The lower and middle Cambrian of Sweden: trilobites, biostratigraphy and intercontinental correlation

Axheimer, Niklas

2006

Link to publication

Citation for published version (APA):
The lower and middle Cambrian of Sweden: trilobites, biostratigraphy and intercontinental correlation

Niklas Axheimer

LITHOLUND theses No 10 Doctoral thesis
Department of Geology
Lund University
The lower and middle Cambrian of Sweden: trilobites, biostratigraphy and intercontinental correlation

Niklas Axheimer
DOCTORAL DISSERTATION

Title and subtitle
The lower and middle Cambrian of Sweden: trilobites, biostratigraphy and intercontinental correlation

Abstract
This thesis is based on studies of Cambrian successions in Sweden, with particular focus on the middle Cambrian biostratigraphy and its correlative relationship to the proposed global agnostid zonation. The investigated material, mainly trilobites, was collected from both outcrops and drill cores from five provinces in Sweden: Skåne (Scania), Öland, Västergötland, Jämtland and Lapland.

The Almbacken drill core penetrated c. 30 m of Cambrian strata, constituting one of the stratigraphically most complete successions of this age in Scania. Thirty-two trilobites were identified to species level and used to subdivide the core into seven biozones; from the Ptychagnostus gibbus Zone of the lower middle Cambrian to the Lejagryge laevigata Zone of the upper middle Cambrian. Another drill core (Andrarum-3) was taken at Andrarum, south-eastern Scania. It covers c. 29 m of middle Cambrian to Furongian (upper Cambrian) strata. Based on the fossil content, the core was subdivided into eight biozones; from the middle Cambrian *P. atavus* Zone to the Furongian *Parabolina spinulosa* Zone. A series of alum shale samples yielded a positive δ¹³C excursion corresponding to the globally recognisable Steptoean Positive Carbon Isotope Excursion (SPICE). This is the first time SPICE is documented in Baltic, and based on organic matter from an alum shale setting.

New material collected from Västergötland showed that the *P. punctuosus* and *Goniagnostus nathorsti* zones are considerably more extensively developed in this area than previously thought. Trilobites collected from eight localities show that the two zones are represented in a 15 cm thick and impermeable conglomeratic limestone at both Mount Kinnekulle and in the larger area of Falbygd-Billingen. Moreover, the classical locality of Gudhem yielded a trilobite fauna including several widespread key agnostid species. In particular, *L. laevigata* (Dalman, 1828) was studied as it was first appearance datum (FAD) currently is proposed to define the base of the uppermost stage in the Cambrian Series 3. We suggested that the base of the *L. laevigata* Zone of Scandinavia should be defined by the FAD of the eponymous species. Of similar global stratigraphical importance is *P. atavus* (Tullberg, 1880). Its FAD is proposed to define the base of the middle stage of the Cambrian Series 3. A syntype series collected from the Forsemölle-Andrarum area of Scania of both this species and the closely similar *P. intermedius* (Tullberg, 1880) were studied. It was concluded that they are conspecific, and that *P. intermedius* is the junior synonym of *P. atavus*.

A revision of the conspicuous eodiscoid *Dawsonia oelandica* (Westergård, 1936) was made, based on well-preserved material from Mon, Jämtland. Reconstructions of this species were presented, and its functional morphology and relationship to closely related taxa were discussed. Associated trilobites placed the material stratigraphically within the lower middle Cambrian *P. praecurrents* Zone. Another eodiscoid fauna, including the first reported occurrence from Scandinavia of *Neocobboida aff. dentata* (Lermontova, 1940) and *Chelediscus acifer* Rushton, 1966, was also studied. These eodiscoids, recovered from the Liohökt section, Lapland, offered a tentative correlation between the uppermost lower Cambrian strata of Baltica and eastern and western Avalonia.

From the studies included in this thesis it has been shown that the proposed global zonation can be applied to Swedish middle Cambrian successions, substituting the traditional zonation in our overall strive for a common global zonation. Accordingly, eight biozones can be recognised (in ascending order): the *Eccoparadoxides insularis*, *P. praecurrents*, *P. gibbus*, *P. atavus*, *P. punctuosus*, *G. nathorsti*, *L. laevigata* and *Agnostus pisiformis* zones.

Key words:
Paleoentology, Cambrian, biostratigraphy, trilobites, correlation, Sweden

Classification system and/or index terms (if any):

Supplementary bibliographical information:

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
</table>

ISSN and key title:
1651-6648 Litholund theses

| ISBN | 91-86746-78-2 |

Recipient's notes
Number of pages 90 (21+18+7+8+9+5+9+13)

| Price | |

Security classification

Distribution by (name and address)

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature: [Signature]

Date: 2006-09-04
To my wife Petra,
and my mother and father Margareta and Leif
Contents

Abstract .. 5
Populärvetenskaplig sammanfattning ... 6
1. Introduction ... 8
2. Summary of papers ... 8
3. Material and methods .. 12
4. The Cambrian of Sweden ... 12
5. Middle Cambrian faunas – a review .. 14
6. Stratigraphy and correlation .. 15
7. Acknowledgements ... 17
8. References .. 17
Abstract

This thesis is based on studies of Cambrian successions in Sweden, with particular focus on the middle Cambrian biostratigraphy and its correlative relationship to the proposed global agnostoid zonation. The investigated material, mainly trilobites, was collected from both outcrops and drill cores from five provinces in Sweden: Skåne (Scania), Öland, Västergötland, Jämtland and Lapland.

The Almbacken drill core penetrated c. 30 m of Cambrian strata, constituting one of the stratigraphically most complete successions of this age in Scania. Thirty-two trilobites were identified to species level and used to subdivide the core into seven biozones; from the Ptychagnostus gibbus Zone of the lower middle Cambrian to the Lejopyge laevigata Zone of the upper middle Cambrian.

Another drill core (Andrarum-3) was taken at Andrarum, south-eastern Scania. It covers c. 29 m of middle Cambrian to Furongian (upper Cambrian) strata. Based on the fossil content, the core was subdivided into eight biozones; from the middle Cambrian P. atavus Zone to the Furongian Parabolina spinulosa Zone. A series of alum shale samples yielded a positive δ¹³C excursion corresponding to the globally recognisable Steptoean Positive Carbon Isotope Excursion (SPICE). This is the first time SPICE is documented in Baltica, and based on organic matter from an alum shale setting.

New material collected from Västergötland showed that the P. punctuosus and Goniagnostus nathorsti zones are considerably more extensively developed in this area than previously thought. Trilobites collected from eight localities show that the two zones are represented in a 15 cm thick and impersistent conglomeratic limestone at both Mount Kinnekulle and in the larger area of Falbygden-Billingen. Moreover, the classical locality of Gudhem yielded a trilobite fauna including several widespread key agnostoid species. In particular, L. laevigata (Dalman, 1828) was studied as its first appearance datum (FAD) currently is proposed to define the base of the uppermost stage in the Cambrian Series 3. We suggested that the base of the L. laevigata Zone of Scandinavia should be defined by the FAD of the eponymous species. Of similar global stratigraphical importance is P. atavus (Tullberg, 1880). Its FAD is proposed to define the base of the middle stage of the Cambrian Series 3. A syntype series collected from the Forsemölla-Andrarum area of Scania of both this species and the closely similar P. intermedius (Tullberg, 1880) were studied. It was concluded that they are conspecific, and that P. intermedius is the junior synonym of P. atavus.

