
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Cloud Application Predictability through Integrated Load-Balancing and Service Time
Control

Nylander, Tommi; Thelander Andrén, Marcus; Årzén, Karl-Erik; Maggio, Martina

Published in:
Proceedings of the 15th IEEE International Conference on Autonomic Computing

DOI:
10.1109/ICAC.2018.00015

2018

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Nylander, T., Thelander Andrén, M., Årzén, K.-E., & Maggio, M. (2018). Cloud Application Predictability through
Integrated Load-Balancing and Service Time Control. In Proceedings of the 15th IEEE International Conference
on Autonomic Computing IEEE Computer Society. https://doi.org/10.1109/ICAC.2018.00015

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICAC.2018.00015
https://portal.research.lu.se/en/publications/b936307f-5e69-4eb0-9534-d6961de1ecf7
https://doi.org/10.1109/ICAC.2018.00015

Cloud Application Predictability through Integrated
Load-Balancing and Service Time Control

Tommi Nylander, Marcus Thelander Andrén, Karl-Erik Årzén, Martina Maggio
Department of Automatic Control, Lund University

Abstract—Cloud computing provides the illusion of infinite
capacity to application developers. However, data center provi-
sioning is complex and it is still necessary to handle the risk of
capacity shortages. To handle capacity shortages, graceful degra-
dation techniques sacrifice user experience for predictability. In
all these cases, the decision making policy that determines the
degradation interferes with other decisions happening at the in-
frastructure level, like load-balancing choices. Here, we reconcile
the two approaches, developing a load-balancing strategy that
also handles capacity shortages and graceful degradation when
necessary. The proposal is based on a sound control-theoretical
approach. The design of the approach avoids the pitfalls of
interfering control decisions. We describe the technique and
provide evidence that it allows us to achieve higher performance
in terms of emergency management and user experience.

I. INTRODUCTION

Capacity provisioning is of crucial importance in modern
distributed computation infrastructures. To determine the size
of data centers, and properly dimension the resources to be
allocated in each geographic location, most data center owners
use predictions of the computational needs [29, 36]. The
computational resource within a data center is then used to
serve requests coming from multiple clients, providing the
illusion of infinite capacity and, as a result, the possibility
of bounding the latency [5, 6, 14, 24, 25, 42]. To do so the
architecture uses multiple instances of the same application,
here called replicas, and predictions and estimations of traffic
and needed computational capacity.

The predictions of the incoming traffic and the corresponding
estimates [16, 17] of the required computational capacity are
necessarily subject to errors and uncertainty [4]. The presence
of these errors naturally leads to two possible management
strategies. The first strategy is over provisioning [15, 43].
Over provisioning increases the management cost for a cloud
application, but guarantees user satisfaction. The second
strategy is provisioning according to expectations and handling
capacity shortages via user experience degradation [7, 9, 27,
34, 41], or via approximate computing [22, 37, 40]. Generally
speaking, these ways of handling capacity shortages are
typically clustered under the umbrella of graceful degradation.

Graceful degradation techniques involve taking corrective ac-
tions (that typically degrade the user experience) to ensure that
the computing platform achieves predictability (for example,

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, by the Swedish Research Council (VR) for the projects
“Feedback Computing” and “Power and temperature control for large-scale
computing infrastructures”, by the LCCC Linnaeus Center and, by the ELLIIT
Excellence Center at Lund University.

that any request receives a response within a given time). For
example, Brownout [27] sacrifices the quality of the response
given to users to ensure that a large fraction of the requests
experience a predictable latency. Brownout is based on a control
approach [13, 32, 33], and a controller selects – at the replica
level – requests to be answered with full quality (both the
mandatory and the optional part of the response are computed)
and requests to be given an approximate answer (only the
mandatory part is computed). The approach has proven to be
successful to bound the response times of single machines.
It was then combined with load-balancing strategies [11, 28],
showing that the control strategy at the replica level and the load
balancer could interfere with one another, potentially limiting
each others benefits. For example, load-balancing strategies
based on response times are to be avoided when a replica
control strategy that bounds the response times is used [11].
This is not only true for brownout, but for every technique that
enforces bounded response times [5, 6], like admission control
policies [26, 38].

In general, the interference between two control policies is
a complex problem [8, 21]. Two different decision making
strategies, both working well in isolation, can interfere in
unpredictable ways with one another, especially when there
are delays between the two decisions. For example, the
Shortest Queue First (SQF) load-balancing policy has degraded
performance when a queue control strategy (like graceful
degradation, or admission control) is active at the replica level,
as can be seen in the example of Section II.

We propose a load-balancing and graceful degradation policy
that takes into account both the decisions with the advantage of
better controlling the response times and the resource utilization
of the data center. This paper makes the following contributions:
• It identifies problems with the currently used load-balancing

policies, due to the interplay between graceful degradation
techniques at the replica level and load balancers that should
distribute the load to multiple replicas.

• It proposes a new architecture, with a higher degree
of controllability, that includes both load balancing and
graceful degradation, solving the mentioned problems.

• It presents the control design for each of the elements in
this architecture.

• It validates the proposal with an experimental campaign,
comparing it to existing techniques. The proposed archi-
tecture outperforms existing ones in terms of predictability
and resource usage. It is in fact able to achieve lower
variance for the response times, utilizing the data center
resources more efficiently.

LB

R1

R2

...

Rn

r

1©

2©

3©

4©

Fig. 1: Architecture (one load balancer and multiple replicas) and
path of one single request ρ from the user request (step 1©) to the
response forwarding (step 4©).

The paper is organized as follows. Section II provides a
more precise statement of the problem our solution solves, and
details why this is necessary for modern data centers. Section III
describes our control solution, and shows block diagrams for
all the elements involved. It also offers an analysis from the
control perspective of the behavior of the cloud platform.
Section IV provides experimental evidence for our claims
and shows that the proposed approach is easy to implement
and offers competitive advantages in terms of response time
management. Section V casts the proposed solution in the state
of the art, and Section VI concludes the paper.

