Brandfrekvenser och typbränder i industrianläggningar

Tehler, Henrik

1998

Link to publication

Citation for published version (APA):

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Brandfrekvenser och typbränder i industrianläggningar

Rapporten har finansierats av BRANDFORSK

Henrik Johansson

Lund 1998
Brandfrekvenser och typbränder i industrianläggningar

Henrik Johansson
Title: Fire frequencies and initial fires in industrial facilities

Author: Henrik Johansson

Keywords: Economical optimisation, risk assessment, industrial fire protection, cost-benefit

Abstract: The aim of this report has been to find a model suitable for the Swedish industry when assessing fire frequencies in industrial facilities. The report also contains a guide to the selection of initial fires, and the evaluation of the fire scenarios resulting from those fires, when fire risk assessments in industrial facilities is being done. A summary of data concerning the reliability of sprinklers and fire alarms is also presented (SWEDISH).
Sammanfattning

Denna rapport är utförd på uppdrag av Styrelsen för Svensk Brandforskning, BRANDFORSK.

Målet har varit att utreda vilka modeller som kan användas för att bedöma brandfrekvenser i den svenska industrin, samt att producera ett ramförslag till en analysmetodik som kan användas vid ekonomisk utvärdering av en industris brandskydd.

För att hitta lämpliga modeller som kan användas vid beräkning av brandfrekvensen i en specifik industri har en litteraturstudie omfattande internationella tidskrifter och böcker gjorts. Då endast två metoder som kan anses användbara i denna rapport kunde identifieras ges också ett förslag på hur en undersökning av svensk industri kan resultera i användbara beräkningsuttryck för brandfrekvenser.

Sannolikheten för de olika brandutbredningarna påverkas av de brandtekniska skyddsåtgärder som finns i industrin. En litteraturstudie av sprinkler och brandlarms tillförlitlighet har genomförts och sammanfattas i rapporten.

Resultatet från en analys av en industriinlärning presenteras i form av den förväntade skadekostnaden (EMV, Expected Monetary Value) och en riskprofil. Riskprofilen och EMV kan användas för att jämföra olika utformningsalternativ inom byggnaden, men också för att kontrollera om riskerna i byggnaden överstiger ett på förhand bestämt acceptanskriterium.

Mallen för analys av en industri är långt ifrån komplett, men bedöms ändå vara så fullständig att den går att applicera på ett verkligt objekt. I och med att mallen används kommer brister att kunna upptäckas och en utveckling av metodiken kan ske.
Summary

The aim of this report is to evaluate models that can be used when assessing fire frequencies in the Swedish industry and produce a general methodology for the economical evaluation of the fire protection in a given industry.

To find suitable models for the estimation of fire frequencies a study of international papers was made. Only two models useful in this report were found. Therefore a suggestion of methodology for creating similar expressions for the Swedish industry is presented.

In the report a framework for an economical analysis of a specific industry is presented. The aim of the analysis is to calculate the expected amount of economic losses due to fire (EMV). This is being done by evaluating a number of initial fires, that is representative for the industrial activity in the building. The initial fires will result in a number of possible fire scenarios associated with a certain probability. The probability of different fire extensions is influenced by the industries fire protection installations (both active and passive). A literature survey of the reliability of sprinklers and fire detectors has been carried out. The calculated fire scenarios are transferred into economical losses and the expected monetary value (EMV) is calculated.

The framework is far from complete, but it is possible to use it when analysing a real industry if one accepts a lot of subjective judgements concerning some of the consequences and probabilities.

Swedish Fire Research Board (BRANDFORSK) has financed the report.
Innehållsförteckning

1. INLEDNING .. 1
2. BRANDFREKVENTER ... 3
 2.1. INDELNING I BYGGNADSKATEGORIER ... 3
 2.2. MODELLER FÖR BERÄKNING AV SANNOLIKHETEN FÖR BRANDS UPPKOMST . 4
 2.2.1. Ramachandrans modell .. 4
 2.2.2. Rutsteins modell ... 8
 2.2.3. VTT ... 9
3. BRÄNDER I INDUSTRIER ... 11
 3.1. BRANDFÖRDELNING INOM INDUSTRIANLÄGGNINGAR ... 11
 3.1.1. Modifiering av brandfrekvenser .. 13
 3.2. TYPBRÄNDER I INDUSTRIER .. 19
 3.3. BRANDSCENARIER .. 23
 3.3.1. Manuell släckning ... 23
 3.3.2. Övertändning .. 26
 3.3.3. Undersökning av brandutbredning med hjälp av statistik 28
 3.3.4. Konsekvenser ... 31
 3.4. STATISTIKS ANALYS AV BRANDSKADOR .. 31
4. BRANDTEKNISKA SYSTEMS TILLFÖRLITLIGHET ... 33
 4.1. SPRINKLERSYSTEM ... 33
 4.1.1. Tillförlitlighetsdata för sprinklersystem ... 34
 4.1.2. Felträdanalys av sprinklersystem ... 36
 4.2. BRANDLARM .. 37
 4.3. BRANDCELLSGRÄNSER .. 39
 4.3.1. Dörrar ... 39
5. ANALYSMETODIK .. 41
 5.1. ARBETSGÅNG .. 41
 5.2. BEDÖMNING AV SANNOLIKHETEN FÖR BRANDS UPPKOMST 43
 5.3. FRAMTAGANDE AV BRANDFÖRDELNING I ANLÄGGNINGEN 44
 5.4. ANALYS AV SAMTLIGA BRANDCELLER ... 45
 5.5. SKADEBERÄKNING .. 46
 5.6. EXEMPEL PÅ ENKEL ANALYS .. 47
6. RESULTAT OCH DISKUSSION ... 55
7. REFERENSER .. 57

BILAGA 1: FÖRSTA BRINNANDE OBJEKT, FÖRDELAT PÅ UTRYMMEN 61
BILAGA 2: FÖRSTA BRINNANDE OBJEKT I DE OLIKA INDUSTRITYPERNA 65
BILAGA 3: FÖRSTA BRINNANDE OBJEKT I INDUSTRIER ... 71
BILAGA 4: BRANDUTVECKLING .. 73
1. Inledning

Då riskanalyser av typen QRA (Quantitative Risk Analysis) utförs i byggnader med avseende på brandrisker är sannolikheten för att en brand uppkommer samt tillförlitligheten hos brandskyddssystem mycket viktiga parametrar. Stora osäkerheter i dessa parametrar kan göra att QRA blir oanvändbart som beslutsunderlag.

Syftet med denna rapport är att finna en metod som är lämplig då sannolikheten för brands uppkomst i en given industri skall bedömas samt ge vägledning vid bedömning av brandskyddssystems tillförlitlighet. Uttrycken för brandfrekvenser fås genom litteraturstudier. En nackdel är att dessa uttryck representerar förhållandena i det land där undersökningen gjorts och kanske inte är optimala för den svenska industrin. Därför presenteras även en metodik för att skapa motsvarande uttryck för den svenska industrin.

Rapporten är avsedd att ge vägledning då de så kallade typbränderna /3/, vid utvärdering av olika brandskyddsalternativ, skall väljas. Typbränderna är tänkta att representera de olika initialbränder som kan tänkas uppkomma i en specifik anläggning. För att ge vägledning vid val av typbränder presenteras statistik från hela Sverige som beskriver bränders fördelning inom en byggnad och vilka föremål som bränder oftast börjar i.

Rapporten är också tänkt att beskriva en ram för hur en riskanalys med inriktning på de ekonomiska konsekvenserna i en industri p.g.a. brand, kan genomföras.

Denna rapport är en del i projektet ”Ekonomisk optimering av det industriella brandskyddet” som finansieras av BRANDFORSK.
2. Brandfrekvenser

En av de parametrar i en riskanalys som vanligtvis är förknippad med stora osäkerheter är sannolikheten för att brand uppstår. På grund av bristande insatsrapportering (innan 1996) har det samlade underlaget över inträffade bränder i Sverige varit magert. Från och med 1996 finns dock utförliga data angående räddningsinsatser i Sverige samlade hos Räddningsverket /1/. Dessa data som beskriver antalet inträffade bränder i Sverige kan användas för att bedöma sannolikheten för brands uppkomst i olika typer av byggnader.

2.1. Indelning i byggnadskategorier

Sannolikheten för brands uppkomst är inte bara beroende av storleken på byggnaden, utan också på vilken verksamhet som bedrivs i lokalerna. För att ta hänsyn till att olika verksamheter innebär olika sannolikheter för att brand skall uppkomma delas byggnader in i olika kategorier. Inom en kategori anses sannolikheten för att brand skall uppkomma vara lika (förutsatt att byggnaderna är lika stora).

De byggnadskategorier som använts i den här rapporten är samma som Räddningsverket använder i sitt insatsrapporteringssystem.

Följande kategorier har använts:

- Industrihotell
- Kemisk Industri
- Livsmedelsindustri
- Metall/Maskinindustri
- Textil/Beklädnadsindustri
- Trävaruindustri
- Annan Tillvekningsindustri
- Reparationsverkstad
- Lager
2.2. Modeller för beräkning av sannolikheten för brands uppkomst

2.2.1. Ramachandrans modell

I artikeln ”Statistical Methods in Risk Evaluation” /6/ beskriver Ramachandran hur statistiska metoder kan användas vid riskberäkningar. I artikeln behandlas inte bara sannolikheten för brands uppkomst, utan även fördelningar av bränder inom en industri samt det förväntade skadeutfallet (uttryckt i ekonomiska termer).

Sannolikheten för brands uppkomst beror grovt av antalet antändningskällor som finns i en byggnad. Antalet antändningskällor antas vara en funktion av byggnadsarean och alltså kan sannolikheten för brands uppkomst (\(P_{\text{Brand}}\)) beskrivas som en funktion av byggnadsstorleken.

Eftersom olika industrier har olika risker kan inte alla typer av industrier beskrivas med samma uttryck för \(P_{\text{Brand}}\). De typer av industrier som är förknippade med liknande brandrisker måste delas in i grupper som därefter undersöks och beskrivs med sitt uttryck för \(P_{\text{Brand}}\). Den indelning som är tänkt att användas i denna rapport beskrivs i avsnitt 2.1.

Ramachandran /6/ presenterar inte något färdigt uttryck för \(P_{\text{Brand}}\) som kan användas för den svenska industrin utan endast riktlinjer för hur ett sådant uttryck kan tas fram.

För att förstå hur Ramachandran menar att modellen kan skapas krävs en snabb genomgång av begreppet frekvensfunktion, som används vid framtagandet av uttryckens för \(P_{\text{Brand}}\).

En frekvensfunktion beskriver en kontinuerlig stokastisk (osäker) variabel. Funktionen visar hur variabeln som beskrivs är fördelad inom ett specifikt intervall (se figur 2.1). Areaen mellan funktionen \(f(A)\) och den horisontella axeln i figur 2.1 är alltid 1 för en frekvensfunktion.

![Frekvensfunktion](image)

Figur 2.1 Exempel på frekvensfunktion.

En frekvensfunktion kan till exempel användas för att beskriva arean av industribyggnader i Sverige. En sådan variabel skulle kunna kallas för \(v\). Eftersom sannolikheten att en byggnad skall ha en viss area är en funktion av just arean kommer beteckningen att bli \(v(A)\). I figur 2.1 skulle \(v(A)\) kunna motsvara funktionen \(f(A)\) som är en fiktiv fördelning av industristorlekar.
Förmodligen skulle en sådan fördelning ha ett liknande utseende som den i figur 2.1, d.v.s. det finns många små byggnader och få stora byggnader.

En frekvensfunktion kan approximeras med en diskret funktion, d.v.s. en funktion som endast kan anta vissa bestämda värden. Approximationen görs genom att först bestämma hur värdena på x-axeln (i figur 2.1) skall avrundas. Till exempel kan x avrundas till närmaste 50 m². I så fall kommer figur 2.1 att se ut som figur 2.2, vilken är en diskret funktion (x kan endast anta vissa bestämda värden). Summan av de olika sannolikheterna lika med 1.

För att skapa ett uttryck som beskriver P_{Brand} i en viss typ av byggnad använder Ramachandran följande uttryck:

$$P(A) = \frac{n \ v_n(A)}{N \ v_N(A)} \quad (2.1)$$

där $P(A)$ är sannolikheten att en brand uppstår i en byggnad med arean A. N är det totala antalet byggnader i denna byggnadstyp (t.ex. antalet byggnader i kategorin kemisk industri). n är antalet bränder i denna typ av industri under perioden som undersöks. $v_n(A)$ är frekvensfunktionen för arean av de byggnader som har brunnit och $v_N(A)$ är frekvensfunktionen för arean av alla byggnader i denna typ av industri.

Ekvation 2.1 innebär att sannolikheten för brand viktas med avseende på arean i byggnaderna som undersöks. Om sannolikheten för brands uppkomst i en byggnad med en viss arean skall beräknas, så analyseras först sannolikheten för att en byggnad skall ha den storleken med hjälp av $v_N(A)$ samt sannolikheten att en byggnad som brunnit skall ha den storleken, $v_n(A)$. Sannolikheten att en byggnad som brunnit skall ha den arean delas sedan med sannolikheten att en godtycklig byggnad (av den typen av industrier) skall ha den storleken. På så vis får en viktning av sannolikheten för brand beroende på storlek av byggnad. Om det inte fanns något samband mellan byggnaders storlek och sannolikheten för brands uppkomst skulle faktorn $v_n(A)/v_N(A)$ vara lika med 1 för alla A.

![Figur 2.2](image.jpg) Exempel på en diskret funktion.
Brandfrekvenser och typbränder i industrianläggningar

I allmänhet används stora bokstäver (ex. \(P_{\text{Brand}} \)) för att beteckna en egenskap hos en större population och små bokstäver (ex. \(p_{\text{brand}} \)) för att beteckna ett stickprov ur populationen (t.ex. de byggnader som har brunnit under ett år).

En pareto fördelning används normalt för att beskriva ett system vars felsannolikhet minskar med tiden. Ramachandran använder dock fördelningen för att beskriva areaen av byggnader, vilket betyder att det antas finnas ett stort antal små (en definition av den minsta byggnaden som ingår i undersökningen måste göras) och mindre antal stora byggnader. Om det skulle visa sig att denna form inte passar för de industrier som undersöks så kan andra fördelningar prövas.

En Pareto fördelning kan beskrivas som:

\[
\nu_N(A) = \lambda_N S_N^{\lambda_N} A^{-\lambda_N-1} \quad (2.2)
\]

där \(\lambda_N \) är en konstant, \(S_N \) är golvarean hos den minsta byggnaden som ingår i den industrigrupp som undersöks och \(A \) är golvarean i byggnaden. En likadan fördelning kan ansättas för areaen hos de byggnader som har brunnit under perioden som undersöks:

\[
\nu_n(A) = \lambda_n S_n^{\lambda_n} A^{-\lambda_n-1} \quad (2.3)
\]

där \(\lambda_n \) är en konstant och \(S_n \) är arean hos den minsta byggnad som brunnit. Några exempel på Pareto fördelningar kan ses i figur 2.3.
2. Brandfrekvenser

![Diagram](image-url)

Figur 2.3 Exempel på Pareto fördelningar med $S_N = 100 \text{m}^2$ (endast intervallet 100-500 m^2 visas).

Med hjälp av ekvation 2.1, 2.2 och 2.3 fås:

$$P(A) = CA^\beta$$ \hspace{1cm} (2.4)

där

$$C = \frac{n \lambda_n S_n^{1/\lambda_n}}{N \lambda N S_N^{1/\lambda N}}$$ \hspace{1cm} (2.5)

$$\beta = \lambda_N - \lambda_n$$ \hspace{1cm} (2.6)

Med hjälp av ekvation 2.5, 2.6 och skadedata från industrier inom någon av de kategorier som definieras i avsnitt 2.1 kan ett uttryck av samma form som ekvation 2.4 skapas. Detta har Rutstein /2/ gjort och här redovisas ett exempel för P_{Brand} som funktion av arean för textilindustri:

$$P_{\text{Brand, Textil}} = 0.0075 A_{\text{Textil}}^{0.35}$$ \hspace{1cm} (2.7)

I avsnitt 2.2.2. redovisas flera resultat från Rutsteins /2/ arbete.

Den information som behövs för att skapa liknande uttryck för den svenska industrin är alltså uppgifter om fördelningen av byggnadsareor (vilken kan fås från fastighetstaxeringsregistret) och uppgifter om vilka industrier som har brunnit under perioden som undersöks (vilket kan fås från Räddningsverket).
2.2.2. Rutsteins modell

Den modell för att beräkna sannolikheten för brands uppkomst som bland annat har använts i Bengtson /4/ och Fire Engineering Guidelines /5/ kommer från Rutstein /2/. Sannolikheten för uppkomst av brand i en byggnad uttrycks som en funktion av golvarean. Förhållandet mellan sannolikheten för brands uppkomst och golvarean är dock inte linjärt vilket framgår av ekvation 2.8. Värdena a och b i ekvation 2.8 beror av vilken verksamhet som bedrivs i lokalens och har erhållits på det sätt som beskrivs i 2.2.1.

\[P_{\text{Brand}} = a A_F^b \]
(2.8)

\(P_{\text{Brand}} \) = Sannolikheten för att en brand skall uppkomma (år\(^{-1}\))

\(A_F \) = Arean av den industri som sannolikheten för brand skall beräknas för (m\(^2\))

\(a \) = Konstant beroende på verksamheten i lokalens (se tabell 2.1)

\(b \) = Konstant beroende på verksamheten i lokalens (se tabell 2.1)

I tabell 2.1 redovisas olika industriyper och de värden som används på konstanterna a och b.

