ar → H2 + Ar

2 O+ Ar → O2 + Ar

{ O2 H2 H2O O H OH Ar }

−1 0 0 1 −1 1 0

1 0 0 −1 1 −1 0

0 −1 0 −1 1 1 0

0 1 −1 0 −1 1 0

0 −1 1 0 1 −1 0

0 0 −1 −1 0 2 0

0 1 0 0 −2 0 0

1 0 0 −2 0 0 0

Table 5.2 Reactions included in the H2 O2 reaction system and the corresponding
stoichiometric matrix.

161

Chapter 5. The ThermoFluid Library

0 1 2 3 4 5

x 10
−3

0

0.5

1

Time [s]

M
ol

ef
ra

ct
io

n
[1

]

mole fraction of H2

mole fraction of O2

mole fraction of H20

Figure 5.14 Molar fractions of the principal reactants and products

trol in steam power plants. It uses a ThreePort model for the mixing
of subcooled water and superheated steam. It uses propagation of record
parameter for propagating parameters from the top level into the compo-
nents. This example uses only available components from the ThermoFluid
library.

5.10 ThermoFluid Applications

The ThermoFluid library has reached a state that made it attractive to use
in large scale modeling applications in the summer of 2000. Since then it
has been available for download and to the knowledge of the authors has
been used in the following modeling efforts:

• A steam distribution network in a paper plant, including several
boilers and turbines [Lindstrand, 2002].

• Refrigeration plants, especially with CO2 as the refrigerant [Pfaf-
ferot and Schmitz, 2002].

• Modeling of a steam boiler for dynamic online optimization of load
changes [Franke, 2002].

• Fuel cell systems including the fuel processing steps using natural
gas as a primary fuel.

162

5.10 ThermoFluid Applications

(a) Top Level and Control (b) Internal Structure

Figure 5.15 Schematic of a Steam Power Plant Attemperator with a PID-
Controller.

• Combined heat and power micro turbine systems.

• Distribution of Cl2 and H2 in a large chemical plant.

• Pasteurization by steam injection in food processing plants.

In many cases the use of the library was exactly as intended: the base
classes were used extensively to create a customized model library for a
particular application. Some of the projects got along with the ready-to-
use models in the library, other ones had to add a substantial modeling
effort in order to achieve their goal, but all of them have in common that
all dynamic parts of the model are built by inheriting from the library
classes.

Most of the users of the ThermoFluid library were able to build applica-
tion oriented libraries on top of ThermoFluid in spite of the initially scarce
state of the documentation. The efforts built on top of ThermoFluid had
very different goals and perspectives. They range from feasibility stud-
ies in the form of a masters thesis project to intensive industrial projects
where several man-years of effort were spent on customized libraries.

Feedback from these projects has improved and is continuing to im-
prove the usability of the library. A more widespread acceptance of object

163

Chapter 5. The ThermoFluid Library

oriented modeling using ThermoFluid from the current level would require
three actions:

• Professional level documentation and training for new users.

• Commercial support and consulting services.

• Tools and specialized graphical user interfaces which are better ac-
commodated to non-experts than the current Modelica tools.

Micro Turbine System

A micro turbine system for combined heat and electrical power generation
is an industrial project that recently has been completed at the Swedish
company Turbec AB. The combined heat and power system consists of the
following main parts:

• Gas turbine engine and recuperator

• Electrical generator

• Electrical System

• Exhaust gas heat exchanger

• System for control and supervision

The basic compressor and turbine models were developed in a masters
thesis project [GómezP̃érez, 2001]. These models were later refined and
adapted to the turbine model used at Turbec AB, [Haugwitz, 2002], who
also modeled the control system and used ThermoFluid to model all auxil-
iary system parts and heat exchangers. The exhaust gas heat exchanger is
a gas-water counter-current flow type. It is assembled from library models
for flue gas and water and did not need any user-written code.

One of the main uses of the model is to test control schemes. The model
schematic in Figure 5.16 shows turbine, combustion chamber, recuperator,
exhaust gas exchanger and turbine control system. As usual for turbines
and compressors, a large part of the modeling effort has to be spent on
the steady-state characteristics of the compressor and, to a smaller degree,
the turbine.

In an islanding power configuration, where the micro turbine systems
supplies a small electrical network in a stand-alone manner, the main
goal of the control is to follow load changes as quickly as possible, with-
out compromising the turbines lifetime by allowing turbine outlet tem-
peratures to become too high. The electrical generator connected to the
turbine generates high frequency three-phase AC. The AC is rectified and
then converted to the standard electrical frequency of 50 Hz. This config-
uration makes it possible to use minor variations in the turbine angular

164

5.10 ThermoFluid Applications

Figure 5.16 Schematic of a micro gas turbine system with recuperator and control
system

velocity ω to store energy. This is an important feature, because slower
transients result in lower value of the turbine outlet temperatures. Fig-
ure 5.17 shows the results of a simulation with a serious of pulses to the
demanded electrical power. The turbine outlet temperature is far from
the critical limits and the variations in turbine angular velocity are well
within acceptable limits.

CO2 Refrigeration Cycles

A system simulation of future on-board cooling systems for airliners is
currently developed in an ongoing research project of European Aeronau-
tic Defense and Space Company (EADS) Airbus, Hamburg (Germany)
and the Department of Technical Thermodynamics of the Technical Uni-
versity Hamburg Harburg (TUHH). The aim of the project is a proof
of concept of integrated cooling systems using the rediscovered refriger-
ant CO2. Carbon dioxide was used as a refrigerant until the 1930s, but

165

Chapter 5. The ThermoFluid Library

0 50 100 150 200 250 300 350 400 450 500
600

700

800

900

1000

1100

1200
T

ur
bi

ne
 T

em
pe

ra
tu

re
 [K

] a
nd

 ω
 [r

ps
]

Turbine Temperature
Turbine ω in rps

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Time [s]

P
ow

er
 D

em
an

d
[k

W
]

Power Demand

Figure 5.17 Simulation results from applying demand power pulses to the micro
turbine in an island power operation mode.

was then replaced by synthetical refrigerants that offered lower absolute
pressures which in turn permitted simpler techniques and higher efficien-
cies in conventional vapor compression systems. Due to the high global
warming and ozone depletion potential of synthetical refrigerants, a sub-
stitution of synthetical HCFCs is the aim of current research efforts, see
[Pfafferot and Schmitz, 2002; Pfafferott and Schmitz, 2001].

The temperature and pressure at the critical point of CO2 are 304.13K
and 7.377M Pa. The refrigerant cycle has to be operated transcritically
when the heat rejection takes place at an ambient temperature which is
near or higher than the critical temperature. In aerospace applications,
the heat rejection temperature is low in flight, resulting in a condensating
mode, and high on the ground where the cycle operates transcritically.

The ThermoFluid library contains high accuracy fluid property calcu-
lations for CO2 published in [Span and Wagner, 1996] which are indis-
pensable for detailed numerical studies of refrigeration processes. Unfor-
tunately, the critical point singularity of such fluid property models make
it impossible to use such published standards “as is” for simulations that
pass the critical point, which is the case for transcritical CO2 cycles. Two
alterations to the original formulation help to increase speed and robust-

166

5.10 ThermoFluid Applications

Centralised components

Supply

PipingRemote components

Return

Control

M

device

Air
RAM−

Expansion

Evaporator

Cooling
Medium

Compressor

Receiver

Internal
heat exchanger

Gascooler

Figure 5.18 Schematic of a CO2 refrigeration cycle with distributed cooling loads.
This configuration is used for on-board cooling systems of airplanes. Diagram used
with permission from [Pfafferot and Schmitz, 2002].

ness of such calculations:

• Use of spline approximation to all properties on the phase bound-
ary. These can be made very accurate depending on the number of
interpolation points on the phase boundary. The speed-up obtained
by using splines is substantial because it avoids phase equilibrium
calculations.

• Move the critical point used in the numerical calculations to a slightly
higher temperature (fractions of a Kelvin). This and the use of
splines inside the 2-phase region avoids the singularity. The change
in accuracy is negligible for system simulation and the calculations
are robust because numerical failures at the critical point are avoided.

Pfafferott and co-workers developed a CO2-flow application library on
top of ThermoFluid. They use base classes from ThermoFluid for all dy-
namic model parts. Heat transfer and pressure drop correlations for the
specific types of heat exchanger geometries used in CO2-cycles had to be
developed. The models for evaporator, gas cooler, valves and pipes were
assembled from partial models in the ThermoFluid library. Using the Ther-
moFluid library allowed the developers to concentrate on the application
specific model parts.

Figure 5.19 illustrates that system start-ups can be simulated without
problems. A few seconds after switching on the system, the thermody-

167

Chapter 5. The ThermoFluid Library

200 300 400 500 600
20

30

40

50

60

70

80

90

100

110

120

130

Enthalpy in kJ/kg

P
re

ss
ur

e
in

 b
ar

50kg/m
3

10
0k

g/m
3

20
0k

g/
m

3

30
0k

g/
m

3

40
0k

g/
m

3

50
0k

g/
m

3

60
0k

g/
m

3

70
0k

g/
m

3

80
0k

g/
m

3

90
0k

g/
m

3

10
00

kg
/m

3

30
°C

20
°C

10
°C

0°
C

−
10

°C

17
0°

C
16

0°
C

15
0°

C
14

0°
C

13
0°

C
12

0°
C

11
0°

C
10

0°
C

90
°C

80
°C

70
°C

60
°C

50
°C

40
°C

x=
0.

1

x=
0.

2

x=
0.

3

x=
0.

4

x=
0.

5

x=
0.

6

x=
0.

7

x=
0.

8

x=
0.

9

t = 60 sec.
t = 120 sec.

Initial

Compressor out Gascooler out Internal HX out

Evaporator in
Evaporator out

Compressor in

Figure 5.19 Steady state paths of two operating points of main components of a
CO2 refrigeration cycle after start-up. Diagram used with permission from [Pfafferot
and Schmitz, 2002].

namic state of CO2 crosses the critical point without numerical problems.

Steam Network Modeling

The Swedish company Solvina has used the ThermoFluid-library to de-
velop a simulation model of the steam distribution network of the paper
plant at Iggesund. The existing steam network was improved by adding
two turbines, new control valves and pressure sensors. A new control sys-
tem was also installed. The complete network with several boilers, tur-
bines and a large steam network having four pressure levels was modeled
from existing components in the ThermoFluid-library. The model was used
for two purposes:

• To build an operator training simulator, with LabView as a graphical
user interface that mimics the real control system.

• To find suitable controller parameters for all important control loops
in the steam net.

Both of these tasks contributed to an error-free start-up of the plant and
an equally unproblematic operation since then. None of the simulated
control loops needed tuning during start-up, see [Lindstrand, 2002].

168

5.10 ThermoFluid Applications

65 bar

12 bar

8bar

3bar

65 bar

12 bar

8 bar

3 bar

S
im

p
lific

a
tio

n

fuel

fuel

Boiler

Boiler
G5

G5

G4

G4

Figure 5.20 The steam net control system was extensively simplified with im-
proved dynamic performance using the simulator. Figure courtesy of Solvina AB.

Analysis of the simulated control system revealed that the structure
of the existing control system could be simplified significantly, as shown
in Figure 5.20.

Fuel Cell Systems

Fuel Cell engines for power generation and automotive applications is a
very active area of research and advanced development. Even though fuel
cell technology has been used for many years, e. g., for combined power and

169

Chapter 5. The ThermoFluid Library

water supply for space applications, fuel cells have not yet reached a de-
velopment status which allows them to be used in every-day applications.
The ThermoFluid-library has been used at United Technologies Research
Center, Hartford, CT, to develop dynamic models of fuel cells including
the complex fuel reforming unit. The reformer transforms hydrocarbons
like natural gas or even gasoline to hydrogen and other byproducts. The
hydrogen is used in the fuel cell to generate electric power.

The ThermoFluid library was not designed with fuel cells as a prospec-
tive application, but as a base library it offered models for most of the
phenomena which are relevant for fuel cell modeling. The combination of
the Modelica language, ThermoFluid-library and Dymola simulation envi-
ronment was evaluated against a range of other possible modeling tools
and techniques and was found to best fulfill all requirements of a flexible
base to develop models for a range of different fuel cell products currently
under development. The models are used both by members of the research
department who develop the models of subsystems and libraries and by
engineers at UTC Fuel Cells for development work. The fuel cell system
models are the most complex systems built so far based on the basis of
ThermoFluid. The models are also used for hardware-in-the-loop investi-
gations of control system performance.

5.11 Comparison with Domain Specific Tools

Some examples where the ThermoFluid library has been used for dynamic
modeling of systems were presented in Section 5.10. In all examples there
exist domain specific modeling tools which provide functionality similar
to the combination of Modelica and Dymola. It is interesting to compare
these cases and identify advantages and disadvantages specific to certain
tools.

The discussion will be focused on issues related to model representa-
tion and the support of modeling techniques. One of the important aspects
of Modelica is the fact that it is a standardized language with readable,
declarative model definitions. Many uses of models in research and ad-
vanced development require that the model definitions are readable and
can be adapted as needed. Simulators with black-box models do not have
that property.

One advantage of domain specific tools is that large model libraries
are included which may be sufficient for many applications. Another ad-
vantage of domain specific tools is that they integrate the data and work
flow over different stages of a domain specific plant design. Static design
optimization, plant topology definition, dynamic simulation and possibly
dynamic optimization should use the same model data and work together

170

5.11 Comparison with Domain Specific Tools

seamlessly. Because most of these tools emerged independently and were
integrated later on, the work flow and data consistency across different
tools is much less integrated than software vendors pretend.

The comparison is meant to point out the main features of similar tools
and their differences. A thorough comparison of all the differences would
require more space than given.

gPROMS and ABACUSS II

The acronym gPROMS stands for general PRocess Modeling System. This
program consists of an equation based modeling language and environ-
ments for simulation and optimization. It was originally developed at the
Department of Chemical Engineering at the Imperial College of Science,
Technology and Medicine in London. Later, it was commercialized in the
spin-off company PSE Ltd, Process Systems Engineering. ABACUSS II is
derived from the original gPROMS code with some extensions by one of
the developers of gPROMS. It is still an academic code used for research,
mainly in the area of dynamic optimization of large, combined continuous
and discrete differential-algebraic equation systems.

ABACUSS II and gPROMS are the only simulation environments in
this comparison which are based on a declarative modeling language with
equations. Some properties of simulation environments are closely tied to
the existence of a high-level, abstract model description format that allows
symbolic manipulation of the model before execution.

The following discussion will distinguish between a comparison of lan-
guage features and other features concerning the simulation environment.

Table 5.3 summarizes the important language features of gPROMS
and Modelica. Most of the differences can be attributed to the different
goals of the languages: Modelica was designed as a general purpose multi-
domain language and gPROMS was designed primarily for chemical pro-
cess engineering systems. Other important properties for library design
can not be compared on the language level: Dymola’s Modelica implemen-
tation handles high index problems by automatic index reduction. This
is not the case in gPROMS, but would be possible, as demonstrated by
the ABACUSS II implementation of the same language. The original ver-
sion of gPROMS described in [Barton, 1992] had a keyword INHERIT and
single inheritance as an object-oriented feature. However, no references
to the keyword or the concept occur in recently published material about
gPROMS. Both ABACUSS and gPROMS do not generate code from the
equations, but instead they build up a data-structure in computer memory
which is evaluated when simulating. This results in faster turn-around
times in model change and test cycles, but leads to somewhat longer simu-
lation times. Since gPROMS is interpreted, execution is slow and memory
requirements for the interpreter are high. Both properties are a severe

171

Chapter 5. The ThermoFluid Library

drawback for hardware-in-the-loop simulations.
The first modeling language to include a notation for partial differ-

ential equations in the language was gPROMS. The PDE language ex-
tensions to gPROMS, the types of discretization schemes, geometries and
boundary condition specifications which are currently implemented are
presented in [Oh, 1995]. Integration of language constructs for partial dif-
ferential equations is still under development in Modelica, see [Saldamli
et al., 2002].

ABACUSS II uses almost the same language as gPROMS, but the key-
word SENSITIVITY was added to tag the variables whose sensitivities
have to be calculated. ABACUSS II makes it also possible to use exter-
nal FORTRAN routines. Automatic differentiation techniques are used to
make external routines behave as similar to equations as possible.

Extending from its original purpose, gPROMS has become part of a
suite of tools for modeling, simulation, identification and optimization of
chemical engineering processes. Currently, a graphical user interface for
the system topology is added to the originally text-based modeling envi-

feature Modelica gPROMS

Equations true equations true equations

Connections equations generated
by connect-statements,
using zero-sum equa-
tions for flow variables

connections of streams,
all variables use equal-
ity assignment at the
connect.

Partial differential
equation support

no yes, but only for sim-
ple geometries: cylinder
and cube.

Hybrid models yes yes

Object Orientation yes no

High-level model
parameterization

yes no

Graphical layout is
part of language

yes no

Table 5.3 Comparison of language features between gPROMS and Modelica. The
ABACUSS II language is almost identical to the gPROMS language.

172

5.11 Comparison with Domain Specific Tools

ronment. This is a difficult task because the graphical representation is
not integrated with the modeling language.

ABACUSS II uses other numerical solvers than gPROMS. The solver-
collection is called DAEPACK and offers particular features for paramet-
ric sensitivity analysis and detection of discontinuities, see [Tolsma and
Barton, 1999] and [Tolsma and Barton, 2002]. No graphical modeling en-
vironment is currently available. ABACUSS II is one of the few tools
that integrate automatic differentiation techniques for FORTRAN with
the modeling tool. This is useful in process engineering simulation where
it is common to include legacy FORTRAN codes for parts of the problem.
Many optimization techniques require differentiation of the model and
the focus of ABACUSS II on dynamic optimization makes the automatic
generation of derivatives a valuable asset.

APROS

APROS is a commercial, closed source simulation tool for simulation of
power plants developed by VTT Finland, see [Juslin, 1995]. Large system
providers for power plants also have in-house simulators for these plants
which are used both for process development and for operator training.
APROS is a well known vendor-independent full scale power plant simu-
lator.

APROS has a broad selection of validated models for standard power
plant configurations. Due to its closed black-box structure it does not of-
fer the same flexibility as Modelica based tools. Composing an operator
training simulator for a standard power plant is a straightforward task
with APROS, but the flexibility of the model use that made Dymola and
Modelica attractive for the micro turbine system described in Section 5.10
is lacking. The closed source nature of APROS models makes APROS less
suited for control system analysis and design purposes. Extracting re-
duced order models and systematic model reduction are not possible with
black box modeling tools.

The structure of the APROS models is similar to that of the Ther-
moFluid models: “The primary state variables of the thermal hydraulic
nodes are pressure, enthalpy, and component mass fractions, and for
branches flow velocity. Material property functions are used in calculating
various quantities, such as density and viscosity, according to pressure,
enthalpy and component mass fractions”4.

On the other hand, APROS offers models of different levels of fidelity
for each component, which can be selected on a component level to get
a good compromise between fidelity and simulation speed. APROS has a
communication library to connect the simulator to a distributed control

4information from the APROS web site at http://www.vtt.fi/aut/tau/ala/apros.htm

173

Chapter 5. The ThermoFluid Library

system. This makes it easy to test new or changed control laws against
the simulated plant model. For many simulation applications, APROS
provides good solutions when all required process models are available in
the APROS model library.

FlowMaster 2

FlowMaster 2 is a commercial, closed source simulation environment for
systems with internal flows and heat transfer. It has a graphical user
interface for model composition and a database of commonly used com-
ponents. Analysis modules are chosen from application specific packages,
e. g.,

• Automotive thermal analysis

• Automotive lubrication

• Liquid piping systems

• Gas piping systems

• Aerospace fuel systems

• Air conditioning

The possible application domains of FlowMaster are almost identical to
those of ThermoFluid and Dymola, the difference is the degree of special-
ization of the tools, the scope and philosophy of the model libraries and
the modeling approach. The differences compared to ThermoFluid are very
similar the ones between APROS and Dymola/ThermoFluid.

The main advantage of specialized domain specific tools are:

• Integration of all tools and utilities needed for the usual engineering
tasks in that domain. Equally important is the fact that no unneeded
features of a general purpose tool are cluttering the user interface
and increasing the learning time.

• The existence of comprehensive model libraries for a very specific
domain. A model library for automotive lubrication is much less gen-
eral than ThermoFluid but gives results much quicker than building
a specialized library on top of ThermoFluid.

• Numerical routines which are specifically adapted to a problem do-
main can be more efficient for that problem. APROS can handle
many thousands of states easily while Dymola currently can not.

The main problems with closed source models like in FlowMaster or
APROS are twofold:

174

5.11 Comparison with Domain Specific Tools

• It is impossible to find the details of the model equations. Confidence
in models and simulation results rest on a questionable foundation,
namely the confidence in the tool vendor.

• When no suitable model can be found in the closed, vendor provided
libraries, users usually have to ask for expensive consulting services
from the tool vendor to provide the missing closed-source models.
If the models do not fulfill the expectations, the user ends up in a
vicious circle and will be asked to spend further money on consulting.

