LUND UNIVERSITY

A PID Stepsize Control for the Numerical Solution of Ordinary Differential Equations

Gustafsson, Kjell; Lundh, Michael; Séderlind, Gustaf

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gustafsson, K., Lundh, M., & Séderlind, G. (1987). A PID Stepsize Control for the Numerical Solution of
Ordinary Differential Equations. (Technical Reports TFRT-7358). Department of Automatic Control, Lund
Institute of Technology (LTH).

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 18. Nov. 2025

https://portal.research.lu.se/en/publications/b7b8e320-1597-424d-a411-daddd78499e6

CODEN: LUTFD2/(TFRT-7358)/1-15/(1987)

A PID Stepsize Control
for the Numerical Solution of
Ordinary Differential Equations

Kjell Gustafsson
Michael Lundh
Gustaf Soderlind

Department of Automatic Control
Lund Institute of Technology
May 1987

Document name

Department of Automatic Control Internal Report

Lund Institute of Technology Date of issue
P.O. Box 118 May 1987
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-7358)/1-15/(1987)
Author(s) Supervisor

Kjell Gustafsson, Michael Lundh, Gustaf Soderlind

Sponsoring organisation

Title and subtitle
A PID Stepsize Control for the Numerical Solution of Ordinary Differential Equations

Abstract

A control-theoretic approach is used to design a new automatic stepsize control algorithm for the numerical
integration of ODE’s. The new control algorithm is more robust at little extra expense. Its improved per-

formance is particularly evident when the stepsize is limited by numerical stability. Comparative numerical
tests are presented.

Key words
Numerical Integration, Stepsize Control

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 15

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

A PID Stepsize Control for the
Numerical Solution of Ordinary
Differential Equations

Kjell Gustafsson Michael Lundh Gustaf Soderlind
Department of Automatic Control Department of Computer Sciences
Lund Institute of Technology Lund University
Lund, Sweden Lund, Sweden
Abstract

A control-theoretic approach is used to design a new automatic stepsize control
algorithm for the numerical integration of ODE’s. The new control algorithm
is more robust at little extra expense. Its improved performance is particu-
larly evident when the stepsize is limited by numerical stability. Comparative
numerical tests are presented.

1. Introduction

In dynamic simulation, ordinary differential equations are usually solved nu-
merically. The user specifies the desired accuracy, and the integration method
tries to find an approximate solution in accordance with this requirement.

To minimize the computational effort, the stepsize is adapted to the local
smoothness of the solution. This is accomplished by an automatic stepsize
control algorithm. Such algorithms usually adjust the stepsize to keep an
estimate of the local truncation error per unit step at a constant level. This
strategy is motivated by the fact that the global error can be bounded in terms
of the local truncation error per unit step.

A good integration method should, while calculating a solution within the
specified accuracy, try to minimize the work

W =aN + M (1)

where NV is the total number of steps and M is the number of stepsize changes.
The parameter a reflects the cost of taking one step in the integration routine
and 3 reflects the cost of changing the stepsize. Both o and 8 will be method
and problem dependent. In some methods (e.g. explicit Runge-Kutta meth-
ods) changing the stepsize does not invoke extra computations, i.e. B =0.
In connection with stiff methods, a stepsize change may on the other hand
require additional matrix factorizations, thus causing the second term of (1)
to be significant.

Despite the fact that stepsize control is the most important means to make
an integration method efficient, most stepsize control algorithms used today
are quite simplistic. It seems that no effort has been devoted to using control
theory for the design of such algorithms.

The paper is organized as follows. In Section 2, a typical stepsize control
algorithm is analyzed from a control theory point of view. A new algorithm,
based on a discrete PID controller is presented in Section 3. Section 4 contains
comparative simulations for the two algorithms.

In this investigation we have limited ourselves to tuning the controller
parameters for an explicit Runge-Kutta method. For such a method, the typ-
ical controller sometimes oscillates violently, in particular if there is a conflict
between accuracy and numerical stability. Since this will happen in any stiff
problem, most of our test problems are stiff. The new controller overcomes
the oscillatory behavior and thus has much improved stability characteristics.
It is likely that our algorithm will be superior also in stiff integration methods.