Det bör observeras att de värden på a och b som presenteras i tabellerna kommer från brandstatistik för de bränder där brandförsvar kallats till platsen. Detta betyder att det kan finnas en del brandtillbud som släckts av personalen i byggnaden och sedan inte meddelats till brandförsvar. I så fall ger ekvation 2.8 en underskattning av sannolikheten för brands uppkomst.

<table>
<thead>
<tr>
<th>Industriverksamhet</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>All tillverkande industri</td>
<td>0.0017</td>
<td>0.53</td>
</tr>
<tr>
<td>Mat, dryck och tobak</td>
<td>0.0011</td>
<td>0.60</td>
</tr>
<tr>
<td>Kemiska</td>
<td>0.0069</td>
<td>0.46</td>
</tr>
<tr>
<td>Mekaniska</td>
<td>0.00086</td>
<td>0.56</td>
</tr>
<tr>
<td>Elektriska</td>
<td>0.0061</td>
<td>0.59</td>
</tr>
<tr>
<td>Fordon</td>
<td>0.00012</td>
<td>0.86</td>
</tr>
<tr>
<td>Trä, möbler</td>
<td>0.0037</td>
<td>0.77</td>
</tr>
<tr>
<td>Textil</td>
<td>0.0075</td>
<td>0.35</td>
</tr>
<tr>
<td>Papper, tryckerier</td>
<td>0.00007</td>
<td>0.91</td>
</tr>
<tr>
<td>Annan tillverkning</td>
<td>0.0084</td>
<td>0.41</td>
</tr>
<tr>
<td>Lager</td>
<td>0.00067</td>
<td>0.5</td>
</tr>
<tr>
<td>Kontor</td>
<td>0.000059</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Tabell 2.1 Värden /2/ på konstanterna a och b beroende på industriverksamhet.
2.2.3. VTT

J.Rahikainen och O. Keski-Rahkonen har i rapporten ”Determination of ignition frequency of fire in different premises in Finland” /8/ studerat finsk insatsstatistik och noterat sambandet mellan byggnadsyta och brandfrekvenser i olika byggnader i Finland. För att komma fram till ett samband mellan byggnadsyta och brandfrekvens har en modell enligt Ramachandran /6/ använts. Denna modell redovisas i avsnitt 2.2.1. I rapporten /8/ dras slutsatsen att i alla byggnader över 1000 m² så är brandfrekvensen ungefär proportionell mot golvytan. Värdet 1×10^{-5} m⁻² år⁻¹ föreslås användas för byggnader över 1000 m².

För bränder i sjukhus har en jämförelse med North och Baldwins /9/ resultat i artikeln ”Fire Risk in Hospitals” gjorts. Det råder god överensstämmelse mellan dessa resultat och de som redovisas i /8/ och det anges också några uppskattade brandfrekvenser. I kontor, laboratorier och vårdrum (wards) anges ett värde mellan 1,3 och $2,0 \times 10^{-5}$ m⁻²år⁻¹. I lager och restaurang (catering) utrymmen anges $1,4 \times 10^{-4}$ m⁻²år⁻¹.
3 Bränder i industrier

Metoden att analysera ekonomiska förluster vid ett stort antal bränder och bedöma den förväntade skadekostnaden (EMV) i en byggnad med hjälp av dessa data beskrivs i avsnitt 3.4. Metoden går ut på att sannolikheten för brands uppkomst i en byggnad bestäms enligt kapitel 2. Därefter beräknas fördelningen av bränder inom industrianläggningen (se avsnitt 3.1), d.v.s. givet brand, vad är sannolikheten att branden börjar i produktionslokalen, kontoret, lagret etc. När sannolikheten för brand i de olika delarna av anläggningen är känta används skadedata från bränder i liknande industrier för att bedöma den förväntade skadekostnaden (givet brand) i byggnaden. Denna förväntade skadekostnad blir då givetvis en funktion av den maximala ekonomiska skada som kan uppkomma i den aktuella anläggningen. Dessa förväntade skadekostnader är beroende av vilken industri som brinner och var i industrin som branden börjat. Den modell som redovisas i avsnitt 3.4 är endast en ram för hur beräkningsuttryckken kan tas fram, d.v.s. den går idag inte att använda praktiskt. Det som behövs för att den skall bli praktiskt användbar är en sammanställning av skadors storlek (uttryckt i kkr) i förhållande till hela värdet i byggnaden, för ett antal bränder i de olika industrigrupperna.

3.1. Brandsfördelning inom industrianläggningar

Då sannolikheten för att en brand uppstår i en specifik industrianläggning har beräknats kan fördelningen av bränder inom industribyggnaden bedömas. Det vill säga, givet brand, vad är sannolikheten att den börjar i produktionslokalen, lagret etc.? Denna information är mycket värdefull då analyser av olika industrier skall genomföras. Här nedan (tabell 3.1) redovisas i vilka utrymmen som bränder startat i (under 1996) beroende på vilken kategori som industrin tillhör. Statistiken kommer från Räddningsverket /1/.

De vanligaste startutrymmena (Förutom alternativen Annat, Okänd och Inget angivet) är markerade med grått fält.
Startutrymmen

<table>
<thead>
<tr>
<th>Startutrymme</th>
<th>Industrihotell</th>
<th>Kemisk Industri</th>
<th>Livsmedelsindustri</th>
<th>Metall/Maskinindustri</th>
<th>Textil/Beklädnadindustri</th>
<th>Trävaruindustri</th>
<th>Annan Tillverkningsindustri</th>
<th>Reparationsverkstad</th>
<th>Lager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inte angivet</td>
<td>4,5</td>
<td>11,4</td>
<td>11,4</td>
<td>7,0</td>
<td>8,0</td>
<td>8,5</td>
<td>10,1</td>
<td>11,9</td>
<td>14,3</td>
</tr>
<tr>
<td>Utomhus</td>
<td>3,0</td>
<td>3,0</td>
<td>1,3</td>
<td>0,8</td>
<td>3,7</td>
<td>2,3</td>
<td>1,7</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Fristående hus</td>
<td>0,8</td>
<td>1,3</td>
<td>0,5</td>
<td>1,1</td>
<td>1,3</td>
<td>2,5</td>
<td>7,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förråd</td>
<td>0,8</td>
<td>0,3</td>
<td>0,5</td>
<td>0,3</td>
<td>0,3</td>
<td>1,7</td>
<td>6,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fristående garage</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,9</td>
</tr>
<tr>
<td>Inbyggt Garage</td>
<td>1,5</td>
<td>1,3</td>
<td>0,5</td>
<td>4,2</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radgarage</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>Kök</td>
<td>1,5</td>
<td>5,1</td>
<td>1,1</td>
<td>4,0</td>
<td>0,5</td>
<td>1,0</td>
<td>1,7</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Skorsten</td>
<td>1,5</td>
<td>2,5</td>
<td>1,6</td>
<td></td>
<td>1,1</td>
<td>0,6</td>
<td>2,5</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Pannrum</td>
<td>3,0</td>
<td>3,8</td>
<td>3,8</td>
<td>3,2</td>
<td>8,0</td>
<td>7,1</td>
<td>2,6</td>
<td>6,8</td>
<td>3,2</td>
</tr>
<tr>
<td>Luftbehandlingsutrymme</td>
<td>1,5</td>
<td>3,0</td>
<td>2,5</td>
<td>1,3</td>
<td>1,6</td>
<td>2,9</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soprum/nedkast</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapphus/korridor</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>Tvättstuga</td>
<td>2,5</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badrum/toalett/bastu</td>
<td>0,3</td>
<td>8,0</td>
<td></td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vardagsrum</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sovrum/sosval</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall</td>
<td>3,0</td>
<td>18,9</td>
<td>10,1</td>
<td>19,4</td>
<td>8,0</td>
<td>5,8</td>
<td>14,0</td>
<td>1,6</td>
<td></td>
</tr>
<tr>
<td>Verkstad/Hobbyrum</td>
<td>7,6</td>
<td>2,3</td>
<td>5,4</td>
<td>0,8</td>
<td>1,0</td>
<td>24,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vind</td>
<td>1,5</td>
<td>3,8</td>
<td>0,8</td>
<td>1,1</td>
<td>1,6</td>
<td>0,8</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Källare</td>
<td>1,5</td>
<td>1,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balkong/Loftgång</td>
<td>7,6</td>
<td>5,3</td>
<td>1,3</td>
<td>1,9</td>
<td>1,6</td>
<td>4,2</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elcentral</td>
<td>24,2</td>
<td>23,5</td>
<td>26,6</td>
<td>32,5</td>
<td>48,0</td>
<td>25,1</td>
<td>27,6</td>
<td>5,1</td>
<td>6,3</td>
</tr>
<tr>
<td>Produktionslokal</td>
<td>4,5</td>
<td>0,3</td>
<td>0,3</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Försäljningslokal</td>
<td>4,5</td>
<td>0,3</td>
<td>0,3</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samlingslokal</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personalutrymme</td>
<td>1,5</td>
<td>3,0</td>
<td>1,3</td>
<td>2,2</td>
<td>1,1</td>
<td>1,9</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontor</td>
<td>1,5</td>
<td>0,8</td>
<td>1,3</td>
<td>0,3</td>
<td>0,3</td>
<td>1,7</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datacentral</td>
<td>0,8</td>
<td></td>
<td>1,1</td>
<td>1,3</td>
<td>0,3</td>
<td>4,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastbrygga</td>
<td>0,3</td>
<td></td>
<td>0,8</td>
<td>1,3</td>
<td>1,6</td>
<td>1,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lager</td>
<td>9,1</td>
<td>1,5</td>
<td>1,3</td>
<td>1,3</td>
<td>12,0</td>
<td>1,1</td>
<td>1,6</td>
<td>30,2</td>
<td></td>
</tr>
<tr>
<td>Upplag</td>
<td>0,8</td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Djurstall</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höupplag/Loge/Lada</td>
<td>1,3</td>
<td></td>
<td>2,1</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cistern</td>
<td>1,5</td>
<td></td>
<td>1,1</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silo</td>
<td>2,3</td>
<td></td>
<td>5,8</td>
<td>2,6</td>
<td>0,8</td>
<td>4,8</td>
<td>6,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annat</td>
<td>18,2</td>
<td>13,6</td>
<td>20,3</td>
<td>14,0</td>
<td>4,0</td>
<td>20,6</td>
<td>18,8</td>
<td>11,9</td>
<td>6,3</td>
</tr>
<tr>
<td>Okänd</td>
<td>4,5</td>
<td>0,8</td>
<td>1,3</td>
<td>0,5</td>
<td>1,1</td>
<td>2,6</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt antal bränder</td>
<td>66 st</td>
<td>132 st</td>
<td>79 st</td>
<td>372 st</td>
<td>25 st</td>
<td>378 st</td>
<td>308 st</td>
<td>118 st</td>
<td>63 st</td>
</tr>
</tbody>
</table>

Tabell 3.1 Procentuell fördelning mellan startutrymmen i de olika industrityperna.
Sannolikheten att brand skall börja i en specifik anläggning under ett år betecknas med \(p_{\text{Brand}} \).
Sannolikheten att en brand skall börja i en viss del \((i)\) av anläggningen betecknas med \(p_i \) och andelen bränder (av samtliga i byggnaden) som börjar i del \((i)\) av anläggningen betecknas med \(f_i \).

Då gäller:

\[
p_i = p_{\text{Brand}} \cdot f_i \quad \text{(3.1)}
\]

\[
\sum_i f_i = 1 \quad \text{(3.2)}
\]

För att bedöma faktorn \(f_i \) för en specifik industri och en speciell del \((i)\) av anläggningen kan tabell 3.1 användas. En bättre bedömning erhålls om tabell 3.1 kombineras med brandstatistik för den aktuella anläggningen. På så vis tas bättre hänsyn till de speciella förutsättningar som gäller inom just den anläggningen.

3.1.1. Modifiering av brandfrekvenser

Förhållandet mellan brandfrekvensen i en viss del \((i)\) av industrianläggningen som studeras och brandfrekvensen i del \((i)\) inom industrigruppen betecknas med \(l_i \). Detta betyder att om \(l_i \) är större än 1 så är sannolikheten för en brand större i del \((i)\) av den aktuella anläggningen än den är i del \((i)\) av industrigruppen. Denna bedömning av förhållandet mellan brandfrekvenser görs för alla delar i anläggningen och med hjälp av dessa bedömningar kan den totala brandfrekvensen för hela anläggningen justeras enligt ekvation (3.3).

\[
p_{\text{Brand(ny)}} = \sum_i l_i p_i \quad \text{(3.3)}
\]

där

\[
l_i = \text{Anläggningens risk i förhållanden till industrigruppens (i del (i))}.
\]

\[
p_i = \text{Sannolikheten för att brand skall uppstå i del (i) beräknat med hjälp av den generella fördelningen som gäller för industrigruppen (år}^{-1}).
\]

\[
p_{\text{brand(ny)}} = \text{Sannolikheten för att brand skall börja i byggnaden efter att justering för den aktuella byggnaden gjorts (år}^{-1}).
\]

\(l_i \), kommer att vara förknippad med subjektiva bedömningar angående förhållanden i gruppen av industrier och i den specifika anläggningen. Om tillgången till information angående brandrisker i den egna anläggningen är begränsad kan antagandet att anläggningen representeras med de sannolikhetsdata som hämtats från industrigruppen göras. Detta innebär att \(l_i \) för samtliga delar i anläggningen (i) anses vara lika med 1.
Om bra tillbudsstatistik från den industri som analyseras finns tillgänglig skulle denna kunna användas för att modifiera sannolikheten för brands uppkomst (och fördelningen av bränder inom anläggningen). I så fall behövs inga subjektiva bedömningar av \(l \) göras eftersom den informationen redan finns i tillbudsstatistikken. Brandfördelningen som gäller för den specifika industrigruppen skulle då kunna modifieras med hjälp av den information som finns i tillbudsstatistikken. Detta kan utföras med en lämplig statistisk metod.

Ett sätt att utföra en sådan justering av brandfrekvensen är att använda Bayes sats /36/ för att uppdatera brandfrekvensen i byggnaden. Tillvägagångssättet bygger på att någon typ av förkunskap om brandfrekvensen i anläggningen finns, och i detta fallet kan den beräknas med hjälp av ekvation (3.1). Resultatet från denna beräkning blir en brandfrekvens som gäller för en generell anläggning i den industrigruppen. Brandfrekvensen i de olika anläggningsdelarna kan beräknas genom att använda den generella brandfördelningen i tabell 3.1.

Sannolikheten för att 1,2,3… bränder skall uppkomma under en viss tidsperiod kan beskrivas med en Poisson-fördelning. En Poisson-fördelning uppträder då händelser inträffar slumpmässigt i tiden eller rummet, d.v.s. när händelserna är oberoende av varandra och kan inträffa när som helst. Dessutom förutsätts det att händelserna inträffar med en konstant frekvens så att \(\lambda \) händelser inträffar i genomsnitt per tidsenhet (t). Dessa villkor anses gälla för bränder i en industribyggnad.

En Poisson-fördelning beskrivs med sannolikhetsfunktionen

\[
p_X(x) = e^{-\lambda t} \frac{(\lambda t)^x}{x!} \quad (3.4).
\]

\(x = 0,1,\ldots \)

\(x = \) Antalet händelser (bränder) under tidsperioden \(t \).

\(\lambda = \) Brandfrekvensen (år \(^{-1} \)).

\(t = \) Tidsperioden (år).

\(p_X(x) = \) Sannolikheten att \(x \) bränder uppkommer under tidsperioden \(t \).

Medelvärdet av en Poisson-fördelning är

\[
E(X) = \lambda t \quad (3.5).
\]

Målet med modifierings- eller uppdateringsprocessen är att beräkna ett nytt värde på brandfrekvensen \(\lambda \) där även hänsyn till tillbud i industrin tagits. Med andra ord: Vi tror att \(\lambda \) har ett visst värde (beräknat genom generell statistik), men vill genom mätningar (hur ofta har det brunnit i den aktuella industrin?) av de verkliga förhållandena i anläggningen förbättra vår skattning av \(\lambda \). Detta görs genom användandet av Bayes sats /36/ som kan beskrivas enligt ekvation 3.6.

\[
P(\lambda_i | A) = \frac{P(\lambda_i)P(A | \lambda_i)}{\sum_{j=1}^{n} P(\lambda_j)P(A | \lambda_j)} \quad (3.6)
\]
3 Brändar i industrier

Funktionen $P(A|\lambda_i)$ kallas ”likehood-funktionen” och beskriver hur stor sannolikheten är att värdet A erhålls vid en mätning, givet λ_i. I den här tillämpningen är likehood-funktionen en Poisson-fördelning (eftersom uppkomsten av bränder antas vara Poisson-fördelad). I så fall beskriver likehood-funktionen hur stor sannolikheten är att A antal bränder uppstår under tidsperioden givet att antal bränder är Poisson-fördelade med medelvärdet λ_i.

$P(\lambda_i)$ kallas apriorifördelning och beskriver skattningen av λ_i innan några mätningar har gjorts.

$P(\lambda_i|A)$ kallas posteriorifördelning och beskriver skattningen av λ_i efter att uppdateringen med hjälp av mätningen har gjorts.