In conclusion one might say that a combination of the advantages of
both tools would be the best solution for users: ease of use and model
libraries which are as comprehensive as FlowMaster’s and the level of
insight and flexibility to develop custom models as in Dymola with Mod-
elica. Obviously the ability to write custom models raises the level for
the ease of use for the modeling part. It should however be possible to
make the flow-sheeting and simulation part of a general purpose tool like
Dymola as intuitive to use as of any special purpose tool. In that case it
is probably necessary to have a customizable user interface.

Other Modelica Libraries

The ThermoFluid library can be viewed as a framework of software com-
ponents that are designed to handle certain problem scenarios well. If the
modeling problem in question is outside that range of problems, it may be
much better to design or use a simpler but more specific library than to
add yet another application to an already complex library. ThermoFluid is
made for compressible flows and complete balance equations for mass, en-
ergy and momentum. It is possible to choose between dynamic and static
momentum balances. Problems that deal only with mass flows or energy
flows may be better dealt with using a simpler structure and a more spe-
cialized library. A good example of a specialized library focusing on mass
balances for quasi steady state, incompressible internal flows which are
typical for liquid transport in chemical processes is described in [Fabricius
and Badreddin, 2002]. For incompressible flows it is clearly advantageous
to have a separate library. Modelica has the option to interface different
libraries if the connection is physically reasonable. Even for certain com-
pressible flow problems with a different focus, e. g., no energy balance like
in the hydraulics library [Beater, 2002], a separate library is preferable
to over-extending the application range of ThermoFluid.

There is an unavoidable compromise between a very general library
and a specific one which has to be considered in each particular case:

• A general library will always have extra overhead in terms of addi-
tional parameters, variables or interfaces which are not needed in a
specialized model library.

175

Chapter 5. The ThermoFluid Library

• The generality of a library leads to a higher degree of abstraction
and a more fine-grained model structure that are obstacles to new
or occasional users.

• Specific libraries have limitations in scope. They are not useful for
other or mixed domain applications.

5.12 Summary

In the design of the base library, the concepts of object-oriented modeling
have been used to make the library flexible and easy to use. Generalization
splits a complex problem into subproblems, which are modeled individu-
ally (e. g., balance equations, momentum equations, heat transfer) and
aggregated to build component models. This separation simplifies library
maintenance and promotes flexibility. Model variants can be assembled
more easily. The concept proved particularly useful for a base library that
covers a broad range of applications.

The Modelica language offers standard object-oriented features, such
as composition and inheritance as well as more advanced features like
class parameterization. Using these, the basic properties of thermo-fluid
modeling are embodied in the library models, but they are still kept flexi-
ble and extensible through specialization and class parameterization. The
decomposition of models sometimes makes it difficult to get an overview
over inherited parts of a model. However, the advantages of a more main-
tainable structure and reusable classes outweigh this disadvantage. Read-
ability can be remedied by improved tools for code browsing.

Some further conclusions:

• Ease of use: Taking the user perspective early in the library design
process is important for the final result.

• No overkill: There is a risk of over-structuring using object-oriented
methods. Overview can get lost if the structuring is too fine grained.

• Tool support: Currently no Modelica tool implements a user inter-
face that makes advanced Modelica features like class parameters
available to users that do not master the language well.

• Nomenclature of research field: Use of known symbols is very
important for the usefulness of the library.

It has been demonstrated that it is possible to model complex systems
with the base classes and components implemented in the library. The
modeling and simulation tool Dymola has been used in the design of the

176

5.12 Summary

library. Dymola has a graphical user interface that allows drag and drop
model editing, making the modeling process easier. The library serves well
for the purpose of a base library, but there is much room for extensions
as the projects using ThermoFluid demonstrate.

177

6

Design of Model Libraries

Abstract

This chapter gives some guidelines on structuring object-oriented
model libraries. There are no unique solutions to that problem, but
the idea is to capture key issues and proven solutions in a collec-
tion of Design Patterns which can be applied to other modeling prob-
lems. Design patterns are an attempt to describe “good practice” in a
semi-formal way. Most of the design patterns are applicable to mod-
eling in general, but a few are specific to Modelica or thermo-fluid
systems. Examples using Modelica and the ThermoFluid library are
used throughout the chapter to illustrate the ideas.

6.1 Introduction

Designing a user-extensible model library is different from building mod-
els for one time use. The extensibility is a feature which is not needed to
the same degree in different engineering disciplines. When modeling elec-
trical circuits, the models often consist of a large number of components,
but each component is described by a few well defined mathematical mod-
els, all of which can be made available in an extensive component library.
This means that a user typically composes system models from the library,
but has no need to alter existing models or write new ones. The situation is
different for thermodynamics and process engineering, particularly when
the scope of the models is as broad as with the ThermoFluid library. The
variety of heat- and mass-transfer equations and physical property data
is broad by itself. The number of possible variants grows exponentially
if different combinations of these are taken into account as well. Very
often, modeling requires a problem-specific simplification which does not
hold for other problems. Even a huge component library can not cover
all variants that a modeler needs for routine modeling use. A library for
thermodynamics has to be open for user defined extensions. Designing

178

6.1 Introduction

a user-extensible library in such a way that it is powerful, flexible and
easy to understand is a difficult challenge. Object-oriented decomposition
of engineering system models into subsystem and component models fol-
lows the same decomposition as that of the system itself: the elements
found on the blueprint or plant flow sheet should be library models. This
decomposition has been discussed in [Nilsson, 1993] for process engineer-
ing and in [Mühlthaler, 2000] for thermal power plants. Much more code
reuse can be achieved when the decomposition is continued to the level of
physical phenomena. Library design for reuse at the level of phenomena
is the topic of this chapter. Examples refer to thermo-fluid applications
and cover the same models as ThermoFluid. The conceptual structure is
emphasized instead of the details of the actual implementation1 .

The Design Arch

Maintenance
Level of Detail

Realization

Component verification

calibration and verification
System level Integration, test

Subsystem level integration
and verification

Detailed feature design
and implementation

System requirements
mostly static models

Architectural design &
system functional design

Preliminary feature design
static and dynamic models

static and dynamic models

Product verification
and deployment

Des
ign

Desig
n R

efin
ement

Verification

Integration
C

alibration

Reuse in next p
roduct g

eneration

Sp
ec

ifi
ca

tio
n

mostly dynamic models

R
eu

se
 in

 n
ex

t d
es

ig
n

st
ep

Experience feedback

Figure 6.1 Model reuse along the design arch. The development phases are typical
for a complex, highly developed product like a car. A similar scheme is sometimes
referred to as design-V.

For an engineer, the foremost goal of a system model is to be mathe-
matically correct and to fulfill the requirements in terms of accuracy and
simulation speed. Due to the tedious work necessary to verify and vali-
date models, this is a long term process. This model validation is called
calibration in the automotive industry while the control community refers
to the same process as grey-box parameter identification. Some parame-
ters are always uncertain, so for every new system the user has to check
again if the simulation gives a “good enough” picture of reality. Parameters
have to be adapted to make simulation model output fit to measurement
data. Many engineers focus on validating and calibrating their models
and tend to neglect structuring and reuse issues. Proper code structuring

1A detailed and complete documentation is found at http://www.modelica.org/library.

179

Chapter 6. Design of Model Libraries

has proved to increase programming productivity in software engineering.
The cyclic nature of modeling in the iterative design of technical products
from one generation to the next makes it obvious that reuse will speed
up the modeling process substantially. Looking at Figure 6.1 reveals that
there are two dimensions of reuse:

1. on the same level of detail for the next product generation and

2. along the path of the “Design Arch” in Figure 6.1, spanning different
levels of detail during the same design cycle.

The second dimension of reuse is more difficult to achieve because the
mathematical models and the time scales of interest are often different
for another level of detail of a system model. The granularity of the sys-
tem topology can vary along the path of the design process. It is common
practice to neglect components with little influence on the system dynam-
ics.

The main incentive for the development of model libraries is the cost
savings from code reuse. The estimations for the cost of software devel-
opment vary widely, in a recent report it was claimed that commercial
software goes at a tariff of USD 50 – 200 per line of debugged code. For
validated code in a modeling language, the numbers are probably higher.
This makes it obvious that validated model libraries of industrial rele-
vance are a valuable resource.

6.2 Means for Library Structuring

Code structuring has been discussed from a language perspective in Chap-
ter 3 and with concrete examples from the ThermoFluid library in Chap-
ter 5. Building on those examples, we will now illustrate how the language
tools can be used for model libraries in general. Modeling always offers
several ways to solve a problem, but in spite of the many possibilities, sim-
ilar solutions for the mathematical parts and code structuring are found
repeatedly even if the modeling languages are different. Building on power
plant library modeling in SMILE and the broader scope of ThermoFluid in
Modelica, experiences from designing object-oriented model libraries are
summarized.

The advantages of using libraries is to reuse as much well-tested code
as possible in models. This minimizes the need for extended testing. Val-
idating and calibrating a model is usually the most time consuming part
of the model development process. While there is no way to avoid the
so called calibration which consists of adapting the model parameters to
plant data via systematic or heuristic methods, testing and internal vali-
dation can be substantially reduced when well tested code is reused. For

180

6.2 Means for Library Structuring

simulation of standard problems and plants, it is possible to rely exclu-
sively on tested model components. This greatly increases the trust in
simulation results.

For the ThermoFluid library, two scenarios of reuse in model develop-
ment have been considered:

• Use a partial component and complete the model by filling in the
missing pieces.

• Start from scratch and build up a model using as many base classes
as make sense.

Clearly, using partial components is faster but the partial models may
not be available. Building models from base classes is more flexible, but
takes longer and needs a thorough understanding of all used classes.
When almost complete partial models are used, a developer only needs
to know the interfaces and requirements of the missing parts. Readers
unfamiliar with object-oriented techniques are recommended to take a
look at the glossary in Appendix A in order to get an overview of the
vocabulary.

Encapsulation

Information hiding is an important principle to improve the maintainabil-
ity of programming code. The idea is that all interaction between models
occurs via well-defined interfaces. If this principle is neglected, the inter-
dependence between models is likely to increase. That in turn makes it
more difficult to change the system model and both flexibility and main-
tainability are lost. Encapsulation of operations is also a property which
makes it easier to debug faulty programs.

At first sight this may not seem like such an important issue. Experi-
ence with typical codes for engineering models in industry which evolved
over many years shows that these codes tend to mutate to almost unmain-
tainable spaghetti-code. The main problem in maintainability is undocu-
mented interdependence of different parts of the code, which is difficult to
detect. This makes it impossible to find an evolutionary solution to adapt
the code to new needs. Many companies depend on the functionality of the
code, but when the last of the original developers leaves the company, a
complete re-engineering has to be undertaken. Proper encapsulation tech-
niques make it much more likely that an evolutionary solution simplifies
the transition to new tools and methods.

Encapsulation in equation based modeling is fundamentally differ-
ent from encapsulation in object-oriented programs, where interaction is
mostly based on message passing between objects. All operations and the
data they operate on are encapsulated in objects. In equation based mod-
eling, all components of a system are linked together via a bipartite graph

181

Chapter 6. Design of Model Libraries

that connects variables and equations of the differential algebraic equa-
tion system. This makes it impossible to speak of encapsulation of oper-
ations: an additional equation in one component can be compensated by
adding a variable in another component, if the bipartite graph connecting
variables and equations allows to match them. As an example, consider
a system of a large network of incompressible, internal flow with three
boundary conditions defining the interaction with the environment. Two
types of boundary conditions can be given: either mass flows or pressures.
One of the many possible configurations for boundary conditions is erro-
neous: when all boundary conditions are mass flows, the pressure inside
the network is arbitrary, creating a so called “floating potential” problem.

Thus it is impossible to localize the error to a specific component: any
one of the existing boundary conditions could be exchanged against a
pressure boundary condition, or an additional pressure boundary condi-
tion could be added to remedy the non-physical situation. The equation
system glues all components together in a way that the problem could be
fixed by providing a pressure anywhere in the system2.

This does not mean that attempts to encapsulate components or data
are useless or impossible. Parameters can be encapsulated in models and
access to them can be restricted. Modelica’s main tool to achieve encap-
sulation is to use connectors to couple models. But the main strength of
acausal modeling – that the direction of the information flow is not de-
termined in the model, but is derived from the boundary conditions of a
complete experiment – makes it difficult to debug models. Variables which
are equated in a connection can be calculated in the models on either side
of the connection. Therefore it can be useful to impose certain rules to
make model debugging and system composition simpler. This has been
done in the ThermoFluid library with flow models and control volumes.
Flow models never calculate the fluid properties and always compute the
flow variables in their connectors, similar rules hold for control volumes.

As in many other programming languages, readable and maintainable
program code can not be enforced by the language. Coding style is an im-
portant element to achieve safe, maintainable code, as has been pointed
out by [Summerville, 2000]. Local parameters and variables in a model
can be declared as protected, which means that they can not be accessed
by dot-notation from the outside and not be modified, see Chapter 3. This
restriction makes debugging easier and prohibits misuse of dot-notation
access. Following a design guideline consequently reduces the training
time for new users. The Balance -models in ThermoFluid take care of all

2Assuming the model has the same number of equations and variables, it has to contain
one additional equation for a mass flow as well. It is equally difficult to localize this additional
equation.

182

6.2 Means for Library Structuring

interaction of a control volume with its environment. It is important that
no other functionality is implemented there, this would make it more dif-
ficult to get an understanding of the role of each model class. Due to the
acausal nature of equations it is impossible to enforce encapsulation of
equations in partial components for a library developer who provides par-
tial models. A complement that makes model usage easier is to postulate
rules for partial library models and document them extensively.

Inheritance and Aggregation

Inheritance is one of the main tools for achieving reuse both in object-
oriented software development and modeling. BInheritance3 ensures that
code which is common to several models only appears at one place in the
source code, meaning that it only needs to be documented once and main-
tained once in case of changes. But overuse of inheritance has a few draw-
backs. Experience with the design of both software systems and model
libraries has shown that the total number of classes in overly structured
libraries becomes large. Understanding is difficult and a long learning
time is the consequence. Large libraries can not be avoided for complex
systems and a broad application scope, but often the large number of
classes is caused by too extensive use of inheritance. If all variants of a
class of models are derived via inheritance of a base class, many classes
are needed. BAggregation, on the other hand, makes it possible to add
small units of functionality as needed. The difference in complexity be-
comes obvious when combinations of these different units are considered.
This will be demonstrated with an example from the ThermoFluid library.
The problem is to provide base classes for flow models with one inflow
and one outflow e. g., distributed pipe models, but also lumped stirred
tank reactors. We consider four optional phenomena which may or may
not be required in the model:

• heat transfer interaction,

• dissipative work interaction from a stirrer,

• chemical reactions,

• diffusion through a membrane adjacent to the control volume.

Two alternative designs are considered, one which only uses inheritance
and another option which uses both inheritance and aggregation. The
class structure of both alternatives is illustrated in Figure 6.2 and Fig-
ure 6.3. The usage of the resulting library models is slightly different, so
the figures do not cover the same ranges of model behavior.

3First occurrences of important terms defined in the glossary are marked with a triangle
and typeset in Bslanted.

183

Chapter 6. Design of Model Libraries

TwoPort

TwoPortHeatTransfer

TwoPortWork

TwoPortReaction

TwoPortDiffusion

TwoPortHTAndReaction

TwoPortHTAndDiffusion

TwoPortHTAndWork

TwoPortWorkAndDiffusion

TwoPortWorkAndReaction

TwoPortReactionAndDiffusion

TwoPortRAndDAndHeatTransfer

TwoPortRAndDAndHTAndWork

Figure 6.2 Design alternative for TwoPort bases classes using only inheritance.
Not all possible combinations are included. The picture makes it obvious that in-
heritance does not lead to a simple library structure.

Figure 6.2 demonstrates what happens when only single inheritance is
used to provide base classes of many model variants which in principle can
be combined in an arbitrary fashion. In spite of the large number of classes
in the graph, not all possible combinations are present, other combinations
are included even if that particular combination is very unlikely to occur
in practice. For example, a control volume with both dissipative work and
membrane diffusion is very unusual in practice, but from a systematical
point of view it should be part of the class structure. It should be kept in
mind that none of the classes in Figure 6.2 implements any specific heat
transfer or reaction mechanism, they just provide the interfaces.

Figure 6.3 shows the structure of the actual implementation in Ther-
moFluid, see Section 5.4 for more details. It uses a combination of sin-
gle inheritance, aggregation and class parameters to achieve a structure
which is both powerful and simple. Inheritance is used to specialize a
general TwoPort to a TwoPort with heat- and mass transfer interac-
tion. A TwoPort can be used as a base class for models with one inflow
and one outflow, but also for more complex subsystems with one inflow
and one outflow, e. g., a drum boiler composed of several simple models.
TwoPortWithInteraction does not make sense as a base class for a subsys-
tem, but it can be used for control volumes of different types. The instance
of a HeatAndMassInteraction model contained in TwoPortWithInteraction

184

6.2 Means for Library Structuring

is replaceable, so that simple cases (only heat transfer) don’t need to have
parts which complicate matters, like reactions. Because membrane diffu-
sion is the least common type of interaction, the diffusion-connector is not
present in the default case. The example illuminates different features of

TwoPort

TwoPortWithInteraction
+hmi: HeatAndMassInteraction

HeatAndMassInteraction
+heatFlow: connector
+reaction: connector (optional)
+work: connector (optional)
+diffusion: connector (optional)

Replaceable

TwoPortHeatAndReaction
+heatFlow: connector
+sr: SimpleReaction
+connect(heatFlow,hmi.heatFlow)
+connect(sr.reaction,hmi.reaction)

SimpleReaction
+reaction: connector

Replaceable

Figure 6.3 Design alternative for TwoPort bases classes using a combination of
aggregation, inheritance and class parameters. The graphical notation is explained
in Appendix A

.

code reuse using inheritance and aggregation and it also shows that the
border between these cases is floating. Generalizing, it can be claimed
that

• Inheritance fits very well the paradigm of starting with a very gen-
eral model which is then specialized step by step.

• Aggregation is useful to cope with optional features which can occur
in many combinations.

• Class parameters, discussed in more detail in Section 6.2 can help
to keep the simple cases simple while keeping the option for more
complex models.

The usage of multiple inheritance (MI) is haunted by the rumor that
it adds more complexity than benefits. Multiple inheritance always adds
complexity and some possible semantic pitfalls demand more coding disci-
pline. There are however situations when a solution using multiple inher-
itance is simpler than other alternatives. As many tools for code structur-
ing, multiple inheritance has to be used with care. There are also some
fundamental differences between multiple inheritance in programming
languages compared to an equation based modeling language. Repeated
inheritance of the same base class via two inheritance paths, see Fig-
ure 6.4 is problematic in some object-oriented programming languages,

185

Chapter 6. Design of Model Libraries

VariableRecord
+Real a, b, c

Equations_a1
+equation_for_a(a)

Equations_a2
+equation_for_a(a)

Equations_bc1
+equation_for_bc(b,c)

Equations_bc2
+equation_for_bc(b,c)

Variant_1 Variant_2

Variant_4Variant_3

Figure 6.4 Repeated inheritance of the same base class VariableRecord by model
variants one through four. Numerical and other modeling issues can be a reason for
having different implementations of some equations. When several possible imple-
mentations exist and there are good reasons to combine them in a “mix and match”
manner, multiple inheritance gives a compact solution.

but does not pose problems in Modelica. Two issues have to be kept in
mind with MI in Modelica:

• When declarations with identical type and variable name are found
in two base classes, these have to be identical in all components,
including modifications. This is a consequence of merging repeated
declarations into one without preferring any of them.

• Repeated inheritance works only for classes that do not have any
equations (except the definition equations in modifications, which
have to be identical and are merged into one equation), because
including the same equation twice in a model is always a mistake.

Many of the problematic sides of multiple inheritance do not exist in
Modelica due to different semantics, others are easy to avoid. In summary
the reasons for using multiple inheritance in Modelica are:

• Ease of combination of Bpolymorphic implementations. For equa-
tion based modeling this means different equation implementations
for the same set of variables. These might have different ranges of
validity or numerical properties.

• For so called Bmixin classes: behavior which is not always needed
can be added by inheriting from one additional base class.

186

6.2 Means for Library Structuring

• Separate the graphical representation from the implementation. This
can be used to customize graphical plant schematics, recreate the
visual appearance of other simulation programs and similar goals
without affecting the model behavior.

EXAMPLE 1—MULTIPLE INHERITANCE

As an example we compare the use of MI with other design options which
fulfill the same requirements. Alternative designs will be discussed for a
situation similar to Figure 6.4, but with more variants. It is assumed that
three alternatives each exist for four equation parts which all operate on
the same set of twenty variables, giving a total of twelve partial models.
The parts implement different physical features. Some of the features
are optional, some can be implemented in different ways. Each of the
partial models implements a feature with a few equations using a subset
of the common variables. For simplicity it is assumed that all possible
combinations make sense from a modeling point of view, giving a total
of 34 = 81 possible combinations. The following design alternatives are
considered:

Multiple inheritance. With multiple inheritance, twelve base classes
are needed, giving an inheritance structure similar to Figure 6.4.
The more common of the 81 cases can be provided as ready-to-use
models, the others can easily be programmed when needed in a
“some-assembly-required” fashion.

