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DATA MINING APPROACHES IN MATHEMATICS EDUCATION  

 

Author Esra Aksoy, Serkan Narli, F. Hande Çikrikçi,   M. Akif Aksoy, Y. Emre 

Ercire, Dokuz Eylül 

University, İzmir, TURKEY 

The aim of this study is to introduce data mining, which is a data analysis 

methodology that has been successfully used in different areas including the 

educational domain. It has been begun to be used in education recently and is quite 

new in mathematics education. However, educational data mining (EDM) literature 

has shown that it can represent new and significant contributions to researches. This 

paper initiates discussion on the use of data mining in mathematics education. 

Keywords: Educational data mining 

INTRODUCTION 

There are a lot of definitions for data mining in literature such as ‘data analysis 

methodology used to identify hidden patterns in a large data set’ (Tiwari & Vimal, 

2013), ‘the process that analyzes the data from different points of view and 

summarizes the results as useful information’ (Şuşnea, 2009), ‘a technology used to 

describe knowledge discovery and to search for significant relationships such as 

patterns, association and changes among variables in databases’ (Pal, 2012). In brief, 

data mining can be defined as applications of different algorithms to identify patterns 

and relationships in a data set. 

Data mining is similar to mining to obtain ore from the sand. Namely, it can be 

considered that sand is data and ore is knowledge. Although it should be defined as 

‘knowledge mining’, it is defined as ’data mining’ to emphasize large amounts of 

data. 

Data mining is a process that minimally has four stages (Nisbet, Elder & Miner, 

2009): (1) data preparation that may involve ‘data cleaning’ and ‘data 

transformation’, (2) initial preparation of the data, (3) model building or pattern 

identification, and (4) deployment, which means subjecting new data to the ‘model’ 

to predict outcomes of cases found in the new data. 

Data mining techniques can be classified as below: 

1. Clustering: a process of grouping physical or abstract objects into classes of similar 

objects (Romero &Ventura, 2007). Clustering is a type of analysis that divides data 

(cases or variables, depending on how specified) into groups such that members of 

each groups are as close as possible to each other, while different groups are as far 

apart from each other as possible (Nisbet et al, 2009). 
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2.  Classification and regression (decision tree, neural network etc.): In classification, 

the predicted variable is a binary or categorical variable. Some popular classification 

methods include decision trees, logistic regression and support vector machines. In 

regression, the predicted variable is a continuous variable. Some popular regression 

methods within educational data mining include linear regression, neural networks, 

and support vector machine regression. Classification techniques like decision trees, 

Bayesian networks etc can be used to predict the student’s behavior in an educational 

environment, his interest towards a subject or his outcome in the examination (Kumar 

&Vijayalakshmi, 2011). Classification techniques are predictive models. And 

predictive modelling compares the students behaviour with past similar students 

behaviours to predict what she will do in order torecommend how to proceed (Lee, 

2007) 

3. Association rules: associates one or more attributes of a dataset with another 

attribute, producing an if-then statement concerning attribute values (Romero 

&Ventura, 2007). Association rules are characteristic rules (it describes current 

situation), but classification rules are prediction rules for describing future situation 

(Tiwari, Singh &Vimal, 2013). Association Rule mining can be used in various areas 

of education data to bring out the interesting rules about the learner’s records. It can 

be used to bring out the hidden facts in understanding the behaviour of the learner in 

a learning environment, learning style, examination pattern and assessment etc.. 

These rules can be utilised by the educator to understand the need of the learner and 

improve the learning skills (Kumar &Vijayalakshmi, 2013).  

Data mining has been used in different areas such as Marketing, Banking, Insurance, 

Telecommunication, Health and Medicine, Industry, Internet, Science and 

Engineering etc. Recently, one of these areas is educational environment. As a result 

of application of data mining techniques in education, educational data mining 

(EDM) field has emerged. 

Educational Data Mining is defined as ‘an emerging discipline, concerned with 

developing methods for exploring the unique types of data that come from 

educational settings, and using those methods to better understand students, and the 

settings in which they learn’ by International Educational Data Mining Society 

(http://www.educationaldatamining.org). 

Data mining has attracted a great deal of attention in the information industry and in 

society as a whole in recent years, due to the wide availability of huge amounts of 

data and the imminent need for turning such data into useful information and 

knowledge (Han & Kamber, 2006). Education sector also has huge amounts of data 

and needs such techniques. EDM is an emergent discipline on the intersection of data 

mining and pedagogy. On the one hand, pedagogy contributes to the intrinsic 

knowledge of learning process. On the other hand, data mining adds the analysis and 

information modelling techniques (Kumar & Vijayalakshmi, 2011). Many educators 
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and scholars have begun to pay more attention to applying data mining techniques to 

educational data.  

Three objectives could be identified to use EDM as a technology in the field of 

education. One of them is pedagogic objectives -to help the students to improve in 

academics, designing the content of the course in a better way etc. (Kumar & 

Vijayalakshmi, 2011). 

Romero and Ventura (2007:136) summarized a role of data mining in education 

sector quite understandably: 

‘The application of knowledge extraction techniques to educational systems in 

order to improve learning can be viewed as a formative evaluation technique. 

Formative evaluation (Arruabarrena, Pe´rez, Lo´pez-Cuadrado, & Vadillo, 

2002) is the evaluation of an educational program while it is still in 

development, and for the purpose of continually improving the program. Data 

mining techniques can discover useful information that can be used in formative 

evaluation to assist educators establish a pedagogical basis for decisions when 

designing or modifying an environment or teaching approach’  

Compared to traditional statistical studies, data mining can (1) provide a more 

complete understanding of data by finding patterns previously not seen and (2) make 

models that predict, thus enabling people to make better decisions, take action, and 

therefore mold future events (Nisbet, Elder & Miner, 2009). 

Data mining performs two functions: one is to identify regularities among data 

records (e.g., concept cluster, concept comparison, and discrimination), another to 

find relations among variables in the data that will predict unknown or future values 

of the variables. Unlike descriptive and inferential statistical analyses that rely on 

means and standard deviations, data mining uses both logical and mathematical 

(deterministic, and parametric and nonparametric statistical) reasoning to analyze 

data records (Liu & Ruiz, 2008) 

Following problematic situations and convenience data mining techniques can be 

example to use data mining in education: 

 Determining which factors have effect on misconceptions encountered in 

especially qualitative researches (classification techniques or association rules) 

 Determining which misconceptions or mistakes occurr together. (Association 

rules) 

 Determining factors which are important to form compatible groups for 

collaborative learning (classification techniques or clustering) 

 Determining factors that affect mathematical achievement (classification 

techniques) 
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 Predicting students final performance at the beginning of the year and taking 

precautions (classification techniques) 

 To determine characteristics of special needs students (Clustering) 

 To investigate relationships among different theoretical perspectives used in 

education and to link them (association rules or classification techniques) 

 Finding out relationships in learners’ behaviour patterns (Association rules) 

 

RELATED WORKS 

Data mining techniques have been used in two different educational domains such as 

computer based education  and traditional education. Due to the widespread use, 

some of traditional education studies about EDM are listed in Table 1.  

Table 1 Some educational data mining studies   

Subject  Studies  

Examining 

and 

introducing 

educational 

data mining 

techniques, 

related 

literature and 

applications 

Peña-Ayala(2014); Romero & Ventura (2007;2010; 2011;2013); 

Kumar & Vijayalakshmi (2013); Sharma & Singh (2013); Ali 

(2013);Bhise, Thorat & Supekar (2013); Garg & Sharma (2013); 

Huebner (2013); Calders & Pechenizkiy ( 2012);Bala & Ojha 

(2012);Pandey, Bhardwaj & Pal (2012); Romero C, Ventura S, 

Pechenizky M, Baker R. (2010);Baker & Yacef (2009); 

Anyanwu & Shiva (2009) 

Determining 

students’ 

academic 

performance 

and the factors 

that affect it. 

Narlı, Aksoy & Ercire (2014); Bilen, Hotaman, Aşkın & 

Büyüklü (2014);Tiwari, Singh & Vimal (2013); Pal & Pal 

(2013); Bhise, Thorat & Supekar (2013); Rathee & Mathur 

(2013); Venkatesan (2013); Turhan, Kurt & Engin (2013); 

Osmanbegović & Suljić (2012); Yadav & Pal (2012); Yadav, 

Bharadwa j& Pal  (2012); Tair& El-Halees (2012); El Moucary, 

Khair& Zakhem (2011);Kumar & Vijayalakshmi (2011); 

Baradwaj & Pal (2011); Lakshmi, Martin, Begum & Oyelade, 

Oladipupo & Obagbuwa (2010); Liu & Ruiz (2008); Erdoğan 

&Timor, (2005) 

Determining 

students’ 

features 

Kumar& Vijayalakshmi (2013); Gülen & Özdemir (2013); Koç 

& Karabatak (2012); Im, Kim, Bae & Park (2005) 
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Some selected studies are summarized: 

Peña-Ayala (2014)  reviewed educational data mining with two goals; the first is to 

preserve and enhance the chronicles of recent educational data mining (EDM) 

advances development; the second is to organize, analyze, and discuss the content of 

the review based on the outcomes produced by a data mining (DM) approach. Thus, 

as result of the selection and analysis of 240 EDM works, an EDM work profile was 

compiled to describe 222 EDM approaches and 18 tools. A profile of the EDM works 

was organized as a raw data base, which was transformed into an ad-hoc data base 

suitable to be mined. As result of the execution of statistical and clustering processes, 

a set of educational functionalities was found, a realistic pattern of EDM approaches 

was discovered, and two patterns of value-instances to depict EDM approaches based 

on descriptive and predictive models were identified. One key finding is: most of the 

EDM approaches are ground on a basic set composed by three kinds of educational 

systems, disciplines, tasks, methods, and algorithms each. 

Nokelainen, Tirri and Merenti-Välimäki (2007), proposed a neural network model for 

identification of gifted student. With a specially designed questionnaire, they measure 

implicit capabilities of giftedness and cluster the students with similar characteristics. 

They also applied data mining techniques to extract a type of giftedness and their 

characteristics. Data mining techniques such as clustering and classification is applied 

to extract the type of giftedness and their characteristics. The neural network was 

used to evaluate the similarity between characteristics of student and type of 

giftedness. They stated that In the future, they could refine their identification model 

using various data mining techniques and develop an intelligent learning guide 

system for “potential” gifted students. 

Liu & Ruiz (2007), reported a study on using data mining to predict K–12 students’ 

competence levels on test items related to energy. Data sources were the 1995 Third 

International Mathematics and Science Study (TIMSS), 1999 TIMSS-Repeat, 2003 

Trend in International Mathematics and Science Study (TIMSS), and the National 

Assessment of Educational Progress (NAEP). Student population performances, that 

is, percentages correct, were the object of prediction. Two data mining algorithms, 

C4.5 and M5, were used to construct a decision tree and a linear function to predict 

students’ performance levels. A combination of factors related to content, context, 

and cognitive demand of items and to students’ grade levels were found to predict 

student population performances on test items. Cognitive demands had the most 

significant contribution to the prediction. 

Narlı, Aksoy and Ercire (2014) aimed to determine the learning styles of prospective 

elementary mathematics teachers and to explore the relationships between these 

styles by using data mining techniques. Grasha-Reichmann Learning Styles Inventory 

was applied to 400 prospective elementary mathematics teachers at Dokuz Eylul 

University. Results show that more than 50% of female students have "independent’’ 
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learning style. At the same time students who have competitive learning style had the 

least number of students. The male students who have collaborative and dependent 

learning styles were the majority.. From Class 1 to Class 4, it was observed that the 

number of students who have individual learning styles was decreasing and the 

number of students who have cooperative learning styles was increasing. In network 

graph, it was found that one of the strongest relationships was between the students 

who have cooperative and independent learning style with high level. On the other 

hand the relationship between the students who have passive and independent 

learning style with low level was not seen in graph. The decision tree indicates that 

the most effective attribute is independent learning style to identify which level of the 

learning style students have. Besides in the Data mining, learning styles, Mathematics 

Education association rules model several rules are constructed with %75 confidence. 

 

Bilen, Hotaman, Aşkın and Büyüklü (2014), in their study, 42 different types of high 

schools in Istanbul from which students took University Placement Exam (LYS) are 

clustered in terms of their performances. It was also aimed to determine the types of 

tests that are more efficient among these schools. For this purpose, educational data 

mining techniques such as clustering and decision tree are used. By deploying the 

non-hierarchical k-means algorithm, schools are separated into 5 different clusters 

which have different success level for each of Math-Science (MS), Language and 

Math (LM) and Language-Social Studies (LS) test scores. It is found that Science 

High Schools, Private Science High Schools, Anatolian High Schools and Anatolian 

Teacher Schools found to be in the highest achievement level in all of the test scores. 

Furthermore, constructed decision tree models with CHAID algorithm show that (1) 

Chemistry for the score type MS, (2) Math for the score type LM and (3) Turkish 

Language and Literature for the core type LS were the test types which are primarily 

effective in the division of schools into clusters. 

Gülen ve Özdemir(2013), aimed to predict interest areas of gifted students and 

discover relationships between these areas by using educational data mining methods. 

By making use of the Apriori association algorithm, area pairs in which gifted 

students are frequently interested together are detected. They stated that results 

obtained from that study will provide many benefits to science and art centers such as 

giving differentiated instruction by meeting individual needs, organizing course 

programs more effectively. 

Im, Kim, Bae and Park (2005) examined the influence of attribution styles on the 

development of mathematical talent by using data mining technique. The results of 

conducted Bayesian classification modeling show that items attributing success to 

effort and failure to lack of effort are the best predictors for the level of mild 

mathematical giftedness and gender. 
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SUMMARY 

This study aimed to introduce educational data mining  to mathematics education 

researchers to discuss its potential applications in this area. Using data mining for 

educational problems in learning, cognition and assessment, may give opinion to 

researchers, mathematics educators and parents, besides contributing to the literature. 

Educational data mining is a young research area and it is necessary more specialized 

and oriented work educational domain in order to obtain a similar application success 

level to other areas, such as medical data mining, mining e-commerce data, etc 

(Romero & Ventura, 2007).  
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PRINCIPLES OF STUDENT CENTERED TEACHING AND 

IMPLICATIONS FOR MATHEMATICS TEACHING 

Erhan Bingolbali and Ferhan Bingolbali  

Gaziantep University, Turkey 

This paper aims to present principles of student-centred teaching (SCT) and provide 

some implications for mathematics teaching. In light of the literature, we have 

determined six main principles of SCT as i.) Taking students’ prior knowledge into 

consideration, ii.) Handling students’ difficulties with appropriate methods, iii.) 

Developing students’ skills (e.g., reasoning) iv.) Providing effective feedback, v.) 

Creating communicative classroom environment, vi.) Integrating assessment into 

instruction. We first present the rationale of the study and note the ambiguity 

regarding student-centred related terms. We then propose that STC approach 

consists of two main components: mixed teaching methods and principals; and 

explain each principle. We end the paper with discussions and implications of SCT 

approach for mathematics learning and teaching and note a need of research for 

operationalizing the concept of SCT for the practitioners working in the field.   

INTRODUCTION  

The emphasis on individual learning has paved the way for the emergence of new 

terminology regarding the learning and teaching both in education as a whole and 

mathematics education in particular in the last three decades. One such term is that of 

student-centred teaching. Intuitively albeit it might appear to be a straightforward 

term, it appears that not only the term is not well defined but also what is attributed to 

the term is not clear. As teacher educators, our experience with the pre-service and 

in-service teachers has also revealed that the term student-centred teaching often is 

attributed to only constructivist approach (e.g., discovery learning) and students’ 

physical activeness in the classroom, whilst cognitive activeness was regarded as 

secondary if not disregarded at all. The vagueness regarding the meaning of the term 

has been the rationale for the emergence of this study. With this in mind, this paper 

attempts to examine the term SCT and aims to propose some principles in order to 

contribute to its conceptualisation especially for the practitioners working in the field.  

Considering that the term SCT is wide-ranging, any attempt to determine its 

principles requires an examination of multiple theories. To this end, an eclectic 

literature (e.g., behaviourist, cognitivist, constructivist, sociocultural perspectives on 

learning and teaching) has been examined. Six main principles have been determined 

to characterize the SCT. These principals develop from both the relevant literature as 

detailed below and our interpretation of what the teachers and candidates might need 

to know for conducting a SCT approach. Although we do not claim that they are sole 
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principles of SCT, we argue that they provide an overall aspect of what the SCT 

might include. The determined principles are as follows: 

1. Taking students’ prior knowledge into consideration 

2. Handling students’ difficulties with appropriate methods 

3. Developing students’ process skills  

4. Providing effective feedback 

5. Creating communicative classroom environment 

6. Integrating assessment into instruction 

In what follows, we first explain why we chose to examine the term SCT and present 

our stance on it. We then explain each principle in light of the relevant literature and 

relate them to SCT. We conclude the paper with discussions of the principals. 

THE TERMINOLOGY 

Dissatisfaction with teacher-centred approach (often known as traditional teaching) 

and behaviour-oriented perspective in learning and teaching has directed educators to 

pay more attention to students and their cognitive needs. This shift in attention has 

resulted in generating new terms and concepts to capture the new phenomenon. 

Student-oriented terms that have been commonly used amongst educators are the 

result of such undertaking. As a result of such endeavours, the terms such as student-

centred learning, student-centred pedagogy, child-centred learning, student-centred 

education, learner-centred learning and student-centred teaching come into use. 

Common to all these terms is the students and their individual learning.   

A close examination of these terms reveals several problematic issues though. First, it 

appears that student-centred terms have sometimes been reduced to ideas popular to 

Piaget’s constructivist developmental theory and hence “discovery learning”. Second, 

the terms have mainly been associated with students’ physical activeness rather than 

cognitive ones. Third, sometimes a passive role is attributed to the teachers since the 

students are construed be more active. Fourth, the terms have been loosely used and it 

is not exactly clear what meaning is actually attributed to them. Lastly, it seems that 

since the terms have mainly been used by the practitioners for practical reasons and 

have hence been not the foci of the systematic research, it has been difficult to 

provide a research-informed operationalization of them for the teaching activities. 

Given that the terms are commonly being utilized in the field, we as the researchers 

cannot be incognizant of their uses and need to make contribution into their 

clarification. In this study, we particularly prefer to use the term SCT for two reasons. 

First, we think that the term student-centred learning or similar ones have some 

shortcomings. This is because all learning, passive or active, is student-centred in 

nature. Besides, whilst examining different approaches to learning and teaching (e.g., 
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behaviourism, constructivism), although the quality of learning may show variation, 

what mainly differs is indeed the teaching or the teaching methods. That is why we 

prefer to use SCT, not student-centred learning. Second, as the teachers are respon-

sible for the teaching, they need to know how to conduct student-centred teaching 

and hence we take the teachers as the main addressee. However, that doesn’t mean 

that we don't take the students into account whilst dealing with the principles. On the 

contrary, we provide the principles of SCT for teachers’ use by taking the students’ 

needs in every aspect into account. In what follows, we present our position on SCT. 

OUR STANCE ON STUDENT-CENTRED TEACHING 

We use the term student-centred in the sense that students and their learning needs 

should be prioritised in the learning and teaching activity. For instance, if a teacher 

takes students’ difficulty with a concept into account and teaches accordingly, this 

suggests that students’ needs are prioritised and the teaching has a student-centred 

feature. Determination of students’ needs, however, is not a simple endeavour. This, 

of course, depends on the teacher competency regarding the subject matter they 

teach. Moreover, the needs of students can show variability. The nature of concepts 

and the student competency are just only two factors that can cause the variability. 

For example, in teaching group concept in abstract algebra, to us, what the students 

need is the definition in the first place as it is almost impossible for them to discover 

the group concept through such approach as problem-based learning. The concept’s 

nature hence determines what the students’ needs are and that affect the teaching. On 

the other hand, if a teacher values conceptual/meaningful understanding, arousing the 

need for learning and developing reasoning skills etc., then teaching, for instance, 

“triangle inequality fact” via problem-based learning method and hence providing the 

students with opportunity to discover or at least attempt to discover the fact can be 

more fruitful. Given that all these aspects (e.g., reasoning) are important for the 

learning, this type of teaching is also considered to have a student-centred feature.  

One problematic issue that may arise with “discovering” the inequality fact is that: 

what happens if a student or students cannot “discover” the fact even though the 

guidance is provided? If one is concerned with students’ needs, it is then possibly 

acceptable that sharing the formula of “|𝑎− 𝑏| < 𝑐 < 𝑎+ 𝑏” with students is more 

reasonable. That is to say, teachers should (sometimes have to) provide the formula 

or the fact for the benefit of the students. In teaching, teachers hence may sometimes 

use a mixed instructional approach (e.g., both traditional and constructivist ones) 

depending on the concepts and students needs. This is, to us, what makes the teaching 

student-centred. In fact Godino et al. (2015) also note that there is a need for mixture 

of construction/inquiry and transmission of knowledge that might optimize learning. 

They are also critical of basing the instruction solely on "Inquiry-Based Learning" 

(IBL) or "Problem-Based Learning" (PBL) methods and note that these methods 
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might be more suitable for only gifted students and that these methods generally 

disregard heterogeneity of the students and the variety of knowledge to be learnt.  

In this paper, even though SCT is often associated with constructivist approach in 

education, we argue that this view is problematic and student-centred teaching needs 

reconceptualization. We also think that having a practical method (we name it as 

mixed teaching method) as we presented above is not sufficient to conduct the SCT 

either, and that is why we propose its principals as well (see, Figure 1). In practice, 

there is a need for both principals and the mixed teaching method. 

 

 

 

 

 

 

 

 

Figure 1: SCT, teaching approach and its principals 

As can be inferred from Figure 1, our position is that SCT approach consists of two 

main components: mixed teaching methods and principals. In teaching, a teacher 

might employ mixed methods, that is, the teacher may use both problem-based and 

expository teaching methods in the same lesson. Yet, to conduct the mixed methods 

effectively and to take students’ needs at the centre, a teacher also needs some 

principals. The principals guide the methods and enable their implementations. We 

now turn our attention to principals, their underpinnings and where they stem from. 

Taking students’ prior knowledge into consideration  

Prior knowledge is essential for any learning and teaching activities. Learning 

theories (e.g., cognitivism, cognitive and social constructivism), particularly the ones 

shaping the current learning and teaching experiences in many classrooms, emphasise 

the role of prior knowledge in the learning processes. For instance, as a cognitive 

learning theorist, David Ausubel put forward the following view on the role of prior 

knowledge in learning: 

If I had to reduce all of educational psychology to just one principle, I would say this: 

The most important single factor influencing learning is what the learner already 

knows. Ascertain this and teach him accordingly" (Ausubel, 1968, p. 18). 
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Ausubel’s comments can be construed as a radical reaction to behaviourists’ view of 

learning. Prior knowledge draws explicit attention in Piaget’s works as well. To 

Glasersfeld (1995, p.18), one of the two basic principles (radical) constructivism is 

that “knowledge is not passively received but built up by the cognizing subject”. In 

Piaget’s constructivist theory of knowing, since knowledge is actively constructed, 

not passively received, then the prior knowledge becomes indispensable in the 

learning process. For instance, in explaining the notion of assimilation, Piaget (1976, 

p.17, cited in von Glasersfeld, 1995, p.18) notes the importance of prior knowledge: 

…no behaviour, even if it is new to the individual, constitutes an absolute beginning. 

It is always grafted onto previous schemes and therefore amounts to assimilating new 

elements to already constructed structures (innate, as reflexes are, or previously 

acquired). 

Prior knowledge is not only essential to assimilation but also fundamental to the other 

two components (accommodation and equilibrium) of Piaget’s theory. From a 

Piagetian perspective, it is thus vital that the teacher takes the prior knowledge into 

account in teaching. This stance of course requires an examination of students’ 

readiness for the teaching. For instance, in teaching the area of parallelogram, it is 

important to determine what the students know about the area and the concept itself. 

The previous experience that the individual brings to learning settings has hence 

important affects on what he/she is going to learn. We thus take this as a principle of 

SCT as it is concerned with students’ needs. We think that any teaching method with 

students’ needs in mind should begin with determining learners’ current knowledge 

level, types of experience they have and needs analysis. 

Handling students’ difficulties with appropriate methods 

The issues of how students learn and why some have difficulties in learning have 

always drawn the attention of researchers. Many learning theories (e.g., APOS, 

Cottrill et. al, 1996) have been put forward for the former. For the latter, it is known 

that students’ learning difficulties, misconceptions and errors are the reality of 

classrooms. Nesher (1987, p.33) appears to even value the existence errors and notes 

that “the student’s “expertise” is in making errors; that this is his contribution to the 

process of learning”. If students are experts of making errors, then any instructional 

consideration has to take them into account and teachers need to have an expert 

approach of handling them. Students’ difficulties in learning are also important in the 

sense that they have been the cause for the emergence of many innovations, including 

new learning theories, teaching materials and new approaches to teaching etc.  

Difficulties generally manifest themselves as errors in the classroom settings. It is 

critical for teachers to be able to notice the underlying conceptions that cause the 

errors to emerge. Diagnosing the errors and the causes are hence crucial. Following 

that, it is essential to have a plan of how to handle the difficulty. This plan might 



CERME 9, TWG 17, Collected papers, January 2015  

 

18 

 

include selecting the appropriate materials and method of handling. For instance, the 

relevant literature proposes many different ways of handling the difficulties. Such 

handling methods as cognitive conflict, giving correction, ignoring are just some 

examples of teachers’ dealing with errors (e.g., Santagata, 2004). Deciding which 

method to use might depend on the nature of the errors and the teacher’s competency. 

Students’ learning difficulties are hence one of the most influential factors that 

influence the learning and teaching. To us, SCT must take this issue into account and 

acts accordingly. We think that the teaching concerned with students’ difficulties has 

the characteristic of SCT and has a better chance of getting over students’ difficulties.  

Developing students’ process skills  

Traditional teaching has mainly been concerned with the knowledge (e.g., fraction, 

function, derivative) and its transmission to the students. However, the aim of 

schooling is not only to transmit the knowledge or teach concepts. One of the 

essential goals of schooling is to teach students to think (Padilla, 1990) in general and 

to reason, justify and make connections in particular. As Padilla (1990) notes “all 

school subjects should share in accomplishing this overall goal.”  

In addition to teaching concepts, equipping students with basic skills has also become 

a goal for many curricula. For instance, in science education these skills are named as 

basic process skills and six such skills are targeted: i.) observation; ii.)  

communication, iii.) classification; iv.) measurement; v.) inference; vi.) prediction. In 

mathematics education, NCTM (2000) names the skills as process standards and 

notes that mathematics instruction should aim to develop such skills as i.) problem 

solving, ii.) reasoning and proof, iii.) communication, iv.) connections, and v.) 

representation. In addition to conceptual understanding, procedural fluency and 

productive disposition, Adding It Up (NRC, 2001) document also propose strategic 

competence and adaptive reasoning as a part of mathematical proficiency. All these 

suggest that skills have become an essential goal of the curricula in that the teaching 

should be concerned not only with concept teaching but also with skills acquisition.  

The development of these skills may have many advantages. First, they enable 

students to think, justify and make connections. Second, skills can help students to 

have conceptual understanding and therefore meaningful learning (Ausubel, 1968; 

Skemp, 1978). Without the skills, concepts in mind may stay disconnected and 

compartmentalised. Third, the skills may help the students to be better problem 

solvers and hence apply their concepts to real life settings. With all these advantages 

in mind, we think that the teaching concerned with students’ intellectual development 

must also aim to develop students’ process skills. We therefore take the teaching 

process skills as a main principle of SCT and argue that conceptual and meaningful 

learning is more plausible through teaching them.  
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Providing effective feedback 

Students’ learning is complete with interesting experiences from showing an 

exemplary performance to making errors, having fundamental misconceptions and 

not having a sense of direction of what to do under some particular circumstances. An 

examination of what the students know, where they show good or poor performance 

and what to do next is sometimes needed for instructional decisions. All these are 

somehow related to effective feedback and its conduction.  

Feedback is regarded as “one of the most powerful influences on learning and 

achievement” (Hattie & Timperley, 2007, p.81). Feedback is defined as “information 

provided by an agent (e.g., teacher, peer, book, parent, self, experience) regarding 

aspects of one’s performance or understanding” (ibid., p.81). Winner and Butler’s 

(1994) conceptualisation of the feedback is also helpful.  

 “feedback is information with which a learner can confirm, add to, overwrite, tune, 

or restructure information in memory, whether that information is domain 

knowledge, meta-cognitive knowledge, beliefs about self and tasks, or cognitive 

tactics and strategies” (p. 5740, cited in Hattie & Timperley, 2007). 

As the quotation suggests, feedback can be provided by different agents and in many 

distinctive forms. A conceptualisation of feedback in the sense of Winner and Butler 

requires a careful examination of what task to choose, what kind of discourse to 

create and what method to use to handle students’ learning outcomes on the part of 

the teacher. The teaching concerned with student needs is hence expected to pay 

attention to the quality of the feedback that the students get and acts accordingly. We 

therefore argue that one of the basic characteristics of the SCT lies at the quality of 

feedback provided to the learners.  

Creating communicative classroom environment 

As students participate in the learning activity as groups and since teaching students 

in groups is an indispensable reality of the schooling, the teaching cannot solely be 

reduced to the teaching an individual and that it needs to address the classroom as a 

whole. In such situations, the issue of how the teaching, which takes students at the 

centre, can be conducted also needs to be examined and discussed. To us, a 

communicative classroom environment can be like an open society so that students 

can freely express their answers, make arguments and explanations. That is to say, a 

democratic classroom environment is needed so that students express their opinions. 

In this connection, Yackel and Cobb’s (1996) notions of social and socio-

mathematical norms can be employed as a guide for creating such a classroom 

environment. In such classrooms, different solution methods, reasoning, justification 

can be encouraged for all students. In such an environment, it is then more possible 

for students to obtain different perspectives and develop a critical habit of mind. We 

therefore take communicative classroom environment as a principle of SCT to guide 
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the teacher concerned with student-centred teaching. It should be noted that the 

application of this principle in the classroom helps the teacher to gain insight into the 

other principles as well. For instance, a communicative classroom environment may 

pave the way for the expression of free speech and that might help to diagnose the 

learners’ difficulties. The teacher can hence employ this principle to have an overall 

picture of the instruction with regard to other principles as well.  

Integrating assessment into instruction 

Traditionally, assessment follows the instruction. This type of assessment is termed 

as summative and is concerned with cumulative evaluations. It is currently proposed 

that assessment needs to be built up into and integral to the instruction. This type of 

assessment is termed as formative one and is concerned with regular control of 

students’ conceptions and understanding (Van De Walle et. al, 2010). This type of 

assessment shapes spontaneous decisions regarding the instruction and the findings 

reveal that effective formative assessment can increase students’ speed of learning by 

giving the effective feedback (Wiliam, 2007). 

As far as SCT is concerned, it is proposed that assessment and instruction need be 

intertwined. Assessment should not be something to be done at the end of instruction. 

Assessment concerned with students’ development, difficulties and learning has to be 

in time and based on students’ needs. In this regard, rather than evaluating students 

through one method (e.g., test) students’ performances need to be assessed through 

different methods. Assessment also should not only be concerned with concept 

mastery but also with process skills proficiency. As a result, we think that SCT needs 

to be student-centred in terms of assessment as well. Moreover, as the Assessment 

Principle in Principles and Standards stresses: “(1) assessment should enhance 

students’ learning, and (2) assessment is a valuable tool for making instructional 

decisions” (Van de Walle et. al., 2010, p. 76). When the assessment is carried out in 

this respect, we think that it can contribute to the development of the SCT instruction. 