Faktorn som är placerad i nämnaren i Bayes sats är en normaliseringsfaktor.

För att använda Bayes sats måste en apriorifördelning skattas, d.v.s. en beskrivning av hur osäkerheten i parameter λ (ekvation 3.4) bedöms innan någon mätning gjorts. Vid händelser som är Poisson-fördelade är en a priorifördelning av gamma-typ lämplig eftersom den är konjugerad, d.v.s. a priorifördelningen och posteriorifördelningen är av samma typ.

En gamma fördelning kan beskrivas med följande frekvensfunktion om α är ett heltal

$$f(\lambda) = \frac{\beta^\alpha \lambda^{\alpha-1} e^{-\beta\lambda}}{(\alpha-1)!}$$

(3.7)

$\lambda \geq 0$

Gamma fördelningens medelvärde är

$$E(\lambda) = \frac{\alpha}{\beta}$$

(3.8)

β kallas för lägesparameter och α för formparameter. I figur 3.1 visas några exempel på gamma fördelningar.
Brandfrekvenser och typbränder i industrianläggningar

Figur 3.1 Exempel på gamma fördelningar då β=2.

Vid val av lämplig apriorifördelning kan metodiken i kapitel 3 användas för att beräkna brandfrekvensen i byggnaden. Denna beräkning representerar en bedömning av brandfrekvensen innan något om den specifika anläggningen är känt. Med hjälp av denna brandfrekvens kan en gamma fördelning ansättas som representerar den osäkerhet som råder angående brandfrekvensen. Denna gamma fördelning blir då en apriorifördelning.

Det visar sig att posteriorifördelningen blir mycket lätt att beräkna då apriorifördelningen är en gamma fördelning och likehood-funktionen en Poisson-fördelning. Posteriorifördelningen blir nämligen en ny gamma fördelning med parametrarna (β+T) och (α+r) /35/ där T är den tidsperiod som mätningen pågått och r är det antal bränder (händelser) som uppkommit.

Denna posteriorifördelning representerar skattningen av brandfrekvensen λ efter att hänsyn till tillbudsstatistiken tagits och det nya medelvärdet kan beräknas med ekvation 3.9.

\[E_{\text{ny}}(\lambda) = \frac{\alpha + r}{\alpha + T} \] \hspace{1cm} (3.9)

EXEMPEL 3.1
I en mindre trävaruindustri har sannolikheten för brand beräknats till 0,099 per år. Om det förutsätts att antal bränder per år är Poisson-fördelade är medelvärdet av antal bränder per år lika med λ. För små λ är \(p_{\text{Brand}} = \lambda \), vilket innebär att \(\lambda \) i detta fall antas vara 0,099 är⁻¹.

Vid analysen anses att brandfrekvensen är förknippad med en viss osäkerhet och därför representeras den med en gamma-fördelning som har medelvärdet 0,099 per år.

Eftersom fördelningen är av gamma-typ blir beteckningen g(α,β) och i detta fallet uppskattas följande fördelning:

\[f(\lambda) = g(8, 80,8) \]
Figur 3.2 Uppskattade frekvensfunktion för λ i anläggningen.

Genom uppgifter i anläggningens 20-åriga tillbudsstatistik kan 4 stycken bränder identifieras. Huruvida ett tillbud kan klassificeras som en brand eller ej är förknippat med bedömningar, vilka kan göras lättare om utförliga beskrivningar av tillbuden finns att tillgå.

Med dessa uppgifter kan skattningen av brandfrekvensen uppdateras med hjälp av Bayes årsats och antagandena som beskrivits i detta avsnitt, vilket resulterar i följande nya fördelning:

$$f(\lambda) = g(12, 100,8)$$

Figur 3.3 Uppdaterade frekvensfunktioner för λ i de olika anläggningsdelarna.

Denna uppdaterade fördelning innebär följande medelvärde:

$$\lambda_{Medel} = \frac{\alpha}{\beta} = \frac{12}{100,8} = 0,119 \text{ år}^{-1}$$
Bedömningen av λ har alltså ändrats enligt tabell 3.2

<table>
<thead>
<tr>
<th>λ före uppdatering (år$^{-1}$)</th>
<th>λ efter uppdatering (år$^{-1}$)</th>
<th>Förändring (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,099</td>
<td>0,119</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabell 3.2 Skattning av λ före och efter användandet av Baye’s sats.

Dessa ny skattningar av brandfrekvensen λ kan används i den fortsatta analysen av anläggningen.
3.2. Typbränder i industrier

De bränder som analyseras vid en utvädering av en anläggning kallas typbränder och är tänkta att representera de initialbränder som kan uppstå i anläggningen.

Att välja typbränder i en byggnad är svårt eftersom det vanligtvis finns väldigt många olika ställen som en brand kan tänkas börja på. Vägledning vid val av typbränderna kan fås från bilaga 3 där en tabell som visar de första brinnande objekten vid brandförsvarets insatser under 1996.

Antag att ett kontorsrum skall analyseras och det är känt att en brand startat i rummet, men inte vilket objekt som brinner. Beroende på vilket objekt som brinner (och var det är placerat) blir den maximala brandeffekten som utvecklas i rummet olika (förutsatt att inte övertändning sker). De olika maximala brandeffekter som kan uppkomma då föremål i rummet brinner ”fritt” kan sammanfattas i en kontinuerlig fördelning (figur 3.4). De typbränder som analyseras för detta kontorsrum skall på bästa sätt representera den fördelning av maximala brandeffekter som kan uppkomma, vilket betyder att de skall representera den kontinuerliga fördelningen på bästa möjliga sätt. I figur 3.4 visas fem typbränders maximala brandeffekter i en diskret fördelning. Att ett föremål brinner ”fritt” innebär att det brinner utan inverkan av eventuell rumsgeometri (återstrålning från heta gaser mm.).

En kontinuerlig fördelning kan approximeras med en diskret genom att t.ex. den maximala brandeffekten i den kontinuerliga fördelningen (figur 3.4) avrundas till 0.2, 0.6, 1.0 o.s.v. Detta betyder att samtliga maximala brandeffekter mellan 0 och 0.4 avrundas till 0.2. Arean under tätthetsfunktionen (den kontinuerliga funktionen) blir alltså sannolikhetsfunktionens (den diskreta fördelningen) värde för 0,2 MW (0,57 i figur 3.4).

Figur 3.4 Fiktiv fördelning av maximala ”fria” brandeffekter i ett rum.
Dessa fördelningar av maximala brandeffekter kan vara svåra att identifiera, men vägledning kan fås genom att studera vilka objekt som finns i lokalen och bedöma var det är störst sannolikhet att branden börjar och därefter uppskatta de maximala brandeffekterna som objekten kan utveckla.

För att ge vägledning då dessa fördelningar skall väljas kan statistik angående först antända föremål i bränder användas. I bilaga 1 till 3 finns tabeller som visar först antända föremål i de olika industrigrupperna.

En studie av dessa fördelningar borde utföras på de utrymmen som är vanligt förekommande i industri och som har en liknande utformning oberoende av industriverksamhet, t.ex. kontorsrum. När fördelningar för mer industrispecifika utrymmen skall skapas bör dock speciella fördelningar för just den aktuella industrin användas.

När dessa industrispecifika fördelningarna skapas kan följande metodik användas:

1) Identifiera de föremål som enligt statistiken i bilaga 1 till 3 är vanliga brandstiftare. Undersök därefter vilka av dessa föremål som finns i det aktuella utrymmet. De som inte finns där kan strykas från analysen.

2) Undersök tillbudsstatistik för den aktuella industridelen och kontrollera om det finns andra föremål som kan tänkas vara vanliga brandstiftare. Innefatta även dessa föremål i analysen över tänkbara tändkällor.

3) Innan detta steg i analysen har sannolikheten för brand i den aktuella industridelen (i) räknats ut som \(p_i \) (se avsnitt 3.1). Denna skall nu fördelas på de olika brandstiftarna, vilket kan göras genom att studera hur fördelningen mellan de olika föremålen i bilaga 1 och 2 ser ut samt väga detta tillsammans med den egna tillbudsstatistiken.

4) Undersök vilka av antändningskällorna som kan tänkas orsaka en initialbrand, d.v.s. vilka är, eller kan komma i kontakt med brännbart material. Observera att vissa av antändningskällorna i sig själva innehåller brännbart material. Observera också var i lokalen som stora mängder brännbart material finns lagrat och även om ingen tändkälla finns i närheten bör ändå möjligheten att en brand börjar där (eller sprider sig dit) beaktas i analysen. De antändningskällor som inte är i kontakt med brännbart material och inte bedöms kunna orsaka någon skada på anläggningen kan tas bort ur analysen, med den följd att sannolikheten för en allvarlig brand i anläggningen minskar.

5) Bedöm effektutvecklingen hos de initialbränder som har identifierats och skapa en typbrandsfördelning (se figur 3.4). Förmodligen kommer den första typbrandsfördelningen att bestå av ganska många bränder, men dessa kan minskas i antal genom att ansätta samma typbrand för ett antal föremål som bedöms ha liknande brandutveckling och skadeeffekt på anläggningen.

Statistiken över föremål som startat bränder är i nuläget liten, men allt eftersom fler års statistik samlas ökar också värdet i informationen.
EXEMPEL 3.2
Antag att en typbrandsfördelning skall skapas i produktionshallen på mekanisk industri. Som steg 1 hämtas fördelningen över första brinnande objekt för Metall/Maskinindustri i bilaga 1. I den aktuella produktionslokalen finns inte följande föremål, varför dessa kan strykas från analysen: eldstad, tvättmaskin och explosiva ämnen.

Vid undersökning av tillbudsstatistik för produktionslokalen upptäcks att vid tre tillfällen de senaste fem åren har en kokplatta i ett personalutrymme som ligger i produktionslokalen orsakat rökutveckling i samband med att någon glömt att stänga av den. Listan över tänkbara tändkällor kompletteras med kokplattan.

Tidigare i analysen har sannolikheten för typbrand i produktionsdelen räknats ut till $p_{\text{Prod}} = 0,05 \text{ år}^{-1}$. Med hjälp av denna sannolikhet för brand i produktionsdelen och fördelningen av bränder (mellan olika tändkällor) räknas sannolikheten för de olika typbränderna ut. Följande fördelning mellan antändningskällorna bedöms representera förhållandet i produktionslokalen:

- Rökkanal: $f_{\text{Rökkanal}} = 0,05$
- Lös inredning: $f_{\text{Lös inredning}} = 0,03$
- Uppvärmning: $f_{\text{Uppvärmning}} = 0,14$
- Glödlampa: $f_{\text{Glödlampa}} = 0,03$
- Transformator: $f_{\text{Transformator}} = 0,07$
- Elinstallationer: $f_{\text{Elinstallationer}} = 0,10$
- Fläkt: $f_{\text{Fläkt}} = 0,10$
- Skräp: $f_{\text{Skräp}} = 0,10$
- Maskin: $f_{\text{Maskin}} = 0,30$
- Brandf.vätska: $f_{\text{Brandf.vätska}} = 0,03$
- Kokplatta: $f_{\text{Kokplatta}} = 0,05$

$\sum f_j = 1$

En fördelning av p_{Prod} på de olika antändningskällorna ger följande resultat:

- $p_{\text{Rökkanal}} = 0,05 \times 0,05 = 0,0025 \text{ år}^{-1}$
- $p_{\text{Lös inredning}} = 0,03 \times 0,05 = 0,0015 \text{ år}^{-1}$
- $p_{\text{Uppvärmning}} = 0,14 \times 0,05 = 0,007 \text{ år}^{-1}$
- $p_{\text{Glödlampa}} = 0,03 \times 0,05 = 0,0015 \text{ år}^{-1}$
- $p_{\text{Transformator}} = 0,07 \times 0,05 = 0,0035 \text{ år}^{-1}$
- $p_{\text{Elinstallationer}} = 0,10 \times 0,05 = 0,005 \text{ år}^{-1}$
- $p_{\text{Fläkt}} = 0,10 \times 0,05 = 0,005 \text{ år}^{-1}$
- $p_{\text{Skräp}} = 0,10 \times 0,05 = 0,005 \text{ år}^{-1}$
- $p_{\text{Maskin}} = 0,30 \times 0,05 = 0,015 \text{ år}^{-1}$
- $p_{\text{Brandf.vätska}} = 0,03 \times 0,05 = 0,0015 \text{ år}^{-1}$
- $p_{\text{Kokplatta}} = 0,05 \times 0,05 = 0,0025 \text{ år}^{-1}$

Av dessa antändningskälla anses endast rökkanalen kunna uteslutas eftersom de rökkanaler som finns i lokalen är väl skyddade under obrännbar isolering och bedöms inte kunna orsaka någon ekonomisk skada på anläggningen.
Brandfrekvenser och typbränder i industrianläggningar

Följande intervall av maximala brandeffekter för de olika objekten när de brinner ”fritt” har uppskattats:

\[Q_{\text{Lös inredning}} = 0.1 - 1.5 \text{ MW} \]
\[Q_{\text{Uppvärmning}} = 0.5 - 0.8 \text{ MW} \]
\[Q_{\text{Glödlampa}} = 0.1 - 0.4 \text{ MW} \]
\[Q_{\text{Transformator}} = 0.2 - 0.6 \text{ MW} \]
\[Q_{\text{Elinstallation}} = 0.2 - 1.0 \text{ MW} \]
\[Q_{\text{Fläkt}} = 0.2 - 0.4 \text{ MW} \]
\[Q_{\text{Skräp}} = 0.1 - 0.5 \text{ MW} \]
\[Q_{\text{Maskin}} = 0.5 - 2 \text{ MW} \]
\[Q_{\text{Brandfvätska}} = 0.2 - 1.0 \text{ MW} \]

Bedömningarna av maximala brandeffekter innefattar inte bara det föremål som börjar brinna, utan också det föremål som branden kan antas sprida sig till under initialskedet.

Följande bränder antas kunna karaktäriseras med samma typbrand:

Lös inredning, kokplatta, skräp och uppvärmningsanordning = \(Q_{\text{Lös,Skräp}} = 0.5 \text{ MW}\)
Transformator och övriga elinstallationer = \(Q_{\text{El}} = 0.6 \text{ MW}\)
Brandfarlig vätska = \(Q_{\text{Brandf.vätska}} = 2.5 \text{ MW}\)
Maskin = \(Q_{\text{Maskin}} = 1.5 \text{ MW}\)
Fläkt och glödlampa = \(Q_{\text{Fläkt,Glöd}} = 0.3 \text{ MW}\)

Sannolikheterna för de olika typbränderna kan nu räknas ut genom summering av sannolikheter för de olika föremål som ingår i den specifika typbranden.

\[p_{\text{Lös,Skräp}} = 0.005 + 0.0015 + 0.0025 + 0.007 = 0.016 \text{ år}^{-1} \]
\[p_{\text{El}} = 0.005 + 0.0035 = 0.0085 \text{ år}^{-1} \]
\[p_{\text{Brandf.vätska}} = 0.0015 \text{ år}^{-1} \]
\[p_{\text{Maskin}} = 0.015 \text{ år}^{-1} \]
\[p_{\text{Fläkt,Glöd}} = 0.005 + 0.0015 = 0.0065 \text{ år}^{-1} \]

Detta innebär att typbrandsfördelningen ser ut enligt figur 3.5 nedan.

![Figur 3.5](image-url)

Figur 3.5 Typbrandsfördelningen i exempel 3.1.
Vid den fortsatta analysen bedöms sannolikheten att dessa typbränder orsakar övertändning, sprider sig till andra lokaler mm.

3.3. Brandscenarier

Figur 3.6 Generellt händelseträd för brandscenarier.

Uttrycket $P(\text{Ö} \mid \text{Brand})$ i figur 3.6 representerar sannolikheten för övertändning i rummet där typbranden uppstått, $P(\text{Rum} \mid \text{Ö})$ representerar sannolikheten att branden sprider sig ut ur rummet där den uppstod givet att övertändning har uppkommit och $P(\text{BC} \mid \text{Rum})$ representerar sannolikheten att hela brandcellen involveras i branden givet att den spridit sig ut ur rummet där den uppstod. Dessa tre sannolikheter kommer att diskuteras i de avsnitt som följer.

Detta generella händelseträd är en förenkling av verkligheten, eftersom det antas att brandförloppet endast kan anta fyra olika sluttillstånd (K1 till K4). Dessa sluttillstånd, eller konsekvenser beskrivs närmare i avsnitt 3.3.4.

Sannolikheten att typbränderna uppstår erhålls med hjälp av metodiken som beskrivits tidigare i detta kapitel. Tybränderna fås genom att anta olika fördelningar av maximala effekter hos först antända föremål (eller "bränslepaket"). Dessa fördelningar är beroende av vilken verksamhet som bedrivs i lokalen och lokalens geometri.

Den ovan beskrivna utformningen av händelsetrådet bör endast användas då en brandcell består av flera mindre rum (t.ex. kontorsrum). Om brandcellen som analyseras t.ex. är en större produktionslokalt bör ett annat angreppssätt användas. Ett exempel på detta angreppssätt demonstreras med en analys av ett fiktivt företag (se avsnitt 5.6).

3.3.1. Manuell släckning

Det som är gemensamt för analysen av de manuella släckinsatserna är att de är mycket svåra att kvantifiera. De är dessutom vanligtvis väldigt viktiga för utgången av ett brandscenario och därför bör de finnas med i en kvantitativ analys av en industrianläggning.