II. PROBLEM STATEMENT

This paper deals with the problem of designing a load-
balancing architecture with graceful degradation. We assume
that the architecture is composed of one single load balancer
(denoted with LB) and a set of n replicas (denoted with
R = {R1, R2, . . . , Rn}. The goal of the architecture is to
achieve high service predictability. We translate predictability
into two related objectives, and measure it in terms of the
response times for incoming requests. We want a statistic on the
response times (e.g., average, 95th percentile, 99th percentile) to
follow a setpoint (a predetermined value, specified for the given
cloud application). Also, we want to minimize the variance
in response time. A low variance of the worst-case response
times, in fact, corresponds to a high degree of predictability. In
the remainder of this paper, we assume a setpoint on the 95th

percentile of the response times, and use the integrated absolute
error (IAE) with respect to this setpoint as our predictability
metric. However, similar considerations can be drawn using
other statistics.

The path of one single request is shown in Figure 1. We
assume that all requests enter the system through one central
load balancer (step 1©), which in turn routes each request
to one of the n replicas (R2 in the Figure, as shown by
step 2©). Finally, the replicas serve the requests. Each replica
is capable of performing graceful degradation, and thus can
choose to serve different amount of content, which requires
more or less service time. Here we use brownout [27] for
graceful degradation, but other techniques can be applied. Using
brownout implies that a request can be served either with or
without optional content. The service time used to compute
the optional content can be spared, in case the replica detects
some capacity shortage. The replica determines the response
to the request and communicates it to the load balancer (step

LB

R1

R2

...

Rn

λ

control

control

control

λ1

λ2

λn

Fig. 2: The standard load-balancing architecture. The load balancer
routs incoming requests directly to a replica, where the request might
spend some time queuing before service. Replicas include graceful
degradation controllers.

3©), which finally replies to the user (step 4©). Notice that this
is the standard path of a request in a multi-replica architecture,
used in practical applications and also in earlier research [11,
28]. In fact, the replica cannot directly respond to the user,
that has queried the server using the IP address of the load
balancer. The user would not identify the replica as the server
that was queried and would then terminate the connection.

In this architecture, the response produced in step 3© can be
used to “piggy-back” information from the replica to the load
balancer, without incurring an additional overhead in response
time. The load balancer then tears the envelope of the response
received by the replica, and only answers to the user with the
actual message, in step 4©.

The mentioned architecture is commonly implemented as
shown in Figure 2. Each replica has an individual queue for
requests, and the load balancer routes requests to the queues
based on some policy e.g. Round-Robin, SQF, or a weighted
probability. In turn, each individual replica has a local graceful
degradation strategy — in the brownout case, a response time
controller which decides if to serve optional content or not
based on the last measured response time from that replica.
While this architecture is conceptually simple, the predictability
of the response times is highly dependent on the co-design of
the load-balancing policy and the controllers in the replicas.
The design will also depend on the service discipline used
in the replicas (e.g. ”First-In First-Out” (FIFO) or Processor
Sharing (PS)). In this paper, we will assume a generalized
concept of PS being used in the replicas. Specifically, the
replicas will serve at a maximum MC number of requests
concurrently from the queue. FIFO and standard PS are then
simply the special cases MC = 1 and MC =∞ respectively.
For further details, see [35].

After being routed by the load balancer, requests will spend
some non-zero time queuing before service by the replica is
started. The average time spent queuing will vary with e.g.
workload λ, number of concurrently served requests MC , etc.,
and will introduce a delay between the decisions made by the
load balancer and the local replica controllers respectively. This
is a problem, since delays in between the decisions introduce
the risk of routing and graceful degradation counter-acting
each other. Load-balancing policies which have been shown
to perform well in case of static service rates can actually
counter-act the work of the local controllers in the replicas,

50 100

1

2
λ = 400 λ = 1500 λ = 400

Time (s)

R
es

po
ns

e
Ti

m
es

(s
)

SQF random

0 0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0

Response Times (s)

C
D

F

random
SQF

Fig. 3: Comparison between random and SQF load-balancing. The
left plot shows setpoint and 95% confidence intervals for the 95th

percentile of the response times of the optional-content requests served
by a replica. The right plot shows the Cumulative Distribution Function
(CDF) of all response times.

leading to poor predictability of response times. This can for
example be the case with SQF, despite it being regarded as one
of the best load-balancing alternatives [11, 28]. An example
of this phenomenon is shown in Figure 3. The plots depict
the results of an experiment conducted with a simulator1 that
emulates an architecture composed of a load balancer and 5
equal replicas with local graceful degradation controllers, i.e.
as in Figure 2, with n = 5. The local controllers are using
the feedback control strategy from [35], that determines the
optional content computation. Each replica in the simulation
takes on average 0.014 s to compute the optional content part
of the response (with a variance of 0.01s2), and 0.0002s on
average for the mandatory part (with a variance of 0.001s2).
A maximum of MC = 15 requests can be served concurrently
in each replica. The run was repeated 20 times, in order to
be able to show statistically significant behaviors (using 95%
confidence intervals). The simulator uses the open-loop client
model and the request arrivals are modeled using the Poisson
distribution with arrival rate λ. The simulation is split into
three different time intervals, in each of them the arrival rate λ
is varied. In the time intervals [0, 50) and [100, 150], λ = 400
and in the time interval [50, 100) λ = 1500.

The figure compares the SQF load-balancing strategy with
a random load balancer. The leftmost plot shows confidence
intervals for the 95th percentile of the response times of the
requests served with optional content (the critical ones) and
their setpoint of 1 s. The rightmost plot shows the Cumulative
Distribution Function (CDF) for the two strategies. The use of
SQF generates a higher variance in the response times, most
notably during the period of heavy workload with λ = 1500
when requests will spend more time queuing at the replicas.
Notably, SQF is performing worse than the simpler random
choice policy. Even using specifically “brownout-aware” load-
balancing policies [19, 28], maintaining predictable response
times using the architecture of Figure 2 (the de facto standard
architecture) remains a challenging task due to the interplay
between the different control loops.

To avoid this problem, we instead opt for designing a new
architecture where the design of the load-balancing policy and
of the local controllers can be done separately, with the aim for
them to integrate well from the start. The total response time of

1For a description of the simulator used, see Section IV-A.

top-level controller

LB

R1

R2

...

Rn

λ

control

control

control

control

λ1

λ2

λn

Fig. 4: The proposed load-balancing architecture.

a request is divided into two distinct parts: (i) waiting time, and
(ii) service time. The load balancer controls the waiting time,
and the local controller keeps the service time at a setpoint. In
the following section, we describe our proposal, and detail the
policies used for both load-balancing and graceful degradation,
based on a control-theoretic approach.