DISCUSSIONS, LIMITATIONS AND CONCLUSIONS 

We have attended to the ambiguity of the term SCT and noted that what is attributed 

to the term is often not clear. We have also stated that SCT has been mainly 

associated with constructivist approach and argued that reducing it to this approach is 

misleading. A functional SCT approach does prioritise the students and their needs 

rather than a particular instructional approach per se. In the light of the relevant 

literature, alongside the mixed teaching methods, we have provided six principles that 

might contribute to conceptualisation of SCT. We are aware that the proposed SCT 

principles are generic in nature. This is particularly due to both the nature of the term 

and the teaching itself. Although this is the case, we hold the belief that for the 

practitioners it is important to have a general perspective of SCT as well. This is 

because; having a broad perspective can help the teacher to put a particular learning 
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objective into practice. Therefore, although the proposed principles are generic; they 

might help the teacher to have a broad perspective on SCT and to put it into practice.  

Most of current educational reforms suggest student-centred teaching and the chief 

addressees are teachers and teacher candidates. Although they are expected to 

conduct SCT, they generally do not have a guideline of how to do that. We believe 

that these principles as a totality might act as a guide for teachers and candidates to 

practice SCT. For instance, the principles can be used to design and implement lesson 

plans. We also think that these principles can be used to develop or assess in-service 

and pre-service teachers’ competencies and knowledge bases. For instance, a 

teaching programme addressing methods of handling students’ difficulties may 

contribute to the development of teachers’ pedagogical content knowledge base. In 

addition, the SCT principles can be employed as theoretical framework to analyse the 

classroom discourse and determine whether the teaching is SCT or not. For example, 

it can be utilized to determine the extent to which the teaching values the process 

skills. Similarly, the framework can enable one to see how students’ difficulties are 

handled and to show which the types of feedback are provided in the classroom.  

As mentioned above, we are aware that these principles are generic and that is why 

they cannot be specific to any discipline. The nature of disciplines and their concepts 

will shape how each principle is put into practice. For instance, whilst handling a 

difficulty or error, one needs to know the nature of the concept and teach accordingly. 

More specifically, let’s take division of two fractions as an example. If the concept is 

to be taught in an SCT manner, in the light of SCT principles, the teacher first has to 

take learners’ prior knowledge of fraction and division into account. Knowing 

students’ difficulty with division of fractions can help the teacher make necessary 

preparation, which would improve the instruction. These all suggest that the nature of 

concept in a discipline itself can affect how SCT is perceived and conducted.  

Process skills can play an important role in making SCT approach specific to a 

particular discipline or carries its distinctive characteristics. Reasoning, justification 

or representation of the concepts, for example, can differ from one discipline to 

another. For instance, the function 𝑓(𝑥) = 𝑥2 can be represented in many forms (e.g., 

numeric, graphical, algebraic, verbal). When the teacher teaches this function with its 

multiple representations alongside with their interconnections to enrich students’ 

understanding, this would suggest that the teaching has a student-centred feature. 

Therefore, the mathematical instruction that values students’ needs should pay 

attention to mathematics process skills acquisition.  

Finally, as this work is still in progress, we suggest that further research needs to be 

carried out to see how functional the proposed principals are and examine them in the 

real classroom settings. There is also a need for making each principal more explicit. 

Further research is also needed to examine practitioners’ conceptions (e.g., values, 

beliefs) of SCT and how they play role in its implementation. 
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CONSIDERING THEORETICAL DIVERSITY AND 

NETWORKING ACTIVITIES IN MATHEMATICS EDUCATION 

FROM A SOCIOLOGICAL POINT OF VIEW 

Corine Castela 
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The paper focuses on the social dimensions of the issues addressed in this working 

group, social being considered at different levels, interactions, culture, institutions: 

what is a theoretical framework? Why are theories so numerous in mathematics 

education? Is it necessary to reduce this multiplicity? Whether it is or it is not, why? 

The reflection is based on the anthropological theory of the didactic (ATD) and on 

Bourdieu’s theory of social fields. Assuming that the latter is not necessarily well-

known in the mathematics education community, and that it offers an interesting 

potential to enrich the debate within the networking semiosphere, I devote a 

substantial part of our text to give an idea about the way Bourdieu applies his theory 

to science.     

Keywords: praxeology, paradigm, institutional determination, symbolic capital 

INTRODUCTION   

Addressing the topic of theoretical diversity in mathematics education from a social 

point of view is not something new in the European research community. The central 

preoccupation in this WG has been, since CERME4, the barrier to effective 

communication created by the multiplicity of theories, be it communication within 

the field or with external partners from policy makers to educative professionals. 

Radford (2008, p. 318) suggests considering the networking practices as located in a 

semiosphere, e.g. “an uneven multi-cultural space of meaning-making processes and 

understandings generated by individuals as they come to know and interact with each 

other”. It is quite representative of the interaction dimension in networking activities. 

Among social aspects I consider in this paper, some have been much more erratically 

present in the discussions. For instance, the WG11 leaders’ introduction (Artigue et 

al, 2006, p. 1240) refers to a theoretical “more intrinsic diversity linked to the 

diversity of educational cultures and to the diversity of the institutional characteristics 

of the development of the field in mathematics education in different countries or 

global areas.” This issue of theoretical multiplicity being linked to cultural diversity 

has not recently been discussed in CERME. My position is that our reflection about 

theoretical diversity is obstructed by some self-evidences that should be 

deconstructed and that, to do so, we need theoretical tools from inside and outside the 

mathematics education field. In this paper, my objective is to present some tools, 

borrowed from ATD and from Bourdieu’s field theory, I consider as helpful to go 

forward. I briefly show how I use them to go back on the social dimension of 
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theoretical multiplicity and to discuss the unifying-theories injunction, thus 

developing a rational discourse (logos) with social concerns about the issues 

addressed. The adjective “sociological” in the heading must be understood in this 

etymological meaning, this paper does not avail itself of the sociology scientific field.  

Before turning to the text substance, I will highlight the fact that, in my opinion, a 

valuable discussion in a group focusing upon connecting theories, relies on the 

participants knowing a minimum about key points of the theories at stake in the 

papers. Except for some well-known mathematics education theories, I consider as 

the author’s responsibility to provide the readers with some genuine elements of the 

involved theories, so that they might build a first understanding. I try to achieve this 

objective for one of the theories I use as thinking tools, Bourdieu’s field theory, 

assuming that ATD is familiar enough in our research community. Hence, the text 

second part encompasses large quotes intending to provide the readers with a direct, 

even though limited, access to the key elements of Bourdieu’s analysis of science I 

draw on later. Other theories appear as examples in the discussion: within the 

submission format, I can do no better than to give references.  

THEORY, RESEARCH PRAXEOLOGY, RESEARCH PARADIGM? 

In this part, I recall and connect crucial models elaborated by some of the first 

participants in this group to address the issue of what is actually a theoretical 

framework. Then I will propose to encompass into the theory modelling project the 

contribution of well identified research communities, thus giving an opportunity to 

consider that networking theories has a social dimension: connecting specific 

communities associated to the theories. 

Networking theories, what will we consider as such in this 2015 session? An eight-

years-long joint work in CERME as well as in research projects like Telma and 

Remath has largely evidenced that what is at stake cannot be reduced to networking 

of theories considered as “organized networks of concepts (including ideas, notions, 

distinctions, terms, etc.) and claims about some extensive domain…” (Niss, 2007, 

p. 1308). Other research aspects are involved in the interconnection activities. Two 

directions have been proposed to model this complexity. Radford (2008) describes 

the concept of theory using the triplet (P, M, Q) where P is a system of basic 

principles, which includes implicit views and explicit statements, M a methodology, 

and Q a set of paradigmatic research questions. Hence, connecting two theories 

means connecting two triplets. Artigue, Bosch & Gascón (2011) use the notion of 

praxeology to model research theories and practices. Introduced by Chevallard (1999) 

as a general model for all human activities (see Bosch & Gascón, 2014, for an 

introduction to ATD), a pointwise praxeology is a quadruplet [T///] with only one 

type of tasks T and one associated technique ,  being the technology of , i.e. a 

rational discourse accounting for this technique. “The fourth component is called the 
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“theory” and its main function is to provide a basis and support of the technological 

discourse” (Ibid., pp. 67-68). Moreover, ATD considers more complex levels of 

praxeological organisations gathering pointwise praxeologies which have a common 

technology (local praxeology) or a common theory (regional praxeology). Hence a 

regional research praxeology may be described through a set of research questions 

considered relevant among others that are not, correlated acknowledged techniques, 

their technologies and at last a theory. Artigue et al. (2011) consider that this is the 

proper level to address networking issues. 

What is a theory in this model? In the case of well-developed research praxeologies, 

the theory may fit with Niss’ definition. However, not all such theories operate as 

identifier of their associated praxeology, because some are not recognised as “a 

Theory” in the research field. For instance, let us consider the so called “double 

approach” (of the teachers’ practices) developed by Robert and Rogalski (2002). A 

regional “double approach” praxeology obviously exists in mathematics education. 

Its theory, in both ATD and Niss’ meaning, is well developed, coordinating elements 

from several identified theories like Theory of Conceptual Fields and Activity Theory 

with some more isolated concepts or results from didactics and cognitive ergonomy. 

Yet, there is no “Double Approach Theory”, the praxeology access to social existence 

in the research field relies on other means, like the publication of a collective book 

gathering different studies (Vandebrouck 2008, 2013) and its translation into English.  

Now, let me emphasise that, within ATD, most praxeologies’ theories are not this 

developed; they may not fit with Niss’ definition. It is a strength of this modelling of 

research activities that it may be used, as Artigue et al. (2011, p. 2382) do, to account 

for the research praxeological dynamics: “Research praxeologies can appear as 

different kinds of amalgams, more or less organized depending on the maturity of the 

field.” They emphasise the part played by the technological discourse in such a stage 

of praxeology, when the theory of the amalgam is underdeveloped and unable to 

organise through a coherent whole the first results produced by the research practices. 

I will focus on the social dimension of the development process: the emerging 

praxeological organisation would not strengthen and access a certain form of social 

existence in the research field without the setting up of a group of researchers with 

common concerns, collaborating towards the development of the praxeology. In the 

case of the double approach, such a group was first created around A. Robert and J. 

Rogalski within the Parisian laboratory Didirem, especially through the completion of 

several PhD theses. In 2014, the double approach community still exists; it is 

disseminated far beyond its original laboratory. This idea that there is no research 

praxeology recognised in the mathematics education field (or in some subfield) 

without an associated community of researchers is not accounted for by the 

praxeological model. Thus, this paper proposes an extended model, called a research 

paradigm [1], composed of a praxeology and a correlated social organisation.  
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The praxeological model and Radford’s model appear as efficient tools to account for 

the fact that connecting theories is not only connecting conceptual structures. They 

share several aspects: Q is the set of T, M the set of [/], the explicit part of P 

belongs to . However, they differ on other points. A praxeology gives a clear place 

to the ‘savoir’ (explicit, socially legitimised knowledge) while in Radford’s model it 

is difficult to locate the theoretical knowledge corpus, crucial in a scientific field. 

With regard to the techniques, the M modelling includes the technological knowledge 

but it does not provide an appropriate tool to consider what is happening in the case 

of methodological exchanges between theories (with Radford’s meaning of the term), 

an issue addressed by (Radford, 2008, p. 322). The technique may or may not change, 

but certainly a new technological discourse will be produced to justify that the 

imported technique is consistent with the importing theory and its principles. If we 

consider that a research paradigm is an institution, this is one form of the 

transpositive process that goes with the inter-institutional movements of praxeologies 

(Chevallard, 1999, p. 231). Up to that point, the praxeological model appears as more 

comprehensive and detailed than the (P, M, Q) model. However there is no place in a 

praxeology for the implicit part of P. The paradigm model supplies this lack: 

according to ATD, a research paradigm, as an institution, exerts some constraints on 

its subjects. That is to say, within a given paradigm, researchers’ actions are regulated 

by the reference to the research praxeology and through the influence of the 

associated social organisation. 

In summary, the research paradigm model presents three strong points: incorporating 

the different aspects of the (P, M, Q) and [T///] models; including in the 

modelling project the contribution of the research community that in some cases or 

times plays a decisive role in the scientific identity of the research praxeology; 

considering social interactions between communities within the networking issue.   

LOOKING AT MATHEMATICS EDUCATION RESEARCH FROM 

OUTSIDE 

I now present tools which I use in the last part of the paper to interpret the paradigm 

multiplicity in mathematics education and the injunction to unify theories. 

Institutional determinations 

An ATD important contribution has been to introduce the notion of ecology in 

mathematics education in order to fight the pedagogical voluntarisms. The 

mathematical and didactic praxeologies are subjected to a complex system of 

conditions “that cannot be reduced to those immediately identifiable in the 

classroom” (Bosch & Gascón, 2014, p. 72). They are constrained by a whole scale of 

institutional determinations among which ATD considers at the highest generic levels 

the influence of Civilisation and Society (Ibid., p. 73). This is only one example of 

the crucial part given to institutions by ATD, it aims to show that this theory always 
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immerses the addressed questions in the whole anthropological reality, with a special 

focus on the social organisations and the way they determine human activities. In 

what follows, I apply this approach to mathematics education research.  

Bourdieu’s field theory applied to science 

A field is a structured social space, relatively autonomous from the wider social space 

and strongly differentiated from other fields. According to Bourdieu, science is a 

field. The field theory focuses on the ‘closed field’ dimension of these spaces, 

providing analysis of what is going on inside; this is the interesting contribution for 

our group since ATD provides adequate tools to consider external influences. 

A field is characterised by a game that is played only by its agents, according to 

specific rules. The agents are individuals and structured groups, in science they are 

isolated scientists, teams or laboratories. The conformity of agents’ actions to the 

game rules is partly controlled by objective visible means, but the key point of the 

theory, through the concept of habitus, is the inculcation of the field social rules into 

the agents’ subjectivity. This individual system of dispositions, partly embodied as 

unconscious schemes, constitutes an individual’s right of entry into the field. 

The field game is twofold. Firstly, it is productive of something that is the field 

legitimised goal in the social space. The rules, and therefore the individual 

dispositions, are fitted to achieve this goal that every agent considers desirable. In the 

case of science, the goal is epistemic: accepting tacitly the existence of an objective 

reality endowed with some meaning and logic, scientists have the common project to 

understand the world and produce true statements about it. Bourdieu further adds a 

social dimension to the Bachelardian conception of the scientific fact construction:  

In fact, the process of knowledge validation as legitimation (securing the monopoly of 

legitimate scientific opinion) concerns the relationship between the subject and the 

object, but also the relationship between subjects regarding the object […]. The fact is 

won, constructed, observed, in and through […] the process of verification, collective 

production of truth, in and through negotiation, transaction, and also homologation, 

ratification by the explicit expressed consensus – homologein (Bourdieu, 2004, pp. 72-

73).  

Despite this social nature, scientific homologation produces objective statements 

about the world thanks to specific rules of the scientific critical scrutiny, “the 

reference to the real, [being] constituted as the arbiter of research” (Ibid., p. 69). 

Bourdieu also emphasises that constructed facts are all the more objective as the field 

is autonomous and international. 

Secondly, the game is a competition between the agents, which results in an unequal 

distribution of some specific form of capital, source of advantage in the game itself, 
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source of power on the other agents. Thus, a field, including the scientific one, 

appears as  

a structured field of forces, and also a field of struggles to conserve or to transform this 

field of forces. […] It is the agents, […] defined by the volume and structure of the 

specific capital they possess, that determine the structure of the field […This one] 

defined by the unequal distribution of capital, bears on all the agents within it, restricting 

more or less the space of possible that is open to them, depending on how well placed 

they are within the field… (Ibid., pp. 33-34) 

The capital includes several species, for instance, in science, laboratory equipments, 

funding and journal edition. I focus on the symbolic capital, especially on its 

scientific modality.  

Scientific capital is a particular kind of symbolic capital, a capital based on knowledge 

and recognition. (Ibid., p. 34)  

A scientist’s symbolic weight tends to vary with the distinctive value of his contributions 

and the originality that the competitor-peers recognize in his distinctive contribution. The 

notion of visibility, used in the American universitary tradition, accurately evokes the 

differential value of this capital which, concentrated in a known and recognized name, 

distinguishes its bearer from the undifferentiated background into which the mass of 

anonymous researchers merges and blurs. (Ibid., pp. 55-56).   

This theory of science as a field challenges an idyllic vision of the scientific 

community, disinterested and consensual; however through the hypothesis of 

embodied dispositions, it avoids considering the scientists’ participation to the capital 

conquest in terms of personal ambition or cynicism.  

In summary, I will focus on the fact that scientific strategies are considered twofold.  

They have a pure – purely scientific- function and a social function within the field, that 

is to say, in relation to other agents engaged in the field (Ibid., p. 54).  

Every scientific choice is also a strategic strategy of investment oriented towards 

maximization of the specific, inseparably social and scientific profit offered by the field. 

(Ibid., p. 59) 

One can see a true correspondence between the triplets (institution, subjects, 

assujettissements-subjugation) of ATD (Chevallard, 1992) and (field, agents, habitus) 

of the field theory, with an interesting complementarity of the subject-agent pair. In 

what follows, I consider mathematics education research as an institution immersed 

in and determined by a complex system of other institutions, and as a field of forces, 

subfield of the scientific global field, assuming that Bourdieu’s analysis clarifies 

some aspects of the inner institutional functioning. 
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EXTERNAL DETERMINATIONS OF THE “THEORIES ISSUE”  

Research in didactics as being externally determined in its questions and 

answers 

I now consider the fact that the realm of reality of mathematics education research 

studies is determined by various economical, political, cultural institutions of 

different sizes. No one may dispute the vast distance that separates the following two 

objects of study: on the one hand, the passing down of arithmetic techniques in the 

Aymara villages of northern Chile, whose culture developed specific calculation 

praxeologies, and on the other hand, the use of software in the French education 

system to promote the learning of algebra. Is the epistemic priority of mathematics 

education research looking for universal regularities when, unlike physics for 

instance, the studied reality is so diverse? Assuming that such common phenomena 

exist (the didactical contract is often cited as such), which part of the two 

aforementioned complex realities are they able to account for?  Moreover, given that 

the research intends to act upon the mathematics education reality, a more crucial 

question would be: to what extent can these regularities support engineering projects? 

In this paper, I will consider that adapted tools must be designed to address the 

problems raised by the diverse educational institutions around the world, in order to 

understand the dysfunctions and to produce solutions that are acceptable to these 

institutions and their subjects. The research questions as well as the produced answers 

are determined by local characteristics. The paradigm multiplicity therefore appears 

to result from the epistemology of a science intending to act upon the studied reality. 

To take only one example, the ethnomathematics paradigm has been developed in 

South America as well as in Africa, as a response to a massive failure in mathematics 

education within educative systems that are still based on the colonial vision and 

presenting “mathematics as something “Western” or “European”, as an exclusive 

creation by the white race” (Gerdes, 2009, p. 31, my translation). Ethnomathematics 

follows as a paradigm from the need to “multiculturalise the curricula of mathematics 

to improve the quality of education and increase the social and cultural-self-

confidence of all students”. (Ibid., p. 21) 

Research in didactics as being externally determined in its workings  

Obviously, research depends on national and inter-national political and economical 

institutions which provide the material and human resources. From this derives the 

existence of mathematics education research sub-institutions we partly find in the 

ICMI structure. But other institutions influence the research activities through less 

evident ways and means, such as cultures with more or less extended spheres of 

influence, up to civilisation. In spite of their scientific specific habitus, researchers 

with common culture also build upon this culture to address the research issues. That 

is one source among others of some tacit principles of a paradigm. In other words, the 

paradigm multiplicity also results from the cultural multiplicity of the agents within 
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the mathematics education research field. The researchers’ cultural specificity may 

echo the educative local reality they study, hence resulting in a form of coherence and 

perhaps of efficiency. At the same time, however, several paradigms may coexist in 

the same society, in the same country, investigating the same education system with 

different philosophical, ideological positions. As an example, let me consider ATD 

and the double approach that are strongly differentiated by their conception of the 

human being: ATD highlights the multi-institutional building of the framework 

within which the individual develops and acts (Chevallard, 1992, p. 91), the double 

approach focuses on the individual variations (Vandebrouck, 2008, p. 20). This 

second viewpoint is more present in the Western education research paradigms than 

the first one. I hypothesise that this is deeply correlated with the societies’ 

characteristics and that it is not mere coincidence that ATD emerged in France.   

Another example of external determination is the theoretical diversity reducing 

project itself. This project is epistemologically founded within Bourdieu’s theory 

since, as seen above, communication between researchers at the most international 

possible level is crucial in the construction of the scientific facts. But it also comes 

from the requirements of political institutions, the Babel Tower aspect of research in 

mathematics education affecting its credibility. The proposed solution is unifying 

theories. Policy makers refer to the exact sciences model, and so does, rather 

surprisingly, mathematics education research itself, still (over)determined by its alma 

mater, mathematics. This reference neglects the educative reality diversity. It forgets 

the exact sciences very long lifetime conducive to the unifying process but also that 

with the colonial expansion many local paradigms have simply been ignored, the 

occidental ones being imposed to the defeated countries. So the present homogenous 

theoretical landscape results as much from domination as from unification. 

At this point, I have argued that the paradigm diversity is in some sense 

epistemologically legitimate in mathematics education and results from some social 

determinations of research. I have also noted that the unifying injunction might be 

considered as introduced into the field from outside for questionable reasons. 

MATHEMATICS EDUCATION RESEARCH AS A POWER GAME 

In this part, I build upon Bourdieu’s statement that every scientific strategy has a 

social function within the field, i.e. has something to do with the distribution of 

power among the agents. In such a framework, the production of independent 

theories as well as the call for their integration in new entities is taken as contributing 

to the contestation and conquest of positions. Clearly, for a researcher, being 

recognised as the creator of an identified theory increases his scientific capital much 

more than a less visible participation to the collective development of an existing 

paradigm would. This “visibility factor” fosters the paradigm multiplication, 

especially at the theory level; it should certainly be controlled when individual 

positions are at stake. However, let me now consider an emergent research 



CERME 9, TWG 17, Collected papers, January 2015  

 

32 

 

community: in this case, developing a specific paradigm is an asset to free from the 

domination by older communities, generally tending to impose their own paradigms 

as ready tools which are adapted even for new problems. I have already put forward 

that the need to unify paradigms could be epistemologically challenged by virtue of 

the diversity of the didactic reality depending on the societies and countries involved. 

Now, I question it as an obstacle to an autonomous organisation of didactical research 

in countries where the latter is just emerging. Besides the ethnomathematics already 

evoked, I will mention socioepistemology (Cantoral ,2013), deliberately developed 

by a group of Mexican researchers with the dual intent of creating tools adapted for 

the educative reality in South America and putting an end to what was taken as an 

extension of colonisation through the exclusivity of North American and European 

paradigms in didactics research. 

To finish, I reverse this point of view: if developing a paradigm is empowering for a 

community in the field, the call for reducing the paradigm multiplicity has something 

to do with relative positions of the paradigm social components and of the more-or-

less extended research institutions in which the paradigm has been developed. It is an 

aspect of the social game in the field, certainly determined by other levels of power 

struggles outside the scientific field as well. 

CONCLUDING REMARKS 

In this paper, my intent was not to contest the importance of interactions between 

mathematics education researchers. I recognise the crucial part of the broadest 

possible communication in the construction of scientific facts and the major difficulty 

deriving from the paradigm multiplicity in the field. My aim was bringing to light 

some aspects, so far nearly unexplored in this WG, of the multidimensional 

complexity of this well documented phenomenon: multiplicity is an epistemological 

adaptation to the diversity of educational realities and a social result of symbolic 

power struggle within a recent research field, somehow less submitted to colonial and 

capitalistic rules to determine the power repartition than have been (and perhaps are) 

the oldest basic sciences. Hence, if reducing the number of paradigms appears as a 

direct solution which favours communication thanks to a common conceptual 

language, this shortcut may be epistemologically inadequate for mathematics 

education research. Moreover, from the social point of view, it should be considered 

as the current hidden form of the exercise of power conquest in the field.  

Unifying theories in order to produce a common discourse is not the appropriate way 

to scientificity for mathematics education research in its present state: that is the 

opinion I have tried to argue in this text. Building on the Remath project experience 

among others (Artigue & Mariotti, 2014), I suggest that collaborating which brings 

together researchers who refer to different paradigms might be more relevant; theory 

networking will result from working together on the same objects. The challenge is to 

develop collaboration praxeologies. 
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NOTES 

1. Using the term paradigm may be provisory. Indeed it refers to Kuhn’s work on scientific revolutions (1962) where 

Kuhn defines a scientific paradigm as: "universally recognized scientific achievements that, for a time, provide model 

problems and solutions for a community of practitioners” (3
rd

 edition, p. 10). If we consider the different components of 

a paradigm, we find something very close to what Radford and Artigue et al. encompass into their models. In the 

postscript to the second edition (1970), Kuhn addresses the issue of the community structure of science and writes that:  

“Paradigms are something shared by the members of such groups [scientific communities].” (p. 178) So it appears that 

he does not include communities within the paradigm model. 
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The question tackled here centres on the notion—or, more precisely, the many 

notions—of theory often used in discussing scientific matters. The analysis that we 

attempt develops within the framework of the anthropological theory of the didactic 

(ATD). It purports to show that current usage refers mostly to the “emerged parts” of 

so-called theories and largely ignores their “immersed parts”, which are the 

correlate of their intrinsic implicitness and historical incompleteness. This leads to 

favour open theorization over entrenched theory. 

INTRODUCING THE NOTION OF THEORY 

In this study we examine the meaning and scope of a key concept of ATD which, 

paradoxically, since the inception of this theory, seems to have been consistently 

overlooked: that of theory. A word akin to English “theory” exists in many European 

languages [1]. According to John Ayto’s Dictionary of Words Origins (1990), the 

history of theory goes as follows: 

theory [16] The etymological notion underlying theory is of ‘looking’; only secondarily 

did it develop via ‘contemplation’ to ‘mental conception.’ It comes via late Latin theōria 

from Greek theōríā ‘contemplation, speculation, theory.’ This was a derivative of theōrós 

‘spectator,’ which was formed from the base thea- (source also of theā́sthai ‘watch, look 

at,’·from which English gets theatre). Also derived from theōrós was theōreī́n ‘look at,’ 

which formed the basis of theṓrēma ‘speculation, intuition, theory,’ acquired by English 

via late Latin theōrēma as theorem [16]. From the same source comes theoretical [17]. 

(p. 527) 

A paper by a classical scholar, Ian Rutherford, gives more information on the uses of 

the word theoria in Ancient Greece: 

The Greek word theoria means “watching,” and has two special senses in Greek culture: 

first, a religious delegation sent by a Greek city, to consult an oracle or take part in a 

festival at a sanctuary outside its territory, and second, philosophical contemplation. 

Theoria in the first sense is attested from the sixth century bce until the Roman Empire, 

but the sources are particularly rich in the Hellenistic period. Sacred delegates were 

called theoroi, were often led by a so-called architheoros, and if they went by sea, the 

vehicle was a theoris-ship. (Abstract) 

The first of these two senses has almost disappeared from modern usage. The second 

sense opened the way for our common uses of theory. In the following, we 

concentrate on “modern” meanings of this word, which dictionaries usually condense 
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into a small number of categories, as does for example the English Wiktionary. The 

entry dedicated to theory in this dictionary begins classically with the etymology of 

the word, then passes on to the uses of it that it does retain: 

theory (countable and uncountable, plural theories) 

1. (obsolete) Mental conception; reflection, consideration. [16th-18th c.] 

2. (sciences) A coherent statement or set of ideas that explains observed facts or 

phenomena, or which sets out the laws and principles of something known or 

observed; a hypothesis confirmed by observation, experiment etc. [from 17th c.]  

3. (uncountable) The underlying principles or methods of a given technical skill, art 

etc., as opposed to its practice. [from 17th c.] 

4. (mathematics) A field of study attempting to exhaustively describe a particular class 

of constructs. [from 18th c.] Knot theory classifies the mappings of a circle into 3-

space. 

5. A hypothesis or conjecture. [from 18th c.] 

6. (countable, logic) A set of axioms together with all statements derivable from them. 

Equivalently, a formal language plus a set of axioms (from which can then be derived 

theorems). A theory is consistent if it has a model. 

In what follows we shall draw upon such semantic summaries in order to suggest that 

the notion of theory developed in ATD can account for the diversity of usages that 

exist today. 

SOME BASICS OF ATD 

In ATD, the basic “entities” are persons x and institutions I. These notions are close 

to their ordinary counterparts, although they are more general—in ATD, a newborn 

infant is a person; and, to take just one easy example, a class, with its students and 

teachers, is an institution. An institution I comprises different positions p— in the 

case of a class, that of student and of teacher. To every person x or institutional 

position p is assigned a “praxeological equipment”, which is the system of 

“capacities” that, under appropriate conditions, enables the person x or any person x’ 

occupying position p to act and think through one’s actions. 

Any praxeological equipment, be it personal or positional, is made up of, among 

other things, “notions”. Most persons and institutional positions thus have a certain 

notion of theory—if only through the overused phrase “in theory”. The present study 

could then be said to be partly about the notion of theory in ATD (taken as an 

institution). However that may be, it is essential to detach oneself from the seemingly 

undisputed belief that there would exist a unique, shared notion of theory of which 

the meaning would simply vary according to the context of use. In ATD, every 

person, every institutional position is supposed to be endowed with a peculiar notion 

of theory, that notion being shaped by the constraints to which the person or position 

is currently subjected. This phenomenon is at the origin of the processes of 
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institutional transposition, of which didactic transposition is but a particular case 

(Chevallard, 1992). In order to make headway, we shall now delineate the 

“anthropological” notion of theory—which, at the start, is only one such notion 

amongst others. 

THE NOTION OF PRAXEOLOGY IN ATD 

ATD posits a theory of human activity that hinges on an essential and founding 

notion: that of praxeology (Chevallard, 2006, 2012; see also Bosch & Gascón, 2014). 

The word praxeology has been around for (at least) two centuries in the sense 

recorded by most dictionaries, in which it is held to refer to the “study of human 

action and conduct”, to the “study of practical or efficient activity”, or to the “science 

of efficient action”. The use made here of the word pertains properly to ATD and 

departs decisively from this old-established, though infrequent, use. A key tenet of 

ATD is that when a person x acts purposely and knowingly, her doings can be 

analysed into a (finite) sequence of tasks t1, t2, ..., tn. Contrary to the common 

meaning of the term (which has a ring of unpleasantness about it), task is taken here 

in a very general sense, irrespective of its volume or pettiness: to open this door and 

to smile to this neighbour are tasks; to scratch this person’s back, to write this sonnet, 

to save this polar bear, to prove this theorem, and to play this guitar chord are tasks 

as well. Any task t is regarded as a “specimen” of a type of tasks T. In order to 

execute the task t of type T, a person x draws on a determined technique, denoted T, 

that is to say a (more or less precise) way of accomplishing (at least some) tasks t of 

type T. No technique  can cope with the totality of tasks of a given type T—its range 

of success is usually called the scope of . If, for example, it is clear that elementary 

techniques for factoring numbers all have a limited scope, it is true also, for obvious 

reasons, that any technique whatsoever eventually reaches its limits. 

Let us take another example, that of a technique for finding the quotient of number a 

by number b (with a, b  ℕ*), which we make explicit on a specimen. Considering 

that 12 = 2  2  3, in order to arrive at the quotient of 417 by 12, we first determine 

the quotient of 417 by 2, which is the quotient of 416 by 2, i.e. 208. We then calculate 

the quotient of 208 by 2, which is simply 104; and finally we determine the quotient 

of 104 by 3, which is the same as the quotient of 102 by 3, or 34. The quotient of 417 

divided by 12 is “therefore” 34. (Indeed, 417 = 34  12 + 9.) The inverted commas 

that surround therefore hint at the fact that many people—including mathematics 

teachers—will highly doubt the validity of this technique, on the grounds that it leads 

one to carelessly get rid of successive remainders. This paves the way for another key 

notion that ATD hinges on: the notion of technology. This word is used in ATD with 

its etymological value: as the suffix -logy indicates, a technology is a “discourse” on 

a given technique . This discourse is supposed, at least in the best-case scenario, 

both to justify the technique  as a valid way of performing tasks t of type T and to 

throw light on the logic and workings of that technique, making it at least partially 
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intelligible to the user. As concerns the technique of division shown above, it seems 

difficult to hit upon a full-fledged technology that would justify it, let alone explain 

it—if the technique is duly valid, why is it so? For lack of space, we shall leave these 

two mathematical tasks—justify and explain the aforementioned technique—to the 

perplexed reader. 