I den här rapporten antas två typer av manuell släckning förekomma: släckning av personalen och släckning av brandförsvaret (eller industribrandkåren).

Personalens möjlighet att utföra en lyckad släckinsats är beroende av var branden uppstår, tillgång till brandsläckningsmateriel, detektionstid mm. En bedömning av sannolikheten att personalen släcker en uppkommen brand måste ske för varje utrymme där typbränder antas uppkomma. Denna bedömning bör baseras på faktorer som t.ex. personalstyrka och tillgången till släckutrustning. Ett sätt att ta hänsyn till personalens släckinsats är genom antagandet att personalen med sannolikheten p_personal släcker bränder innan övertändning inträffat.

Brandförsvarets släckinsats är minst lika svår att kvantifiera som personalens, men i ett BRANDFORSK projektet ”En modell för räddningstaktik” görs ett försök att bestämma de faktorer som avgör utgången av en brandkårsinsats. Innan resultatet från denna undersökning är klar kan vissa enkla beräkningar användas för att uppskatta brandförsvarets (och industribrandkårens) inverkan på brandförloppet.

I [31] anges att den typ av strälrör som vanligtvis används av rökdykargrupper i Sverige idag klarar av att släcka en brand som utvecklar en brandeffekt på ca. 11 MW. Detta värde är naturligtvis förvarvet med stora osäkerheter, eftersom bränslet, rumsgeometri, bränslekonfiguration mm. spelar en stor roll för hur effektiv en släckinsats blir. 11 MW anses i alla fall vara ett lämpligt värde att använda vid bedömningen om brandförsvaret lyckas med den första släckinsatsen eller inte. En lyckad insats (d.v.s. om brandförsvaret släcker branden vid första rökdykarinsatsen) beskrivs med variabeln G. Om G antar ett negativt värde misslyckas insatsen och om G antar ett positivt värde lyckas den. G uttryckts enligt ekvation 3.10.

\[
G = t_{11MW} - (t_{Detekt} + t_{Larm} + t_{Kör} + t_{Angrepp})
\]

- \(t_{11MW}\) = Tiden från det att initialbranden uppstått tills brandeffekten är 11 MW (s)
- \(t_{Detekt}\) = Tiden från att initialbranden uppstått till dess att branden detekteras (s)
- \(t_{Larm}\) = Tiden från detektion till dess att brandförsvaret (eller industribrandkåren) larmas (s)
- \(t_{Kör}\) = Tiden för brandförsvaret (eller industribrandkåren) att köra till anläggningen (s)
- \(t_{Angrepp}\) = Tiden till dess att brandförsvaret börjar spruta vatten på elden från det att de anländer till anläggningen (s)
Tiden till att branden utvecklar brandeffekten 11 MW kan bedömas genom att använda bilaga 4. Där redovisar brandtillväxthastigheter och avgiven värmeeffekt för ett antal olika föremål. För att göra modellen lätt hanterlig och enkel antas brandutvecklingen följa en så kallad $\alpha\cdot t^2$ kurva, vilket innebär att brandeffekten anses vara proportionell mot tiden i kvadrat d.v.s.:

$$Q = \alpha \cdot t^2 \quad (3.11)$$

där

$Q =$ Utvecklad brandeffekt (kW)
$\alpha =$ Tillväxthastighet (kW/s2)
$t =$ Tid från antändning (s)

Om tid att göra en mer noggrann analys finns bör mer representativa brandeffektkurvor skapas genom t.ex. användandet av effektkurvor hämtade från experiment.

Värden för faktorn α i ekvation 3.11 som beskriver brandens tillväxthastighet kan hämtas från tabell 3.3.

<table>
<thead>
<tr>
<th>Tillväxthastighet</th>
<th>α [kW/s2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra Snabb</td>
<td>0,187</td>
</tr>
<tr>
<td>Snabb</td>
<td>0,046</td>
</tr>
<tr>
<td>Medelsnabb</td>
<td>0,0117</td>
</tr>
<tr>
<td>Långsam</td>
<td>0,0029</td>
</tr>
</tbody>
</table>

Tabell 3.3 Olika brandtillväxthastigheter

Med hjälp av bilaga 4 och ekvation 3.11 kan tiden till dess att antingen brandeffekten 11 MW uppnås eller till dess att branden inte kan utveckla högre effekt p.g.a. bränslebrist beräknas. Om branden i första föremålet inte kan utveckla 11 MW innebär detta nödvändigtvis inte att den totala brandeffekten inte stiger över 11 MW eftersom det finns risk att branden sprids till andra föremål innan brandförsvaret kommit till platsen. Hänsyn till spridningen måste tas och den brandeffekt som jämförs med 11 MW är den, av alla brinnande föremål, sammanlagda brandeffekten.

De tider i ekvation 3.10 som beskriver brandförsvarets insats (t_{Detekt}, t_{Larm}, $t_{\text{Kör}}$, t_{Angrepp}) kan bedömas genom att undersöka larmsystemet, brandförsvarets körtid och byggnadens komplexitet (ur insatssynpunkt). Ett minsta och ett största värde bör bedömas för varje tidsvariabel. Variationen av G kan sedan bedömas genom antagandet att deltiderna är jämnt fördelade i intervallet som uppskattats, d.v.s. det är lika sannolikt att t.ex. t_{Detekt} antar det minsta uppskattade värdet som det största (eller vilket värde som helst däremellan). Med hjälp av dessa beräkningar kan sannolikheten att G antar ett värde som är mindre än 0 beräknas.

Figur 3.7 Exempel på bedömning av de olika faktorerna som ingår i variabeln G.
Brandfrekvenser och tybränder i industrianläggningar

Som ett exempel kan figur 3.7 användas. Där redovisas beräkningen av t_{11MW} som 650 sekunder och de övriga variablerna som ett intervall. De värden som redovisas i figur 3.7 resulterar i att G kan variera mellan 110 och −280 sekunder. Med antagandet att t_{Detekt}, t_{Larm}, $t_{Kör}$, $t_{Angrepp}$ är likformigt fördelade innebär det att sannolikheten att brandkåren lyckas släcka branden vid första insatsen är $(110/390) 0,28$.

Vid mer noggranna och tidskrävande analyser kan fördelningar (inte bara likformig) ansättas för de olika variablerna (tiderna) och sannolikheten för att brandkåren lyckas angripa branden innan den når brandeffekten 11 MW kan beräknas med hjälp av t.ex. Monte Carlo simulering [3].

3.3.2. Övertändning

En viktig parameter när brandscenarier skall skapas är huruvida den första initialbranden ger upphov till en övertändning eller ej. Om övertändning inte sker kan det i analysen antas att branden blir begränsad till det rum i vilken den uppstått. Detta behöver dock inte betyda att skadorna är begränsade till det rummet eftersom rökskadorna kan vara omfattande även utanför brandrummet.

$$
\dot{Q}_c = 610(h_k A_T A_O \sqrt{H_O})^{1/2}
$$

h$_k$ = Den effektiva värmöverförings koefficienten ((kW/m)/K))

A$_T$ = Rummets totala omslutningsarea (m2)

A$_O$ = Öppningens area (m2)

H$_O$ = Öppningens höjd (m)

Denna formel är framtagen för rumsstorlekar mellan 0,14 och 12 m2 och rumshöjder mellan 0,3 och 2,7 meter, vilket betyder att den kan anses gälla för kontorsrum, men inte för industrihallar där sannolikheten för övertändning måste bedömas på annat sätt.

EXEMPEL 3.3

En kemisk industri anläggning består av en kontorsdel och en produktionsdel. Totala arean är 1000 m2. Vad är sannolikheten för en övertändning i kontorsdelen?

Först räknas sannolikheten för brand i någon del av anläggningen ut. Till detta används ekvation 2.2, vilken inte är framtagen för svenska förhållanden, men i brist på motsvarande uttryck för den svenska industrin används ändå ekvationen. Eftersom industrilokalen är av typen kemisk industri kommer uttrycket för sannolikheten att brand uppkommer under ett år bli:

$$
P_{Brand} = 0,0069 A_F ^{0,46} = 0,0069 \times 1000 ^{0,46} = 0,17 \text{ år}^{-1}
$$

Enligt tabell 3.1 uppstår endast 0,8 % av bränderna i kemisk industri i kontor och 23,5% i produktionslokalen. Eftersom den aktuella anläggningen endast har en produktionsdel och en
3 Bränder i industrier

kontorsdel fås faktorerna \(f_{\text{kontor}} \) och \(f_{\text{produktion}} \) till 0,03 och 0,97. Detta betyder att sannolikheten för brand i produktionsdelen och kontorsdelen blir (enligt ekvation 3.1):

\[
P_{\text{produktion}} = p_{\text{Brand}} \cdot f_{\text{produktion}} = 0,17 \cdot 0,97 = 0,165 \text{ år}^{-1}
\]

\[
P_{\text{kontor}} = p_{\text{Brand}} \cdot f_{\text{kontor}} = 0,17 \cdot 0,03 = 0,005 \text{ år}^{-1}
\]

För den anläggning som studeras antas att brandrisken i kontoret är något högre än i de andra industrierna i gruppen, varför faktorn \(l_{\text{kontor}} \) antas vara 1,5 och sannolikheten för brand i byggnaden skall då modifieras enligt ekvation 3.3.

\[
P_{\text{kontor}} = l_{\text{kontor}} \cdot p_{\text{kontor}} = 1,5 \cdot 0,005 = 0,0075 \text{ år}^{-1}
\]

Vidare antas att den maximala brandeffekten hos olika objekt i kontorslokaler är fördelade enligt figur 3.5. Denna kurva är fiktiv och inte baserad på någon undersökning av kontorslokaler. Följande typbränder kan identifieras från figur 3.5:

\[
\begin{align*}
p(0,2\text{MW}) &= 0,57 \\
p(0,6\text{MW}) &= 0,27 \\
p(1,0\text{MW}) &= 0,09 \\
p(1,4\text{MW}) &= 0,05 \\
p(1,8\text{MW}) &= 0,02
\end{align*}
\]

Kontorsdelen består av 10 kontorsrum med måtten \(3 \times 4 \times 2,5 \) m. Öppningen till rummen är \(1 \times 2 \) meter. Detta ger att den erforderliga effekten för övertändning (med antagandet att \(h_k = 0,03 \) (kW/m)K) enligt ekvation 3.12 är:

\[
\dot{Q} = 610(h_k A_r A_0 \sqrt{H_o})^{1/2} = 610(0,03 \cdot 57 \cdot 2 \cdot \sqrt{2})^{1/2} = 1342 \text{ kW}
\]

Alltså är sannolikheten för övertändning i kontorsdelen:

\[
p_o = (0,02+0,05) \cdot 0,0075 = 0,00053 \text{ år}^{-1}
\]

Vilket betyder att övertändning inträffar i kontorsdelen cirka 1 gång per 2000 år.

Då sannolikheten för övertändning i olika utrymmen beräknas skall hänsyn tas till eventuella släcksystem och ingripande från personal och brandkår. Som en grov approximation kan antas att övertändning inte sker om det fasta släcksystemet fungerar, personalens insats lyckas eller brandförsvaret angriper branden innan tiden för övertändning. Sannolikheten för att systemet skall fungera kan fås från kapitel 4. Vidare måste också olika ventilationsförhållanden i brandrummet vägas in, t.ex. vad är sannolikheten att dörren står öppen till rummet o.s.v.

Den totala sannolikheten att en övertändning skall ske i en lokal (givet ventilationsförhållanden) är då:

\[
p_o = p(Q_{\text{typ}} > Q_o) \cdot (1 - p_{\text{auto}}) \cdot (1 - p_{\text{personal}}) \cdot (1 - p_{B,O}) \quad (3.13)
\]
Brandfrekvenser och typbränder i industrianläggningar

där

\[p(Q_{\text{typ}} > Q_0) = \] Sannolikheten att typbranden som uppkommer utvecklar högre effekt än den som krävs för att övertäning skall inträffa.

\[P_{\text{auto}} = \] Sannolikheten att det automatiska släcksystemet fungerar.

\[P_{\text{Personal}} = \] Sannolikheten att personalen släcker branden innan övertäning.

\[P_{B,O} = \] Sannolikheten att brandförsvaret når fram till branden innan övertändning inträffat.

Exemplet ovan visar på hur sannolikheten för att övertändning i rummet där branden uppstår kan beräknas, vilken är den första noden i händelseträdet för brandscenarioet. Om övertändning inte sker antas att branden blir begränsad till rummet i vilken den börjat. Rökspridning kan däremot ske till angränsande utrymmen.

3.3.3. Undersökning av brandutbredning med hjälp av statistik

Nästa nod i händelseträdet betecknar sannolikheten för att branden sprider sig ut ur rummet förutsatt att övertändning uppstår. Denna sannolikhet kan antas vara ganska stor för de flesta typer av rum som inte är egen brandcell.

I /21/ anges utbredningen av bränder i textil industri enligt tabell 3.4.

<table>
<thead>
<tr>
<th>Brandutbredning</th>
<th>Sprinklade byggnader</th>
<th>Osprinklade byggnader</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Andel av bränderna (%)</td>
<td>Tid (min)</td>
</tr>
<tr>
<td>Första föremålet</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>Initialrummet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endast inredning</td>
<td>19</td>
<td>8,4</td>
</tr>
<tr>
<td>Hela rummet</td>
<td>7</td>
<td>24,2</td>
</tr>
<tr>
<td>Ut ur startrummet</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Tabell 3.4 Brandutbredning i Storbritanniens textilindustri /21/. Med tid menas det antal minuter (medelvärde) som passerar mellan att det första föremålet börjar brinna och den brandutbredning som avses.

Om det antas att övertändning skett då hela initialrummet är involverat i branden innebär det att sannolikheten för övertändning (givet brand) i textilindustrin som avses i tabell 3.4 är 28% i det osprinklade fallet och 9% i det sprinklade. Sannolikheten att branden sprider sig ut ur startrummet är 2% i det sprinklade fallet och 7% i det osprinklade (givet att brand startat).

Insatsstatistik från Räddningsverket /1/ innehåller information om bränders storlek då brandförsvaret ankommit till platsen. Dessa resultat redovisas i tabell 3.5.
3 Bränder i industriern

<table>
<thead>
<tr>
<th>Lokaltyp</th>
<th>Totalt antal bränder</th>
<th>Begränsad till föremålet där branden började</th>
<th>Spridning från första föremål, men begränsad till rum</th>
<th>Spridning utanför det rum där branden börjat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrier</td>
<td>7618</td>
<td>3524 (46%)</td>
<td>3477 (46%)</td>
<td>617 (8%)</td>
</tr>
</tbody>
</table>

Tabell 3.7 Utbredning av undersökta industribränder i England enligt /30/.
Då den engelska statistik som redovisas i tabell 3.7 jämförs med den svenska i tabell 3.5 ses att andelen bränder som sprider sig utanför rummet där de börjat är dubbelt så stor i den svenska som i den engelska (bortsett från de bränder där utbredningen inte angivits). De övriga brandutbredningarna överensstämmer inte heller särskilt bra mellan de båda undersökningarna. Olikheterna kan bero på flera faktorer, t.ex. att förhållandena i den engelska och den svenska industrin (fad gäller brandskydd) skiljer sig mycket från varandra, att den engelska undersökningen är gammal (det framgår inte från vilket årtal den är) och inte representativ för dagens industri mm.

Om det antas att övertändning skett då en brand vuxit från initialföremålet till att involvera hela initialrummet kan sannolikheten för övertändning beräknas (med hjälp av /1/) för de olika industrikategorierna. Dessutom kan sannolikheten för att branden sprider sig ut ur initialrummet (om övertändning skett) samt sannolikheten för spridning till andra brandceller bedömas. Detta finns redovisat i tabell 3.8. Observera att dessa sannolikhet är betingade, d.v.s. p(O|Brand) beskriver sannolikheten för övertändning givet att en brand i initialföremålet har upptäckt. Likaså är p(Rum|Ö) sannolikheten att en brand sprider sig ut ur initialrummet givet att övertändning skett o.s.v.

<table>
<thead>
<tr>
<th></th>
<th>Metall</th>
<th>Kemi</th>
<th>Lager</th>
<th>Trävaruindustri</th>
<th>Annan tillv.</th>
<th>Reparation</th>
<th>industrihotell</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(O</td>
<td>Brand)</td>
<td>0,23</td>
<td>0,27</td>
<td>0,37</td>
<td>0,34</td>
<td>0,24</td>
<td>0,56</td>
<td>0,42</td>
</tr>
<tr>
<td>P(Rum</td>
<td>Ö)</td>
<td>0,39</td>
<td>0,41</td>
<td>0,62</td>
<td>0,57</td>
<td>0,65</td>
<td>0,50</td>
<td>0,45</td>
</tr>
<tr>
<td>P(BC</td>
<td>Rum)</td>
<td>0,50</td>
<td>0,43</td>
<td>0,25</td>
<td>0,26</td>
<td>0,82</td>
<td>0,27</td>
<td>0,22</td>
</tr>
</tbody>
</table>

Tabell 3.8 Sannolikheten för övertändning (P(O|Brand)), sannolikheten för att branden sprider sig ut ur initialrummet (P(Rum|Ö)) och sannolikheten för att branden sprider sig ut ur initialbrandcellen (P(BC|Rum)). Alla sannolikhet är betingade, d.v.s. de förutsätter att brandtillståndet innan har uppnåtts.