A revision of the conspicuous eodiscoid Dawsonia oelandica (Westergård, 1936) was made, based on well preserved material from Mon, Jämtland. Reconstructions of this species were presented, and its functional morphology and relationship to closely related taxa were discussed. Associated trilobites placed the material stratigraphically within the lower middle Cambrian P. praecurrens Zone. Another eodiscoid fauna, including the first reported occurrence from Scandinavia of Neocobboldia aff. dentata (Lermontova, 1940) and Chelediscus acifer Rushton, 1966, was also studied. These eodiscoids, recovered from the Luobákti section, Lapland, offered a tentative correlation between the uppermost lower Cambrian strata of Baltica and eastern and western Avalonia.

From the studies included in this thesis it has been shown that the proposed global zonation can be applied to Swedish middle Cambrian successions, substituting the traditional zonation in our overall strive for a common global zonation. Accordingly, eight biozones can be recognised (in ascending order): the Eccaparadoxides insularis, P. praecurrens, P. gibbus, P. atavus, P. punctuosus, G. nathorsti, L. laevigata and Agnostus pisiformis zones.

Lagerföljderna utgörs främst av sandstenar, vilka överlagras av skiffer med horisonter av kalksten. Sedimenterna avsattes i tidig kambrium då havet steg över land, skiffern avsattes på större vattendjurp medan kalkstenslagren i regel motsvarar tidernas havyttesänkningar. I Västergötland och Skåne, två viktiga lokaler på den geologiska världskartan, är är sk. alunskiffern vanligt förekommande. Den har studerats intensivt under drygt 300 år och har fått sitt namn efter alun, ett salt som förr utvanns genom bränning och lakning av skiffern och därefter användes bland annat för garvning av läder, färgning av garn eller som blodstillande medel. Under 1700-talet och första tionden av 1800-talet var brytningen av alunskiffer en storskalig industri som resulterade i en mängd stenbrott runtom i Sverige. Mest omfattande var kanske verksamheten vid Andrarum i Skåne och på Kinnekulle i Västergötland. Skiffern är svart på grund av sin höga halt av organiskt material, och bildades under syrefattiga förhållanden i kambrium och början av ordovicium. Karakteristiska kalkstenslinser, även kallade orstenar, som ligger insprängda i skiffern innefattar ibland mycket välbevarade fossil. Orstenarna skapades efter att det skifferbildande materialet avsatts på havsbottnen, kanske genom upplösning och utfällning av karbonater i det ursprungliga sedimentet.

Trilobiterna var en mycket framgångsrik djurgrupp som kom att spela en viktig roll i haven under kambrium och ordovicium, för omkring 542 till 444 miljoner år sedan. Under tidig ordovicium började trilobiterna att avta i antal och artikedom, till fördel för andra organismer. Knappt 200 miljoner år senare, i slutet av perm, försvann de för alltid från jordens yta. Trots detta kan vi studera dem än idag, till synes omärkbart förändrade efter att bevarats inneslutna i sedimentära bergarter under hundratals miljoner år.

Trilobiterna är en klass ledjur som uteslutande levde i havet och var mycket mångformiga och framgångsrika. I dag är det beskrivits mer än 5000 släkten och, uppskattningsvis, 20 000 arter i flertalet olika former och storlekar, och fortfarande beskrivs många nya arter årligen. Trilobiter är inte bara fascinerande på grund av sin vackra form, de är också användbara inom en rad olika geologiska och paleontologiska forskningsområden, främst kanske biostratigrafi.

Den internationella subkommissionen för kambrisk stratigrafi (ISCS) är en internationell organisation vars mål är att indela kambrion i underavdelningar, vilkas gränser i största möjliga mån ska kunna identifieras i så många områden som möjligt på olika kontinenter, något som är ett svårt och tidskrävande arbete. Den biostratigrafiska indelningen av mellankambrium i Sverige grundades framför allt av paleontologen Anton H. Westergård i ett arbete från 1946. Westergård indelade mellankambrium i nio biozoner och samlade dessa inom tre s.k. etager och hans arbete har varit av mycket stor betydelse för den moderna kambriska forskningen, inte bara i Sverige. Även om Westergårdens arbete står sig väl än idag har forskningsresultat de senaste 60 åren medfört ett behov av att förnya hans indelning för att på bästa möjliga sätt kunna knyta de svenska lagerföljderna till den globala indelning ISCS arbetar med.

1. Introduction

This thesis is the result of seven papers (I–VII below) dealing with trilobites from Sweden and their use in primarily middle Cambrian biostratigraphy and intercontinental correlation. Papers related to this subject but not included in the thesis are those of Axheimer (2003, 2004), Axheimer & Ahlberg (2001a, b, 2004), Axheimer et al. (2005a, b) and Ahlberg et al. (2004a, b, 2006a), Terfelt et al. (2003) and Calner et al. (2006). Specimens illustrated in this synthesis are housed at the Department of Geology, Lund University (LO). The thesis is compiled to meet the formal requirements set for academic dissertations at universities in Sweden.

2. Summary of papers

Paper I

Summary: This paper deals with a drill core taken in 1949 at Almbacken, near the small community of Södra Sandby, Scania (Fig. 1). The core is c. 30 m long and consists of middle and lower Cambrian strata. The middle Cambrian part of the core is c. 28.3 m thick, and it is one of the stratigraphically most complete successions of this age in Scania. It is represented by dark grey to black alum shales and occasional layers and lenses of dark grey to black limestone (stinkstone or orsten). The lowermost c. 1.50 m consist of siltstone and a minor limestone bed at the very bottom of the core. These presumably lower Cambrian deposits are scarce in fossils and yielded only indeterminate brachiopod valves and fragments of polym erid trilobites. Accordingly, the lower–middle Cambrian boundary could not be precisely located and was tentatively placed at the top of a series of siltstones.

The drill core was logged and its faunal content was recorded centimetre by centimetre, resulting in 32 trilobites identified to species level. These species were used in a high-resolution biostratigraphical subdivision of the core. Fossils were found in both the shale and limestone. Three major and richly fossiliferous limestone beds were documented; the Andrarum Limestone, the Exsulans Limestone and the ”Fragment” Limestone. The preservation of the fossils is generally good, and often with full convexity in the limestone intercalations, allowing also documentation of the growth stages in the pygidia of Ptychagnostus punctuosus (Angelin, 1851). In total, seven biozones could be recognised using Westergård’s (1946) scheme (in descending order): the Lejopyge laevigata Zone, the Solenopleura? brachymetopa Zone, the P. lundgreni–Goniagnostus nathorsti Zone, the P. punctuosus Zone, the Hypagnostus parvifrons Zone, the Tomagnostus fissus–P. atavus Zone and the P. gibbus Zone. The biostratigraphical subdivision of the middle Cambrian established by Westergård (1946) was also compared to the global scheme adopted by Peng & Robison (2000), and it was shown that both are applicable to the Almbacken drill core.