A key point must be stressed. Owing to the presence of the suffix -logy, the word 

technology carries with it the idea of a rational discourse (about some tekhne—a 

Greek word meaning “a system or method of making or doing”, that is, a technique or 

system of techniques). In the universe of ATD, there is no such thing as universal 

rationality. Every person x, every institution I, and every position p has its own 

rationality, afforded by the technologies present in its “praxeological equipment.” Of 

course, persons and institutions strive to indulge their “rationality” or even to impose 

it upon others. The interplay between competing rationalities is a major aspect of 

what it is the mission of didactics to explore. 

We have now arrived at a crossroads. It appears that no technological justification is 

self-sufficient: it relies on elements of knowledge of a higher level of generality, 

which, whenever they do not go unnoticed—they often do—, sound more abstract, 

more ethereal, oftentimes abstruse, as if they expressed the point of view of a far 

removed, pure spectator—a theoros. In ATD, such items of knowledge, sometimes 

dubbed “principles” (or “postulates”, etc.), compose the theory that goes with the 

triple formed by the type of tasks T, technique , and technology. This theoretical 

component is denoted by the letter  (“big theta”) while the technology is denoted by 

(small) . We thus arrive at a quadruple traditionally denoted by [T /  /  / ]. It is 

this quadruple that we call a praxeology; it is called a punctual praxeology because it 

is organised around the type of tasks T, considered as a “point”. 

It should be clear that, by its very definition, ATD’s notion of theory already 

subsumes case 3 of the English Wiktionary’s definition of theory: “The underlying 

principles or methods of a given technical skill, art etc., as opposed to its practice. 

[from 17th c.].” Let us take a step forward. A central tenet of ATD is that all 

“knowledge” can be modelled in terms of praxeologies. The “praxeological 

equipment” of a person x or institutional position p is defined to be the more or less 

integrated system of all the praxeologies that the person x or a person x’ in position p 

can draw upon to do what this person is led to do. A praxeology can be denoted by 

the letter ℘ (called “Weierstrass p”). It can be construed as the union of two parts or 

“blocks”: the praxis part  = [T / ], also called the practico-technical block, and the 

logos part  = [ / ] or technologico-theoretical block. One can write: ℘ =    = 

[T / ]  [ / ] = [T /  /  / ]. The operation  is sometimes called the 

amalgamation of the praxis and logos parts. The amalgamation of  and  should be 

interpreted as a dialectic process of “sublation” [2] through which the praxis and 
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logos parts are at the same time negated as isolated parts but preserved as partial 

elements in a synthesis, which is the praxeology ℘. Let us for a moment relabel 

“knowledge part” the logos part and “know-how part” the praxis part of a praxeology 

℘. The dialectic sublation of “knowledge” and “know-how” that ℘ is supposed to 

achieve is hardly ever actualized. More often than not, the praxis and the logos 

observable in a person’s or institutional position’s praxeological equipment do not fit 

well together. The praxis block may be poorly developed while the logos part seems 

to be ahead of the game—a state of things often expressed by saying something like 

“he knows the theory, but can’t apply it.” Or the praxis part seems to be going 

smoothly but the logos part is so poor that it fails to substantially explain or justify 

the featured technique, which is consequently turned into a mere “recipe.” The failure 

to arrive at a “well-balanced” praxeology is the rule, not the exception—a key 

phenomenon that we will now dwell upon. 

INCOMPLETENESS AND IMPLICITNESS IN PRAXEOLOGIES 

When it comes to discussing praxeological matters, people are prone to using 

metonymies or, more precisely, synecdoches [3]. This synecdochic bent generally 

selects as a derived name some (supposedly) “noble” part or feature of the thing to 

name. The widely shared propensity to metonymize shows up in particular in the use 

of the word knowledge—which is the “lofty” part of a praxeology—to name the 

whole praxeology. It is even more manifest in the generalized use of theory as 

including not only what ATD calls technology, but also the praxis part and, therefore, 

the whole praxeological matter. In common parlance, theory refers usually, though 

somewhat fuzzily, to a complex of praxeologies sharing a common “theory” (in a 

sense acknowledged by the naming institutions). Such a “body of knowledge” can be 

denoted by the formula [Tij / ij / i / ] with i = 1, ..., n and j = 1, ..., mi, where the 

theory  “governs” all the technologies i, each technology i “governing” in turn the 

techniques ij. Such a praxeology goes by the name of global praxeology. It is this 

generic analysis that ATD offers when one comes to speak of, for instance, “group 

theory” or “number theory” or “chaos theory” or “knot theory,” etc. It is to be 

observed that, in doing so, the praxeological complex to which one refers is defined 

“in intension” rather than “in extension.” It allows one to identify conceptually the 

possible content of the praxeological complex, while its real “extension” remains 

somewhat unspecified. Of course, it is risky to be so unmethodical when it comes to 

describing praxeological organisations. Naming a part to mean the whole leads to 

forget or neglect other parts: the resulting praxeologies cannot, therefore, be efficient 

tools for action—just as a car stripped down to the engine is of little avail to travel 

(even if, again metonymically, “motor” can be used to refer to the whole car). 

This is however one aspect only of the problem of incompleteness in praxeologies. 

Any praxeology whatsoever can be said to be incomplete, be it technically, 

technologically or theoretically. And it is the fate of all praxeologies to continually go 
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through a process which can further the development of any of their constituent parts: 

the technique can be further “technicized”, the technology “technologized”, and the 

theory “theorized”. Consider the following easy example relating to the century-old 

“rule of three”, that of the so-called “unitary method”, which L. C. Pascoe in his 

Arithmetic (1971) introduces as “helpful to those who initially have difficulties with 

the ideas of ratios” (p. 64). Traditional arithmetical techniques were essentially oral: 

to do mathematics, one had to say something, in order to arrive at the sought-for 

result. For instance, if it is known that 132 tickets cost £165, how much will be paid 

for 183 tickets? The right “saying” goes somewhat as follows [4]: “If 132 tickets cost 

£165, then 1 ticket costs 132 times less, or £165/132; and 183 tickets cost 183 times 

more, or £(165/132)  183, that is £228.75.” Here the type of tasks T is clearly 

delineated; and so is the propounded technique 0. As is often the case with 

arithmetic, the technology  of  is essentially embodied in the “technical discourse” 

above, that both activates  and explains—makes plain—its logic, thereby justifying 

it. As always, the “justifying efficacy” of  depends much on the apparent 

“naturalness” of the supposedly self-evident reasoning conveyed by the technical 

discourse recited (if n cost p, then 1 costs p/n, etc.). There exist, of course, other 

techniques. Some centuries ago, people would have said something like “132 is to 

165 as 183 is to price p”, writing down the “proportion” 132:165::183:p. Using the 

(technological) assertion that, in such a proportion, the product of the “means” (i.e. 

165 and 183) equals the product of the “extremes” (i.e. 132 and p), they would have 

arrived at the equation 165  183 = 132  p, which gives p = (165  183)/132 This 

formula appears to agree with the one found using 0, provided one knows the 

(technological) equality (a  c)/b = a/b  c. But this age-old technique –1 was 

technologically—not technically—more demanding, because the reason why the key 

technological assertion (about means and extremes) is true remains hidden—which, 

for most users, turns –1 into a recipe. 

The technique 0 can be modified in (at least) two subtly different ways. One consists 

in introducing an easy technological notion from daily life, that of unit price, which 

leads to a technical variant of 0: “If 132 tickets cost £165, then 1 ticket costs 132 

times less, or £165/132, that is £1.25; and m tickets will cost m times more, or 

£1.25  m.” This technical variant 01 is a little bit more complex technically (by 

contrast, 0 skips the calculation of the unit price, though the technological concept of 

unit price is already implicitly present); but it provides more technological comfort to 

the layman. Another variant results from a decisive theoretical change. While people 

generally understand the expression “number of times” as referring to a whole 

number of times, as was the case in the tickets problem, a major advance in the 

history of numbers consisted in regarding fractions as true numbers, on a par with 

what came to be called natural numbers—fractional numbers being called by contrast 

artificial numbers. A second step forward, not yet taken by so many people, consists 
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in extending the scope of the expression “number of times” to include fractional 

numbers, so that, for instance, 183 is 183/132 times 132 (i.e. 183 = 132  183/132), 

from which it follows that the price of 183 tickets is 183/132 times the price of 132 

tickets, or 183/132 times £165, that is £165  183/132 (which is yet another 

resolvent). As long as one accepts to think in terms of fractional number of times, we 

have a new technique, 02, much more powerful and comfortable than 0 or 01. 

Knowing for instance that the price of 2988 tickets is £3735, we can now say that the 

price of 2012 tickets will be 2012/2988 times the price of 2988 tickets, i.e. 

£3735  2012/2988; etc. While the variation leading to 01 only called for a rather 

easy modification in the technique’s technological environment, here the change 

affects the theory itself, which in turn leads to a new technological concept, that of a 

fractional number of times. 

In mathematics as well as the sciences, praxeologies turn out to be no less incomplete 

than in other fields of human activity. Many aspects of a praxeology’s 

incompleteness are in fact linked to the impression of “naturalness” that so many 

people feel when they use (or even observe) this praxeology. Of course, the notion of 

naturalness undergoes institutional variations—let alone personal interpretations. But 

it is too often assumed that what is natural is, by definition, an unalterable given that 

does not have to be “justified.” This, of course, runs contrary to the scientific 

tradition, of which it is the ambition to unveil the figments of institutional or personal 

imagination. Thus the French mathematician Henri Poincaré (1902, p. 74) regarded 

the principle of mathematical induction as “imposed upon us with such a force that 

we could not conceive of a contrary proposition.” But almost at the same time, 

progress in mathematics showed that this supposedly self-existent principle could be 

derived from the well-ordering principle [4]. The same phenomenon had happened 

more than two centuries earlier. The leading character was then John Wallis. 

According to Fauvel, Flood, and Wilson (2013), here is what happened: 

On the evening of 11 July 1663, he lectured in Oxford on Euclid’s parallel postulate, and 

presented a seductive argument purporting to derive it from Euclid’s other axioms. As 

Wallis observed, his argument assumes that similar figures can take different sizes. 

Wallis found this assumption very plausible, and if it were true then the parallel postulate 

would be a consequence of the other axioms of Euclid. It does, however, imply a 

remarkable result: in any geometry in which the parallel postulate does not hold, that 

similar figures would have to be identical in size as well as in shape, and so scale copies 

could never be made. (pp. 129-130) 

Seventy years later, Girolamo Saccheri was to observe that Wallis “needed only to 

assume the existence of two triangles, whose angles were equal each to each and 

sides unequal” (Bonola, 1955, p. 29). Wallis’s proof of the parallel postulate [5] 

opened the way to a major change that we can subsume under a broader historical 

pattern. By making explicit a theoretical property of Euclidean space—“To every 
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figure there exists a similar figure of arbitrary magnitude” (Bonola, 1955, p. 15)—, 

Wallis reduced the incompleteness (in ATD’s sense) of Euclidean geometry as a 

praxeological field. But he contributed much more to the mathematical sciences: he 

discovered a constraint that, until then, had been taken for granted (and thus ignored) 

and which turned out to be crucial in the development of geometry, in that it drew a 

clear demarcation line between Euclidean geometry and the yet to come non-

Euclidean geometries. 

At this point we must introduce another key notion of ATD: that of condition, 

stealthily used in the behavioural sciences (through the idea of conditioning or being 

conditioned) and akin to more widespread notions such as cause, variable, and factor. 

Didactics is defined in ATD as the science of the conditions of diffusion of 

knowledge to persons and within institutions. More generally, ATD views any 

science—including mathematics—as studying a certain kind of conditions with a 

bearing on human life and its environments. In this respect, given an institutional 

position p, it is usual (and useful) to distinguish, among the set of conditions 

considered, those that could be modified by the people occupying position p, and 

those which cannot be altered by these people (though they could be modified by 

those in some position p’  p). Any science seeks to accrue knowledge and know-

how in order to make the most of prevailing conditions and, in the case of constraints, 

to create new positions for which these constraints become modifiable conditions. 

Now, before doing so, it is necessary to identify such conditions and constraints, and 

this is precisely what happens in the Wallis episode, where the Euclidean constraint 

of invariance by similarity is brought out as a key theoretical property. At the same 

time, revealing some constraint usually brings forth alternative conditions that had 

gone unnoticed until then—non-Euclideanism, in the case at hand—and which 

become new objects of study. It must be stressed here that a science doesn’t know in 

advance the complete set of conditions and constraints it has to cope with: 

constructing this set is, by nature, a never-ending task. All these considerations 

extend to any field of activity, whose praxeological equipments are the outcomes of 

facing sui generis conditions and constraints. We have now arrived at a position 

where it makes sense to revert to the question from which we started. 

WHAT IS A THEORY? 

It must be emphasized here that the interrelated notions of technique, technology and 

theory do not refer so much to “things” as to functions. A technique is a construct 

which, under appropriate conditions, performs a determined function—the technical 

function. The same may be said about technology and theory, which respectively 

perform the technological and theoretical functions. Up to a point, these last two 

functions look weakly distinguishable—indeed, any contrastive definition is sure to 

be plagued with counterexamples. Obviously, there are some general criteria 

allowing one to discern the technological from the theoretical: the first of them is 
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regarded as more concrete, more specific and straightforward, while the second one is 

approached as being more abstract, more general, more meditative and far-fetched, as 

if it were reminiscent of its origins. Also, as has been already highlighted, in an 

intellectual tradition that has persisted to this day, the second one is valued more 

highly than the other. But these considerations may impede the recognition of an 

essential phenomenon: the use which is often made of words like theory refers to the 

explicit aspects of an entity which we described as definitely subjected to 

inexplicitness and incompleteness. 

From the point of view of ATD, it appears that the technological and theoretical 

components of a praxeological organisation—that is to say, its logos part—are almost 

always misidentified, because the usual view of them tends to focus on their 

“explicit” part, which looks generally pretentious and assumptive. This tendency 

clearly shows through the case 2 of the definition of theory given by the English 

Wiktionary: “(sciences) A coherent statement or set of ideas that explains observed 

facts or phenomena, or which sets out the laws and principles of something known or 

observed.” This of course is representative of a dominant theory about... theories. 

Moreover, theory is often liberally used to label what boils down to a few guidelines 

or precepts which, taken together, do not function as the theory of any clearly 

identified object; for a theory should always be a theory of something, built around 

the scientific ambition to study this “something”. 

The metonymic use of theory is no problem in itself: when one says that ATD is a 

theory of “the didactic”, theory refers, as is usual in mathematics for example, to the 

whole of a praxeological field. But it is a symptom of our propensity to give the word 

free rein with the uneasy consequence that the debate on theory is deprived of its 

object. By contrast, ATD conduces to focus the research effort on examining the 

implicit, unassuming or even wanting parts of technologies and theories. It then 

appears that a theory is made up of two main components, that we may call its 

“emerged part” and “immersed part”. To avoid engaging here in a titanic work, we 

summarize in two points the constant lesson that praxeological analysis consistently 

teaches us. Firstly, the immersed part of a theory—in mathematics and, as far as we 

know, elsewhere—is replete with inexplicit tenets that are necessary to keep the 

emerged part afloat. Secondly, these tenets have surreptitious, far-reaching 

consequences, which often go unnoticed and usually unexplained at both the 

technological and the technical levels. What people do and how they do it owes much 

to “thoughts” unknown to them—unknown, not unknowable. 

In ATD a theory is thus a hypothetical reality that assumes the form of a (necessarily 

fuzzy) set of explicit and implicit statements about the object of the theory. A theory 

is in truth the current state of a dialectic process of theorisation of which it offers an 

instantaneous and partial view that may prove delusive. The study and exploration of 

a theory is tantamount to furthering the very process of theorisation. One main 
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feature of this process is that it allows for the expansion of too often ad hoc, punctual 

praxeologies [T /  /  / ] into deeply-rooted global praxeologies [Tij / ij / i / ]. 

The process of theorisation, as well as the networking of theorisations, has thus a 

liberating effect, in which, by the way, the use of well-chosen terms and symbolic 

notations helps achieve mental hygiene and theoretical clarity in bringing about what 

Bachelard once called the asceticism of abstract thought. 

NOTES 

1. See for instance the list proposed on the page at http://www.collinsdictionary.com/dictionary/english/theory. 

2. The word sublation is the traditional rendering in English of Hegel’s notion of Aufhebung. According to Wikipedia 

(“Aufheben”, n.d.), “in sublation, a term or concept is both preserved and changed through its dialectical interplay with 

another term or concept. Sublation is the motor by which the dialectic functions.” 

3. A synecdoche is a phrase in which a part of something is used in order to refer to the whole of it. 

4. See at http://en.wikipedia.org/wiki/Mathematical_induction#Equivalence_with_the_well-ordering_principle 

5. For Wallis’s proof in modern form, see, for example, Martin, 1975, pp. 273-274. 
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DISCRIMINATORY NETWORKS IN MATHEMATICS 

EDUCATION RESEARCH 

Russell Dudley-Smith 
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This paper is written in an organisational language developed in the context of 

mathematics education by Dowling (2009, 2013) - social activity method (SAM) - as 

a commentary on Radford’s (2008, 2014) discussion of theoretical networking. An 

exemplar is given of SAM’s approach of recontextualising, and thus learning from, 

what it finds of interest elsewhere – here, Chevallard’s Anthropological Theory of the 

Didactic (ATD). The approach puts emphasis on the autonomy and emergent quality 

of well-formed research activity. SAM is not, however, solipsistic: it is designed to 

recursively self-organise in relation to what it encounters elsewhere but on the 

explicit basis of its own principles. By biasing a reading of ATD, SAM’s 

organisational language develops in the form of a discriminatory research network.   

Keywords: Anthropological Theory of the Didactic, deformance, discriminatory 

research networks, recontextualisation, Social Activity Method. 

INTRODUCTION 

Writing about theoretical networking presents a formidable challenge. This paper 

looks at the connectivity between just two research programmes in the domain of 

mathematics education research, Social Activity Method (Dowling, 1998, 2009, 2013 

– hereafter SAM) and the Anthropological Theory of the Didactic (hereafter ATD; 

Bosch and Gascón, 2014) together with one meta-theory of theoretical networking 

(Radford, 2008, 2014). This already involves three specialised assemblages of 

principles and tacit knowledges: to introduce all three would exceed the space 

available. This limitation is addressed by considering the other approaches as an 

illustration of how, from SAM’s point of view, theoretical networking might be 

achieved. For this reason it is the principles of SAM that are given most emphasis: 

these are then used to select principles from the other approaches. This means that the 

principles of ATD and Radford’s meta-theory must, fundamentally, be misread – 

what I shall refer to as a (I hope, productive) deformance of them. 

SAM has in common with some other research in mathematics education an interest 

in the specificity of social activity in the context in which it is produced and 

reproduced (see especially Dreyfus & Kidron, 2014: 87). Its focus is on the strategies 

that lead to emergent alliance in that action and thus (re)produce the socio-cultural. I 

first introduce the central Domains of Action Schema of SAM. This provides 

principles for further application of the method in forming a regard on both ATD and 

Radford’s work. One part of this schema – the esoteric domain – is then considered in 

greater detail to allow a discussion of the continuities and discontinuities between 
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SAM and ATD. A new schema is then generated to bias a reading of ATD from the 

regard of SAM. The conclusion places the findings in the context of the recent 

literature on theoretical networking. 

The question I address is: what can a strongly institutionalised research programme in 

mathematics education (SAM) make of another such strongly institutionalised 

approach (ATD)? How does this allow SAM to learn and thus deform itself? It needs 

the greatest emphasis that SAM makes no assumptions at all about what ATD might 

or might not learn because SAM assembles only its own principles. A secondary 

question is: what light does this shed on the need for meta-theories to conceptualise 

theoretical networking such as the one proposed by Radford?  

For the purpose of clarity and to summarise the position and rationale of the paper:  

well-formed research activities are incommensurable - they are emergent and not 

graspable as such, even by themselves. The term “continuity” between theories can 

refer only to those metonymic chains of signifiers that are of interest to the 

recontextualising regard of the theory in question – hence also the possibility of 

discontinuity. To claim otherwise, I argue, is counter to fundamental socio-semiotic 

and socio-semantic principles (sense is made locally in the context of an assembled 

practice not outside of it). It also involves an infinite regress: the claim of similarities 

or points of contact between theories begs the question of what is the theory that 

allows such similarity to be discerned.  

INTRODUCING THE DOMAIN OF ACTION SCHEMA 

1 Public Domain 

Radford’s (2008, 2014) discussion of “networking theories” in mathematics 

education research recontextualises some aspects of Lotman’s (2001) semiotics to 

introduce “the semiosphere as a theory networking space”. Of particular interest is 

the resulting delimitation of theoretical work as “bounded” by the principles that 

grant its “autonomy”. Radford (2008: 319) produces a description of the mathematics 

research semiosphere that is in “constant motion”; accelerating as information is 

transmitted and received with new technologies. Autonomy of a theory within the 

semiosphere is given by a hierarchical order of principles, methodology and research 

questions in which the system (Radford, 2008: 320) of principles is in regulative 

control. The potential for networking theories is then a question of their closeness of 

principle. Some theories are too far apart to work well together, others may have 

surprising affinities yet to be articulated. Generally, we may be experiencing a 

drifting apart: networking might stabilise this, at least for a time. 

This paper is written in SAM: the selection of, and extracts from, Radford’s paper are 

motivated by its common interest in the terms given emphasis in the paragraph above 

such as autonomy and system. But these are expressions not specialised in SAM; and 

neither is their content - see the axes of Figure 1. My summary of Radford’s position 

is in the public domain of SAM – involving weakly institutionalised (I-) expression 
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and content (Dowling, 2009: 206) from the regard of SAM. Radford’s language is a 

highly specialised one in its own terms; but these specialised terms are not recruited 

in the institutionalisation (I+) of SAM. Figure 1 expresses SAM’s self-reference: as a 

research activity it articulates specialised expression and content in its esoteric 

domain, for example “domain of action”. 

    Figure 1: Domains of Action (from Dowling 2009: 206) 

            Content (signifieds) 

Expression (signifiers)        I+       I- 

I+   esoteric descriptive 

I- expressive   public 

 

2 Esoteric Domain 

Radford’s “autonomy” is, from SAM’s regard, recontextualised into the esoteric 

domain of SAM by transforming the semiotic basis of action. Figure 1 schematises 

this as a socio-semantics rather than a semiosphere – institutionalisation 

(recognisable regularity of practice) occurring as research activity where flows of 

strategic semiosis (gestures, images, words) are assembled in more or less stabilised 

emergent alliances. The principles of action in the esoteric domain regulate what can 

be recognised/realised in the public domain. Weakly institutionalised terms such as 

autonomy and semiosphere are alienated in favour of I+ terms such as those given 

emphasis in this section. This is a deformance: the “encounter” (Radford, 2008: 317) 

read through the principles of SAM. Yet the expressive domain ensures that self-

reference need not become solipsism: the “identity” (Radford, 2008: 319) of the self-

reference changes in its engagement with the other. 

3 Expressive Domain 

The deformance involved in expressive domain action can be illustrated with respect 

to the expression “networking theories”. (a). Network. Eco (1984: 81) characterises 

the semiosphere (in his terms the global semantic universe) as a labyrinthine 

rhizomatic net.  

The main feature of a net is that every point can be connected with every other point, and 

where the connections are not yet designed, they are, however, conceivable and 

designable. A net is an unlimited territory […] the abstract model of a net has neither a 

center nor an outside. (Eco, 1984: 81).  

A network is not a net (fishing, internet, tuber or any other). The metaphoric 

expression nonetheless points to potentially productive specialised content. Perhaps 

its most significant aspect is that a network cannot be described as a whole or from a 

global point of view; because any attempt at such a description is immediately re-

inscribed as new connectivity – an infinite regress. So a different interpretative mode 
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becomes necessary. (b). Theory. At the nodes of the network, Radford has 

“theories”. The discursive bias of this term is ameliorated to some extent by the 

composition of the “triplet” to include principles (these may be predominantly tacit), 

methodology and the “template” of research questions. Yet from SAM’s regard there 

is some danger of the term being read as implying potential representational 

adequacy (the global all-seeing net). For this reason the phrase institutionalised 

research activity or approach has been preferred above.  

ASSEMBLAGES OF MATHEMATICAL MODES 

In its most recent development SAM has considered the esoteric domain of school 

mathematics to be constituted as an assemblage of strategies, a term recontextualised 

from Deleuze (Deleuze and Parnet, 2007 [1997]: 69; Turnbull, 2000: 44). As a 

sociology, SAM is concerned with the distributional consequences of the ways 

alliances emerge through strategic action in the social: these indicate (never quite fix) 

the norms of who can say, think, or do what (including in school mathematics).  

    Figure 2: Modalities of the Esoteric Domain Apparatus (Dowling 2013: 333) 

 Semiotic Mode 

Mode of Action Discursive Non-Discursive 

Interpretative theorem/enunciation template/graph 

Procedural procedure/protocol operational matrix/operation 

 

An assemblage is specified by SAM as a relational schema – Figure 2 - that can be 

contingently recruited in the (re)production of school mathematics. The dimension 

semiotic mode distinguishes discursive (explicitly articulated principles, methods and 

symbols, for example formulae) from non-discursive modes of mathematical 

engagement (diagrams, equipment such as a compass). The dimension mode of action 

opposes interpretative and procedural activity: in the former case where there is work 

to be done in making sense of the semiotic mode (formulae, diagrams), in the latter 

case where there are rules or sequences to be followed (discursively ordered 

heuristics, non-discursive techniques for manipulating the compass or computer 

software appropriately). This establishes four general strategies: template, 

operational matrix, procedure and theorem. Further, the second term of each strategy 

in the table denotes local rather than generalising action. 

 

The schema suggests competence in that discipline (or anything else) is not acquired 

as such but is constituted by the development of a pragmatic ability to contingently 

deploy a mixture of strategies in local context – upon which action the assemblage 
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and those whose alliances will be distributed by it will develop or change. Figure 2 is 

thus an introduction to the technology for generating empirical description in SAM - 

see the many further schemas in Dowling, 2009. These pin down modes of action. 

This is not a speculative space: it arose from an empirical engagement with a number 

of mathematical settings (Dowling, 2013). 

A RECONTEXTUALISATION OF ATD 

Dowling (2014: 528) has noted that Chevallard’s Anthropological Theory of the 

Didactic (ATD) also makes use of a “complementary” concept of recontextualisation 

– didactic transposition – although with a primary focus on the contextualisation of 

cultural sense-making in pedagogic settings. The schema of the assemblage is 

potentially in dialogue with ATD’s vision of schools as providers of discoveries 

along the way of research and study paths (Chevallard, 2012) contingent to the 

opening up of a body of questions found to be of interest as the research unfolds. In 

what follows the “amalgam” of the praxeologique (Artigue et al., 2011: 2) is 

recontextualised within the assemblage of SAM – a deformative re-ordering.  

Consider the praxeological components [T/τ/θ/Θ] of problematic (task), technique, 

technology and theory (Artigue, Bosch & Gascon, 2011; Chevallard & Bosch, 2014). 

ATD notices a key dichotomy between praxis and logos: thus, for example, in the 

university some action (Bosch, 2014) is seen to hive off  [θ/Θ] from [T/τ]. This has 

proved a fruitful distinction: thus, for example, Job & Schneider (2014) use this 

framework to make a productive separation of the pragmatic praxeology of the 

development of calculus and the (rather monumentalising) deductive praxeology of 

analysis imposed on mathematics undergraduates – with school mathematics very 

much a hotchpotch of elements from both. However, the amalgam [T/τ/θ/Θ] is 

conceived as containing the “ingredients” (Artique et al., 3) of a didactic situation – 

the elements of a situation to be enumerated.  

SAM would recontextualise this (i.e. from the regard of ATD must didactically 

transpose this) by noticing that the idea of a praxeologique can be schematised. First, 

it is possible to distinguish what I will call operationalising and orientation. 

Orientation concerns what one is about in a specific context: practically as embodied 

as a problématique, logo-centrically as informed by theory. The former involves low 

discursive saturation (DS-) as it is embedded in the situated interests or (Maussian) 

habitus of context. The latter is discursively saturated (DS+) i.e. context free. 

Operationalising involves techniques – in SAM’s terminology “DS- skills” or ways 

of doing – as well as DS+ “technological discourse” (Bosch and  Gascón, 2014: 69). 

 

  Figure 3: Praxeological Modes 

             Discursive Saturation 
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Mode of Action           DS-        DS+ 

Operationalising     technique (τ)  technology(θ)  

Orientation problématique (T)    theory (Θ) 

                  skill             discourse  

In Figure 3 this produces four strategies rather than components. In SAM’s research 

activity the development of schemas such as Figure 3 allows a particular kind 

(without exclusion of others such as ATD) of regulated engagement with the 

empirical. One orienting strategic mode of this is given discursively by the theory-

logos Θ; self-referentially in SAM’s case, particularly the semiotics imbricated in the 

raison d’être of the operationalising technology-logos θ of its schemas. Yet much is 

tacitly acquired: the DS- orientation of SAM’s emergent problématique T – a concern 

with emergent alliance - is difficult to explain to novitiates outside a context of 

apprenticeship. Operationalising - including questions of methodology (Hickman & 

Monaghan, 2013) – is also composed of strategies of practical technique τ. Certainly 

these can be aggregated in homology with ATD: the DS- modes identified by ATD as 

[T/τ] can be identified as skill, the DS+ strategies of [θ/Θ] as discourse (Dowling, 

2009: 95); but the recontextualisation now sees each as a strategic mode rather than 

an element of an amalgam.  

The central dichotomy of ATD can then be seen to have been specified in only one 

dimension. From SAM’s regard this is an unnecessary reduction. Yet once 

relationised in this way, SAM and ATD (from the deforming regard of SAM) have 

the same objective: the open play of strategies in the assemblage of Figure 2 and in 

the praxeological modes of Figure 3. These point to the principles for a resistance to 

the closed and syncretic esoteric domains typical of school disciplinary subjects 

precisely of the kind Job & Schneider (2014) identify. In learning it is then both 

operationalising and the orientation of the student to the regularities of practice in 

both the DS- and DS+ that would establish apprenticeship  

In ATD the theory of didactic transposition acknowledges that school is a specific 

context of pedagogic relations – thus of any practice inaugurated there. As with SAM, 

ATD thus resists ontologising. In SAM this is expressed as a matter of 

recontextualising action conceived as a general socio-semantic process of 

structuration, i.e. in constituting the esoteric domain of a specialised social activity 

such as school mathematics. In the precursors to ATD this is to be resolved by a 

“simulated” (Brousseau, 1997: 35) reprise of some aspects of phylogeny to constitute 

ontogeny in the teacher’s crafting of appropriate didactic transposition; but from 

SAM’s point of view the principle of recontextualisation makes this an impossible 
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task as the tacit skills of the original problem context are lost. In more recent 

programmes for ATD (Chevallard & Bosch, 2014) the T of the current milieu of the 

child (in reference to its sociality outside the school) is given appropriate emphasis – 

this is so often tragically downplayed by policy makers. 

As Radford (2008: 322) observes, research questions derive from the principles that 

allow their articulation. The focus in ATD is on the provision of appropriate activity 

(and the elimination of the inappropriate) to open to the child the possibilities of what 

was to become mathematics. To ATD the school may (and often does) block this 

possibility but this is incidental to the possibility. For SAM, within the research 

programme identified by Jablonka, Wagner & Walshaw (2013), the content of school 

mathematics is itself always-already recruited in processes of social reproduction – 

the particular alliances (and, of course, oppositions) formed in the schoolroom 

always different to those formed in research (for example, mathematics research). 

