The Respiratory Pathogen Moraxella catarrhalis Adheres to Epithelial Cells by Interacting with Fibronectin through Ubiquitous Surface Proteins A1 and A2.

Tan, Thuan Tong; Nordström, Therése; Forsgren, Arne; Riesbeck, Kristian

Published in: Journal of Infectious Diseases

2005

Citation for published version (APA):
Moraxella catarrhalis ubiquitous surface protein (Usp) A1 has been reported to bind fibronectin and is involved in adherence. In this study, using M. catarrhalis mutants derived from clinical isolates, we show that both UspA1 and UspA2 bind fibronectin. Recombinant truncated UspA1/A2 proteins, together with smaller fragments spanning the entire molecule, were tested for binding to fibronectin. Both UspA1 and UspA2 bound fibronectin, and the fibronectin-binding domains were located within UspA1299–452 and UspA2165–318. These 2 truncated proteins inhibited binding of M. catarrhalis to Chang conjunctival epithelial cells to an extent similar to that by anti-human fibronectin antibodies. Our observations show that both UspA1 and UspA2 are involved in adherence to epithelial cells via cell-associated fibronectin. The biologically active sites within UspA1299–452 and UspA2165–318 have therefore been suggested to be potential candidates to be included in a future vaccine against M. catarrhalis.

Moraxella catarrhalis is a leading bacterial cause of acute otitis media in children, after Streptococcus pneumoniae and Haemophilus influenzae [1–3]. It is also a common cause of sinusitis and lower respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD).

In recent years, the focus of research on Moraxella species has been on the outer membrane proteins (OMPs) and their interactions with the human host [4, 5]. Some of these OMPs—including, among others, M. catarrhalis IgD binding protein (also designated as “Hag”), protein CD, M. catarrhalis adherence protein, and the ubiquitous surface proteins (Usps)—appear to have adhesive functions [6–10].

The UsP family consists of UspA1 (molecular weight, 88), UspA2 (molecular weight, 62), and the hybrid protein UspA2H (molecular weight, 92) [11, 12]. The amino acid sequences of UspA1 and UspA2 are 43% identical and have 140 aa, of which 93% are identical [11]. These proteins are relatively conserved and, hence, are important vaccine candidates. In a series of M. catarrhalis isolates from children with otitis media, uspA1 and uspA2 genes were almost universally detected (99% and 100%, respectively); 21% of isolates were identified as having the hybrid variant gene uspA2H [13]. Moreover, naturally acquired antibodies to UspA1 and UspA2 are bactericidal [14].

Several functions have been attributed to the UsP family of proteins. Expression of UspA1 is essential for the attachment of M. catarrhalis to Chang conjunctival epithelial cells, Hep-2 laryngeal epithelial cells, and A549 lung epithelial cells [9, 12, 15, 16]. Purified UspA1 has also been shown to bind fibronectin in dot-blot experiments, whereas purified UspA2 has not [15]. Both
UspA1 and UspA2 may play important roles in *M. catarrhalis* resistance to the bactericidal activity of human serum [9, 17].

The aims of the present study were to confirm that binding to fibronectin is indeed determined by UspA1, elucidate the binding motif, and, finally, study interactions between *M. catarrhalis* and epithelial cells. We demonstrate that both UspA1 and UspA2 are determinants of *M. catarrhalis* binding to fibronectin in the clinical isolates *M. catarrhalis* BBH18 and RH4. Interestingly, recombinant UspA1 and UspA2 derived from *M. catarrhalis* Bc5 bound fibronectin to the same extent. The binding domains were found within aa 299–452 of UspA1 and aa 165–318 of UspA2. These 2 domains share a sequence identity of 31 aa. Importantly, truncated protein fragments containing these residues in UspA1 and UspA2 were able to inhibit *M. catarrhalis* binding to Chang conjunctival epithelial cells, suggesting that the interactions were via cell-associated fibronectin.