Paper II

Summary: The aim of this paper was to present new trilobite findings, collected at eight localities in Västergötland, south-central Sweden (Fig. 1). Västergötland holds several classical localities with middle Cambrian (as well as Furongian) deposits, and the table mountain of Kinnekulle has been studied for more than two hundred years. The more extensive area of Falbygden-Billingen is, however, less well known. The middle Cambrian of Västergötland differs from that of Scania in several aspects. The richly fossiliferous Andrarum Limestone is poorly developed in Västergötland and is, in part, represented merely by the conspicuous Exporrecta Conglomerate. The similarly highly fossiliferous Exsulans Limestone of the Ptychagnostus gibbus Zone, as well as the Acadoparadoxides [or Paradoxides (Plutonides); Fletcher et al. 2005] oelandicus Superzone, are not represented in Västergötland. Thus, the faunal diversity of the middle Cambrian of Västergötland seems to be restricted and reaches its peak values in the ‘Exsulcatus-layer’, within the stinkstone lenses of the Lejopyge laevigata Zone.

The biostratigraphical zonation and correlation table of Västergötland was erected by Westergård (1946), and has since remained unchanged. His scheme shows an absence of both the P. lundgreni–Goniagnostus nathorsti and the P. punctuosus zones. Although a few specimens of P. punctuosus have previously been recorded, their stratigraphical position has not been confirmed. The material collected from the eight localities by the senior author, however, yielded numerous well preserved specimens of P. punctuosus, P. lundgreni (Tullberg, 1880) and G. nathorsti (Brøgger, 1878). Theseagnostoids were found in both loose boulders and outcrops at Kinnekulle,
The lower and middle Cambrian of Sweden: trilobites, biostratigraphy and intercontinental correlation – Synthesis

Mössberg and Ålleberg. At seven of the localities, a previously unrecognised conglomeratic limestone with a thickness of up to 15 cm was discovered, situated between the "Hypagnostus limestone bank" and the Exporrecta Conglomerate. The upper part of this limestone is richly fossiliferous and yielded a mixed fauna of the three species together with eight other trilobites identified to species level, in addition to hyoliths and brachiopods. The conglomeratic limestone has been found previously also at Djupadalen (locality 8), and together with the new discoveries from localities 1–7 its faunal content warrant the presence of both the P. punctuosus and the G. nathorsti zones in Västergötland. The restricted thickness of the conglomeratic limestone, however, suggests that the two zones most likely are incomplete.

Paper III

Summary: The eodiscoid trilobite Dawsonia oelandica (Westergård, 1936) is reviewed in this paper. The species was originally described from Sweden by Westergård (1936), based on material collected at the island of Öland, south-eastern Sweden; two cephala were recovered from a drill core and one pygidium was collected from a locality near the small community of Mössberga. New, well preserved, material was collected by T. R. Weidner (Juelsminde, Denmark) from a block of dark grey limestone at a road section near the community of Mon, south of Östersund in Jämtland, central Sweden (Fig. 1). This material consists of five cephala and two pygidia, allowing for a thorough redescriptions and discussion of the species. Associated trilobites allow the material to be placed stratigraphically within the lower middle Cambrian Ptychagnostus praecurrens Zone. The species has also been reported from Siberia and Germany, and its affinity to closely related species from, e.g., New Brunswick, Newfoundland and Wales is discussed.

Dawsonia oelandica is a conspicuous eodiscoid with an elaborate granulation on major parts of both the cephalon and pygidium. The preglabellar field is strongly depressed and the cephalic border is subdivided into numerous distinct "segments". The occipital ring is extended into a long glabellar spine of approximately the same length as the cephalon. The pygidium is strongly convex and displays five pleural bands, separated by distinct pleural furrows directed backwards. The pygidia from Jämtland shows semi-circular damages on the third and fourth axial rings, which led to the interpretation that these rings were extended into small spines or spine-like tubercles. A new latex cast of the holotype (a pygidium) from Öland yielded a previously unknown axial spine on the attached thoracic tergite. Clearly, D. oelandica sported an impressive display of spines.

Mössberg and Ålleberg. At seven of the localities, a previously unrecognised conglomeratic limestone with a thickness of up to 15 cm was discovered, situated between the "Hypagnostus limestone bank" and the Exporrecta Conglomerate. The upper part of this limestone is richly fossiliferous and yielded a mixed fauna of the three species together with eight other trilobites identified to species level, in addition to hyoliths and brachiopods. The conglomeratic limestone has been found previously also at Djupadalen (locality 8), and together with the new discoveries from localities 1–7 its faunal content warrant the presence of both the P. punctuosus and the G. nathorsti zones in Västergötland. The restricted thickness of the conglomeratic limestone, however, suggests that the two zones most likely are incomplete.

Paper IV

Summary: The fourth paper deals with the upper middle Cambrian agnostoid Lejopyge laevigata (Dalman, 1828), its
biozone and applicability in intercontinental correlation. Work currently in progress by the International Subcommission on Cambrian Stratigraphy (ISCS) have shown that at least ten biohorizons have potential for global correlation in the upper half of the Cambrian, one of these being the first appearance datum (FAD) of *L. laevigata*. This species is globally distributed and used in many areas of the world, including Sweden, as a zonal index fossil. Currently, the FAD of *L. laevigata* is considered as a potential stage boundary level for the base of the upper stage of the third Cambrian series (Babcock et al. 2005). As such, it was of great importance to document the faunal succession in the *L. laevigata* Zone at the classical locality of Gudhem, Västergötland, south-central Sweden (see Axheimer et al. 2006b: paper IV).

The *L. laevigata* Zone succeeds the Solenopleura? brachymetopa Zone, which, by common practice, has been used to be defined by the lower and upper limits of the Andrarum Limestone. Although the Andrarum Limestone is important for regional correlations, a biozone defined by a spatially restricted lithological unit is unfortunate; this limestone is, for instance, poorly developed or even missing in Västergötland. Furthermore, the original definition of the *L. laevigata* Zone is vague, seemingly based upon local taxon abundance and not stratigraphical range. Furthermore, the nominal species has been recorded well below the base of the traditional *L. laevigata* Zone. Although such observations were not made at the studied locality, *L. laevigata* has been found below the Andrarum Limestone in a drill core from Scania, as noted in this paper (see also Ahlberg et al. 2006b). Therefore, it was suggested that the *L. laevigata* Zone in Scandinavia should be extended to include the traditional *S.? brachymetopa* Zone, and, following Peng & Robison (2000), its lower boundary should be defined by the FAD of *L. laevigata*. The base of the succeeding *Agnostus pisiformis* Zone has traditionally been defined by the lowest level where *A. pisiformis* (Wahlenberg, 1818) occur in abundance. As this is a vague definition of a zonal boundary, we suggested that the base of the *A. pisiformis* Zone should be placed at the last appearance datum (LAD) of *L. laevigata*. In addition to *L. laevigata*, the Gudhem succession yielded several other geographically widespread agnostoid species, such as *Clavagnostus spinosus* (Resser, 1938), *Glaberagnostus altaicus* Romanenko, 1985 and *Tomagnostella sulcifera* (Wallerius, 1895), which together with the zonal index provide a high correlateive potential with sections outside Scandinavia.