III. PROPOSED SOLUTION

Based on the idea of separating the control of the response
times into two distinct parts (one for queueing time and one for
pure service time), we propose the load-balancing architecture
shown in Figure 4. Contrary to the architecture shown in
Figure 2, our proposal contains only one central queue for
incoming requests, situated at the load balancer.

The load balancer routes requests from the central queue
in a “first come first served” manner. When the load balancer
routes a request, a controller decides if the request should be
served with optional content (normally) or not (i.e., applying
graceful degradation). Based on this decision, the load balancer
then attaches a flag to the request and forwards it to the replica
with the highest demand for a new request.

In each replica, all the forwarded requests are assumed to
be served concurrently. From the implementation perspective,
each request is served in a separate thread, and all the threads
are run concurrently, sharing the computational capacity. At
most MC requests may be served concurrently at each replica.
Intuitively, an increase in the number of concurrent requests
should result in a longer service time for each of them, and
we will use this assumption here.

When a response is produced, a local controller in the replica
decides how many more requests it desires to handle, and
attaches this integer value to the response. The response is
sent back to the load balancer, triggering an event where the
attached integer value is used to update a list which keeps track
of the current demand of requests from each replica. The load
balancer then uses this list to decide where to route the next
requests, distributing the requests from to replicas according
to their desires. In summary, a request entering the proposed
architecture in Figure 4 goes through the following steps —
〈LB〉 indicates that the step is performed by the Load Balancer,
〈R〉 that it is performed by the Replica:

1) 〈LB〉 The request is put in the queue.
2) 〈LB〉 The request waits until it reaches head of the queue.
3) 〈LB〉 Routing is triggered with replica demands.
4) 〈LB〉 An “optional content” flag is attached to the request.
5) 〈LB〉 The request is forwarded to the replica.
6) 〈R〉 The request is served by the replica.
7) 〈R〉 A response is produced.
8) 〈R〉 A new demand value is attached to the response.
9) 〈LB〉 The response triggers routing modifications.

10) 〈LB〉 The response is sent to the user.
Assuming the time overhead due to routing is negligible,

the delay between routing and graceful degradation decisions
is now removed. The total response time for a request is
separated into: (i) the waiting time in the central queue at
the load balancer (step 2), and (ii) the service time in one
of the replicas (step 7). The controller in the load balancer
decides if optional content should be served or not (step 4),
based on a setpoint on the waiting time in the queue (on
the time needed to complete step 2). We will refer to this
controller as the waiting time controller. By flagging a request
to be served with optional content or not, the waiting time
controller increases or decreases the throughput of the queue,
thus affecting the waiting time of future requests.

The local controller in each replica decides how many more
requests the replica should demand (step 8). This is based
on a setpoint for the service time of requests (for the time
needed to complete step 7). We will refer to this controller
as the service time controller. Each service time controller
affects the requests’ service time by deciding the number of
concurrently served requests and informing the load balancer.
The service time setpoint is the same for all replicas, which
ensures fairness among the requests.

Finally, we desire the overall infrastructure to follow a global
setpoint that prescribes statistics on the response times (e.g., the
95th percentile of the response times of all the replicas should
follow a given setpoint). A third controller is then responsible
for determining the two setpoints of the other controllers – the
setpoint on waiting and service time – dynamically. We refer
to the third controller as the top-level controller.

In the following, we discuss the design of each of these three
controllers in a separate section. Section III-A describes the
waiting time controller, Section III-B details the service time
controller, Section III-C discusses the top-level controller, and,
finally, Section III-D describes additional implementational
aspects, including our anti-windup strategy.

A. Waiting Time Control Design
The waiting time controller is located in the load balancer,

and uses the decision of serving optional content or not as an
actuator to steer the average waiting time t̄w to its setpoint
rt̄w . Feedback is achieved by directly measuring the waiting
time tw(ρ) of each request ρ right before it is being routed.
The controller then attaches a flag, o(ρ) ∈ {0, 1}, to the
request based on this measurement, where o(ρ) = 1 indicates
that optional content should be computed and served. For
each request ρ, the decision on the value of o(ρ) is based
on a threshold ψt on the waiting time. The threshold ψt is

Kw

z

kwi
z − 1

+ +

nw
rt̄w et̄w ψt t̄w

−1

Fig. 5: The waiting time control loop design in discrete time.

updated periodically, and denoting with k the time interval
[k · t, (k + 1) · t), and with ψt(k) the value of the threshold
in said time interval, the controller behaves according to
Equation (1). If the measured waiting time is higher than
the threshold, then no optional content is served. Otherwise,
the request is served with optional content.

tw(ρ) > ψt(k) =⇒ o(ρ) = 0
tw(ρ) ≤ ψt(k) =⇒ o(ρ) = 1

(1)

In stationarity, the average waiting time t̄w will stay in the
vicinity of the threshold ψt. However, the exact relation will
depend on the current state of the system. This motivates the
need for a feedback controller, which dynamically changes
the threshold ψt such that t̄w always follows the setpoint
rt̄w . In order to design this controller, a model describing the
dynamics from ψt to t̄w is required. As a simplification, if the
controller that determines the value of ψt is designed to be
slow in comparison with the threshold algorithm specified in
Equation (1), then t̄w can be approximated as always staying
close to the threshold ψt. This is a reasonable approximation,
since Equation (1) is very effective at keeping the request
waiting times close to the threshold ψt, thanks to its event-
driven execution. Using this reasoning, the dynamics from ψt

to t̄w can be modeled in discrete time as:

t̄w(k + 1) = Kwψt(k) + nw, (2)

where Kw is a gain close to 1 and nw is a stochastic disturbance
related to the non-deterministic nature of the arrivals to the
load balancer and service times in the replicas. We here use
control-theoretical design principles [2] and compute the Z-
transform of Equation (2). The pulse transfer function Hw(z)
from ψt to t̄w then becomes

Hw(z) =
Kw

z
. (3)

In order to achieve zero stationary error with respect to the
setpoint rt̄w , integral action is required in the controller. A
pure integral controller is here used,

Cw(z) =
kwi
z − 1

, (4)

where kwi is the integral gain to be determined. The proposed
design for the waiting time control loop is shown in the block
diagram in Figure 5.