MATERIALS AND METHODS

Bacterial strains and culture conditions. The sources of the clinical *M. catarrhalis* strains are listed in table 1. *M. catarrhalis* BBH18 and RH4 mutants were constructed as described elsewhere [17, 18]. These 2 strains have a relatively higher expression of UspA2 than of UspA1 [17]. The *M. catarrhalis* strains were routinely cultured in brain heart infusion (BHI) broth or on BHI agar plates, at 37°C. The UspA1-deficient, UspA2-deficient, and double mutants were cultured in BHI supplemented with antibiotics, as described elsewhere [17].

DNA methods. To detect the presence of uspA1, uspA2, and A2H genes in those strains in which their presence was unknown, the primers and polymerase chain reaction (PCR) conditions described by Meier et al. [13] were used. Partial sequencing with the UspA1299–452 and UspA2165–318 5′ and 3′ primers of the respective uspA1 and uspA2 genes of RH4 and BBH18 was also performed. Confirmation of the presence of the amino acid residues DQKADIDNNINHIYELAQQQDQHSSDIKLK was also performed by PCR with a primer (5′-CAAGCCTGACATCCAGCACTTG-3′) designed from the 3′ end of this sequence and 3′ primers of uspA1 and uspA2, as described by Meier et al. [13].

Construction and expression of recombinant proteins. Recombinant UspA150–770 and UspA230–539, which are devoid of their hydrophobic C-termini, have recently been described [17]. Genomic DNA was extracted from *M. catarrhalis* Bc5 by use of a DNeasy tissue kit (Qiagen). In addition, recombinant proteins corresponding to multiple regions spanning UspA150–770 and UspA230–539 were also constructed by the same method. The prim-

Table 1. Clinical strains of *Moraxella catarrhalis* used in the present study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Clinical source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBH18</td>
<td>Sputum</td>
<td>[18]</td>
</tr>
<tr>
<td>D1</td>
<td>Sputum</td>
<td>[18]</td>
</tr>
<tr>
<td>R149</td>
<td>Sputum</td>
<td>[18]</td>
</tr>
<tr>
<td>C10</td>
<td>Sputum</td>
<td>[19]</td>
</tr>
<tr>
<td>F16</td>
<td>Sputum</td>
<td>[19]</td>
</tr>
<tr>
<td>Bro2</td>
<td>Respiratory tract</td>
<td>[18]</td>
</tr>
<tr>
<td>Z14</td>
<td>Pharynx</td>
<td>[19]</td>
</tr>
<tr>
<td>S6-688</td>
<td>Nasopharynx</td>
<td>[20]</td>
</tr>
<tr>
<td>Bc5</td>
<td>Nasopharynx</td>
<td>[21]</td>
</tr>
<tr>
<td>RH4</td>
<td>Blood</td>
<td>[18]</td>
</tr>
<tr>
<td>RH6</td>
<td>Blood</td>
<td>[18]</td>
</tr>
<tr>
<td>R14</td>
<td>Unknown</td>
<td>[19]</td>
</tr>
<tr>
<td>R4</td>
<td>Unknown</td>
<td>[19]</td>
</tr>
<tr>
<td>SÖ-1914</td>
<td>Tympanic cavity aspirate</td>
<td>[20]</td>
</tr>
</tbody>
</table>

NOTE. The strains C10 and R4 lacked the uspA1 gene, whereas F16, R14, and Z14 lacked the uspA2 gene. The remaining strains contained both the uspA1 and the uspA2 genes (data not shown).

Table 2. Primers used in the present study.

<table>
<thead>
<tr>
<th>Protein</th>
<th>5′ primer</th>
<th>3′ primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>UspA150–770</td>
<td>ggcgtcgcgatcagttgaaacgcagcaacc</td>
<td>cccctgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA150–491</td>
<td>ggcgtcgcgatcagttgaaacgcagcaacc</td>
<td>ttcgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA150–197</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA150–321</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA230–539</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA230–177</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA2101–240</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA2101–318</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA2165–318</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA2302–458</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
<tr>
<td>UspA2446–539</td>
<td>ggtgagcatcagttgaaacgcagcaacc</td>
<td>accttgaagctttagtgcataacctaattg</td>
</tr>
</tbody>
</table>