Single inheritance. Providing 81 classes using only single inheritance
results in much redundant code and many classes, so this alternative
can be ruled out.

Component aggregation with connectors. An alternative is to model
the partial behavior in twelve components. If all information propa-
gation between the components uses connectors, six connector types
are needed and overlapping parts of the twenty variables have to be
present in each component. In many cases this gives a lot of over-
head which hinders readability. All interaction between components
is made explicit with connections.

Component aggregation and modifications. Modifications are used
in Modelica to propagate variables from a main model into its com-
ponent models. Interaction between the container model and the
components is achieved via using the propagated variables in equa-
tions. Compared to multiple inheritance, the modification code is
additional overhead.

187

Chapter 6. Design of Model Libraries

The actual design of a similar case in ThermoFluid are the control vol-
ume models which make use of a mix of all four structuring alternatives,
taking advantage of their respective strengths and weaknesses. A few
guidelines can be deduced from the experiences with ThermoFluid:

• It is practical to have optional parts as components because they
can be added later on at any time.

• Multiple inheritance is advantageous for parts with a variety of im-
plementations which can be mixed and matched in many combina-
tions. This means also that multiple inheritance is only used to split
the implementation of complex physical phenomena inside a single
piece of equipment into more manageable parts, but not on the level
of system composition.

• Mix-in behavior is a good case for multiple inheritance. In Ther-
moFluid, the initialization can be regarded as mix-in behavior and
is added to the main model with multiple inheritance.

• System composition is always done by aggregation of engineering
components using connections for the information exchange.

• Model parts which should be encapsulated can be put into a compo-
nent. The component can be part of a model which is then used in
multiple inheritance.

• Single inheritance and specialization of the child class should be
used to finalize a partial model. A control volume class is complete,
but some important high level parameters have to be specified for
the final model: the type of fluid, the geometry, the heat transfer
equation and similar details are defined in a child class using mod-
ifications.

Splitting up the implementation of the equations into different submod-
els does neither contradict nor enhance encapsulation, because the graph
structure of the equation system is largely independent from the compo-
nent structure anyway.

A known problem of multiple inheritance, name clashes and unin-
tentional merging of variables with equal names, is easier to avoid in
Modelica than in traditional programming languages. The Modelica type-
system combined with coding discipline make such errors unlikely: two
variables typed as SIunits.Pressure and Real but both named p will
cause an error. When both variables are of type Real this results in an
unwanted merge of the definitions. When all physical variables make use
of Modelica’s fine-grained typing, such errors are very unlikely to occur.

From a structuring viewpoint, multiple inheritance is closer to aggre-
gation than to single inheritance because it makes it possible to treat

188

6.2 Means for Library Structuring

parts of the model behavior as optional. The parts can then be assembled
as needed. In object-oriented programming this use of multiple inheri-
tance is called “mixin” class. A detailed example of the use of multiple
inheritance and aggregation in ThermoFluid is found in Section 5.4. Simi-
lar structural designs can in principle be achieved with aggregation from
components and multiple inheritance. The difference is the way the parts
interact:

• When model parts are assembled using multiple inheritance, all in-
teraction is implicit in the equations. Interaction is hidden in the
bipartite graph that connects variables and equations. Some of the
variables have to be present in more than one base class.

• For aggregation, there are three options of interaction:

– equations in the container model that access variables in com-
ponent models using dot-notation,

– propagation of variables from the surrounding model to the
components using modifications.

– use of connectors and connections, either between components
or from the surrounding model to a component.

The last option is the most explicit way of interaction. Connectors
result in a lot of overhead for small components with only one or
two equations. Components with dot-notation can make equations
difficult to read.

In Modelica multiple inheritance often increases the readability of the
models because it results in compact code. As [Abelson et al., 1985] put
it: “programs must be written for people to read, and only incidentally for
machines to execute”. This holds equally for modeling languages. A dis-
advantage shared by both methods of aggregation and inheritance is that
it can be difficult to get an overview over the complete set of equations
that form the model. An editor that has the possibility to show the “flat-
tened” code and merges all declarations and equations from base classes
and components would overcome this drawback.

Class Parameters

Mathematical models evolve partially before and partially in parallel to
building prototypes of the real system. This parallelism requires models
which are flexible to quickly answer questions that come up during the
design process. The most important feature to adapt models to changing
needs is flexibility of the model development process. The responsibility

189

Chapter 6. Design of Model Libraries

for achieving this flexibility is shared between the modeling tool, the mod-
eling language and the libraries4. A Modelica feature that promotes flex-
ibility is the concept of generic classes, usually called Btype parameters
or Bclass parameters. Using type parameters, models become polymor-
phic, meaning that they can represent different behavior depending on
the value of the type parameter.

Type parameters are different from aggregation and inheritance be-
cause they do not only provide flexibility during the model development,
but they also keep a model flexible all the way to the model user. A com-
plete model ready for Binstantiation can represent vastly differing behav-
ior depending on the chosen type parameters. This illustrates the close
connection between language issues and tool issues with respect to model
flexibility: a type parameter can select a linear model instead of a non-
linear one, but a tool can equally well automate that process. From a user
perspective it may not make a difference whether the linearized model is
generated by the tool or built into the library.

For model library design, the first task is to identify the model parts
or subsystems which should be kept exchangeable. In the ThermoFluid
library, three types of submodels are kept as replaceable models:

• the fluid property calculation in the Medium type parameter,

• equations for heat transfer and

• friction pressure drop equations

Replaceable functions are a special case of generic classes. They are ap-
proximately equivalent to virtual methods in object-oriented programming
languages. Replaceable functions are useful to keep the implementation of
functional computations with given input-output relations exchangeable.
A good example for a replaceable function is the computation of the isen-
tropic change of enthalpy for turbines, valves, pumps and compressors.
No matter in what equipment it is used, it always takes the inflow specific
entropy and the outflow pressure as input arguments and it returns the
corresponding specific enthalpy.

Type parameters are used in component modifications for propagating
a type into hierarchical submodels in the same way as ordinary parame-
ters are propagated. This is a very powerful feature that makes complete
system models polymorphic. It is also the safest way to make sure that
a type change is introduced consistently at all places where it has to be
introduced. An example is a refrigeration system which can be used with
different types of refrigerant, e. g., R134a and R22. A user can change the
refrigerant type at the system level and the changes are propagated into
all components and subcomponents, as illustrated in Figure 6.5.

4A more detailed look at modeling tools is outside the scope of this thesis.

190

6.3 Design Patterns for Modeling

Capillary Tube

Compressor

RefProps

RefrigerantProperties

Condenser
E

va
po

ra
to

r

q,T

q,T

Environment
C

ab
in

et

Figure 6.5 A refrigeration system is a prototype case where type parameter prop-
agation makes the model very general. The type parameter for the refrigerant type
is propagated down to all levels of the component hierarchy where a fluid property
model is needed.

A requirement for building such systems is that the components or
types which are going to be redeclared have been declared as replaceable
to begin with.

6.3 Design Patterns for Modeling

Software design borrowed the notion of design patterns from architecture:
there it has been in use for a long time to transfer knowledge and proven
solutions to new generations of architects. Design patterns in mathemati-
cal modeling address recurring modeling situations by using a library de-
sign or modeling language idiom that helps to solve that modeling problem
efficiently. The idea is to capture a structuring concept in a catch-phrase
that is easy to remember. A design pattern should be sufficiently abstract
to apply to many different situations, yet concrete enough to make its
application to a particular problem situation obvious. Design patterns for
software have been characterized into three categories: Creational Pat-
terns, Structural Patterns and Behavioral Patterns. Mathematical models
have rich dynamics, but the run-time code structure of dynamic models
is completely static. Creational patterns are not yet implemented for this
type of engineering modeling. Some simulation environments with a focus

191

Chapter 6. Design of Model Libraries

on discrete event systems permit to create and destroy objects with con-
tinuous states during simulation runtime. Usually these are very simple
models with few states which are integrated with their own instance of
an explicit Euler or Runge-Kutta integrators, e. g., a car on a highway
section.

Assuming that the scope and equations of the mathematical models
in the library are clear, the task of library design is to divide the models
into building blocks with well-defined interfaces, similar to Figure 6.6.
Coding guidelines for structuring system models can be classified into
two categories:

• Structural Patterns for code reuse. These can be classified as
physical patterns that abstract physical behavior and topology pat-
terns reflecting system structure.

• Numerical Patterns that make sure that solution methods can
deal with the models as effectively as possible.

The possibilities for design patterns are closely tied to the features of
the modeling language. The existence of equations as independent entities
in the language can be seen as a pattern for modeling. The flow -prefix
in Modelica is a kind of design pattern, derived from a generalization
of Kirchhoff’s law for electrical circuits to all modeling domains where
flows of force, torque, mass etc. follow the same semantics. Consequently,
some of the following patterns are specific to Modelica, but others are
completely independent of the modeling language and apply equally to
FORTRAN subroutines used in a legacy simulator. This holds mostly for
the numerical patterns.

6.4 Structural Design Patterns

In mathematical modeling of systems there are two structures that de-
sign patterns can refer to: the inheritance based class structure and the
mathematical structure of the equation system. The class structure is
responsible for achieving code reuse and the mathematical structure is
important for computational performance. Most people with experience
in mathematical modeling do not at the same time have a background
in software engineering. The software design motivated design patterns
should therefore be suitable for non-programmers and straightforward to
use. The simplicity for the model user is not so much a question of the
complexity of the underlying implementation but of how well the simula-
tion tool wraps the concept into an intuitive user interface. Some of the
following simple patterns are well known since years and used by many

192

6.4 Structural Design Patterns

Figure 6.6 Design patterns: Finding abstractions in a class of technical products
which are useful jigsaw pieces in many contexts.

modelers, but usually patterns which are well known in one engineering
domain are ignored in other domains where they are equally useful.

Unfortunately, many of the design patterns depend both on the expres-
siveness of the modeling language and the capabilities of the modeling
tool. The following design pattern assume Modelica 2.0 as the modeling
language and Dymola as the simulation tool. The patterns are extracted
from the experiences of developing the ThermoFluid library and not meant
to be complete for other engineering domains. Especially the numerical
patterns represent the most common pitfalls for non-experts in simula-
tion. Our experience is that 80 % of the questions and problems arising
from the use of ThermoFluid would have been avoided if all users under-
stood these numerical pitfalls. The remaining 20 of support requests were
caused by “chattering” of discrete modes, an as of yet unsolved problem
of combined continuous and discrete simulation, see Section 2.1.

Physical Patterns

Many attempts have been made to make modeling a more systematic ac-
tivity. All of these attempts emphasize the importance of identifying the
driving forces or potentials and flows. If models are split into submodels
and the connections between these submodels are abstracted to have zero
volume, then the driving forces on both sides of the connection are equal
and the flows are equal in magnitude but opposite in sign. This flow se-
mantics is found in all areas of physical modeling, they have among others
been used in Bond Graphs and the many extensions to Bond Graphs that
try to extend Bond Graphs beyond energy flow, see e. g., [Cellier, 1991]
and [Gawthrop and Smith, 1995]. A recent attempt to develop systematic
rules for physical modeling which can be seen as physical design patterns

193

Chapter 6. Design of Model Libraries

is elaborated in [Weiss and Preisig, 2000].
Flow semantics are not common in other thermo-hydraulic simulation

tools, but using flow semantics makes a significant difference for model
reuse. For the ThermoFluid library it simply means that a 1-to-5 flow
splitter can be realized by attaching 5 flow models to a control volume
model. No extra model is needed and due to the flow semantics the mass
and energy balances are fulfilled.

DESIGN PATTERN 6.1—FLOWCONNECTOR

Use Modelica flow semantics for transport of conserved quantities for all
physical connectors between subsystems. *

EXAMPLE 2—FLOW SEMANTICS

The ThermoFluid library uses flow semantics for three flow types: vector
of component masses, flow of enthalpy and flow of momentum. The usage
of flow semantics makes it in most cases unnecessary to have models for
flow junctions. Splitting a flow into many smaller ones is simply done by
using a one-to-many connection.

Using flow semantics for mass and energy flows avoids errors and reduces
the number of classes needed. It also works for momentum flows for simple
cases, but due to the simplification of the three-dimensional momentum
vector to a scalar, connections with an angle different from 180○C have
to be modeled with a detailed model instead of just connecting the flow
channels.

Topology Patterns

DESIGN PATTERN 6.2—CONNECTORSET

Provide models with typical connector configurations as base classes. Im-
plement the physics inside them in derived classes. *
This design pattern is very basic and has been used in all engineering
Modelica libraries, for example:

• TwoPin is a base class for electrical models such as resistors, ca-
pacitances, diodes and many other models,

• TwoFlanges are base classes to all rotational, one dimensional me-
chanical models with two flanges,

• TwoPorts are the base classes in ThermoFluid with two flow connec-
tors like pipes, valves or pumps.

Similar base classes exist also for other libraries. These base classes are
reused using single or multiple inheritance in the base classes.

194

6.4 Structural Design Patterns

DESIGN PATTERN 6.3—TYPERECORD

Collect the set of variables and record-components that define type com-
patibility in a record class. Classes which belong to this type compatible
set shall inherit from this class. *
TypeRecord is a simple means to ensure type compatibility among a group
of models where a basic, simple model is designed to be replaceable by a
more complex one if needed. The TypeRecord is used as the constraining
class in the declaration of the replaceable component or class.

EXAMPLE 3—TYPE RECORDS

Many classes in the package CommonRecords are designed as TypeRe-
cords: collections of variables that characterize a group of models. The
class StateVariables_ph defines type compatibility for all fluid property
models using pressure p and specific enthalpy h as inputs to the medium
property calculations. The TypeRecord makes it easy for other develop-
ers to write fluid property models which can replace an existing property
model in ThermoFluid without any adapters or interface code. TypeRecord
is a fundamental pattern for polymorphic model implementations in Mod-
elica.

DESIGN PATTERN 6.4—CONSISTENCYMODEL

Collect sets of data, functions and equations that have to stay together
for consistency reasons in one replaceable model. *
This pattern is similar to class design in object-oriented programming.
In mathematical modeling there are also cases where several functions
operate on the same set of data. If these functions should be replaceable,
they should by designed in such a way that it is not possible to replace
parts that render the whole model inconsistent.

EXAMPLE 4—CONSISTENT REDECLARATION

High accuracy property functions consist of a large number of parameters
describing a non-linear thermodynamic surface. Many functions make use
of this data: if e. g., a function for the speed of sound and one for the specific
heat capacity are needed within the same model, the unit of redeclaration
should comprise both the functions and the parameters.

DESIGN PATTERN 6.5—PARAMETERLIFTING

This pattern ensures that consistency constraints between parameters are
enforced when propagating parameters into submodels. *
Geometrical parameters at the interface between two components obvi-
ously have to be consistent in both models. This can be achieved with

195

Chapter 6. Design of Model Libraries

parameters in connectors – an assertion is generated to make sure that
both parameters are identical on both sides of the connect. However, this
would lead to a large number of connectors. A better solution is to make
the container model responsible for consistency of the parameters. This is
best demonstrated with an example.

EXAMPLE 5—PARAMETER PROPAGATION

A heat exchanger in ThermoFluid is composed of a discretized control vol-
ume on the hot side, one on the cold side and a solid wall separating them.
We assume a tube-and-shell configuration with a cylindrical shell and ten
straight tubes. For simplicity, the heat capacity of the outer cylinder is
neglected. The given data is:

component dimension symbol

tube bundle number of tubes N

tube bundle inner diameter di

tube bundle outer diameter do

tube bundle length l

tube bundle density ρ
tube bundle specific heat capacity cp

shell cylinder length L = l

shell cylinder inner diameter Di

The heat capacity of the simplified single tube wall is computed as

C = N l 0.25π (d2
o − d2

i)ρ cp.

The volume of the shell side of the heat exchanger is computed as

Vshell = L(π D2
i − N π d2

o)/4
similar expressions hold for other parameters. This re-parameterization
has to make sure that:

• All low-level parameters are assigned in modifications to avoid pos-
sible sources of errors when setting such values by hand.

• Parameters shared by several components are consistent.

• The top level parameters that a user has to specify are easily acces-
sible from component blueprints.

This may seem to be a trivial issue. However, it is very easy to overlook
such parameter dependencies and it is a common source of errors in com-
ponent based modeling.

196

6.5 Numerical Design Patterns

6.5 Numerical Design Patterns

Numerical design patterns address typical numerical pitfalls when text-
book equations are used in modeling code. There are many books on nu-
merical mathematics, e. g., [Press et al., 1986] and [Hairer and Wanner,
1996], but they usually do not address the numerical problems in sys-
tem simulation. The task of a model library designer is to identify typical
pitfalls in a domain and provide library models that avoid them. For non-
obvious pitfalls the library designer should go as far as to discourage the
user to run into them when building models.

In order to be numerically robust, library models should not contain
code that may cause problems. In practice, this can not be achieved com-
pletely, because many problems are not manifested before a complete
model is assembled. Many of the following problems could automatically
be detected by tools and warnings could be issued

DESIGN PATTERN 6.6—SINGULARITYCHECK

Make sure that functions with singular points or singular derivatives
which are non-physical due to simplifications are regularized properly.

*
Many empirical models return physically meaningless values or have sin-
gularities outside their region of validity. For simple system models it
is often not justified to model the regions in detail, but it increases the
robustness and usefulness of the model if the results are qualitatively cor-
rect and the numerical singularities are taken care of. This is sometimes
a hack for physical models, but often an unavoidable compromise to keep
system models simple. Physical correctness outside the region of validity
of the model is sacrificed as long as the qualitative behavior is still correct
and larger robustness of the model is obtained.

EXAMPLE 6—SQUARE ROOT FUNCTIONS

A notorious problem in modeling of flow resistances is the use of empir-
ical or semi-empirical flow resistance formulas involving the square root
function. An example is a formula derived for turbulent flow with high
Reynolds numbers, for which the behavior is often extrapolated to low flow
speeds when the exact behavior at low speeds is not irrelevant. They trig-
ger a standard problem when Newton-Raphson algorithms are used for
solving non-linear equations. In its simplest form, pressure loss formulas
can be written in the following form:

f (∆p) = ṁ− k sinn(∆p)
√

ρ abs(∆p) = 0 ∆p = p1 − p2

Assume that the ∆p has to be calculated from the above equation, e. g.,
in a zero-volume T-junction, see Section 5.8. Successive approximations

197

Chapter 6. Design of Model Libraries

to the solution of f (∆p) are obtained from the following iteration:

∆pj+1 = ∆pj + f (∆pj)
V f (∆pj)
V∆pj

� ∆pj + f (∆pj)
∆ f (∆pj)
∆(∆pj)

The step sizes of the Newton method depend on the approximated or
analytically computed derivative of f (∆p) with respect to ∆p. For ∆p
close to zero the derivative goes to infinity and the step size goes to zero.
This means that the iteration progresses very slowly. This phenomenon
is sometimes called inflection because it occurs at inflection points of a
curve with an infinite derivative at that point.

The singularity of the pressure drop function near the origin has no
physical significance. Therefore it is perfectly reasonable to replace the
singular formula with an approximation that does not cause numerical
problems. The approximation should of course be correct qualitatively and
it should not influence the system behavior more than necessary. In the
ThermoFluid library, third order polynomials are used in a neighborhood
around zero flow. The polynomial coefficients are chosen such that the
overall function is continuous with continuous derivatives.

EXAMPLE 7—THE LOG-MEAN TEMPERATURE

Another example where a careful implementation is needed is the log-
mean temperature difference, ∆Tlm which has a statically correct behavior
for heat transfer in heat exchangers. This means that heat transfer is
calculated based on:

∆Tlm = ∆T1 − ∆T2

ln(∆T1/∆T2)
where ∆T1 is the temperature difference at one end of the heat exchanger
and ∆T2 is the temperature difference at the other end of the heat ex-
changer. Dynamically and under start-up conditions, the temperature gra-
dients can be reversed for short times. It does not make sense to use the
log-mean temperature difference when the signs of ∆T1 and ∆T2 are dif-
ferent. A numerically robust implementation has to take care of this case,
too. Singularities or numerical ill-conditioning occur when:

• ∆T1 � ∆T2 and

• either ∆T1 � 0 or ∆T2 � 0.

The singularities near zero can be treated in the same way as the flow
singularity above, the case of ∆T1 � ∆T2 can according to [Mattsson, 1997]
be treated as follows. When h∆T1 − ∆T2h < max(h∆T1h, h∆T2h) it is better

198

6.5 Numerical Design Patterns

to use the Taylor expansion

∆Tlm = 0.5(∆T1 + ∆T2) �
(

1− 1
12
(∆T1 − ∆T2)2

∆T1∆T2

[
1− 1

2
(∆T1 − ∆T2)2

∆T1∆T2

])

Scaling and normalization are important techniques which traditionally
are used to improve numerical calculations. It is often advantageous to use
dimension free variables and parameters. Many design patterns for model
derivation are based on scaling and normalization. Many books on mod-
eling elaborate on scaling and dimension-free quantities as fundamental
modeling techniques, see e. g., [Lin and Segel, 1988]. Different engineer-
ing domains have different traditions regarding these techniques: in some
domains it is common to always normalize models, in others unscaled
values are used. Normalization is not common in thermo-fluid systems
and process engineering and therefore ThermoFluid uses non-normalized
quantities.