För vissa industrityper är underlaget (antal bränder) magert (livsmedelsindustri, textilindustri, industrihotell och lager är grupper där färre bränder än 100 finns redovisade), vilket gör att resultatet blir mindre användbart. Dessa statistiska data för den svenska industrin kommer att bli mer pålitliga när flera års statistik har samlats in (den presenterade statistiken kommer från ett år, vilket i vissa fall innebär ett litet underlag). De värden som redovisas i tabellerna ovan skulle kunna användas vid en snabb analys av en anläggning, men vid en mer omfattande och noggrann utredning bör dessa värden justeras efter de förhållanden som råder i den aktuella anläggningen.
3.3.4. Konsekvenser

När händelseträdet för brandscenariet utvärderats fås sannolikheten för de olika sluttillstånden eller konsekvenserna (K1-K4). Dessa sluttillstånd representerar olika utbredningar av branden enligt nedanstående förklaring.

K1 Branden är begränsad till rummet där den börjat. Analys av termiska skador i rummet samt icke termiska i rummet samt angränsande rum i brandcellen bör utföras.

K2 Övertäning sker i rummet där branden startar, men spridning till andra utrymmen sker inte. Alla komponenter i rummet där branden uppstått betraktas som förstörda. Analys av icke termiska skador i angränsande utrymmen i brandcellen bör utföras.

K3 Branden sprider sig från det övertända initialrummet ut i brandcellen, men involverar inte hela brandcellen. Komponenter i rummet där branden börjat betraktas som förstörda. Analys av termiska skador i resten av brandcellen bör utföras. Analys av icke termiska skador i brandcellen bör utföras.

K4 Branden sprider sig från det övertända initialrummet ut i brandcellen och involverar hela brandcellen. Alla komponenter i hela brandcellen anses vara förstörda. Analys av spridning till intilliggande brandceller bör utföras.

3.4. Statistisk analys av brandskador

Ramachandran /6/ föreslår att i stället för att göra en tidsödande beräkning av skador från olika typbränder så kan statistik över förluster i liknande industrier användas. Målet är en fördelning av skador för till exempel brand i sprinklad kemisk industri som uppstår i produktionsslocalen. Den förväntade förlusten kan enligt /6/ beskrivas som:

\[L(V) = KV^a \]

eller

\[\log L(V) = \log K + \alpha \log V \]

Där \(L(V) \) är den förväntade skadan och \(V \) är det totala värdet i byggnaden. Parametrarna \(K \) och \(\alpha \) samt residual variansen \(\sigma^2 \) skulle kunna fås genom regression med användandet av tillgängliga skadedata för den specifika gruppen av industrier som är aktuell.
Fördelningen av förlusterna vid en brand i en byggnad är enligt /6/ ungefär log normal fördelade (se figur 3.8).

Om det förväntade värdet av förlusterna vid en brand kan beräknas ($L(V)$) och även variansen (underförutsättning att skadekostnaden är lognormal fördelad) så kan ekvation (3.14) enligt /6/ uttryckas som:

$$L(V) = K^1V^\alpha$$ \hspace{1cm} (3.16)

där

$$K^1 = Ke^{\frac{\sigma^2}{2}}$$ \hspace{1cm} (3.17)

Detta angreppssätt är lite oflexibelt med tanke på att förlusten endast antas bero på om byggnaden är sprinklad eller möjligtvis försedd med brandlarm. Metoden kan inte ta hänsyn till om en extra brandteknisk avskiljning i form av en brandcellsgräns monteras in. Möjligtvis kan det tänkas att metoden kan användas som ett första grovt instrument för att till en första början skatta förlusten vid en skada.

För att en modell enligt ovan skall kunna skapas för svenska förhållanden behövs tillgång till skadeinformation från försäkringsbolag.
4. Brandtekniska systems tillförlitlighet

Tillförlitligheten hos brandtekniska system är en mycket viktig parameter då skador till följd av brand skall bedömas. Risken för en storskada om ett brandtekniskt system inte fungerar är i allmänhet mycket stor. Detta beror på att säkerhetsnivån i andra brandtekniska åtgärder ofta sänks då till exempel sprinklersystem installeras. Som exempel kan nämnas att vid installation av rökluckor och/eller sprinkler så accepteras i allmänhet större brandceller, vid installation av sprinkler i ett utrymme med hög brandbelastning där bäröverdå enligt schablonregler skall vara 120 minuter så accepteras i allmänhet 60 minuter. Detta innebär att en brand som uppstår i ett sådant utrymme där så kallade ”tekniska byten” har gjorts kan få mycket större konsekvenser om t.ex. sprinklersystemet inte fungerar än en motsvarande lokal utan sprinklersystem skulle få.

De värden på brandtekniska systems tillförlitlighet som presenteras i detta kapitel kommer att användas då sannolikheten för brandens utbredning i anläggningen bedöms.

4.1. Sprinklersystem

Ett sprinklersystem består av många olika delar som tillsammans måste fungera för att vatten skall kunna släcka en brand som uppkommit någonstans i anläggningen. En analys av sprinklersystems tillförlitlighet kan genomföras med varierande grad av noggrannhet. Antingen kan de generella värden som anges för ett sprinklersystem som helhet användas (se avsnitt 4.1.1) eller så kan en felträdsmetodik göra av just det sprinklersystem som undersöks (se avsnitt 4.1.2).

I avsnitt 4.1.1. har en litteraturstudie genomförts och de tillförlitlighetsdata som presenteras där kommer ifrån olika undersökningar över hela världen. Vid analys måste en bedömning göras om de olika värdena är relevanta för just den anläggning som analyseras.

I avsnitt 4.1.2. ges en kort beskrivning av felträdsmetodiken och hur den kan användas för ett sprinklersystem. Vid analys med felträdsmetodik behövs mer ingående information om de olika komponenterna i sprinklersystemet, t.ex. sannolikheten för att en ventil öppnar när den skall än då den generella metoden används.
4.1.1. Tillförlitlighetsdata för sprinklersystem

I /9/ redovisas tabell 4.1 för sprinklersystems tillförlitlighet som den rapporterats från olika organisationer.

<table>
<thead>
<tr>
<th>Källa</th>
<th>Period</th>
<th>Tillförlitlighet [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Risk Insurers</td>
<td>1975-1992 helsprinklat</td>
<td>98</td>
</tr>
<tr>
<td>Industrial Risk Insurers</td>
<td>1975-1992 delsprinklat</td>
<td>92</td>
</tr>
<tr>
<td>NFPA</td>
<td>1925-1969</td>
<td>96,2</td>
</tr>
<tr>
<td>Department of Energy (DOE)</td>
<td>1952-1980</td>
<td>98,2</td>
</tr>
<tr>
<td>Australien och Nya Zeeland</td>
<td>1886-1968</td>
<td>99,8</td>
</tr>
<tr>
<td>Australien och Nya Zeeland</td>
<td>1968-1977</td>
<td>99,3</td>
</tr>
<tr>
<td>England (Fire and loss statistics)</td>
<td>1965-1969</td>
<td>91,8</td>
</tr>
<tr>
<td>England (Fire and loss statistics)</td>
<td>1966-1972</td>
<td>78,2</td>
</tr>
</tbody>
</table>

Tabell 4.1 Tillförlitlighetsdata för sprinklersystem såsom det redovisas i /9/.

De tillförlitlighetsdata som redovisas i tabell 4.1 representerar en kombination av att systemet utlöst samt att branden bekämpats eller begränsats. I tabell 4.2 beskrivs misslyckade insatser och orsaken varför de misslyckades. Tabellen kommer från /12/ och baseras på analys av 3134 bränder som mellan åren 1925 och 1969 rapporterats till NFPA där sprinklersystemet inte fungerat.

<table>
<thead>
<tr>
<th>Problemkategori</th>
<th>Procentandel</th>
<th>Typ av fel</th>
<th>Procentandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driftsduglig anläggning kunde inte upprätthållas</td>
<td>53,4</td>
<td>Vatten avstängt</td>
<td>35,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otillräckligt underhåll</td>
<td>8,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hinder i vattentillförseln</td>
<td>8,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systemet fruset</td>
<td>1,4</td>
</tr>
<tr>
<td>Systemet ej tillräckligt för existerande brandrisk</td>
<td>23,7</td>
<td>Systemet inte tillräckligt för brandrisken i området</td>
<td>13,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systemet konstruerat som delskydd</td>
<td>8,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Föråldrat system</td>
<td>2,1</td>
</tr>
<tr>
<td>Fel i större system</td>
<td>15,9</td>
<td>Otillräcklig vattentillförsel</td>
<td>9,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Felaktig byggnadskonstruktion</td>
<td>6,0</td>
</tr>
<tr>
<td>Fel i sprinklersystem</td>
<td>3,5</td>
<td>Sprinkler öppnade för sent</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Felaktig torrörsventil</td>
<td>1,7</td>
</tr>
<tr>
<td>Övrigt</td>
<td>3,6</td>
<td>Utvändig Brand</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Övrigt eller okänt</td>
<td>1,9</td>
</tr>
</tbody>
</table>

I tabell 4.3 redovisas resultat från ytterligare några undersökningar angående sprinklersystems tillförlitlighet.
Undersökning utförd av	Land	Antal bränder	Årtal	Tillförlitlighet [%]
Rutstein och Gilbert /13/ | Storbritannien | 15000 | 1967-1973 | 95
Young /14/ | Storbritannien | 1978-1982 | 98,5
Stirland /15/ | Storbritannien | 95
Marryatt /16/ | Australien | 99
Fire Protection Association /17/ | USA | 98,5
Belles /18/ | USA | 96

Tabell 4.3 Tillförlitlighetsdata från ett antal sprinklerundersökningar. *Gäller bostadssprinkler.*

I både tabell 4.1 och 4.3 erhålls den högsta tillförlitligheten för sprinklersystem i Nya Zeeland och Australien. Detta beror troligtvis på att det i dessa länder utförts obligatoriska inspektioner av sprinklersystemen under en lång tid /16/.

Detaljerade data angående sprinklers tillförlitlighet presenteras av Siu och Apostolakis /22/. Där redovisas tillförlitlighetsdata för industrikategorierna (verksamheter) enligt tabell 4.4.

<table>
<thead>
<tr>
<th>Verksamhet</th>
<th>Incidenter</th>
<th>Inget vatten</th>
<th>Långsam aktivering</th>
<th>Ventil fel</th>
<th>Under håll</th>
<th>Diverse Inte tillämpligt</th>
<th>Totalt</th>
<th>P akt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drycker, Eterisk olja</td>
<td>543</td>
<td>17</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>Kemikalier</td>
<td>4147</td>
<td>33</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>142</td>
<td>56</td>
</tr>
<tr>
<td>Fiber produkter</td>
<td>539</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Livsmedel</td>
<td>2484</td>
<td>43</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>5</td>
<td>70</td>
<td>63</td>
</tr>
<tr>
<td>Glas produkter</td>
<td>519</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Läder produkter</td>
<td>2864</td>
<td>43</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>53</td>
<td>61</td>
</tr>
<tr>
<td>Metall produkter</td>
<td>9807</td>
<td>91</td>
<td>6</td>
<td>6</td>
<td>29</td>
<td>6</td>
<td>167</td>
<td>138</td>
</tr>
<tr>
<td>Mineral produkter</td>
<td>394</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Pappers produkter</td>
<td>7147</td>
<td>75</td>
<td>2</td>
<td>2</td>
<td>23</td>
<td>4</td>
<td>128</td>
<td>106</td>
</tr>
<tr>
<td>Gummi produkter</td>
<td>1489</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>Textiler, tillverkning</td>
<td>16119</td>
<td>109</td>
<td>5</td>
<td>3</td>
<td>50</td>
<td>8</td>
<td>116</td>
<td>175</td>
</tr>
<tr>
<td>Textiler, bearbetning</td>
<td>6527</td>
<td>52</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>56</td>
<td>71</td>
</tr>
<tr>
<td>Träd produkter</td>
<td>5353</td>
<td>137</td>
<td>16</td>
<td>14</td>
<td>24</td>
<td>8</td>
<td>293</td>
<td>199</td>
</tr>
<tr>
<td>Diverse</td>
<td>9013</td>
<td>146</td>
<td>3</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>89</td>
<td>176</td>
</tr>
<tr>
<td>Totalt</td>
<td>66945</td>
<td>791</td>
<td>45</td>
<td>38</td>
<td>207</td>
<td>46</td>
<td>1224</td>
<td>1127</td>
</tr>
</tbody>
</table>

Tabell 4.4 Tillförlitlighetsdata för sprinkler enligt /22/. P akt är sannolikheten för att sprinklersystemet skall fungera (1-(Totalt / Incidenter)).
Brandfrekvenser och typbränder i industrianläggningar

I BSI dokument DD240 /11/ anges vissa tillförlitlighetsdata för brandtekniska system. Dokumentet räknas dock inte som en brittisk standard ännu, utan är fortfarande något av en förhandskopia. Sannolikheten att sprinklersystemet inte fungerar anges i /11/ till 0,05 vid behov.

4.1.2. Felträdsanalys av sprinklersystem

Vid en felträdsanalys av ett tekniskt system analyseras systemet (ex. sprinklersystemet) mer noggrant än då den mer generella metoden för bedömning av tillförlitlighet som presenterades i avsnitt 4.1.1. används. Felträdsanalys går ut på att bedöma systemets olika komponenters tillförlitlighet och med vetskap om komponenternas samverkar kan sedan hela systemets tillförlitlighet beräknas.

Denna typ av analys kräver mer ingående kunskap om både systemet och dess komponenters tillförlitlighet, vilket kanske inte alltid finns tillgängligt. I så fall rekommenderas att data från avsnitt 4.1.1. används. I de fall då ett sprinklersystem är avgörande för utgången av en brand i en anläggning kan det dock vara värt att göra en genomgång av hela systemet och beräkna dess tillförlitlighet, det kan ju vara så att systemet innehåller svaga länkar, som inte upptäckts vid vanliga analyser, vilket gör att den totala tillförlitligheten är lägre än de generellt angivna (avsnitt 4.1.1.).

Felträdsanalysen är ett sätt att bedöma de sätt på vilket ett tekniskt system (ex. sprinklersystem) kan fela. För att göra denna analys ritas vanligtvis systemets olika komponenters påverkan på den så kallade topphändelsen. Topphändelsen är den händelse för vilken sannolikheten skall beräknas. Till exempel kan topphändelsen i fallet då ett sprinklersystem analyseras vara "Inget vatten ur sprinklerhuvud vid behov". För att denna topphändelse skall kunna inträffa måste dels en brand uppstå (annars finns det ju inget behov av vatten) och dels så skall det inte komma något vatten ur sprinklerhuvudet. Sannolikheten för dessa båda händelser fås från analys av nästa nivå i felträdet o.s.v.

För att kunna utföra felträdsanalyser för sprinklersystem måste felfrekvenser för systemets ingående delar (t.ex. pump och ventiler) finnas tillgänglig.
4.2. Brandlarm

Brandlarm har till uppgift att detektera en brand så snabbt som möjligt och ge larm. Larmet kan t.ex. vara i form av ett utrymningslarm (ex. klockor som ringer i anläggningen) eller ett larm kopplat direkt till räddningstjänsten. För detektering av branden används olika detektorer som finns utplacerade i byggnaden. Dessa detektorer är sammankopplade med en centralapparat ifrån vilken larmet vidarebefordras efter detektering.

I /10/ anges följande tabell (4.5) för utebliven detektion beroende på vilken typ av detektor som installerats.

<table>
<thead>
<tr>
<th>Detektor typ</th>
<th>Utebliven detektion per 1000 detektorer och år</th>
</tr>
</thead>
<tbody>
<tr>
<td>Värme</td>
<td>0,3</td>
</tr>
<tr>
<td>Rök</td>
<td>0,5</td>
</tr>
<tr>
<td>UV/IR</td>
<td>108</td>
</tr>
</tbody>
</table>

Tabell 4.5 Frekvensen för utebliven detektion beroende på detektortyp enligt /10/.

Brandlarmssystemens tillförlitlighet som funktion av servicenivån anges i tabell 4.6. Uppgifterna kommer ifrån /10/.

<table>
<thead>
<tr>
<th>Servicenivå</th>
<th>Felfrekvens (vid behov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service enligt standard utförd av godkänd firma</td>
<td>0,03</td>
</tr>
<tr>
<td>Service, ej enligt standard utförd av godkänd firma</td>
<td>0,076</td>
</tr>
<tr>
<td>Service utförd av ej godkänd firma</td>
<td>0,147</td>
</tr>
</tbody>
</table>

Tabell 4.6 Felfrekvens som funktion av servicenivå /10/.

I /19/ anges felfrekvenser vid behov för ett antal olika detektortyper enligt tabell 4.7.

<table>
<thead>
<tr>
<th>Detektortyp</th>
<th>Felfrekvens (vid behov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Värme</td>
<td>0,10</td>
</tr>
<tr>
<td>Rök</td>
<td>0,10</td>
</tr>
<tr>
<td>Flamma</td>
<td>0,24</td>
</tr>
</tbody>
</table>

Tabell 4.7 Felfrekvens för olika detektortyper /19/.

I /24/ sammanfattas uppgifter som rör felsannolikheten per detektor vid behov. Dessa data finns återgivna i tabell 4.8.