NOTE. Usp, ubiquitous surface protein.
Figure 1. Binding of clinical isolates of *Moraxella catarrhalis* to fibronectin. The interaction depends on ubiquitous surface protein (Usp) A1 and UspA2. A, Testing of 14 *M. catarrhalis* strains for binding to fibronectin. Strong binding to fibronectin correlated with expression of UspA1/A2, as detected by anti-UspA1/A2 polyclonal antibody (PAb). B–I, Flow-cytometric profiles of *M. catarrhalis* BBH18 wild-type (wt) and UspA1/A2-deficient mutants, showing UspA1/A2-dependent binding to soluble fibronectin. The profiles of the wt clinical isolate (B and F) and its corresponding mutants lacking UspA1 (C and G) or UspA2 (D and H) and of double mutants (E and I) lacking both UspA1 and UspA2 are shown. Bacteria were incubated with rabbit anti-UspA1/A2 PAb or fibronectin, followed by an anti-human fibronectin PAb. Fluorescein isothiocyanate–conjugated anti-rabbit PAb was subsequently added, followed by flow-cytometric analysis. For each profile, 1 typical experiment, with the mean fluorescence intensity (MFI) of 3 experiments performed, is shown.

Flow-cytometric analysis. The expression of UspA1/A2 and the capacity of *M. catarrhalis* to bind fibronectin were analyzed by flow cytometry. Wild-type (wt) strains and UspA1/A2-deficient mutants were grown overnight and washed twice in PBS containing 3% fish gelatin (PBS-gelatin). The bacteria (10^9) were then incubated with either anti-UspA1/A2 antiserum or 5 μg of fibronectin (Sigma). They were then washed and incubated for 30 min at room temperature with either FITC-conjugated anti-rabbit PAb (diluted according to the manufacturer’s instructions) or a 1:100 dilution of rabbit anti-human fibronectin PAb (if fibronectin was first added) for 30 min at room temperature, before incubation with the FITC-conjugated anti-rabbit PAb. After 3 additional washes, the bacteria were analyzed by flow cytometry (EPICS, XL-MCL; Coulter). All incubations were kept in a final volume of 100 μL of PBS-gelatin, and the washings were performed with the same buffer. Anti-human fibronectin PAb and FITC-conjugated anti-rabbit PAb were added separately, as negative controls for each strain analyzed. Inhibition studies were performed by preincubating 0.25 mol of UspA fragments with 2 μg of fibronectin before incubation for 1 h with *M. catarrhalis* bacteria (10^9). The residual-free amount of fibronectin that bound to *M. catarrhalis* was determined by flow cytometry, as outlined above.

Binding of *M. catarrhalis* to immobilized fibronectin. Glass slides were coated with 30-μL aliquots of fibronectin (1 mg/mL) and air-dried at room temperature. After being washed once with PBS, the slides were incubated in petri dishes with
fibronectin PAB and the HRP-conjugated anti-rabbit PAB were diluted 1:1000 in washing buffer containing 1.5% fish gelatin. The wells were washed 4 times, and the plates were developed and measured at an optical density of 450 nm. ELISAs were performed with truncated proteins spanning aa 50–770 of UspA1 and aa 30–539 of UspA2, by use of fixed doses of fibronectin (80 μg/mL and 120 μg/mL, respectively).

Cell-line adherence-inhibition assay. Chang conjunctival epithelial cells (ATCC CCL 20.2) were cultured in RPMI 1640 medium (Life Technologies) supplemented with 10% fetal calf serum, 2 mmol/L L-glutamine, and 12 μg/mL gentamicin. The day before adherence-inhibition experiments, cells were harvested, washed twice in gentamicin-free culture media, and added to 96-well tissue culture plates (Nunc) (10^4 cells/200 μL of gentamicin-free culture media). Thereafter, cells were incubated overnight at 37°C in a humidified atmosphere of 5% CO₂. On the day of experiments, inhibition of _M. catarrhalis_ adhesion was performed by preincubating increasing concentrations of either recombinant truncated UspA1/A2 proteins containing the fibronectin-binding domains UspA1299–452 and UspA2 165–318 or rabbit anti-human fibronectin PAB for 1 h. Recombinant non–fibronectin-binding proteins (UspA1 433–580 and UspA2 30–177) were used as controls. An anti-ICAM1 MAb (Chang conjunctival epithelial cells are known to express ICAM1 [24]) was used as a control antibody. Subsequently, _M. catarrhalis_ RH4 (10^6) in PBS-gelatin was inoculated onto the confluent monolayers. The culture plates were then centrifuged at 3000 g for 5 min and incubated at 37°C in 5% CO₂. After 30 min, infected monolayers were rinsed several times with PBS-gelatin, to remove nonadherent bacteria, and then were treated with trypsin-EDTA (0.05% trypsin and 0.5 mmol/L EDTA), to release the Chang conjunctival epithelial cells from the plastic support. Thereafter, the resulting cell-bacterium suspension was seeded in dilution onto BHI agar plates and incubated overnight at 37°C in 5% CO₂.