This will, however, require a separate analysis which has not been pursued in
this paper.

2. Present Stepsize Control Algorithm

We start by describing a typical stepsize control algorithm. Most integration
methods today use an algorithm of this kind [Hairer et al 1987], [Gear 1971],
[Hall 1985], [Hall 1986].

A Typical Stepsize Control Algorithm

The user specifies the desired accuracy of the solution by deciding an accept-
able local error per unit step tol. For a method of order p the local error r
depends on the stepsize h asymptotically as

r ~ hPH1 (2)
The local error is often measured with the following norm

lI7[] = max
1

e ®

where 7; is a scaling factor for the i:th component of y, resulting in a mixed
absolute-relative error measure.

To take as long steps as possible without violating the prescribed tol, the
stepsize should be chosen to fulfill

—l;zﬂ = tol (4)

Motivated by these relations the stepsize for the next step (hn41) is chosen as

hn+1 = 60h,

where v is a “safety factor” chosen less or equal to 1. A typical choice is

= 0.9. To prevent many small stepsize changes a dead-zone is introduced.
If 6 is close to 1 no stepsize change is done. There is also a limit in how much
the stepsize may increase in one step. Hence

1, if 01, < 0 < Oy
0 — § Omaz, if0> 0,0z (6)
a, otherwise

where ’«<’ means assignment. Typical values of the parameters are: 6, = 1.0,
0}“' = 1.2, and om,w =2.0.

If the error per unit step is too big in one step (||r||/h > p- tol) the step

is rejected, and it is recalculated with a new stepsize. A typical value of pis
1.2.

This standard stepsize control algorithm normally performs quite well.
There are however differential equations and integration methods for which
its performance is unacceptable. The stepsize oscillates violently (see simula-
tions in Section 4) and much computation time is spent changing stepsize and
recalculating rejected steps. This is especially true for non-stiff integration
methods applied to stiff differential equations.

Analysis from a Control Theory Point of View

Regarding the choice of stepsize as a standard automatic control problem
the problem may be viewed as in Figure 1. The plant G, consists of the
integration routine and the differential equation. It takes a stepsize h as input
and produces a local error r as output. The controller G, is the stepsize control
algorithm. It tries to choose the stepsize such that the local error per unit
step comes as close as possible to the prescribed tolerance.

tol
—_ h r

Ge Gp

Figure 1. Stepsize control viewed as an automatic control problem.

The plant is nonlinear and time-varying. One part of the nonlinearity is
approximately known, and can be taken care of. From (2) we know that il
is asymptotically proportional to hP*!. If the logarithm of h is regarded as
plant input and the logarithm of ||7|| as the output, the known part of the
nonlinearity will turn into a constant gain, i.e. log||7|| ~ (p + 1) logh.

The control strategy described above can be viewed as an integrating
controller with the logarithm of h as the control variable. To see that start
by expressing log(hnt1) as a function of log(h,) using formula (5). Some
manipulations give

1 II~|l
_ Z P 1ol) — loe(1711
loghpy1 = logh, + p (108;(’7 tol) — log(I)) (1)

Now we need to see how the dead-zone and the limitation of @ come in. When
the dead-zone or the limitation is active it means invoking a different control
signal than the calculated. The states in the controller must be updated to
reflect this difference, or the controller may behave improperly. In control
engineering this special update, when the control signal is limited, is refered
to as anti-windup [Franklin et al 1986]. Thus the controller can be expressed

with the following equations

€n — log('y” i tOl) . lOg(“Tru) (control error)
Itemp — I+ l6'n.
p
htemp — eXP(Itemp) (8)
hfm if E;h'.th'.\'.; S htemp S 0hihn
hn+1 — { I91!':’.‘.@..-':'hm if h!emp > emazhn
hiemp) otherwise

In+1 — Itemp + (log hn+1 — log htemp) (anti-windup)

We recognize log(7” - tol) as the set point, i.e. the algorithm will try to
make the local error per unit step as close as possible to log(4? - tol) in order
to bring the control error to zero.

