Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease

Published in: Neurology

DOI: 10.1212/wnl.0000000000001012

2014

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

• You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease

ABSTRACT

Objectives: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson’s Disease (GEO-PD) cohort.

Methods: C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia.

Results: A pathogenic (G4C2)n60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low.

Conclusions: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease. Neurology® 2014;83:1906-1913

GLOSSARY

ALS = amyotrophic lateral sclerosis; FTLD = frontotemporal lobar degeneration; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; PD = Parkinson disease; RP = repeat-primed; STR = short tandem repeat.

A substantial number of patients with frontotemporal lobar degeneration (FTLD)/amyotrophic lateral sclerosis (ALS) (14%–35%) carrying C9orf72 (G4C2)n60 expansions present with atypical parkinsonism in early disease stages and increased incidence of parkinsonism with or without features of the FTLD/ALS complex in their relatives.4-9 Ten research groups have reported on C9orf72 repeat expansions in Parkinson disease (PD) or atypical Parkinsonism patients10-19 but none of these investigated the C9orf72 repeat in large-scale cohorts, and European and Australian populations were underrepresented in the published data. Apart from the pathogenicity of (G4C2)n60 expansions, we provided in vitro evidence that the (G4C2)n repeat size negatively correlated with the transcriptional activity of the C9orf72 promoter.20 Hence, it is conceivable that an increasing number of C9orf72 repeats may affect transcription gradually and increase susceptibility to disease.20 Three studies indicated a role of C9orf72 repeats in PD susceptibility but associations were found using different dichotomizations of repeat length, muddling biological interpretation. In one study, a marginal increased risk of PD was observed for carriers of (G4C2)10 repeats.12 In the second, a significant increased frequency of (G4C2)>20 repeats was observed in patients clinically diagnosed with PD.13 In the third study, the authors

*These authors contributed equally to this work.

Author list continued on next page.
reported association of (G₄C₂)₇ repeats with PD in the Chinese Han population. All of these studies, however, were executed in ethically distinct and medium scaled cohorts. We set out to clarify the role of the C9orf72 (G₄C₂)ₙ repeat in PD etiology in the first global multicenter study cohort of more than 7,000 patients with PD of 12 nationalities and 4 continents. First, we assess the global prevalence of pathogenic (G₄C₂)₆0 expansions. Second, the size of the combined study populations enables a detailed investigation of the specific C9orf72 repeat allele or size threshold associated with increased risk of PD.

METHODS Standard protocol approvals, registrations, and patient consents. Genetic studies applied in this research were approved by the ethics committees of the ZNA (Hospital Network Antwerp), the Antwerp University Hospital, and University of Antwerp. Clinical protocols were approved by the ethics committees of the ZNA, the Antwerp University Hospital, and local ethical review boards of the participating research centers. All human biological samples were collected, fulfilling ethical approvals, and used in accordance with the terms of subjects’ written informed consent.

Participants. The Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Consortium includes investigators from 60 sites from 30 countries and 6 continents (http://www.GEO-PD.org/about/). All sites were invited to participate in this study. A total of 18 sites representing 12 countries and 4 continents contributed either DNA or genotypic data, and clinical data of in total 15,123 individuals (tables 1 and 2). After thorough quality control as described in the procedures section below, 13,669 samples were included in this study. We excluded all duplicate samples, sex mismatches, and samples that failed in the DNA fingerprint analysis because of low quantity or quality of DNA or because of contamination of the sample. Demographics and diagnostic criteria of each series included in this study and the sample size breakdown from each site are provided in table 2. Controls were collected at the local sites as demographically matched neurologically healthy individuals.

Procedures. Sample quality control. Concentration and purity were checked spectrophotometrically using the Trinean DropSense96 UVVIS droplet reader (Trinean, Genbrugge, Belgium) for all consortium genomic DNA samples. Sex and DNA fingerprint were determined for all samples using an in-house-developed multiplex PCR panel composed of 13 short tandem repeat (STR) markers distributed over multiple autosomal locations: D20S480, D22S1174, D3S1287, D3S1744, D5S1764, D7S672, D7S2426, D8S1746, D14S1005, D20S866, D10S1237, D21S11, and D6S1096. This panel also includes a marker specific for the X chromosome (DXS1187) and one for the SRY gene on the Y chromosome, and enables fast and accurate sample identification and sex determination in a single assay. After selective amplification of 20 ng genomic DNA, amplification products were size separated on an ABI 3730 automatic sequencer (Applied Biosystems, Foster City, CA) using GeneScan-600 LIZ (Applied Biosystems) as internal size standard and genotypes were assigned using in-house-developed TracI genotyping software (http://www.vibgeneticservefacility.be).