Determination of expression of fibronectin in Chang conjunctival epithelial cells. Chang conjunctival epithelial cells were harvested by scraping; they were then resuspended in PBS-gelatin. Cells (10^6/mL) were labeled with rabbit anti-human fibronectin PAb, followed by washing and incubation with an FITC-conjugated anti-rabbit PAB. After 3 additional washes, the cells were analyzed by flow cytometry, as outlined above.

RESULTS

No binding of _M. catarrhalis_ devoid of UspA1 and UspA2 to soluble or immobilized fibronectin. We selected a random series of _M. catarrhalis_ clinical strains (n = 14) (table 1) and tested them, by flow-cytometric analysis, for binding to fibronectin in relation to their total expression of UspA1/A2. High total expression of UspA1/A2, as determined by high mean fluorescence intensity (MFI), correlated with high binding to

Figure 2. No binding of _Moraxella catarrhalis_ RH4 ubiquitous surface protein (Usp) A2–deficient mutants to 125I-labeled fibronectin. Escherichia coli BL21 was included as a negative control that did not bind fibronectin. Bacteria were incubated with 125I-labeled fibronectin, followed by several washes, and were analyzed by use of a gamma counter. Binding of RH4 wild type expressing both UspA1 and UspA2 to fibronectin was set at 100%. Mean values of 3 separate experiments are shown, and error bars indicate SDs. Similar results were obtained with _M. catarrhalis_ strains BBH18 and RH4, together with their corresponding mutants, the day of experiments, inhibition of _M. catarrhalis_ adhesion was performed by preincubating increasing concentrations of either recombinant truncated UspA1/A2 proteins containing the fibronectin-binding domains UspA1299–452 and UspA2 165–318 or rabbit anti-human fibronectin PAB for 1 h. Recombinant non–fibronectin-binding proteins (UspA1 433–580 and UspA2 30–177) were used as controls. An anti-ICAM1 MAb (Chang conjunctival epithelial cells are known to express ICAM1 [24]) was used as a control antibody. Subsequently, _M. catarrhalis_ RH4 (10^6) in PBS-gelatin was inoculated onto the confluent monolayers. The culture plates were then centrifuged at 3000 g for 5 min and incubated at 37°C in 5% CO₂. After 30 min, infected monolayers were rinsed several times with PBS-gelatin, to remove nonadherent bacteria, and then were treated with trypsin-EDTA (0.05% trypsin and 0.5 mmol/L EDTA), to release the Chang conjunctival epithelial cells from the plastic support. Thereafter, the resulting cell-bacterium suspension was seeded in dilution onto BHI agar plates and incubated overnight at 37°C in 5% CO₂.

Determination of expression of fibronectin in Chang conjunctival epithelial cells. Chang conjunctival epithelial cells were harvested by scraping; they were then resuspended in PBS-gelatin. Cells (10^6/mL) were labeled with rabbit anti-human fibronectin PAb, followed by washing and incubation with an FITC-conjugated anti-rabbit PAb. After 3 additional washes, the cells were analyzed by flow cytometry, as outlined above.