Some types of numerically motivated scaling have to be done by the
model developer, for example the following:

DESIGN PATTERN 6.7—SCALING

Scale extremely nonlinear functions to improve numerics. *

EXAMPLE 8—SCALING OF EXPONENTIAL FUNCTIONS

Chemical equilibrium reactions often contain exponentials of temperature
functions as the equilibrium constant. The dissociation of hydrogen at high
temperatures, 1

2 H2 1 H, can be described by the following equations:

k = 2.6727− 11.247
T

− 0.0743 T + 0.43170 lon(T) + 0.002407 T2

xH =
√

xH2√
p

ek

where xH is the mole fraction of atomic hydrogen, xH2 is the mole fraction
of molecular hydrogen, p is the pressure in atmospheres and T is the
temperature in Kelvin. At low temperatures, the mole fraction of atomic
hydrogen is extremely small. The second equation is scaled by taking
logarithms. This can be achieved by introducing scaled variables, e. g.,
lonxH = lon(xH). At 1 atmosphere and 280 K, the ratio of the left- and
right hand side of the equations is 1.3� 1075 in the non-scaled variables.
This ratio reduces to 172 when logarithmic scales are used.

Scaling of variables and equations can also be done by the tool, but the
tool needs to have information about the ranges and the nominal values
of the variables.

199

Chapter 6. Design of Model Libraries

DESIGN PATTERN 6.8—VARIABLERANGES

Set tight minimum and maximum and accurate nominal values for all
physical variables. *
Accurate minimum, maximum and nominal values can help numerical
routines to find the solution and improve the numerical conditioning.
Making sure that ranges are set as accurately as possible is thus a part
of careful modeling. Many models have mathematically correct solutions
which are physically meaningless. Equations for chemical equilibrium al-
ways permit solutions with negative concentrations which do not make
sense physically. Limiting the search for solutions of nonlinear solvers to
the physically meaningful ranges reduces the number of failures and the
need for users to provide good initial guess values.

Nominal values are for example important to determine how pertur-
bations should be chosen for numerical linearization of a model.

DESIGN PATTERN 6.9—SMOOTHING

Piece-wise and discontinuous function approximations which should be
continuous for physical reasons shall be smoothened. *
In physical modeling it is common to have empirical or semi-empirical
formulae that approximate measured data. Non-dimensional numbers are
used to describe a given problem with a few parameters. In fluid flow
there are many relations for turbulent or laminar flow with considerable
uncertainty in the transition.

EXAMPLE 9—HEAT TRANSFER EQUATIONS

Convective heat transfer with outer flow perpendicular to a cylinder is
characterized by the following empirical equations:

Nulam = 0.664Re1/2 Pr1/3

Nuturb = 0.037Re0.8Pr
1+ 2.443Re−0.1(Pr2/3 − 1)

These formulas are combined as

Nu = 0.3+
√

Nu2
lam + Nu2

turb

10 < Re < 107, 0.6 < Pr < 1000.0

with an offset for low Reynolds numbers. The weighted mean is continuous
and continously differentiable except at the origin. If this formula is to
be used for plant startup, Re = 0, design pattern 6.6 SingularityCheck

200

6.5 Numerical Design Patterns

should be used to make the formula robust at zero flow speed. Note that
in this case smoothing acts like a weighted summation because the total
Nusselt number is always larger than any of the parts.

The following two design patterns deal with the stiffness of the resulting
equation system, see Chapter 2. Stiffness is often the result of composing
a system from subsystems. Therefore it is not possible to avoid all stiffness
problems with library models. Choosing a solver that can deal with stiff
equations may not necessarily be the best solution. Making the equation
non-stiff speeds up the solution considerably and broadens the range of
applicable solvers.

DESIGN PATTERN 6.10—TIMECONSTANTSELECTION

Make a problem non-stiff by using a steady-state assumption (singular
perturbation technique) when the fast dynamics of the system are not of
interest. Make a problem non-stiff by approximating very slow dynamics
with constants. *
Typical examples of this technique are given in Chapter 4, the assump-
tion of chemical equilibrium for fast reactions in Section 4.9 and using
the quasi steady-state assumption for the momentum balance of fluids
in Section 4.3. The assumption of taking the volume of a control volume
to the limit of zero, used in Section 5.8 for T-junctions, is based on the
same considerations. This example demonstrates that the decision to use
a control volume model with or without dynamics has to be done on the
system level by the model user. A related technique is to replace very slow
dynamics like fouling with a constant. Modelers should be aware of the
fact that it only makes sense to look at a limited range of system time
constants at a time. This is reflected in the name to this design pattern.

DESIGN PATTERN 6.11—EASINGSTIFFNESS

Render a problem less stiff by making the time constants of the fast dy-
namics slower. *
This design pattern has been used for modeling of turbines in power
plants, see [Thumm, 1989]. This particular way of dealing with stiffness is
better than removing the fast states is explained in Section 5.8. The dis-
advantage of a singular value perturbation in the steam turbine example
is a non-linear equation system involving all tap-off mass flows and pres-
sures in the turbine. This is a purely numerical motivation for knowingly
altering the dynamics of the real system. Under certain circumstances,
this is a reasonable solution:

• Removing the fast states by a singular perturbation leads to numer-
ical difficulties, typically non-linear equations which can be difficult
to solve, especially at initialization time.

201

Chapter 6. Design of Model Libraries

• The dynamics after changing the time constants are still much faster
than the dynamics of interest.

• The change of the time constants makes the equation system solv-
able by solvers for stiff differential equations.

This technique can also be used to decrease model stiffness in order to
use explicit solvers for hardware-in-the-loop simulation. In the case of the
steam turbine discussed in Section 4.7, the ratio of the largest to smallest
eigenvalue was changed from 106 to 100 without a noticeable influence
on the dynamics of interest. From a control perspective this means that
the model is rendered numerically tractable by changing it outside the
frequency range of interest.

The design patterns EasingStiffness and TimeConstantSelection are
addressing the same problem but suggesting different solutions. This
shows that experience is needed to choose the best solution. In many
cases both of the above methods will work well with similar performance,
in other cases one of the methods is clearly superior to the other.

DESIGN PATTERN 6.12—FULLYSYMBOLICCODE

Make sure that symbolic derivatives are available for all model parts, in-
cluding external functions. This improves the solution of non-linear equa-
tion systems and enables automatic index reduction. *
This design pattern is specific to tools which support symbolic manipu-
lation of the model code like automatic index reduction and automatic
differentiation, but require that all model equations and functions are
differentiable. This is the case in Dymola, MathModelica, ABACUSS II
and to some extent gPROMS. High index problems, compare Section 2.1,
arise when algebraic equations constrain states to a manifold defined by
an algebraic equation. Object-oriented model composition goes hand-in-
hand with the need for automatic index reduction, because the constraint
equations are the equations generated from a connect statement. An algo-
rithmic way to reformulate the model to an equivalent problem with index
one is based on the symbolic differentiation of the algebraic equation. Due
to the complexity of object-oriented modeling, a large part of the algebraic
equations or functions of a model can become a constraint. Consequently,
modelers should provide derivatives for all model functions. In Modelica,
this is done with the help of derivative annotations. Compared to using
equations, this is additional work for the modeler. However, it can not be
avoided for external functions or when functions have other significant
advantages over equations.

DESIGN PATTERN 6.13—DISCONTINUITIES

Avoid discontinuities in user defined functions whenever possible. *

202

6.5 Numerical Design Patterns

A Modelica compiler can easily detect discontinuities in equations, but this
is not the case with functions. A function returning discontinuous outputs
for continuous inputs will cause serious trouble for numerical integrators.
Instead of a function with one discontinuity, two functions should be pro-
vided. An event is generated automatically when the functions are called
in the branches of an if-expression.

It may be impossible to avoid discontinuities when reusing external
functions. The next design pattern applies to external functions with dis-
continuities or discontinuous derivatives.

DESIGN PATTERN 6.14—EVENTDETECTION

Provide explicit crossing functions for non-smooth external functions. *
The Modelica language and Modelica implementations handle the numer-
ical requirements of hybrid models automatically. Crossing functions are
needed by numerical integrators for models with discontinuities in the
right-hand side of the differential equations, as outlined in Section 2.1.
The automatic generation of the crossing functions does not work for ex-
ternal functions, where the discontinuities are hidden from the Modelica
translator. The only way to obtain a numerically robust treatment of such
cases is to add a crossing function to the model with the discontinuous
external function. The function has the following properties:

• The function needs to have one output which changes its sign at
the same location as the discontinuity of the original function. This
usually means that it has the same inputs as the original function.

• The crossing function has to be used in such a way in the Modelica
code that it triggers an event, see the following listing.

model ExternalCrossing "a model using a discontinuous external function"
. . . // other model parts omitted
function externalCF "Modelica declaration of external function"

input Real a,b,c "sample input";
output Real zero_xing "value changes sign at discontinuity";
external "C" myCCode(a,b,c,zero_xing); // name of the external function

end externalCF
Real zero_xing "value changes sign at discontinuity";
Boolean externalEvent(start=true) "a boolean variable";

equation
zero_xing = externalCF(a,b,c);
// the next line causes an event when zero_xing changes its sign.
externalEvent = if zero_xing > 0 then true else false;
. . . // further equations and functions omitted

end ExternalCrossing;

Listing 6.1 Usage of an external crossing function.

203

Chapter 6. Design of Model Libraries

This type of problem is typical for interfacing Modelica to traditional C– or
FORTRAN codes. A non-trivial example which required to develop the ex-
ternal crossing function and the Modelica interface for multi-phase prop-
erty calculations is described in [Tummescheit and Eborn, 2002]. Cross-
ing functions for external functions could be avoided with similar tech-
niques as derivatives for external functions. Automatic differentiation
techniques, described in more detail in Chapter 7, can not only analyze
code to compute the derivatives of that code, they can also be used to de-
tect discontinuities. This has been demonstrated in [Tolsma and Barton,
2002].

6.6 Conclusions

This chapter discussed two issues in development of object-oriented model
libraries which are independent of the application domain: code structur-
ing for reuse and numerics. Both issues are important to obtain a flexible
and robust library. The numerical design patterns and examples in this
chapter are proposals for avoiding difficulties but they do not cover all
problems that users of ThermoFluid have experienced. The structural de-
sign patterns are also only a few patterns for structuring the model code,
but they summarize patterns that were successfully used in ThermoFluid.
Experiences from model libraries in other domains indicate that there are
many similarities between different domains.

Object-oriented modeling or software techniques are not like a silver
bullet that ensures well structured, well documented and flexible code.
Discipline in documenting code and adequate use of the object-oriented
features are necessary in order to take full advantage of the benefits of
object orientation.

204

7

Recommendations for
Future Work

Abstract

The Modelica language has been under active development dur-
ing the time of the development of the ThermoFluid library. In this
chapter, a few recommendation for future work based on the experi-
ences with the development of ThermoFluid will be given. The Ther-
moFluid library has been under continuous development for several
years. Even though it is useful in its current state, there is a lot of
room for extensions and improvements.

The declared goal of the Modelica effort is to become a de facto stan-
dard for storing modeling knowledge and for model exchange. Trying to
establish a standard is costly and time-consuming. The most difficult issue
in standardization efforts is that competing companies have to agree on
technical details. Another difficulty lies in the implicit dilemma common
to emerging standards: as the evolving language definition of Modelica
gets powerful and encompasses a large variety of modeling formalisms, it
will become complex to implement. When the language gets too complex,
the entry hurdle for companies planning to implement Modelica-based
simulation environments gets too high. A programming language which
suffered from the fate of being to complicated for a complete implemen-
tation was Algol 681. On the other hand, if the language definition is
too simplistic, it can not cover a large enough share of relevant modeling
problems and is not worth implementing for that reason. This dilemma is
related to a second one: Some desirable modeling features can either be
expressed with language extensions or with tool-specific extensions. Which
of the two possibilities is better is not always easy to decide. In addition,
all language extensions need first to be supported by a tool before users

1A language that introduced expressions on the left-hand side of assignment statements

205

Chapter 7. Recommendations for Future Work

can benefit. A grey area between tool and language extensions is the Mod-
elica version of pragmas called annotations.

The following recommendations are partly related to simulation tools,
partly to a combination of Modelica language and simulation tool exten-
sions. They focus on topics which are particularly relevant for thermo-fluid
systems. Many of these topics have been discussed repeatedly at Modelica
design meetings2. The Modelica language has reached a state where it is
applicable to modeling of complex multi-domain engineering systems, but
there are many dynamic system models which are difficult or impossible
to express in Modelica. The current Modelica tools focus on dynamic sim-
ulation. Model descriptions in Modelica are equally well suited for other
interesting uses of models like steady-state design and optimization. One
of the ideas of a standardized language is inter-operability between differ-
ent tools, but there are many other possible levels for integration of tools.
Tool extensions for particular engineering domains can also be achieved
with standardized Application Programming Interfaces (APIs). For exam-
ple, a standardized interface definition for numerical solvers would make
it possible to customize the numerical back-end of a tool. These issues
have been discussed in the Modelica Association, but finalized standards
have not yet been produced.

Modeling, simulation and analysis of dynamical systems is a broad
field with active research. Everyone who works with dynamical systems
on a regular basis knows many open problems and has recommendations
for improvements. The following is an incomplete list of interesting topics:

• Language features

– A formal approach to equation manipulation.

– Support for partial differential equations.

– Improved support for derivatives and sensitivities.

– Description of model uncertainties.

– Better support for describing a group of variants in a “meta-
model”.

– Better support for graphical discrete event modeling formalisms
like Grafcet [David and Alla, 1992] or State Charts [Harel,
1987].

• Programming interfaces

– An interface definition to numerical solvers for the integration
of the complete set of equations.

2Minutes of the meetings are published on the Modelica site http://www.modelica.org.

206

– Interface definitions to permit different numerical solvers for
different subsystems, e. g., PDE.

– Interfaces to optimization codes. Many types of optimization
methods exist, each with different requirements for interfacing.

– Interfaces to graphical front ends which facilitate implementa-
tion of operator training simulators.

– Facilities for co-simulation with other simulation environments.

• Simulation environment features

– Automatic differentiation of Modelica functions and in the sec-
ond step also external functions.

– Diagnosis and practical handling of notorious numerical pitfalls
like chattering.

– Improved debugging of acausal models.

– Support for further symbolic equation manipulation methods,
e. g., symbolic integration.

– Improved tool support for Modelica class parameters.

– Support for saving the manipulated equation system in sym-
bolic form to permit further manipulation and analysis by com-
puter algebra tools and for editing and printing.

• Analysis of dynamical systems

– Eigenvalue analysis to relate parameter uncertainties to uncer-
tainties in the dynamics.

– Analysis of the effects of parameter uncertainties in the model.

– Integration of continuation techniques to detect bifurcations
and map the manifolds in parameter space where system be-
havior changes drastically.

Many of these items illustrate that it is difficult to separate language
and tool issues in a clear way. Partial differential equations require lan-
guage extensions, but also interfaces to special purpose solvers and other
simulation tool support. The issues discussed in more detail in this chap-
ter are restricted to those related to language and library design. Devel-
oping and testing model libraries is a time consuming effort. Improve-
ments in simulation languages and tools motivate library development.
In some cases a new modeling language feature makes an important dif-
ference: when the academic tool gPROMS, see Section 5.11, was able to
describe partial differential equation problems for process engineering, it

207

Chapter 7. Recommendations for Future Work

was commercialized and challenged the established simulation tools in
that domain.

The modeling process consists of the activities a modeler has to per-
form during model development. Beginning with the derivation of the
equations, continuing with model implementation and finally validating
the result are standard steps, the exact procedure varies from case to
case. Modeling techniques and tools support this process. The availability
of such techniques determines how well and efficient a modeling task can
be performed. The issues in the following section treat techniques which
were particularly missed during the development of ThermoFluid.

7.1 Writing Models

Assuming that we have already obtained a good insight into the physi-
cal phenomena involved, we are faced with the problem of entering the
model into the computer. For large systems, this can be a substantial, time
consuming effort. In industrial projects the time and effort needed to com-
plete a modeling task are the decisive factors which suggest or rule out
simulation as a means of solving the problem. Even in PhD-projects and
in model library development the effort-to-result ratio separates feasible
from infeasible tasks. The ease of writing a model compared to the utility
of the model thus make the difference if implementation in a library is
worthwhile. The ease of model writing is influenced by the expressive-
ness of the model language, the symbolic and numeric capabilities of the
simulation tool and by possible tool support in deriving, assembling and
testing the model.

Derivatives and Inverses of Functions

During the development of the ThermoFluid library a lot of effort was
spent on providing a model formulation which is numerically efficient.
The choice of dynamic state variables is a non-linear transformation of
the mass- and energy balance into suitable states for simulation, see Sec-
tion 4.6. The practical result of the transformation is a substantial gain
in performance because non-linear equation systems are replaced by non-
iterative function evaluation. Such a transformation could also be done
automatically by a tool that only has a text-book form of the balance and
constitutive equations and understands two additional properties of the
model:

• the input-output causality of the physical property calculation rou-
tines defining the thermodynamic equation of state (the simple part)
and

208

7.1 Writing Models

• the partial derivatives of the property routines with respect to the
inputs of the property calculations (the difficult part).

The current status of both the Modelica language and the Dymola tool
do not offer the option of performing this automatically. It is possible to use
the state selection algorithm in Dymola in such a way that the numerically
favorable states are chosen provided that the user knows the numerically
preferable form. This requires that the property function is written in a
very specific form. In addition, this form may be very inefficient due to
the definition of the Modelica annotations for derivative functions, as
discussed in Section 3.4. Two essential components are needed before such
derivations can be done automatically:

1. Automatic differentiation, short AD, [Griewank and Corliss, 1991]
and [?]is a relatively mature technique to generate computer code
that calculates derivatives for given computer code of the function.
Several tools are available for FORTRAN [Bischof et al., 1995a], C
[Bischof et al., 1995b] or C++ code [Griewank et al., June 1996].
These tools still lack the ease of use and integration into a mod-
eling environment which would be needed in the case of Modelica,
but the algorithms for automatic differentiation are applicable to all
programming languages.

2. The possibility to specify partial derivatives in a different way than
currently possible in Modelica. For functions which are expensive
to calculate it should also be possible to return the derivative val-
ues and the function value in one function call, because the function
value can always be obtained as a by-product of the derivative cal-
culation, see [Griewank, 1991].

The alternative solution of having annotations for partial derivatives
would actually not be required with a tool for automatic differentiation
that could handle external and Modelica functions efficiently without any
user interaction. Most hand written optimized derivative functions would
become obsolete.

EXAMPLE 1—A STEAM SUPERHEATER

As an example consider the following simple model of a steam super-
heater, adapted from [Elmqvist, 1978]. It is a simplified version of the

209

Chapter 7. Recommendations for Future Work

more general model in Section 4.6. The following equations3 are given:

dM
dt

= ṁin − ṁout mass balance

dE
dt

= Qin+ hinṁin − hṁout energy balance

M = V ρ
E = V ρh

ρ = n(p, h) equation of state (EOS)

Assume that partial derivatives of the state equation can be generated
or their existence can be made known to the symbolic transformation
algorithm. Choosing p and h as states, it is straightforward to eliminate
the non-linear equation for ρ by differentiating the EOS and the definition
equation for the energy. Assuming that the volume is constant we get:

dE
dt

= V
(

dρ
dt

h+ ρ dh
dt

)
dρ
dt
= nh(p, h)dh

dt
+ np(p, h)dp

dt

This equation can be solved to give explicit differential equations in p and
h because the volume V , density ρ and the partial derivative np(p, h) are
different from zero. This is equivalent to saying that the Jacobian

J =
 VM

Vp

∣∣∣
h

VM
Vh

∣∣
p

VE
Vp

∣∣∣
h

VE
Vh

∣∣
p

of the partial derivatives for transforming the problem from the states M
and E to p and h is always invertible. Introducing, E′(p, h) = dE/dt and
M ′(p, h) = dM/dt we find that

dp
dt
= −E′(p, h)nh(p, h) + (ρ + nh(p, h)h)M ′(p, h)

np(p, h)ρV
dh
dt
= E′(p, h) − hM ′(p, h)

ρV

An implementation of partial derivatives, e. g., via automatic differen-
tiation, would calculate the function value ρ and the derivatives ρh and

3In the given example, no distinction was made between inner energy and enthalpy. This
is a common simplifying assumption that is justified if the changes in the pressure level of
the superheater are small.

210

7.1 Writing Models

ρp in one function call. Interestingly, the computational expense of cal-
culating ρ, ρh and ρp in one call for the IF97 steam tables is about 1 %
higher than calculating only ρp due to common subexpressions. Automatic
differentiation for obtaining partial derivatives could decrease the imple-
mentation burden for EOS based physical properties substantially. Even
the current implementation could not have been done within the scope of
a PhD-project without using computer algebra tools for differentiating the
complex multi-parameter EOS for water and refrigerant properties and
generating Modelica code automatically.