Genetic analyses. To screen the GEO-PD cohorts for the pathogenic (G₄C₂)₆0 C9orf72 repeat expansion, we designed a 2-step procedure: an STR fragment length assay with flanking PCR primers optimized for alleles with high GC content (STR-PCR) followed by 2 repeat-primed PCR assays (forward and reverse RP-PCR) as described earlier. For consistent allele scoring of repeat lengths between GEO-PD groups and accurate interpretation of the repeat length, we designed a reference DNA set of 14 samples covering a range of normal repeat sizes that was genotyped by each of the facilities. Furthermore, for 2 of the cohorts, a random set of samples homozygous for the STR-PCR assay were included in the RP-PCR analysis at the Antwerp site for independent validation of the absence of a pathogenic repeat expansion.

Statistical analyses. To investigate the association between repeat units and PD susceptibility, 3 explorative approaches were followed, based on (1) allele counts of the distinct repeat sizes, to determine whether one or more specific repeat sizes were associated with PD, (2) the total number of repeat units (sum of both alleles) per individual, and (3) the size of the longest repeat per individual (maximum allele). Summary statistics were computed in a random-effects meta-analysis (DerSimonian-Laird) for each approach in the rmeta package implemented in the R environment version 2.15.3. Based on the results obtained in the above-mentioned analyses, we performed hypothesis-driven dichotomized genotypic meta-analyses. Details are provided in the e-Methods on the Neurology® Web site at Neurology.org.

To take into account the number of tests performed (n = 22), a Bonferroni-corrected 2-sided p value of ≤0.002 was considered statistically significant. Population attributable risk of (G₄C₂)₁₀, (G₄C₂)₂₀, and (G₄C₂)₃₇ was estimated using the epkit package in R. For the meta-analyses, only the cohorts including both the patients with PD and the controls that were

Table 1 Synopsis of this global GEO-PD study

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G₄C₂)₆₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,7232</td>
<td>1,5478</td>
</tr>
<tr>
<td>Europe</td>
<td>4,4252</td>
<td>0,3172</td>
</tr>
<tr>
<td>US + CA</td>
<td>0,1261</td>
<td>0,1313</td>
</tr>
<tr>
<td>Asia</td>
<td>0,1364</td>
<td>1,656</td>
</tr>
<tr>
<td>Australia</td>
<td>0,355</td>
<td>0,337</td>
</tr>
<tr>
<td>Risk associated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with (G₄C₂)₆₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total*</td>
<td>7,050</td>
<td>5,886</td>
</tr>
<tr>
<td>Europe</td>
<td>4,215</td>
<td>3,379</td>
</tr>
<tr>
<td>US + CA</td>
<td>1,118</td>
<td>1,313</td>
</tr>
<tr>
<td>Asia</td>
<td>1,190</td>
<td>660</td>
</tr>
<tr>
<td>Australia</td>
<td>527</td>
<td>534</td>
</tr>
</tbody>
</table>

Abbreviations: CA = Canada; GEO-PD = Genetic Epidemiology of Parkinson’s Disease.

*For the meta-analyses, only the cohorts including both patients with Parkinson disease and geographically matched controls that were size-corrected using the reference panel were included.
Table 2