RESULTS

No binding of _M. catarrhalis_ devoid of UspA1 and UspA2 to soluble or immobilized fibronectin. We selected a random series of _M. catarrhalis_ clinical strains (n = 14) (table 1) and tested them, by flow-cytometric analysis, for binding to fibronectin in relation to their total expression of UspA1/A2. High total expression of UspA1/A2, as determined by high mean fluorescence intensity (MFI), correlated with high binding to
Figure 3. No binding of Moraxella catarrhalis mutants devoid of ubiquitous surface protein (Usp) A1 and UspA2 to immobilized fibronectin. A, Adherence of M. catarrhalis wild type, at a high density, on fibronectin-coated glass slides. B, Adherence of M. catarrhalis ΔuspA1 mutant, which was also at a high density. C and D, Poor adherence of M. catarrhalis ΔuspA2 and ΔuspA1/A2 double mutants. Glass slides were coated with fibronectin and incubated with M. catarrhalis RH4 and its corresponding UspA1/A2 mutants. After several washes, bacteria were Gram stained.

fibronectin (Pearson correlation coefficient, 0.77; \(P < .05 \)) (figure 1A). However, determination of whether UspA1 or UspA2 contributed more to binding was not possible with the anti-UspA1/A2 PAb that we used. That UspA2H contributed to binding was unlikely, since the uspA2H gene was not found in the strains used in the present study (data not shown). Two M. catarrhalis isolates (BBH18 and RH4) and their specific mutants—which lack UspA1, UspA2, or both proteins—were also analyzed by flow cytometry. UspA1 was expressed at a lower density than was UspA2 (figure 1C and 1D). M. catarrhalis BBH18 strongly bound fibronectin, with an MFI of 96.1 (figure 1F). In contrast, BBH18ΔuspA1 showed decreased binding to fibronectin, with an MFI of 68.6 (figure 1G). Binding of BBH18ΔuspA2 and the double mutant BBH18ΔuspA1/A2 to fibronectin revealed MFIs of only 10.7 and 11.5, respectively (figure 1H and 1I). Similar results were obtained with UspA1/A2 mutants of the clinical strain M. catarrhalis RH4. Taken together, these results suggest that UspA1 and UspA2 bound fibronectin and that the ability of the bacteria to bind fibronectin strongly depended on expression of UspA1/A2.

To further analyze the interaction between fibronectin and M. catarrhalis, \(^{125}\)I-labeled fibronectin was incubated with 2 clinical M. catarrhalis isolates (BBH18 and RH4) and their respective mutants. The wt M. catarrhalis RH4 strongly bound \(^{125}\)I-labeled fibronectin, whereas the corresponding ΔuspA1 mutant showed 80% binding of the wt. In contrast, the ΔuspA2 (UspA2 was also predominantly expressed in M. catarrhalis RH4) and the double mutant bound \(^{125}\)I-labeled fibronectin at 14% and 12%, respectively, which were just above the background levels (5.0%–10%) (figure 2). Similar results were ob-
Figure 4. Dose-dependent binding of recombinant ubiquitous surface protein (Usp) A1 and UspA2 to fibronectin. Specific binding to fibronectin is shown for UspA150–770 and UspA230–539. Both UspA proteins (40 nmol/L) were coated on microtiter plates and incubated with increasing concentrations of fibronectin, followed by detection with rabbit anti-human fibronectin polyclonal antibody (PAb) and horseradish peroxidase–conjugated anti-rabbit PAb. Mean values of 3 separate experiments are shown, and error bars indicate SDs.

Figure 5. The active fibronectin-binding domains of ubiquitous surface protein (Usp) A1 and UspA2, which are located between aa 299 and 452 and aa 165 and 318, respectively. Truncated proteins derived from UspA1 (A) and UspA2 (B) are shown. All fragments were tested for binding to fibronectin by ELISA; 40 nmol/L of each fragment was coated on microtiter plates and incubated with 80 and 120 μg/mL fibronectin for UspA1 and UspA2, respectively. Bound fibronectin was detected with rabbit anti-human fibronectin polyclonal antibody (PAb), followed by horseradish peroxidase–conjugated anti-rabbit PAb. Results are representative of 3 sets of experiments, and error bars indicate SDs.