In the algorithm the integration gain is chosen to 1/p. This is a quite large
value. It means that the local error per unit step will converge to tol very
quickly (approximately in 2p steps). This is of course good, but may also be
dangerous. In control theory it is well known that a pure integrating controller
has quite poor stabilizing capabilities. This property is further accentuated if
the integration time constant (= p) is small compared to the dominating time
constant of the plant. As noted above instabilities can clearly be seen when
applying the algorithm to certain problems.

In particular, when a problem integrated by an explicit method becomes
stiff, the stepsize will be limited by the numerical stability requirement. In
that situation, the standard stepsize control increases the stepsize until the
numerical stability is lost. The estimated truncation errors in subsequent
steps will then be large, forcing the stepsize to be reduced until stability is
regained. This process repeats itself, causing the stepsize to oscillate violently
[Hall 1985}, [Hall 1986].

Roughly speaking, one can say that the purpose of the dead-zone is
twofold: first to reduce the number of (small) stepsize changes, and second,
to prevent oscillations. However, while the former objective is successfully
achieved, the latter is not. In view of this, we shall propose a new control
algorithm with improved stability characteristics.

3. A New Stepsize Control Algorithm

The plant G, is nonlinear and time-varying. It will have different characteris-
tics for each differential equation we try to solve. We have to find a controller
that performs well for a large class of differential equations. The controller
should preferably have a simple structure and not have too many parame-
ters to tune. The pure integrating controller often performs quite well. We
therefore choose to generalize this structure and suggest the use of a standard
discrete PID controller [Franklin et al 1986]. log(tol) is regarded as set point,
log(||7||) as plant output and log(h) as control signal.

The PID Controller

The plant is discrete-time. It takes a sequence of stepsizes {h,})_, as input
and produces a sequence of errors {7',1}”]\’=1 as output. The discrete PID con-
troller is derived from the corresponding continuous time equivalent. Replace

4

the integration with a summation, and the differentiation with a difference.
As in continuous time PID controllers we filter the D-part. The filter is first
order and has a pole at k. Its gain is normalized to one for “high frequencies”
(¢ = —1). Using the forward shift operator ¢ we get the following expressions

e, = log(tol) — 10g(” n”)

P, = ke,
1 1
I =
n TI g—1 *€n (9)
1+.¢.
D,=1T —1-e,

hn+1 = eXP(Pn + In + Dn)
where 1/T7 is the integral gain and Tp is the differential gain.

Dead-zone on Stepsize Changes

The PID controller performs very well (see Section 4). It manages to control
the local error per unit step perfectly, but at the price of many stepsize changes.
The stepsize is changed almost every step. This is no problem if stepsize
change is a computationally cheap operation. The local error per unit step
is well controlled and the integration algorithm will always take as long steps
as possible, thus reducing the amount of computation needed to calculate the
solution.

In some integration algorithms the change of stepsize requires a lot of
extra computation. In the old algorithm there is a dead-zone to prevent small
stepsize changes. To really affect the number of stepsize changes the dead-
zone had to be quite big (6;; = 1.2). Such big dead-zones may cause trouble.
When a stepsize change is accepted it will be quite large and thus cause a
large transient in the local error per unit step. This transient may cause new
stepsize changes, and the stepsize may even start to oscillate (see simulations
in Section 4).

To prevent stepsize changes at every step, a dead-zone on stepsize changes
is introduced in the new algorithm too. Small stepsize changes are required
to be able to control the local error per unit step accurately (Note that this
accuracy is needed not from the numerical point of view, but for the perfor-
mance of the controller.). The dead-zone is therefore made much smaller than
in the old algorithm. If the local error per unit step is too big the step will be
rejected. Until the stepsize control algorithm finds a new stepsize that gives
an acceptable error, there will be no update of the solution of the differential
equation. The dead-zone is chosen unsymmetric to facilitate the finding of
a new suitable stepsize in this situation, i.e. we are more willing to accept
a decrease in stepsize than an increase. Even though the dead-zone is much
smaller than the one used in the old algorithm, the number of stepsize changes
will be moderate due to the better control supplied by the new algorithm.