<table>
<thead>
<tr>
<th>Site PI</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Controls</th>
<th></th>
<th>Patients</th>
<th></th>
<th>% Males</th>
<th>% Familial</th>
<th>AAO ± SD</th>
<th>Diagnostic criteria for PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Van Broeckhoven</td>
<td>Belgium</td>
<td>Caucasian</td>
<td></td>
<td>1,119</td>
<td>1,118</td>
<td>1,039</td>
<td>953</td>
<td></td>
<td></td>
<td>63.8 ± 13</td>
</tr>
<tr>
<td>G. Garraux</td>
<td>Belgium</td>
<td>Caucasian</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>139</td>
<td>126 ± 12.5</td>
</tr>
<tr>
<td>C. Klein</td>
<td>Germany</td>
<td>Caucasian</td>
<td></td>
<td>706</td>
<td>697</td>
<td>679</td>
<td>581</td>
<td></td>
<td>433</td>
<td>410 ± 3.9</td>
</tr>
<tr>
<td>A. Deutschländer</td>
<td>Germany</td>
<td>Caucasian</td>
<td></td>
<td>87</td>
<td>81</td>
<td>79</td>
<td>79</td>
<td>57</td>
<td>87</td>
<td>81 ± 11.1</td>
</tr>
<tr>
<td>C. Ferrarose</td>
<td>Italy</td>
<td>Caucasian</td>
<td></td>
<td>92</td>
<td>89</td>
<td>86</td>
<td>86</td>
<td>58</td>
<td>87</td>
<td>84 ± 8.6</td>
</tr>
<tr>
<td>E.M. Valente</td>
<td>Italy</td>
<td>Caucasian</td>
<td></td>
<td>92</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>47</td>
<td>92</td>
<td>90 ± 4.7</td>
</tr>
<tr>
<td>G. Annesi</td>
<td>Italy</td>
<td>Caucasian</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>51</td>
<td>100</td>
<td>92 ± 4.7</td>
</tr>
<tr>
<td>G.M. Hadjidzeorgiou</td>
<td>Greece</td>
<td>Caucasian</td>
<td></td>
<td>300</td>
<td>232</td>
<td>223</td>
<td>220</td>
<td>50</td>
<td>300</td>
<td>269 ± 10.4</td>
</tr>
<tr>
<td>A. Puschmann</td>
<td>Sweden</td>
<td>Caucasian</td>
<td></td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>56</td>
<td>119</td>
<td>115 ± 9.7</td>
</tr>
<tr>
<td>G.D. Mellick</td>
<td>Australia</td>
<td>Caucasian</td>
<td></td>
<td>920</td>
<td>571</td>
<td>534</td>
<td>337</td>
<td>46</td>
<td>920</td>
<td>535 ± 7.6</td>
</tr>
<tr>
<td>M.S. LeDoux</td>
<td>US</td>
<td>Caucasian</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>184</td>
<td>150 ± 143</td>
</tr>
<tr>
<td>S.J. Chung</td>
<td>Korea</td>
<td>Asian</td>
<td></td>
<td>650</td>
<td>568</td>
<td>562</td>
<td>558</td>
<td>46</td>
<td>1,200</td>
<td>1,113 ± 10.88</td>
</tr>
<tr>
<td>E.-K. Tan</td>
<td>Singapore</td>
<td>Asian</td>
<td></td>
<td>200</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>67</td>
<td>200</td>
<td>102 ± 7.0</td>
</tr>
<tr>
<td>N. Hattori</td>
<td>Japan</td>
<td>Asian</td>
<td></td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>183</td>
<td>177 ± 17.6</td>
</tr>
<tr>
<td>R. Krüger/M. Sharma</td>
<td>Germany</td>
<td>Caucasian</td>
<td></td>
<td>647</td>
<td>625</td>
<td>625</td>
<td>605</td>
<td>52</td>
<td>1,386</td>
<td>1,367 ± 13.04</td>
</tr>
<tr>
<td>S. Lesage</td>
<td>France</td>
<td>Caucasian</td>
<td></td>
<td>442</td>
<td>442</td>
<td>427</td>
<td>427</td>
<td>54</td>
<td>1,193</td>
<td>1,185 ± 1.182</td>
</tr>
<tr>
<td>Z.K. Wszolek</td>
<td>US</td>
<td>Caucasian</td>
<td></td>
<td>712</td>
<td>712</td>
<td>712</td>
<td>712</td>
<td>53</td>
<td>676</td>
<td>676 ± 676</td>
</tr>
<tr>
<td>E. Rogaeva</td>
<td>Canada</td>
<td>Mixed</td>
<td></td>
<td>601</td>
<td>601</td>
<td>601</td>
<td>601</td>
<td>50</td>
<td>451</td>
<td>442 ± 442</td>
</tr>
</tbody>
</table>

Abbreviations: AAO = age at onset; GEO-PD = Genetic Epidemiology of Parkinson's Disease; NA = not available; PD = Parkinson disease; PI = principal investigator; QC = quality control; STR = short tandem repeat; UKPDDB = UK Parkinson’s Disease Brain Bank.

At the initial quality control step (QC), we excluded all duplicate samples, sex mismatches, and samples that failed in the DNA fingerprint analysis because of low quantity or quality of DNA or because of contamination of the sample. Additional samples did not pass the 2-step genetic analysis because of DNA shortage or limited concentration of the DNA sample.
and a detailed clinical description has been reported for PD without cognitive dysfunction at disease onset, dementia. All 3 French patients were diagnosed with pathologic PD at the age of 57 years. One year after onset, social withdrawal, and minor apathy. The patient had a positive family history of neurodegenerative disorders, and flapping gait but also short-term memory disturbances, cognitive impairment, and ataxia. The patient was noted at age 56 years. The third patient developed parkinsonism at age 64 years and developed a mild cognitive deficit at age 69. Although these 3 patients were diagnosed with PD without cognitive dysfunction at disease onset, and a detailed clinical description has been reported previously. Briefly, the first patient developed left hemiparkinsonism at age 29 years and symptoms worsened progressively while dopamine agonists were only partially effective. In the second patient, parkinsonism began at age 48 years and a cognitive decline was noted at age 56 years. The third patient developed parkinsonism at age 64 years and developed a mild cognitive deficit at age 69. Although these 3 patients were clinically diagnosed with PD, they all had family histories of atypical parkinsonism, degenerative dementias, or ALS. No expansions were detected in patients with sporadic PD or patients with a familial history of PD. Moreover, mutations in known PD genes had previously been excluded in these 4 pathogenic expansion carriers.