Competitive inhibition of binding of M. catarrhalis to fibronectin by UspA150–491 and UspA1299–452. To further validate...
Figure 6. Sequence homology between ubiquitous surface protein (Usp) A1299–452 and UspA2165–318. The 31 identical amino acid residues are within boxes.

Figure 7. Competitive inhibition of Moraxella catarrhalis ubiquitous surface protein (Usp) A–dependent binding to fibronectin by UspA1 50–491 and UspA1 299–452. M. catarrhalis DuspA1/A2 double mutants, which do not bind fibronectin, were included as negative controls. Recombinant UspA1 proteins were preincubated with 2 \(\mu \)g/100 \(\mu \)L of fibronectin before incubation with M. catarrhalis. The mean fluorescence intensities (MFIs) of M. catarrhalis, with bound fibronectin detected by use of fluorescein isothiocyanate–conjugated anti-human fibronectin polyclonal antibody in flow-cytometric analysis, are shown. UspA150–491 and UspA1299–452 caused 95% and 63% inhibition, respectively. Mean values of 3 separate experiments are shown, and error bars indicate SDs.

In our findings on the UspA1/A2 fibronectin-binding domains, recombinant truncated UspA1 proteins were tested for their capacity to block binding of M. catarrhalis to fibronectin. Fibronectin (2 \(\mu \)g) was preincubated with 0.25 \(\mu \)mol of recombinant UspA1 fragments and subsequently incubated with M. catarrhalis. Finally, M. catarrhalis UspA–dependent binding to fibronectin was measured by flow cytometry. Preincubation with UspA150–491 and UspA1299–452 resulted in decreased binding to fibronectin, with a 95% reduction for UspA170–497 and a 63% reduction for UspA1299–452 (figure 7). When fibronectin was preincubated with the UspA2101–318, an inhibition of 50% was obtained. Thus, the fibronectin-binding domains of UspA1 and UspA2 blocked the interactions between fibronectin and M. catarrhalis.

Inhibition of M. catarrhalis adherence to Chang conjunctival epithelial cells by UspA1299–452 and UspA2165–318. Many bacteria attach to epithelial cells via cell-associated fibronectin [25–27]. Previous studies have shown that M. catarrhalis adheres to epithelial cells [12, 15]. We analyzed Chang conjunctival epithelial cells, which have frequently been used in adhesion experiments with respiratory pathogens. These cells expressed fibronectin, as revealed by flow-cytometric analysis (figure 8A). To analyze whether the UspA-dependent binding to fibronectin was important for bacterial adhesion, Chang conjunctival epithelial cells were preincubated with anti-human fibronectin PAb or with UspA1299–452 and UspA2165–318. Thereafter, M. catarrhalis RH4 was added, and bacterial adhesion was analyzed. The relative adherences (measured by the number of colony-forming units) after preincubation with 0.4 \(\mu \)mol (per 200 \(\mu \)L of media) of UspA1299–452, UspA2165–318, or anti-human fibronectin PAb (1:50 dilution) were 36%, 35%, and 32%, respectively. Higher concentrations of recombinant peptides did not result in further inhibition. In contrast, the non–fibronectin-binding fragments UspA1433–580 and UspA230–177 did not inhibit the interactions between M. catarrhalis and Chang conjunctival epithelial cells (figure 8B). Thus, on Chang conjunctival epithelial cells, fibronectin may function as a receptor for M. catarrhalis, and aa 299–452 of UspA1 and 165–318 of UspA2 contain the ligand responsible for the interactions.

DISCUSSION

In the present study, we have shown that a series of clinical M. catarrhalis strains bind soluble fibronectin and that expression of UspA1/A2 correlates with binding to fibronectin. A previous study showed that UspA1, but not UspA2, purified from M. catarrhalis bound fibronectin [15]. However, M. catarrhalis BBH18 and RH4 mutants devoid of UspA2 resulted in nearly abolished binding to fibronectin. When UspA1 (expressed at a lower density) was deleted, a decrease in binding of only 20%–
secretion signal, a neck domain, a stalk domain that varies in length, and a C-terminal anchor domain characterize these proteins [29]. They bind to eukaryotic cell-surface and extracellular matrix (ECM) proteins. By electron microscopic analysis, both UspA1 and UspA2 appear as distinct lollipop-shaped surface projections, similar to YadA [30]. Likewise, UspA1 and UspA2 also exist as heat-stable oligomers in SDS-PAGE and are believed to exist as oligomers on the cell surface [11, 29]. The function of each part of the UspA molecule has yet to be defined. Thus, localizing the fibronectin-binding domains is an important first step.