To make the controller function properly with the dead-zone we need to
include anti-windup in the integral part. The integral part will always try to
bring the control error to zero. If the dead-zone prevents stepsize changes the
integral part will continue to increase/decrease until a stepsize change is done.
Thus each time a stepsize change is prevented we also adjust the integral part
to compensate that.

As in the old algorithm we limit the stepsize increase in one step. This is
done since there are integration methods (linear multistep methods) that may
go unstable if the stepsize is increased too much in one step.

Rejected Steps

If the local error per unit step is too big, i.e. ||r||/h > p - tol, the step is
rejected. Then the solution of the differential equation is not updated. Instead
the stepsize control algorithm is called to get a new stepsize and a new try is
made.

This situation may occur when there are sudden changes that call for a
drastic decrease in stepsize. The new algorithm is designed to be more stable
than the old one. This will also make it a little slower when following large
transients. When a step has been rejected we will keep on rejecting steps until
a stepsize that gives an acceptable local error per unit step is found.

Ideally one would like to have a controller that responds fast but still has
very good stabilizing properties. However, these two properties are conflicting.
Here we solve the problem by having two sets of parameters for the PID
controller. The first set is chosen to optimize the stabilizing behavior of the
algorithm. This set is used almost always. Parameter set two gives a faster
response and is used when a step has been rejected. Typically, parameter

set two is used in less than one percent of the calls to the stepsize control
algorithm.

Complete Algorithm

Finally we state the complete control algorithm. The anti-windup, the limi-
tation and the dead-zone has been incorporated. It has also been rewritten in
an explicit form to facilitate coding.

en — log(tol) — 10g(||7‘n||)

hn
P, « ke,
14 %
D, KD, 1+Tp- (e'n. - en—l)
htemp - exP(Pn + 1, + Dn) (10)
hm if glohn < htemp 4 Hhih'n
hn+1 — gma.'ch'n, if h!emp > Omazhn
Ritemp, otherwise
N 1
I'n,+1 — I, + 6_ + ,—(10g hn+1 - 10g htemp)
T Tgr

There are two sets of parameters used. One for normal behavior, and one with
faster response to be used when a step has been rejected.

4. Simulations

The integration method used in this paper is DOPRI45 [Hairer et al 1987],
a fourth order Runge-Kutta method with an embedded fifth order error es-
timate. It was implemented as a PASCAL system in the simulation package
Simnon [Elmqvist et al 1985], which gives a convenient way to change param-

eters in the routine. There are also good plotting facilities included in the
package.

Repeated simulations suggested the following two parameter sets.

Set for normal case Set for rejected case
K = 0.2 KX = 02
Ty = 25.0 Tr = 5.0
Tp = 0.08 Tp = 0.0
K = 0.5 K = 0.0
T = 1.0 Tr = 1.0
0, = 0.995 0, = 1.0
On; = 1.020 On; = 1.0
Omaz = 2.0 Omez = 2.0
P = 1.2 p = 1.2

A first set of simulations solving problem 8 (all problems can be found in
the Appendix) shows how some of the differences between the new and the old
algorithm affects the stepsize. The stepsize for a pure integrating controller
with dead-band (old strategy) is shown in Figure 2a. Figure 2b shows the
stepsize when the dead-band is decreased to [0.995 1.02]. In Figure 2c the
integral gain 1/T; is changed from 1/4 to 1/25 (Note that in the original
stepsize control, the integral gain was 1/p, where p is the order of the method
under consideration). Addition of the proportional term further improves the
performance as seen in Figure 2d.

_ a)ti=4 . b) smaller dead-band
02 h | d » W ' ‘ 02 | ’
A B
o PR RIAAR A UL L]
0 5 10 15 20 0 5 10 15 20
_ oti=25 _ dyk=02
0.2 1 0.2
Olw“ T I T i 1 or_] I T L
0 5 10 15 20 0 5 10 15 20

Figure 2. The effect on stepsize of some of the differences between the old and
the new algorithm (problem 8).