We identified one Asian control of Chinese origin with an age at inclusion of 52 years carrying a pathogenic (G₄C₂)₆₀ repeat expansion (table 1). Currently, there is no record of any symptoms related to PD, FTLD, or ALS in this individual. This brings the estimated prevalence of pathogenic repeat expansions in controls to 0.02% (1/5,478). Apart from the expansion mutations, the distribution of repeat lengths ranged from 0 to 32 in the Caucasian and from 7 to 14 in the Asian control persons.

C9orf72 repeat and PD susceptibility. We investigated the role of (G₄C₂)₆₀ repeats in risk of PD. First, we assessed the distribution of the alleles in patients with PD vs controls in the GEO-PD cohort (figure 1). The frequencies of the (G₄C₂)₁₀ allele and of (G₄C₂)≥₁₇ were nominally increased in PD vs the controls but the differences were not statistically significant after Bonferroni correction (figure 1, table 3, figure e-1, A and B). Genotypic frequencies for (G₄C₂)₁₀ (table 3, figure e-1, C) and (G₄C₂)≥₁₇ (table 3, figure e-1, D) were not significantly different between patients and controls after correction for multiple testing. The estimated attributable fractions in the population are very low (table 3). When considering the sum of the alleles and the size of the maximum allele as a quantitative variable, we observed a small but significant increase of disease risk with a rising number of repeat units (sum of alleles p = 0.0012, summary effect [B] = 0.0128 [0.0050–0.0205], figure e-2, A; maximum allele p = 0.0010, summary effect [B] = 0.0181 [0.0073–0.029], figure e-2, B). Together, these results suggested that the risk effect may not only be linked to the (G₄C₂)₁₀ repeat but may be increasing with length while the effect in the larger alleles is probably masked by the small number of carriers. Therefore, we decided to analyze the risk effect of C9orf72 repeat expansions as a binary categorical value with a cutoff between 9 and 10. However, neither allelic nor genotypic meta-analysis of the GEO-PD cohorts revealed significant association with PD for (G₄C₂)≥₁₀ repeat alleles after Bonferroni correction (table 3, figure e-3, A and B). Furthermore, the estimated population attributable risk is low (table 3).

DISCUSSION Molecular reclassification of complex brain diseases based on genetic etiology is of utmost importance to improve differential diagnosis and to rationalize drug development. Assessment of the contribution of novel disease genes to clinically and pathologically overlapping diseases is instrumental in this reclassification. In this global study, we assessed the prevalence of (G₄C₂)₆₀ repeat alleles and expansions in an extended PD cohort ascertained within the GEO-PD Consortium and excluded a major role for pathogenic (G₄C₂)₆₀ repeat expansions in the causation of PD. The low frequency of these expansions (0.06%) in the GEO-PD cohort is in agreement with earlier findings in distinct patient groups and falls in the range of frequencies observed in controls by us (0.02%) and others (0–0.6%). Furthermore, 75% of the pathogenic expansion carriers in this global study showed a decline in cognitive functions within 1 to 8 years after onset. In the absence of autopsy diagnoses, we therefore cannot exclude that some if not all of these expansion carriers are primarily FTLD/ALS patients with pronounced early parkinsonian symptoms or comorbidity of PD and FTLD/ALS. This hypothesis is supported by the identification of only one pathogenic mutation carrier

RESULTS Definite pathogenic C9orf72 repeat expansions in PD. A total of 12,710 samples, including 7,232 patients with PD and 5,478 control individuals, were successfully genotyped with the 2-step (G₄C₂)₆₀ repeat genotyping assay. RP-PCR analysis revealed the typical sawtooth tail pattern indicative of a pathogenic repeat expansion (G₄C₂)₆₀ in one German (MS_RK cohort) (1/1,304; 0.08%) and 3 French (SL cohort) (3/1,182; 0.25%) patients but none in the other GEO-PD patient cohorts (table 1). Based on these results, we calculated a prevalence of pathogenic C9orf72 repeat expansions in this global consortium cohort of 0.06%.