NETWORKING MODES 

In Figure 4 I have recontextualised Lotman’s (2001) distinction between what Eco (in 

Lotman, 2011:xi) has labelled rule-based and repertoire-based texts. The former 

recite (for example textbooks), the latter transform (e.g. good research). The second 

dimension distinguishes whether the communication is on the basis of a presumption 

of the same, or some other, code. Consider first strategies of equivalence.  

   Figure 4: Networking Modes 

 Message 

Code Rule Repertoire 

Same equivalence development 

Other restriction renewal 

   literalisation                   deformance 

For example, many academic papers recite antecedent work – as I have done above in 

my introduction to SAM. Sometimes the claim to be operating under the same code 

makes the equivalence seem a little stretched, but these are strategies not truths; such 

strategies are based on an expectation of symmetry – that is, that the literal message 

will be received as the same by both parties.  

Even if there are two humans, one sending, one receiving the text, equivalence 

establishes monologic relations between them. Monologism is also enforced by 

restriction strategies. Some researchers have claimed literal elements of SAM’s 

messages (for example the Domains of Action Schema (DAS) above) for themselves 

on an explicit rejection of SAM’s code. Thus, as I discuss further in Dudley-Smith 

(2015), for Straehler-Pohl & Gellert (2013: 321) Dowling (1998) is an exercise in 
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Saussurian structuralism; a code in conflict with functional linguistics on which 

Bernstein’s (2000) sociology of education, the code to which they subscribe, relies. 

The DAS (Figure 1) is then territorialised by them as a literalised message in the form 

of a procedure-rule for the analysis of monologic texts but one restricted to those 

circumstances that do not violate the chosen code. Symmetry conditions continue to 

apply: the implicit assumption is that this text can be transplanted into this other code 

whilst retaining its literal content. 

The development of research must also involve dialogic reactivation; where 

sedimented messages inform a repertoire when they are taken asymmetrically 

(Lotman, 2011: 127). Here there is alliance in code (shared principles of a 

recognisable research activity) but texts are realised (rather than just recognised) as 

repertoire in ways that change their (con)texts and thus change the network node. 

This recontextualises Radford’s (2008) emphasis on the importance of networking for 

the evolving “identity” of an autonomous research activity. It is exciting to see 

researchers making contributions to SAM that put emphasis on the asymmetry of 

development: see particularly Jablonka & Bergsten (2010), Burke, Jablonka & Olley 

(2014), and Burke (2015) all of which present potentially productive new relational 

schemas. 

This leaves one further networking strategy identified in Figure 4. In this paper I have 

taken elements of Lotman’s semiotics as expressive (Figure 1) of potential 

dimensions in the developing (Figure 4) content of SAM’s esoteric domain. This is 

certainly a double deformation. Lotman’s work is semiology, SAM’s sociology: these 

are different codes. Lotman’s rule and repertoire – appropriated via Eco – are 

recontextualised as a strategic dimension rather than taken as a fundamental 

dichotomy. An openness to such otherness renews. This formalises Radford’s (2014: 

285) emphasis on the importance of “unresolved synthesis” to deepen (in SAM’s 

terms) self-reference.  

CONCLUSION 

The argument considered the way in which SAM might stand in productive relation 

to other theoretical frameworks and to itself. From the autonomous and self-

referential regard of SAM this must be a matter of the principle of 

recontextualisation, as that is what organises its regard. The self-reference is 

fundamental; but it is not a solipsism unless foolishly demanding that its categories 

replace all others to totalise the net. Both development and renewal are possible via 

an openness to the empirical and to theoretical antecedents. To formalise the situation 

in the form of a general argument, let the operator  refer to the recontextualising 

regard of an approach, ABC, to mathematics education research, and let ESi be a 

particular empirical setting.  

If one has SAM  ESi  and, elsewhere, ABC  ESi  then recognition of commonality would require 

a general unifying framework, GUF, such that GUF  (SAM  ESi, ABC  ESi) to integrate an 
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answer to “perspectives of what?”. This would deny that ESi is constituted as an artefact of SAM or 

of ABC (the many observations in NTRPME (2014) that the data was not collected appropriately 

for the theoretical framework concerned). Rather, networking occurs as SAM  (ABC  ESi) 

ΔSAM with possible answerability of the form ABC  (SAM (ABC  ESi))  ΔABC & etc. 

In each case (Figure 4) the recontextualisation is either misrecognised through literalisation or 

constituted as a deformative chiasmus (Merleau-Ponty, 1968). For obvious reasons SAM cannot 

totally catch its own tail: SAM  (SAM  ESi) also ΔSAM; hence the importance of the 

dialogic (even if with yourself), a potentially infinite recursion.  

Certainly “” here can be read as “didactic transposition”: but in SAM the content of 

that expression, recontextualised as recontextualisation, is generated through schemas 

such as those introduced above. The general argument rejects the idea that there is a 

“landscape of strategies for connecting theoretical approaches” (Prediger, Bikner-

Ahsbahs & Arzarello, 2008: 170) in favour of the deformative determination of 

autonomous self-reference. In terms of their key diagram (Prediger, Bikner-Ahsbahs, 

2014: 119), there is no role here for understanding, comparison, synthesis or 

integration, no “relationships between parts of theoretical approaches” (ibid., 118). It 

is not a question of attempting to find “similarities and differences” (ibid., 119) but to 

be open to deformative encounters - allowing these to prompt further self-

organisation. It is the possibility of complementarity, not commonalities, that defeats 

“isolation”, and the principle of recontextualisation that annihilates “global unifiers” 

who put forward GUFs. In Lotman’s (2001: 143) semiotics, as in SAM’s social-

semantics, the principle of asymmetry is paramount – information-enriching activity 

deforms. Four modes of connection were discerned (many more are possible with this 

technology). Two of these use indiscriminate networking to tie literal bonds of 

alliance. Only those strategies that understand the productivity of deformance in self-

reference allow the connection of Discriminatory Research Networks as ways of 

increasing information.  
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SECONDARY MATHEMATICS TEACHER CANDIDATES’ 

PEDAGOGICAL CONTENT KNOWLEDGE AND THE 

CHALLENGES TO MEASURE 
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In this presentation, the authors will discuss pedagogical content knowledge of 

secondary mathematics teacher candidates in Turkey. The discussion is depend on 

comparisons between senior students from secondary mathematics education and 

mathematics departments in terms of their pedagogical content knowledge  measured 

by Teacher Education and Development Study in Mathematics (TEDS-M) released 

items. In addition to comparison of two groups, there will be discussion on the 

challenges to measure pedagogical content knowledge. 

 

INTRODUCTION 

Teacher knowledge and its components have been described and modeled in different 

ways by different researchers (Shulman, 1986; Ball et al., 2008; Franke & Fennema, 

1992; Tatto et al., 2008). However, it can be said that many teacher knowledge 

approaches have been influenced by the Shulman’s (1986) model of teacher 

knowledge. Shulman made an important contribution by categorizing teacher content 

knowledge as Subject Matter Knowledge (SMK) and Pedagogical Content 

Knowledge (PCK). As Petrou and Goulding (2011) stated, in Shulman model, the 

most influential categories was the new concept of PCK. Shulman (1986) described 

PCK as “special amalgam of content and pedagogy that is uniquely the province of 

teachers, their own special form of professional understanding” (p. 9). According to 

him as the requirement of PCK, teachers need to know using representations, 

illustrations, analogies, and demonstrations and also giving examples and explaining 

concepts in order to make them understandable.     

Shulman’s conceptualization of teachers’ knowledge provided a basis for research 

field of mathematics education. The knowledge that mathematics teachers need to 

acquire for teaching was described with the Mathematical Knowledge for Teaching 

(MKT) model which is the refinement of Shulman’s categorization (Ball, Thames & 

Phelps, 2008). MKT model categorize SMK and PCK into six subcomponents. Ball 

(2003) defined the subcomponents of PCK by reconsidering Shulman’s 

categorization. The components are Knowledge of Content and Students, Knowledge 

of Content and Teaching and Knowledge of Curriculum.  
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Although MKT model has been widely used model, there are some criticism about it. 

This model was developed considering elementary and middle school mathematics 

teachers but not secondary. So, it is argued that components of MKT do not meet the 

mathematical need for secondary mathematics teachers (Zazkis & Leikin, 2010). The 

claim is that “the higher the level taught, the more the teacher needs to know” 

(Usiskin, 2001, p. 86) so the nature of mathematics that secondary teachers need to 

know is at the much higher level than elementary teachers. According to Zazkis and 

Leikin (2010), Advanced Mathematical Knowledge (AMK) which is defined as 

knowledge of subject matter acquired during undergraduate studies at universities, is 

necessary knowledge for teaching mathematics in secondary level. So, it can be said 

that since generally SMK is prerequisite for PCK (Shulman, 1986), specifically in 

secondary level AMK is also necessary for PCK. However, it is not sufficient 

because PCK includes the knowledge of content and teaching and knowledge of 

content and students and knowledge of curriculum (Ball et al., 2008). Therefore, 

classroom experiences and practices are also important for the development of PCK. 

Researchers argue that there is interaction between SMK, PCK, beliefs and practices 

(Franke & Fennema, 1992; Walshaw, 2012; Türnüklü, 2005). However, PCK has a 

special importance because it is influenced by all the others; SMK, practice and 

belief. It can be said that PCK has multidimensional nature. Wilson (2007) claims 

that this complex nature makes it difficult to investigate PCK by using efficient 

measures. Even though developing scalable efficient measures for content knowledge 

for teaching is difficult (Wilson, 2007), researchers tried to develop rigorous, 

effective and valid instruments to measure mathematics teachers’ knowledge (Hill et 

al., 2004; Krauss et al., 2008; Tatto et al., 2008).  

One of the mathematics teacher knowledge instruments is Teacher Education and 

Development Study in Mathematics (TEDS-M) measure. TEDS-M is a cross-national 

study in which 17 countries participated but Turkey was not involved. The 

characteristics that differentiate TEDS-M measure than others are to consider both 

primary and secondary levels and to be designed for international usage and national 

adaptations. Differences in students’ achievement level in Trends in International 

Mathematics and Science Study (TIMSS) encouraged researchers to study on teacher 

education internationally in order to investigate how mathematics teaching quality 

differs across countries. Therefore, TEDS-M measure was developed to examine 

future mathematics teachers’ mathematical knowledge for teaching based on TIMSS 

2007 framework of content areas and cognitive domains. By considering such 

characteristics of the measure, in this study, TEDS-M secondary released items were 

used for the investigation of secondary mathematics teacher candidates’ mathematical 

knowledge for teaching.  

METHODS 

Participants 
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In Turkey both graduates of secondary mathematics teacher education departments 

and mathematics departments (after completing teaching certificate program) have 

chance to be mathematics teachers in secondary schools. Therefore, the participants 

of the study were senior students from secondary mathematics teacher education 

departments (n = 47) and senior student from mathematics departments (n = 48) in 

two universities in Istanbul. Totally, 32 females and 15 males senior secondary 

mathematics education students (the mean age is 24) and from mathematics 

departments 35 females and 13 males students (the mean age is 22) were participated 

in this study. These two universities were ranked as first and second among the 

secondary mathematics education departments in national university entrance exam. 

In the first ranked university, students enroll mathematics and secondary mathematics 

education programs by getting similar scores from university entrance exam. In the 

second university, minimum score of secondary mathematics education department is 

little higher than mathematics department. 

These two programs have different curriculum in undergraduate education programs.  

Secondary mathematics education program includes 50 % content knowledge and 

skills, 30 % professional teaching knowledge and skills and 20 % general knowledge 

courses (YÖK, 2007). However, undergraduate program in mathematics department 

consists of 70 % content knowledge and 30 % general knowledge. Moreover, 

participants of the study were asked to explain whether they had an informal teaching 

experience like tutoring or teaching in cram school. As they stated, 76 % of 

secondary mathematics education students and 70 % of mathematics students had 

informal teaching experiences. 

Instrument  

The instrument was designed by TEDS-M researchers considering the framework of 

Trends in International Mathematics and Science Study (TIMSS) 2007 (Tatto et al., 

2008). MCK items comprised of four content areas: number, algebra, geometry and 

data and three cognitive dimensions: knowing, applying and reasoning. Furthermore, 

MPCK items consist of two parts: knowledge of curricula planning and interactive 

knowledge about how to enact mathematics for teaching and learning. These were 

aligned with PCK domains in literature. Table 1 and Table 2 show the distributions of 

MCK and MPCK items according to content and cognitive domains and PCK 

components. (Figures 1 & 2 are examples of MCK items and Figure 3 & 4 are 

examples of MPCK items in Appendix.) 

 

Cognitive  

Domain 

Content Domain 

Algebra Geometry Number Data Total 

Knowing - 2 4 - 6 
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Applying 5 4 - 1 10 

Reasoning 2 1 4 - 7 

Total 7 7 8 1 23 

Table 1. MCK Secondary Items 

 Content Domain 

Algebra Geometry Number Data Total 

Curriculum and 

Planning 
4 - - - 4 

Enacting 1 - 3 1 5 

Total 5 0 3 1 9 

Table 2. MPCK Secondary Items 

These items include 23 mathematics content knowledge (MCK) and 9 mathematics 

pedagogical content knowledge (MPCK) items with three different item formats: 

multiple choice, complex multiple choice and open constructed response.  

In order to compare MKT of participants who were studying in different departments 

Turkish translated versions of TEDS-M secondary level released items were used. 

The method which was used while translating the instrument consists of three phases. 

Firstly, items translated in Turkish by the researcher who is fluent in English. The 

translated items were reviewed by a mathematics educator who is expert in the 

content area and fluent in English, a three-year experienced mathematics teacher who 

is fluent in English and a professional translator. At the second phase, the original 

tests were administered a group of preservice mathematics teachers who are native in 

Turkish and fluent in English. The same group took the translated versions of tests 3 

weeks apart. At the last phase, the method of back translation was used to check the 

quality of translation and to investigate linguistic or conceptual errors in translation. 

Also it was used to consider particular attention to sensitive translation problems 

across cultural correspondence of the two versions. 

Data Collection and Analysis 

The data was collected from participants in a single point in different times. 

Instrument administered to senior students during the last two weeks of spring 

semester of 2012-2013 academic year just before they graduate.  

After data collection all items were scored according to scoring guide of TEDS-M 

Secondary Items. Participants’ scores acquired from 23 MCK items were calculated 

and called as MCK scores and scores obtained from 9 MPCK items were calculated 

and called as MPCK scores. Total scores of participants were also calculated by the 

summation of MCK and MPCK scores.  
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These two groups of participants’ scores were compared by using appropriate 

statistical methods. For total scores and MCK scores comparisons independent 

sample t-test was used since the all assumptions were met. For the comparison of 

MPCK scores non-parametric Mann-Whitney U test was used since the normality 

assumption was violated.  

RESULTS 

Participants’ scores that obtained from 47 senior students from mathematics teacher 

education department and 48 senior students from mathematics department were 

compared. Table 3 shows means and standard deviations of two groups of 

participants. 

 M SD 

Total 
Math Teacher Education 26.83 3.96 

Math 23.63 4.42 

MCK 
Math Teacher Education 20.45 3.35 

Math 17.50 3.80 

MPCK 
Math Teacher Education 6.38 1.19 

Math 6.13 1.35 

Table 3. Means and Standard Deviations  

The results of t-test indicate that the total mean score of mathematics teacher 

education students is significantly 3.2 points higher than those from mathematics 

department, t (93) = 3.72, p < .001 and Cohen’s d = .76 with the marginal large effect 

size (Cohen, 1988).  Also, independent sample t-test results showed that students 

from mathematics teacher education have significantly higher MCK scores than 

mathematics students, t (93) = 4.00, p < .001, Cohen’s d = .82 with the large effect 

size (Cohen, 1988). Moreover, according to Non-parametric Mann-Whitney U test 

there is no significant difference between them according to MPCK scores, Z = 1.00, 

p > .05. 

 

 

DISCUSSION AND CONCLUSION 

The study aimed to compare the mathematical knowledge for teaching of students 

who will graduate from mathematics teacher education department and who will 

graduate from mathematics department. In Turkey, graduates of both departments 

have chance to be mathematics teachers at secondary level but the graduates of 

mathematics departments need to take teaching certificate before teaching at public 
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schools. However, the knowledge and skills that graduates are able to acquire through 

these programs are different than each other. For example, the contents of 

undergraduate education programs of these departments are notably different. 

Mathematics departments’ program does not consist of any pedagogy or education 

courses but includes more advanced mathematics courses than mathematics education 

departments’ program. Therefore, the result was an unexpected that mathematics 

students, who were not required to take any teaching related courses, were not 

significantly different than students from mathematics teacher education in terms of 

MPCK scores.  

This unexpected result may be explained by discussing the nature of PCK for 

secondary level mathematics teaching. Even though, teacher education programs are 

the most influential factors that affect PCK of teacher candidates, there are other 

factors when the nature of PCK considered. PCK includes knowledge of “the ways of 

subject that comprehensible to others” (Shulman, 1986, p. 9). It may be 

conceptualized not only as knowledge of students' thinking and conceptions, but also 

knowledge of explanations, representations and alternative definitions of 

mathematical concepts, and knowledge of multiple solutions to mathematical tasks 

(Shulman, 1986; Ball et al., 2008; Krauss, Baumert, & Blum, 2008). So, teaching 

experiences play an important role in the development of teachers’ PCK (Ball et al., 

2008). Because of this, teacher education programs include many teaching 

experiences opportunities like field experience and practicum. Moreover, both groups 

of students who were studying mathematics teacher education mathematics 

department had informal teaching experiences like tutoring and teaching in cram 

school. Having this kind of teaching experience may explain the result. But this may 

not be the unique reason. Measuring and assessing PCK is another issue which 

should be considered by focusing on its nature in order to explain the results of study.     

In secondary level, for achieving the specialized knowledge for teaching these kinds 

of knowledge require Advanced Mathematical Knowledge (AMK) which is defined 

as the knowledge of the subject matter acquired at universities (Zazkis & Leikin, 

2010). Mathematics departments’ students take many advanced mathematics courses 

and they develop their AMK. It should be noted that AMK is necessary but not 

sufficient condition for achieving the specialized knowledge for teaching in 

secondary level (Zazkis & Leikin, 2010).  

Therefore, as it is seen, in PCK’s multidimensional nature, deep mathematical 

knowledge plays an important role because it can provide teachers to use effective 

explanations, representations and alternative definitions. These components may 

contribute to make an explanation for the unexpected result of the study. For 

example, when MPCK items were examined according to required knowledge and 

skills needed to give correct answer, the need for AMK might be observed. One of 

the questions in secondary instrument (Figure 3 in appendix) asks to determine 



CERME 9, TWG 17, Collected papers, January 2015  

 

62 

 

whether the knowledge is needed to prove the quadratic formula.  This question 

measures knowledge of content and teaching but without knowing how to prove 

quadratic formula it is not possible to give correct answer. So, it is not easy to 

differentiate and measure this kind of knowledge and skills. Difficulty in measuring 

PCK may explain the unexpected result that there is no difference in MPCK scores 

between two groups of students.  

Moreover, in this study PCK was tried to be measured by a few items (4 questions, 8 

items). Therefore, only some domains of PCK and some abilities were able to be 

measured with these items. However, as Shulman (1986) and Ball et al. (2008) stated, 

PCK requires different kinds of knowledge, tasks and skills. This instrument can only 

address some of them. Table 2 shows the distribution of content and PCK domains of 

items, and below table (Table 3) shows the intended abilities for each items.  

Questions 

(Items) 

Content 

Domain 
PCK Domain Intended Ability 

1                       

(b) 
Algebra Enacting 

Analyze why one word problem is 

more difficult than the other. 

6                 

(a, b, c) 
Number Enacting 

Determine whether student's response 

is valid proof. 

9                   

(a, b, c, d) 
Algebra 

Curriculum 

and Planning 

Determine if knowledge is needed to 

prove the quadratic formula. 

12                   

(b) 
Data Enacting 

Explain student's thinking about 

histogram. 

Table 3. TEDS-M Secondary PCK Items’ Characteristics 

Two different groups of participants’ reactions to these PCK items are different. For 

example, item 9b (Figure 1) were answered correctly by 97 % of mathematics 

department students and 86 % of students from secondary mathematics education 

department. On the other hand, 72 % of students from secondary mathematics 

education department answered item 1b (Figure 4 in appendix) correctly, when 52 % 

of mathematics department student gave correct response.  

APPENDIX 
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Figure 1. An example of TEDS-M Secondary MCK items (Number, Knowing) 

Figure 2. An example of TEDS-M Secondary MCK items (Algebra, Reasoning) 

Figure 3. An example of TEDS-M Secondary MPCK items (Algebra, Planning) 

Figure 4. An example of TEDS-M Secondary MPCK items (Algebra, Enacting) 
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This paper presents some theoretical considerations concerning the relationships 

between epistemology and didactics. We distinguish two big issues that show the 

mutual enrichment of both fields. On the one hand, considering teaching and 

learning phenomena as part of the empirical basis of epistemology enables proposing 

new epistemological models of mathematical bodies of knowledge. On the other 

hand, these epistemological models provide guidelines for the design and analysis of 

new teaching proposals, which, in turn, show the constraints coming from the 

spontaneous epistemologies in school institutions. Some critical open questions 

derived from these issues draw up the guidelines for a future research programme. 

PEDAGOGY, EPISTEMOLOGY AND DIDACTICS 

What distinguishes didactics of mathematics (or of any other field of knowledge) 

from general education or pedagogy is the status given to the knowledge or “content” 

that is taught and learnt. Pedagogy considers the knowledge to be taught as a given, 

and focuses on the best, conditions or practices to teach and learn it: the knowledge is 

not problematic, the relationships of the students to it are (Chevallard 1999). In 

contraposition, didactics locates the epistemological problem at the core of the 

analysis. A double assumption is meant by this. First, that phenomena underlying 

teaching and learning processes, at school as well as in other social institutions, are 

closely dependent on the content that is designed to be taught, actually taught and 

learnt, and also on how this content is considered by the participants of the teaching 

and learning process. Second, that the study of these phenomena is also strongly 

dependent on the way knowledge is considered and modelled by researchers in 

didactics. In fact, the main point of the paper is to describe a research programme that 

wants to clarify the problem of how to teach (and learn) mathematics and its 

relationship with the problem of what is considered as mathematics. 

The pedagogical dimension of teaching and learning phenomena refers to generic 

practices, discourses, strategies and regularities that can be described regardless of 

the content to be taught. The didactic dimension is reached when the concrete 

mathematical activities organised by the teacher and carried out by the students, as 

well as any other fact affecting the delimitation, construction, management, evolution 

and assessment of these activities are considered.  
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The need to integrate both the pedagogical and the epistemological dimensions was 

one of the main motivations for Guy Brousseau to promote the construction of a new 

field of knowledge called didactics of mathematics and which he contributed to with 

the first formulations of the theory of didactic situations during the decade 1970-1980 

(Brousseau 1998). We are here pointing out two main reasons for this integration that 

will later on be at the basis of the problematic issues we wish to raise. The first one is 

the dependence between the dominant epistemologies of mathematics (or of any other 

field of knowledge) at an educational institution and the way teaching is organised in 

this institution. In other words, the way mathematics and its specific bodies of 

knowledge are considered in a given institution, usually as implicit assumptions, 

affects the conditions established for its learning. In this sense, we can say, 

rephrasing Brousseau (1998), that teaching organisations are supported by 

spontaneous epistemologies appearing to the subjects of the school institution as the 

unquestionable and transparent way to conceive the content to be taught.  

The second main reason, also put forward by Brousseau, is related to the 

implementation of research results wishing to improve teaching and learning. 

Whatever general strategies or conditions we may find at the pedagogical level, 

teachers will always have to specify them in terms of what ties them to the students: 

the knowledge-based learning activities. Of course, it is possible to delimit general 

pedagogical phenomena affecting any content to be taught and to propose general 

pedagogical actions in order to improve teaching and learning processes. However, 

eventually, these actions will need to be concretized and converted into didactic facts 

and strategies, that is, to specific ways of organizing mathematical contents and 

designing mathematical activities for the students. 

Once the necessity to integrate the “epistemological problem” into the “teaching and 

learning problem” is assumed, there are different levels to take the epistemic 

dimension of the teaching and learning process into account. In some cases, the focus 

can be on a given piece of knowledge (“proportionality”, “limits of functions”, 

“linear equations”), or a whole area (“algebra”, “calculus”, “statistics”), thus 

considering specific models relying on a more or less explicit conception of what 

mathematics is and how it can be described. Therefore it can be said that the 

consideration of the didactic problem needs to include, in one way or another, a 

specific answer to the epistemological problem. To properly interpret the deep 

interrelation between the epistemological and didactical problems, we will now 

present a historical development of the object of study of each discipline and their 

respective empirical basis. 

THE EVOLUTION OF THE EPISTEMOLOGICAL AND THE TEACHING 

PROBLEMS 

In a previous study, Gascón (2001) describes a rational reconstruction of the 

evolution of the epistemological problem and, in parallel, the evolution of the 
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didactic problem showing that a certain convergence exists between them. The 

evolution of the epistemological problem can be interpreted as a successive 

expansion of what is considered as the object of study and of the consequent 

empirical basis used to approach it. Briefly speaking, this work shows that the nature 

of the epistemological problem began as a purely logical problem (EP
1
), became a 

historical problem (EP
2
)

 
and ended up being considered, at the end of the last century, 

as an essentially cognitive problem (EP
3
). Its successive formulations together with 

its corresponding tentative answers can be outlined as follows: 

EP
1
: How to stop the infinite regress to get a logical justification of mathematical 

theories? 

EPA
1
: Euclidean models: logicism (Rusell), formalism (Hilbert) and intuitionism 

(Brower). 

EP
2
: What is the logic of the development of mathematical discovery? 

EPA
2
: Quasi-empirical models (Lakatos) 

EP
3
: What are the tools and mechanisms found in history and psychogenesis of the 

development of mathematical discovery? 

EPA
3:

 Constructivist models (Piaget & García, 1982). 

This evolution of the epistemological problem can be interpreted as a progressive 

detachment from logical procedures and an approximation to empirical sciences such 

as history and psychology. This expansion continues since the 70s, with the inclusion 

of sociological data. Indeed, sociologists such as Barry Barnes and David Bloor, and 

later others like Bruno Latour, heavily influenced by the ideas of Thomas Kuhn, tried 

to highlight the essential social nature of scientific research. Let us notice, however, 

that, apart from Kuhn’s mention of the “textbooks epistemology” (Khun, 1979), none 

of these approaches seem to consider empirical phenomena related to the teaching, 

learning and disseminating of mathematics. The division between pedagogy and 

epistemology appears to be taken for granted in this research domain also. 

All of the previously mentioned epistemological models can be related to general 

teaching models, ranging from theoricism (organizing the teaching of mathematics 

following the logic construction of concepts) and technicism (exerciting the main 

techniques in a given domain without many theoretical tools), to constructivism, 

which aims to enable students to construct knowledge according to certain 

predetermined stages. 

Gascón (1993) shows some limitations of the empirical basis used by constructivism 

to address the epistemological problem. In fact, while taking into account personal 

psychogenesis data, in some sense completed with those provided by the history of 

science, it does not integrate didactic facts and, can thus hardly explain institutional-

depending phenomena as the so-called “personal" construction of knowledge. In 

other words, and according to Chevallard (1991), the study of the genesis and 
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development of knowledge (traditional object of epistemology) cannot be separated 

from the study of the diffusion, use and transposition of knowledge (object of study 

of didactics). 

It is at this point where both problems, the epistemological and the didactic one, 

converge, with the consequently significant expansion of the object of study of both 

disciplines. Historically, this time corresponds to the first formulations of the theory 

of didactic situations (TDS) proposed by Guy Brousseau in the early 1970s 

(Brousseau, 1998). It is no coincidence that at this early stage of didactics of 

mathematics, Brousseau initially considered to name this new discipline 

“experimental epistemology”. In particular, didactics of mathematics accepted the 

responsibility to elaborate and use epistemological models of mathematical bodies of 

knowledge as a new way to study didactic phenomena, thus turning the pedagogical 

problem into an epistemological-didactic one. 

New questions arise from this perspective: What new general epistemological 

theories, based on which empirical data, may serve to support new teaching 

organizations in order to overcome the limitations of the current ones? To what extent 

and by what means can the dominant spontaneous epistemologies in a teaching 

institution be changed in solidarity with the teaching models based on them? 

AN ANSWER TO THE EPISTEMOLOGICAL-DIDACTIC PROBLEM  

The anthropological theory of the didactic (ATD), following the research programme 

initiated by the theory of didactic situations, considers a specific model of 

mathematical knowledge and its evolution formulated in terms of a dynamical 

sequence of praxeologies. Praxeologies are entities formed by the inseparable 

combination of a praxis or know-how made of types of tasks and techniques, and of a 

logos or knowledge consisting of a discourse aiming at describing, explaining and 

justifying the praxis (Chevallard, 1999). In didactics research, mathematical 

praxeologies are described using data from the different institutions participating in 

the didactic transposition process, thus including historical, semiotic and sociological 

research, assuming the institutionalized and socially articulated nature of 

praxeologies. Furthermore, a dialogue with the APOS theory shows how data 

interpreted as the different levels of development of schemes by psychogenetic 

developments, can be reformulated in ATD in terms of the institutional evolution of 

praxeologies (Trigueros, Bosch, & Gascón, 2011).  

Reference epistemological models as sequences of praxeologies 

To describe and analyse the specific contents that are at the core of teaching and 

learning processes, the general model in terms of praxeologies is structured in an 

articulated set of specific models of the different areas of the mathematical activity at 

stake called reference epistemological models (REM) (Barbé, Bosch, Gascón, & 

Espinoza, 2005; Bosch & Gascón, 2006). The Reference Epistemological Model of a 
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body of knowledge is an alternative description of that body of knowledge elaborated 

by researchers in order to question and provide answers to didactic facts and 

problematic aspects taking place in a given institution. This REM prevent researchers 

to take for granted how this body of knowledge is conceived in the institution 

considered. For instance, Ruiz-Munzón (2010) and Ruíz-Munzon, Bosch, & Gascón 

(2013) present a REM about elementary algebra which is used to analyse the status 

and role of this area of school mathematics in relation to arithmetic and functional 

modelling. The model takes into account the processes of didactic transposition to 

explain what is currently taught as algebra at school and provides a rationale to this 

area that does not coincide with the official and more limited one assigned by the 

educational system. Some of the difficulties in the teaching and learning of 

elementary algebra can then be referred to these limitations and new teaching 

proposals can be designed to overcome them (Ruiz-Munzón, 2010; Bosch, 2012).  

In this REM, algebra is interpreted as a tool for modelling any type of (mathematical 

and extra-mathematical) systems and the process of algebraization is divided into 

three stages. The first one concerns the passage from the execution of computation 

programmes (sequences of arithmetic operations on numbers like the ones carried out 

when solving an arithmetic problem) to the written or rhetoric description of their 

structure; the second stage requires the symbolic manipulation of the global structure 

of written computation programmes (not only simplifying and developing, but also 

“cancelling”, etc.); at the third stage, the whole manipulation of formulas is reached.  

It is important to note that this REM is not a static description of a piece of 

mathematical knowledge, it also suggests a dynamical process to introduce 

elementary algebra: starting from the study of arithmetic computation programmes 

(CP) in order to motivate the entrance into the second stage of algebraization by the 

limitations of the rhetorical formulation of CPs in the first stage. Encountering 

problematic questions in this arithmetical work with CP may generate the need to 

build a written symbolic formulation of these CP to globally manipulate their 

structure, thus promoting the need to establish symbolic codes (hierarchy of 

operations and bracket rules).  

In a similar way, different REM of other specific areas of mathematics have been 

proposed, all formulated in terms of sequences of related praxeologies: limits of 

functions (Barbé et al 2005), proportionality (García, 2006); (Hersant, 2001), 

measure of quantities (Chambris, 2010), real numbers (Bergé, 2008), (Rittaud & 

Vivier, 2013), among others. In general, the organisation of a teaching process based 

on the REM of a given mathematical content is called research and study activities. 