This proposed feature in the Modelica language would eliminate the cur-
rent need for different classes for different dynamic states in the Ther-
moFluid library. The number of base classes for single fluid control vol-
umes would be reduced by a factor of three (currently three pairs of states
are implemented) and for mixtures of fluids the reduction would be a fac-
tor of two. The current Modelica annotations for functions only allows
specification of time derivatives which are needed in index reduction al-
gorithms. The discussed annotations for partial derivatives are prepared
as a proposal for adaptation into the Modelica language.

Partial Inverses When manipulating models we are often faced with
the following problem. Given the equation

z = f (x, y)

we are interested in finding functions f −x and f −y such that

x = f −x (y, z)
y = f −y (x, z)

In analogy with partial derivatives we shall call them partial inverses.
Partial inverses are an alternative to differentiation for manipulation of
equations.

In an equation based language like Modelica, inverses are not a major
issue. They are mainly needed for external functions, because invertible
relations are normally written as equations. Example 1 could also have
been solved using an analytical inverse of ρ = n(p, h). Assuming the
existence of a unique inverse to n(p, h) with respect to the first input
variable, the model translator could use the inverse p = n−ρ (ρ, h) and
choose ρ and h as dynamic states with forward evaluation of the inverse
instead of iterating the original equation ρ = n(p, h). This was actually
proposed in [Elmqvist, 1978].

Scalar functions is one case where inverses are advantageous. Inverses
and derivatives are related, because both help to improve efficiency when

211

Chapter 7. Recommendations for Future Work

dealing with non-linear equation systems. Inverses supply an explicit so-
lution and thus avoid numerical inversion of an equation system. Symbolic
derivatives improve the speed and robustness of the numerical solution.
If the non-linear equation system is the right-hand side of an ODE, par-
tial derivatives combined with the “dummy derivative” algorithm [Matts-
son and Söderlind, 1993] make it possible to reduce the equation sys-
tem, under the condition that the original unknowns in the equations are
candidates to become dynamic states. This has been illustrated with the
Example 1. An inverse with respect to some variables can be calculated
symbolically if the partial derivatives in the Jacobian are available and
the new input variables of the non-linear function are good candidates for
state variables. The second condition is fulfilled more often than expected.
The problems of inverses and partial derivatives are thus closely related
in two ways:

• Access to partial derivatives improves the numerical reliability to
solve for the inverse.

• In special cases partial derivatives and the dummy derivative algo-
rithm avoid inverses by choosing different state variables.

A drawback of object-oriented modeling is that a large number of un-
necessary variables and equations are created. The early work on de-
velopment of Dymola [Elmqvist, 1978] and Omola [Andersson, 1994] has
demonstrated the necessity of applying symbolic calculation to reduce the
number of variables and to remove trivial equations. The development of
ThermoFluid has clearly demonstrated the usefulness of transformations
of variables and equations. It has also indicated that it may be very use-
ful to introduce additional formal semantics for equations. Combining the
two ideas indicate a research direction that would be very interesting,
namely to develop a safe machinery for transformation of variables and
equations. Such a machinery should contain the facilities for dealing with
changes of variables, substitutions, computation of partial inverses and
symbolic differentiation. A starting point could be the Lambda Calculus
of Church, [Church, 1941], that influenced functional programming.

7.2 Model Debugging

The acausal model description by means of equations is one of the strong
features of Modelica. Unfortunately this feature makes it quite difficult
to find errors in models. A library like ThermoFluid which is designed
to be open for user-written model extensions requires more debugging
features than a library which is only used for graphical assembly. Clear

212

7.2 Model Debugging

and comprehensive model documentation reduces the need for debugging,
but does not eliminate it.

The problem with debugging equation systems has briefly been men-
tioned in Section 6.2. Recently [Bunus and Fritzson, 2002] presented re-
sults from a prototype implementation of a debugging environment for
equation based, object-oriented modeling. The bipartite graph connect-
ing equations and variables can according to [Dulmage and Mendelsohn,
1958] be decomposed into three parts: an over-constrained part, a well-
constrained part and an under-constrained one. The over-constrained part
has more equations than variables, the under-constrained one has more
variables than equations. This decomposition is straightforward, but the
information from the decomposition is often not sufficient to be helpful:
there are too many possible choices for the additional equation or variable.
The paper [Bunus and Fritzson, 2002] uses additional information about
the model structure and knowledge of the Modelica semantics to narrow
down the number of choices and annotates the equations with this in-
formation. One such annotation adds the attribute connector-generated to
equations. When there is one extra equation, it is clearly infeasible to re-
move an equation which is generated from a Modelica connect statement
that generated several equations in total. Debugging of models derived
from extensible model libraries like ThermoFluid could benefit a lot from
an extension to this idea: annotations to partial models providing extra
debugging information.

Degrees of Freedom

The physically motivated structure of the ThermoFluid library makes it
possible to draw a number of conclusions about equations which neces-
sarily have to be part of a model. Such extra information would be very
useful for debugging but currently it can not be expressed in Modelica.
The additional information is a consequence of the chosen abstractions of
control volumes and flow models, see Chapter 5. These abstractions do not
define computational causality but they define which physical phenomena
have to be part of a flow or control volume model. The difference between
the total number of variables and the total number of equations can be
defined as the “degree of freedom” of the model:

degrees of freedom = # of variables − # of equations or

do f = nvar − neq

The degrees of freedom of control volume models in ThermoFluid depend
on the number of flow and heat transfer connectors. Three assertions can
be formulated based on the physical model structure:

213

Chapter 7. Recommendations for Future Work

• The degrees of freedom are calculated as:

2� # of flow connectors + # of heat transfer connectors

• None of the flow variables is assigned by an equation in the model.

• All states and fluid properties are assigned by an equation in the
model.

It would easily be possible to add an annotation for the degrees of freedom
of a model to Modelica. The possible mapping between variables and equa-
tions is usually not unique when dof �= 0, but the above assertions must
hold. These rules have to hold also in all cases where a class parameter
is changed in the control volume. Such physically motivated annotations
would make it possible to localize errors due to additional or missing
equations.

Similar calculations of the local degrees of freedom due to the physical
constraints can be made for all models in ThermoFluid. Using that extra
information it would be possible to give precise diagnostics for errors in
user-defined models.

Named Equations

In the current version of the Modelica language (2.0), the type system is
completely independent of the equations in the model. The type of a model
is entirely based on the hierarchical declaration of models using the five
basic types: Real, Integer, Boolean, String and Enumeration. This provides
a large amount of safety against misuse of class parameters, but prevents
library designers from using equations for correctness checks. This can
be compared to the situation in object-oriented programming where the
methods which implement the behavior are declared in the class interface.
Equations are a core entity in equation based DAE system modeling, but
they are anonymous in Modelica. We illustrate this by an example.

EXAMPLE 2—THE VALVE EQUATION

As an illustrative case an example from the ThermoFluid library will be
used that has caused users trouble several times. A wrong assumption
about existence of equations in a base class causes errors which are very
difficult to debug by non-expert users. A base class for valves contains
two flow connectors a and b, variables internal to the valve which take
care of always using the upstream variables for reversing flow and a few
parameters. For the valve equation, a lot of variations exist for gases,
liquids and different types of valves. From a modeling point of view it
is clear that the valve equation has to provide a relation between the

214

7.2 Model Debugging

pressures on both sides of the valve and the mass flow. One simple model
is:

ṁ = Cv

√
ρin(pa − pb) (7.1)

where Cv is a parameter. All of the variables can be declared in a base
class and used in the type checking, but nothing is said about the re-
quirement to have an equation that relates ṁ, pa and pb. For constitutive
equations, it is almost always possible to list the variables that have to
appear. Connecting variables to an equation which should be declared
in a subclass is possible only if the equations are labeled and hence not
anonymous. A possibility would be to introduce named equations which
provide a handle to add type checking for some aspects of the equation
system as well. Named equations can be made part of the existing type
system quite easily. A named equation would have to be declared in the
declaration section to belong to the new built-in type Equation and be
implemented with a reference to the name in the equation section.

declaredEquations
Equation valve(a.p,b.p,mdot,rho) "simple valve equation";
equation
valve :: mdot = Cv∗sqrt(rho∗(a.p−b.p);

Equations can also be declared in a partial model, where they do not
need to be implemented. This makes it possible to provide restricted but
safe partial models in libraries. With the above suggestion, there would be
two types of equations: anonymous ones and named equations. A similar
type-safety as with named equations can be achieved with local functions.
The disadvantage of functions is their reduced flexibility in symbolic com-
putations. The disadvantage of named equations is the added complexity
of a new language feature. Named equations would bring three advan-
tages:

• improved debugging,

• increased type-safety for partial models and

• more similarity with object-oriented programming.

Named equations have been discussed before in the Modelica design group.
A definition of formal semantics for equations would require some label
for equations, they can not be anonymous entities.

215

Chapter 7. Recommendations for Future Work

7.3 User Interface Issues

An important factor for the acceptance of an engineering tool is the “learn-
ing curve”: how long time does it take to get acquainted with the tool and
use most of the available functionality. With the Modelica language as a
freely available standard, distinction has to be made between three factors
determining the ease of use

• the language definition

• the quality of a particular implementation and

• fundamental properties of equation based modeling.

The Modelica language is still evolving and therefore it is natural that
not all language features are fully supported in the existing simulation
tools. However, intuitive graphical support makes a substantial difference
in acceptance for users wanting to use advanced modeling features. There
is also a chicken-and-egg problem with developers who want to write li-
braries using advanced language features and tool developers supporting
those features in a graphical user environment.

When selecting class parameters for example, a drop-down menu for
selecting between the choices “flue gas”, “steam” and “nitrogen” is much
easier for users than writing out the equivalent Modelica syntax at the
right place:

redeclare model Medium = MediumModels.IdealGas.Nitrogen;

Mainstream acceptance for powerful concepts like class parameters and
multiple inheritance requires support tools to make them easy to use.
Good diagnostics are needed which lead to the cause of the problem when
something goes wrong. Graphical modeling support for class parameters
is just beginning to emerge in the Dymola tool. Unfortunately it was not
available during the development of ThermoFluid. The development of
ThermoFluid actually had a significant impact on the development of the
concept of class parameters in Modelica. Some parts of the library do not
use class parameters even though they would be useful. Without user-
friendly means for redeclaring models, an implementation based on class
parameters did not make sense in those cases. Therefore, many distinct
classes exist in ThermoFluid which could easily be folded into one more
general class with switches for the appropriate choice of class parame-
ters. The large number of model variants in thermo-fluid modeling can be
structured nicely with the help of class parameters, but for normal sim-
ulation users this flexibility comes at the price of too much complexity.
User interfaces have to translate this complexity to intuitive graphical
selection mechanisms. The Modelica language has everything in place,

216

7.4 Partial Differential Equations

but the tools have not yet reached a sufficient level of user-friendliness to
confront simulation users with class parameters.

7.4 Partial Differential Equations

Some parts of the ThermoFluid library are based on partial differential
equations. For these models it would be highly desirable to have di-
rect support for partial differential equations in the modeling language.
In ThermoFluid, the partial differential equations (PDE) were manually
transformed into ordinary differential equations using the finite volume
method. The main difficulty with PDE is the large variety of solution
methods which reflects the widely different properties of the solution.
Many PDE problems require solvers which are adapted to a particular
problem class. In contrast, a large class of differential algebraic equa-
tions with discontinuities can be handled well by existing DAE-solvers.
When the partial differential equations are an integral part of a system
model, the other system parts may need solution techniques with require-
ments that are difficult to reconcile with the PDE solver. Coordination of
numerical solvers where one of the solvers tries to control the integra-
tion error is a non-trivial, unsolved problem. The main challenge of PDEs
in system simulation is not only the solution of isolated, homogeneous
PDE problems as in traditional software, but the integrated solution of
multi-domain PDE with actuation and control. Modeling and control of
flow-induced vibrations is a typical and challenging multi-domain prob-
lem. Currently, such work requires three different modeling tools: a finite
element based solver for the vibrations, a finite volume or finite differ-
ences solver for the fluid flow and a system simulation tool for actuation
and control. Integration of such tools is not impossible but difficult. There
are many open questions with respect to the numerical stability and the
reliability of the interaction between the different solvers. However, with
an evolutionary approach it should be possible to get practical solutions
for many problems involving spatially distributed models in Modelica.
Modelica extensions for partial differential equations are currently under
development, see [Saldamli et al., 2002].
PDE Solution Methods

A brief overview over solution methods for differential algebraic and par-
tial differential equations has been given in Section 2.1. The main con-
clusion was that the most promising methods to integrate the solution
of distributed and lumped models are method of lines approaches which
apply a fixed spatial discretization to a PDE problem. The spatial dis-
cretization transforms the PDE problem into a DAE problem which can

217

Chapter 7. Recommendations for Future Work

be solved with standard DAE solvers for large, sparse problems. The spa-
tial discretization can be based on one of the three common methods:

• Finite Difference Methods (FDM) find the solution on a grid of dis-
crete points. Derivatives are approximated by differences between
these points.

• The Finite Element Methods (FEM) are based on weighted resid-
ual methods applied to sub-domains, “elements”, of the solution do-
main with certain continuity conditions at the element boundaries.
Weighted Residual Methods assume that the solution to a PDE can
be represented as a weighted combination of polynomial functions
with unknown weighting factors.

• Finite Volume Methods (FVM) are based on the idea of integrating
the dependent variables over a finite control volume and applying
the conservation principle to the integrated variables.

Each of the methods is useful for certain types of problems. A large
number of software packages is available for each of these solution meth-
ods. In the following, a closer look will be taken at those software packages
that intend to model multi-domain PDE-problems and focus on system
modeling aspects.

Software Packages for PDE

Among the existing special purpose languages for modeling, gPROMS is
the only one that currently has language elements to describe PDE, see
[Oh, 1995]. This is not so surprising, because PDE support is both essen-
tial for process engineering applications and relatively straightforward
to implement because typical process equipment has simple geometries.
The gPROMS implementation uses several variants of the method of lines
with orthogonal collocation FEM and some choices of finite difference ap-
proximations as discretizations. The gPROMS language has a syntax that
describes PDEs symbolically over simple geometries in a given coordinate
system, e. g., in rectangular or cylindrical coordinates. When the model
is used, a discretization method with the spatial discretization order as
parameter, is applied to the partial differential equation and transforms
it into a system of DAE. During simulation, the spatial discretization is
fixed and the time discretization is controlled by the DAE solver. The
discretization method and grid spacing are not regarded as part of the
model, but instead as part of the simulation experiment. Experiences of
using this method for chemical process engineering problems with mixed
lumped and distributed parts has demonstrated that the method of lines
works well for this type of problems.

218

7.5 Extensions to ThermoFluid

It should be noted that gPROMS does not implement the finite volume
method as a discretization method. The reason is probably that it is not
trivial to formalize the concept of control volumes and a staggered grid,
see Chapter 5. Extra model information which is not needed in the other
methods has to be supplied. For example, which variables are calculated
on which grid? Reversing flows is another feature of ThermoFluid that is
not handled in the current PDE implementation of gPROMS. The bound-
ary condition in a piece of equipment changes conditionally depending on
the flow direction. Surprisingly, conditional boundary conditions have not
been considered in gPROMS, even if conditional equations exist.

FEMLAB [Comsol AB, 1998] is a product compatible with Matlab for
modeling of multi-domain PDE in a graphical user environment. How-
ever, FEMLAB does not describe the problem using a formal modeling
language. One generalized PDE formulation is used in all applications
and the user specifies coefficients and geometry. The general PDE covers
many classical distributed problems. The Finite Element Method (FEM)
is used as discretization method in all cases. FEMLAB is a powerful tool
for those PDE problems which fall into the (rather large) class of prob-
lems that can be solved by the generalized PDE used by FEMLAB4 and
the FEM method. FEMLAB’s strong side is the user interface for specify-
ing the domain and boundary geometry graphically. Other finite element
packages are usually less general than FEMLAB, but execute faster. FEM-
LAB is integrated into Matlab and Simulink and makes it possible to
investigate control of PDE models.

Modelica is designed for multi-domain problems. Relevant problems
involving partial differential equations in mechanical systems have com-
plex geometries. The limitation to simple geometries as in gPROMS is not
sufficient for mechanical systems. A Modelica PDE implementation would
need a combination of the main features of gPROMS and FEMLAB:

• A formal language for the equations, boundary conditions and the
solution domain geometry as well as

• the flexibility to define the problem geometry graphically.

7.5 Extensions to ThermoFluid

The scope of the ThermoFluid library has grown considerably during its
development. Chemical reactions were not part of the original design goals
and many of the uses of ThermoFluid were not considered from the be-
ginning. Building application specific component libraries based on Ther-
moFluid base classes would be a valuable extension of the current effort.

4Compressible flow with heat transfer is not among the solvable problems

219

Chapter 7. Recommendations for Future Work

Some extensions would be of academical interest and could be done at
universities, other ones could be commercial, domain specific libraries.
System models are an integral part of engineering research. Interesting
research is being done in areas where the use of ThermoFluid could speed
up the development of dynamic models: fuel cells, combustion engines,
refrigeration systems, integrated combined heat and power, reactive dis-
tillation columns and other areas. Other extensions are of little academical
interest, but useful in industrial model development. Industrial requests
for extensions to ThermoFluid have initiated the formation of a company
by the authors of ThermoFluid, Scynamics HB. Scynamics HB developed
an interface to a fluid property calculation package which extends the
range of fluids for which ThermoFluid models are applicable by a large
number. The ThermoFluid library itself is freely down-loadable from the
Internet5. A broader industrial acceptance would need work on

• more documentation,

• a tutorial with many examples and

• quality assurance in the form of simulatable, well documented fea-
ture tests.

ThermoFluid has been a testbed for some of Modelica’s language features,
e. g., class parameters. The thermo-fluid domain covers many complex
modeling phenomena and well structured code helps to handle this com-
plexity. ThermoFluid could also in the future be used for this purpose.
Parts of the current implementation of ThermoFluid would benefit from
an update to new features in Modelica 2.0, for example the fluid property
functions. Arrays of interconnected model components are defined in Mod-
elica but have not yet been used in model libraries which demonstrate the
usefulness, e. g., distillation column trays.

7.6 Summary

Physical modeling of systems is a complex endeavor. It is challenging even
for experts and easily gets frustrating for novice users stumbling into one
of the many possible pitfalls. While power users request more features on
the “high end” and do not care so much for beginner-friendly diagnostics,
new users profit much more from better diagnostics and improved han-
dling of numerical pitfalls like chattering. Modelica is in a good position
to gain a become a widespread modeling standard. In order to attain this
goal, extensions to Modelica have to keep the balance between extensions
for power users and improvements for new users.

5For example from the Modelica site at http://www.modelica.org/libraries.html

220

8

Conclusions

This thesis has described the experiences of the development of a library
for thermo-fluid systems. The development of the ThermoFluid library and
its application in a wide range of industrial and academic problems have
stretched over several years and many researchers have been involved.
The key contributions are: the library itself and some principles for con-
structing object-oriented libraries expressed as design patterns.

Detailed systems modeling requires substantial resources. ThermoFluid
has been used successfully in many projects. These projects have demon-
strated that object-oriented libraries can help to speed up and increase
quality of modeling by providing reusable building blocks for mathemati-
cal models.

The ThermoFluid library is a new type of object-oriented model library
that provides reuse not only at the level of engineering equipment but also
at the level of physical phenomena. This fine-grained reusability makes it
applicable to a broad range of modeling tasks. Building blocks represent-
ing physical phenomena make it simple to assemble specialized models
and still benefit from well-tested library code. This combination of rapid
model development and high flexibility is a unique feature of phenomena-
based object-oriented libraries. Structuring of the building blocks is a
crucial issue for achieving the combination of flexibility and safety. The
structure has to reflect fundamental physical principles, e. g., the conser-
vation of mass and energy and constitutive relations. The replaceable
HeatAndMass -object is designed to accommodate any type of heat- and
mass transfer. For equipment-oriented system decomposition, single in-
heritance provides all a modeler needs to handle code reuse. However, de-
composition at the level of physical concepts benefits from multiple inher-
itance, because it simplifies the description of interaction between tightly
coupled phenomena. Multiple inheritance should be used carefully, but it
offers valuable flexibility if used in appropriate situations.

ThermoFluid can be regarded as a framework for thermo-fluid applica-

221

Chapter 8. Conclusions

tions. It is flexible to apply to a wide variety of tasks, but some effort has
to be devoted to adapt it to a particular application in order to make it
as easy to use as black-box simulation programs. ThermoFluid has been
used for models in process engineering, gas turbine systems, refrigeration
systems and steam power plants.

ThermoFluid models and Modelica tools strike a good balance between
black box simulation tools – easy to use but unflexible – and detailed C-
and FORTRAN codes, which provide full flexibility at the cost of very long
development times. Models written in Modelica have significant advan-
tages over closed source models:

• The flexibility is much higher with open source models. This is par-
ticularly important for rapid model development in emerging tech-
nologies.

• Model verification and validation is much easier with full access to
the model code.

• Equation based models are to a large degree self-documenting. The
encoding of modeling knowledge is much closer to the original source
of the knowledge, equations in text books, than general purpose pro-
gramming code. Furthermore, closed source models often do not pro-
vide any source code to verify the model implementation and are
rarely documented in all details.