The German patient was diagnosed with idiopathic PD at the age of 57 years. One year after onset, clinical examination revealed hypomimia, hypokinesia, ataxia, resting tremor of the right arm, minor postural instability, mild bilateral rigidity, and slowed shuffling gait but also short-term memory disturbances, cognitive impairment, and ataxia. The patient had a positive family history of neurodegenerative dementia. All 3 French patients were diagnosed with PD without cognitive dysfunction at disease onset, and a detailed clinical description has been reported previously. Briefly, the first patient developed left hemiparkinsonism at age 29 years and symptoms worsened progressively while dopamine agonists were only partially effective. In the second patient, parkinsonism began at age 48 years and a cognitive decline was noted at age 56 years. The third patient developed parkinsonism at age 64 years and developed a mild cognitive deficit at age 69. Although these 3 patients were clinically diagnosed with PD, they all had family histories of atypical parkinsonism, degenerative dementias, or ALS. No expansions were detected in patients with sporadic PD or patients with a familial history of PD. Moreover, mutations in known PD genes had previously been excluded in these 4 pathogenic expansion carriers.

We identified one Asian control of Chinese origin with an age at inclusion of 52 years carrying a pathogenic (G₄C₂)₆₀ repeat expansion (table 1). Currently, there is no record of any symptoms related to PD, FTLD, or ALS in this individual. This brings the estimated prevalence of pathogenic repeat expansions in controls to 0.02% (1/5,478). Apart from the expansion mutations, the distribution of repeat lengths ranged from 0 to 32 in the Caucasian and from 7 to 14 in the Asian control persons.

C9orf72 repeat and PD susceptibility. We investigated the role of (G₄C₂)₆₀ repeats in risk of PD. First, we assessed the distribution of the alleles in patients with PD vs controls in the GEO-PD cohort (figure 1). The frequencies of the (G₄C₂)₁₀ allele and of (G₄C₂)≥₁₇ were nominally increased in PD vs the controls but the differences were not statistically significant after Bonferroni correction (figure 1, table 3, figure e-1, A and B). Genotypic frequencies for (G₄C₂)₁₀ (table 3, figure e-1, C) and (G₄C₂)≥₁₇ (table 3, figure e-1, D) were not significantly different between patients and controls after correction for multiple testing. The estimated attributable fractions in the population are very low (table 3). When considering the sum of the alleles and the size of the maximum allele as a quantitative variable, we observed a small but significant increase of disease risk with a rising number of repeat units (sum of alleles p = 0.0012, summary effect [B] = 0.0128 [0.0050–0.0205], figure e-2, A; maximum allele p = 0.0010, summary effect [B] = 0.0181 [0.0073–0.029], figure e-2, B). Together, these results suggested that the risk effect may not only be linked to the (G₄C₂)₁₀ repeat but may be increasing with length while the effect in the larger alleles is probably masked by the small number of carriers. Therefore, we decided to analyze the risk effect of C9orf72 repeat expansions as a binary categorical value with a cutoff between 9 and 10. However, neither allelic nor genotypic meta-analysis of the GEO-PD cohorts revealed significant association with PD for (G₄C₂)≥₁₀ repeat alleles after Bonferroni correction (table 3, figure e-3, A and B). Furthermore, the estimated population attributable risk is low (table 3).
in 826 (0.1%) autopsy-confirmed PD cases.23,24 Of note, this carrier presented, in addition to Lewy body pathology, with frontotemporal degeneration and C9orf72-ALS/FTLD pathology with numerous p62-positive inclusions. Furthermore, although substantia nigra involvement is common in C9orf72-positive ALS, it can be clearly distinguished from PD-related mechanisms by the presence of p62-positive inclusion and absence of Lewy body pathology.24

Altogether, it is not advisable to include C9orf72 (G4C2)n repeat expansion testing in a medical genetic diagnostic setting for typical PD patients. Exceptions can be made for patients with PD who have cognitive and/or behavioral deficits early in the disease process or in patients with a personal or familial history of FTLD/ALS. Given differences in the existing literature on C9orf72 (G4C2)n repeat length as risk factor for PD,12,15,16 we used the size of this global cohort to estimate a PD-related threshold of C9orf72 repeats. Calculation of the risk for each of the observed C9orf72 (G4C2)n alleles in the GEO-PD cohorts suggested a role for the 10-units repeat and for the pooled alleles of 17 units or more in PD susceptibility. Genotypic meta-analysis supported a possible link between (G4C2)10 and increased risk of PD but the association did not reach significance after correction for multiple testing. In addition, the number of carriers of these intermediate alleles is small and one should be cautious with the interpretation of these results. Furthermore, it is difficult to envisage the biological relevance of risk associated with a single repeat.