The next simulation (Figure 3) shows that it is possible to drive the local
error per unit-step to the desired value (ol). This is achieved by eliminating
the dead-band. The stepsize will then be almost constant. However the cost
for this performance is a change in stepsize every step. While this is perfectly -
acceptable for Runge-Kutta methods, it may not be desirable for multistep
methods. The simulated example is problem 6.

A number of differential equations have been solved with the new stepsize
control algorithm. Its performance has been compared with the old control
algorithm. The results are shown in Figures 4 — 11, with each figure consisting
of six small plots. The upper left shows the solution of the differential equa-
tion. In the upper right four curves appear showing the cost for solving the

7

i nommalized error 12107 , stepsize

1

05 4 810 4

4107 4

0 02 0.6 1 0 02 0.6 i

Figure 3. Local error and stepsize without dead-zone (problem 6).

differential equation. It is the number of integration routine calls for the old
(1) and for the new (2) method, and the number of stepsize changes for the
old (3) and for the new (4) method. The two plots in the middle show the
local error per unit step (||r]|/An) for the old (left) and new (right) method.
The value is normalized to tol. The two lower plots compare the stepsize for
the methods.

The first of these comparative simulations solves problem 1. Notice the

few stepsize changes for the new controller, and that it quickly finds the proper
stepsize for the problem.

yly2y3ya N(old new) M(old new) _
-

0.8 /2
0.4 L/ﬂléﬂ,
0 ——

04 —& —3— 32— ; 4=
0 5 10 15 20 15 20
norm crror for old nomn error for new
1 1
0.5 0.5 -
Q I T L 1 i 0 L] L) Ll —
0 5 10 15 20 0 5 10 15 20
stepsize for old . stepsize for new
" O
01 T T T 1 0 T T T =~
0 5 10 15 20 0 5 10 15 20

Figure 4. Solving problem 1.

Next, problem 2 is solved. Here, both control algorithms have some diffi-
culties. This is probably due to the slowly damped oscillations in the solution.
Even for constant steps, this would lead to fluctuating errors. However, the
new method solves the problem using fewer steps.

The nonlinear problem 3 is solved with less computation in the new algo-
rithm. Here, too, the PID controller finds the maximum stable stepsize and
stays there without oscillations.

The same is true for problem 4. After the transient, the stepsize is held
at an almost constant level.

In problem 5, we see an example of a problem where the dead-zone of
the old controller manages to prevent stepsize oscillations in a short interval.

yly2y3y4 N(old new) M(old new)
y

_ =
~10 - 200 —
".--"""3
/3
=304 T T T — 01 T T T T 1
0 1 2 3 4 5 0 1 2 3 4
nom error for old norm error for new
1 1
0 I T T I T B 0 T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5
stepsize for old stepsize for new
0+ T T T T — 01 T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5

Figure 5. Solving problem 2.

1 yly2y3y4 _ N(old new) M(old new)
-
-
200 4 /5
0.5 /‘l o
4 __,_rf"'-'-s
A———’Hﬁ 4
C L) 1 :-‘-‘_ 1 : 1] : 1 0 [I T |
0 2 4 6 8 0 2 4 6 8
nomm error for old norm error for new
1 14
0.5 [[I J 0.5 4
0) I T T 1 0 I L T 1
0 2 4 6 8 0 2 4 6
0.08 stepsize for old 0.08 - stepsize for new
0.04 0.04 -
1
0 1) T I 1 0 T) I 1
0 2 4 6 8 0 2 4 6 8

Figure 6. Solving problem 3.

This is mainly due to the extraordinary smoothness of the solution. The PID .
controller is again using the maximum stable stepsize.