Closing the loop with the proposed controller leads to the
following characteristic equation for the closed loop system:

z2 − z +Kwk
w
i = 0. (5)

We desire to place the poles of the closed-loop system system
within the unit circle for stability, and on the positive real

0.4

0.5

0.6
λ = 100 λ = 500 λ = 150 λ = 350 λ = 100

ψ
t

(s
)

ψt

50 100 150 200
0.4

0.5

0.6

Time (s)

t̄ w
(s

)

rt̄w t̄w

Fig. 6: 95% confidence intervals from 20 runs on thresholds ψt (upper)
and average waiting times t̄w (lower) using the proposed waiting time
controller in the load balancer. The setpoint on the mean waiting time
rt̄w is 0.5

axis for a desirable transient behavior. This corresponds to the
following desired characteristic equation

z2 − (a+ b)z + ab = 0, (6)

where 0 ≤ a, b ≤ 1, for the desired locations of the poles.
Comparing coefficients in Equations (5) and (6) results in the
following system of equations:

a+ b = 1,
Kwk

w
i = ab.

(7)

Simulations suggest that the pole placement b = 0.92, a =
1−b = 0.08 gives a good transient behaviour of the closed-loop
system, in terms of disturbance rejection and response speed
of the controller. Using (7), this implies that we should choose
kwi = 0.07/Kw. Since we expect that Kw ≈ 1, a reasonable
choice for the integrator gain is kwi = 0.07.

The robustness of this design choice can be tested by using
Equation (5) to examine for what values of the process gain
Kw the closed-loop system remains asymptotically stable (i.e.
when the poles are within the unit circle). Inserting kwi = 0.07
in (5), the closed loop system remains stable for Kw ≤ 14.3.
Since Kw is expected to have a value close to one, this implies
a very robust control design.

An example showing the control action of the waiting time
controller when using the proposed architecture during different
workloads is presented in Figure 6. The setup is the same as
for the comparison made in Figure 3, and the 95% confidence
intervals are based on 20 runs. Here we see how the waiting
time controller dynamically adjusts the threshold ψt with the
changing workload such that the mean waiting time t̄w follows
the setpoint rtw , which has a static value of 0.5 in this example.

B. Service Time Control Design
Each replica has a service time controller, responsible for

keeping the average service times (for requests serving optional
content) t̄s at the setpoint rt̄s . The value used for feedback is
thus the average value of the service times of all completed
requests during each time interval k. The service time controller

Ks

z

ksi
z − 1

+ +
nsrt̄s et̄s u ua t̄s

−1

Fig. 7: The service time control loop design in discrete time.

can affect the service times by changing the integer number of
simultaneous requests ua ∈ Z+ to run. However, the control
signal u ∈ R+ computed by the controller is a non-negative
real-valued number, which thus has to be quantized as ua = due
before it can be actuated (the ceiling function is used here for
the quantization).

To be able to assess the behaviour of the control strategy
and theoretically analyze the system, we need a model relating
u to t̄s. In the modeling process, the quantization effects are
neglected, i.e. we assume ua = u. Assuming that all forwarded
requests to the replica will be served concurrently, and assuming
that a change in u is reflected very fast in t̄s, we can use the
following simple discrete-time model:

t̄s(k + 1) = Ksu(k) + ns, (8)

where Ks is a gain relating the number of simultaneous requests
to the average service times and ns is a stochastic disturbance
describing the variance in the service times. Note that this
model (8) has the same structure as the waiting time model (2).
As a result, a majority of the analysis in Section III-A can be
re-used. However, in this case, the gain Ks can not be assumed
to always stay close to 1. In fact, Ks is directly related to the
speed of the replica, which can vary greatly with time and also
be different among the different replicas. This gain thus has
to be estimated by the replica controller. The estimation K̂s is
performed, in each replica, using an exponentially weighted
moving average filter:

K̂s(k + 1) = (1− α)K̂s(k) + α
t̄s(k)

ua(k)
, (9)

where α is a design parameter, here set to α = 0.5 (based on
preliminary experiments). Using this estimated gain and the
controller design in Section III-A, and in particular the results
from Equation (7), the following adaptive integral controller is
proposed for the service time:

ksi =
c(1− c)
K̂s

. (10)

The location of the slowest closed-loop pole 0 ≤ c ≤ 1
is a trade-off between rejection of control errors caused by
changes in server speed, robustness to estimation errors in K̂s,
quantization errors, and rejection of the stochastic noise ns.
Taking these elements into consideration, we place the pole in
c = 0.8, which results in a stable closed-loop system as long
as K̂s ≥ Ks/6.25. We consider this a robust enough design.
The adaptive integral control design is thus:

ksi =
0.16

K̂s

. (11)

The block diagram of the complete service time model and
control design is shown in Figure 7.

5

10

u

u ua

0.05

0.1

µ = 1 µ = 1.5 µ = 0.67 µ = 1.5 µ = 1
K

s

Ks K̂s

50 100 150 200

0.5

1

Time (s)

t̄ s
(s

)

rt̄s t̄s

Fig. 8: 95% confidence intervals from 20 runs on estimated gain K̂s

(upper), service time control signals u and ua (middle) and average
service times t̄s (lower) using the proposed service time controller
in one replica. The true gain values Ks (upper) and the setpoint on
average service time rt̄s = 0.5 (lower) are plotted for reference.

The actuation of the quantized control signal ua, representing
the number of simultaneous requests to run in a replica, is as
previously mentioned performed using piggy-backing. In more
detail, the following steps are involved:
1) At startup, both u and ua are initialized to zero.
2) The control signal u is updated every time interval k

according to the scheme in Figure 7.
3) At every request completion, a new value of ua is computed:

unewa = due. The difference u
′

a = unewa −ua is determined
and the old value of ua is updated to unewa .

4) The response of the completed request is sent back to the
load balancer, using piggy-back to send also 1 + u

′

a, the
number of new requests that the replica wants to serve.

The steps above constitute the actuation of ua, completing the
control design. The mentioned design ensures stability, tackles
robustness issues, and guarantees a fast convergence, as shown
in the experimental validation presented in Section IV.

An example showing the control action and gain estimation
of the service time controller when using the proposed
architecture is presented in Figure 8. The setup is the same as
for the comparison made in Figure 3, but here we instead vary
the service times for both optional and mandatory content by
scaling them by a factor 1/µ during different time intervals of
50 s. The service time controller is able to efficiently estimate
the gain Ks and dynamically adjust the number of concurrently
served requests ua such that the mean service time t̄s follows
the setpoint rts , which has a constant value of 0.5 in this
example.