Figure 1 Overall distribution of C9orf72 repeat alleles in the GEO-PD cohorts

Only cohorts including both patients with PD and controls that were size-corrected based on the reference panel were included in the study. When the highest count for a specific allele was 5 or less across cohorts, the allele was clumped with the next allele for each cohort. (A) Allele frequencies. The p values for individual alleles were calculated using a Dersimonian-Laird random-effect meta-analysis. (B) Allele counts. *Nominally significant p values. Con = controls; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; PD = Parkinson disease.
Of note, we observed a small but significant increase in risk with an accumulative number of repeats supporting the idea of a threshold size rather than a single allele as the culprit of increased risk. We therefore decided to study the combined effect of \((G_4C_2)\) alleles of 10 units and larger in the global GEO-PD cohort. Although meta-analyses implicated a potential role for these intermediate-sized repeats in PD risk, none of the associations survived Bonferroni correction suggesting that if \(C9orf72\) repeats of 10 units or larger have a role in PD susceptibility, the effect is small. This is supported by the fact that none of the published genome-wide association studies revealed the \(C9orf72\) locus as a risk factor for PD.\(^2\)\(^5\) A limitation of this study is that we did not yet include all published association studies of \(C9orf72\) in PD; however, we chose to include only those bias that were corrected for allele scoring bias based on a reference panel.

Altogether, these data support the current hypothesis that pathogenic \((G_4C_2)_n\) repeat expansions in \(C9orf72\) appear to be specific for the FTLD/ALS spectrum with little or no contribution to the wider spectrum of movement disorders. It will be of interest to study the role of intermediate repeats \(\geq 10\) units in other neurodegenerative disorders, however, to obtain a more profound knowledge on their role in neurodegenerative diseases and a better understanding of the underlying mechanism.

AUTHOR AFFILIATIONS

From the Neurodegenerative Brain Diseases Group (J.T., A.V., K.S., E.W., I.G., S.S., D.C., E.C., E.E., M.C., C.V.B.), Department of Molecular Genetics, VIB, Antwerp; Institute Born-Bunge (J.T., A.V., K.S., E.W., I.G., S.S., D.C., E.C., E.E., M.C., C.V.B.), University of Antwerp; Department of Neurology (D.C., P.C.), Antwerp University Hospital, Edegem; Department of Neurology and Memory Clinic (S.E., P.P.D.D.), Hospital Network Antwerp, Middelheim and Hoge Beukens, Antwerp; Belgium; Department of Neurology and Alzheimer Research Center (P.P.D.D.), University of Groningen and University Medical Center Groningen, the Netherlands; Department of Neurodegenerative Diseases (M.S., R.K.), Hertie-Institute for Clinical Brain Research and DZNE-German Center for Neurodegenerative Diseases, Tuebingen; Institute for Clinical Epidemiology and Applied Biometry (M.S.), University of Tuebingen, Germany; INSERM, UMR_S975 (S.L., A.B.), Université Pierre et Marie Curie-Paris, CNRS, UMR 7225, AP-HP, Pitié-Salpêtrière Hospital; CNRS (S.L., A.B.), UMR 7225, Paris; AP-HP (A.B.), Pitié-Salpêtrière Hospital, Department of Genetics and Cytoimmunetics, Paris, France; Department of Neurology (S.J.C., M-J.K., Y.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Departments of Neuroscience (O.A.R.) and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL; Tanzi Centre for Research in Neurodegenerative Diseases (E.R., Z.X.), Department of Medicine, University of Toronto; Toronto Western Hospital Research Institute (A.E.L.), University Health Network, Toronto, Canada; Institute of Neurogenetics (C.K., A.W.), University of Luebeck, Germany; Eskitis Institute for Drug Discovery (G.D.M.), Griffith University, Queensland, University of Queensland (P.A.S.), Centre for Clinical Research, Queens-land, Australia; Department of Neuroanatomy (G.M.H., E.D.); Neuroscience Unit, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology (N.H., K.O.), Juntendo University School of Medicine, Tokyo, Japan; Department of Neurology (E.-K.T., Y.Z.), Singapore General Hospital, National Neuroscience Institute, Singapore; Duke NUS Graduate Medical School (E.-K.T., Y.Z.); Singapore; Department of Neurology (J.A.), St. Olave’s Hospital, Tondheim; Department of Neuroscience (J.A.), Norwegian University of Science and Technology (NTNU), Trondheim, Norway; IRCSS Casa Sollievo della Sofferenza Hospital (P.M.V., P.S.), Mendel Laboratory, San Giovanni Rotondo; Institute of Molecular Biophysics and Physiology (G.A., A.Q.), National Research Council, Section of Gemmaneto (CZ); Institute of Neurology (A.Q.), Department of Medical Sciences, University Magna Graecia, Catanzaro, University of Neuroscience (C.F., L.B.), Section of Neurology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Department of Neurology (A.D.), Max Planc Institute of Psychiatry, Munich, Germany; Department of Clinical Sciences (A.P.), Section of Neurology, Lund University; Department of Neurology (A.P.), Lund, Skane University Hospital; Department of Clinical Sciences (C.N.), Clinical Memory Research Unit, Lund University, Sweden; Human Genetic Centre (G.G.), University Hospital of Liège, Belgium; Department of Neurology (M.S.L., R.F.P.), University of Tennessee Health Science Center, Memphis; Department of Neurology (M.B.-J., G.O.), Medical University of Silesia, Katowice, Poland; and Department of Neurology (D.M.M.), North-Shore University HealthSystem, Evanston, IL.