During the development of the ThermoFluid library and its predeces-
sors in OMOLA and SMILE, certain problems in the implementation and
use of model libraries turned up repeatedly. Library users without exten-
sive modeling experience were puzzled again and again by typical pitfalls.
Library developers needed several iterations until their models worked as
expected. This suggested the use of an idea from object-oriented program-
ming, namely to collect experiences in the form of design patterns. Design
patterns use a catch phrase to describe a problem and suggest a way how
to deal with it. The fact that design patterns are useful is illustrated by the
experience that 80 % of the support requests by users of the ThermoFluid
library could be covered by two design patterns.

The tight feedback between the Modelica language design and the de-
velopment of libraries, which use the newly designed language features
has been mutually beneficial. The Modelica language and libraries con-
tinue to be actively developed. A continued close cooperation between
users and developers will be beneficial for both sides. The open discus-
sion between users and developers is one of the advantages of a language
design process which is open to all interested parties.

Since the first definition of Modelica 1.0 in 1997, object-oriented mod-
eling techniques are steadily gaining acceptance in industry. At the begin-

222

ning equation-based, object-oriented modeling was only used for technol-
ogy assessment projects. Now the acceptance increases and the technique
is used on a larger scale for product development and control design. The
technical feasibility has been proven in many projects. The remaining ob-
stacles for this technology to gain mainstream acceptance are economical
reasons due to the enormous inertia of industry when introducing new
technologies. More simulation environments using Modelica would cer-
tainly accelerate that process. Whether Modelica can reach its declared
goal to become a de-facto or even formal standard for physical modeling
remains to be seen.

223

9

References

Abadi, M. and L. Cardelli (1996): A Theory of Objects. Springer-Verlag,
New York, Berlin.

Abelson, H., J. G. J. Sussman, and J. Sussman (1985): Structure and
Interpretation of Computer Programs. The MIT Press, Cambridge,
MA.

Adams (2002): “http://www.adams.com.”

Alhir, S. S. (1998): UML in a Nutshell. O’Reilly.

Andersson, M. (1994): Object-Oriented Modeling and Simulation of Hy-
brid Systems. PhD thesis ISRN LUTFD2/TFRT–1043–SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden.

Årzén, K.-E. (1994): “Grafcet for Intelligent Supervisory Control Applica-
tions.” Automatica, 30:10, pp. 1513–1526.

Årzén, K.-E. (1996): “Grafchart: A graphical language for sequential
supervisory control applications.” In IFAC’96, Preprints 13th World
Congress of IFAC. San Francisco, California.

Åström, K. J. (2002): “Modeling of Complex Systems.” In Gong and Shi,
Eds., Modeling, Control and Optimization of Complex Systems – In
Honor of Professor Yu-Chi Ho. Kluwer, Boston, MA. to appear.

Åström, K. J. and R. D. Bell (2000): “Drum boiler dynamics.” Automatica,
36, pp. 363–378.

Åström, K. J., H. Elmqvist, and S. E. Mattsson (1998): “Evolution of
continuous-time modeling and simulation.” In Zobel and Moeller,
Eds., Proceedings of the 12th European Simulation Multiconference,
ESM’98, pp. 9–18. Society for Computer Simulation International,
Manchester, UK.

224

Åström, K. J. and B. Wittenmark (1990): Computer Controlled Systems—
Theory and Design. Prentice-Hall, Englewood Cliffs, New Jersey.

Barton, P. and C. Pantelides (1994): “Modeling of combined discrete/con-
tinuous processes.” AIChE J., 40, pp. 966–979.

Barton, P. I. (1992): The Modelling and Simulation of Combined Discrete/-
Continuous Processes. PhD thesis, Imperial College of Science, Tech-
nology and Medicine, London.

Bauer, O. (1999): “Modelling of two-phase flows with Modelica.” Technical
Report Masters thesis ISRN LUTFD2/TFRT–5629–SE. Department of
Automatic Control, Lund Institute of Technology, Sweden.

Bauer, O. and H. Tummescheit (2000): “Modeling of two-phase flows
in modelica.” In Proceedings of the 3rd MATHMOD Conference,
MATHMOD 2000. Vienna.

Beater, P. (2002): “http://www.modelica.org/library/HyLib/docu/
HyLib.html.”

Beck, B. T. and G. L. Wedekind (1981): “A generalization of the system
mean void fraction model for transient two-phase evaporation flows.”
Int. J. of Heat Transfer, 103, pp. 81 – 85.

Bejan, A. (1997): Advanced Engineering Thermodynamics. John Wiley &
Sons Inc., New York.

Biersack, M. (1994): “Entwurf und Implementierung einer Simulation-
ssprache für dynamische Systeme.”. Master’s thesis, Fachbereich In-
formatik der TU Berlin.

Bischof, C., A. Carle, P. Khademi, A. Mauer, and P. Hovland (1995a): “Ad-
ifor 2.0 user’s guide (revision c).” Technical Report. Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne,
IL.

Bischof, C., L. Roh, and A. Mauer (1995b): “ADIC — An Extensible Auto-
matic Differentiation Tool for ANSI-C.” Technical Report. Mathemat-
ics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, IL.

Bittanti, S., M. Bottinelli, A. D. Marco, M. Facchetti, and W. Prandoni
(2001): “Performance Assessment of the Control System of Once-
Through Boilers.” In Proceedings of the 13th Conference on Process
Control ’01.

Bohlin, T. (1991): Interactive System Identification: Prospects and Pit-
falls. Springer-Verlag, Berlin, Germany.

225

Chapter 9. References

Bohlin, T. (1998): “Process Model Calibrator and Validator.” In Preprints
of Reglermöte, pp. 58–62. Lund Institute of Technology, Lund, Sweden.

Breunese, A. P. and J. F. Broenink (1997): “Modeling mechatronic systems
using the SIDOPS+ language.” In Proceedings of ICBGM’97, 3rd
International Conference on Bond Graph Modeling and Simulation,
Simulation Series, Vol.29, No.1, pp. 301–306. The Society for Computer
Simulation International.

Bronstein, I. N. and K. A. Semendjajew (1989): Taschenbuch der Mathe-
matik. Teubner Verlagsgesellschaft, Leipzig.

Brück, D., , H. Elmqvist, S. E. Mattsson, and H. Olsson (2002): “Dy-
mola for Multi-Engineering Modeling and Simulation.” In Otter, Ed.,
Proceedings of the 2nd International Modelica Conference. Modelica
Association, Oberpfaffenhofen.

Bunus, P. and P. Fritzson (2002): “Methods for Structural Analysis
and Debugging of Modelica Code.” In Otter, Ed., Proceedings of the
2nd International Modelica Conference 2002, pp. 157–165. Modelica
Association and DLR, Oberpfaffenhofen.

Buse, S. (2001): Objektorientierte Modellierung und dynamische Simu-
lation druckaufgeladenener Wirbelschicht-Dampferzugeranlagen. PhD
thesis, Technical University Hamburg Harburg, Hamburg.

Cellier, F. E. (1991): Continuous System Modeling. Springer-Verlag,
Berlin Heidelberg New York.

Char, B. W., K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monogan,
and S. M. Watt (1992): Maple V Library Reference Manual. Springer-
Verlag, New York.

Church, A. (1941): The Calculi of Lambda Conversion. Princeton Univer-
sity Press, Princeton, NJ.

Comsol AB (1998): FEMLAB Reference Manual. Comsol AB.

Cordes, G. (1963): Strömungstechnik der gasbeaufschlagten Axialturbine.
Springer-Verlag, Berlin.

Curtis, C. F. and J. O. Hirschfelder (1952): “Integration of Stiff Equa-
tions.” Proc. Nat. Acad. Sci., 38, pp. 235–243.

David, R. and H. Alla (1992): Petri Nets and Grafcet. Prentice Hall, New
York.

Doležal, R. (1957): Hochdruck-Heissdampf. Vulkan-Verlag, Essen, Ger-
many.

226

Dulmage, A. L. and N. S. Mendelsohn (1958): “Coverings of Bipartite
Graphs.” Canadian J. Math., 10, pp. 517–534.

Eborn, J. (1998): “Modelling and simulation of thermal power plants.”
Technical Report Licentiate thesis ISRN LUTFD2/TFRT–3219–SE.
Department of Automatic Control, Lund Institute of Technology,
Sweden.

Eborn, J. (2001): On Model Libraries for Thermo-hydraulic Applications.
PhD thesis ISRN LUTFD2/TFRT–1061–SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Eborn, J. and B. Nilsson (1996): “Simulation of a thermal power plant
using an object-oriented model database.” In IFAC’96, Preprints 13th
World Congress of IFAC, vol. O, pp. 121–126. San Francisco, California.

Eborn, J., H. Tummescheit, and K. J. Åström (1999): “Physical system
modeling with Modelica.” In 14th World Congress of IFAC, vol. N.

Elmqvist, H. (1978): A Structured Model Language for Large Continuous
Systems. PhD thesis TFRT-1015, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Fabricius, S. M. O. and E. Badreddin (2002): “Modelica Library for
Hybrid Simulation of Mass Flow in Process Plants.” In Otter, Ed.,
Proceedings of the 2nd International Modelica Conference 2002.
Modelica Association and DLR, Oberpfaffenhofen.

Franke, R. (2002): “Formulation of Dynamic Optimization Problems Using
Modelica.” In Otter, Ed., Proceedings of the 2nd International Modelica
Conference 2002. Modelica Association and DLR, Oberpfaffenhofen.

Fritzson, P., J. Gunnarsson, and M. Jirstrand (2002): “MathModelica –
an Extensible Modeling and Simulation Environment with Integrated
Graphics and Literate Programming.” In Otter, Ed., Proceedings of
the 2nd International Modelica Conference. Modelica Association,
Oberpfaffenhofen.

Gašparović, N. and D. Stapersma (1973): Berechnung der Kennfelder
mehrstufiger axialer Turbomaschinen, vol. 39 of Forschung im Inge-
nieurwesen. VDI-Verlag.

Gawthrop, P. and L. Smith (1995): Metamodelling: Bond Graphs and
Dynamic Systems. Prentice Hall, New York.

Gensym (1992): G2 Reference Manual, version 3.0. Gensym Corp.,
Cambrigde, MA.

227

Chapter 9. References

GómezP̃érez, A. A. (2001): “Modelling of a Gas Turbine with Modelica.”
Master’s thesis ISRN LUTFD2/TFRT--5668--SE. Department of Au-
tomatic Control, Lund Institute of Technology, Lund, Sweden.

Gordon, S. and B. J. McBride (1994): “Computer Program for Calculation
of Complex Chemical Equilibrium Compositions and Applications. Part
1: Analysis.” NASA Technical Reports Document ID: 19950013764 N
(95N20180), NASA-RP-1311 E-8017 NAS 1.61:1311. NASA.

Griewank, A. (1991): “The chain rule revisited in scientific computing.”
SIAM News, 24:3 & 4, pp. 20 – 21 & 8 ff. Also appeared as Preprint
MCS–P227–0491, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439–
4801.

Griewank, A. and G. F. Corliss, Eds. (1991): Automatic Differentiation of
Algorithms: Theory, Implementation, and Application. SIAM, Philadel-
phia, PA.

Griewank, A., D. Juedes, H. Mitev, J. Utke, O. Vogel, , and A. Walther
(June 1996): “ADOL-C: A Package for the Automatic Differentiation
of Algorithms Written in C/C++.” ACM TOMS, 22:2, pp. 131–167.

Gustafsson, K. (1992): Control of Error and Convergence in ODE Solvers.
PhD thesis ISRN LUTFD2/TFRT–1036–SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Guyon, E., J.-P. Hulin, and L. Petit (1997): Hydrodynamik. Verlag Vieweg,
Braunschweig/Wiesbaden.

Hairer, E. and G. Wanner (1996): Solving Ordinary Differential Equations
II, vol. 17 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin Heidelberg New-York.

Harel, D. (1987): “Statecharts: A Visual Formalism for Complex Systems.”
Science of Computer Programming, 8, pp. 231–274.

Harlow, F. H. and J. E. Welch (1965): “Numerical Calculation of Time-
dependent Viscous Incompressible Flow of Fluid with Free Surface.”
Phys. Fluids, 8, pp. 2182 – 2189.

Haugwitz, S. (2002): “Modelling of Microturbine Systems.”. Master’s
thesis ISRN LUTFD2/TFRT--5687--SE.

He, X. and S. Liu (1998): “Multivariable Control of Vapor Compression
Systems.” HVAC Research, 4, pp. 205 – 230.

228

He, X., S. Liu, and H. Asada (1994): “A Moving-Interface Model of
Two-Phase Flow Heat Exchanger Dynamics for Control of Vapor
Compression Cycle.” ASME, Heat Pump and Refrigeration Systems
Design, Analysis and Applications, 32, pp. 69 – 75.

He, X., S. Liu, and H. Asada (1995): “Modeling of Vapor Compression
Cycles for Advanced Controls in HVAC Systems.” In Proceedings of
the American Control Conference 1995, vol. 5, pp. 3664 – 3668.

He, X.-D., S. Liu, and H. H. Asada (1997): “Modeling of Vapor Compres-
sion Cycles for Multivariable Feedback Control of HVAC Systems.”
Journal of Dynamic Systems, Measurement, and Control, 119, pp. 183
– 191.

Herzke, K. (1983): Beschreibung des instationären Verhaltens von Gas-
turbinen durch Simulationsmodelle. PhD thesis, TU Hannover.

Hetsroni, G. (1982): Handbook of Multiphase Systems. Hemisphere
Publishing Corporation.

Heusser, P. A. (1996): Modelling and Simulation of Boiling Channels with
a General Front Tracking Approach. SCS.

Honeywell (2002): “http://www.htc.honeywell.com/dome (dome).”
ITI GmbH (2002): “http://www.iti.de.”

Jeandel, A., F. Boudaud, P. Ravier, and A. Buhsing (1996): “U.L.M: Un
Langage de Modélisation, a modelling language.” In Proceedings of the
CESA’96 IMACS Multiconference. IMACS, Lille, France.

Jensen, J. M. and H. Tummescheit (2002): “Moving Boundary Models for
Dynamic Simulation of Two-Phase Flows.” In Otter, Ed., Proceedings
of the 2nd International Modelica Conference 2002. Modelica Assoc.
and DLR, Oberpfaffenhofen.

Jochum, P. and M. Kloas (1994): “The Dynamic Simulation Environment
Smile.” In Tsatsaronis, Ed., Second Biennial European Conference
on System Design & Analysis, pp. 53–56. The American Society of
Mechanical Engineers.

Johansson, K. H., M. Egerstedt, J. Lygeros, and S. Sastry (1999): “On the
Regularization of Zeno Hybrid Automata.” System & Control Letters,
38, pp. 141–150.

Johnsson, C. (1999): A Graphical Language for Batch Control. PhD thesis
ISRN LUTFD2/TFRT–1051–SE, Department of Automatic Control,
Lund Institute of Technology, Sweden.

229

Chapter 9. References

Johnsson, C. and K.-E. Årzén (1999): “Grafchart and Grafcet: A Com-
parison between Two Graphical Languages Aimed for Sequential Con-
trol Applications.” In Preprints 14th World Congress of IFAC, vol. A,
pp. 19–24. Beijing, P.R. China.

Juslin, K. (1995): “Experience on mechanistic modelling of industrial
processes with apros.” Mathametics and Computers in Simulation, 39,
pp. 505–511.

Kohavi, Z. (1978): Swichting and Finite Automata Theory. McGraw-Hill,
New York.

Kolev, N. I. (1986): Transiente Zweiphasen-Strömung. Springer-Verlag,
Berlin.

Levy, S. Y. and D. Abdollahian (1982): “Homogeneous non-equilibrium
Critical Flow Model.” Int. J. Heat and Mass Transfer, 25:6, pp. 247–
252.

Lin, C. C. and L. A. Segel (1988): Mathematics Applied to Deterministic
Problems in the Natural Sciences. SIAM Classics in Applied Mathe-
matics, New York.

Lindstrand, N. (2002): “Noll problem med simulering.” Svensk Papper-
stidning, 1, pp. 28–29.

Linnecken, H. (1957): “Die Mengendruckgleichung für eine Turbinen-
Stufengruppe.” BWK, 9:2, pp. 53–56.

Logan, J. D. (1994): An Introduction to Nonlinear Partial Differential
Equations. John Wiles & Sons, Inc., New York.

Malmborg, J. (1998): Analysis and Design of Hybrid Control Systems.
PhD thesis ISRN LUTFD2/TFRT–1050–SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Massobrio, G. and P. Antognietti (1993): Semiconductor Device Modeling
with SPICE. McGraw Hill.

MathWorks (2001a): Matlab User’s Guide. The Math Works Inc., Cochit-
uate Place, 24 Prime Park Way, Natick, MA 01760.

MathWorks (2001b): SIMULINK, a Program for Simulating Dynamic
Systems, User’s Guide. The Math Works Inc., Cochituate Place, 24
Prime Park Way, Natick, MA 01760.

Mattsson, S. E. (1996): “On object-oriented modeling of relays and sliding
mode behaviour.” In IFAC’96, Preprints 13th World Congress of IFAC,
vol. F, pp. 259–264. San Francisco, California.

230

Mattsson, S. E. (1997): “On modeling of heat exchangers in Modelica.”
In Winfried and Lehmann, Eds., Proceedings of the 1997 European
Simulation Symposium (ESS’97), pp. 127–133. SCS, The Society for
Computer Simulation International, Passau, Germany.

Mattsson, S. E., M. Andersson, and K. J. Åström (1993): “Modeling
and simulation of behavioral systems.” In Proceedings of the 32nd
IEEE Conference on Decision and Control, vol. 4, pp. 3636–3641. San
Antonio, Texas.

Mattsson, S. E., H. Olsson, and H. Elmqvist (2000): “Dynamic Selection of
States in Dymola.” In Modelica 2000 Workshop Proceedings, pp. 61–67.
Modelica Association, Lund.

Mattsson, S. E. and G. Söderlind (1993): “Index reduction in differential-
algebraic equations using dummy derivatives.” SIAM Journal of
Scientific and Statistical Computing, 14:3, pp. 677–692.

McLinden, M. O., S. A. Klein, E. W. Lemmon, and A. P. Peskin (1998):
NIST Thermodynamic and Transport Properties of Refrigerants and
Refrigerant Mixtures—REFPROP. U. S. Department of Commerce, 6th
edition.

Minsky, M. (1965): “Models, Minds, Machines.” In Proceedings, IFIP
Congress, pp. 45–49.

Modelica Association (2000a): “Modelica Language Specification, Version
1.4.” http://www.Modelica.org/documents.shtml.

Modelica Association (2000b): “Modelica Language Tutorial, Version 1.4.”
http://www.Modelica.org/documents.shtml.

Modelica Association (2002a): “http://www.Modelica.org.”

Modelica Association (2002b): “Modelica Language Specification, Version
2.0.” http://www.Modelica.org/documents.shtml.

Mostermann, P. J. and H. Vangheluwe (2000): “Computer Automated
Multi-Paradigm Modeling in Control System Design.” In Proceedings
of the IEE International Sympsium on Computer Aided Control
System Design, pp. 65–70.

Mühlthaler, G. (2000): Anwendung objektorientierter Simulations-
sprachen zur Modellierung von Kraftwerkskomponenten. PhD thesis,
Technische Universität Hamburg Harburg.

Murata, T. (1989): “Petri Nets: Properties Analysis and Application.”
Proceedings of the IEEE, 77:4, pp. 541–580.

231

Chapter 9. References

Nilsson, B. (1993): Object-Oriented Modeling of Chemical Processes.
PhD thesis ISRN LUTFD2/TFRT–1041–SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Nilsson, B. and J. Eborn (1994): “K2 model database - tutorial and refer-
ence manual.” Technical Report TFRT-7528. Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Oh, M. (1995): Modelling and Simulation of Combined Lumped and Dis-
tributed Processes. PhD thesis, Imperial College of Science, Technology
and Medicine.

Öhman, M. (1998): “Trajectory-based model reduction of nonlinear sys-
tems.” Technical Report Licentiate thesis ISRN LUTFD2/TFRT–3223–
SE. Department of Automatic Control, Lund Institute of Technology,
Sweden.

Pantelides, C. (1988): “The Consistent Initialization of Differential-
Algebraic Systems.” SIAM Journal of Scientific and Statistical Com-
puting, 9, pp. 213–231.

Pantelides, C. C. (2000): “The Mathematical Modelling of the Dynamic
Behaviour of Process Systems.” Centre for Process Systems Engineer-
ing, Imperial College of Science, Technology and Medicine.

Patankar, S. V. (1980): Numerical Heat Transfer and Fluid Flow. Hemi-
sphere Publishing Corporation, Taylor & Francis Group, New York.

Petzold, L. (1982): “A Description of DASSL: a Differential-Algebraic
Equation Solver.” In Proceedings of IMACS World Congress. Montreal,
Canada.

Pfafferot, T. and G. Schmitz (2002): “Modeling and Simulation of Refriger-
ation Systems with the Natural Refrigerant Carbon Dioxid.” In Otter,
Ed., Proceedings of the 2nd International Modelica Conference 2002.
Modelica Association and DLR, Oberpfaffenhofen.