<table>
<thead>
<tr>
<th>Detektor typ</th>
<th>Felsannolikhet, ref /25/ ,/26/</th>
<th>Konventionella detektorsystem, ref /27/ (Sverige)</th>
<th>Moderna detektorsystem (Sverige)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testintervall</td>
<td>Vart tredje år</td>
<td>En gång per år</td>
<td>Var 5:e sekund</td>
</tr>
<tr>
<td>Värme</td>
<td>0,086</td>
<td>0,0003</td>
<td>2,3E-7 (ref /28/)</td>
</tr>
<tr>
<td>Rök</td>
<td>0,13</td>
<td>Joniserande = 0,0065</td>
<td>Optisk = 0,0242</td>
</tr>
<tr>
<td>Flamma</td>
<td>0,242</td>
<td>0,0002</td>
<td>7,2E-7 (ref /29/)</td>
</tr>
</tbody>
</table>

Tabell 4.8 Felsannolikheter (per behov och detektor) för olika detektortyper från /24/.
Eftersom brandlarmet inte har någon släckande funktion kommer påverkan på sannolikheten för övertändning inte vara lika självklar som för sprinkler. Då en undersökning av brandlarmets vikt för brandutvecklingen kommer tiden från brandstart till detektering och vidare tills dess att någon uppmärksammas på larmet att vara avgörande. Det kan antas att när brandlarmet indikerar att en brand brutit ut kan släckning ske på två sätt, dels genom personalens ingripande och dels genom brandförsvarets ingripande.
4.3. Brandcellsgränser

Brandcellsgränser är ett brandtekniskt system avsett att begränsa en brands utbredning, vilket sker genom att brandmotståndet i brandcellsgränsen är större den brandpåverkan som konstruktionen utsätts för.

Följande tabell (4.9) redovisar maximala funktionssannolikheter för olika brandcellsgränser (och även vanliga väggar) som föreslås i [5]. Dessa värden är generella och om mer noggranna data finns tillgängliga bör dessa användas.

<table>
<thead>
<tr>
<th>Typ av konstruktion</th>
<th>Funktionssannolikhet</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Övertändning</td>
<td>Inte övertändning</td>
<td></td>
</tr>
<tr>
<td>Utan dokumenterat brandmotstånd, ingen öppning (ex. innervägg i kontor)</td>
<td>0,80</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Med brandmotstånd, ingen öppning</td>
<td>0,95</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Utan dokumenterat brandmotstånd, öppningar utan automatiska dörrstängare</td>
<td>0,60</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>Med brandmotstånd, öppningar med automatiska dörrstängare</td>
<td>0,90</td>
<td>0,90</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 4.9 Maximala funktionssannolikheter hos olika typer av konstruktioner enligt [5].

4.3.1. Dörrar

<table>
<thead>
<tr>
<th>Byggnad</th>
<th>Totalt antal dörrar</th>
<th>Hindrade från att stänga (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontor</td>
<td>7055</td>
<td>18</td>
</tr>
<tr>
<td>Industri</td>
<td>22491</td>
<td>15</td>
</tr>
<tr>
<td>Lager</td>
<td>1010</td>
<td>37</td>
</tr>
</tbody>
</table>

Tabell 4.10 Undersökning av dörrar hindrade från att stänga [23].
5. Analysmetodik

Detta kapitel är avsett för att förklara hur en analys av en industrianläggning är tänkt att gå till. Vissa bitar i analysen saknas eller är bristfälliga vid denna tidpunkt (t.ex. effekten av icke termiska skador), men den generella arbetsmetodiken kan ändå redovisas. När de olika delarna av metodiken blir klara kan de läggas till i den generella ramen.

Först ges en snabb översikt av arbetsgången och sedan förklaras de ingående delarna mer detaljerat.

5.1. Arbetsgång

Vid en ekonomisk analys av en anläggning kan följande metodik användas (se figur 5.1):

![Schema för Analysmetodik](image-url)

Formel av typen: \(P_{surf} = A^a \cdot B^b \)

Kan modifieras genom:
1) Bedömningar
2) Tillbudsstatsistik

Svensk statistik

Kan modifieras genom:
1) Bedömningar
2) Tillbudsstatsistik

Typhändelser

1) Genom generella fördelningar
2) Anläggningsspecifika

Analys av brandförlopp

Skadeberäkning

Termiska - FREIA

Icetermiska - Bedömningar

Skador uttryckt i ekonomiska termer

Direkta skador

Indirekta skador

Figur 5.1 Analysmetodik.
1. **Bedömning av sannolikheten för brands uppkomst.**
Sannolikheten för brands uppkomst kan beräknas med hjälp av generella uttryck. Idag finns uttrycken framtagna för utländsk industri, men liknande uttryck kan förhoppningsvis skapas för den svenska industrin med hjälp av metodiken som beskrivs i avsnitt 2.2.1. Dessa generella uttryck kan sedan modifieras för de speciella förhållanden som råder för den aktuella anläggningen, antingen med hjälp av subjektiva bedömningar eller tillbudsstatistik (se avsnitt 3.1.1.).

2. **Framtagande av brandfördelning i anläggningen.**
För att bedöma sannolikheten att branden uppstår i en speciell del av anläggningen kan den svenska statistiken över bränder i den industrigruppen som anläggningen tillhör användas. Denna generella fördelning kan modifieras med hjälp av antingen subjektiva bedömningar angående den aktuella anläggningens förhållanden eller med hjälp av tillbudsstatistik (se avsnitt 3.1.1.)

3. **Analys av samtliga brandceller.**
Analysen av en brandcell inleds med en indelning i områden (rum) som har liknande brandrisker, d.v.s. kan representeras med samma typbrandsfördelning (se avsnitt 3.2). När denna uppdelning är gjord ansätts typbrandsfördelningar för de olika områdena. Som hjälp kan information om först antända föremål vid bränder i liknande lokaler och industrityper som den som analyseras användas (se bilaga 1 till 3). Typbrandsfördelningarna tillsammans med geometrin i rummen ger då sannolikheten för övertändning i de olika lokalerna. Sannolikheten för övertändning representerar första noden i händelseträdet som beskriver brandförloppet. De övriga noderna där sannoligheter skall bedömas är huruvida branden sprider sig ut ur initialrummet om övertändning sker och huruvida branden sprider sig till hela brandcellen förutsatt att den spridit sig ut ur initialrummet.

4. **Skadeberäkning.**
5.2. Bedömning av sannolikheten för brands uppkomst

Beroende på kraven angående noggrannhet i analysen kan ett antal olika angreppssätt för att bedöma sannolikheten för brands uppkomst användas. Det enklaste och snabbaste sättet är helt enkelt att använda Rutsteins modell /2/ (avsnitt 2.2.2) eller data från VTT /8/ (avsnitt 2.2.3.) för att beräkna sannolikheten för brands uppkomst. För beräkningen behövs två typer av information, dels vilken industrigrupp som anläggningen tillhör och dels hur stor areaen av anlägningen är.

För att ytterligare öka precisionen i sannolikhetsberäkningen skulle det värde som räknats fram enligt ovan kunna modifieras med hjälp av de förhållanden som råder i den aktuella anlägningen. Denna modifiering kan antingen ske med hjälp av subjektiva bedömningar angående förhållandet mellan sannolikheten för brand i den aktuella anlägningen och sannolikheten för brand i den industrigrupp som anlägningen tillhör (se avsnitt 3.1.1). En metod som troligtvis ger bättre resultat är att använda tillbudsdata för den aktuella anlägningen för att modifiera den generella sannolikheten för brands uppkomst (se avsnitt 3.1.1).
5.3. Framtagande av brandfördelning i anläggningen

För att få fram brandfördelningen i en anläggning, d.v.s. givet brand vad är sannolikheten att den börjat i produktionslokalen, används den generella fördelningen för den industritypen (se tabell 3.1) som grund. Vid en snabb analys där större osäkerheter accepteras kan antagandet att anläggningen representeras med de data som gäller för hela industrigruppen göras, d.v.s. brandfördelningen mellan de olika utrymmena i anläggningen antas följa tabell 3.1.

Ett mer tidskrävande angreppssätt är att modifiera dessa data (tabell 3.1) med hjälp av antingen subjektiva bedömningar rörande förhållandet mellan sannolikheten för brand i den aktuella delen av anläggningen i förhållande till hela industrigruppens sannolikhet för brand i just den delen (se avsnitt 3.1.1).

Om utförlig tillbudsstatistik finns tillgänglig för anläggningen finns dock ingen anledning att förlita sig på subjektiva bedömningar. Då kan istället tillbudsstatistiken användas för att modifiera den generella fördelningen (se avsnitt 3.1.1).

Figur 5.2 Tilldelning av brandfrekvenser.

I figur 5.2 visas tillvägagångssättet när de olika objekten (som kan tänkas vara inblandade i en typbrand) skall tilldelas brandfrekvenser. Med vetskap om sannolikheten för brands uppkomst i hela anläggningen (\(p_{\text{Brand}} \)) och brandfördelningen mellan de (n) delarna av anläggningen (\(f_{d,1} \) till \(f_{d,n} \)) kan sannolikheten för att branden börjar i de olika delarna räknas ut. På samma sätt kan, med vetskap om sannolikheten för brand i del (1) och fördelningen av typbränder (\(f_{o,1} \) till \(f_{o,k} \)) i del (1), sannolikheten för brand i de (k) olika objekten beräknas.
5.4. Analys av samtliga brandceller

När typbrandsfördelningarna är framtagna kan arbetet med att beräkna skadeutbredning ta vid. Det generella händelseträdet i figur 3.6 används för att karakterisera brandförloppet. Vid beräkning av de olika sannolikheterna i händelseträdet tas hänsyn till en mängd olika parametrar. Sannolikheten för övertämdning beror av typbrandsfördelningen i rummet och rummets geometri samt brandtekniska system. Om en brand växer sig så stor att en övertämdning kan ske beror också på effekterna av mänskligt ingripande (personal och brandkår). Brandförsvarets ingripande beskrivs på ett enkelt sätt i avsnitt 3.3.1. Sannolikheten för övertämdning fås från avsnitt 3.3.2. Information om automatiska brandsläckningssystemets tillförlitlighet fås från kapitel 4. De övriga sannolikhetsmoderna i figur 3.5 kan bedömas med hjälp av information om bränders utbredning i avsnitt 3.3.3.

När analysen av brandcenarierna är klar skall följande information finnas:

För varje lokalgrupp skall sannolikheten för brand finnas beräknad, dessutom skall sannolikheten för samtliga olika brandutbredningar (t.ex. K1, K2, K3 och K4 som beskrivs i avsnitt 3.3.4) finnas uträknad. Detta kan bli en ganska omfattande mängd information om lokalerna är stora, men eftersom många beräkningar är likadana borde analysen kunna förenklas genom att bearbeta problemet i en dator.

Beräkningsgången som beskriv ovan skall utföras för samtliga brandceller i byggnaden. Graden av noggrannhet som krävs är beroende på värden av komponenterna som finns i brandcellen som analyseras. Om värdet är försumbart, eller väldigt litet kan det tänkas att endast sannolikheten för brand och spridning till annan brandcell beräknas.

När hela byggnaden är analyserad kommer ett antal olika skadeutbredningar vara förknippade med sannolikheten. Nästa steg blir att beräkna värdet av dessa skador.
5.5. Skadeberäkning

Analysen bör inledas med en inventering av de enskilda rummen. Om det finns rum i vilka värdet av komponenterna är så litet (även innefattat konsekvenserna av förstörd komponent) kan dessa rum bortses ifrån när skadeberäkningen sker. Däremot kan sannolikheten att en brand börjar i rummet och sprider sig till övriga rum inte bortses ifrån.

Nästa steg blir att analysera konsekvensen K1 i de rum som innehåller utrustning som är känslig för rök. Metod för denna analys finns inte framtagen ännu, men kommer att tas fram under projektets gång.

K2 scenariot är lite lättare att analysera (åtminstone i brandrummet) eftersom allting antas vara förstört i rummet på grund av övertändning. Skador på grund av rök i resterande del av brandcellen får analyseras med den metodik som skall arbetas fram för icke termiska skador.

I K3 scenariot kan det antas att alla komponenter i brandrummet är förstörda. Vad gäller resterande del av brandcellen så måste beräkningar av termiska och icke termiska skador utföras.

I K4 scenariot så räknas hela brandcellen som förstörd. Dessutom måste analys av spridning till andra brandceller utföras.

När alla sannolikheter för brandscenarier och motsvarande skadekostnad (direkta skador) är beräknad bör en analys av de indirekta skadorna ske. Denna kan innefatta bedömningar av leveranstider för nyckelkomponenter, förlorade marknadsandelar mm. för samtliga scenarier som är allvarliga nog att skapa indirekta skador. Till slut skall samtliga (i) skadekostnader multipliceras med tillhörande sannolikhet och summeras, på så vis fås den förväntade skadekostnaden för anläggningen.

\[
EMV = \sum_{n=1}^{i} p_n \cdot S_n
\]

EMV = Förväntad skadekostnad (kkr/år)
\(p_n \) = Sannolikheten att brandscenario n uppkommer (år\(^{-1}\))
\(S_n \) = Skadekostnaden om brandscenario n uppkommer (kkr)

EMV fungerar som ett mått på riskerna i byggnaden, men ger inte en fullständig bild över hur de är fördelade. Detta innebär att EMV endast beskriver den förväntade förlusten p.g.a. brand per år, men ger ingen information om vilka skador som ger upphov till detta värde. Det kan vara av intresse att även veta hur stor risken för storbrand är, d.v.s. sådana bränder som innebär mycket allvarliga ekonomiska konsekvenser. För att även åskådliggöra detta kan en så kallad riskprofil användas som ett komplement till EMV-värdet.

Ett exempel på en riskprofil visas i figur 5.3. Den vertikala axeln i riskprofilen beskriver sannolikheten att anläggningen skall drabbas av en viss ekonomisk skada eller mer under ett år och på den horisontella axeln markeras de olika skadebeloppen.
5 Analysmetodik

Figur 5.3 Exempel på riskprofil.

Denna grafiska presentation av riskerna i kombination med EMV-värdet ger en bra bild av risknivån i den aktuella byggnaden.

5.6. Exempel på enkel analys

Här följer ett fiktivt exempel med avsikt att belysa hur metodiken kan fungera.

Företaget A producerar två av sina viktigaste produkter i en industrilocal som är 50 * 50 meter stor. Brandlarmet i lokalen, som är heltäckande och vidarekopplat till brandförsvarget, aktiverar också ett utrymningslarm. I analysen antas att brandlarmet alltid fungerar, d.v.s. tillförlitligheten är 100%. I byggnaden, som är en enda brandcell, finns två produktionslinjer (L1 och L2) och ett mellanlager.

Figur 5.4 Fiktiv produktionsanläggning.

Material för att tillverka produktorna levereras till den södra porten och mellanlagras i lagerhyllor innanför porten, därefter bearbetas materialet i linje 1 (L1) och därefter i L2.
Brandfrekvenser och typbränder i industrianläggningar

Först beräknas brandfrekvensen i hela byggnaden genom att använda ekvation 2.8 och tabell 2.1 (all tillverkande industri). Då fås följande:

\[P_{\text{Brand}} = 0.0017 \times 2500^{0.53} = 0.11 \text{ per år} \]

Brandfrekvensen \(\lambda \) antas vara något högre än den sannolikhet för brands uppkomst som beräknats ovan. \(\lambda \) bedöms vara 0,2 per år. \(\lambda \) är förknippad med en viss osäkerhet och representeras därför med en gamma-fördelning med parametrarna \(\alpha = 3 \) och \(\beta = 15 \). Fördelningen har medelvärdet 0,2 per år (se figur 5.5).

![Figur 5.5 Apriorifördelning för brandfrekvensen \(\lambda \).](image)

Under 5 år då tillförlitlig tillbudsrapportering har skett i byggnaden har 3 bränder uppstått. Med hjälp av denna tillbudsstatistik och metodiken som beskrivs i avsnitt 3.1.1 uppdateras apriorifördelningen och en ny posteriorifördelning beräknas. Denna posteriorifördelning har följande medelvärde (enligt ekvation 3.9):

\[E_p(\lambda) = \frac{\alpha + 3}{\alpha + 5} = 0.30 \text{år}^{-1} \]

Denna uppdaterade brandfrekvens betecknas \(\lambda_{\text{Brand}} \) och kommer att användas i analysen.

Eftersom det endast finns produktionslokaler i byggnaden behöver ingen brandfördelning mellan olika utrymmen skapas.

I byggnaden antas tre typbränder kunna uppkomma: lagerbrand, maskinbrand och brand i övrigt brännbart material (kategorin kallas skräp/kartonger).

Vid besiktning av lokalen bedöms följande fördelning mellan bränderna:

Maskin: 0,7
Skräp/kartonger: 0,25
Lager: 0,05

Maskiner
Maskinerna i byggnaden kan anta tre olika skadetillstånd: oskadad, sanering och totalförstörd. Sanering innebär att maskinen varit utsatt för en kraftig brand som förstört stora delar av de
värmeäktsamma komponenterna (t.ex. kablar, gummipackningar mm.). Maskinen kräver en
totsanering och renovering för att kunna fungera igen.

I linje L1 finns två maskiner. Om branden uppstår i maskin 1 (m1) beräknas branden få ett
ganska lindrigt förlopp. Maskinen innehåller inte speciellt mycket brännbart material och
endast en begränsad mängd brännbara vätskor. Konsekvensen av en brand i m1 blir att kablar
och lättantändliga detaljer i maskinen förstör och måste bytas ut, en brand i m1 bedöms inte
kunna resultera i att maskinen blir totalförstörd. Ingen risk för spridning till andra objekt
föreligger. 20% av alla maskinbränder i denna brandcell beräknas uppstå i m1.
Sanering
Kostnaden för detta bedöms uppgå till cirka 2000 kkr. Produktionsstoppet
beräknas bli 1 vecka.