Paper V

Summary: This paper deals with the common, globally distributed agnostoid *Ptychagnostus atavus* (Tullberg, 1880). Originally described from Andrarum, Sweden, the taxonomy of this species and its relationship to *P. intermedius* (Tullberg, 1880) have been confused, in part because of inadequate or erroneous illustrations of specimens from the syntype series. A proposal to define the middle stage of the third Cambrian series by the FAD of *P. atavus* was recently approved by ISCS, justifying a clarification of its taxonomy and a review of the type material.

Ptychagnostus atavus was originally described by Tullberg (1880) and rudimentarily illustrated by four sketches. The syntype material, one cephalon and one pygidium, were collected from a loose stinkstone (orsten) at Forsemölja in the Andrarum area, Scania (Fig. 1). An associated cephalon, illustrated by Westergård (1946), could not be located in the collections at Lund University. Tullberg (1880) also described *P. intermedius* from the same area, based on c. 50 cephalas and pygidia collected from alum shale within the *P. atavus* Zone, and noted its similarity to *P. atavus* and *P. affinis* (Brogger, 1878). Later, Westergård (1946) concluded that the differences between *P. atavus* and *P. intermedius* were insignificant and synonymised the two names. However, *P. intermedius* was independently reinstated by several authors in the 1980’s as a valid species.

Close examination of the type material of *P. intermedius* provided new information regarding the taxonomy and affinity of the species. For example, the median tubercle is prominent...
and medially indents the F2 resulting in a distinctly hexagonal M2, similar to that in the syntype pygidium of \textit{P. atavus}. Hence, it was concluded that \textit{P. intermedius} is a subjective junior synonym of \textit{P. atavus}, as noted by Westergård (1946).

Paper VI

Summary: This paper deals with a new eodiscoid fauna recovered from the top of the Torneträsk Formation (upper lower Cambrian) at the Luobákti section, south of Lake Torneträsk, northern Sweden (Fig. 1). The section studied consists of sandstones alternating with siltstone- and shale-dominated units, and subordinate limestone and conglomerate beds (Moberg 1908; Kulling 1964; Thelander 1982). The succeeding Alum Shale Formation is unfossiliferous, but possibly of middle Cambrian age. The material described was collected by PC from a bioclastic limestone in a ravine at the northern flank of Mount Luobákti (Fig. 3). The dense limestone is dark grey to black in colour. The fauna is dominated by trilobites, followed by phosphatic-shelled brachiopods, rare helcionellid molluscs and a bradoriid. Trilobites found were: \textit{Holmia} sp., \textit{Orodes} \textit{laponica} (Ahlberg, 1980), \textit{Strenuaeva inflata} Ahlberg & Bergström, 1978 and the eodiscoids \textit{Chelediscus acifer} Rushton, 1966 and \textit{Neocobboldia} aff. \textit{dentata} (Lermontova, 1940).

The generic composition of the Luobákti trilobite fauna indicates a late early Cambrian age, and in terms of Scandinavian biostratigraphy it was recovered either from the \textit{Holmia kjerulfi} or the \textit{Ornamentaspis? linnarssoni} Assemblage Zone. The presence of a species of \textit{Holmia} may suggest that the fauna comes from the \textit{H. kjerulfi} Assemblage Zone, but that genus ranges upwards into the \textit{O.? linnarssoni} Assemblage Zone (Nikolaisen 1986). The stratigraphical position of the fauna, at the top of the lower Cambrian and just below the Alum Shale Formation, suggests that it belongs to the \textit{O.? linnarssoni} Assemblage Zone.

Intercontinental correlation within the lower Cambrian is often difficult, hampered by the strongly provincial character of the trilobite faunas (e.g., Palmer 1968). Several genera and species of eodiscoids seem, however, to have a wider geographical distribution than polymerid trilobites, and hence are important for long-distance correlations in the upper lower Cambrian (e.g., Robison et al. 1977; Fletcher 2003; Geyer 2005). Since the \textit{Neocobboldia} species recovered from the Luobákti section could not be adequately identified it was of little use for high-resolution correlation. \textit{Chelediscus acifer}, however, provides a novel tie-line between lower Cambrian successions in Baltica and Avalonia.

Paper VII

Summary: This paper deals with the biostratigraphy and the discovery of a positive \(\delta^{13}C\) excursion in the middle Cambrian–Furongian interval from a drill core (Andrarum-3) that was taken near the Great Quarry at Andrarum, south-eastern Scania, Sweden (Fig. 1). The core has a diameter of 71 mm and comprises 28.90 m of dark grey or black, finely laminated mudstones and shales with early concretionary carbonate lenses (stinkstones or \textit{orsten}) and a few primary carbonate beds, including the middle Cambrian Andrarum Limestone. The Furongian part of the core comprises 11.55 m, whereas the middle Cambrian covers the remaining 17.35 m. The lithology and faunal content of the core were examined in cm-scale. Four trilobite and three phosphaticopod genera were recovered from the Furongian interval, whereas the middle Cambrian part of the core yielded 19 trilobite genera and two phosphatocopid genera. These fossils were used to subdivide the core into eight biozones, spanning from the Furongian \textit{Parabolina spinulosa} Zone to the middle Cambrian \textit{Ptychagnostus atavus} Zone.

Fiftyeight samples were taken from the core, each containing approximately three grams of ground and washed alum shale, and processed for \(\delta^{13}C\) analysis. An additional 19 samples were taken from the limestones for \(\delta^{13}C_{\text{carb}}\) analysis, for
comparisons to the organic carbon signal. The data from the carbonates showed values consistent with diagenetic alteration in the limestones and, hence, could not be used in the study. The $\delta^{13}C_{org}$ values, however, revealed a curve spanning the interval from the $P.$ atavus Zone into the lower $P.$ brevispina Subzone. The curve becomes increasingly positive through the middle Cambrian $Lejopyge$ laevigata and $Agnostus pisiformis$ zones and display peak values of $c.$ $-28.00 \%\delta^{13}C_{org}$ in the upper part of the lower Furongian $Olenus$ wahlenbergi Subzone through the middle part of the $O.$ attenuatus Subzone. Thereafter there is a gradual decrease, reaching significantly lower values in the upper $O.$ scanicus and lower $P.$ brevispina subzones. This excursion corresponds to the Steptocean Positive Carbon Isotope Excursion (SPICE), which is one of the largest positive $\delta^{13}C$ excursions of the Palaeozoic. It was initially recorded from the eastern Great Basin, USA (Brasier 1998; Saltzman et al. 1993; Saltzman et al. 1998), and is recognized here, for the first time, in Scandinavia.