Pfafferott, T. and G. Schmitz (2001): “Numerische Simulation von CO2-
Kühlprozessen mit Modelica.” In DKV-Tagungsbericht 2001, vol. IV
28. Jahrgang. DKV, Stuttgart.

Pfleiderer, C. and H. Petermann (1991): Strömungsmaschinen, 6. Auflage.
Springer-Verlag, Berlin.

Poling, B. E., J. M. Prausnitz, and J. P. O’Connell (2001): The Properties of
Gases and Liquids, fifth edition. Mc Graw Hill, Boston, Massachusetts.

Popper, K. R. (1935): Logik der Forschung. Julius Springer Verlag,
Vienna, Austria.

232

Preisig, H. (2001): “Modeling of Process Systems.” Lecture Notes, Systems
and Control Group, TU Eindhoven.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1986):
Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press, New York.

Profos, P. (1962): Die Regelung von Dampfanlagen. Springer-Verlag,
Berlin.

PSEnterprise (2002): “http://www.psenterprise.uk (gEST).”
Reid, R. C., J. M. Prausnitz, and B. E. Poling (1987): The Properties of

Gases and Liquids. Mc Graw Hill, Boston, Massachusetts.

Sahlin, P., A. Bring, and E.F.Sowell (1996): “The Neutral Model Format
for Building Simulation, Version 3.02.” Technical Report. Department
of Building Sciences, The Royal Institute of Technology, Stockholm,
Sweden.

Saldamli, L., P. Fritzson, and B. Bachmann (2002): “Extending Modelica
for Partial Differential Equations.” In Otter, Ed., Proceedings of the
2nd International Modelica Conference 2002, pp. 157–165. Modelica
Association and DLR, Oberpfaffenhofen.

Sørlie, J. and J. Eborn (1997): “A grey-box identification case study:
The åström–Bell drum-boiler model.” Technical Report ISRN
LUTFD2/TFRT–7563–SE. Department of Automatic Control, Lund
Institute of Technology, Sweden.

Sørlie, J. and J. Eborn (1998): “Parameter optimization results for
a family of thermo-physical drum boiler models.” In Preprints of
Reglermöte ’98, pp. 131–136. Lund Institute of Technology, Sweden.

Span, R. (2000): Multi-Parameter Equations of State. Springer-Verlag,
Berlin.

Span, R. and W. Wagner (1996): “A New Equation of State for Carbon
Dioxide from the Triple-Point Temperature to to 1100 K at Pressures
of up to 800 MPa.” Journal of Physical and Chemical Reference Data,
25:6, pp. 1509–1596.

Summerville, I. (2000): Software Engineering. Addison Wesley Publishing
Company, Reading, Massachusetts.

Telnes, K. (1992): Computer Aided Modeling of Dynamic Processes based
on Elementary Physics. PhD thesis 47, the Norwegian Institute of
Technology.

233

Chapter 9. References

Thumm, C. T. (1989): Wirkleistungs-Sekundenreserve-Maßnahmen, un-
tersucht am Beispiel eines Dampfkraftwerksblockes. PhD thesis, Uni-
versität Stuttgart.

Tiller, M., C. Davis, H. Tummescheit, and N. Trigui (2000): “Powertrain
modeling with modelica.” In Prooceedings of IMECE2000, 2000 ASME
International Mechanical Engineering Congress and Exposition.

Tiller, M. M. (2001): Introduction to Physical Modeling with Modelica.
Kluwer Academic Publishers.

Tillner-Roth, R. and H. D. Baehr (1994): “An international standard for-
mulation of the thermodynamic properties of 1,1,1,2-tetrafluoroethane
(HFC-134a) covering temperatures from 170 K to 455 K at pressures
up to 70 MPa.” J. Phys. Chem. Ref. Data, 23, pp. 657–729.

Tolsma, J. and P. Barton (1999): “DAEPACK: An Open Modeling Envi-
ronment for Legacy Models.” Ind. Eng. Chem. Res., September.

Tolsma, J. and P. Barton (2002): “Hidden Discontinuities and Parametet-
ric Sensitivity Analysis.” SIAM Journal on Scientific Computing, 23:6,
pp. 1862–1875.

Traupel, W. (1977): Thermische Turbomaschinen, third edition. Springer-
Verlag, Berlin, Germany.

Tummescheit, H. (2000a): “Object-oriented Modeling of Physical Systems,
Part 11.” Automatisierungstechnik, 48:2. In german.

Tummescheit, H. (2000b): “Object-oriented Modeling of Physical Systems,
Part 12.” Automatisierungstechnik, 48:4. In german.

Tummescheit, H. and J. Eborn (1998): “Design of a thermo-hydraulic
model library in Modelica.” In Zobel and Moeller, Eds., Proc. of
the 12th European Simulation Multiconference, ESM’98, pp. 132–136.
Manchester, UK.

Tummescheit, H. and J. Eborn (2002): “Flexible Handling of Reactions
and Diffusion in ThermoFluid.” In Otter, Ed., Proceedings of the 2nd
International Modelica Conference 2002. Modelica Association and
DLR, Oberpfaffenhofen.

Tummescheit, H., J. Eborn, and F. Wagner (2000): “Development of a
Modelica base library for modeling of thermo-hydraulic systems.” In
Modelica 2000 Workshop Proceedings, pp. 41–51. Lund.

234

Tummescheit, H., M. Klose, and T. Ernst (1997): “Modelica and Smile – a
Case Study Applying Object-Oriented Concepts to Multi-Facet Model-
ing.” In Hahn and Lehmann, Eds., Simulation in Industry – Proceed-
ings of the 9th European Simulation Symposium ESS97, pp. 122–126.
Society for Computer Simulation International, Budapest, Hungary.

Tummescheit, H. and R. Pitz-Paal (1997): “Simulation of a Solar Thermal
Central Receiver Power Plant.” In Sydow, Ed., Proceedings of the
15th IMACS world congress on Scientific Computation, Modelling and
Applied Mathematics, vol. 6, pp. 671–676. Wissenschaft und Technik
Verlag, Berlin, Germany.

Tummescheit, H. and M. Tiller (2000): “Object-oriented modeling of
physical systems, part 17.” Automatisierungstechnik, 48:12.

Turns, S. R. (1993): An Introduction to Combustion. McGraw Hill
International Editions, New York.

Versteeg, H. K. and W. Malalasekera (1995): An Introduction to Compu-
tational Fluid Dynamics. Addison Wesley Longman Limited.

Viklund, L. and P. Fritzson (1995): “ObjectMath •– An object-oriented
language and environment for symbolic and numerical processing in
scientific computing.” Scientific Programming, 4, pp. 229–250.

Wagner, F. J. (2000): Object-Oriented Modeling of Energy Systems. PhD
thesis, Technical University of Denmark, Lyngby, Denmark.

Wagner, W. and A. Kruse (1998): Properties of water and steam. Springer-
Verlag, Berlin.

Wang, H. (1991): Modelling of a Refrigeration System together with a
Refrigerated Room. PhD thesis, Delft University of Technology.

Weiss, M. and H. A. Preisig (2000): “Structural Analysis in the Dynam-
ical Modelling of Chemical Engineering Systems.” Mathematical and
Computer Modelling of Dynamical Systems, 6:4, pp. 325–364.

Westerweele, M. R. and H. A. Preisig (2001): “Minimal Representation
of First Principle Models.” In Proceedings of the 11th European
Symposium of Computer Aided Process Engineering. CAPEC.

Whalley, P. (1987): Boiling, Condensation and Gas-Liquid Flow. Claren-
don, Oxford.

Wolfram, S. (1990): Mathematica: A System for Doing Mathematics by
Computer, 2nd edition. Addison-Wesley, Reading, Mass.

235

Chapter 9. References

Zhang, J., K. H. Johansson, J. Lygeros, and S. Sastry (2000): Hybrid
Systems: Computation and Control, vol. 1790, chapter Dynamical
Systems revisited: Hybrid Systems with Zeno Executions. Springer-
Verlag, Berlin.

Zivi, S. M. (1964): “Estimation of Steady-State Steam Void Fraction
by means of the Principle of Minimum Entropy Production.” ASME
Journal of Heat Transfer, 86, pp. 759–770.

236

A

Glossary

This glossary is for readers with a background in physical modeling, but
not in object-oriented programming. Object-oriented modeling is not the
same as object-oriented programming, as has been discussed in Chap-
ter 6. Where appropriate, the differences are highlighted. Simple, infor-
mal explanations for terms from object-oriented programming and some
Modelica-specific definitions are given below. Terms defined in other en-
tries in the glossary are typeset in italics.

Classname
+components
+variables
+equations()
+connections()

Classname
replaceable

Inheritance,
is-a relationship
Aggregation,
part-of relationship

Class
components and
variables of class

Class used

equations
connections

as class parameter

Figure A.1 Graphical notation for object-oriented model structuring, adapted from
the UML (Universal Modeling Language) notation, see [Alhir, 1998].

abstract class An abstract class is a class that can not be instantiated
because it is incomplete. In Modelica this means that there are more
variables than equations or that a component is an instance of an
abstract class that has to be redeclared.

237

Appendix A. Glossary

aggregation According to Webster’s Dictionary, aggregation is defined as
a group or mass of distinct or varied things. In object-oriented pro-
gramming it is the technical term for putting together more complex
entities from simpler ones. This can be done by declaring instances
of other classes (models) in a model. Instead of aggregation, the
term has-a relation is often used: A car has-a motor. In many cases,
a similar functional decomposition can be achieved with multiple
inheritance.

algorithm In Modelica, an algorithm is used to describe behavior by
assignment statements. Algorithms may contain loops and while
statements and allow multiple assignments to the same variable.
Equations, in contrast, allow only a single assignment to a variable.

annotation Annotations in Modelica are a part of the language with
a formal grammar that has no influence on the model semantics.
Annotations are mostly used for graphical information, but also for
pragmas. Some Modelica annotations for the graphical layout of com-
ponent declarations are standardized in order to keep graphical sys-
tem information consistent even when different tools are used.

base class A base class is a class that is a generalization of a set of
classes. Base classes are often abstract classes, which means that
they can not be instantiated. Derived classes or child classes inherit
from base classes.

built-in type Modelica has five built-in data types: Real, Integer, Boolean,
String and Enumeration.

class A class is the programming abstraction for real-world objects with
similar properties. This coincides well with the common notion of
a model. In Modelica, there are several synonyms for class: model,
type, record, block, connector, package and function. Some of the
synonyms are restricted classes and may not contain all declarations
which are allowed in general classes.

class parameter A class parameter is a high-level parameter that makes
the type of class replaceable by other, type-compatible classes. See
also parameter.

child class or short child. A class which inherits from another class is a
child with respect to the class it inherits from.

component A component is an instance of a model inside another model.
Components are used to aggregate complex systems from simpler
parts. A component in object-oriented modeling is analogous to an
object in object-oriented programming.

238

declarative language A language that describes what-is as opposed to
how-to-compute something. This is a very useful abstraction for mod-
eling knowledge. For equation based modeling it means that the
equations do not have to be in the same sequence as computation
requires and the computed variable does not have to be on the left
side of an assignment statement.

derived class A derived class inherits from a base class and adds vari-
ables or behavior to it, see child class.

design pattern A design pattern motivates and explains a general so-
lution for a recurring design problem in object-oriented modeling. It
describes the problem, the solution, trade-offs and when the solu-
tion should be applied. A design pattern has to be customized and
implemented in order to solve the problem in a particular context.

dot-notation Modelica offers the possibility to access public components
inside a model using an access-operator, a dot. For Example, pump.p
refers to the variable p inside the component pump .

encapsulation Encapsulation is a central technique to keep complex
software systems maintainable. Details of a model or class should
be hidden and unaccessible from the outside. Access to internal vari-
ables of a class should only be possible via well-specified interfaces.
In Modelica, protected variables can not be accessed from the out-
side.

equation Modelica code describes model behavior with equations. This is
different from object-oriented programming languages, where meth-
ods or functions are used to program how an object behaves.

inheritance Inheritance is the technique for reusing model or program-
ming code from a more general class. Semantically, it is identical
to including the inherited code at the place where the inheritance
declaration is found in the code. The inheritance relation is also
called is-a relation: a Volkswagen is-a car. The simplest way of un-
derstanding inheritance is to view it as inclusion of all declarations
and equations of the base class. The Modelica keyword for inher-
itance is extends . In object-oriented programming, methods can
be overridden by subclasses. Equations can not be overridden, but
replaceable declarations can be redeclared .

instance An instance is an object created from a class. When a compo-
nent is declared to be of a certain class, an instance is created. The
declaration Resistor r1(R=1000) declares the component r1 as an
instance of the class Resistor and changes the parameter value of R
to 1000.

239

Appendix A. Glossary

instance parameter An instance parameter is a replaceable component
in a model.

instantiate The process of finding the declarations of all components of
a model and creating a simulatable instance.

mixin The term mixin is used in object-oriented programming to denote
implementation parts which are not always needed. A mixin class
adds additional features to a class that is functional even without
the mixin.

model Model is one of the Modelica synonyms for class.

modification In Modelica, the values of parameters, instance parame-
ters and class parameters can be changed in the declaration of a
component. Such changes to an instance are called modifications.
For example, in the declaration Volume v1(V=1.5e-6, redeclare
model Medium=hydrogen) , the expressions in parentheses are mod-
ifications to the Volume class.

multiple inheritance When classes are allowed to inherit declarations
from more than one base class, this is called multiple inheritance.

object An object is an instance of a class. In Modelica objects are mostly
called components.

parameter Parameter has a very broad meaning in engineering. In Mod-
elica there are three usages of the term parameter. All of them refer
to properties of a model that can be changed at instantiation time
or before simulations, but are constant during simulation. The ordi-
nary parameter is a prefix to a built-in type or class, meaning that
the values of the variable(s) in that type or class are constant during
simulation. Instance parameters denote that the class of a compo-
nent is replaceable in a modification. Class parameters are similar
to instance parameters, but they refer to the type instead. With a
class parameter, the class of several components can be changed at
once or the type of the base class can be redeclared.

package A package is a collection of Modelica models. Usually the models
are meant to be used together.

partial model A partial model is an incomplete definition of a model.
This is the Modelica equivalent to an abstract class in object-oriented
programming.

parent class or short parent. Parent class is a synonym for base class.
The class from which other classes inherit.

240

polymorphism In object-oriented programming, polymorphism means
the ability to substitute objects with matching interfaces for one an-
other at run-time. The meaning of polymorphism in object oriented
modeling is slightly more static, if simulation time is seen as the
equivalent of run-time. The type substitution for objects has to take
place at instantiation time in Modelica.

prefix A Modelica keyword which is put in front of a variable or class
declaration and alters its semantics. A common prefix is parame-
ter. When e. g., a record is declared with the prefix parameter, all
elements of the record have to be constant during simulation.

protected Access to protected variables from the outside is forbidden.

public Public variables can be accessed from the outside via dot-notation.

redeclaration Declaring the type of an instance parameter or class pa-
rameter in a modification is a redeclaration. In the component dec-
laration Volume v1(V=1.5e-6, redeclare Medium = hydrogen) ,
the second expression redeclares the class parameter Medium to be
of type hydrogen in the component v1 .

replaceable In Modelica, both components and classes can be declared
to be replaceable. This means that the class of a component or
the placeholder class can be exchanged against another, compati-
ble class, see type compatibility.

pragma Pragmas are hints to compilers to make them aware of possi-
ble optimizations. Some Modelica annotations can be regarded as
pragmas. Certain built-in Modelica operators can also be regarded
as pragmas, e. g., smooth(x,2) is a pragma to numerical routines
which tells them that the expression x is two times continuously
differentiable.

specialization A specialization is often used as a synonym to inheri-
tance. A class that inherits another classes behavior and adds com-
ponents or equations to the parent class is more specialized and less
general than the parent.

type Type is one of the Modelica synonyms to class. It is usually used for
variants and arrays of one of the built-in types, e. g., type Force =
Real[3](Unit="N") . Type is often used instead of class when refer-
ring to the set of properties and classification aspects of a class.

type compatibility Type compatibility is a compatibility condition on
models which makes them exchangeable in a redeclare statement. A
type compatible model has to contain at least the same components
as the model it is compared to.

241

B

Thermodynamic Derivatives

Abstract

This appendix has been extended to cover multi-component mix-
tures and several fundamental equations from a similar form which
has been published before as an Appendix to the Master’s thesis
[Bauer, 1999]. It describes the background knowledge and basic pro-
cedures for calculating thermodynamic derivatives from fundamen-
tal equations of state. The methods for rearranging thermodynamic
derivatives have been implemented in a Maple-package, see [Char
et al., 1992]. This appendix documents the implementation of fluid
property calculations in the ThermoFluid library.

B.1 Fundamental Equations

A short overview over fundamental equations of intensive thermodynamic
fluid properties is given. The equations derived here will be used later to
derive formulas for transforming derivatives of fundamental equations
into familiar thermodynamic properties.

Basic Form

Comparison of the first law of thermodynamics in differential form

du = Tds− pdv (B.1)

with the total differential of the function u = u(s, v)

du = Vu
Vs

∣∣∣∣
v

ds+ Vu
Vv

∣∣∣∣
s
dv (B.2)

shows

T = Vu
Vs

∣∣∣∣
v

p = − Vu
Vv

∣∣∣∣
s

(B.3)

242

B.1 Fundamental Equations

Therefore, an equation of state u = u(s, v) does not only serve to compute
the internal energy, but also yields temperature end pressure when being
differentiated symbolically. The enthalpy is then obtained from h = u+pv.
An equation of state, that contains the complete information for calculat-
ing all pure component thermodynamic variables from two input variables
is called fundamental equation.

Secondary Forms

The independent variables in u(s, v) may be changed and still the ther-
modynamic state is completely determined, but the related equation may
not contain sufficient information to allow computation of all properties
by differentiation. Loss of information is avoided when applying the Leg-
endre transformation [Bejan, 1997]. The Legendre transformation serves

∂φ
∂x y

x

φ

ψ

= const.y

Figure B.1 Legendre transformation

to create secondary forms of a fundamental equation φ(x, y). In its sim-
plest form, one independent variable is replaced by the partial derivative
with respect to that variable.

φ(x, y) →ψ

(
Vψ
V x

∣∣∣∣
y

, y

)
(B.4)

The derivative represents a tangent on a curve y = const in a φ(x) dia-
gram, see Figure B.1. To determine that tangent, its crossing point with
the ordinate is required, which gives the definition of the new function
ψ . This definition makes sure that the new function ψ contains the same
information as the original function φ . This transformation is possible as
long as Vψ /V x �= 0, in other words ψ (x, y = const) is strictly increasing
or decreasing ∀y.

φ(x, y) →ψ = φ − Vφ
V x

∣∣∣∣
y

x (B.5)

243

Appendix B. Thermodynamic Derivatives

Free Energy The function obtained from replacing the entropy in u(s, v)
with the related derivative is called the free energy f . Together with (B.3)
the Legendre transformation yields

u(s, v) → f
(Vu
Vs

∣∣∣∣
v

, v
)
= f (T , v) (B.6)

And the definition of f is found to be

u(s, v) → f = u− Vu
Vs

∣∣∣∣
v

s = u− Ts (B.7)

Differentiation of the last expression gives, after replacing du with (B.1),
df = du − Tds− sdT = −pdv− sdT (B.8)

Comparison with the total differential of f (T , v), similar to (B.2), shows

p = − V f
Vv

∣∣∣∣
T

s = − V f
VT

∣∣∣∣
v

(B.9)

Internal energy and enthalpy are obtained from u = f +Ts and h = u+pv.
Often v is replaced by ρ = 1/v to give a fundamental function f (T , ρ). In
that case the pressure is obtained from

p = −dρ
dv

V f
Vρ

∣∣∣∣
T
= ρ2 V f

Vρ

∣∣∣∣
T

(B.10)

Free Enthalpy The fundamental equation for the free enthalpy or
Gibbs’ function n is obtained from replacing the specific volume in f (T , v)
with the related derivative

f (T , v) → n
(

T ,
V f
Vv

∣∣∣∣
T

)
= n(T , p) (B.11)

The definition of n is found to be

f (T , v) → n = f − V f
Vv

∣∣∣∣
T

v = f + pv (B.12)

Differentiation of the last expression yields with df from (B.8)
dn = df + pdv+ vdp = −sdT + vdp (B.13)

Comparison with the total differential of n(T , p) shows

s = − Vn
VT

∣∣∣∣
p

v = Vn
Vp

∣∣∣∣
T

(B.14)

Enthalpy and internal energy are obtained from and h = n + Ts and
u = h− pv

244

B.2 Transformation of Partial Derivatives

Enthalpy If the temperature in n(T , p) is replaced by the derivative of
n with respect to T we obtain the fundamental equation for the enthalpy h

n(T , p) → h

(
Vn
VT

∣∣∣∣
p

, p

)
= h(s, p) (B.15)

defined by

n(T , p) → h = n − Vn
VT

∣∣∣∣
p

T = n + sT (B.16)

The last term is differentiated and rearranged by use of (B.13)

dh = dn + sdT + Tds = vdp+ Tds (B.17)

Comparison with the total differential of h(s, p) shows

v = Vh
Vp

∣∣∣∣
s

T = Vh
Vs

∣∣∣∣
p

(B.18)

The internal energy is obtained from u = h− pv. Replacing the pressure
in h(s, p) with Vh/Vphs yields u(s, v), which brings us back to the starting
point of (B.1).