AUTHOR CONTRIBUTIONS

Jessie Theuns: drafting and revising the manuscript for content, study concept and design, analysis and interpretation of data, acquisition of data, statistical analysis, study supervision and coordination, obtaining funding. Aline Verslyen: revising the manuscript for content, study design, analysis and interpretation of data, acquisition of data, statistical analysis, study coordination. Kristel Sleegers: drafting and revising the manuscript for content, study concept, analysis and interpretation of data, statistical analysis, obtaining funding. Eline Wauters: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Stefanie Smolders: revising

Table 3 Overview of DerSimonian-Laird meta-analyses

<table>
<thead>
<tr>
<th>Allelic</th>
<th>Genotypic</th>
</tr>
</thead>
<tbody>
<tr>
<td>((G_4C_2)_{10}^a)</td>
<td>((G_4C_2)_{10}^a)</td>
</tr>
<tr>
<td>((G_4C_2)_{20}^a)</td>
<td>((G_4C_2)_{20}^a)</td>
</tr>
<tr>
<td>((G_4C_2)_{30}^b)</td>
<td>((G_4C_2)_{30}^b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\text{OR (95% CI)})</th>
<th>(\text{p})</th>
<th>(\text{AF (95% CI)})</th>
<th>(\text{OR (95% CI)})</th>
<th>(\text{p})</th>
<th>(\text{AF (95% CI)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 (1.06–1.60)</td>
<td>0.01</td>
<td>0.53% (0.13–0.93)</td>
<td>1.31 (1.06–1.62)</td>
<td>0.012</td>
<td>1.05% (0.26–1.84)</td>
</tr>
<tr>
<td>1.44 (1.03–2.01)</td>
<td>0.03</td>
<td>0.16% (–0.03 to 0.35)</td>
<td>1.47 (1.05–2.05)</td>
<td>0.025</td>
<td>0.35% (–0.03 to 0.72)</td>
</tr>
<tr>
<td>1.16 (1.04–1.3)</td>
<td>0.009</td>
<td>0.69% (0.1–1.39)</td>
<td>1.18 (1.03–1.35)</td>
<td>0.02</td>
<td>1.47% (0.07–2.85)</td>
</tr>
</tbody>
</table>

Abbreviations: \(AF\) = attributable fraction; CI = confidence interval; OR = odds ratio.

For the meta-analyses, only the cohorts including both patients with Parkinson disease and geographically matched controls that were size-corrected using the reference panel were included. The \(p\) values were calculated using DerSimonian-Laird meta-analysis; \(p = 0.002\) is considered statistically significant (22 tests).

\(^a\)Allele count approach.

\(^b\)Dichotomized approach.
the manuscript for content, analysis and interpretation of data, acquisition of data. David Crosser: revising the manuscript for content, analysis and interpretation of clinical data, acquisition of clinical data, contribution of vital reagents. Ellen Cameron: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Ellen Elinck: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Manu Sharma: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Reijo Kriiger: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Suzanne Leugue: revising the manuscript for content, acquisition of data, analysis and interpretation of data, contribution of vital reagents, local study coordination. Alexis Brice: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents, local study supervision. Sun Ju Chung: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Yoon Jin Kim: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents, local study supervision. Mi-Jung Kim: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Zhiguo K. Wuollet: revising the manuscript for content, analysis and interpretation of clinical data, acquisition of clinical data, contribution of vital reagents. Ekaterina Rogaeva: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Anthony E. Lang: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Christine Klein: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Anne Weisbach: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Yi Zhao: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Kotaro Ogaki: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Efthimios Dardiotis: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. George D. Mellick: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Anne Weissbach: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Christine Van Broeckhoven: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. E. Rogaeva: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. A. V. and E. W. and the FWO a postdoctoral fellowship to J. A. The authors acknowledge the personnel of the Belgian Association for the Advancement of Parkinson's Disease and Related Disorders (BDAPD) for their contribution to this project.