From teaching of contents to enquiry processes: study and research paths 

These reference epistemological models correspond to previously established bodies 

of mathematical knowledge: algebra, limits, proportionality, etc. They provisionally 
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assume the delimitations of mathematical knowledge provided by the school and the 

scholarly institutions, which are then often redefined. In order to also take into 

account enquiry processes that start with the consideration of problematic questions 

to be solved (instead of pre-established contents to be learnt), REM have been 

enriched with the proposal of the Herbartian schema (Chevallard, 2006) (Chevallard, 

in press). This scheme is a useful tool to observe, analyse and evaluate existing and 

potential didactic processes that start with the consideration of a generating question 

and evolve with the search of partially available answers (“contents” to be learnt) and 

the construction of new answers through the interaction with a milieu.  

The study of a specific question leads to a rooted-tree of derived questions and 

provisional answers, which outlines the generating power of the initial question and 

the possible paths to follow. We thus obtain new reference epistemological models 

assigned to problematic questions instead of pre-established praxeological contents. 

Winsløw, Matheron, & Mercier (2013) provide several examples of this kind of 

rooted-tree REM, such as the dynamics of a population or the trajectory of a three-

point shot in basketball. The enquiry process of a particular generating question 

materializes in an open didactic organisation called a study and research path (SRP). 

During the development of SRP, the need for new knowledge to solve some of the 

derived questions found in the path usually leads to the activation of study and 

research activities. 

Didactic praxeologies emerging from reference epistemological models 

The previous section briefly outlined how the design, implementation and analysis of 

study and research paths and study and research activities call for the activation of 

specific didactic techniques and creates new types of didactic tasks. For instance, in 

the case of elementary algebra illustrated above, the didactic technique proposed by 

Ruiz-Munzon (2010) consists in introducing the study of “mathemagic” games of the 

sort “Think of a number, apply these calculations […], you get 73” as generating 

questions. How do you explain the magician’s trick?” These games generate the need 

to look for new pieces of answers, in the manipulation of the calculation programmes 

proposed or in their transformation and generalisation through algebraic symbolism. 

Questions based on “mathemagic” games allow producing an important number of 

computation programmes economically. They are presented to the students without 

much artificiality and their first contact with computation programmes is not 

problematic. Moreover, the limitations of the rhetorical and numerical formulations 

of computation programmes inevitably appear and they do so soon enough.  

PROBLEMATIC ISSUES 

The aim of this paper is to formulate some problematic issues at the crossroads of 

epistemology and didactics. We will initially explain them within the context of the 

ATD before extending the questioning to other didactic approaches. If we try to 
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characterize a didactic approach by how “pedagogy” and “mathematics” are 

integrated, in the case of the ATD such integration can be formulated in terms of two 

movements. They appear in the design, management and evaluation of teaching and 

learning processes and can briefly be described as follows: 

(1) Starting from the analysis of teaching and learning processes at school and 

considering an empirical basis of study that is large enough to include the processes 

of didactic transposition, all this empirical work provides tools to design specific 

REMs for the main mathematical contents or areas that are designed as knowledge to 

be taught. We can define this movement as “using didactic facts and phenomena to 

produce epistemological models”. 

(2) Conversely, the principles and criteria that have guided the construction of a REM 

for a specific area of school mathematical activity and, in particular, the contrast 

between the rationale assigned by the REM to this area and its official (explicit or 

tacit) role in school mathematics, all provide some mathematical and didactic tools to 

design, manage and evaluate teaching and learning processes based on study and 

research paths sustained by that REM. This movement can be defined as “using the 

epistemological model as the core of didactic tools”. 

This double movement raises different open issues which are at the starting point of 

the research programme we want to propose in this paper. 

New didactic needs 

We have seen how previously elaborated REM on mathematical contents or 

problematic questions (obviously complemented with other methodological design 

tools) can provide criteria for the design and implementation of teaching and learning 

processes that are considerably different from the existing ones. In principle, they aim 

at organising activities that should allow the students to carry out new mathematical 

tasks and techniques in a more autonomous, functional and justified way. The 

“mathemagic” games in the case of elementary algebra (Ruiz-Munzón, 2010) or the 

different enquiry processes described in Winsløw, Matheron, & Mercier (2013) are 

good examples of this enrichment. Obviously, these new didactic organisations 

should be made available to the study community and their viability in different 

school institutions should be tested.  

It is important to emphasize that all didactic approaches and theories are also based 

on general models of mathematical-didactic activities. These general models are a 

particular way to interpret the mathematical activity and to conceptualize the study 

process of mathematics (teaching, learning, diffusion and application). Even though 

these models are not always clearly spelled out, they remain an essential feature of 

theoretical approaches, as they strongly affect the type of research problems this 

approach can formulate. Two crucial questions arise:  
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 In the case of ATD, how to transform the REM into possible didactic 

organisations that could live in current school institutions? How to take into 

account the interrelation between the REM and the didactic phenomena appearing 

in the implementation of these new didactic organisations? How to make this 

process available to the school institutions, especially to the profession of 

teachers?  

 How is this mutual enrichment between the epistemological and didactic 

proposals taken into account in other theoretical frameworks? 

New epistemological needs 

The empirical analysis of the study processes taking place in various institutions (for 

example, but not exclusively, in schools) clearly shows that the didactic praxeologies 

are closely related to the epistemological tools available in the institution to describe 

and manage the mathematical praxeologies. For example, in the institutions where the 

dominant model is Euclidean, teaching and learning processes are conceived and 

described in terms of didactic activities around “definitions”, “concepts”, “theorems”, 

“proofs” and “applications”. In addition, these didactic activities tend to be 

hierarchically structured according to the logical construction of mathematical 

concepts (real numbers before limits, limits before derivatives, etc.). 

If, instead of analysing traditional teaching processes, we look at those based on 

didactic research, the situation is very similar: how didactic processes and the 

dynamics of mathematical praxeologies are designed, described and managed also 

depends on the tools provided by the epistemological model which upholds, more or 

less explicitly, the didactic approach considered. The further this research-based 

epistemological model is from the dominant epistemological model at schools and 

scholarly institutions, the more difficult it becomes for teachers to carry out 

innovative teaching proposals designed within this frame.  

In all these cases, the most remarkable feature is the shortage and inadequacy of tools 

available in the teaching institution to describe, manage, and evaluate the dynamics 

of mathematical activity. This lack of tools could in the first place be attributed to the 

scarcity of spontaneous epistemological models and, in particular, to the shortage of 

the Euclidean epistemological model of mathematics whose supremacy is still 

present, to a greater or lesser extent, in most institutions.  

 Which new notions or tools are needed to describe and manage the dynamics of 

the mathematical activity that will take place in study processes? How to describe 

these tools depending on the role addressed (didactic researcher, teacher and 

students)? How to make them available in the teaching institution and to the 

participants of the didactic process? 

The evolution of didactic-epistemological models 



CERME 9, TWG 17, Collected papers, January 2015  

 

74 

 

In order to establish an alternative and rich enough REM of a specific mathematical 

domain or questioning, it is necessary to take into account the didactic phenomena 

taking place in teaching institutions. This leads to an enrichment of the spontaneous 

epistemological model during the first design of the REM. However, it is important to 

keep the process running during the implementation and the evaluation of teaching 

proposals based on this REM. The consequent evolution of the REM is a clear 

example of the dynamic and provisional nature of the epistemological models 

elaborated by didactics, evolving from its initial proposals through the analysis of 

empirical facts.  

From a mathematical perspective, these continuous evolutions of the REMs can be 

seen as the incorporation of new notions and organisations into the field of 

knowledge. This phenomenon can be related to the transformation of some 

paramathematical notions into mathematical concepts, as happened with concepts 

(such as “set”, “function”, “continuity”, “graphs”, etc.), a transformation which takes 

place as long as researchers deal with new problems. For instance, in the case of 

elementary algebra, the notion of “computation programme” is a new and crucial 

element of the proposed REM. In the experiences described by Ruiz-Munzón (2010), 

this notion played a very ambiguous role in the management of the teaching and 

learning processes, given the fact that it did not belong to the official mathematics to 

be taught and the teacher did not feel at ease with it. A similar phenomenon happened 

when implementing SRP on population dynamics with notions such as “quantities”, 

“model”, “system”, “mixed and separated generations”, etc.  

 Another important and difficult question is the degree of explicitness that should 

be adopted with the new epistemological models necessary to design, implement 

and evaluate new teaching and learning processes depending on the participants of 

the study communities addressed (students, teachers, mathematicians, etc.).  

 What kind of similar experiences can be learnt from other approaches? Did they 

find similar difficulties? 

These open questions establish a new research programme where the results of 

previous investigations carried out within the ATD should be analysed together with 

analogous research from other perspectives. In all cases, the status given to the 

epistemological dimension in didactics analysis seems to appear as a crucial question 

to take into account. 
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Different theories assume that learning mathematics should be based on 

constructivist methods where students inquire problem - situations and assign a 

facilitator role to the teacher. In a contrasting view other theories advocate for a 

more central role to the teacher, involving explicit transmission of knowledge and 

students’ active reception. In this paper we reason that mathematics learning 

optimization requires adopting an intermediate position between these two extremes 

models, in recognizing the complex dialectic between students’ inquiry and teacher’s 

transmission of mathematical knowledge. We base our position on a model with 

anthropological and semiotic assumptions about the nature of mathematical objects, 

as well as the structure of human cognition. 

Key words: mathematical instruction, inquiry learning, knowledge transmission, 

onto-semiotic approach, mathematical knowledge 

INTRODUCTION  

The debate between the models of a school that "conveys knowledge” and others in 

which "knowledge is constructed" currently seems to tend towards the latter. This 

preference can be seen in the curricular guidelines from different countries, which are 

based on constructivist and socio-constructive theoretical frameworks:  

 “Students learn more and learn better when they can take control of their 

learning by defining their goals and monitoring their progress. When 

challenged with appropriately chosen tasks, students become confident in their 

ability to tackle difficult problems, eager to figure things out on their own, 

flexible in exploring mathematical ideas and trying alternative solution paths, 

and willing to persevere” (NCTM, 2000, P. 20).  

In the case of mathematics education, problem solving and "mathematical 

investigations" are considered essential for both students’ mathematical learning and 

teachers’ professional development. Constructivist viewpoints of learning shift the 

focus towards the processes of the discipline, practical work, project implementation 

and problem solving, rather than prioritizing the study of facts, laws, principles and 

theories that constitute the body of disciplinary knowledge. 

Nevertheless, this debate is hiding the fact that students differ in skills and 

knowledge, and most of them need a strong guidance to learn; even when some 

students with high skills and knowledge can learn advanced ideas with little or no 
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help. The issue of the type of aid needed, depending on the nature of what is to be 

built or transmitted is also missed in this debate. Consequently of this situation, the 

question of the kind of help that a teacher should give to a usually heterogeneous 

class, when we want students acquire mathematical knowledge, understandings and 

skills, also arises. 

The family of "Inquiry-Based Education" (IBE), "Inquiry-Based Learning" (IBL), 

and "Problem-Based Learning" (PBL) instructional theories, which postulate the 

inquiry-based learning with little guidance by the teacher, seem not to take into 

account the described reality, namely the students’ heterogeneity and the variety of 

knowledge to be studied. These models may be suitable for gifted students, but 

possibly not for the majority, because the type of help that the teacher can provides 

could significantly influence the learning, even in talented students. 

In this paper we analyse the need to implement instructional models that articulate a 

mixture of construction/inquiry and transmission of knowledge to achieve a 

mathematical instruction that locally optimize learning. The basic assumption is that 

the moments in which transmission and construction of knowledge can take place are 

everywhere dense in the instructional process. Optimization of learning involves a 

complex dialectic between the roles of teacher as instructor (transmitter) and 

facilitator (manager), and student’s roles as active constructor of knowledge and 

receivers of meaningful information. “Because a range of goals might be included in 

a single lesson, and almost certainly in a multi-lesson unit, the best or most effective 

teaching method might be a mix of methods, with timely and nimble sifting among 

them” (Hiebert & Grouws, 2007, p. 374).  

We support this mixed model of mathematical instruction in cognitive (architecture 

of human cognition) and onto-semiotic (regulative nature of mathematical objects) 

reasons.  

Below we first summarize the main features of instructional models based on inquiry 

and problem solving and secondly of models that attribute a key role to transmission 

of knowledge. We then present the case for a mixed model that combines 

dialectically inquiry and transmission, basing on the epistemological and didactical 

assumptions of the onto-semiotic approach to mathematical knowledge and 

instruction (Godino, Batanero & Font, 2007). Finally we include some additional 

reflections and implications. 

INQUIRY AND PROBLEM BASED LEARNING IN MATHEMATICS 

EDUCATION 

As indicated above, the acronyms IBE, IBL, PBL designate instructional theoretical 

models developed from several disciplines, which have parallel versions for the 

teaching of experimental sciences (IBSE) and mathematics (IBME). They attributed a 

key role to solve "real" problems, under a constructivist approach. In some 
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applications to mathematics education it is proposed that students construct 

knowledge following the lines of work of professional mathematicians themselves. 

The mathematician faces non-routine problems, explore, search for information, 

make conjectures, justify and communicate the results to the scientific community; 

mathematics learning should follows a similar pattern.  

Using problem – situations (mathematics applications to everyday life or other fields 

of knowledge, or problems within the discipline itself) to enable students making 

sense of the mathematical conceptual structures is considered essential. These 

problems are the starting point of mathematical practice, so that problem solving 

activity, including formulation, communication and justification of solutions are keys 

to developing mathematical competence, i.e. the ability to cope with not routine 

problems. This is the main objective of the "problem solving" research tradition 

(Schoenfeld, 1992), whose focus is on the identification of heuristics and 

metacognitive strategies. It is also essential to other theoretical models such as the 

Theory of Didactical Situations (TDS) (Brousseau, 1997), and Realistic Mathematics 

Education (RME) (Freudenthal, 1973; 1991), whose main features are described 

below. 

Theory of Didactical Situation (TDS) 

In TDS, problem - situations should be selected in order to optimize the adaptive 

dimension of learning and students’ autonomy. The intended mathematical 

knowledge should appear as the optimal solution to the problems; it is expected that, 

by interacting with an appropriate milieu, students progressively and collectively 

build knowledge rejecting or adapting their initial strategies if necessary.  

The intellectual work of the student must at times be similar to this scientific activity. 

Knowing mathematics is not simply learning definitions and theorems in order to recognize 

when to use and apply them. We know very well that doing mathematics properly implies 

that one is dealing with problems. We do mathematics only when we are dealing with 

problems—but we forget at times that solving a problem is only a part of the work; finding 

good questions is just as important as finding their solutions. A faithful reproduction of a 

scientific activity by the student would require that she produce, formulate, prove, and 

construct models, languages, concepts and theories; that she exchange them with other 

people; that she recognize those which conform to the culture; that she borrow those which 

are useful to her; and so on. (Brousseau, 2002, p. 22). 

To allow such activity, the teacher should conceive problem - situations in which 

they might be interested and ask the students to solve them. The notion of devolution 

is also related to the need for students to consider the problems as if they were their 

own and take responsibility for solving them. The TDS assumes a strong commitment 

with mathematical epistemology, as reflected in the meaning attributed to the notion 

of fundamental situation: “a situation which makes clear the raison d’être of the 

mathematical knowledge aimed at” (Artigue & Blomhoj, 2013, p. 803).  
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Another important feature of the TDS is the distinction made between different 

dialectics: action, formulation and validation, which reflect important specificities of 

mathematical knowledge.  

Realistic Mathematics Education (RME) 

In RME, principles that clearly correspond to IBME assumptions are assumed. Thus, 

according to the "activity principle", instead of being receivers of ready-made 

mathematics, the students, are treated as active participants in the educational 

process, in which they develop themselves all kinds of mathematical tools and 

insights. According to Freudenthal (1973), using scientifically structured curricula, in 

which students are confronted with ready-made mathematics, is an ‘anti-didactic 

inversion.’ It is based on the false assumption that the results of mathematical 

thinking, placed on a subject-matter framework, can be transferred directly to the 

students. (Van den Heuvel-Panhuizen, 1996). 

The principle of reality is oriented in the same direction. As in most approaches to 

mathematics education, RME aims at enabling students to apply mathematics. The 

overall goal of mathematics education is making students able to use their 

mathematical understanding and tools to solve problems. Rather than beginning with 

specific abstractions or definitions to be applied later, one must start with rich 

contexts demanding mathematical organization or, in other words, contexts that can 

be mathematized. Thus, while working on context problems, the students can develop 

mathematical tools and understanding. The guidance principle stresses also the same 

ideas. One of Freudenthal’s (1991) key principles for mathematics education is that it 

should give students a ‘guided’ opportunity to ‘re-invent’ mathematics. This implies 

that, in RME, both the teachers and the educational programs have a crucial role in 

how students acquire knowledge. 

“RME is thus a problem-solving approach to teaching and learning which offers 

important constructs and experience for conceptualizing IBME” (Artigue & Blomhoj, 

2013, p. 804). 

TRANSMISSION BASED LEARNING IN EDUCATION 

We consider as models based on knowledge transmission various forms of 

educational intervention in which the direct and explicit instruction is highlighted. A 

characteristic feature of strongly guided instruction is the use of worked examples, 

while the discovery of the solution to a problem in an information-rich environment 

is similarly a compendium of discovery learning minimally guided. 

For several decades these models were considered as inferior and undesirable 

regarding to different combinations of constructivist learning (learning with varying 

degrees of guidance, support or scaffolding), as shown in the initiatives taken in 

different international projects to promote the various IBSE and IBME modalities 
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(Dorier & Garcia, 2013; PRIMAS project). Transmission of knowledge by presenting 

examples of solved problems and the conceptual structures of the discipline is ruled 

by didactical theories in mathematics education with strong predicament, as 

mentioned in the previous section.  

The uncritical adoption of constructivist pedagogical models can be motivated by the 

observation of the large amount of knowledge and skills, in particular everyday life 

concepts, that individuals learn by discovery or immersion in a context However, 

Sweller, Kirschner and Clark (2007, p. 121) state that, 

 “There is no theoretical reason to suppose or empirical evidence to support the 

notion that constructivist teaching procedures based on the manner in which 

humans acquire biologically primary information will be effective in acquiring 

the biologically secondary information required by the citizens of an 

intellectually advanced society. That information requires direct, explicit 

instruction”.  

This position is consistent with the argument put forward by Vygotsky; scientific 

concepts do not develop in the same way that everyday concepts (Vygotsky, 1934). 

These authors believe that the design of appropriate learning tasks should include 

providing students an example of a completely solved problem or task, and 

information on the process used to reach the solution. “We must learn domain-

specific solutions to specific problems and the best way to acquire domain-specific 

problem-solving strategies is to be given the problem with its solution, leaving no 

role for IL” (Sweller, Kirschner, & Clark, 2007, p. 118). According to Sweller et al., 

empirical research of the last half century on this issue provides clear and 

overwhelming evidence that minimal guidance during instruction is significantly less 

effective and efficient than a guide specifically designed to support the cognitive 

process necessary for learning. “We are skillful in an area because our long-term 

memory contains huge amounts of information concerning the area. That information 

permits us to quickly recognize the characteristics of a situation and indicates to us, 

often unconsciously, what to do and when to do it” (Kirschner, Sweller, & Clark, 

2006, p. 76). 

STUDYING MATHEMATICS THROUGH AN INQUIRY AND 

TRANSMISSION BASED DIDACTICAL MODEL 

In the two previous sections we described some basic features of two extreme models 

for organizing mathematics instruction: discovery learning versus learning based on 

the reception of knowledge (usually regarded as traditional whole-class expository 

instruction). In this section we describe the characteristics of an instructional model 

in which these two models are combined: the students’ investigation of problem - 
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situations with explicit transmission of knowledge by the "teacher system"
1
 at critical 

moments in the mathematical instruction process. We consider that it is necessary to 

recognize and address the complex dialectic between inquiry and knowledge 

transmission in learning mathematics. In this dialectic, dialogue and cooperation 

between the teacher and the students (and among the students themselves), regarding 

the situation - problem to solve and the mathematical content involved, can play a 

key role. In these phases of dialogue and cooperation, moments of transmitting 

knowledge necessarily happen.  

The onto-semiotic complexity of mathematical knowledge and instruction 

The semiotic, epistemological and cognitive assumptions of the Onto-semiotic 

approach to mathematical knowledge and instruction (OSA) (Godino, Batanero & 

Font, 2007) are the basis for our instructional proposal, which recognizes a key role 

to both the inquiry and the transmission of knowledge in the teaching and learning of 

mathematics (and possibly other disciplines). This model takes into account the 

nature of mathematical objects involved in mathematical practices whose students’ 

competent performance is intended. 

The way a person learns something depends on what has to be learned. According to 

the OSA, students should appropriate (learn) the onto-semiotic institutional 

configurations involved in solving the proposed problem – situations. The paradigm 

of "questioning the world" proposed by the Anthropological Theory of Didactics 

(TAD) (Chevallard, 2013), and, in general, by IBE models is assumed, so that the 

starting point should be the selection and inquiry of "good problem – situation."  

The key notion of the OSA for modelling knowledge is the onto-semiotic 

configuration (of mathematical practices, objects and processes) in its double version, 

institutional (epistemic) and (cognitive). In a training process, the student’s 

performance of mathematical practices related to solving certain problems, brings 

into play a conglomerate of objects and processes whose nature, from the institutional 

point of view is essentially normative (regulative)
2
 (Font, Godino, & Gallardo, 2013). 

When the student makes no relevant practices, the teacher should guide him/her to 

those expected from the institutional point of view. Thus each object type (concepts, 

languages, propositions, procedures, argumentations) or process (definition, 

expression, generalization, ...) requires a focus, a moment, in the study process. In 

                                           
1
 This system can be an individual teacher, a virtual expert system, or the intervention of a "leader" student in a team 

working on a collaborative learning format.  
2
 This view of mathematical knowledge is consistent with that taken by Radford’s objectification theory. "Knowledge, I 

just argued, is crystallized labor - culturally codified forms of doing, thinking and reflecting. Knowing is, I would like to 

suggest, the instantiation or actualization of knowledge (Radford, 2013, p.16). Precisely ... Objectification is the 

process of recognition of that which objects us - systems of ideas, the cultural meanings, forms of thinking, etc.” (p. 23). 

In our case, such crystallized forms of work are conceived as cultural "rules" fixing ways of doing, thinking and saying 

faced to problem - situations that demand an adaptive response.  
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particular regulative moments (institutionalization) are everywhere dense in the 

mathematical activity and in the process of study, as well as in the moments of 

formulation / communication and justification. 

Performing mathematical practices involves the intervention of previously known 

objects to understand the demands of the problem – situation and implementing an 

initial strategy. Such objects, its rules and conditions of application, must be available 

in the subject’s working memory. Although it is possible that the student him/herself 

could find such knowledge in the "workspace", there is not always enough time or the 

student could not succeed; so the teacher and peers can provide invaluable support to 

avoid frustration and abandonment. These are the moments of remembering and 

activation of prior knowledge, which are generally required throughout the study 

process. Remembering moments can be needed not only in the exploratory / 

investigative phase, but also in the formulation, communication, processing or 

calculation, and justification of results phases. These moments correspond to acts of 

knowledge transmission and may be crucial for optimizing learning. 

Results of mathematical practices are new emerging objects whose definitions or 

statements have to be shared and approved within the community at the relevant time 

of institutionalization carried out by the teacher, which are also acts of knowledge 

transmission.  

Inquiry and transmission didactical moments 

Under the OSA framework other theoretical tools to describe and understand the 

dynamics of mathematics instruction processes have been developed. In particular, 

the notions of didactical configuration and didactical suitability (Godino, Contreras 

& Font, 2006; Godino, 2011). A didactical configuration is any segment of didactical 

activity (teaching and learning) between the beginning and the end of solving a task 

or problem – situation. Figure 1 summarizes the components and the internal 

dynamics of a didactical configuration, including the students’ and the teacher’s 

actions, and the resources to face the joint study of the task. 

The problem – situation that delimits a didactical configuration can be made of 

various subtasks, each of which can be considered as a sub-configuration. In every 

didactical configuration there is an epistemic configuration (system of institutional 

mathematical practices, objects and processes), an instructional configuration (system 

of teacher and learners roles and instructional media), and a cognitive configuration 

(system of personal mathematical practices, objects and processes) which describe 

learning. Figure 1 shows the relationships between teaching and learning, as well as 

with the key processes linked to the onto-semiotic modelling of mathematical 

knowledge (Font, Godino & Gallardo, 2013; Godino, Font, Lurduy, & Wilhelmi, 

2011). Such modelling, together with the teachers and learners roles, and their 

interaction with technological tools, suggest the complexity of the relationships 
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established within any didactical configuration, which cannot not be reduced to 

merely inquiry and transmission moments. 

 

Figure 1: Components and internal dynamic of a didactical configuration 

SYNTHESIS AND IMPLICATIONS 

In this paper we argued that instructional models based only on inquiry, or only on 

transmission are simplifications of an extraordinarily complex reality: the teaching 

and learning processes. “Classrooms are filled with complex dynamics, and many 

factors could be responsible for increased student learning. (…) This is a very central 

and difficult question to answer.” (Hiebert & Grouws, 2007, p. 371) 

Although we need to establish instructional designs based on the use of rich problem 

- situations, which guide the learning and decision-making at the global and 

intermediate level, local implementation of didactical systems also requires special 

attention to managing the students’ background needed for solving the problems, and 

to the systematization of emerging knowledge. Decisions about the type of help 

needed essentially have a local component, and are mainly teacher’s responsibility; 

he /she needs some guide in making these decisions to optimize the didactical 

suitability of the study process. 

We also have supplemented the cognitive arguments of Kirschner, Sweller, and Clark 

(2006) in favour of models based on the transmission of knowledge in the case of 

mathematical learning, with reasons of onto-semiotic nature: What students need to 
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learn are in a great deal, mathematical rules, the circumstances of its application and 

the required conditions for a proper application. The learners start from known rules 

(concepts, propositions, and procedures) and produce others rules that should be 

shared and compatible with those already established in the mathematical culture. 

Such rules (knowledge) must be stored in subject’s long term memory and put to 

work at the right time in the short-term memory. 

The scarce dissemination of IBE models in actual classrooms and the persistence of 

models based on the transmission and reception of knowledge can be explained not 

only by the teachers’ inertia and lack of preparation, but by their perception or 

experience that the transmission models may be more appropriate to the specific 

circumstances of their classes. Faced with the dilemma that a majority of students 

learn nothing,  get frustrated and disturb the classroom, it may be reasonable to 

diminish the learning expectations and prefer that most students learn something, 

even only routines and algorithms, and some examples to imitate. This may be a 

reason to support a mixed instructional model that articulates coherently, locally and 

dialectically inquiry and transmission. 
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MATHEMATICS COMMUNICATION WITHIN THE FRAME OF 

SUPPLEMENTAL INSTRUCTION – SOLO & ATD ANALYSIS  
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Faculty of science, Lund University, Sweden  

Teaching at Swedish primary and secondary school is often combined with 

collaborative exercises in a variety of subjects. One such method for learning 

together is Supplemental instruction (SI). Several studies have been made to evaluate 

SI in universities throughout the world, while at lower levels, hardly any studies have 

been made until now. The present study aimed at identifying learning conditions in 

SI-sessions two Swedish upper secondary schools. Within this study a combination of 

ATD (Anthropological Theory of Didactics) and the SOLO-taxonomy (Structure of 

the Observed Learning Outcome) was successfully tried as an analysis strategy.  

INTRODUCTION  

The teacher’s choice of education methods has a high influence on what students 

learn (Hattie, 2009), and education research has shown to add to a better 

understanding of the prospects of successful teaching (Good & Grouws, 1979; Hattie, 

2009; Hiebert & Grouws, 2007). In spite of previous education research, however, 

there is no clear answer to the question whether one method has advantages over the 

other or if whole-class teaching is more successful than "dialogue-teaching". 

To strengthen the findings researchers have argued that there is a need for more 

sophisticated research methods (Jakobsson et al, 2009). There is also a need for more 

systematic connection between various education research theories—so-called 

networking (Prediger et al, 2008). According to Prediger et al. (2008) the reasons that 

theories in mathematics education research have evolved differently are 

(1) mathematics education is a complex research environment, and (2) various 

research cultures prioritise different components of this complex field.  Different 

theories and methods have different perspectives and can provide different kinds of 

knowledge. Thus, different theories and perspectives can connect in different ways. 

An educational concept that still needs to be explored, and systematically connected 

with various theories, is the so-called Supplemental instruction. SI is a method where 

groups of students are provided peer collaborative learning exercises at meetings led 

by SI-leaders (Hurley et al., 2006). The method is used worldwide both at the 

university level and lower levels. To strengthen students’ knowledge in mathematics 

a number of upper secondary schools in Sweden have introduced SI as a complement 

to regular teaching.  
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AIM 

In this study SI-meetings were analysed in upper secondary school, with the purpose 

of gaining more insight into the conditions that may facilitate mathematics learning. 

One aim of the study was to choose a combination of established frameworks that 

could contribute to deepen the analysis of the students' discussions. With this aim, 

two frameworks with different focus were chosen and tested: (1) the development of 

mathematical activities was defined in terms of praxeologies. (Anthropological 

Theory of Didactics, ATD) (Chevallard, 2012; Winsløw, 2010), and (2) learning 

outcome quality was defined relative to the SOLO-taxonomy (Structure of the 

Observed Learning Outcome) (Biggs and Collis, 1982).  

The present paper aims at answering the two research questions: To what extent is a 

combination of SOLO and ATD a suitable strategy for analysing SI-sessions? Are 

these two frameworks compatible and complementary?   

THEORY & CONNECTING FRAMEWORKS 

Research needs theoretical frameworks. This was stated by Lester (2005), who 

argued that a theoretical framework provides a structure when designing research 

studies, and that a framework helps us to transcend common sense when analysing 

data.   

Below frameworks are discussed that have been important for the study. First, the 

concept Supplemental instruction is presented. Then follows a section about the 

SOLO-taxonomy – a framework for evaluating learning outcomes. Thereafter, the 

ATD-praxeology is presented, which is a framework for developing teaching 

situations and mathematics education. Finally, possibilities and challenges with 

combining frameworks are discussed.  

Supplemental instruction, or SI, is an educational method, used at universities in 

many countries. Students are asked to discuss and solve problems together, and SI is 

a complement to regular teaching. No teacher is present at the meetings (Malm et al., 

2011a). The groups are instead guided by an older student, who is supposed to 

provide peer collaborative learning exercises (Hurley et al., 2006). SI has lately been 

introduced in some upper secondary schools in Sweden. First year students solve 

mathematical problems together in small groups, while second and third year students 

serve as SI-leaders (Malm et al., 2012).  

In the early 1980s Biggs and Collis (1982) developed the SOLO-taxonomy for 

evaluating learning outcomes among students at tertiary level. SOLO, i.e. Structure of 

the Observed Learning Outcome, names and distinguishes five different levels 

according to the cognitive processes required to obtain them. The authors argued that 

SOLO is useful when categorising test results in closed situations with formulated 

expectations. They used five dimensions when categorising student responses into the 
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levels SOLO-1 (pre-structural, student misses the point and no knowledge is 

indicated), to SOLO-5 (Biggs and Collis, 1982, pp. 24 – 31 & 182). They also stated 

that SOLO describes a hierarchy where each partial construction [level] becomes a 

foundation on which further learning is built (Biggs 2003; Brabrand & Dahl, 2009). 

Later Claus Brabrand and Bettina Dahl (2009) used the SOLO-taxonomy for 

analysing (1) what curricula focus on and (2) what students actually learn. By using 

so-called active verbs (see below) the authors state it is possible to understand on 

which level of knowledge the text/speech is. 