From the four fundamental equations, only f (T , v) and n(T , p) are
used for multi-parameter equations of state. The Helmholtz equation is
often used with the density as f ′(T , ρ = 1/v).

B.2 Transformation of Partial Derivatives

From a fundamental equation φ(x, y), derivatives of thermodynamic func-
tions with respect to x and y can easily be obtained from symbolic differ-
entiation, but a derivative

Va
Vb

∣∣∣∣
c

(B.19)

where b and/or c differs from x and/or y appears to require numer-
ical approaches. As will be shown in this section, it can be reduced to
derivatives with respect to x and y.

The tool for rewriting partial derivatives are some simple relations and
functional determinants or Jacobians. The simpler rules given later in this
section are derived as special cases from the Jacobians. The examples are
all for the case of single component systems, but the Jacobians below
show that they hold in the same way if an arbitrary additional number

245

Appendix B. Thermodynamic Derivatives

of variables is hold constant instead of just one, so that the examples
generalize to multi-component systems in an obvious way.

V(x, y, ..., z)
V(α , β , ..., γ) =

∣∣∣∣∣∣∣∣∣∣∣

V x
Vα

V x
Vβ . . . V x

Vγ
V y
Vα

V y
Vβ . . . V y

Vγ

...
. . .

...
V z
Vα

V z
Vβ . . . V z

Vγ

∣∣∣∣∣∣∣∣∣∣∣
V(x, y, ..., z)
V(α , β , ..., γ) = −

V(y, x, ..., z)
V(α , β , ..., γ) (exchanging positions of x and y)

V(x, y, ..., z)
V(α , β , ..., γ) =

[V(α , β , ..., γ)
V(x, y, ..., z)

]−1

(reciprocal relation)
V(x, y, ..., z)
V(α , β , ..., γ) =

V(x, y, ..., z)
V(A, B, ...C)

V(A, B, ..., C)
V(α , β , ..., γ) (chain rule)

From the calculation of determinants with

V x
V x

∣∣∣∣
α
= Vα
Vα

∣∣∣∣
x
= 1

V x
Vα

∣∣∣∣
x
= Vα
V x

∣∣∣∣
α
= 0

it follows that
V x
Vα

∣∣∣∣
β ,....,γ

= V(x, β , ..., γ)
V(α , β , ..., γ)

First Derivatives

Let a and another variable β be functions of b and c.

a = a(b, c)
β = β (b, c)

The related Jacobian matrix contains the partial derivatives of a and β

J =
 Va

Vb

∣∣
c

Va
Vc

∣∣
b

Vβ
Vb

∣∣∣
c

Vβ
Vc

∣∣∣
b

Its determinant is computed as follows

det J = V(a, β)
V(b, c) =

Va
Vb

∣∣∣∣
c

Vβ
Vc

∣∣∣∣
b
− Va
Vc

∣∣∣∣
b

Vβ
Vb

∣∣∣∣
c

246

B.2 Transformation of Partial Derivatives

In the special case β=c we obtain, since Vc/Vchb = 1 and Vc/Vbhc = 0,

Va
Vb

∣∣∣∣
c
= V(a, c)
V(b, c)

which is the derivative to be determined. The right side is expanded by ap-
plication of the multiplication theorem for functional determinants [Bron-
stein and Semendjajew, 1989]

Va
Vb

∣∣∣∣
c
= V(a, c)
V(x, y)

V(x, y)
V(b, c) =

V(a, c)/V(x, y)
V(b, c)/V(x, y)

which is equivalent to

Va
Vb

∣∣∣∣
c
= Va/V xhy Vc/V yhx − Va/V yhx Vc/V xhy
Vb/V xhy Vc/V yhx − Vb/V yhx Vc/V xhy

This equation allows the derivative on the left side to be written in terms
of derivatives with respect to x and y. Further simplification is possible,
if a,b and/or c agrees with x and/or y, because

V x
V x

∣∣∣∣
y
= V y
V y

∣∣∣∣
x
= 1

V x
V y

∣∣∣∣
x
= V y
V x

∣∣∣∣
y
= 0

which gives

Va
Vb

∣∣∣∣
x
= Va/V yhx
Vb/V yhx

(B.20)

V x
V y

∣∣∣∣
a
= − Va/V yhx

Va/V xhy
(B.21)

Va
V x

∣∣∣∣
b
= Va
V x

∣∣∣∣
y
− Vb
V x

∣∣∣∣
y

Va/V yhx
Vb/V yhx

(B.22)

EXAMPLE 1—VELOCITY OF SOUND

As an example a relation for the velocity of sound will be derived: The
velocity of sound a is

a =
√
Vp
Vρ

∣∣∣∣
s

(B.23)

therefore
1
a2 =

Vρ
Vp

∣∣∣∣
s

(B.24)

247

Appendix B. Thermodynamic Derivatives

Application of (B.22) to the right side yields with (x, y) = (p, h)

Vρ
Vp

∣∣∣∣
s
= Vρ
Vp

∣∣∣∣
h
− Vs/Vphh
Vs/Vhhp

Vρ
Vh

∣∣∣∣
p

(B.25)

From (B.21) and (B.18) we find

Vs/Vphh
Vs/Vhhp

= − Vh
Vp

∣∣∣∣
s
= −v = − 1

ρ
(B.26)

Therefore
1
a2 =

Vρ
Vp

∣∣∣∣
h
+ 1

ρ
Vρ
Vh

∣∣∣∣
p

. (B.27)

Second Derivatives

The equations above can easily be used to form second derivatives, which
may be written as follows

VA
VB

∣∣∣∣
C

with A = Va
Vb

∣∣∣∣
c

(B.28)

The derivative VA/VBhC can be reduced to derivatives of A, B, C with
respect to x or y. Therein, the derivatives VA/V xhy and/or VA/V yhx will
appear. To compute these, A is reduced to derivatives of a, b, c with respect
to x or y. Then A can be differentiated by x and/or y, which gives the
required derivatives. In the same way derivatives of any desired order
can be formed.

The above relations were implemented in a Maple-package. The re-
sulting program deriv, developed for the work presented in [Bauer, 1999],
reduces any first or second derivative of the thermodynamic functions T ,
p, v, h, u, s, f , n, x to derivatives of the fundamental equations f (T , v),
n(T , p) or h(s, p). The fundamental equation for the free energy is also
included in the form of f (T , ρ).

For every fundamental equation several basic properties and deriva-
tives are used as an option to substitute for the derivatives of the funda-
mental equation. A shorthand notation is used in the following: subscript
denotes derivatives, repeated subscripts higher order derivatives, vari-
ables that do not appear are held constant, e. g.,

fTρ = V
Vρ

(
V f
VT

∣∣∣∣
ρ

)∣∣∣∣∣
T

248

B.3 Derivatives in the Two-Phase Region

In the fundamental equation f (T , ρ) these are

p = ρ2 fρ

s = − fT

pT = ρ2 fTρ

pρ = 2ρ fρ + ρ2 fρρ

cv = −T fTT

pTT = ρ2 fTTρ

pρρ = 2 fρ + 4ρ fρρ + ρ2 fρρρ

pTρ = 2ρ fTρ + ρ2 fTρρ

cvT = − fTT − T fTTT

and for the fundamental equation n(T , p) the basic derivatives are:

s = −nT

v = np

vT = npT

vp = npp

cp = −T ∗ npp

vTT = npTT

vpp = nppp

vT p = nppT

cpT == −nTT − TnTTT

where cv is the specific isochoric and cp is the specific isobaric heat capac-
ity. Except for these two quantity, subscripts denote derivatives.

Examples for the output of deriv:

Vρ
Vp

∣∣∣∣
h
= ρ (cvρ + pT)

ρ2pρ cv + T p2
T

Vρ
Vh

∣∣∣∣
p
= − ρ2pT

ρ2pρ cv + T p2
T

B.3 Derivatives in the Two-Phase Region

In the two-phase region the derivatives cannot be obtained from differ-
entiation of the fundamental equation. The two-phase equilibrium condi-
tions have to be taken into account. Some derivatives are undefined in
the two-phase region because of the fixed coupling of p and T : Vh/VT hp =

249

Appendix B. Thermodynamic Derivatives

cp = 1/ VT/Vhhp = 1/0. In summary: all derivatives VT/V xhp = 0 and
Vp/V xhT = 0 with an arbitrary thermodynamic variable x and their in-
verses are undefined.

Density Derivatives

With (x, y) = (v, T) (B.22) gives

Vv
Vh

∣∣∣∣
p
=
[
Vh
Vv

∣∣∣∣
p

]−1

= Vp/VT hv
Vh/VvhT Vp/VThv − Vh/VThv Vp/VvhT

(B.29)

Vv
Vp

∣∣∣∣
h
=
[Vp
Vv

∣∣∣∣
h

]−1

= Vh/VT hv
Vp/VvhT Vh/VThv − Vp/VT hv Vh/VvhT

(B.30)

Since h = u+ pv the enthalpy derivatives are

Vh
VT

∣∣∣∣
v
= Vu
VT

∣∣∣∣
v
+ v

Vp
VT

∣∣∣∣
v

Vh
Vv

∣∣∣∣
T
= Vu
Vv

∣∣∣∣
T
+ v

Vp
Vv

∣∣∣∣
T
+ p

where
Vu
VT

∣∣∣∣
v
=: cv

is the specific isochoric heat capacity and Vu/VvhT can be obtained from
differentiation of u = f + Ts. Employing (B.9) yields

Vu
Vv

∣∣∣∣
T
= V f
Vv

+ T
Vs
Vv

∣∣∣∣
T
= −p− T

V2 f
VTVv

= −p+ T
Vp
VT

∣∣∣∣
v

Therefore

Vh
VT

∣∣∣∣
v
= cv + v

Vp
VT

∣∣∣∣
v

(B.31)

Vh
Vv

∣∣∣∣
T
= T

Vp
VT

∣∣∣∣
v
+ v

Vp
Vv

∣∣∣∣
T

(B.32)

Now (B.29)and (B.30) get

Vv
Vh

∣∣∣∣
p
= Vp/VThv

T(Vp/VThv)2 − cv Vp/VvhT
Vv
Vp

∣∣∣∣
h
= cv + v Vp/VThv

cv Vp/VvhT − T(Vp/VThv)2

250

B.3 Derivatives in the Two-Phase Region

In case of two-phase equilibrium and constant composition the pressure
is a function of the temperature only, thus

Vp
Vv

∣∣∣∣
T
= 0

Vp
VT

∣∣∣∣
v
= dp

dT

The Clausius-Clapeyron relation defines the gradient of the saturation
pressure:

dp
dT

= s′′ − s′

v′′ − v′
= 1

T
h′′ − h′

v′′ − v′

The equations simplify to

Vv
Vh

∣∣∣∣
p
= 1

T
dT
dp

= v′′ − v′

s′′ − s′

Vv
Vp

∣∣∣∣
h
= − cv + v(dp/dT)

T(dp/dT)2 = − cv

T

(
dT
dp

)2

− v
T

dT
dp

The last equation is easily transformed into density derivatives as d =
1/v:

Vρ
Vh

∣∣∣∣
p
= −ρ2 Vv

Vh

∣∣∣∣
p
= −ρ2

T
dT
dp

Vρ
Vp

∣∣∣∣
h
= −ρ2 Vv

Vp

∣∣∣∣
h
= ρ2cv

T

(
dT
dp

)2

+ ρ
T

dT
dp

Heat Capacity

To compute the isochoric heat capacity in the two-phase region (B.22) is
applied with (T , x) as independent parameters

cv = Vu
VT

∣∣∣∣
x
− Vv
VT

∣∣∣∣
x

Vu/V xhT
Vv/V xhT

In the last term, x can be canceled down:

cv = Vu
VT

∣∣∣∣
x
− Vv
VT

∣∣∣∣
x

Vu
Vv

∣∣∣∣
T

From (B.32) and (B.3) we find

Vu
Vv

∣∣∣∣
T
= T

dp
dT

− p

251

Appendix B. Thermodynamic Derivatives

Differentiation of u = xu′′ + (1− x)u′ and v = xv′′ + (1− x)v′ yields, since
the liquid and vapor properties are a function of T only,

Vu
VT

∣∣∣∣
x
= x

du
dT

′′
+ (1− x) du

dT

′

Vv
VT

∣∣∣∣
x
= x

dv
dT

′′
+ (1− x) dv

dT

′

The total differentials of u and v can be written as

du
dT

= Vu
VT

∣∣∣∣
p
+ Vu
Vp

∣∣∣∣
T

dp
dT

dv
dT

= Vv
VT

∣∣∣∣
p
+ Vv
Vp

∣∣∣∣
T

dp
dT

Application of (B.20) yields

Vu
VT

∣∣∣∣
p
= − Vu/VT hv

Vu/VvhT
Vv
VT

∣∣∣∣
p
= − Vp/VThv

Vp/VvhT

and from (B.22) we find

Vu
Vp

∣∣∣∣
T
= Vu
Vv

∣∣∣∣
T
− Vu
VT

∣∣∣∣
v

Vp/VThv
Vp/VvhT

Therein Vu/VThv and Vu/VvhT are known from (B.3) and (B.3). Alto-
gether we obtain

cv = xc̃′′v + (1− x)c̃′v
where c̃′′v and c̃′v are the limiting isochoric heat capacities on the dew and
boiling point when approached from the two-phase region

c̃′′v = c′′v −
T

Vp/Vvh′′T

(
dp
dT

− Vp
VT

∣∣∣∣′′
ρ

)2

c̃′v = c′v −
T

Vp/Vvh′T

(
dp
dT

− Vp
VT

∣∣∣∣′
ρ

)2

252

C

Moving Boundary Models

This appendix details some of the derivations of the moving boundary
model equations. For the sake of a concise treatment of the key ideas in
Chapter 4, it has been moved here. The nomenclature is the same as in
Section 4.11.

Mass- and Energy Balances

The detailed derivation of the mass- and energy balances of the super-
heated and two phase zones of the three region moving boundary model
is done as follows.

Mass Balance for the Two-Phase Region

The mass balance (4.6) is integrated over the two-phase region from L1

to L1 + L2. Applying Leibnitz’s rule to a constant area pipe yields

A
d
dt

∫ L1+L2

L1

ρdz+Aρl
dL1

dt
− Aρn

d(L1 + L2)
dt

+ ṁ23 − ṁ12 = 0.

The flow is assumed to be homogeneous at equilibrium conditions with a
mean density of ρ = γ̄ ρn + (1− γ̄)ρl . The mass balance for the two-phase
region becomes

A
[

d
dt
(ρ2 L2) + (ρl − ρn)dL1

dt
− ρn

dL2

dt

]
= ṁ12 − ṁ23 (C.1)

where ρ2 = γ̄ ρn +(1−γ̄)ρl . Assuming that dγ̄ /dt = 0, the time derivative
of ρ2 can be expanded to

dρ2

dt
=
(

γ̄ dρn
dp

+ (1− γ̄)dρl

dp

)dp
dt

.

253

Appendix C. Moving Boundary Models

which inserted into the mass balance (C.1) gives the final mass balance
for the two-phase region as stated in (4.62).
Energy Balance for the Two-Phase Region

The energy balance (4.48) is integrated over the two-phase region from
L1 to L1 + L2. For a constant area pipe this gives

A
d
dt

∫ L1+L2

L1

ρhdz+ Aρlhl
dL1

dt
− A(L1 + L2)dp

dt

− Aρnhn
d(L1 + L2)

dt
+ ṁ23hn − ṁ12hl = q′w22.

(C.2)

Note that ρl, hl are the fluid conditions at L1 and ρn, hn are the fluid
conditions at (L1 + L2). The first term is evaluated as

d
dt

∫ L1+L2

L1

ρhdz = d
dt

∫ L1+L2

L1

(γ ρnhn + (1− γ)ρl hl) dz

= d
dt
[(γ̄ ρnhn + (1− γ̄)ρlhl) L2]

=L2

[
γ̄ d(ρnhn)

dp
+ (1− γ̄)d(ρl hl)

dp

]
dp
dt

+ [γ̄ ρnhn + (1− γ̄)ρlhl] dL2

dt

(C.3)

Inserting (C.3) into (C.2) gives the final energy balance for the two-phase
region as state in (4.63).
Mass Balance for the Superheated Region

The mass balance (4.6) is integrated over the superheated region from
L1 + L2 to L. This yields∫ L

L1+L2

VAρ
V t

dz+
∫ L

L1+L2

Vṁ
V z

dz = 0.

Integrating the first term and integrating the second term give for a con-
stant area pipe

A
d
dt

∫ L

L1+L2

ρdz+ Aρ(L1 + L2)d(L1 + L2)
dt

+ ṁout − ṁ23 = 0. (C.4)

The mean density in the superheated region is ρ3 = 1
L3

∫ L
L1+L2

ρdz �
ρ(p, h3), which inserted in the mass balance (C.4) gives

A
[

L3
dρ3

dt
+ (ρn − ρ3)dL1

dt
+ (ρn − ρ3)dL2

dt

]
= ṁ23 − ṁout. (C.5)

254

Mass- and Energy Balances

The derivative of ρ3 is calculated as

dρ3

dt
=Vρ3

Vp

∣∣∣
h

dp
dt
+ Vρ3

Vh

∣∣∣
p

dh
dt

=
(1

2
Vρ3

Vh3

∣∣∣
p

dhn
dp

+ Vρ3

Vp

∣∣∣
h

)dp
dt
+ 1

2
Vρ3

Vh3

∣∣∣
p

dhout

dt

(C.6)

The expression for dρ3
dt is inserted into (C.5), which gives the final mass

balance for the superheated region as stated in (4.58).

Energy Balance for the Superheated Region

The energy Equation (4.48) is integrated over the superheated region
from L1 + L2 to L. The integral evaluates to

A
d
dt

∫ L

L1+L2

ρhdz+ Aρ(L1 + L2)h(L1 + L2)d(L2)
dt

− AL3
dp
dt
+ ṁouthout− ṁ23hn = q′w33.

(C.7)

The first term is calculated as

d
dt

∫ L

L1+L2

ρhdz = d
dt
(ρ̄3h̄3 L3) = −1

2
ρ̄3(hn + hout)

(d(L1 + L2)
dt

)
+ 1

2
L3(hn + hout)dρ̄3

dt
+ 1

2
ρ̄3 L3

(dhn
dp

dp
dt
+ dhout

dt

) (C.8)

where h̄3 = 1
2 (hn +hout) and ρ̄3 = ρ(p, h̄3). Equation (C.8) and the expres-

sion for dρ̄3
dt from equation (C.6) is inserted into (C.7), which after some

rearranging gives the final energy balance for the superheated region,
Equation (4.59).

Energy Balance for the Pipe Walls

For the wall region adjacent to the two-phase region α = L1 and β =
L1 + L2, which inserted in (4.65) gives

CwρwAw

[
L2

dTw2

dt
+ (Tw(L1) − Tw2) dL1

dt

+ (Tw2 − Tw(L1 + L2)) dL2

dt

]
= −q′w22 + q′ambw2

(C.9)

255

Appendix C. Moving Boundary Models

Tw(L1) is given by (4.67), and Tw(L1 + L2) is given by

Tw(L1 + L2) = Tw3 for
dL2

dt
> 0

Tw(L1 + L2) = Tw2 for
dL2

dt
≤ 0

(C.10)

For the wall region adjacent to the superheated region α = L1 + L2 and
β = L, which inserted in (4.65) gives

CwρwAw

[
L3

dTw3

dt
+ (Tw(L1) − Tw2) dL1

dt

+ (Tw(L1 + L2) − Tw3)
(

dL1

dt
+ dL2

dt

)]
= −q′w33 + q′ambw3.

(C.11)

256

D

Modelica Language
Constructs

The Modelica language specification1 defines the notions of subtype and
type equivalence for classes as follows:

For any classes S and C , S is a supertype of C and C is a subtype of
S if they are equivalent or if:

• every public declaration element of S also exists in C (according to
their names)

• those element types in S are supertypes of the corresponding ele-
ment types in C .

A base class is the class referred to in an extends clause. The class contain-
ing the extends clause is called the derived class. Example: Base classes
of C are typically supertypes of C , but other classes not related by inher-
itance can also be supertypes of C .

Two types T and U are equivalent if:

• T and U denote the same built-in type (one of RealType, Inte-
gerType, StringType or BooleanType), or

• T and U are classes, T and U contain the same public declaration
elements (according to their names), and the elements types in T
are equivalent to the corresponding element types in U.

The specification defines further details about type relations (type
identity and ordered type identity, but the above definitions suffice for
the present discussion. The distinguishing feature of the subtype rela-
tions is that it is not based on inheritance but on the above definitions
instead. This is a necessary condition for using multi-facet models in a
safe way and in combination with validated model libraries.

1Here quoted from version 1.4 at http://www.modelica.org

257