ACKNOWLEDGMENT

Belgium: The authors thank the VIB DMG Genetic Service Facility (http://www.vibgenservicesfacility.be) for technical assistance. Italy-Cosenza: The authors thank Patrizia Tarantina, Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Geraciato (CZ), Italy and Monica Gagliardi, Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Geraciato (CZ), Italy and Institute of Neurology, Department of Medical Sciences, University Magna Graecia, Catanzaro, Italy.

STUDY FUNDING

Belgium-Antwerp: The research is in part funded by the Belgian Science Policy Office Interuniversity Attraction Poles (IAP) program; the European Initiative on Centers of Excellence in Neuroregeneration (CoEEN); the Flemish Government initiated Methusalem Excellence Program; the Alzheimer Research Foundation (SAO/FR); the Queen Elisabeth Medical Foundation (QEMF); the Research Foundation Flanders (FWO); the Agency for Innovation by Science and Technology Flanders (IWT); the University of Antwerp Research Fund, Belgium; and the Merck Life Foundation for Medical Research Award to C.V.B. The FWO provided a PhD fellowship to A.V. and E.W. and the FWO a postdoctoral fellowship to J.G. The authors acknowledge the personnel of the Genetic Service Facility of VIB (http://www.vibgenservicesfacility.be) and the Antwerp Biosoftware and the Institute Born-Bunge for their expert support. France: The authors thank the French Parkinson's Disease Genetics Study Group. Y. Agid, M. Anheim, A.-M. Bonnet, M. Borg, A. Brice, E. Brousseille, J.-C. Corvol, P. Damier, A. Destee, A. Diurn, F. Durif, S. Kliche, P. Kraak, E. Lubahn, M. Martinet, P. Pellak, O. Rasou, F. Tavernier, C. Tranchant, M. Vein, F. Viallet, and M. Viollet; Franco-Parkinson Association and the French program “Investissements d'Avenir” funding (ANR-10-IAIHU-06). USA-Florida: Mayo Clinic Florida is a Morris K. Udall Center of Excellence in PD Research NIH/NINDS P50 NS072187, and is supported by NINDS R01 NS078867, the Michael J. Fox Foundation, Mayo Clinic Center for Regenerative Medicine, and a gift from Carl Edward Bolch, Jr., and Susan Bas Bolch. Canada: W. Garfield Weston Foundation and Ontario Research Fund (E.R.). Germany—Lubeck: C.K.S. is supported by a career development award from the Hermann and Lilly Schilling Foundation. Germany—Tubingen: The KORA (Cooperative Research in the Region of Augsburg) research platform was started and financed by the Forschungszentrum für Umwelt und Gesundheit, which is funded by the German Federal Ministry of Education, Science, Research, and Technology and the State of Bavaria. This work has also been made possible by the kind support of the Michael J. Fox Foundation (MJF) for Parkinson's Research (to Manu Sharma). This study was also funded by the German National Genome Network.
REFERENCES

Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders-Belgian FTLD cohort. JAMA Neurol 2013;70:1–9.

20. van der Zee J, Gijselinck I, Dillen L, et al.

Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013;92:345–353.

29. Lill CM, Roehr JT, McQueen MB, et al.

33. Lill CM, Roehr JT, McQueen MB, et al.

37. Lill CM, Roehr JT, McQueen MB, et al.
Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease
Jessie Theuns, Aline Verstraeten, Kristel Sleegers, et al.
Neurology 2014;83;1906-1913 Published Online before print October 17, 2014
DOI 10.1212/WNL.0000000000001012

This information is current as of October 17, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/83/21/1906.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2014/10/17/WNL.0000000000001012.DC1.html
http://www.neurology.org/content/suppl/2014/10/17/WNL.0000000000001012.DC2.html

References
This article cites 30 articles, 6 of which you can access for free at:
http://www.neurology.org/content/83/21/1906.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Genetics
http://www.neurology.org/cgi/collection/all_genetics
Parkinson's disease/Parkinsonism
http://www.neurology.org/cgi/collection/parkinsons_disease_parkinsonism

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2014 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.