SOLO 1 (pre-structural): student misses the point  

SOLO-2 (uni-structural): paraphrase, define, identify, count, name, recite, follow 

(simple) instructions 

SOLO-3 (multi-structural): combine, classify, structure, describe, enumerate, list, do 

algorithm, apply method 

SOLO-4 (relational): analyse, compare, contrast, integrate, relate, explain causes, apply 

theory (to its domain) 

SOLO-5 (extended abstract): theorize, generalize, hypothesize, predict, judge, reflect, 

transfer theory (to new domain) 

Brabrand & Dahl (2009) discuss whether the SOLO-taxonomy is applicable when 

analysing progression in competencies in university curricula. They conclude that 

SOLO can be used when analysing science curricula but they question whether 

SOLO is a relevant tool when analysing mathematics curricula. They write:  

For mathematics it is usually not until the Ph.D. level that the students reach SOLO 5 and 

to some extent also SOLO 4. The main reason is that to be able to give a qualified 

critique of mathematics requires a counter proof or counter example as well as a large 

overview over mathematics which the students usually do not have before Ph.D. level. 

[…] In fact, the same SOLO verbs can be used for different contents; hence progression 

in difficulty is not always reflected by the SOLO-progression in verbs. (Brabrand & 

Dahl, 2009) 

Other researchers, however, claim that SOLO is useful in various contexts. John Pegg 

(2010) has described three studies where SOLO has been used to analyse primary and 

secondary students’ learning mathematics. J. Pegg and David Tall (2005) argue for 

the use of SOLO in school development. In addition, Pegg (2010) states that SOLO 

helps to describe observations of students’ mathematics performance. John Hattie and 

Gavin Brown (2004) also describe SOLO as a useful tool in mathematics education. 

They use a strategy where mathematics exercises are formulated by using SOLO, and 

they claim it is possible to use SOLO when analysing children’s mathematics 

knowledge and when describing the processes involved in asking and answering a 

question on a scale of increasing difficulty or complexity.   



CERME 9, TWG 17, Collected papers, January 2015  

 

90 

 

Anthropological theory of didactics (ATD) is a theoretical framework for analysing 

and for developing mathematics education, which offers a handful of tools 

(Chevallard, 2006; Winsløw, 2010). One of these is the praxeology, and one of the 

overarching perspectives is the paradigm of questioning the world (Chevallard, 

2012). Yves Chevallard (2006), who first developed the theory of ATD, argues that 

within the paradigm of questioning the world, the curriculum is defined in terms of 

questions. Chevallard also states that “inquiry-based” teaching can end up in some 

form of “fake inquiries”, and he says that this most often is because the generating 

question of such an inquiry is but a naive trick to get students to study what the 

teacher will have determined in advance. Chevallard (2012) compares “the paradigm 

of questioning the world” with “epistemological monumentalism” which he argues is 

the traditional way of teaching mathematics. Students are there asked to “visit 

monuments” i.e. “knowledge comes in chunks and bits” without time for background 

or deeper understanding. 

While the paradigm of questioning the world defines the perspective of the 

curriculum, the ATD-praxeology makes a helpful tool for analysing the teaching 

situation. The praxeology can be described as a four-tuple consisting of: a type of task 

(T), a technique (τ), a technology (θ) and a theory (Θ) (Winsløw, 2010). The four 

constituents – if fully understood and used – can help to construct better education. 

Mortensen (2011) explains that task & technique are called the “practice block” or 

the “know how”, and technology & theory are called the “theory block” or the “know 

why”. Hence, a technique is used to solve a special task, while technology justifies 

the technique and a theory gives a broader understanding of the field. 

The ATD-praxeology could be applied at various levels of education. Winsløw 

(2006), for example, discusses how to use the praxeology when studying advanced 

mathematics, while Joaquim Barbé et al. (2005) suggest how to use ATD when 

studying classroom activities at upper secondary school. All together ATD is 

described as a theory showing the shortcomings or even paradoxes of didactic 

practices. Winsløw (2010) also states that ATD is useful when proposing ambitious 

ways to transform education. Also Bosch and Gascón (2006) argue that ATD has the 

tools to analyse the institutional didactic processes. 

No theory can deal with everything. Different theories and methods have different 

perspectives and can provide different kinds of knowledge. Looking at the same data 

from different perspectives can give deeper insights (Prediger et al., 2008). In this 

study, the ATD and SOLO frameworks were combined in order to study the 

conditions and outcomes of students’ learning through SI. The purpose of combining 

two frameworks was to catch the advantages of each of them, and hence, to 

contribute to mathematics education research and networking.  
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METHOD 

The focus of the study was to answer the research questions: To what extent is a 

combination of SOLO and ATD a suitable strategy for analysing SI-sessions? Are 

these frameworks compatible and complementary? The study based its statements on 

class-room observations. The phenomenon being studied was students’ discussions of 

mathematics. The context was small groups in upper secondary school. The design 

was flexible as the method was developed step-by-step as the study continued. 

Meetings at upper secondary schools in the southern and western region of Sweden 

were observed. There were groups from the humanist, technology and natural science 

programs. The main criterion for choosing schools was their different experiences of 

support from the university. Another difference between the two schools was the 

implementation of SI. The criterion for choosing SI-groups to observe was 

availability. Not all groups wanted to be observed. Some SI-leaders denied 

observation of the meetings, while others cancelled already booked observations. 

Meetings were videotaped and the tapes were transcribed. The documents were coded 

by closed coding, i.e. a deductive analysis with codes from theoretical frameworks. 

During the whole study the analysis strategy was developed and revised.  

Two separate SI-groups were observed when discussing the same exercise (table 1). 

The exercise was part of a former national test, which in 2010 had been intended for 

all students in the first grade of Swedish upper secondary school (Skolverket, 2011). 

No help was provided by the SI-leader during the discussion. The observed meetings 

lasted 40 minutes at one school and 60 minutes at the other. The students were not 

told anything about the SOLO- and ATD-classification of the exercise.  

The exercise was pre-classified by SOLO and the ATD-praxeology. The intention 

was (1) to test if it was possible to do this classification in advance before giving the 

exercise to the students, (2) to decide whether the two frameworks were a suitable 

choice when analysing student learning outcome, and finally, (3) if it was possible to 

correlate every SOLO-level to a specific dimension of the ATD-praxeology.   

Three different ways of using the SOLO-taxonomy were found in the literature, and 

initially all three of them were used when classifying the exercise. One of the three 

methods was part of the original method defined by Biggs and Collis (1982), with 

instructions for how to analyse student achievements in elementary mathematics. The 

authors recommended that the children’s solutions were to be analysed by deciding 

inter alia whether the child can handle several data at the same time and whether the 

child shows the ability to “hold off actual closures while decisions are made”.  

A second method was described by Hattie and Brown (2004). They grouped the 

exercises in advance, so that if a student answered a certain question the student was 

considered to reach a certain SOLO-level. Finally, Brabrand and Dahl (2009) used 

the SOLO-taxonomy by the active verbs once formulated by Biggs (2003) and 
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compared university curricula with the table of verbs. Certain verbs were considered 

to point at certain “intended learning outcomes” in the curricula. Notice that the verb 

“calculate” and “do simple procedure” are added to SOLO 2. These verbs are 

mentioned in Brabrand and Dahl (2009) and in Biggs and Tang (2011). In the result 

section you will find that not all the three ways of using the SOLO-taxonomy were 

suitable for the present study. 

Although the SOLO-taxonomy is widely used, in different ways, Brabrand and Dahl 

(2009) argue that SOLO may not be suitable for analyses of mathematics. 

Furthermore, the work done by Biggs and Collis (1982) was based on closed 

situations, and not open situations, being one of the main ideas of SI. Thus, it was 

decided that a complementary framework was needed for this study, specifically 

designed for mathematics education and also for open situations. Here, ATD was 

found a suitable complement to SOLO. 

ATD is widely used, especially within the French, Spanish and Latin-American 

mathematics education research traditions (Chevallard, 2012; Bosch and Gascón, 

2006). It is developed to fit mathematics education research, and calls for more open 

situations and open questions at school in general and in school mathematics in 

particular (Chevallard, 2012). In this study, the analysis and development of open 

mathematics learning situations was, thus, done by using the ATD-praxeology, while 

the SOLO-taxonomy was used for the analysis of student learning outcome. 

RESULTS  

The initial exercise about the volume of a cylinder was coded before it was given to 

the students (see table 1). The SOLO-coding was based on the three methods 

described above. First, the “Hattie-Brown-method” was used, as it appeared to be 

near to practice. It seemed to be easy to decide whether one or two aspects were 

involved in the question. However, when it came to higher SOLO-levels it was more 

difficult to judge whether the aspects were “integrated”. Here, the “Biggs-Brabrand-

Dahl-method” was helpful as it offered additional verbs, alternative to “integrate”, 

e.g. “compare” and “analyse”, which could be used for the coding.  

An example of the use of active verbs in the coding is the sub-task where students 

should first calculate two volumes and then compare these two volumes (table 1):  

“Starting with rectangular sheets of paper with dimensions 10 cm x 20 cm, two 

different tubes are made. Find the volumes of the two tubes (cylinders).”  

“Compare these two volumes and calculate the ratio between them.”  

In both sub-exercises several aspects are involved. A volume is calculated by 

multiple parameters. But the active verbs separate the two sub-tasks, as the first 

requires only an algorithm – “find” (the volume) – while the second requires that the 

student goes one step further and makes a comparison – “compare” (these two 



CERME 9, TWG 17, Collected papers, January 2015  

 

93 

 

volumes). Finally, it was important to compare the coding with the “Biggs-Collis-

method”, as Biggs and Collis (1982) had formulated the original recommendations 

for how to use SOLO. In their book, however, the mathematics examples were 

fetched from elementary mathematics, and it was not obvious how to apply the 

method in the present study.  

To conclude, the active verbs were found to be the most appropriate method when 

dealing with mathematics exercises. By using SOLO a clear borderline could be 

drawn between the active verbs “do algorithm” (SOLO 3) and “explain causes” 

(SOLO 4), and the active verbs made it possible to identify these structural 

differences between exercises. The initial exercise about the volume of a cylinder was 

also coded by the ATD- praxeology (table 1). This coding was based on the work 

done by Mortensen (2011), who has coded museum exhibition exercises – the so-

called intended praxeology. In the exercise about the cylinder each sentence was 

coded. It was for example decided whether the students were supposed to deal with 

“know how” to solve a problem (the dimensions type of task T & technique τ) or if 

they were supposed to deal with “know why”, i.e. a special technique was to be used 

(the dimensions technology θ & theory Θ). 

Table 1: An exercise was classified by SOLO-taxonomy and the ATD-praxeology. 

SOLO 

level 

Exercise: A roll of paper Praxeology 

 A rectangular sheet of paper can be rolled to make a tube (cylinder) as 

shown in the figure. 

 

 

2 (later 

changed 

to 3) 

Such a tube is made by rolling a square piece of paper with side length 

10 cm. 

*The diameter of the tube will be about 3.2 cm. Find the volume of 

this tube (cylinder). 

 

 

Technique 

2/3 

(later 3) 
*Show that the diameter of the tube will be about 3.2 cm if the side 

length of the sheet of paper used is 10 cm 

Technique 

 

 

3 

If the length and width of the paper are different, you can make two 

different tubes (cylinders) depending on how you roll the paper. 

*Starting with rectangular sheets of paper with dimensions 10 cm x 

20 cm, two different tubes are made. Find the volumes of the two 

tubes (cylinders). 

 

 

Technique 

4 

 

4 

*Compare these two volumes and calculate the ratio between them.  

*Investigate the ratio between the cylinder volumes using sheets of 

paper with other dimensions. What affects the volume ratio between 

the tall and the short cylinder? 

Technique 

 

Technology 

5 *Show that your conclusion is true for all rectangular papers. Technology 
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At first, in the analysis of the described exercise (table 1), SOLO and the ATD-

praxeology were laid side by side. The exercise was coded both by SOLO and ATD. 

However, this caused problems, as ATD and SOLO evaluate different dimensions. 

While SOLO is a tool for evaluating the quality of students’ achievements, the 

praxeology focuses on the teaching situation, i.e. what is going on in the classroom.  

The strategy to try to correlate every SOLO-level to a specific dimension of ATD- 

praxeology was abandoned at this early stage in the study. During the rest of the 

study it was discovered that the two frameworks often did not correlate.  Thus, part of 

the research question was answered: the SOLO-taxonomy and the ATD- praxeology 

were complementary. It was also concluded that if this had not been the case, the 

outcome would probably have been that one framework would suffice for the analysis 

in this study.  

From now on the two frameworks were used for different purposes: SOLO to analyse 

student learning outcomes, and the ATD-praxeology to analyse teaching situations 

(or, in the case with SI, the didactic situations) in the classroom. The remaining part 

of research question 2 was now to be answered: is the combination of SOLO and 

ATD a suitable strategy and are the two frameworks compatible, i.e. is it possible to 

use them in the same study?  

The next step of the study was to code the group discussions about the cylinder. The 

sentences of the discussions were coded by the active verbs, and by the praxeology. 

There were occasions when SOLO and ATD did correlate and there were other 

occasions when they did not. Table 2 shows part of one discussion and how the 

discussion can be analysed by SOLO and ATD. The students discussed the volume of 

the cylinder. They did not remember the formula and therefore they tried different 

strategies. Finally one student remembered the formula and they managed to solve 

the first exercise.  

Table 2: Quotes from group discussion at school B are analysed by SOLO and by ATD-

praxeology. Quotes are translated from Swedish and commented by the observer. 

Quotes SOLO ATD Comments 

(e) It is the diameter times the length 

or height ... 

(a) Is that so?   (e) I think so. 

(a) But no. It does not become square 

…     (a) It is supposed to be CM3. It 

just gets CM2. It does not work. 

1 

 

 

 

3/4 

 

 

Tech-

nique/ 

Tech-

nology? 

Student (a) and (e) try to find a 

relevant technique to find the volume 

of the cylinder. 

Student (a) notices that their 

technique doesn’t work. (a) tries to 

discuss “knowing why”. 

d) How do you count ... We were 

supposed to have the area of the 

circle. 

3 Tech-

nique 

A parallel discussion goes on 

between student (d) and student (b). 

Student (d) comments what (a) just 
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(b) Wait what are we supposed to 

figure out? (reading task) 

(d) Volume ... then we need the area 

of the base   (b) What? 

said. 

(a) Yes exactly   

(b) The area of the base? ... 

(d) Is not the radius times the radius 

times pi? 

3  Tech-

nique 

The two groups start to discuss with 

one another. Student (d) takes the 

command and finds the technique – 

the “knowing how”. 

According to the analysis of the discussions of first this exercise, SOLO was easy to 

use when classifying students’ mathematics discussions. The active verbs clarified 

the learning outcome, and SOLO 4 for example told that students may have 

“explained” and/or “analysed”. If a situation was classified by the ATD-dimension 

“technology” it showed that the student dealt with a discussion concerning “knowing 

why” a technique was being used. Thus, it was possible to use the two frameworks 

within one study – they were compatible.  

DISCUSSION 

In this study the ATD-praxeology and the SOLO-taxonomy were combined with the 

aim to deepen the analysis of students' mathematics discussions. A strategy was 

suggested and tried when studying discussions at SI-meetings in upper secondary 

school. Initially, we tried to coordinate SOLO and the ATD-praxeology. The 

intention was to find out how specific SOLO-levels did correspond to specific ATD-

praxeology dimensions. If this had been possible the conclusion must have been that 

the two frameworks were not complementary. This would have led to the elimination 

of one of the frameworks from this study.   

However, as the two frameworks measure different aspects, this strategy was soon 

abandoned. Instead, the frameworks were combined. Such networking of frameworks 

is supported by Lester (2005) and Prediger et al. (2008). Neither of them argue that 

networking has to imply a total integration or unifying between frameworks. Lester 

(2005, p. 466) advocates the adaptation of ideas from a range of theoretical sources to 

suit goals both for research and for developing practice in the classroom in a way that 

“practitioners care about”. Accordingly, the intention of the present study was to 

adapt the theoretical model for analysing the results of empirical studies, as well as to 

contribute to the development of strategies for analysing students’ learning in 

teaching practice.  
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RE-CONCEPTUALISING CONCEPTUAL UNDERSTANDING IN 

MATHEMATICS 

Geoff Kent and Colin Foster 

UCL Institute of Education, London, UK, and University of Nottingham, UK 

In this theoretical paper we explore interrelationships between conceptual and 

procedural understanding of mathematics in the context of individuals and groups. 

We question the enterprise of attempting to assess learners’ mathematical 

understanding by inviting them to perform a (perhaps unfamiliar) procedure or offer 

an explanation. Would it be appropriate to describe a learner in possession of an 

algorithm for responding satisfactorily to such prompts as displaying conceptual 

understanding? We relate the discussion to Searle’s “Chinese Room” thought 

experiment and draw on Habermas’ Theory of Communicative Action to develop 

potential implications for addressing the problem of interpreting learners’ 

mathematical understanding. 

INTRODUCTION 

The quest to help learners develop a deep and meaningful understanding of 

mathematics has become the holy grail for mathematics educators (Llewellyn, 2012), 

particularly since Skemp’s (1976) seminal division of understanding into 

“instrumental” and “relational” categories. Relational (or conceptual) understanding 

is seen as more powerful, authentic and satisfying for the learner, representing true 

mathematical sense-making. But how can we know whether or not a learner has this 

relational understanding in any particular area of mathematics? The short, closed 

questions which dominate traditional paper-based assessments are unlikely to elicit 

this information. Hewitt (2009, p. 91) comments that “it is perfectly possible for a 

student to get right answers whilst not knowing about the mathematics within their 

work”, and offers an example in which a learner aged 12–13 was finding the areas of 

triangles by multiplying the base by the height and dividing by 2, but admitted that he 

had no idea why he was multiplying or dividing by 2. This same example is used by 

Skemp (1976) to exemplify his distinction between instrumental and relational 

understanding of mathematics. Yet inviting learners to go further and explain their 

mathematics is also problematic. An invitation to “explain” an answer may be 

experienced as yet another request for “a performance”: the “right” explanation that 

will satisfy a teacher or examiner may be memorised or produced algorithmically, 

just like the answer itself. 

We might ask what it means for learners to have relational understanding of 

factorising a quadratic expression, for instance (Foster, 2014). If they can perform the 

procedure fluently (i.e., quickly, accurately, flexibly and confidently) then would we 

be satisfied (Foster, 2013)? We might argue that relational understanding involves 
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adapting what is known to novel, non-straightforward problem-solving situations. Yet 

a robust enough algorithm will dispose of a very wide range of scenarios, including 

unanticipated ones, and a comprehensive enough set of algorithms might successfully 

deal with any situation likely to be encountered in any assessment (MacCormick, 

2012). If the learner’s performance continued to be faultless would we wish to probe 

their thinking further? To some extent mathematical fluency entails withdrawing 

attention from the details of why and how the procedure works so as to speed up the 

process and allow cognitive space for focusing on wider aspects of the problem 

(Hewitt, 1996; Foster, 2013). A mathematician does not want to have to differentiate 

3x
2
 – 2x + 4 from first principles every time, although they are capable of doing so. 

Perhaps relational understanding involves an ability to deconstruct the procedure if 

required rather than an expectation that this is going on every time it is carried out? 

But deconstructing a procedure could itself be regarded as a procedure, and 

presumably one that can be prepared for – even memorised, just as proofs can be 

memorised. So is there something more to relational understanding than expert 

procedural fluency, and if so how might this be conceptualised? Is there a difference 

between being able to manipulate syntax and being able to understanding meaning? 

PROCEDURAL AND CONCEPTUAL KNOWLEDGE 

Skemp’s (1976) famous distinction between instrumental and relational 

understanding characterises relational understanding as “knowing both what to do 

and why” (p. 20), whereas instrumental understanding is merely “rules without 

reasons” (p. 20). While acknowledging that “one can often get the right answer more 

quickly and reliably by instrumental thinking than relational” (p. 23), he nonetheless 

criticises instrumental learning as a proliferation of little rules to remember rather 

than fewer general principles with wider application. More recently, the terms 

procedural and conceptual learning have been widely adopted, and theoretical 

interpretations of these in mathematics education have increasingly highlighted their 

interweaving and iterative relationship (Star, 2005; Baroody, Feil & Johnson, 2007; 

Star, 2007; Kieran, 2013; Star & Stylianides, 2013; Foster, 2014).  

The most commonly-used definitions of procedural and conceptual knowledge 

in the context of mathematics are those due to Hiebert and Lefevre (1986). They see 

conceptual knowledge as knowledge that is rich in relationships, where the 

connections between facts are as important as the facts themselves, whereas 

procedural knowledge is rules for solving mathematical problems. This distinction 

parallels Skemp’s (1976) conclusion that there are really two kinds of mathematics – 

instrumental and relational – dealing with different kinds of knowledge. More 

recently, Star (2005, 2007) distinguishes between types of knowledge (knowledge 

about procedures or knowledge about concepts) and qualities of knowledge 

(superficial or deep), and complains that these are frequently confounded. He 

highlights the way in which “procedural” is often equated with “superficial”, and 
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“conceptual” with “deep”, and draws attention to the possibility of “deep procedural 

knowledge” and “superficial conceptual knowledge” as valid categories. Kieran 

(2013) goes further in declaring the dichotomy between conceptual understanding 

and procedural skills a fundamentally false one. Other researchers have also explored 

the interplay between procedural and conceptual knowledge (Sfard, 1991), with Gray 

and Tall (1994) integrating processes and concepts into what they term “procepts” 

(Tall, 2013). But there remains the question of what precisely it is that conceptual 

knowledge consists of beyond confident procedural knowledge. 

THE CHINESE ROOM 

Searle’s (1980) famous thought experiment about a “Chinese Room” was an attack 

on the “strong” artificial intelligence claim that a computer is a mind, having 

cognitive states such as “understanding”. Searle imagined a native English speaker 

who knew no Chinese locked in a room with a book of instructions for manipulating 

Chinese symbols. Messages in Chinese are posted through the door and the English 

speaker follows the instructions in the book to produce new messages in Chinese, 

which they post out of the room. Unknown to them, they are having a conversation in 

Chinese, a language which they do not speak a word of. Searle argued that syntax 

does not add up to semantics; behaving “as if” you understand is not the same as 

understanding. But it is very difficult to pinpoint exactly where the difference lies 

(Gavalas, 2007). Searle does acknowledge that “The rules are in English, and I 

understand these rules as well as any other native speaker of English” (1980, p. 418), 

but it remains mysterious exactly what test could distinguish a competently 

performing machine from a real mathematician. A learner performing a mathematical 

procedure may be making mathematical sense to an observing mathematician, such 

as a teacher, without apparently knowing much themselves about what they are 

doing. 

The focus here has now changed from whether the computer (or the mind as a 

computer) understands mathematics to the question of whether some computer could 

be such that it is indistinguishable from a real mathematician. It may be that, whether 

or not you could tell them apart, they would perform the tasks of producing 

syntactically correct mathematics in importantly different manners. Thus the issue 

becomes the sense in which rules are being followed. If rules are followed in a 

meaningful sense and their semantic content is well defined and connected within 

constellations of schemas, then test item responses could be strong evidence of 

mathematical understanding. But this requires that those items are designed so that 

they engage procedural knowledge in a sophisticated manner which takes into 

account all of the aspects of the concept image that is the object of assessment. We 

could specify an additional requirement that the test be administered to a human 

being and not a computer. While this may seem flippant, it points to the heart of 

Searle’s argument, which is that humans follow rules through semantic causality that 
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is more or less part of the “hardware” of our brains; that there is no (or minimal) 

“software” layer (Searle, 1984). So does this imply that truly instrumental 

understanding is an impossibility for a human being? 

MATHEMATICAL UNDERSTANDING 

Searle’s later articulation of social theory addresses how language can be used 

to create a social reality which is iterative and generative (Searle 1995, 2010). 

Further, Searle articulates an analysis of language that points towards strong 

connections between the structure of language and the structure of intentional states. 

In some ways this leads us back to the idea of the mathematician as performing as 

though merely in command of a complex constellation of algorithms that are 

triggered and brought to bear in a purely syntactical manner. In light of the argument 

put forth by Searle, we should rather say that the mathematician employs an array of 

mathematical understandings which have semantic content. While this seems 

unsatisfying, as though Searle is saying “it is semantic when humans do it”, it bears 

strong connections with Sierpinska’s articulation of procedural understanding and its 

relationship to conceptual understanding. Procedural understandings, according to 

Sierpinska (1994): 

are representations based on some sort of schema of actions, procedures. There must be a 

conceptual component in them – these procedures serve to manipulate abstract objects, 

symbols, and they are sufficiently general to be applied in a variety of cases. Without the 

conceptual component they would not become procedures. We may only say that the 

conceptual component is stronger or weaker. (p. 51) 

Hence, it is reasonable for a mathematician to see many elements of their 

understanding as arrays of algorithms that allow them to address wide categories of 

mathematical problems. Yet this is fundamentally different from how a digital 

computer would operate in a purely syntactical approach. 

Gordon, Achiman and Melman (1981, p. 2) define rules as “statements of the 

logical form ‘In type-Y situations one does ... X’”. For Wittgenstein (1953), it is not 

possible to choose to follow a rule: “When I obey a rule, I do not choose. I obey the 

rule blindly” (p. 85, original emphasis). Otherwise it is not a rule. It is in this sense 

that Searle raises a question fundamental to this discussion: Should understanding 

mathematics be understood as sophisticated algorithmic arrays which are akin to 

complex computer programs? Searle’s (1984) critique of this and related ideas has 

several facets, the most pertinent of which is that there is an ambiguity in what is 

meant by rule following and that humans and computers do not follow rules in the 

same sense. In essence, Searle argues that humans follow rules in as much as they 

understand the meaning of the rules (which is thus semantic and about intentional 

states), whereas computers are purely syntactical in their rule following; they can be 

said to “act in accord with formal procedures” (ibid. p. 45, original emphasis). 
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Returning to the question of relational versus instrumental understanding, it 

seems that if we follow Searle’s arguments we can say that mathematical 

understanding is probably not effective human understanding if it is primarily 

instrumental (in the sense of syntactical rule following). However, it is clear that 

procedural, syntactical and algorithmic practices and concepts form an important part 

of the background to meaningful mathematical understanding. Thus from a 

perspective of assessment we would expect it to be important to assess algorithmic 

fluency while also seeking to assess the strength of the conceptual content associated 

with the procedural performance. 

So in contrast to the kinds of digital computers that Searle and Hiebert and 

Lefevre are talking about, algorithms exist within a semantic framework. Perhaps it is 

as though a digital computer (syntactical machine environment) is being modelled 

using a semantic machine environment (the brain). If so, the potential problem for 

mathematics education relating to instrumental learning in mathematics may be that 

the seeming simplicity of rule following is made vastly more complicated by its need 

to run in a sort of virtual syntactic machine running on essentially semantic hardware. 

On the other hand, the generation of correct syntactical content is a power of certain 

constellations of semantic knowledge (relational knowledge). It seems that the 

teaching of algorithms and procedures is crucial for the development of sophisticated 

mathematical understanding, but also that how they are taught is critical to supporting 

the development in learners of mathematical understanding that goes beyond 

procedural understandings with weak conceptual content (Foster, 2014). 

Habermas’ theory of communication, partly based in and complementary to 

Searle’s theories, can point towards models of understanding and how to assess it. In 

communicative action, as defined by Habermas (1984), action is coordinated 

intersubjectively through achieving understanding. The theory of communicative 

action (TCA) analyses communication as having an inherent rationality focused on 

the goal of achieving understanding. Using speech act theory and argumentation 

theory, Habermas identifies categories of validity claims that are raised in any 

communicative interaction and also identifies implicit preconditions for successful 

communication. The former is referred to by Habermas as ‘discourse’, but might 

better be termed ‘validity-discourse’, in order to differentiate it from other uses of 

that term in social sciences. The preconditions for communicative action are referred 

to collectively as the ‘Ideal Speech Situation’ by Habermas and constitute a set of 

counterfactual norms identified abductively as necessary for successful 

communication. These norms are focused on equitable conditions for participation in 

communication where the ‘unforced force of the better argument’ has the opportunity 

to motivate agreement. This is a bit tricky, as Habermas claims that such conditions 

must be assumed by participants as in operation in order to communicate, despite 

representing more of an ideal horizon that never completely obtains. Society is 
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power-laden, and all communication occurs within a social context. Thus the 

breakdown of communication is all too common, and intersubjective understanding is 

seen as a fleeting and fallible goal that is ever approached but seldom attained.  

The claim that Habermas’s TCA and Searle’s speech act theory are 

complementary and can be productively networked is based on the specific 

arguments made by Habermas in the TCA, his use of speech act theory to develop his 

ideas of communicative action and also upon analysis of similarities and departures 

between the principles, methodologies and questions of each author: 

Analytical philosophy, with the theory of meaning at its core, does offer a promising 

point of departure for a theory of communicative action that places understanding in 

language, as the medium for coordinating action at the focal point of interest. (Habermas 

1984, p. 274) 

While it might be possible to argue that Searle’s theories depart somewhat 

from the kinds of analytic theories that Habermas wants to make use of, this is 

mistaken, since their focus is on incorporating theories of intentionality. Searle beings 

with the structure of linguistic expressions and then deals with intentionality, and 

importantly in his later work he introduces the idea of collective intentionality, which 

is focused on the coordination of speakers, and which is closely related to Habermas’ 

ideas about the importance of intersubjectivity in communicative action: 

For a theory of communicative action only those analytic theories of meaning are 

instructive that start from the structure of linguistic expressions rather than from 

speakers’ intentions. And the theory will need to keep in mind how the actions of several 

actors are linked to one another by means of the mechanism of reaching understanding. 

(Habermas 1984, p. 275)  

Searle’s ideas add rigour and detail at the level of social ontology and may 

allow for a more sophisticated operationalising of concepts and constructs based in 

Habermas’ TCA. These ideas could be used to further network critical theory, 

cognitive science, neuroscience and other approaches to the study of mathematics 

education so that they may inform one another without reducing one to the other. 

Thus the issue of theoretical incommensurability may be navigated without 

theoretical insights becoming ‘siloed’ within various sub-cultures of theory which do 

not communicate with one another. A common theoretical language might allow 

researchers to disagree with greater clarity without running the risk of becoming an 

over-arching ‘grand theory’. More broadly, Searle’s ideas could serve as tools for 

building rigorous analysis of particular instances of theoretical networking, allowing 

productive discussion between theoretical perspectives. 

These ideas can be operationalised to analyse small-group problem solving and 

in this manner interpret the mathematical understanding of participants (Kent, 2013), 

which could serve as the basis for the development of interactive assessment 
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techniques, activities and protocols. Understanding from this perspective is about 

being able to identify what reasons, arguments and evidence could be legitimately 

raised to justify a claim. This emphasis on the identification of shared bases for 

validity can serve as a pragmatic approach to the analysis of human understanding in 

mathematics. Thus when we speak of assessing mathematical understanding we can 

begin to identify as a community of mathematicians and mathematics educators (with 

due consideration of developmental and disciplinary appropriateness) the claims and 

the appropriate reasons that justify these claims. We can consider how to engage 

participants in communicative actions around mathematical goals that require the 

articulation of arguments and justifications that show evidence that the participants 

can explain why certain mathematical claims are true.  

Returning to the Chinese Room, this turn to the social does not suggest that 

there need be two people in the room, but rather that the person in the room must 

share requisite background knowledge or be able to develop it contextually with the 

Chinese speakers outside the room. The idea of communicative competence is key: 

sharing the contextual background knowledge that allows a language to have 

semantic meaning is the basis for ‘understanding’. This is different from quickly and 

accurately manipulating the symbols in a language in a syntactic fashion: no shared 

understanding entails from such activity. Now it is possible that meaning could be 

attributed to rules or symbols by the person in the Chinese room, but, without the 

ability to test these against another person who has semantic understanding of the 

symbols, no interpersonal communication or shared understanding is achievable. The 

meaning so developed would be a private language that would not necessarily 

correspond to that of the interlocutor. Thus the person in the Chinese room might 

imagine that they were having a discussion about a family’s vacation outing when in 

fact the interlocutor interpreted the exchange of symbols as being a mathematical 

discourse on the solution to an algebraic problem (or vice versa). 