The onset of the SPICE is quoted to be coeval with the FAD of $Glyptagnostus$ reticulatus (Angelin, 1851) (see, e.g., Peng et al. 2004), whereas in the Andrarum-3 drill core the onset can be noted at a lower stratigraphical level. This diachrony may be explained by uncertainties in the biostatigraphical resolution of the vastly thicker successions in, e.g., the Great Basin, USA, Kazakhstan and South China. The SPICE in the Andrarum-3 core appears to be a net shift of $+1.50$–$2.00 \%\delta^{13}C$, which is approximately half the magnitude of the SPICE recorded in other regions (see Saltzman et al. 2000; Peng et al. 2004). This may be explained by the fact that the present analyses were made on organic matter as opposed to the whole-rock carbonate analyses from other regions. It may also be related to temporal variations in the type, origin and/or burial history of the organic fraction analysed. The stratigraphic fit of the recorded excursion, however, corresponds well with the SPICE as documented elsewhere.

4. The Cambrian of Sweden

The Palaeozoic of Sweden (and Scandinavia in general) has been studied for well over 200 years, initiated by the works of Carl Linnaeus in the middle of the 18th century. Ever since, the Cambrian of Sweden has continued to receive attention of palaeontologists and some of the more important and long-lasting works that can be recognized are those of, e.g., Wahlberg (1818), Dalman (1827), Torell (1870), Tullberg (1880), Angelin (1854) and Linnarsson (1869). More recent papers, largely focused on trilobites, which have been of great importance for studies on the middle Cambrian, are the detailed works of Westergård (1936, 1942, 1944, 1946, 1948, 1950, 1953).

3. Material and methods

All studied material derives from the Cambrian of Sweden. The Almbacken drill core (Paper I) was taken in 1944 and is stored at the Department of Geology, Lund University. Thomas R. Weidner collected the material from Kinnekulle and the Falbygden-Billingen area in Västergötland (Paper II), as well as the material of $Dawsonia$ oelandica from Jämtland (Paper III). Anders Bengtsson collected the bulk of the material from Gudhem, Västergötland, described in Paper IV. Additional material was collected by the senior author and Per Ahlberg. The type specimens of $Psychoagnostus$ atavus and $P.$ intermedius described in Paper V were collected by Sven A. Tullberg at Andrarum, Scania. The lower Cambrian material from Luobákti, Swedish Lapland, was collected by Peter Cederström (Paper VI). The Andrarum-3 drill core (Paper VII) was made by Upplands Miljö- och Kärnborrning AB, Knutby.

Of the multi-authored papers (I, II, IV, V, VI and VII) included in this paper I have been deeply involved in composing and revising the text. In paper VII, I have contributed with text and revisions for all chapters except for the discussion on biomeres and the Furongian interval. In all papers (excluding the SEM-photographs in paper VI and figs. 3Q–T in paper VII), I have taken all photographs. Furthermore, I have made all line drawings and other illustrations except for those in paper VII, which were created by me, Mats E. Eriksson and Fredrik Terfelt.

All work was carried out at the Department of Geology, Lund University, except for the SEM photography (Department of Zoology, Lund University). Studies of the type material of $Dawsonia$ sculpa (Hicks, 1871) were conducted at the Sedgwick Museum in Cambridge, England. The majority of the fossils (except Paper I) were photographed with a digital camera (Nikon Coolpix 990), using the following technique: several photos (3–5) of each specimen were taken with different depth of focus. The series of images were then processed in the freeware program CombineZ, written by Alan Hadley, by stacking and combining them to provide a merged image with an optimal focus. For further information of the material and methods used, reference is given to the separate papers included in this thesis.
Major outcrop areas of Cambrian strata in Sweden can be found in the southern and south-central parts, on the island of Öland in the south-east and along the eastern margin of the Caledonian Front (Fig. 1). The accessibility of these outcrops is in the south and south-east generally restricted to old quarries and shoreline exposures. In the central and south-central parts of Sweden, i.e., in Västergötland, Östergötland and Närke, outcrops can be principally found in old quarries, for example in the table mountains of Västergötland. The Cambrian of Öland is mainly known from borings and scattered outcrops along the western shoreline. In a sinuous belt, c. 2000 km long, along the eastern Caledonian Front, Cambrian outcrops are discontinuously found in both the Autochthon and in the allochthonous units. Except for the Caledonides and neighbouring areas, the Cambrian deposits in Sweden have escaped tectonism and are generally completely unmetamorphosed, witnessing stable tectonic conditions in Baltica during the Cambrian Period.

The final break-up of Baltica from Laurentia occurred near the end of the Precambrian, opening up the Iapetus Ocean between these two terranes (Cocks & Torsvik 2002, 2005). Baltica, which includes Scandinavia and north-central Europe together with European Russia, was located between 60°S and 30°S during the Cambrian (Fig. 4). To the south of Baltica, the massive continent of Gondwana occupied large parts of the area surrounding the South Pole. Laurentia, positioned to the west of Baltica, moved northwards towards the equator where it remained to early Silurian times (Cocks & Torsvik 2002). Siberia was also an isolated continent, located north-east of Baltica. The generally thin succession of middle Cambrian and Furongian strata in Baltica and its vast lateral extent suggests that this palaeocontinent was low in topography and sediment supply, hence submerged under the sea for the major part of the Cambrian (Cocks & Torsvik 2005). There are no evident tectonic events that may have caused the flooding of Baltica, but the composition of the Cambrian successions is a tell-tale-sign of a general transgression (Cocks & Torsvik 2005).

In most areas the Cambrian successions rest with a profound unconformity on a peneplained Proterozoic crystalline basement. Locally along the Caledonian front, however, lower Cambrian strata rest on late Proterozoic sedimentary rocks (e.g., Greiling et al. 1999). A series of sandstones on top of this peneplain reflects flooding of Baltica in early Cambrian times. These lower Cambrian sandstones are in the central Baltic and south-central Sweden commonly referred to as the File Haidar Formation (Bergström & Gee 1985). The lower Cambrian deposits are a few tens of metres thick in south-central Sweden and thicken southwards towards Scania (Hardeberga Formation), south-eastwards towards Gotland, and northwards in the Caledonides where they attain

<table>
<thead>
<tr>
<th>TRADITIONAL SCANDINAVIAN BIOSTRATIGRAPHY</th>
<th>GLOBAL ZONATION</th>
<th>GENERAL LITHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERZONES</td>
<td>ZONES</td>
<td>SCANIA</td>
</tr>
</tbody>
</table>
| **C** | Paradoxides
ferchantamni | **C3** | Agnostus pinnamonis | Glyptagnostus stolidotus |
| | | **C2** | Lejopyge laevigata | Linguagnostus reconditus |
| | | **C1** | *Solenopleura*
brachymetopa | Proagnostus bulbus |
| **B** | *Ptyagnostus*
undgreni
-
Goniaagnostus nathorsti | **B4** | Ptyagnostus punctuosus | Ptyagnostus pinnocatus |
| | | **B3** | Hypagnostus parvifrons | Ptyagnostus atavus |
| | | **B2** | Tomagnostus fissus
-
Ptyagnostus atavus | Ptyagnostus gibbus |
| | | **B1** | Ptyagnostus gibbus | |
| **A** | Acadoparadoxides
celseanidus | **A2** | Ptyagnostus praecurrens | Ptyagnostus praecurrens |
| | | **A1** | Eccaparadoxides
insularis | |