C. Top-Level Control Design
To ensure that the global setpoint on respose times is

followed, we employ a top-level controller. This controller
decides the setpoints of the other two controllers, i.e., the

Gc

Gw
cl

Gs
cl

+
kci
z − 1

+ +

×

×

1-γ

r
′
tc

rt̄s

rtc

t̄w

t̄s

γ

etc

rt̄w

t̄c tc

−1

Fig. 9: The complete control loop design in discrete time. GC

represents the relation between average response times t̄c and chosen
statistical measure for feedback tc.

setpoint on the waiting and on the service time, respectively
rt̄w and rt̄s . The setpoint rtc prescribes a statistical measure
obtained from the vector of response times, e.g. the 95th

percentile. The top-level controller receives the measured value
of the same statistic of the response times tc as a feedback
signal. The controller then dynamically adjusts the setpoints
rt̄w and rt̄s . While the top-level controller should react to
persistent errors in the response times, we also wish to avoid
being too sensitive to outliers and transient errors in the inner
control loops. This motivates the choice of a top-level controller
which is slow with respect to the dynamics of the waiting-
and service-time control loops. We can then re-use again the
analysis from Section III-A, and propose the following simple
integral controller:

Cc(z) =
kci
z − 1

. (12)

The integral gain kci is chosen as a sufficiently small value.
Studying the behavior of the system, we selected kci = 0.01.

Using this controller’s output signal, we change both the
other setpoints simultaneously. We specify a fixed ratio γ ∈
[0, 1], which divides the total response time into a fraction γ
(due to the waiting time) and 1−γ (due to service time). A block
diagram of our proposed design for the top-level controller is
shown in Figure 9. The dashed area in the figure represents
the plant to control, while the rest is the top-level controller. In
the plant, the inner control loops (Sections III-A and III-B) are
represented by the blocks Gw

cl and Gs
cl for the waiting time-

and service time control loop respectively. These control loops
are given in detail in Figures 5 and 7. The block Gc represents
the conversion block that translates average response times
into the statistic that is used as a feedback signal.

In the real system, the top-level controller will be located
in the load balancer. From there, updated setpoints on service
time can be propagated to the replicas using the requests.

The design parameter γ decides which part of the system the
requests will spend most time in, and can be tuned to handle
uncertainties in the system. With γ close to one the requests
will spend most time waiting in the queue, while the replicas
will serve fewer requests concurrently. This is beneficial for the
overall predictability of the response times in the case when
most uncertainty lies in the service times. The opposite case
with γ close to zero is beneficial when most uncertainty lies
in the arrival rate of incoming requests.

D. Implementation Aspects

The solution proposed in this paper is capable of handling
graceful degradation for a wide range of arrival rates. However,
it clearly cannot cover all the possible arrival rates, as there are
limitations (on the amount of simultaneous requests that can
be served in general terms), imposed by the capacity of the
replicas. Computing these limitations is fairly straightforward.

If n replicas serve only mandatory content, with a service
time of tm per request, we can compute the upper bound on
the overall rate of requests that can be served by the system
(with full degradation) as µmax = n/tm. In turn, this means
that arrival rates λ > µmax will lead to over-utilization and
instability. In this case, it is possible to detect that additional
replicas should be started and an auto-scaler can efficiently
take care of ensuring a viable operation region. The design
of such auto-scaling policy is beyond the scope of this paper.
Alternatively, over-utilization can be handled using admission
control in the central queue.

During periods of abnormally small workloads, the response
times will stay below the setpoint, even though optional content
is served to all requests. This poses no issue to the user, but the
controllers in the system will see a persistent error in response
time, and would ideally like to throttle the throughput further by
serving more optional content and more requests concurrently
in the replicas. However, since it is not possible to serve more
than 100% optional content and route more requests if the
central queue is empty, the control signals will be saturated
and unable to eliminate the error in response time. Controllers
with integral action which experience persistent control errors
under saturation are prone to integrator wind-up, a well known
phenomenon in control theory [2]. The effect of integrator
wind-up is that the controller will be unresponsive for a period
of time when returning to normal workloads, which of course
is unacceptable. Being a well-studied problem however, there
exists several efficient algorithms in the control literature for
removing wind-up from controllers, and the implementation
done in our simulator features anti-windup.

Another aspect to consider when implementing strategies for
load-balancing and graceful degradation is how the computa-
tional time needed to compute the control decisions scale with
growing arrival rates and number of replicas. The controllers
presented in Section III update their decisions based on a fixed
sampling period. This means that their computational time is
unchanged with respect to the arrival rate. Despite this, some
logic has to be executed on a per-request basis (e.g. the decision
on optional content, a single comparison of two floating point
numbers). The computation that is done per request is in all
cases simple, and has negligible execution times. The most
expensive computation done on a per-request basis is sorting
of the list with number of desired requests for each replica.
The time it takes from when a request sends its desired new
incoming request value to the time it actually gets forwarded
new requests is negligible, and when request are routed to the
replica, the corresponding element is removed from the vector
that should be sorted. Given the speed of other components in
the system, it is unlikely that the list contains demands from

more than one replica at any given time, which makes the
sorting operation negligible in terms of time complexity.

IV. EXPERIMENTAL VALIDATION

This section presents our results. We validate our control
strategy using the open source Python-based brownout simu-
lator2, built to mimic the behavior of cloud applications [27]
and described in Section IV-A. We present the results obtained
with the new architecture proposal in Section IV-B.

A. The simulator
The simulator defines the concepts of Client, Request,

Replica, Replica Controller, and Load Balancer. Clients issue
requests to be served by a replica. Clients can behave according
to any inter-arrival time distributions and both according to
the open-loop or to the closed-loop client model [1, 39]. In
the closed-loop model, clients wait for a response and issue
a new request only after some think time. In the open loop
model, clients do not wait and instead issue new requests
with a specific request rate. Being better at modelling a large
number of independent users, we performed the evaluation
with open-loop clients.

For each request, the simulator computes the service time.
The time it takes to serve requests with only the mandatory
or with the optional content in addition to the mandatory one
are computed as random variables, with normal distributions,
whose mean and variance are based on profiling data from the
execution of experiments on a real machine [27].