CONCLUSION 

These ideas about the nature of the relationship between syntax and semantics, 

procedure and concept, and instrumental and relational understanding do not 

undermine the importance of procedural fluency. Pimm (1995) addresses the issue in 

depth and identifies some of the important features of fluency in mathematics 

education:  

For me, fluency is about ease of production and mastery of generation – it is used also in 

relation to a complex system. ‘Fluent’ may be related to efficient, or just no wasted 

effort. It is often about working with the form. Finally, it can be about not having to pay 

conscious attention. (ibid. p. 174, original emphasis) 

Thus fluency, including syntactical fluency, can serve as partial evidence of 

understanding in a communicational context. Mathematical fluency, as in non-
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mathematical communication, is a sign of communicative competence, which is a 

prerequisite for interpersonal understanding according to the 

hermeneutic/communicational tradition (Habermas, 1984; Sierpinska, 1994). Thus 

when we say that a human being does not follow rules in the same sense as a 

computer, we mean that the symbolic rule following (or algorithmic manipulation of 

syntax) is done in the context of mathematical communication, and thus has semantic 

framing. 

Habermas’ articulation of rational behaviour in discursive practices has been 

identified as productive for the analysis of shared cognition in mathematics education 

(Boero et al., 2010). In communicative action participants achieve shared goals by 

coordinating action (including speech action) through the development of a shared 

understanding. Thus, establishing shared goals and coordinating action around an 

appropriately designed mathematical task could serve as an interpretive basis for the 

researcher (or other virtual participant) to make a judgement about the understanding 

of the participants in collaborative learning of mathematics (Kent, 2013). 

We suggest that consideration of Searle’s (1984) critique of cognitive science 

allows for ongoing productive insight into what mathematical thinking is and its 

relation to education. An important problem faced by the mathematics education 

community is how we can use ideas of relational understanding and instrumental 

understanding in a sophisticated manner to promote the learning of mathematics. 

Learners of mathematics should gain genuine experience of real mathematical sense-

making rather than engage in a charade of imitating what they think such behavior 

should look like. The increasing focus on fluency in policy in the UK (DfE, 2013) 

suggests the need for tools and practices to be developed which coordinate ideas of 

cognition, mathematical understanding and educational practices of teaching and 

assessment. Our consideration of Searle’s Chinese Room argument has sought to 

highlight the nuance involved in these issues and the kinds of practices and 

theoretical frameworks that could be leveraged to address the problem of interpreting 

learners’ mathematical understanding.  
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THE EPISTEMOLOGICAL DIMENSION REVISITED 

Ivy Kidron 

Jerusalem College of Technology, Jerusalem, Israel 

 

 Epistemology and networking was discussed in the last CERME working group on 

theory. This paper aims to continue the discussion.  I reflect on epistemological 

analysis and the cultural dimension of knowing and present examples which 

demonstrate how the changes in the cultural context influence the epistemological 

analysis. Then, I reconsider the epistemological dimension and the networking of 

theories. In some cases, the epistemological dimension permits the networking. In 

other cases, we notice how by means of networking, strong epistemological concerns 

in one theory might be integrated in another theory in a way that reinforces the 

underlying assumptions of this other theory. I end the paper with an example of 

networking that demonstrates how the social dimension might influence the 

epistemological analysis. 

 

Keywords: cultural dimension; epistemological analysis; networking theories; social 

dimension;   

EPISTEMOLOGY AND NETWORKING THEORIES IN THE PREVIOUS 

CERME WORKING GROUPS ON THEORIES 

The present paper aims to continue the work done at the previous CERMEs in 

relation to the epistemological dimension in theories. At CERME 8, the focus on 

networking and epistemology was stronger than in the previous working groups on 

theory. For example, the role of epistemology in the networking of theories was an 

explicit focus in the paper by Ruiz-Munzón, Bosch and Gascón (2013). The idea of a 

“reference epistemological model” (REM) was introduced for networking 

Chevallard’s Anthropological Theory of the Didactic (ATD) and Radford’s Theory of 

Knowledge Objectification (TKO). The authors analyzed how each approach 

addresses the nature of algebraic thinking. The point of view of the ATD was 

presented with its own REM about elementary algebra as well as the kind of 

questions addressed by this approach, in relation to the TKO.  

In their paper, presented at CERME 8, Godino et al. (2013) analyzed two approaches 

to research in mathematics education: “Design-based research” (DBR) and “Didactic 

engineering” (DE), in order to study their possible networking. DE (closely linked to 

Brousseau’s theory of didactical situations) focuses on epistemological questions; 

DBR does not adopt a specific theoretical framework, nor does it explicitly raise 

epistemological questions. In the working group (Kidron et al., 2013) interesting 
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questions arose like the following one:”is the epistemological focus only a question 

of “cultural and intellectual context” or is an epistemological reference necessary for 

each theoretical approach used in design based research in math education?”. 

Artigue (2002) wrote that the anthropological approach shares with the socio-cultural 

approaches the view that mathematical objects are not absolute objects, but are 

entities which arise from the practices of given institutions. These practices are 

described in terms of tasks in which the mathematical object is embedded, in terms of 

techniques used to solve these tasks and in terms of discourse which both explains 

and justifies the techniques. It is interesting to note that the nature of mathematical 

objects was a theme that appears at CERME 4 in the context of the need to be aware 

of the underlying assumptions of each theory and that underlying assumptions also 

concern ontological or epistemological questions such as the nature of mathematical 

objects. This theme reappears in the next CERMEs especially at CERME 7 while 

networking was needed in order to analyze the emergence and nature of mathematical 

objects.  This was well demonstrated, for example, in the paper presented by Font et 

al. (2011). The authors asked “What is the nature of the mathematical objects?” They 

explored this question by the use of a synthesis between the onto-semiotic approach 

(OSA), APOS theory and the cognitive science of mathematics (CSM) as regards 

their use of the concept “mathematical object”. APOS theory and CSM highlight 

partial aspects of the complex process through which, according to OSA, 

mathematical objects emerge. OSA extends APOS theory by addressing the role of 

semiotic representations; it improves the genetic decomposition by incorporating 

ideas of semiotic complexity, networks of semiotic functions and semiotic conflicts; 

it offers a refined analysis due to the way in which it considers the nature of such 

objects and their emergence out of mathematical practices. Considering mathematical 

objects not as absolute objects, but as entities which arise from the practices of given 

institutions, leads us to analyze the role of both, the epistemological dimension and 

the socio cultural dimension, in theories. 

 

EISTEMOLOGICAL ANALYSIS AND SOCIO CULTURAL DIMENSION 

 

The following question was asked by Luis Radford at the colloquium at Paris in 

honour of Artigue (2012):  

“How can epistemological analysis take into account the social and cultural 

dimension of knowing?” 

In the last decades the increasing influence of socio cultural approaches towards 

learning processes is well recognized. Therefore, the question is essentially how the 

social and cultural dimensions are taken into account in the epistemological analysis.  
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In this section I will consider this question in relation to the cultural dimension of 

knowing, I analyse the changes in the cultural context and their influences on the 

epistemological analysis. In the section about epistemological dimension and 

networking theories, I will reconsider Radford’s question in relation to the social 

dimension of knowing. 

Changes in the cultural context and their influences on the epistemological 

analysis 

In the last decades we face the changes of our cultural environment as well as the 

changes of the context in which our theory emerged. I will give an example from my 

own research on students’ conceptual understanding of central notions in calculus 

like the notion of limit in the definition of the derivative. In my previous research, 

using essentially theories that privilege epistemological and cognitive dimensions, I 

was aware of the cognitive difficulties relating to the understanding of the definition 

of the derivative as the “limit of the quotient Δy/Δx as Δx approaches 0”. In my 

epistemological analysis, my first thinking was that these cognitive difficulties are 

inherent to the epistemological nature of the mathematics domain. I realized that 

students viewed the limit concept as a potential infinite process and I understood that 

this was a possible source of difficulties. Moreover, previous researches (Tall, 1992) 

expressed students’ belief that any property common to all terms of a sequence also 

holds of the limit. I therefore realized that this natural way in which the limit concept 

is viewed might be an obstacle to the conceptual understanding of the limit notion in 

the definition of the derivative function (x) ' f  as  
x

y
x 


 0

lim . In particular, the 

derivative might be viewed as a potentially infinite process of  
x

y


  approaching 

(x) ' f for decreasing x . As a result of the belief that any property common to all 

terms of a sequence also holds of the limit, the limit might be viewed as an element 

of the potentially infinite process. In other words, xyx  /lim 0  might be conceived 

as xy  /  for a small x .  I therefore looked for a counterexample that demonstrates 

that one cannot replace the limit ” 
x

y
x 


 0

lim ” by Δy/Δx  for Δx very small. “Finding 

such a counterexample .. was crucial to my research focus. Such a counterexample 

demonstrates that the passage to the limit leads to a new entity and that therefore 

omitting the limit will change significantly the nature of the concept. It demonstrates 

that the limit could not be viewed as an element of the potentially infinite process” 

(Kidron 2008, page 202).  In Kidron (2008) I explain that such counterexample exists 

in the field of dynamical systems which is considered as a new field in mathematics. 

In the counterexample (the logistic equation), the analytical solution obtained by 

means of continuous calculus is totally different from the numerical solution obtained 

by means of discrete numerical methods. The essential point is that using the 
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analytical solution, the students use the concept of the derivative as a limit 
x

y
x 


 0

lim  

but, using the discrete approximation by means of the numerical method, the students 

omit the limit and use Δy/Δx for small Δx. Students reactions are analyzed in Kidron 

(2008), in particular how students reach the conclusion that passing to limits may 

change the nature of a problem significantly. The essential point is that the changes in 

the cultural context permit the new settings for the learning experience. More 

precisely, the changes in the cultural context permit modern results in research 

Mathematics which influenced my own research in mathematics education by means 

of changes in the didactical designs. The didactical design described in Kidron (2008) 

was possible by means of the epistemic status of the new artifacts used in the research 

study. The way the students interacted with the software demonstrates that the artifact 

used in this study should not be considered only as an aid for the students. It had a 

deep cognitive role while learners interacted with it. The artifact was conceived as 

co-extensive of thinking: the students act and think with and through the artifact as 

described by Radford (2008). In another study (Kidron and Dreyfus, 2010) we also 

notice this specific epistemic status of the artifact as co-extensive of thinking while 

the computer is considered as a dynamic partner. Kidron and Dreyfus consider the 

influence of a CAS context on a learner’s process of constructing a justification for 

the bifurcations in a logistic dynamical process. The authors describe how 

instrumentation led to cognitive constructions and how the roles of the learner and the 

computer intertwined during the process of constructing the justification. 

Another example describing how epistemological analysis takes into account the 

cultural dimension of knowing is described in Artigue (1995, page 16) in which the 

author describes her mathematical research in differential equations and the way she 

notes the epistemological inadequacy of teaching in this area, for students in their 

first two years at university. By means of epistemological analysis, Artigue described 

how historically the differential equations field had developed in three settings: the 

algebraic, the numerical and the geometric settings. For many years, teaching was 

focused on the first setting due to epistemological and cognitive constraints. 

Reflecting on these constraints was a starting point towards building new teaching 

strategies which better respect the current fields’ epistemology. By means of the 

epistemological analysis, Artigue could see the epistemological evolution of the field 

towards new approaches, the geometrical and numerical approaches. The essential 

point in this example is that the epistemological evolution is a consequence of the 

changes in the mathematical culture and the epistemological analysis highlights the 

crucial role of the cultural dimension.   
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THE EPISTEMOLOGICAL DIMENSION AND THE NETWORKING OF 

THEORIES 

 

Epistemological sensitivity 

A new view on the epistemological dimension is offered in Kidron et al. (2014) by 

means of the networking between three theories, TDS - the Theory of Didactic 

situations (Artigue, Haspekian, & Corblin-Lenfant 2014), ATD - the Anthropological 

Theory of the Didactic (Bosch and Gascón, 2014), and AiC - the theory of 

Abstraction in Context (Hershkowitz et al. 2001; Schwarz et al. 2009; Dreyfus and 

Kidron, 2014). The foci of the three theoretical approaches are different. In particular, 

AiC focuses on the learner and his or her cognitive development, while TDS and 

ATD focus on didactical systems. The three theoretical approaches are sensitive to 

issues of context but, due to these differences in focus, context is not theorized and 

treated in the same way. The authors expected some complexity in the effort of 

creating a dialogue between the three theories in relation to constructs such as 

context, milieu, and media-milieus dialectic. However, they observed how the 

dialogue between the three theories appears as a progressive enlargement of the 

focus, showing the complementarity of the approaches and the reciprocal enrichment. 

A new term was introduced in this research study: epistemological sensitivity.  

The authors explain the meanings of the terms context (for AiC), milieu (for TDS) 

and media-milieus dialectic (for ATD), each of them being a cornerstone for the 

theory while all of them try to theorize specific contextual elements. The three 

theories share the aim to understand the epistemological nature of the episode 

described in the paper but in each of the three theories different questions were asked. 

Questions for analyses in AiC stressed the epistemic process itself, whereas 

researchers in TDS and ATD asked how this process is made possible. Nevertheless, 

these questions indicated that the researchers were able to build on the other analyses 

in a complementary way. The dialogue between the different approaches was 

possible because a point of contact was found. In this case, we may talk about a 

common epistemological sensitivity of AiC, TDS, and ATD, which can be noticed in 

the a priori analyses provided by each frame. This initial proximity was essential for 

the dialogue to start and become productive, showing the complementarity of the 

approaches and the reciprocal enrichment, without losing what is specific to each 

one. The three concepts, context, milieu and media- milieus dialectic were accessed 

by different data or different foci on data in a complementary way sharing 

epistemological sensitivity , which facilitated establishing connections and reflecting 

on them.  
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Epistemological concerns as a consequence of networking  

It is not by chance that the common epistemological sensitivity of AiC, TDS, and 

ATD, was noticed in the a priori analyses provided by each frame: the reason is that 

the a priori analyses take into account the mathematical epistemology of the given 

domain. In the last years, the AiC researchers decided to implement the idea of a 

priori analysis in an explicit way. This happened as a consequence of the networking 

experience with the TDS researchers. An example of such a networking experience is 

described in Kidron et al. (2008). Three theories were involved in this case of 

networking: TDS, AiC and IDS - the theory of Interest-Dense Situations (Bikner-

Ahsbahs and Halverscheid, 2014). Kidron et al. (2008) focus on how each of these 

frameworks is taking into account social interactions in learning processes. The 

authors wrote that “In a more general way, the different views the three theoretical 

approaches have in relation to social interactions force us to reconsider these 

approaches in all their details. The reason for this is that the social interactions, as 

seen by the different frameworks, intertwine with the other characteristics of the 

frameworks” (Kidron et al. 2008, page 253). The authors identified not only 

connections and contrasts between the frameworks but also additional insights, which 

each of these frameworks can provide to each of the others. In this paper, we only 

focus on a specific kind of insights: the epistemological concerns which were 

highlighted as a consequence of the networking of theories. We first characterize the 

epistemological dimension in each of the three theories before the networking 

experience:  

TDS provides a frame for developing and investigating didactical situations in 

mathematics from an epistemological and systemic perspective. TDS combines 

epistemological, cognitive, and didactical perspectives. TDS focuses on the 

epistemological potential of didactical situations 

IDS- the theory of interest-dense situations is “a social constructivist theory that 

cannot say much about cognitive processes of individuals and does not provide tools 

for epistemological analyses” (Bikner-Ahsbahs & Halverscheid, 2014, page 102).  

AiC analysis focuses on the students’ reasoning; mathematical meaning resides in the 

verticality of the knowledge constructing process and the added depth of the resulting 

constructs. An epistemological stance is underlying this idea of vertical 

reorganization but AiC analysis is essentially cognitive. 

Focusing on epistemological concerns as mentioned earlier, we will only characterize 

the insights offered by TDS to AiC as described by Kidron et al. (2008):  

 

                     According to Hershkowitz et al. (2001), the genesis of an abstraction originates in the 

need for a new structure. In order to initiate an abstraction, it is thus necessary (though 

not sufficient) to cause students’ need for a new structure. We may attain this aim by 
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building situations that reflect in depth the mathematical epistemology of the given 

domain. This kind of epistemological concern is very strong in the TDS, and the notion 

of fundamental situation has been introduced for taking it in charge at the theoretical 

level. It could be helpful for AiC. 

This was an invitation for AiC researchers to build an a priori analysis that reflects in 

depth the mathematical epistemology of the given domain. In the same vein the a 

priori analysis of TDS offers another perspective to IDS to think about the building of 

situations reflecting in-depth the mathematical epistemology of a given domain and 

the consequence of such reflection on the analysis of the social interactions. 

The social dimension and its influence on the epistemological analysis 

In the following, I analyze a case of networking between AiC and IDS which 

demonstrates mutual insights in the process of networking. In particular, we will 

observe how the epistemological analysis carried by the AiC researchers is influenced 

by the social dimension of knowing which characterizes IDS. This case of 

networking illustrates how the epistemological analysis might take into account the 

social dimension of knowing.   

 Kidron et al. (2010) focus on the idea of networking and on two theoretical concepts: 

the need for a new knowledge construct, and interest. IDS considers social 

interactions as basis which constitutes learning mathematics. Interest-dense situations 

provide motivation for processes of in-depth knowledge construction. AiC is a 

theoretical tool to investigate such processes. As already mentioned, in the AiC 

analysis, the first stage of the genesis of an abstraction is the learner’s need for a new 

construct. Such a need might arise when the learner’s existing knowledge is 

insufficient to solve a task or to understand a new concept. This individual need is 

related to the specific mathematical situation at hand. Analyzing this need is a part of 

AiC epistemological analysis. For IDS the situation is different: interest constitutes a 

psychological source to gain more knowledge. This need is nested in the situational 

interest rather than shaped by the epistemic nature of the topic. The aim of the 

networking was to relate these two concepts: need and interest. As mentioned earlier, 

the AiC researchers implemented the idea of a priori analysis. Their analysis was 

based on an a priori analysis of the knowledge elements intended by the design. The 

AiC analysis focused on the students’ reasoning and mathematical meaning resided in 

the verticality of the knowledge constructing process. The AiC researchers identified 

students’ constructs of the intended knowledge elements. They expected to identify 

students’ need for the new constructs before or during the process of knowledge 

construction. However, the researchers found it difficult to identify a need for a 

specific new construct. Networking the two approaches was helpful: The IDS 

analysis focuses and reconstructs the whole situation sequentially on the basis of 

utterances that show intense social interactions, whereas the AiC analysis focuses on 

segments that appear relevant to the constructing process. In fact, the excerpts 
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ignored at first by the AiC researchers did contribute to the constructing process 

thanks to the social interaction analysis provided by IDS which allowed the AiC 

researchers to focus on and incorporate these seeds of construction in their analysis. 

The networking helps AiC researchers realize that there are situations in which 

constructing actions can occur on the basis of a general epistemic need rather than on 

the basis of specific needs for new constructs. The benefit of networking was mutual 

thanks to the epistemological nature of AiC a priori analysis which makes the 

researchers sensitive for the mathematics at stake and implicit mathematical ideas 

were identified very early. This was very helpful towards IDS re-analyzing of the 

epistemic actions in the research study. 

CONCLUDING REMARKS 

In the last CERME we discussed cases in which the epistemological dimension 

permitted the networking. This was done, for example, by means of the idea of 

“reference epistemological model”. In this paper, we notice how by means of 

networking, strong epistemological concerns in one theory might be integrated in 

another theory in a way that reinforces the underlying assumptions of this other 

theory. This was illustrated by the insights offered by means of a priori analysis. We 

also analysed examples that demonstrate the influence of the cultural context as well 

as the influence of the social dimension on the epistemological analysis. The cultural 

context in which the different theories emerged is changing all the time. As a result of 

these changes, a new view on the epistemological dimension is offered. This new 

view should be further discussed.  
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TOWARDS A CONFLUENCE FRAMEWORK OF PROBLEM 

SOLVING IN EDUCATIONAL CONTEXTS 

Boris Koichu  

Technion – Israel Institute of Technology 

An exploratory confluence framework for analysing mathematical problem solving in 

socially different educational contexts is introduced.  The central premise of the 

framework is that a key solution idea to a problem can be constructed by a solver as 

a result of shifts of attention that come from individual effort, interaction with peer 

problem solvers or interaction with a source of knowledge about the solution. The 

framework consolidates some existing theoretical developments and aims at 

addressing the perennial educational challenge of helping students become more 

effective problem solvers. 

RATIONALE 

It has been repeatedly asserted that problem solving is an activity at heart of doing 

and studying mathematics. Its central feature is that problem solving requires the 

engaged person(s) to invent a solution method rather than to recall and implement a 

previously practiced method (e.g., Kilpatrick, 1982; Schoenfeld, 1985; NCTM, 

2000). Accordingly, one of the central challenges associated with the use of 

mathematical problems in educational contexts – how to help learners to become 

more effective or successful problem solvers – can be worded as the challenge of 

supporting learners’ mathematical inventiveness in ways that preserve their problem-

solving autonomy and self-efficacy.  

For the last 50 years this challenge has been approached through various conceptual 

frameworks and models (see Carlson & Bloom, 2005; Schoenfeld, 2012; Törner, 

Schoenfeld & Reiss, 2008, for comprehensive accounts of the state of the art). Each 

framework has aimed at addressing specific queries of pragmatic and theoretical 

importance. Some of the queries were:  

- How do mathematicians solve problems? What phases and cycles are they 

going through while solving problems? (Carlson & Bloom, 2005; Pólya, 

1945/1973). Can, and if yes, how problem-solving heuristics be taught? 

(Schoenfeld, 1979, 1985; Koichu, Berman & Moore, 2007). 

- What are the attributes of mathematical problem solving besides heuristics? 

(Schoenfeld, 1985). What is the role of affect in problem solving? (DeBellis & 

Goldin, 2006).     

- How do the problem-solving attributes come to cohere? (Schoenfeld, 1992). 

How does decision making occur when an individual solves a problem? 

(Schoenfeld, 2012).  
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- What sociomathematical norms should be promoted for supporting learners’ 

intellectual autonomy in problem solving? (Yackel & Cobb, 1996). 

Some of these and such queries have been addressed.  For instance, we know a lot 

about phases and cycles involved in problem solving by experts and by some 

categories of students. The use of problem-solving attributes and phases as a research 

tool has proven to be particularly helpful for analysing the phenomenon of 

unsuccessful problem solving. For example, if there is evidence that a particular 

belief about mathematics is depriving an individual from persisting when solving a 

problem, then that belief might provide a sufficient explanation for the problem-

solving failure (see Furingetti & Morselli, 2009, for an elaborated example). When, 

however, one problem is solved and another is not by an individual who possesses all 

needed mathematical, cognitive and affective resources for solving both problems, 

the explanation of the success and the failure can sometimes be sought outside of the 

existing problem-solving models and frameworks (Koichu, 2010).      

Some of the queries about problem solving have proven to be hard nuts to crack by 

means of mathematics education research (e.g., Schoenfeld, 1992, 2012). For 

example, Schoenfeld’s (1992) question about how the problem-solving attributes – 
knowledge, heuristics, control and beliefs – come to cohere has been under research 

scrutiny for more than two decades. Furthermore, different problem-solving 

frameworks and models have emerged from different contexts and situations. As a 

result, it is sometimes difficult to use one model outside its original context. A recent 

example of extending the scope of a particular problem-solving model to another 

context is given by Clark, James and Montelle (2014) (their work is discussed in 

more detail below), but it is rather an exception than a trend (cf. Koichu, 2014, for a 

collection of views on the recent trends in research on problem solving). As a rule, 

problem-solving frameworks and models co-exist with little coordination. This is one 

of the reasons for which, in terms of Mamona-Downs and Downs (2005), a clear 

identity for problem solving in mathematics education has not yet been developed.       

The aim of this article is to present an exploratory problem-solving framework that 

has the potential to consolidate some of the previous frameworks and can serve as a 

research and pedagogical tool in different educational contexts. The framework is, in 

a way, a tool for better understanding the process that Pólya (1945/1973) might term 

as a heuristic search embedded in the planning phase of problem solving. The central 

query of the framework is, simply stated, “Where can a solution to a problem come 

from?” A more precise formulation of the query is as follows: “Through which 

activities and resources can a chain of shifts of attention towards an invention of a 

key solution idea to a mathematical problem be constructed by a problem solver in 

socially different educational contexts?”  
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CONFLUENCE FRAMEWORK 

The confluence framework is schematically presented in Figure 1. A key solution 

idea notion is in its core of the framework. It is a solver-centered notion. Along the 

lines defined by Ramon (2003), a key solution idea is a heuristic idea
1
 which is 

invented by the solver and evokes the conviction that the idea can be mapped to a full 

solution to the problem. The full solution is a solution, which, to the solver’s 

knowledge, would be acceptable in the educational context in which problem solving 

occurs.       

 

Fig. 1: Confluence model of mathematical problem solving 

Examples of key solution ideas include: an auxiliary construction that enables the 

solver to see a chain of deductions connecting the givens of a geometry problem with 

the claim to be proved, a way of reassembling the terms of a sophisticated 

trigonometric equation so that the solver begins to see the equation as a quadratic 

one, a way of representing a word problem (e.g., Euler Seven Bridge Problem) as a 

graph that makes the solution to the problem transparent. One can see connections 

between the notions of a key solution idea and of an illuminating or insightful idea. 

An insight, however, is frequently defined as restructuring the initial representation of 

the problem followed by so-called aha-experience. A key solution idea does not 

necessarily emerge at once and accordingly its invention is not necessarily 

accompanied by an aha-moment.  

The framework relies on three premises. First premise: Even when a problem is 

solved in collaboration, it has a situational solver, an individual who invents and 

eventually shares its key solution idea. Second premise: A key solution idea can be 

invented by a situational solver as a shift of attention in a sequence of his or her shifts 

of attention when coping with the problem. Third premise: Generally speaking, a 

solver’s pathway of the shifts of attention can be stipulated by: (i) individual effort 

and resources, (ii) interaction with peer solvers who do not know the solution and 

struggle in their own ways with the problem or attempt to solve it together, (iii) 

interaction with a source of knowledge about the solution or its parts, such as a 
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textbook, an internet resource, a teacher or a classmate who has already found the 

solution but is not yet disclosing it. The possibilities (i)-(iii) are intended to embrace 

all frequent situations of problem-solving.  These possibilities can be employed in 

separation or complement each other in one’s problem solving.  

The framework is a confluence framework because it consolidates ideas taken from 

several frameworks and theories by means of a strategy that has been introduced at 

CERME-8 as networking theories by iterative unpacking (Koichu, 2013). Mason’s 

theory of shifts of attention (Mason 1989, 2008, 2010) serves as the overarching 

theory of the framework. Additional theories are embedded. Each of the next four 

sub-sections begins with a brief introduction of a particular theory and proceeds to 

show how the theory contributes to the confluence framework.   

Invention of a key solution idea as a shift of attention 

Mason’s theory of shifts of attention had initially been formulated as a conceptual 

tool to dismantle constructing abstractions (Mason, 1989) and then extended to the 

phenomena of mathematical thinking and learning (Mason, 2008, 2010). Palatnik and 

Koichu (2014, submitted) adopted the theory as a tool for analysing insight problem 

solving.
2
 Mason (2010) defines learning as a transformation of attention that involves 

both “shifts in the form as well as in the focus of attention” (p. 24). To characterize 

attention, he considers not only what is attended to by an individual but also how the 

objects are attended to. To address the how-question, Mason (2008) distinguishes five 

different ways of attending or structures of attention.  

According to Mason (2008), holding the wholes is the structure of attention, where 

the person is gazing at the whole without focusing on particular. Discerning details is 

a structure of attention, in which one’s attention is caught by a particular detail that 

becomes distinguished from the rest of the elements of the attended object. Mason 

(2008) asserts that “discerning details is neither algorithmic nor logically sequential” 

(p. 37). Recognizing relationships between the discerned elements is a development 

from discerned details that often occurs automatically; it refers to specific connection 

between specific elements. Perceiving properties structure of attention is different 

from recognizing relationships structure in a subtle but essential way. In words of 

Mason (2008), “When you are aware of a possible relationship and you are looking 

for elements to fit it, you are perceiving a property” (p. 38). Finally, reasoning on the 

basis of perceived properties is a structure of attention, in which selected properties 

are attended to as the only basis for further reasoning. Palatnik and Koichu (2014, 

submitted) added a why-question to Mason’s what- and how- questions: Why does an 

individual make shifts from one object of attention to another in the way that he or 

she does? Possible ways of addressing this query are related to the obstacles 

embedded for the solver in attending to a particular object and to continuous 

evaluating potential “gains and losses” of the decision to keep attending to the object 

or shift the attention to another one (Metcalfe & Kornell, 2005).  



CERME 9, TWG 17, Collected papers, January 2015  

 

122 

 

The process of inventing a key solution idea is seen as a pathway of the solver’s 

shifts of attention, in which objects embedded in the problem formulation or problem 

situation image (this notion is used in the meaning assigned to it by Selden, Selden, 

Hauk & Mason, 2000) are attended to and mentally manipulated by applying 

available schemata. The process at large is goal-directed, but particular shifts can be 

sporadic. A pathway of the shifts of attention depends on various factors, including: 

the solver’s traits, his or her mathematical, cognitive and affective resources and a 

context in which problem solving takes place. I now turn to discussing the specificity 

of the process in three socially different educational contexts. 

Shifts of attention in individual problem solving 

The lion’s share of the data corpus that underlies the development of the foremost 

problem-solving frameworks (e.g., Schoenfeld, 1985; Carlson & Bloom, 2005) 

consists of cases of individual problem solving. Carlson and Bloom (2005) consider 

four phases in individual problem solving by an expert mathematician: orientation, 

planning, executing and checking. The model also includes a sub-cycle “conjecture—

test—evaluate” and operates with various problem-solving attributes, such as 

conceptual knowledge, heuristics, metacognition, control and affect. Generally 

speaking, Carlson and Bloom’s framework offers a kit of conceptual tools that can be 

used for producing thick descriptions of individual problem-solving effort. These 

conceptual tools enter the suggested confluence framework as tools for addressing 

how- and why-questions about the shifts of attention.  

For example, when solving a challenging geometry problem, a solver can direct her 

attention to proving similarity of a particular pair of triangles, and then shift her 

attention to another pair of triangles. The pre- and post-stages of the shift can be 

described as two “conjecture—test—evaluate” sub-cycles within the planning phase. 

The shift itself can be viewed in terms of the mathematical, heuristic and affective 

resources of the solver (see Palatnik & Koichu, 2014, for an elaborated example).             

Shifts of attention when interaction with peers is available 

While studying problem-solving behaviours in small groups of undergraduate 

students, Clark, James and Montelle (2014) extended Carlson and Bloom’s (2005) 

taxonomy of problem-solving attributes by introducing two new categories/codes. 

They termed them questioning and group synergy. The former category was 

introduced in order to give room in the data analysis to various questions (for 

assistance, for clarification, for status, for direction) that the participants had asked. 

The latter category appeared to be necessary in order “to capture the combination and 

confluence of two or more group members’ problem-solving moves that could only 

occur when solving problems as a member of a group… A key characteristic of this 

group synergy code is that it leads to increased group interaction and activity, 

sometimes in unanticipated and very productive ways.” (p. 10-11). 
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Indeed, when a possibility to collaborate with peers is available to a solver, his or her 

shifts of attention can be stipulated also by inputs of the group members, especially 

when the inputs are shared in some common problem-solving space (e.g., a small-

group discussion or an internet forum) in a non-tiresome way. Here I would like to 

stop on the word “sometimes” in the above quotation. The possibility to collaborate 

can increase one’s chances to produce a key solution idea, but can also be 

overwhelming or distracting.  When nobody in a group knows how to solve the 

problem, the other members’ inputs of potential value are frequently 

undistinguishable for the solver from the inputs of no value. Consequently, it can 

become too effortful for the solver to follow and evaluate the inputs of the others.    