Fig. 5. Generalised middle Cambrian stratigraphy of Scania and Västerbotten, Sweden, and correlation between the traditional biostratigraphy of Scania (Westergård 1946; Ahlberg 1989) and the global zonation (Robison 1982, 1984; Peng & Robison 2000). The lettering system (A1–C3) of Westergård (1946) is also shown. A = Andrarum Limestone; AS = alum shale with lenses and beds of limestone (orsten); C = Conglomeratic limestone; E = Exsulans Limestone; Exp = Exporrecta Conglomerate; F = "Fragment" Limestone; H = "Hypagnostus limestone bank". Note that the thicknesses of the different lithological units and the corresponding extension of the biozones are approximate and illustrated for a general review only. Based mainly on Axheimer & Ahlberg (2003: paper I), Weidner et al. (2004: paper II) and Axheimer et al. (2006: paper IV).
a thickness of up to 200 m. In general, the lower Cambrian of Sweden is poorly fossiliferous, but has yielded trilobites, arctitarchs and ichnofossils along with, for example, a few brachiopods and molluscs.

The base of the middle Cambrian varies from being transitional to sharp with development of conglomerates. The lower part of the series is missing in Västergötland and possibly also in Scania. The middle Cambrian and Furongian (upper Cambrian) in Sweden are largely represented by the Alum Shale Formation (which extends into the Ordovician), which predominantly consists of dark grey or black, kerogen-rich mudstones and shales with lenses or beds of dark grey limestone (Figs. 2, 5). The stratigraphy, palaeontology and geochemistry of the Scandinavian alum shales have been extensively studied (see, e.g., Westergard 1922; Bergström & Gee 1985; Andersson et al. 1985; Buchardt et al. 1997; Ahlberg 1998 and Schovsbo 2000, for general reviews). The lenses of limestone are commonly referred to as stinkstones (or orsten). The formation of these lenticular limestones is not fully known, but they are thought to have been formed by post-depositional, early diagenetic precipitation of calcium carbonate in the sediment, triggered by an increased alkalinity in the pore water possibly due to bacterial growth (Buchardt et al. 1997). The mudstones and shales are finely laminated and contain up to 28% organic matter, which gives their dark colour. These values vary, however, throughout Sweden as the maturity of the alum shales differs from area to area, in part related to heating by local intrusions of Permo–Carboniferous dykes or, as in the Caledonides, by low-grade metamorphism (Andersson et al. 1985). In addition to organic matter, the alum shale is rich in various trace elements, such as uranium and vanadium. The name alum shale is derived from the salt alum (a potassium aluminium silicate), which, for various practical purposes, was extensively extracted from the shales in the eighteenth to early nineteenth century. The alum shales are thought to have been accumulated at a very slow rate in oxygen depleted waters, minimizing the bacterial-induced decay of organic matter (Thickpenny 1984, 1987; Andersson et al. 1985; Buchardt et al. 1997). The Alum Shale Formation is primarily exposed in Scania, Västergötland, Östergötland, Närke and Öland, and along the Caledonides, e.g., in Jämtland. The shales thin out towards the east and are poorly represented in, for example, the subsurface of Gotland (e.g., Ahlberg 1989). On northernmost Öland, the Alum Shale Formation is merely one metre thick, whereas a thickness of 130 metres has been reported from the Terne drill core taken off-shore, north-west of Scania (Michelsen & Nielsen 1991).

In addition to alum shale and stinkstones, the middle Cambrian of Sweden contains some prominent, but spatially restricted, limestone layers. In Scania, a c. 0.4 m thick bioclastic limestone bed occurs in the lower middle Cambrian. It is commonly referred to as the "Fragment" Limestone, because of its richness in indeterminate fossil fragments. The Exsulans Limestone (c. 0.4 m thick) slightly above and the Andrarum Limestone (c. 1 m thick) in the upper middle Cambrian are both well known for their rich and well preserved fossil content. These three limestones represent shallow-water facies and are well-developed in Scania. In Västergötland, the "Fragment" Limestone and the Exsulans Limestone are missing, whereas the Andrarum Limestone is represented only by a less prominent counterpart on Hunneberg and Kinnekulle (see Weidner et al. 2004: paper II), or by the conspicuous Exporrecta Conglomerate (Fig. 5). The Andrarum Limestone facies extends westwards as far as the Ritland area, south-western Norway (Bruton & Harper 2000), and southwards to the island of Bornholm, Denmark (e.g., Berg-Madsen 1985a). As mentioned above, the Furongian of Sweden is also represented by the Alum Shale Formation and exhibit few lithological differences from the middle Cambrian.

5. Middle Cambrian faunas – a review

The Cambrian Period was a time of evolution and major biological diversification of an unchallenged magnitude. The rise of brachiopods, molluscs, trilobites and other shell-bearing body fossils left behind an invaluable fossil record. Although the fossil content in the lower Cambrian of Sweden is scarce (generally restricted to a few representatives of trilobites, brachiopods, microfossils such as arctitarchs and trace fossils) exemplary localities in other parts of the world, such as the Chengjiang lagerstätten in China (e.g., Hou & Bergström 1997), have shown that already in the earliest Cambrian, life on earth was thriving. In the upper lower Cambrian, however, diversity increases and amongst the fossil fauna a variety of olenellid and ellipsocephalid trilobites, a few eodiscoids, lingulate and other inarticulated brachiopods, molluscs, hyoliths and a few bradoriids have been recorded (e.g., Bergström & Ahlberg 1981).

During the middle Cambrian, fossil diversity reached its peak values in Sweden, especially regarding the trilobite faunas. Approximately 155 species of trilobites are known from the middle Cambrian of Scandinavia and they form the basis for the biostratigraphical subdivision of the series (see chapter 6). Trilobites are found throughout the major part of the middle Cambrian Alum Shale Formation, both in the shale and in the concretionary limestones, although the shale facies is notably fossiliferous only in Scania and the Oslo region (Andersson et al. 1985). The fossils found in the shale are mostly flattened, whereas preservation in the limestones is often considerably better. For instance, exceptionally well preserved arthropods with appendages have been chemically extracted from upper middle Cambrian and Furongian stinkstones from Västergötland (e.g., Müller & Walossek 1985, 1987, 2003). The fossil faunas from both the Exsulans and Andrarum limestones are on the whole rich. The latter holds the greatest trilobite diversity recorded from a single lithological unit in the Cambrian of Scandinavia and has yielded more than 30 trilobite species (e.g., Berg-Madsen 1985a, p. 136).