Problem 6 is another typical example, showing the superior stabilizing
effect of the PID controller. Also note the oscillations in the error for this
problem. Even the most minute stepsize changes will cause error growth or
decay. This is a sign of the stepsize being limited by numerical stability and
that the algorithm is using the maximum stable stepsize without 1he closed
loop system becoming unstable. This is also seen in problem 8.

yly2y3y4 N(old new) M(old new)
2 —_— 200 4 —
1] ///‘_i/
1 100 : /2 -_'_,...--—"3"'
7-4_,4_.
C) L] L3] ﬂ] : L) c) T 1] 1
0 1 2 3 4 5 0 1 2 3 4 5
norm error for old norm error for new
1 14
0.5 0.5 4
0 L) 1 I T T 1 G 1 I T 1]
0 1 2 3 4 5 0 1 2 3 4 5
stepsize for old stepsize for new
0.04 0.04
01 T T T T 1 01 T T T T 1
0 | 2 3 4 5 1 2 3 4 5

Figure 7. Solving problem 4.

yly2y3 4000 N(old new) M(old new) >
101 —

S /2/
Z‘ '/f/ 0 ‘A{iﬂ

5 " s
T =1 T 1 P 1 -
0 2 3 4 5 0 1 2 3 4 5
norm error for old normmn error for new
’ T
0.5

c]] T 1 1
0 1 2 3 4 5

2.107 stepsize for new

1107 |

0 T T T T 1 0 T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5

Figure 8. Solving problem 5.

The nonlinear oscillator in problem 7 has piecewise smooth solutions (in °
the stiff intervals) and the old controller performs quite well. However, the

new algorithm, with its smaller stepsize changes, is even better although at a
slightly higher expense.

10

yl y2y3

N(old new) M(old new)

0.5
c T 3 1 |3] 3 1 1
0 02 0.6 1 0 02 0.6 1
nomm error for old nomm error for new
‘ ==
0.5 0.5
0 L) T I T T 1 0 T T T 1 -
0 02 0.6 1 0 02 0.6 1
2107 stepsize for old 2107 - stepsize for new
110° 1107
|
0 1) T T] 0 T) 1) I
0 02 0.6 1 0 02 0.6 1
Figure 9. Solving problem 6.
N(old M(old
ol yly2 400 (old new) M(old new) =
— — a
Y I v, — 200 //f —
] N
-4
] T T T T 1 G 1 T T L L
0 2 4 6 8 10 0 2 4 6 8 10
nom error for old norm error for new
14 l 14
0.5 L w f, h 0.5
0 1 1 T 1 T 1 D T L)) I 1
0 2 4 6 8 10 0 2 4 6 8 10
stepsize for old _ stepsize for new
0.1 0.1 1
0)) T T I 1 0 I)) T
0 2 4 8 10 0 2 4 6 8 10
Figure 10. Solving problem 7.
5. Conclusions

By using standard control theory much insight and understanding of the step-
size control problem can be gained. The analysis of the standard control
algorithm (Section 2) explains way it sometimes results in oscillating stepsize.
A remedy is to use a standard PID algorithm as control algorithm. It gives
significantly better results and more consistent performance. The addition of
a proportional part increases the stabilizing properties drastically, while the

11

yly2y3 _ 400 N(old new) M(old new) P

¥ 200 /ﬁ -

— L/
e I 1 L 0 1] | T 4 I _A'_I
0 5 10 15 20 0 5 10 15 20
nomm error for old nom error for new
14 14
0.5 : 0.5 4
|
0 I I T 1] 1 0 T 1 I 1
0 5 10 15 20 0 S 10 15 20
stepsize for old . stepsize fornew
0.08 hﬁh 0.08 -
0.04 0.04
01 T T T 1 0 T T T 1
5 10 15 20 0 5 10 15 20

Figure 11. Solving problem 8.

derivative part seems to be especially important when having a dead-zone.

A dead-zone on the stepsize change should not be incorporated thought-
lessly. If no extra computation is needed to change stepsize there should not
be any dead-zones. The cheapness of stepsize change should be used to try to
get as large steps as possible without violating the prescribed tol. If changing
the stepsize invokes extra computation there is a trade-off. The dead-zone
reduces the number of stepsize changes but the stepsize will now on the av-
erage be smaller. For each type of integration method the dead-zone and the
parameters in the controller need to be tuned to minimize (1).