Replicas implement a replica controller, that takes care of
selecting – for each request – when to serve optional content. In
the simulator, we used the replica controller described in [35]
and used the suggested tuning parameters. For the control
strategy presented in Section III-B, we use a sampling period
of 0.25 s. The controller code developed in the simulator can be
directly plugged into brownout-aware applications like RUBiS3

and RUBBoS4.

B. Experimental Results
To evaluate the predictability of our solution and compare it

to the state of the art, we run simulations of 100 randomized
scenarios in sequence, each lasting 50s. We then aggregate
the results on response times for all the requests in all the
scenarios. For the request generation, we use the open-loop
client model and the same random seed generator, ensuring that
the same number of requests are generated in all the scenarios
and that the throughput of the cloud application is the same
across the experiments, irrespective of the strategy used.

We use a fixed setpoint rtc = 1s on the 95th percentile of
the response times throughout all scenarios. For each scenario,
we randomize the number of replicas n, the average service
times to (optional content) and tm (mandatory content) for
each individual replica (with the variance fixed to 0.01 s2

and 0.001s2 respectively), the number of concurrently running
requests MC (i.e., roughly the number of threads that replicas
use to serve requests) and the expected optional content ratio θ.

2https://github.com/cloud-control/brownout-lb-simulator
3https://github.com/cloud-control/brownout-rubis
4https://github.com/cloud-control/brownout-rubbos

TABLE I: Bounds on randomized scenario parameters.
Parameter Min Max
n 3 10
to [10−2s] 1 4
tm [10−4s] 2 8
θ 0.1 0.9
MC 5 30

The values are sampled from uniform probability distributions,
with bounds in Table I.

The arrival rate for each scenario is set to

λ = n

(
θ · 1

t̄o
+ (1− θ) · 1

t̄m

)
, (13)

where t̄o and t̄m are the average service times for optional
and mandatory content respectively over the replicas (replicas
can be different in their speed). We specify the arrival rate to
avoid degenerate scenarios where the system either becomes
unstable or where the workload becomes too low – assuming
that an auto-scaler is in charge of selecting a correct number
of replicas to run in the system.

We compare our proposed solution to three alternative
strategies for the same 100 scenarios. For our solution, we use
the ratio parameter γ = 0.9 (i.e. that each request is supposed
to spend 90% of its time in the waiting process and 10%
of its time being served) as well as γ = 0.7, as we expect
great variations in service times between each scenario. The
other evaluated strategies are state of the art solutions from
the literature [11, 28, 35], using the architecture in Figure 2.
The evaluated strategies are:
ILAC-γ: The integrated load-balancing and service time

control (ILAC) architecture of this paper, with the marked
γ parameter. We use both γ = 0.9 and γ = 0.7.

BrownoutCC + EPBH: A solution that employs cascaded
control, BrownoutCC [35], paired with a brownout-
aware weighted probability algorithm for load balancing
(EPBH) [11].

BrownoutCC + SQF: The BrownoutCC controller, with the
SQF algorithm for load balancing.

Brownout + EPBH: The original brownout controller [27],
using the EPBH weighted probability algorithm for load
balancing.

To evaluate the predictability of each strategy, we measure
the Integrated Absolute Error (IAE) of deviations from the
setpoint on the 95th percentile of response times. Given a
sampling interval of length h, we compute the IAE as:

IAE := h
∑
k

|rtc(k)− tc(k)|, (14)

where the summation is done over all sampling intervals k of
the experiment. To complement this metric, we also record
the standard deviation of the overall response times and the
maximum recorded response time.

The results of the experiment for each strategy are summa-
rized in Table II, along with Cumulative Distribution Functions
of the optional content response times in Figure 10. Comparing
the results of ILAC-γ for γ = 0.9 with γ = 0.7 indicates that
a large value of γ indeed was favourable in the experiment.

TABLE II: Results from the experiment.

Strategy IAE [s]
Standard
Deviation

[s]

Max Response
Time [s]

ILAC-0.9 134.4 0.0953 1.41
ILAC-0.7 254.9 0.1412 2.36
BrownoutCC + EPBH 423.3 0.2640 2.58
BrownoutCC + SQF 823.1 0.2961 3.25
Brownout + EPBH 10980 1.3577 7.27

0 0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Optional Content Response Times (s)

C
D

F

ILAC-0.9
ILAC-0.7

BrownoutCC+EPBH

BrownoutCC+SQF
Brownout+EPBH

Fig. 10: Cumulative Distribution Function (CDF) of response times
for all requests with optional content.

Still, the ILAC-γ significantly outperforms the other considered
strategies in both cases. The closest competitor, BrownoutCC

combined with EPBH, has a roughly 3 times larger IAE value
that ILAC-0.9. The corresponding factor to the BrownoutCC

+ SQF strategy is roughly 6, and over 80 for the Brownout +
EPBH strategy. The superior predictability of the proposed
ILAC-γ strategy is also reflected in the overall standard
deviations and maximum recorded response times, with the
maximum response time for ILAC-0.9 being 1.41 seconds. The
results show the effectiveness of our proposal and highlight
the problem of co-design with the standard architecture in
Figure 2, where the efficiency of the EPBH load-balancing
alternative varies greatly with the choice of the controller used
for graceful degradation.

The performance of the evaluated strategies are also ex-
emplified in Figure 11, which shows averaged values of the
95th percentile of response times from 20 runs of 5 of the
100 scenarios. The parameter set for each scenario is given in
Table III. We see in in the figure that the performance of the
BrownoutCC + SQF and BrownoutCC + EPBH strategies are
heavily dependent on the given scenario, whereas the proposed
strategy keeps a high predictability regardless of the parameters
used for the simulations. This robustness clearly highlights the
benefits of the architecture proposed in Figure 4 combined with
a control-theoretical design approach for the decision-making.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Time (s)

95
th

Pe
rc

en
til

e
of

R
es

po
ns

e
Ti

m
es

(s
)

ILAC-0.9 ILAC-0.7

BrownoutCC + EPBH BrownoutCC + SQF
Brownout + EPBH Setpoint (1s)

Fig. 11: Averaged values of the 95th percentile of response times from 20 runs of 5 selected scenarios. The parameter sets of each scenario is
given in Table III.