Totalförstörd
Att köpa in en ny maskin bedöms kosta ca 70000 kkr. Produktionsstoppet
beräknas bli 9 veckor.

Maskin m2 innehåller stora mängder olja och processen i maskinen innebär höga
temperaturer, vilket gör att 40% av alla maskinbränder i denna brandcell beräknas uppstå i
m2. Konsekvensen av en brand i m2 (som inte släcks) blir att maskinen totalförstörs och risk
för spridning finns. I maskinen finns ett automatiskt koldioxidsystem.
Sanering
Kostnaden för att sanera och renovera maskinen beräknas uppgå till 3000 kkr.
Produktionsstoppet beräknas bli 2 veckor.

Totalförstörd
Kostnaden för att ersätta maskin m2 bedöms till 100000 kkr och
produktionsstoppet kommer att bli ca 12 veckor.

I linje L2 finns liksom i L1 två maskiner, m3 och m4. Maskin m3 har samma utformning som
maskin m1. 20% av alla maskinbränder bedöms uppkomma i maskin m3. Konsekvensen av
en brand i m3 blir att maskinen måste genomgå sanering och alla väromäktigheter
(kablar, packningar mm.) måste bytas. Det bedöms inte finnas risk för spridning eller att
maskinen totalförstörs då branden uppstår i m3.
Sanering
Kostnaden bedöms till cirka 3000 kkr. Produktionsstoppet beräknas bli 3
veckor.

Totalförstörd
Kostnaden att ersätta maskin m3 bedöms uppgå till 50000 kkr.
Produktionsstoppet beräknas bli 15 veckor.

I anslutning till maskin m4 finns en hel del brännbart förpackningsmaterial, dessutom finns
brännbara vätskor i maskinen. 20% av alla bränder bedöms uppstå i maskin m4.
Konsekvensen av en brand (som inte släcks) i m4 blir att hela maskinen förstörs och dessutom
finns risk för spridning till övriga delar av byggnaden.
Sanering
Kostnaden bedöms till cirka 2000 kkr. Produktionsstoppet beräknas bli 2 veckor
långt.

Totalförstörd
Kostnaden för att införska en ny maskin bedöms till 60000 kkr.
Produktionsstoppet blir 14 veckor.
För att bedöma sannolikheten att brandförsvaret lyckas släcka en brand innan den sprider sig i till hela brandcellen används följa grova metod.

Endast tre objekt anses kunna bidra med så stor brandeffekt att följdren blir en totalförstörd anläggning. Dessa objekt är lagret, m2 och m4. Om till exempel m1 brinner antas det att branden inte sprider sig till hela lokalren.

Tiden det tar innan första rökdykargruppen applicerar vatten på branden jämförs med hur lång tid det tar innan branden utvecklar en effekt större än 11 MW. Om rökdykarna när branden då den utvecklar mer än 11 MW antas det att insatsen tvingas inriktas på utvändig släckning och hela byggnaden betraktas då som förstörd. Om rökdykargruppen lät branden inte sprida sig innan den utvecklar 11 MW antas att branden kan släckas och skadorna blir mindre. Samma system används då skadorna på maskinen som branden börjat i skall bedömas. Om personalen släcker branden i maskinen blir skadorna små (kolumnen liten konsekvens i tabell 5.2). Om personalen misslyckas, men brandförsvaret snabbt är på plats och bekämpar branden innan den utvecklar en större effekt än den som bedömts som gräns för totalskada kommer maskinen endast att behöva en omfattande sanering och renovering. Kommer brandförsvaret senare än tskada, vilket är tidpunkten då branden utvecklar effekten som innebär totalskada, betraktas hela maskinen som förstörd. I tabell 5.1 redovisas de brandtillväxthastigheter (α) som antagits för de olika maskinerna, lagret och skräpet. Där redovisas också tiderna till maskinen utvecklar 11 MW och tiden till maskinen anses totalförstörd (räknat från brandens början).

p_{skada} och $p_{släck}$ är sannolikheterna att maskinen där branden uppstått förstörs innan brandförsvaret hinner bekämpa respektive sannolikheten att branden bekämpas innan den är större än vad brandförsvaret klarar att släcka. Dessa sannolikheter beräknas med hjälp av de tider som anges i tabell 5.2. Där kan den totala tiden innan brandförsvaret bekämpar branden ses. Det antas att variationen i tiderna är likformigt fördelade.

<table>
<thead>
<tr>
<th></th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
<th>Lager</th>
<th>Skräp</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0117</td>
<td>0.046</td>
<td>0.0117</td>
<td>0.046</td>
<td>0.187</td>
<td>0.0117</td>
</tr>
<tr>
<td>t_{11MW} (s)</td>
<td>489</td>
<td>-</td>
<td>489</td>
<td>243</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td>t_{skada} (s)</td>
<td>506</td>
<td>255</td>
<td>506</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skadeeffekt (kw)</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{skada}</td>
<td>0.46</td>
<td>1</td>
<td>0.46</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{släck}$</td>
<td>1</td>
<td>0.48</td>
<td>1</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabell 5.1

<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larm (s)</td>
<td>30</td>
</tr>
<tr>
<td>Körtid (s)</td>
<td>200</td>
</tr>
<tr>
<td>Insats (s)</td>
<td>120</td>
</tr>
<tr>
<td>Totalt (s)</td>
<td>350</td>
</tr>
</tbody>
</table>

Tabell 5.2

För varje scenario bedöms också sannolikheten att personalen lyckas släcka branden. Dessa bedömningar kan ses i figur 5.5.

Sannolikheten att koldioxidystemet i maskin m2 fungerar och släcker en eventuell brand har uppskattats till 0.98.
En bättre förståelse för de olika skadescenarierna och konsekvenserna fås med hjälp av figur 5.5, tabell 5.3 och 5.4. I figur 5.5 visas händelseträdet då brand uppstått, tabell 5.3 visar vilka konsekvenser som de olika scenarierna leder till. Där visas också vilka skadegrader som maskinerna antas få (0 = ingen skada, 1 = total sanering, 2 = Förstörd). Total sanering betyder att maskinen varit påverkad av en kraftig brand under en begränsad tid, vilket innebär att mycket av den temperaturkänsliga utrustningen (kablar mm.) förstörts. Som gräns för skadegrad 1 har en brandeffekt på 3 MW antagits. Med hjälp av beräkningsprogrammet FREIA /20/ skulle noggrannare kriterier för när komponenter skadas kunna fås fram, men för detta exempel, som är till för att visa metodiken, anses bedömningen 3 MW vara acceptabel.

Figur 5.5 Händelseträdet då brand uppstått i den fiktiva anläggningen.
Brandfrekvenser och typbränder i industrianläggningar

I tabell 5.4 visas kostnaderna för de olika skadegraderna i de olika maskinerna samt produktionsstoppstiderna som blir följen av skadorna. För att räkna ut kostnaden för produktionsstoppen används 350 kkr/vecka.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Typbrand</th>
<th>Frekvens (år⁻¹)</th>
<th>Konsekvens (kkr)</th>
<th>Skadegrad</th>
<th>lager (kkr)</th>
<th>byggnad (kkr)</th>
<th>Liten konsekvens (kkr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>m1</td>
<td>0.0378</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>S2</td>
<td>m1</td>
<td>0.00227</td>
<td>4000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>m1</td>
<td>0.00193</td>
<td>140000</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>m2</td>
<td>0.08232</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td>m2</td>
<td>0.00084</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>S6</td>
<td>m2</td>
<td>0</td>
<td>6000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>m2</td>
<td>0.0004</td>
<td>200000</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>m2</td>
<td>0.00044</td>
<td>575250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3000 12250</td>
</tr>
<tr>
<td>S9</td>
<td>m3</td>
<td>0.0336</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>S10</td>
<td>m3</td>
<td>0.00454</td>
<td>6000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>S11</td>
<td>m3</td>
<td>0.00386</td>
<td>100000</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>S12</td>
<td>m4</td>
<td>0.0399</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>S13</td>
<td>m4</td>
<td>0</td>
<td>4000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S14</td>
<td>m4</td>
<td>0.00101</td>
<td>120000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S15</td>
<td>m4</td>
<td>0.00109</td>
<td>575250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3000 12250</td>
</tr>
<tr>
<td>S16</td>
<td>Lager</td>
<td>0.01425</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>S17</td>
<td>Lager</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>S18</td>
<td>Lager</td>
<td>0.00075</td>
<td>575250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3000 12250</td>
</tr>
<tr>
<td>S19</td>
<td>Skräp</td>
<td>0.0675</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>S20</td>
<td>Skräp</td>
<td>0.00075</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>S21</td>
<td>Skräp</td>
<td>0</td>
<td>575250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3000 12250</td>
</tr>
</tbody>
</table>

Tabell 5.3 Frekvenser och konsekvenser för de olika skadescenarierna (S1 till S21).

<table>
<thead>
<tr>
<th>Maskin</th>
<th>Inköpskostnad (kkr)</th>
<th>Saneringskostnad (kkr)</th>
<th>Produktionsstopp Totalförstörd (veckor)</th>
<th>Produktionsstopp Sanering (veckor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>70000</td>
<td>2000</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>m2</td>
<td>100000</td>
<td>3000</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>m3</td>
<td>50000</td>
<td>3000</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>m4</td>
<td>60000</td>
<td>2000</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Lager</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggnad</td>
<td>3500</td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Tabell 5.4 Kostnader och Produktionsstopp för de olika maskinerna.

Kolumnerna m1, m2, m3 och m4 i tabell 5.3 beskriver skadegraden hos maskinerna vid de olika scenarierna. 0 betyder att maskinen är oskadd, 1 betyder att mycket av de värme och rökänslösa komponenterna på maskinen behöver bytas och 2 betyder att maskinen är förstörd. Dessa siffror har uppskattats av författaren, vilket innebär att de är förknippade med stora osäkerheter. Bättre noggrannhet i dessa skattningar kan erhållas om t.ex. beräkningsprogrammet FREIA /20/ används för att göra beräkningar av de termiska skadorna för varje scenario. Kolumnen "lager" är en kostnad för antingen uppbryggningen av ett nytt lager, eller sanering av mindre skador på lagret. Kolumnen "byggnad" är en kostnad som branden orsakar på byggnaden. Endast i de fall då hela byggnaden förstörs har någon kostnad redovisats här. Kostnaden för att bygga en ny anläggning har uppskattats till 3500 kkr.
(1,4 kkr/m²) och tiden för byggnationen har bedömts till 25 veckor med tanke på den enkla konstruktionen. Kolumnen ”Liten konsekvens” är avsedd att redovisa kostnader som uppkommer vid de små bränderna (de som släcks av personalen eller CO₂-systemet). Dessa kostnader bedöms uppgå till mellan 5 och 40 kkr beroende på var de uppstår.

Kolumnen ”Konsekvens” är summan av alla kostnader som det aktuella scenariot innebär och kolumnen ”Frekvens” är ett mått på hur ofta scenariot beräknas uppkomma.

Med hjälp av konsekvens och frekvenskolumnerna i tabell 5.3 kan den förväntade skadekostnaden eller EMV (Expected Monetary Value) beräknas. Detta sker genom att summara produkten av frekvensen och konsekvensen för alla scenarier enligt ekvation 5.1.

\[EMV = \sum_{n=1}^{i} p_n \cdot S_n = 1195 \text{kkr} / \text{år} \]

EMV kan kompletteras med en riskprofil för anläggningen (se figur 5.6).

Figur 5.6 Riskprofil för den fiktiva produktionsanläggningen.

Det kan tyckas att en förväntad skadekostnad på 1,2 miljoner per år är mycket. Att den förväntade kostnaden blir så stor kan bero på att de antaganden angående kostnader för maskiner mm. som författaren gjort inte är realistiska. Eftersom avsikten med exemplet inte är att göra en realistisk analys utan att visa på hur metodiken kan användas accepteras detta resultat utan vidare reflektion över dess storlek.

6. Resultat och diskussion

Metodiken som presenteras i rapporten ger en möjlighet att utvärdera en specifik industri med avseende på förväntad skadekostnad. Metodiken är på intet sätt fullständig, ty det saknas väsentliga bitar (t.ex. icke termiska skador) men är troligtvis så användbar att den skulle kunna utvärderas på någon verklig industrianläggning.

I avsnitt 2.2 ges ett förslag på en modell som kan användas för att ta fram ekvationer som beskriver sannolikheten för brands uppkomst i den svenska industrin som funktion av verksamhet och golvarea. Dessutom presenteras två undersökningar där färdiga uttryck för detta redan finns (dock inte för den svenska industrin).

Kapitel 4 innehåller en litteraturgenomgång av tillförlitlighetsdata för brandtekniska system. Mest material finns om sprinklersystem, men även en del data om brandlarmssystem presenteras.

I kapitel 5 behandlas analysmetodiken och en beskrivning av hur en ekonomisk analys av en anläggning skulle kunna genomföras presenteras i grova drag.

En sak som talar för att metodiken kommer att bli bättre med tiden är insamlandet av statistik. I denna rapport har endast funnits tillgång till ett års brandstatistik, vilket i vissa fall visat sig vara i minsta laget. Denna mognadsprocess innebär att kunskap som inhämtas på de olika områdena som ingår i metodiken kommer att bidra till att de subjektiva bedömningarna minskar och förhoppningsvis ökar då precisionen i resultatet. Det viktiga i denna rapport är att riktlinjer för en metodik som kan byggas vidare på har presenterats.
7 Referenser

/1/ Räddningsverkets statistikdatabas, Karlstad, 1998.

/2/ Rutstein R., The Estimation of the Fire Hazard in Different Occupancies, Fire Surveyor vol.8 no.2, pp. 21-25.

/8/ Rahikainen J., Keski-Rahkonen O., Determination of Ignition Frequency of Fire in Different Premises in Finland, EUROFIRE 98, Brussels.

/9/ Isaksson S., Litteraturstudie angående brandskydd i kärnkraftverk, SKI, 1996.

/10/ Moore W.D., Balanced design concepts workshop editor Bukowski R.W., NISTIR 5264, Gaithersburg, Maryland, USA, September 1993.

Jörud F., SKI-projekt Yttre händelser, Realistisk modellering av brandförlopp, Brandfysikaliska beräkningar samt feldata för brandskydds-system, Sydkraft Konsult, 1996.

Guymer P., Parry G.W., Use of Probabalistic Methods in Fire Hazard Analysis, USA, IAEA-SM-305/1.

Bilaga 1: Första brinnande objekt, fördelat på utrymmen

I denna bilaga redovisas första brinnande objekt för de olika industrigrupperna. Objekten är också sorterade efter i vilken del av anläggningen som branden började. Endast de delar som det finns fler än 10 bränder är medtagna i tabellerna. Bränder där startföremålet rapporterats som ”annat”, ”okänt” eller inte rapporterats alls har tagits bort ur tabellerna. Uppgifterna kommer från /1/.

Metall/Maskinindustri

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Pannrum</th>
<th>Hall</th>
<th>Verkstad</th>
<th>Produktionslokal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byggnadens utsida</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rökkanal</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lös inredning</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldstad</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Spis</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvättmaskin</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glödlampa</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lysrör</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformator</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Skräp i container/motsv.</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Maskin</td>
<td>11</td>
<td>2</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Personbil</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Expl.ämne/Sprängämne</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt antal bränder:</td>
<td>11</td>
<td>50</td>
<td>15</td>
<td>77</td>
</tr>
</tbody>
</table>

Tabell B1.1 Första brinnande objekt i Maskin/Metallindustri
Kemisk industri

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Hall</th>
<th>Produktionslokal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byggnadens utsida</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lös inredning</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Torkskäp</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Maskin</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totalt antal bränder: 22 21

Tabell B1.2 Första brinnande objekt i Kemisk industri

Industrihotell

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Produktionslokal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uppvärmningsanordning</td>
<td>3</td>
</tr>
<tr>
<td>Maskin</td>
<td>4</td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td>3</td>
</tr>
</tbody>
</table>

Totalt antal bränder: 10

Tabell B1.3 Första brinnande objekt i Industrihotell
Annan tillverkningsindustri

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Hall</th>
<th>Elcentral Produktionssöklokal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byggnadens utsida</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lös inredning</td>
<td>1</td>
<td>3 1</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Torkskåp</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kaffebryggare</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lysrör</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Transformator</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>2</td>
<td>1 4</td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Maskin</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>Expl.ämne/Sprängämne</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Totalt antal bränder:</td>
<td>28</td>
<td>54 11</td>
</tr>
</tbody>
</table>

Tabell B1.4 Första brinnande objekt i Annan tillverkningsindustri.

Livsmedelsindustri

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Produktionssöklokal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lös inredning</td>
<td>1</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>5</td>
</tr>
<tr>
<td>Lysrör</td>
<td>1</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>1</td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td>1</td>
</tr>
<tr>
<td>Maskin</td>
<td>1</td>
</tr>
<tr>
<td>Totalt antal bränder:</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabell B1.5 Första brinnande objekt i Livsmedelsindustri.
Textilindustri

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Produktionslokal</th>
<th>Hall</th>
<th>Silo</th>
<th>Panoram</th>
<th>Totalt antal bränder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uppvärmningsanordning</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maskin</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell B1.6 Första brinnande objekt i Textilindustri.