The middle Cambrian trilobite faunas of Sweden (and Scandinavia in general) are dominated by agnostoids (Fig. 6). Polymerid trilobites occasionally occur in abundance but chiefly in the few major limestones mentioned above. Most prevalent among the polymerids are paradoxidoids, solenopleurids and conocyphids. Other, generally rare, trilobites include burlingiids, anomocaris (Fig. 7) and
corynexochids. A plethora of the "Swedish" agnostoids have been reported also from other continents, such as Siberia, South China, south-eastern Newfoundland and Great Britain, whereas a majority of the polymerids seem to have been strongly provincial. These distributional differences were likely related to different modes of life (e.g., Robison 1976). The often cosmopolitan agnostoids, commonly found in open-marine deposits, are generally thought to have been pelagic, allowing them to spread across vast areas (e.g., Robison 1975; Bruton & Nakren 2005 but see, e.g., Müller & Walossek 1987; Nielsen 1997). By contrast, many polymerids were probably adapted to a benthic mode of life on the shelf, hence restricting their migration over long distances. The Iapetus Ocean (Fig. 4), for example, seems to have been an efficient oceanic barrier preventing long-distance dispersal of most benthic polymerids. It is likely, however, that the larvae of specific polymerids were able to passively migrate considerable distances with the aid of currents.

Despite their endemic nature and often being strongly facies controlled, polymerid trilobite faunas have commonly been used for interregional correlation. Although their endemism reduces the potential for intercontinental correlation, polymerids are important for palaeogeographical reconstructions. The polymerid trilobite faunas from the middle Cambrian of Scandinavia most closely resemble those of south-eastern Newfoundland, New Brunswick, Massachusetts and England, i.e., eastern and western Avalonia. The location of Baltica and, for instance, Armorica, Perunica and Avalonia, in close proximity of south-polar latitudes during the Cambrian (Cocks & Torsvik 2002), suggests that these palaeocontinents experienced cool-water environments. Several palaeobiogeographic studies have indicated that faunal dispersal between isolated or neighboring terranes was strongly related to temperature gradients in the oceans (e.g., Conway Morris & Rushton 1988; Shergold 1988; Babcock 1994a, b; Cocks & Torsvik 2002). This would explain the differences in polymerid faunas between Baltica and for example Laurentia, of which the latter was located closer to the equator in Cambrian times, hence experiencing considerable warmer environments (Samson et al. 1990).

Polymerids of both Laurentian and Baltic aspect, however, have been reported from the Innuitian margin of the Laurentian palaeocontinent, showing that not all polymerids were endemic (Babcock 1994a, b). Genera reported from deep-water, outer shelf deposits of the Henson Gletscher and Kap Stanton formations of North Greenland include, for example, Anomocarina (Fig. 7), Centropleura, Parasolenopleura and Solenopleura, all of which are common taxa in cold-water, shallow deposits of Baltoscandia (see, e.g., Angelin 1851; Westergård 1950, 1953). Similar distributional patterns have been recognized to occur between other palaeocontinents. For instance, the genera Anomocarina and Solenopleura have also been documented from Kara and Siberia (Bogolepova et al. 2001). The distribution of these genera suggests that, at least some, polymerids were affected by oceanic temperature gradients and had access to open ocean waters (Babcock 1994b).

6. Stratigraphy and correlation

The work on a chronostratigraphically standardized Cambrian System is supervised by the International Subcommission on Cambrian Stratigraphy (ISCS), an organization aiming also at developing and publishing regional and global stage-level chronostratigraphical classification charts of the Cambrian System. With one exception, the Cambrian System is lacking...
of the globally occurring agnostoid latter two units are defined by the first appearance datum (FAD) the lower boundary of the uppermost series, the Furongian, continental correlation. So far, only the system boundaries and scarcity of suitable biostratigraphical markers for inter-formally defined international stages, partly reflecting the traditional tripartite division (e.g., Babcock subdivision for the Cambrian System, hence abandoning the Furongian have been proposed for the chronostratigraphical series are subject to change. Currently, three series below the (Peng (Babcock 1994, 2004). As these three series are pending ratification, the subdivision of the Cambrian System into the traditional lower and middle Cambrian and the Furongian is used in this thesis. Accordingly, the former two are spelled with a lowercase “l” and “m”, respectively.

The biostratigraphy of the middle Cambrian in Sweden is based predominantly on trilobites. Much of the pioneer work made on the biozonation was carried out by Westergård (1936, 1944 and 1946), who subdivided the series into three superzones (or "stages") and nine zones (A1–C3; Fig. 5), largely based on the occurrence of agnostoids (Fig. 6) and paradoxidids. His studies and interpretations were preceded by pioneer biostratigraphical works of, e.g., Tullberg (1880), Linnarsson (1869, 1883) and Nathorst (1869, 1877). The lowermost of the three superzones, the Acodoparadoxides [or Paradoxides (Plutonides); Fletcher et al. (2005)] oelandicus Superzone, is locally missing, e.g., in Västergötland and possibly Scania (Fig. 5). The succeeding Paradoxides paradoxissimus and P. forchhammeri superzones are generally more complete, particularly in Scania, but may be partially or completely missing (e.g., Westergård 1946; Martinsson 1974). Although his work is known as a reference standard, Westergård (1946) neither explicitly described the nine zones, nor did he give thorough definitions of their boundaries. Such descriptions are important as work in progress is aiming for a viable globally subdivision of the middle Cambrian Series. In the proposed global agnostoid zonation of Robison (1982, 1984) and Peng & Robison (2000), the base of each zone is defined by the FAD of a single species selected for its abundance, wide geographical distribution and relatively short stratigraphic range. Nine zones, more or less globally recognizable, have been identified for the middle Cambrian (Fig. 5). The majority of the papers in this thesis address Westergård’s (1946) zonation and its applicability to this global standard.

Two of Westergård’s zones, the Ptychagnostuslundgreni–Goniagnostustatherti and the Tomagnostusfissus–P. atavus zones, were given more than one index species. According to Westergård (1946), this was because of one of the species may be predominant and the other one rare, or even absent, at a given locality. The P. atavus Zone (sensu Peng & Robison 2000) broadly correlates with Westergård’s (1946) T. fissus–P. atavus and H. parvifrons zones. The latter zone has been incorporated into the global P. atavus Zone, based on the fact that H. parvifrons (Linnarsson, 1869) appears already within the lower parts of the P. atavus Zone (Westergård 1946, p. 45). Thus, the original designation of the H. parvifrons Zone as a standalone zone was based on local taxon abundance rather than stratigraphical range (Berg-Madsen 1985b; Peng & Robison 2000). Although Tomagnostusfissus (Linnarsson, 1879) is known as a common and widely distributed species, it has been reported not only co-occurring with P. atavus, but also with P. gibbus (Linnarsson, 1869) below (Peng & Robison 2000). Its use as an index fossil is therefore restricted. For further discussion on the P. atavus Zone, see Ahlberg et al. (2006c: paper V). Ptychagnostuslundgreni has a long stratigraphical range and does not always co-occur with G. nathorsti. Hence, it is also not suitable as an index fossil. The validity of the P. formally defined international stages, partly reflecting the scarcity of suitable biostratigraphical markers for inter-continental correlation. So far, only the system boundaries and the lower boundary of the uppermost series, the Furongian, and its lowermost stage, the Paibian, have been ratified. The latter two units are defined by the first appearance datum (FAD) of the globally occurring agnostoid Glyptagnostus reticulatus (Peng et al. 2004). The traditional lower and middle Cambrian series are subject to change. Currently, three series below the Furongian have been proposed for the chronostratigraphical subdivision for the Cambrian System, hence abandoning the traditional tripartite division (e.g., Babcock et al. 2005; Peng et al. 2006). These, yet undefined, series have been accepted by the International Commission on Stratigraphy (ICS), and shall be based on Global Standard Stratotype Sections and Points (GSSPs), i.e., not substituting the traditional Cambrian subunits but instead representing new stratigraphic intervals. They are provisionally named (in ascending order): Cambrian Series 1, Series 2 and Series 3. The base of Series 2 has been proven difficult to define because of the lack of reliable fossils, and is suggested to be defined by the lowest occurrence of trilobites (Babcock et al. 2005). Although not yet ratified, the base of Series 3 is likely to be defined by the FAD of the polymerid Oryrococephalusindicus (Reed, 1910) or at a slightly lower level (e.g., Peng et al. 2004; Geyer 2005).
Acknowledgements