TABLE III: Parameters of 5 selected scenarios (out of the 100 tested).
Scenario #1 #2 #3 #4 #5
n 9 6 4 6 9
λ [s-1] 570 890 330 310 570
t̄o [10−2s] 2.5 2.2 2.7 2.3 2.5
t̄m [10−4s] 5.4 4.3 6.3 4.6 5.4
θ 0.62 0.29 0.43 0.84 0.62
MC 11 13 15 29 11

V. RELATED WORK

Building distributed systems that offer guarantees on their
timely execution while the system is subject to uncertainty
and changes is a challenging task. Bounding latencies is of
utmost importance, but this is quite difficult in the presence of
changes [5, 6, 14, 24, 25, 42]. Changes are unpredictable, they
can be dramatic, and they can include malfunctioning [23],
slow down [12], failures [18], and much more. Graceful
degradation [31] is then introduced into the runtime system, to
handle these changes and guarantee performance in the presence
of uncertainty. This paper shows that graceful degradation and
load-balancing can interfere with one another. We focus on a
unified solution, to avoid this interference.

In replicated cloud services, load balancers have a crucial
role for ensuring resilience and performance [3, 20]. Load-
balancing algorithms can either be global (inter-data center) or
local (intra-data center or cluster-level). Global load-balancing
decides what data center to direct a user to, depending on
geographic proximity [30] or price of energy [10]. Once a data
center is selected, a local algorithm directs the request to a
machine in the data center. Our contribution is of the local
type.

Various local load-balancing algorithms have been proposed.
For non-adapting replicas, SQF has been considered very close
to optimal, despite it using little information about the state of

the replicas [19]. Previous results show that for self-adaptive,
brownout replicas, SQF performs quite well [28], but can be
outperformed by weight-based, brownout-aware solutions [11].
In this article, we improve on brownout-aware load balancing,
by combining the load-balancing strategy with the graceful
degradation decision, obtaining better performance in terms of
variance of response times, and show improved performance,
compared to previously developed algorithms.

VI. CONCLUSION

This paper proposes a new load-balancing architecture
that combines the action of the load balancer with graceful
degradation techniques like brownout or admission control. We
have designed the system and synthesized the load balancing
strategies. The advantage of the proposed solution lies in the
interplay between the two control solutions. While in previous
solutions the two different components – load-balancer and
graceful degradation controller – could compete and generate
oscillations in response times, our proposal does not suffer
from this issue.

Our proposed architecture has an important tuning parameter:
the percentage of time that should be spent waiting and in
service for each request. Our experimental campaign showed
that – irregardless of the selected percentage time – the response
times using the proposed load-balancing strategy are much more
predictable than with any other previously explored strategy.
Their variance is in fact much smaller than with other strategies,
and their maximum is much closer to the desired setpoint than
if other strategies are used.

In the future, we plan to combine the proposed architecture
with auto-scaling features, that trigger new replicas to be started
or old replicas to be removed. We also envision using the
architecture for fault detection and countermeasures.

REFERENCES
[1] F. Alomari and D. A. Menasce. “Efficient Response Time Approxima-

tions for Multiclass Fork and Join Queues in Open and Closed Queuing
Networks”. In: IEEE Trans. Parallel Distrib. Syst. 25.6 (June 2014).

[2] K.-J. Åström and B. Wittenmark. Computer-Controlled Systems. 3rd ed.
Mineola, NY: Dover Publications Inc., 2011.

[3] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool, 2009.

[4] N. Bencomo and A. Belaggoun. “A world full of surprises: bayesian
theory of surprise to quantify degrees of uncertainty”. In: 36th
International Conference on Software Engineering, ICSE14, Companion
Proceedings. 2014, pp. 460–463.

[5] M. Björkqvist, N. Gautam, R. Birke, L. Chen, and W. Binder.
“Optimizing for Tail Sojourn Times of Cloud Clusters”. In: IEEE
Transactions on Cloud Computing 6.1 (2018), pp. 156–167.

[6] M. Björkqvist, R. Birke, and W. Binder. “Resource management of
replicated service systems provisioned in the cloud”. In: NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium.
2016, pp. 961–966.

[7] D. Breitgand and A. Epstein. “Improving consolidation of virtual
machines with risk-aware bandwidth oversubscription in compute
clouds”. In: Proceedings of the IEEE INFOCOM 2012, Orlando, FL,
USA, March 25-30, 2012. 2012, pp. 2861–2865.

[8] A. Diaconescu, K. L. Bellman, L. Esterle, H. Giese, S. Götz, P. R. Lewis,
and A. Zisman. “Architectures for Collective Self-aware Computing
Systems”. In: Self-Aware Computing Systems. 2017, pp. 191–235.

[9] S. Ding, S. Gollapudi, S. Ieong, K. Kenthapadi, and A. Ntoulas.
“Indexing strategies for graceful degradation of search quality”. In:
ACM SIGIR conference on Research and development in Information
Retrieval. ACM. 2011, pp. 575–584.

[10] J. Doyle, R. Shorten, and D. O’Mahony. “Stratus: Load Balancing the
Cloud for Carbon Emissions Control”. In: TCC 1.1 (2013).

[11] J. Dürango, M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos,
F. Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén. “Control-
theoretical load-balancing for cloud applications with brownout”. In:
53rd IEEE Conference on Decision and Control, CDC 2014, Los Ange-
les, CA, USA, December 15-17, 2014. CDC14. 2014, pp. 5320–5327.

[12] N. Fallahi, B. Bonakdarpour, and S. Tixeuil. “Rigorous Performance
Evaluation of Self-Stabilization Using Probabilistic Model Checking”.
In: SRDS. 2013.

[13] A. Filieri et al. “Control Strategies for Self-Adaptive Software Systems”.
In: TAAS 11.4 (2017), 24:1–24:31.

[14] S. Ghahremani, H. Giese, and T. Vogel. “Efficient Utility-Driven Self-
Healing Employing Adaptation Rules for Large Dynamic Architectures”.
In: 2017 IEEE International Conference on Autonomic Computing
(ICAC). 2017, pp. 590–68.

[15] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. “The cost of a
cloud: research problems in data center networks”. In: ACM SIGCOMM
computer communication review 39.1 (2008), pp. 68–73.

[16] D. Grimes, D. Mehta, B. O’Sullivan, R. Birke, L. Chen, T. Scherer, and
I. Castineiras. “Robust Server Consolidation: Coping with Peak Demand
Underestimation”. In: 2016 IEEE 24th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS). 2016, pp. 271–276.