UspA1299–452 and UspA2165–318 from the clinical M. catarrhalis strain Bc5 were the shortest fragments that still bound fibronectin. Longer fragments encompassing the amino acid sequence found within UspA1299–452 and UspA2165–318 displayed more-efficient binding to fibronectin (figure 5A and 5B). This may mean that these 2 regions represent partial binding domains or that the binding site is highly dependent on a specific molecular structure. UspA1299–452 and UspA2165–318 share a sequence of 31 identical amino acid residues, including the 23 aa NNINNYELAQQQDQHSSDIKTL (NNINNY sequence). This sequence contains the epitope for the protective Mab 17C7, for which there is universal reactivity [11, 13, 31]. In a mouse model, passive immunization with Mab 17C7 provided protection and improved pulmonary clearance of M. catarrhalis [31]. It is, hence, most interesting that UspA1/A2 fibronectin-binding domains contain these residues and highlights the importance of this region in the pathogenesis of M. catarrhalis respiratory tract infection.

The fibronectin-binding M. catarrhalis BBH18 and RH4 strains used in our experiments also carry the 31 aa in their UspA1/A2 protein. Most M. catarrhalis strains have a part of this sequence (i.e., the NNINNY sequence). However, strains such as O35E, which has the NNINNY sequence in its uspA2 gene, do not express a fibronectin-binding UspA2 protein [15]. A likely explanation would be that the variations in the flanking regions might affect the interaction with fibronectin. Also, the conserved NNINNY sequence itself can have minor single amino acid base changes [32]. Binding to fibronectin would thus depend not just on expression of UspA1/A2 but also on the individual makeup of each UspA protein. Interestingly, an almost identical amino acid sequence can be found in the hybrid UspA2H protein, with adhesive properties (M. catarrhalis TTA37 and O46E) [12]. This gives support to our findings that the 31-aa sequence is important in adhesion.

Many bacteria adhere to epithelial cells via fibronectin-binding MSCRAMMs [25–27]. Blocking the bacteria-fibronectin protein interactions may help the host tissue to overcome the infection. For example, antibodies against an S. aureus FnBP caused rapid clearance of the bacteria in infected mice [33]. In our last set of experiments, we tested whether the adherence
of *M. catarrhalis* to Chang conjunctival epithelial cells could be inhibited by the fibronectin-binding fragments UspA1^{299–452} and UspA2^{165–318} (figure 8B). Preincubation with UspA1^{299–452}, UspA2^{165–318}, or an anti-human fibronectin PAb resulted in decreased binding to Chang conjunctival epithelial cells. These results confirm the importance of these binding domains in the interactions of UspA1/A2 with Chang conjunctival epithelial cells and further suggest that fibronectin is an important receptor for UspA.

FnBPs facilitate the adherence of bacteria to undifferentiated and injured airways [26, 27]. Expression of fibronectin by lung fibroblasts is also increased by cigarette smoke extract [34]. Therefore, the role that binding of *M. catarrhalis* UspA1/A2 to ECM fibronectin or epithelial cell–associated fibronectin plays is of great importance in patients with COPD and may explain the common occurrence of *M. catarrhalis* infection in this group of patients [2].

In conclusion, we have shown that UspA1/A2 of *M. catarrhalis* BBH18, RH4, and BC5 are crucial FnBPs. Recombinant UspA1 and UspA2 derived from BC5 bind fibronectin, with a binding domain sharing identical amino acid residues. Furthermore, an interaction of *M. catarrhalis* UspA1/A2 with epithelial cells is via cell-associated fibronectin. The definition of these fibronectin-binding domains is therefore an important step forward in the development of a vaccine against *M. catarrhalis*.

References