During my years as an undergraduate and Ph.D. student many have supported me in countless ways, and this is my modest appreciation to my colleagues, friends and family who make me a very rich man.

Firstly, I would like to thank my supervisors, Per Ahlberg and Mats E. Eriksson for intellectual inspiration, support and friendship. I think few Ph.D. students have such a laid back relationship with their supervisors as I have had. When I reflect on the times we have spent together, whether in the office or at an excursion in rural China, it always brings forth a smile on my face – such good times we have had and how much I have learned from you two. Per has more patience than any man I have ever met and besides from teaching me all the “tricks of the trade”, I also want to thank you for writing useful certificates, your endless supply of articles and literature, and for occasionally bursting out in dance only to provoke a laugh. Don’t forget Per that you will always be welcome to my home at beautiful Kvidinge for a snaps or two! Mats has been a never ending source of inspiration, help and commitment; discussing geology (and horror movies) with you has been a pleasure. Without support and guidance from the two of you this thesis would never have been written. A big thanks is also due to my fellow “trilobitophile” likewise Ph.D. student Fredrik Terfelt – a man in a constantly good mood. Sharing room with you during these years has been a laugh.

The progress of my thesis has benefited greatly also from the generosity and support of all the members of the Department of Geology. In particular, I would like to thank Mikael Calner, Margaretha Kihlblom, Kent Larsson, Sofie Lindström, Anna Löfgren, Birger Schmitz, Sven Stridsberg and all my fellow Ph.D. students. Robin Gullstrand and Rolf Hall at the geolibrary were always helpful in finding tricky Chinese and Russian literature and Gert Pettersson gave much appreciated help regarding various computer related problems. I most sincerely also want to acknowledge my co-authors Peter Cederström, Euan N. K. Clarkson, Richard A. Robison and Thomas R. Weidner. Peter and Thomas are also thanked for generously sharing material from their private trilobite collections. My friends outside the department were, as always, sources of laughter and joy. Special thanks go to Fredrik Christersson, Gustaf Hasselgren, Anders Jönsson, ”Klotis” (our slightly overweight cat), Istvan Nagy and Charlotta Wendt.

Financial support was gratefully received from Anders Wahlboms donationsfond, Crafoordska stiftelsen, Johan Christian Mobergs restetipendiefond (Lunds Geologiska Fältklubb), Kungliga Fysiografiska Sällskapet i Lund and Landsdöväring Per Westlings minnesfond. Various drafts of this synthesis were critically read by Per Ahlberg, Petra Axheimer and Mats E. Eriksson. Sven Stridsberg skilfully did the layout for the synthesis and Paper V, VI and VII.

Endless love goes to my family for their sincere encouragement (and for always listening to me over and over again while I have tried to explain what palaeontology and trilobites are all about). My parents Margareta and Leif, and my sister Sofia – you are all wonderful. Special thanks also to my ”second family”: Margareta, Lars and Pontus Pålsson for giving me a place where the door always is open.

Finally, this thesis is dedicated to my wife Petra. No one can match your never ending flow of inspiration and love, a lifetime with you will always be too short.

References

AHLBERG, P., AXHEIMER, N., ERIKSSON, M. E., SCHMITZ, B. & TERFELT, F. 2006a: High-resolution trilobite biostratigraphy

The lower and middle Cambrian of Sweden: trilobites, biostratigraphy and intercontinental correlation – Synthesis

Publication 70, 341–350.

BROCKER, W. C. 1878: Om Paradoxideskifrene ved Krekling. Nyt Magazin for Naturvidenskaberne 24, 18–88. [In Norwegian]

COCKS, L. R. M. & TORSVIK, T. H. 2005: Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Science Reviews 72, 39–66.

Cocks, L. R. M. & Torsvik, T. H. 2005: Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Science Reviews 72, 39–66.

KULLING, O. 1964: Översikt över norra Norrbottensfjällens kaledonberggrund. Sveriges Geologiska Undersöknings Ba19, 1–166. [In Swedish]

NATHORST, A. G. 1869: Om lagerföljden i kalken med Conocoryphe exulans ("Corunatuskalken"). Sveriges Geologiska Undersöknings C212, 1–30. [In Swedish]

NATHORST, A. G. 1869: Om lagerföljden inom Cambrian lagren vid Torneträsk. Sveriges Geologiska Undersöknings C212, 1–30. [In Swedish]

NATHORST, A. G. 1869: Om de kambriska och siluriska aflagringar. Kongliga Svenska Vetenskaps-Akademins Handlingar 8, 1–89. [In Swedish]

NATHORST, A. G. 1877: Om de kambriska och siluriska lagren vid Andrarum. Öfversigt af Kongliga Svenska Vetenskaps-Akademiens förhandlingar 1869(1), 527–550. [In Swedish]

NATHORST, A. G. 1879: Om faunan i kalken med Conocoryphe exulans ("Corunatuskalken"). Sveriges Geologiska Undersöknings C35, 1–31. [In Swedish]

NÄTHORST, A. G. 1883 [dated 1882]: De undre Paradoxideslagren vid Andrarum. Sveriges Geologiska Undersöknings C54, 1–48. [In Swedish]

MOBERG, J. C. 1908: Bidrag till kännedomen om de kambriska lagren vid Torneträsk. Sveriges Geologiska Undersöknings C212, 1–30. [In Swedish]

NATHORST, A. G. 1869: Om lagerföljden inom Cambrian formationen vid Andrarum i Skåne. Öfversigt af Kongliga Vetenskaps-Akademins Förhandlingar 1869(1), 61–65. [In Swedish]

NATHORST, A. G. 1877: Om de kambriska och siluriska lagren vid Kiviks Esperöd i Skåne, jemte anmärkningar om primordialfaunas lager vid Andrarum. Geologiska Föreningens i Stockholm Förhandlingar 3, 263–272. [In Swedish]

Synthesis: page 19
Synthesis: page 20
WESTERGÅRD, A. H. 1944: Borrningar genom Skånes alunskiffer 1941–42. *Sveriges Geologiska Undersökning* C459, 1–45. [In Swedish with English summary]