[17] J. Grohmann, N. Herbst, S. Spinner, and S. Kounev. “Self-Tuning
Resource Demand Estimation”. In: 2017 IEEE International Conference
on Autonomic Computing. 2017, pp. 21–26.

[18] Z. Guo et al. “Failure recovery: when the cure is worse than the disease”.
In: HotOS. 2013, pp. 8–14.

[19] V. Gupta, M. Harchol Balter, K. Sigman, and W. Whitt. “Analysis of
Join-the-shortest-queue Routing for Web Server Farms”. In: Perform.
Eval. 64.9-12 (2007), pp. 1062–1081.

[20] J. Hamilton. “On designing and deploying internet-scale services”. In:
LISA. USENIX, 2007, 18:1–18:12.

[21] J. Heo and T. Abdelzaher. “AdaptGuard: Guarding Adaptive Systems
from Instability”. In: Proceedings of the 6th International Conference
on Autonomic Computing. 2009, pp. 77–86.

[22] M. Hoger and O. Kao. “Record Skipping in Parallel Data Processing
Systems”. In: 2016 International Conference on Cloud and Autonomic
Computing. 2016, pp. 107–110.

[23] A. Iosup, N. Yigitbasi, and D. Epema. “On the Performance Variability
of Production Cloud Services”. In: Cluster, Cloud and Grid Computing

(CCGrid), 2011 11th IEEE/ACM International Symposium on. 2011,
pp. 104–113.

[24] S. A. Javadi and A. Gandhi. “DIAL: Reducing Tail Latencies for Cloud
Applications via Dynamic Interference-aware Load Balancing”. In:
2017 IEEE International Conference on Autonomic Computing. 2017.

[25] T. Kaler, Y. He, and S. Elnikety. “Optimal Reissue Policies for
Reducing Tail Latency”. In: Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures. 2017, pp. 195–206.

[26] M. Kihl, A. Robertsson, and B. Wittenmark. “Control Theoretic
Modelling and Design of Admission Control Mechanisms for Server
Systems”. In: Networking 2004. Ed. by N. Mitrou, K. Kontovasilis,
G. N. Rouskas, I. Iliadis, and L. Merakos. 2004.

[27] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez.
“Brownout: Building More Robust Cloud Applications”. In: 36th
International Conference on Software Engineering. ICSE14. Hyderabad,
India: ACM, 2014, pp. 700–711.

[28] C. Klein, A. V. Papadopoulos, M. Dellkrantz, J. Dürango, M. Maggio,
K.-E. Årzén, F. Hernández-Rodriguez, and E. Elmroth. “Improving
Cloud Service Resilience Using Brownout-Aware Load-Balancing”. In:
IEEE 33rd International Symposium on Reliable Distributed Systems.
SRDS14. IEEE Computer Society, 2014, pp. 31–40.

[29] A.-D. Lin, C.-S. Li, W. Liao, and H. Franke. “Capacity Optimization
for Resource Pooling in Virtualized Data Centers with Composable
Systems”. In: IEEE Transactions on Parallel and Distributed Systems
29.2 (2018), pp. 324–337.

[30] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew. “Online algorithms
for geographical load balancing”. In: IGCC. IEEE, 2012.

[31] Y. Lin and S. S. Kulkarni. “Automated Multi-graceful Degradation: A
Case Study”. In: SRDS. 2013.

[32] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. A. Müller, H. Giese,
R. Rouvoy, and É. Rutten. “What Can Control Theory Teach Us
About Assurances in Self-Adaptive Software Systems?” In: Software
Engineering for Self-Adaptive Systems III. Assurances. 2013, pp. 90–
134.

[33] M. Maggio, T. F. Abdelzaher, L. Esterle, H. Giese, J. O. Kephart,
O. J. Mengshoel, A. V. Papadopoulos, A. Robertsson, and K. Wolter.
“Self-adaptation for Individual Self-aware Computing Systems”. In:
Self-Aware Computing Systems. 2017, pp. 375–399.

[34] T. Neumann. “Query simplification: graceful degradation for join-order
optimization”. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. ACM. 2009, pp. 403–414.

[35] T. Nylander, C. Klein, K.-E. Årzén, and M. Maggio. “BrownoutCC:
Cascaded Control for Bounding the Response Times of Cloud Applica-
tions”. In: 2018 American Control Conference. 2018.

[36] P. Östberg et al. “Reliable capacity provisioning for distributed
cloud/edge/fog computing applications”. In: 2017 European Conference
on Networks and Communications (EuCNC). 2017, pp. 1–6.

[37] J. Perez, R. Birke, and L. Chen. “On the latency-accuracy tradeoff
in approximate MapReduce jobs”. In: IEEE Conference on Computer
Communications. 2017, pp. 1–9.

[38] A. Robertson, B. Wittenmark, and M. Kihl. “Analysis and design of
admission control in Web-server systems”. In: Proceedings of the 2003
American Control Conference, 2003. Vol. 1. 2003, 254–259 vol.1.

[39] B. Schroeder, A. Wierman, and M. Harchol-Balter. “Open Versus
Closed: A Cautionary Tale”. In: Proceedings of the 3rd Conference on
Networked Systems Design & Implementation - Volume 3. NSDI’06.
San Jose, CA: USENIX Association, 2006.

[40] H. Sun, R. Birke, W. Binder, M. Björkqvist, and L. Chen. “Acc-
Stream: Accuracy-Aware Overload Management for Stream Processing
Systems”. In: 2017 IEEE International Conference on Autonomic
Computing (ICAC). 2017, pp. 39–48.

[41] L. Tomás and J. Tordsson. “Cloud Service Differentiation in Overbooked
Data Centers”. In: Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing. 2014, pp. 541–546.

[42] C. Wang, B. Urgaonkar, A. Gupta, L. Chen, R. Birke, and G. Kesidis.
“Effective Capacity Modulation as an Explicit Control Knob for Public
Cloud Profitability”. In: 2016 IEEE International Conference on
Autonomic Computing (ICAC). 2016, pp. 95–104.

[43] J. Xue, R. Birke, L. Chen, and E. Smirni. “Managing Data Center
Tickets: Prediction and Active Sizing”. In: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
2016, pp. 335–346.