Trävaruindustri

<table>
<thead>
<tr>
<th>Första brinnande objekt</th>
<th>Radgarage</th>
<th>Produktionslokal</th>
<th>Hall</th>
<th>Silo</th>
<th>Panoram</th>
<th>Totalt antal bränder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byggnadens utsida</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rökkanal</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lös inredning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eldstad</td>
<td></td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td></td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Transformator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fläkt/Annan vent.anl.</td>
<td></td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Skräp i container/motsv.</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maskin</td>
<td></td>
<td>1</td>
<td>29</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Tabell B1.7 Första brinnande objekt i Trävaruindustri.
Bilaga 2: Första brinnande objekt i de olika industrityperna

Tabell B2.1 till B2.9 redovisas det första brinnande objektet i de olika industrigrupperna oavsett var i anläggningen som branden har börjat. Bränder där objektet redovisats som ”okänt” eller där uppgift utelämnats har inte tagits med i tabellen. Uppgifterna kommer från /1/.

Industrihotellet

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>2</td>
<td>3,0</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>2</td>
<td>3,0</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>4</td>
<td>6,1</td>
</tr>
<tr>
<td>Eldstad</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>Spis</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Lysrör</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>5</td>
<td>7,6</td>
</tr>
<tr>
<td>Skräp i container/Motsv.</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Maskin</td>
<td>5</td>
<td>7,6</td>
</tr>
<tr>
<td>Personbil</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Okänt</td>
<td>8</td>
<td>12,1</td>
</tr>
<tr>
<td>Annat</td>
<td>27</td>
<td>40,9</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.1 Startföremål vid bränder i industrihotellet

Kemisk industri

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>14</td>
<td>10,6</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>5</td>
<td>3,8</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>13</td>
<td>9,8</td>
</tr>
<tr>
<td>Torkskåp</td>
<td>3</td>
<td>2,3</td>
</tr>
<tr>
<td>Transformator</td>
<td>3</td>
<td>2,3</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>18</td>
<td>13,6</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>16</td>
<td>12,1</td>
</tr>
<tr>
<td>Skräp i container eller motsv.</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Maskin</td>
<td>17</td>
<td>12,9</td>
</tr>
<tr>
<td>Övriga vägfordon</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>4</td>
<td>3,0</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>Okänt</td>
<td>5</td>
<td>3,8</td>
</tr>
<tr>
<td>Annat</td>
<td>28</td>
<td>21,2</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.2 Startföremål vid bränder i kemisk industri
Livsmedelsindustri

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>6</td>
<td>7,6</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>7</td>
<td>8,9</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>Eldstad</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>7</td>
<td>8,9</td>
</tr>
<tr>
<td>Bastuaggregat</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td>Kyl/Frys</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>Lysrör</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>4</td>
<td>5,1</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>3</td>
<td>3,8</td>
</tr>
<tr>
<td>Maskin</td>
<td>6</td>
<td>7,6</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>Okänt</td>
<td>3</td>
<td>3,8</td>
</tr>
<tr>
<td>Annat</td>
<td>33</td>
<td>41,8</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.3 Startföremål vid bränder i Livsmedelsindustri

Metall/Maskinindustri

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>22</td>
<td>5,9</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>4</td>
<td>1,1</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>13</td>
<td>3,5</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>12</td>
<td>3,2</td>
</tr>
<tr>
<td>Eldstad</td>
<td>5</td>
<td>1,3</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>24</td>
<td>6,5</td>
</tr>
<tr>
<td>Bastuaggregat</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Kaffebryggare</td>
<td>2</td>
<td>0,5</td>
</tr>
<tr>
<td>Spis</td>
<td>7</td>
<td>1,9</td>
</tr>
<tr>
<td>Tvättmaskin</td>
<td>3</td>
<td>0,8</td>
</tr>
<tr>
<td>Glödlampa</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Lysrör</td>
<td>2</td>
<td>0,5</td>
</tr>
<tr>
<td>Transformer</td>
<td>15</td>
<td>4,0</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>32</td>
<td>8,6</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>38</td>
<td>10,2</td>
</tr>
<tr>
<td>Skräp i container eller motsv.</td>
<td>13</td>
<td>3,5</td>
</tr>
<tr>
<td>Maskin</td>
<td>44</td>
<td>11,8</td>
</tr>
<tr>
<td>Personbil</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>8</td>
<td>2,2</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td>4</td>
<td>1,1</td>
</tr>
<tr>
<td>Okänt</td>
<td>10</td>
<td>2,7</td>
</tr>
<tr>
<td>Annat</td>
<td>111</td>
<td>29,8</td>
</tr>
<tr>
<td>Total</td>
<td>372</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.4 Startföremål vid bränder i Metall/Maskinindustri
Textilindustri

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>2</td>
<td>8,0</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>1</td>
<td>4,0</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>3</td>
<td>12,0</td>
</tr>
<tr>
<td>Kyl/Frys</td>
<td>1</td>
<td>4,0</td>
</tr>
<tr>
<td>Tvättmaskin</td>
<td>1</td>
<td>4,0</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>1</td>
<td>4,0</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>2</td>
<td>8,0</td>
</tr>
<tr>
<td>Skräp i container eller motsv.</td>
<td>1</td>
<td>4,0</td>
</tr>
<tr>
<td>Maskin</td>
<td>8</td>
<td>32,0</td>
</tr>
<tr>
<td>Okänt</td>
<td>1</td>
<td>4,0</td>
</tr>
<tr>
<td>Annat</td>
<td>4</td>
<td>16,0</td>
</tr>
<tr>
<td>Totalt</td>
<td>25</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.5 Startföremål vid bränder i Textilindustri

Trävaruindustri

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>33</td>
<td>8,7</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>11</td>
<td>2,9</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>15</td>
<td>4,0</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>3</td>
<td>0,8</td>
</tr>
<tr>
<td>Eldstad</td>
<td>16</td>
<td>4,2</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>20</td>
<td>5,3</td>
</tr>
<tr>
<td>TV</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Glödlampa</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Transformer</td>
<td>4</td>
<td>1,1</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>15</td>
<td>4,0</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>29</td>
<td>7,7</td>
</tr>
<tr>
<td>Skräp i container eller motsv.</td>
<td>3</td>
<td>0,8</td>
</tr>
<tr>
<td>Maskin</td>
<td>57</td>
<td>15,1</td>
</tr>
<tr>
<td>Övriga vägfordon</td>
<td>3</td>
<td>0,8</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>2</td>
<td>0,5</td>
</tr>
<tr>
<td>Okänt</td>
<td>27</td>
<td>7,1</td>
</tr>
<tr>
<td>Annat</td>
<td>138</td>
<td>36,5</td>
</tr>
<tr>
<td>Totalt</td>
<td>378</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.6 Startföremål vid bränder i Trävaruindustri
Reparationsverkstad

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>16</td>
<td>13,6</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>4</td>
<td>3,4</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>Eldstad</td>
<td>8</td>
<td>6,8</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>2</td>
<td>1,7</td>
</tr>
<tr>
<td>Spis</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>Tvättmaskin</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Lysrör</td>
<td>2</td>
<td>1,7</td>
</tr>
<tr>
<td>Transformator</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>4</td>
<td>3,4</td>
</tr>
<tr>
<td>Maskin</td>
<td>2</td>
<td>1,7</td>
</tr>
<tr>
<td>Personbil</td>
<td>18</td>
<td>15,3</td>
</tr>
<tr>
<td>Övriga vägfordon</td>
<td>4</td>
<td>3,4</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>4</td>
<td>3,4</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td>5</td>
<td>4,2</td>
</tr>
<tr>
<td>Okänt</td>
<td>11</td>
<td>9,3</td>
</tr>
<tr>
<td>Annat</td>
<td>26</td>
<td>22,0</td>
</tr>
<tr>
<td>Totalt</td>
<td>118</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.7 Startföremål vid bränder i Reparationsverkstad

Lager

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>9</td>
<td>14,3</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>7</td>
<td>11,1</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>2</td>
<td>3,2</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>4</td>
<td>6,3</td>
</tr>
<tr>
<td>Eldstad</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Spis</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Lysrör</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Transformator</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>3</td>
<td>4,8</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>3</td>
<td>4,8</td>
</tr>
<tr>
<td>Skräp i container eller motsv.</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Maskin</td>
<td>1</td>
<td>1,6</td>
</tr>
<tr>
<td>Personbil</td>
<td>3</td>
<td>4,8</td>
</tr>
<tr>
<td>Övriga vägfordon</td>
<td>2</td>
<td>3,2</td>
</tr>
<tr>
<td>Okänt</td>
<td>7</td>
<td>11,1</td>
</tr>
<tr>
<td>Annat</td>
<td>16</td>
<td>25,4</td>
</tr>
<tr>
<td>Totalt</td>
<td>63</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.8 Startföremål vid bränder i Lager
Annan tillverkningsindustri

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej angivet</td>
<td>31</td>
<td>10,1</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>8</td>
<td>2,6</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>5</td>
<td>1,6</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>6</td>
<td>1,9</td>
</tr>
<tr>
<td>Eldstad</td>
<td>2</td>
<td>0,6</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>11</td>
<td>3,6</td>
</tr>
<tr>
<td>Torkskåp</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Kaffebryggare</td>
<td>2</td>
<td>0,6</td>
</tr>
<tr>
<td>Spis</td>
<td>2</td>
<td>0,6</td>
</tr>
<tr>
<td>Tvättmaskin</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Lysrör</td>
<td>3</td>
<td>1,0</td>
</tr>
<tr>
<td>Transformator</td>
<td>7</td>
<td>2,3</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>18</td>
<td>5,8</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>25</td>
<td>8,1</td>
</tr>
<tr>
<td>Skräp i container eller motsv.</td>
<td>2</td>
<td>0,6</td>
</tr>
<tr>
<td>Maskin</td>
<td>59</td>
<td>19,2</td>
</tr>
<tr>
<td>Övriga vägfordon</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Expl. Amne/Sprängämne</td>
<td>1</td>
<td>0,3</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>4</td>
<td>1,3</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td>2</td>
<td>0,6</td>
</tr>
<tr>
<td>Okänt</td>
<td>11</td>
<td>3,6</td>
</tr>
<tr>
<td>Annat</td>
<td>106</td>
<td>34,4</td>
</tr>
<tr>
<td>Totalt</td>
<td>308</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabell B2.9 Startföremål vid bränder i Annan tillverkningsindustri
Bilaga 3: Första brinnande objekt i industrier

I bilaga 3 redovisas första brinnande föremål i hela industrigruppen.

<table>
<thead>
<tr>
<th>Startföremål</th>
<th>Antal</th>
<th>Andel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inte angivet</td>
<td>135</td>
<td>8,8</td>
</tr>
<tr>
<td>Byggnadens utsida</td>
<td>41</td>
<td>2,7</td>
</tr>
<tr>
<td>Rökkanal</td>
<td>47</td>
<td>3,0</td>
</tr>
<tr>
<td>Lös inredning</td>
<td>36</td>
<td>2,3</td>
</tr>
<tr>
<td>Eldstad</td>
<td>35</td>
<td>2,3</td>
</tr>
<tr>
<td>Uppvärmningsanordning</td>
<td>84</td>
<td>5,5</td>
</tr>
<tr>
<td>Bastuaggregat</td>
<td>3</td>
<td>0,2</td>
</tr>
<tr>
<td>Torkumläre</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Torkskäp</td>
<td>4</td>
<td>0,3</td>
</tr>
<tr>
<td>Diskmaskin</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Kaffebryggare</td>
<td>4</td>
<td>0,3</td>
</tr>
<tr>
<td>Spis</td>
<td>14</td>
<td>0,9</td>
</tr>
<tr>
<td>Kyl/Frys</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Tvättmaskin</td>
<td>6</td>
<td>0,4</td>
</tr>
<tr>
<td>TV</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Stereo/Video</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Strykjärn</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Glödlampa</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>Lysrör</td>
<td>11</td>
<td>0,7</td>
</tr>
<tr>
<td>Transformator</td>
<td>31</td>
<td>2,0</td>
</tr>
<tr>
<td>Andra elinstallationer</td>
<td>95</td>
<td>6,2</td>
</tr>
<tr>
<td>Fläkt/annan ventilationsanläggning</td>
<td>125</td>
<td>8,1</td>
</tr>
<tr>
<td>Skräp i containier eller motsv.</td>
<td>22</td>
<td>1,4</td>
</tr>
<tr>
<td>Maskin</td>
<td>199</td>
<td>12,9</td>
</tr>
<tr>
<td>Personbil</td>
<td>23</td>
<td>1,5</td>
</tr>
<tr>
<td>Övriga vägfordon</td>
<td>11</td>
<td>0,7</td>
</tr>
<tr>
<td>Explosivt ämne/Sprängämne</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Brandfarlig vätska</td>
<td>24</td>
<td>1,6</td>
</tr>
<tr>
<td>Brandfarlig gas</td>
<td>13</td>
<td>0,8</td>
</tr>
<tr>
<td>Tåg</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Okänt</td>
<td>83</td>
<td>5,4</td>
</tr>
<tr>
<td>Annat</td>
<td>489</td>
<td>31,7</td>
</tr>
<tr>
<td>Total</td>
<td>1541</td>
<td></td>
</tr>
</tbody>
</table>
Bilaga 4: Brandutveckling

Då brandens tidiga utveckling skall bedömas kan följande tabell (B4.2) användas för att uppskatta hur snabbt branden växer samt hur stor brandeffekt som kan utvecklas av ett specifikt objekt.

Tillväxthastigheten anges som Slow, Medium, Fast eller Ultra Fast (S,M,F,UF), vilka motsvarar ett α-värde enligt tabell B4.1.

<table>
<thead>
<tr>
<th>Tillväxthastighet</th>
<th>α [kW/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra Fast</td>
<td>0,187</td>
</tr>
<tr>
<td>Fast</td>
<td>0,046</td>
</tr>
<tr>
<td>Medium</td>
<td>0,0117</td>
</tr>
<tr>
<td>Slow</td>
<td>0,0029</td>
</tr>
</tbody>
</table>

Tabell B4.1 Tillväxthastigheter

<table>
<thead>
<tr>
<th>Objekt i anläggningen</th>
<th>ΔH (MJ/kg)</th>
<th>Material</th>
<th>Avgiven värmeeffekt, ex (kW)</th>
<th>Dimensioner</th>
<th>Tillväxthastighet (S,M,F,UF)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Träpanel, plywood, väggar</td>
<td>15-20</td>
<td>Trä</td>
<td>600 / m bredd 1000 / m bredd</td>
<td>240 cm höjd 480 cm höjd</td>
<td>F</td>
<td>/33/</td>
</tr>
<tr>
<td>Träpanel, tak, golv</td>
<td>15-20</td>
<td>Trä</td>
<td>170 / m2 av ytan</td>
<td>M, F</td>
<td>/33/</td>
<td></td>
</tr>
<tr>
<td>Träinredning, stolar, bord osv.</td>
<td>15-20</td>
<td>Trä</td>
<td>170/m2 av ytan 1420/m2</td>
<td>Träpallar staplar, 45 cm höjd</td>
<td>M,F</td>
<td>/33/</td>
</tr>
<tr>
<td>Möbler stoppade med PUR-skum.</td>
<td>25-32</td>
<td>PUR-skum</td>
<td>500</td>
<td>Fåtölj, träram, bomullstyg</td>
<td>M,F</td>
<td>/34/</td>
</tr>
<tr>
<td>Tyginredning, gardiner, dukaar osv.</td>
<td>15-20</td>
<td>Bomull</td>
<td>190</td>
<td>Gardin, bomull, 2*(2,13*1,25m2)</td>
<td>F, UF</td>
<td>/34/</td>
</tr>
<tr>
<td>Sopsäckar, Papperskartonger</td>
<td>15-20</td>
<td>Papper</td>
<td>50</td>
<td>PE-Papperskor, 12 mjölkpåse</td>
<td>F</td>
<td>/34/</td>
</tr>
<tr>
<td>Brändbara vätskor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tändvätska</td>
<td>27</td>
<td>Etanol</td>
<td>400/m2 golvyta</td>
<td>Brevkorgor staplade 1,5 m</td>
<td>M,F</td>
<td>/33/</td>
</tr>
<tr>
<td>Motorolja</td>
<td>40</td>
<td>Fuel olj, heavy</td>
<td>1000/m2 golvyta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacknafta</td>
<td>40</td>
<td>Bensen</td>
<td>2220/m2 golvyta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontorsmaterial</td>
<td>46</td>
<td>Polyeten</td>
<td>8500/m2 golvyta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagring av lastpallar</td>
<td>15-20</td>
<td>Trä</td>
<td>1420/m2 golvyta</td>
<td>Hög 45 cm</td>
<td>F</td>
<td>/34/</td>
</tr>
<tr>
<td>Lagring av kartong o.dyl.</td>
<td>15-20</td>
<td>Papper</td>
<td>1700/m2 golvyta</td>
<td>Hög 450 cm</td>
<td>F</td>
<td>/34/</td>
</tr>
<tr>
<td>Böcker i hyllor</td>
<td>15-20</td>
<td>Papper, trä</td>
<td>600 / m bredd 1000 / m bredd</td>
<td>240 cm höjd 480 cm höjd</td>
<td>F</td>
<td>/33/</td>
</tr>
</tbody>
</table>

Tabell B4.2 Vanliga objekts brandtekniska egenskaper.