Since we have used a Runge-Kutta method in our simulations there should
not have been a dead-zone on stepsize changes. Still, one has been used to
more clearly demonstrate the properties of the control algorithm.

In the tests we have seen that the PID controller gives much improved
stability characteristics. This is particularly evident in problems where the
stepsize becomes limited by numerical stability. One might argue that this
is of little importance since problems of this type arise only rarely in non-
stiff problems and never in stiff problems if a proper integration method is
selected. However, we believe that the new algorithm significantly improves
the robustness of the stepsize control at little or no extra expense. Moreover,
this improvement may certainly be important for moderately stiff problems, in
the transition from nonstiff to stiff and in connection with the implementation
of type-insensitive codes intended for both classes of problems.

6. Acknowledgements

The authors wish to thank Ola Dahl for many valuable discussions, and Mats
Andersson and Per-Olof Olsson for implementing the DOPRI45 routine.

12

7. References

ELmqQvisT, H, K. J. AsTROM and T. SCHONTHAL (1986): SIMNON, User’s
Guide for MS-DOS Computers, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

EnrigaT, W. H, T.E. HutL and B. LINDBERG (1975): “Comparing
Numerical Methods for Stiff Systems of ODE’s,” BIT, 15, 28 — 33.

FRANKLIN, G. F, J. D. PowELL and A. EMAMI-NAEINT (1986): Feedback
Control Systems, Addison-Wesley, pp. 99 — 103.

Gear, C.W. (1971): Numerical Initial Value Problems in Ordinary
Differential Equations, Prentice-Hall.

HAIRER, E, S.P. N@rserT, G. WANNER (1987): Solving Ordinary
Differential Equations, I, Springer.

HALL, G. (1985): “Equilibrium States of Runge-Kutta Schemes: Part I,” ACM
Transactions on Mathematical Software 11, 3, 289 — 301.

HALL, G. (1986): “Equilibrium States of Runge-Kutta Schemes: Part II,”
ACM Transactions on Mathematical Software 12, 3, 183 — 192.

13

Appendix

Problem 1 Problem Al in [Enright et al 1975].

= —0.5% y1(0) =1
i = —vs y2(0) = 1
y3 = —100y3 y3(0) =1
Ya = —90y,4 y4(0) = 1
Problem 2 Problem B1 in [Enright et al 1975].
h=-n+y 1(0) =1
g2 = —100y1 — 72 ¥2(0) = 0
y3 = —100y3 + y4 y3(0) =1
4 = —10000y3 — 100y4 y4(0) =0
Problem 3 Problem C1 in [Enright et al 1975].
th=—y1+v3+95+ 0} y1(0) =1
g2 = —10y + 10(33 + v3) v2(0) =1
g3 = —40ys + 403 y3(0) =1
74 = —100y4 + 2 y4(0) =1
Problem 4 Problem C2 in [Enright et al 1975} with 8 = 0.1.
h=-u+2 y1(0) =1
g2 = —10y2 + Byt y2(0) =1
g3 = —40ys + 48 - (37 + 93) y3(0) = 1
g4 = —100ys + 108 - (4§ + v3 + 93) va(0) =1
Problem 5 Problem D2 in [Enright et al 1975).
91 = —0.04y; + 0.01y2ys y1(0) =1
g2 = 400y1 — 100y2y3 — 300033 y2(0) = 0
g3 = 3093 y3(0) =0
Problem 6 Problem D4 in [Enright et al 1975].
1 = —0.013y; — 1000y 93 11(0) =1
Y2 = —2500y2y3 y2(0) =1
73 = —0.013y; — 1000y, y3 — 2500y2y3 y3(0) =0
Problem 7 Problem E2 in [Enright et al 1975] (sligthly changed).
9= Y2 y1(0) =2
g2 = 50(1 — 3)y2 — 10y y2(0) =0
Problem 8 Problem E3 in [Enright et al 1975].
91 = —(55 + y3)y1 + 65y2 v1(0) =1
72 = 0.0785(y; — yg) y2(0) =1
y3 = 0.1y y3(0) =0

14