Schwartz, Neuman and Biezuner (2000) deeply explored, in laboratory setting, the 

cognitive gains of two children, who fail to solve a task individually, but who 

improve when working in peer interaction. They characterized the situations, in 

which (in their words) two-wrongs-make-a-right vs. two-wrongs-make-a-wrong. The 

mechanisms of co-construction behind two-wrongs-make-a-right phenomenon were: 

the mechanism of disagreement, the mechanism of hypothesis testing, and the 

mechanism of inferring new knowledge through challenging and conceding. These 

mechanisms might be involved in those cases of collaborative problem solving, in 

which group synergy led the participants in Clark, James and Montelle’s (2014) study 

to “very productive ways” (ibid) of solving the given problems.     

The confluence framework seeks to consolidate the theoretical insights of the 

aforementioned studies. In particular, to further explore the phenomenon of group 

synergy, it seems me necessary to acknowledge that the above mechanisms can 

become active on condition that at least sometimes a solver shifts his or her attention 

from an object that he or she is being exploring to an object attended to by the peer. I 

plan to present at the conference an elaborated illustration of the process of co-

constructing a key solution idea as a pathway of one solver’s shifts of attention. I am 

going to show that the shifts are stipulated either by individual or by shared problem-

solving resources and show how the aforementioned mechanisms enter the process. 

An example concerns a situation, in which a group of 16 10
th
 grade students were 

engaged in solving the following problem: 

Two circles with centres M and N are given. Tangent lines are drawn from the 

centre of each circle to another circle. The points of intersection of the tangent 

lines with the circles define two chords, EF and GH (see Figure 2). Prove that 

segments EF and GH are equal.  
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The students could solve the problem individually, but also share their ideas in a 

closed forum in one of the social networks. Eventually, three different solutions were 

invented. Interestingly, all the students indicated in the reflective questionnaires that 

they had worked collaboratively for about 40% of time that had been devoted to the 

problem. (On average, the students worked on the problem for 3 hours). As a rule, the 

students chose to collaboratively work in the forum when they were stuck and sought 

for new ideas or for the feedback on their incomplete ideas.     

Shifts of attention when interaction with a solution source is available  

The option to interact with a source of knowledge about a key solution idea to a 

problem can drastically change a pathway of one’s shifts of attention, up to the point 

that the entire process can stop being a problem-solving process and become a 

solution-comprehending process. The suggested framework seeks to encompass only 

the situations in which a solution source is present as a provider of cues to the 

solution or as a convenient storage of potentially useful facts, but not as a source of 

telling the solution. Such situations are common, for instance, when a teacher 

orchestrates a classroom problem-solving discussion.  

When a source of knowledge about the solution is present but does not tell the 

solution, the solvers may attempt to extract the solution from the source (e.g., see 

questions for assistance and questions for direction in Clark, James & Montelle, 

2014; see also Koichu & Harel, 2007). In some cases, the solver’s shifts of attention 

may occur as a result of a conflict that emerges when more knowledgeable and less 

knowledgeable interlocutors assign different meanings to the same assertions (cf. 

Sfard, 2007, for commognitive conflict).  

For example, the assertion “Triangle similarity is a good idea” can either pass 

unnoticed in the group discourse or be a trigger for the solver to shift his or her 

structure of attention. The effect of the assertion would depend on who it has come 

from, a regular member of the group or a teacher or a peer who acts as if she has 

already solved the problem. The occurrence of the shift in one’s attention as a result 

of another person’s assertion depends not only on that person’s status in the group. It 

Figure 2: A problem about two chords 
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is mainly the matter of different meanings that can be assigned to the assertion by 

different individuals. In one case, the assertion about triangle similarity may be 

perceived as, “It is possible that similarity helps,” in another, “I’ve tried it and it 

helps,” and in yet another, “This is the direction approved by the authority.” 
Stimulated by Sfard (2007), I suggest that such a conflict of meanings can first be 

unnoticed, then it can hinder the communication, and then (when the assigned 

meanings are explicated), it can help the less knowledgeable solvers to progress.        

SUMMARY AND FURTHER DEVELOPMENT 

Developing a confluence framework of mathematical problem solving that would be 

applicable to different educational contexts is motivated by several causes. First, with 

few exceptions, the existing problem-solving frameworks utilize different conceptual 

tools for exploring problem solving in socially different educational contexts. Second, 

the foremost frameworks are comprehensive within the problem-solving contexts 

from which they have emerged but it is sometimes difficult to apply them to 

additional contexts. Third, in spite of the comprehensive nature of the existing 

frameworks, the central problem-solving issue of inventing (as opposed to recalling) 

a solution method is still not sufficiently understood. At the same time, theoretical 

tools that can help to progress the state of the art are available from the other sub-

fields of mathematics education research. Hence, a confluence framework.  

In this article a particular way of constructing a confluence framework is presented.  

The confluence effect is pursued by considering common roots of problem solving in 

three socially different contexts. This is done in terms of Mason’s theory of shifts of 

attention, which initially had been constructed for other reasons. Simultaneously, the 

specificity of the attention shifts in different problem-solving contexts is considered 

by means of additional theoretical constructs. The use of the model as a research tool 

for understanding heuristic aspects of problem solving is stipulated by availability of 

research methodologies for identifying and characterizing shifts of attention in 

socially different problem-solving contexts. In part, such methodologies are available 

from past research (e.g., Mason, 1989, 2008, 2010; Palatnik & Koichu, 2014) but 

they should be further developed. Our research group currently works in this 

direction and explores long-term geometry problem solving supported by online 

discussion forums.  

As mentioned, the framework is only exploratory. The outlined mechanisms of 

attending to, proceeding of and shifting between objects of attention should be further 

unpacked. At this stage, it seems that further unpacking would require the adaptive 

use of selected theories that have been developed outside of the field of mathematics 

education. For instance, research on learners’ decisions about how to allocate study-

time (e.g., Metcalfe & Kornell, 2005) can be a source of  insights about why some 

objects of attention are short-living, and the others are long-living. Research on 

hypothetical thinking and cognitive decoupling (Stanovich, 2009) can be useful for 
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understanding how the attended objects are mentally manipulated. The hope is that, 

eventually, the confluence framework would have power not only to usefully 

describe, but also explain the emergence of problem-solving ideas in different 

educational contexts.        

NOTES 

1. Ramon (2003) explains what a heuristic idea of a proof is as follows: “This is an idea based on informal 

understandings, e.g. grounded in empirical data or represented by a picture, which may be suggestive but does not 

necessarily lead directly to a formal proof.” (p. 322). Note that not any heuristic idea is a key idea. 

2. The next 10 sentences consist of an abridged version of the description that appears in Palatnik and Koichu (2014). 
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THEORIES THAT DO AND DON’T CONNECT: DOES THE 

CONTEXT MAKE A DIFFERENCE?  AN EARLY INTERVENTION 

PROGRAMME AS A CASE 

Lena Lindenskov, Pia Beck Tonnesen, Peter Weng, Camilla Hellsten Østergaard
 
 

The paper investigates possible contextual influences on networking theories. The 

paper draws its examples from early mathematics intervention programmes. The 

paper presents our view on how theories of students’ cognitive development, theories 

of school mathematics, and theories of searching for effects in Realistic Evaluation 

tradition are chosen and networked in the Mathematics Recovery Programme in 

Australia, the UK, the USA and Canada. The paper discusses how the same kind of 

networking theories fit into Danish context for early mathematics interventions? 

Although Danish Programme for early mathematics intervention is inspired by 

Mathematics Recovery programme, the differences are substantially. The different 

practices reflect differences in networking theories.  

CONTEXT AND OUR CONTEXT   

The paper presents some general considerations on networking theories as 

contextually influenced. It is shown that culture does matter for mathematics 

education. As an example, teachers in London and in Beijing hold different views on 

mathematical learning and teaching. Teachers in London see syllabus and textbooks 

as less important in determining the content taught than interest and meaningfulness, 

which is again opposite to teachers in Beijing (Leung, 2006, p.33-4). Similarly, 

teachers in London see students’ ability as more important for their learning than 

effort, which is the opposite of teachers in Beijing (p.34-5). . We claim that it is by 

now a well-known fact that culture matters for mathematics education, but how 

culture matters in networking theories, is in need for more exploration.  

Our own context is a local, national context, where we are engaged in developing and 

researching interventions for marginal student groups in normal mathematics school 

classes. The first project, which started in 2009, focused on offering second graders 

considered to be at risk for mathematics difficulties one-to-one tutoring, 30 minutes a 

day, four days a week over 12 weeks. The most recent project started in 2014 and is 

called TMTM. TMTM means Tidlig Matematikindsats Til Marginalgrupper [Early 

Intervention for Marginal Groups], meaning intervention using same materials for 

second graders considered to be at risk for mathematics difficulties and for highest 

performing second graders. Encouragement for starting the projects came from  local 

and international sources, and from research interest as well as from educational 

policy.   
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We were encouraged to introduce early mathematics interventions by Nordic and 

international colleagues in mathematics education research and by national and 

municipal educational policy:  

- International colleagues: Through reports and articles by and communication 

with colleagues, for instance in 2008 at ICME-11: Topic Study Group 7 on 

Activities and programs for students with special needs. 

- Nordic colleagues: At conferences of the Nordic Research network on Special 

Needs Education in Mathematics (NORSMA) we presented new constructs.  

- National educational policy: The 2004 OECD Review of the Danish primary 

and lower secondary school emphasizing the need to support failing pupils in 

mathematics in the first school years (Mortimore, David-Evans, Laukkanen & 

Valijarvi, 2004). 

- National educational policy: Students failing at mathematics are described in 

the official guidelines to the 2003 national mathematics curriculum (UVM, 

2003) and are described in detail in the official guidelines to the revised 2009 

national curriculum (UVM, 2009).  

- National and municipal educational policy: Implementation on a regular basis 

of early reading interventions in many schools in Denmark from the first grade. 

The implementation is seen as a successful support to individual children, who 

show signs of reading difficulties.  

- Municipal educational policy: Politicians and school authorities at 

Frederiksberg, a municipality in the metropolitan area, focused on 

Mathematics in schools 2007–2013, including starting early intervention in 

Mathematics in all public schools.  

We are inspired from the Mathematics Recovery Programme (MRP) as implemented 

in Australia, the UK, Ireland and the USA (Wright, Martland & Stafford, 2000;  

Wright, Ellemor-Collins & Tabor 2011). As a starting point for our own first tutor 

training we invited the national coordinator for Ireland, Noreen O'Loughlin, 

University of Limerick to give a lecture. Too, we are inspired from Dowker (2008), 

who underlines the importance of beliefs, feelings and motivation, and from 

Gervasoni and Sullivan (1997) and Gervasoni (2004), who underline the diversity of 

mathematical understandings amongst children identified as at risk, and who 

developed the theory of mathematical growth points.  

One main element of MRP is an intensive one-to-one tutoring offered to first graders 

falling behind and at risk of mathematics difficulties. We appreciated, among other 

elements, that tutor training was a mandatory part of the programme. We appreciated 

that a learning framework as well as an instructional framework were included, both 

based on research. We also appreciated the diagnostic tutoring with adaptation of 
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instruction according to students’ reactions. All these elements are copied in the 

Danish Model.  

What worried us was the idea of tutors’ formative assessment to identify the student’s 

specific level of competence in order to appropriately adapt the instruction. We are 

sceptical about the idea of ‘level’ of competence as the main guiding principle for 

adaptation to individual students. This implies that while we value MRP’s focus on 

tutor training, we prefer higher tutor autonomy on deciding how to adapt material to 

an individual student.  

From the very beginning we realised that taking MRP as one starting point would be 

an inspiring endeavour for developers, researchers, tutors and teachers in Denmark. 

We explored, through research and theoretical reflection, the extent to which MRP 

aspects could be used directly, revised or rejected in Danish contexts, concerning 

among other aspects, the aspect of guiding principles for adaptation to individual 

students. Soon we realised that adaptation would not be an easy, straightforward 

process. Although Denmark is a western country like Australia, Ireland, UK and the 

USA, there still are differences in the labour market culture, in policy, and in school 

mathematics culture that may need to be taken into account.   

Work and policy culture 

The Danish labour market for teachers is highly regulated. Teachers must have 

nationally approved teacher training to work at public primary and lower secondary 

schools and teachers’ wages and working conditions are regulated by each 

municipality in accordance with national regulations negotiated with teacher unions. 

Education is free and publicly financed. Even private schools are primarily public 

financed. School mathematics is regulated by national guidelines, by national tests in 

Grades 3 and 6, and by national written and oral final examinations after Grade 9 or 

10. As mentioned above, the problem of students failing is described in national 

guidelines. Despite national regulations (or because of them?), at the school level 

mathematics teachers have a very high level of self-confidence and a very high level 

of influence on their daily teaching practice.  

It is our impression that Danish teachers have a relatively high self-confidence and a 

relatively strong wish to influence. (We build on various international comparisons of 

labour culture.)  This led us to include a group of teachers, in a decisive way, in 

design cycles in the development towards a Danish model, and it led us to make the 

material much open for teachers’ adaptation.   

School mathematics culture: aim and subject matter choice 

School cultures in Denmark are influenced by the German/continental tradition in 

educational philosophy. Danish language has, like German language, two main 

concepts for ‘Education’: one is ‘Dannelse’ (German: Bildung), another is 
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‘Uddannelse’ (German:  ‘Erziehung’). Wolfgang Klafki’s ‘Kategoriale Bildung’ is a 

frequently used concept in teacher training and in educational research in Denmark.  

In mathematics education scholars such as Wagenschein, Freudenthal, Wittmann, 

Mellin-Olsen, Skovsmose and Niss, are studied by many. At the level of school 

mathematics this tradition emerges in the common aim for primary and lower 

secondary school mathematics by pointing at everyday life, citizen life, creativity, 

problem solving, and democratic responsibility and impact: 

The aim is that students develop mathematical competences and acquire skills and 

knowledge in order to appropriately engage in math-related situations in their current 

and future everyday, leisure, education, work and citizen life.  

Subsection 2. Students' learning should be based upon that they independently and 

through dialogue and cooperation with others can experience, that mathematics 

requires and promotes creative activity, and that mathematics provides tools for 

problem solving, reasoning and communication.  

Subsection 3. Mathematics as a subject should help the students experience and 

recognize the role of mathematics in a historical, cultural and social context, and that 

students can reflect and evaluate application of mathematics in order to take 

responsibility for and have an impact in a democratic community. (UNI-C, 2014) 

(Our translation) 

We concluded that despite the young age of the intervention students, according to 

the national aims and applications in many life spheres, creativity and problem 

solving should be included in a Danish model for early intervention, not as an 

appendix, but in the core of the frameworks. We also concluded that not only 

cognitive, but also affective and identity aspects have to be included, again not as an 

appendix, but in the core of the frameworks. 

According to the choice of subject matter, the school mathematics tradition emerges 

in broad scope throughout all school grades and for all students. Danish students are 

not streamed before Grade 10. Mathematical competences, numbers and algebra, 

geometry and measurement, and statistics are included for all students from the very 

start of primary school. We concluded that therefore the focus in MRP on numbers 

and arithmetic had to be expanded with other content strands, such as geometry, 

measuring, and data handling, resulting in the areas A-J below: 

A. Knowing numbers, names and symbols 

B. Numbers as cardinal, ordinal and nominal [in Danish: identifikation]  numbers  

C. Basic strategies in addition and subtraction 

D. Understanding basic number connections  

E. Basic strategies in multiplication and division  
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F. Basic descriptions and terms related to geometrical forms  

G. Basic strategies and understanding related to geometrical forms  

H. Strategies for recognising and producing numerical and geometrical patterns 

I. Basic understanding of part-whole concept  

J. Basic understanding of measuring  

The RMP covers A-E according to Wright et al (2006) and A-E and I according to 

Wright et al (2011). 

THE VIEW OF MATHEMATICS AND OF DIFFICULTIES 

We are inspired by the Danish scholar Ole Skovsmose and the Norwegian scholar 

Stieg Mellin-Olsen. The paradigm on learning mathematics as landscapes of 

investigation suggested by Skovsmose (2001), as opposed to the exercise paradigm 

inspired us. The metaphor of travel identified by Mellin-Olsen (1991) in teachers’ 

thinking about instruction as a common teacher-student journey inspired us.  

Since 2003 (Bøttger, Kvist-Andersen, Lindenskov & Weng, 2004) we have been 

involved in demonstrating mathematics learning as a journey in landscapes, which 

evolve with hills and holes as you travel, and where many routes can be appropriate 

for the teachers and students involved. This implies a new view on students in 

difficulties in learning mathematics, condensed in the construct ‘math holes’.  

Within the construct ‘math holes’ students in difficulties are not students lacking 

behind or students with special neurological characteristics as implied by some 

definitions of dyscalculia.  

Within the construct ‘math holes’ students in difficulties are students who stopped 

progressing learning, and this is visualised as ‘getting stuck in a hole’. Gervasoni and 

Lindenskov (2011) describe the construct with the following:  

When mathematics is seen as a landscape it means that whenever students stop learning 

and feel stuck it is as if they ‘fall into a hole’. There are several ways for a teacher to cope 

with a student’s ‘fall’. First, a teacher can invite the student to move to another type of 

landscape, maybe far away from the hole in which the student was stuck; this means that 

even when students fail to thrive in one area of mathematics there are still many other 

mathematics landscapes to experience and learn. Second, teachers can help students ‘fill 

up’ the hole from beneath with mathematical building stones; or third, teachers can ‘lay 

out boards over the hole’ in order to let the student experience new and smart 

mathematical approaches. 

This contradicts the MRP’s sole focus on numbers and arithmetic, and it contradicts 

the MRP idea of prescribed stages, tailored instruction building up precisely 

according to ‘level’ of student’s competence.  

http://www.dpu.dk/om/weng
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CONNECTING THEORIES - ADAPTATION AND EXTENSION? 

Thus, the Danish developmental and research projects on early intervention are based 

on original construct, the Math Holes Construct. Also theories upon which 

international frameworks like MRP are built are utilised, but when necessary they are 

adapted according to the Math Holes Construct.  

With Skott (in press), in our view networking theories is very much depending on 

what we mean by theory, constructs and conceptual framework. Skott points to 

decisive elements as a) preliminary understanding of concepts involved, b) theoretical 

stance on interpretation of these concepts, and c) the overall rationale for engaging in 

the field of inquiry.    

The Math Holes Construct implies differences compared to RMP concerning all three 

elements. In the evaluation of RMP by Smith, Cobb, Farran, Cordray and Munter 

(2013) in twenty schools in two states in USA, the theories built into MRP are 

explained. Two kinds of theories are included. The first kind is cognitive models of 

children’s numerical reasoning to delineate developmental progressions for four early 

numerical skills and concepts. This includes work from  

a number of researchers (Baroody, 1987; Baroody & Ginsburg, 1986; Carpenter & 

Moser, 1982, 1984; Clements, 1999; Fuson, 1988, 1992; Steffe, Cobb, & von 

Glasersfeld, 1988; Steffe, von Glasersfeld, Richards, & Cobb, 1983).  (pp.400-402) 

The second group of theories draws on research on early number instruction for 

RMP’s Instructional Framework with its developed  

instructional tasks appropriate for children at different levels of the Learning 

Framework (…) (Baroody, 1990; Beishuizen, 1993; Carpenter, Franke, Jacobs, 

Fennema, & Empson, 1997; Clements, 1999; Cobb, Gravemeijer, Yackel, McClain, 

& Whitenack, 1997; Fuson, 1990; Fuson, Wearne, et al., 1997; Hiebert & Wearne, 

1992). (p.402) 

It is, in our view of the Math Holes Construct, crucial to draw attention to the 

individual pupil: Much still needs to be done, following Ginsburg’s (1997) more than 

15-years-old call for teaching experiments focusing on pupils with learning 

difficulties, as children today are exposed to physical and social environments that 

are rich in mathematical opportunities. In Denmark as in many other countries, 

children today are exposed for instance to even very big numerals in computer and 

board games and in family activities. This questions the generality of the existing 

cognitive models of children’s reasoning and of the theories of instruction. For 

instance it questions the motivating effect as well as the learning effect of splitting 

instruction on numbers into first 1-20, and then 1–100, as it is done in MRP. 

Children’s exposure rapidly develops, and no one can predict what will happen just a 

few years from now. This means that the generalisation of identified mathematics 
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learning trajectories in research studies may not be generalizable to all children in the 

world. On the other hand, the learning trajectories, which are found in research, and 

upon which MRP have built their stages, do show valuable insight into children’s 

learning, which is not visible for teachers even with profound training. We do 

advocate for teachers to obtain extended knowledge on researched learning 

trajectories.  

The adaptation of theories from MRP on learning and instruction trajectories is in the 

Danish model for Early Intervention in Mathematics, devised according to Math 

Holes Construct. We see described trajectories as a valuable tool for teachers’ formal 

assessment and adaptation of early intervention ideas to individual students.   But not 

used ‘automatically’: we agree with Simon (1995) that described learning and 

instructional trajectories - as well as constructs like five levels of geometrical 

reasoning from van Hiele (1985/1959) - may serve as teachers’ a priori hypotheses on 

their students’ competence and needs. Besides adaptation of theories according to 

Math Holes Construct, the Danish Model extends MRP into the mentioned ten key 

mathematical aspects (A through J below) and five psychological, sociological and 

organisational aspects, which are  

Beliefs about and attitudes towards mathematics,  

Pupils with a need for early intervention and identification of them,  

Integration of pupils’ learning from early intervention into the mathematics 

classroom,  

Communication with and integration of parents in early intervention,  

Integration of early intervention into the mathematics profile of the school.  

 Tutor material is published in a 191 pages book (Lindenskov & Weng, 2013).  

THEORIES FOR REALISTIC EVALUATION OF EARLY INTERVENTION 

PROGRAMS  

Realistic evaluation (Pawson & Tilley, 1997) is to our understanding more and more 

used in evaluation of complex social programmes and policies. Early mathematics 

intervention programmes are indeed complex social programmes. The intention by 

using realistic evaluation is to provide broad results by looking at effect not only as 

outcomes but also to theoretically consider mechanisms that cause outcomes and lack 

of outcomes. This can be visualised as what Smith et al (2013) term as The program 

logic model.  

The expected mechanisms that cause outcomes and lack of outcomes have 

tremendous implications for methodological issues of effect studies. In the evaluation 

of MRP presented in Smith et al (2013) it is seen as data pollution and lack of fidelity 

if tutors and teachers collaborate, because the collaboration is not included in the 
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program logic model. The presentation underlines that lack of collaboration between 

tutors and teachers may be a cause behind the relatively weak long-term effects 

revealed by the evaluation, despite strong short time effects. 

The program logic model for the Danish Model TMTM shown below, includes all 

elements from the MRP model. But the TMTM extends MRP by including ‘tutor-

teacher collaboration’, ‘continued tutor professional development’ and ‘Improvement 

of the school’s mathematical profile’.   
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Although we in an ongoing effect study of TMTM ask tutors and teachers not to 

collaborate in the period when the one-to-one intervention is going on, as we have 

chosen to measure short time effects of isolated tutor intervention, we find it 

meaningless on a long time basis to exclude any part of the TMTM program logic 

model in long term effect studies.           
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TOOL USE IN MATHEMATICS: A FRAMEWORK 

John Monaghan 

School of Education, University of Leeds, UK 

In the course of research into the interpretation of tools in the didactics of 

mathematics I found both voids and conflicts. This paper presents the results of my 

research and a resultant statement on tool use in mathematics education. The 

statement incorporates constructs from several theoretical frameworks and I consider 

the consistency of my statement on tool use with regard to activity theory. 

Key-words: activity theory, agency, artefacts, mediation, tools 

INTRODUCTION 

In the course of work on tool use in mathematics I examined literature which I 

summarise in this paper. The literature sit in various theoretical frameworks and this 

paper, in the language of Prediger, Bikner-Ahsbahs & Arzarello’s (2008), can be 

considered as an attempt to ‘synthesise’ frameworks with regard to a statement on 

tool use in the didactics of mathematics. This synthesis, however, does not aim at 

synthesising complete theories but synthesising activity theory with principles from 

other theories. This paper has the following structure:a definition of tools; a survey of 

theoretical frameworks with regard to tools; an exposition of activity theory with 

regard to tools; actor network theory ideas that augment an activity theoretic account 

of tools; an activity theoretic statement on tool use in mathematics education which 

incorporates ideas from outside of activity theory, and a consideration of the 

consistency of this statement with regard to networking theories. 

TOOLS: A DEFINITION 

I define a tool via four action-related distinctions, the first of which is between an 

artefact and a tool. An artefact is a material object which becomes a tool when it is 

used by an agent to do something; a compass becomes a tool when it is used to draw 

a circle (its intended purpose) or to stab someone. This establishes that tool use 

cannot be separated from the animal using the tool and the purpose of use. After 

being used as a tool (for whatever purpose), the compass returns to being an artefact. 

The materiality of an artefact is not just that open to touch. An algorithm, e.g. for 

adding two natural numbers, is an artefact. It is material in as much as it can be 

written down or programmed into a computer. My second distinction is between an 

artefact/tool and ways of using the artefact/tool. For example, I could use a calculator 

to perform 45+67 by typing in ‘45+67=’ or I could imitate the standard written 

algorithm (adding the units, storing the result) and adding the tens and adding on my 

stored results. My third distinction is between the mental representation of a tool and 

material actions in tool use. This distinction comes with an interrelationship: to carry 

out material actions with an artefact you need some form of mental representation, 
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which may be quite crude, of how to act with the artefact-tool, but actions with the 

artefact-tool will provide feedback to the user which may change the mental 

representation. My fourth distinction is between signs and tools. Signs, like tools, are 

artefacts but a sign points to something whereas a tool does something. Having said 

this, signs or systems of signs, can function as tools. Similarly representations can 

function as tools but they may also have non-tool functions, e.g. to point to an object.  

Is there such a thing as a ‘mathematical tool’? – only in use, a compass is a 

mathematical tool when it is used to draw a circle but not when it is used to stab 

someone. When artefacts are used for mathematical purposes they generally 

incorporate mathematical features, e.g. a compass encapsulates the equidistant 

relationship between the centre and points on the circumference of a circle.  

A SURVEY OF FRAMEWORKS WITH REGARD TO TOOLS 

I conduct an historical tour of theoretical frameworks employed in Western 

mathematics education. I select papers from the 1960s to the present which reflect 

dominant ‘grand theories’ over this time that address or ignore tools. Behaviourism 

regarded artefacts as a means of stimulating a response in a subject. Suppes (1969), 

for example, considers computers as tutorial systems that can provide: 

individualized instruction [where the] intention is to approximate the interaction a patient 

tutor would have with an individual student … as soon as the student manifests a clear 

understanding … he is moved on to a new concept and new exercises.” (ibid., p.43).  

Suppes does not consider the environment in which the tool is used. During the 

period when behaviourism ruled two psychologists, E. & J. Gibson, ventured on a 

non-behaviourist route to the theory construct of affordances (and constraints): 

The affordances of the environment are what it offers the animal, what it provides … If a 

terrestrial surface is nearly horizontal … nearly flat … and sufficiently extended (relative 

to the size of the animal) and if its substance is rigid (relative to the weight of the 

animal), then the surface affords support. (Gibson, 1979, p.127) 

There is no mention of tools in this quote but mathematics educators have learnt that 

the construct ‘affordances’ is useful in considerations of the relevance of artefacts 

and digital software environments to students’ mathematical learning.  

The demise of behaviourism in mathematics education saw the rise of cognitive 

studies and Piaget was the Guru. The interesting thing about Piaget’s extensive output 

with regard to tool use is that he says nothing at all about the role of tools in cognitive 

development. Piaget’s work inspired several ‘local theories’ in mathematics 

education: Brousseau’s theory of didactical situations (TDS), constructionism and 

constructivism. TDS was developed over decades starting in the 1960s. The influence 

of Piaget in Brousseau’s work is explicit. An important construct of TDS came to be 

called the ‘milieu’ which includes the teacher, the materials and the designed learning 
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strategies. I know of no explicit consideration of mathematical tools in 20
th
 century 

TDS but tools are a part of the milieu. Papert, who spent several years with Piaget, 

experimented with children using the computer language Logo. Constructionism 

views that learning occurs through the construction of meaningful products. Logo is 

integral to constructionism but, despite statements that these languages equip students 

with tools to think with, there is no clear statement as to what a tool is in Papert 

(1980) and a clearer constructionist view of tools did not emerge until Noss & Hoyles 

(1996) – by which time constructionism had relinquished its Piagetian roots and 

embraced socio-cultural viewpoints. 

Piagetian ideas were the inspiration for the constructivism, which focused on the 

ontogenic development of the individual child but developed to include a focus on 

microgenetic (child-environment) development (social constructivism). Yackel & 

Cobb (1996) is a developed form of social constructivism which examines teacher-

student discussions and argumentation in a classroom context. This paper introduced 

the construct ‘sociomathematical norms’. The classroom considered in the paper had 

various resources (centicubes and an overhead projector) but the paper does not 

mention tools. This neglect has been noticed by others, e.g. Hershkowitz & Schwarz 

(1999, p.149) “... socio-mathematical norms do not arise from verbal actions only, 

but also from computer manipulations as communicative non-verbal actions.” 

In summary, 20
th

 century mathematics educator frameworks influenced by Piagetian 

ideas had little to say on tools in learning and teaching but outside of mathematics 

education, deep ideas, published in the 1970s, on tools were in circulation. 

Wartofsky (1979) includes an essay on perception, “an historically evolved faculty 

… based on the development of historical human practice” (ibid., p.189). Practice is 

“the fundamental activity of producing and reproducing the conditions of species 

existence … human beings do this by means of the creation of artefacts … the ‘tool’ 

may be any artefact created for the purpose” (ibid., p.200). Wartofsky extends the 

concepts of artefacts to the skills required to use artefacts as tools: 

Primary artefacts are those directly used in this production; secondary artifacts are those 

used in the preservation and transmission of the acquired skills or modes of action or 

praxis by which this production is carried out. Secondary artefacts are therefore 

representations of such modes of action (ibid., 202) 

Vygotsky (1978), published posthumously, was to have a profound influence on 

mathematics education. Vygotsky was interested in language, signs and mediation. 

His interest in tools was in their mediating qualities, “the basic analogy between sign 

and tool rests on their mediating function that characterizes each of them” (1978, 

p.54). The difference between signs and tools rests on: 

The tool’s function is to serve as the conductor of human influence on the object of 

activity; it is externally oriented; it must lead to a change in objects … The sign, on the 
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other hand, changes nothing in the object of a psychological operation. It is a means of 

internal activity aimed at mastering oneself; the sign is internally oriented. (ibid., p.55) 

The reader, however, may note the influence of both Wartofsky and Vygotsky in my 

definition of tools above. I now move on to the work of B. Latour and P. Rabadel.
[1]

 

Latour is a sociologist and, around 1980 and with others, established what is now 

called actor network theory (ANT); Latour (2005) is a fairly recent exposition. ANT 

is a theory about how to study social phenomena – by following the actors, where an 

actor is “any thing that does modify a state of affairs by making a difference” (ibid., 

71). ANT symmetrically views both society and nature as being in a state of flux and 

looks to the performance of the actors in situations. Objects (artefacts/tools) can make 

difference in performance and so can be actors, exerting agency, in the playing out of 

social situations. Pickering (1995), who is ‘almost ANT’ in my opinion, examines 

practices of 20
th
 century elementary particles physics. He accepts ANT’s human and 

material agencies and adds ‘disciplinary agency’ (in our discipline a+a=2a regardless 

of what we might want it to be). He proposes a ‘dance of agency’ where, in the 

performance of scientific inquiry, human, material and disciplinary agencies “emerge 

in the temporality of practice and are definitional of and sustain one another” (ibid., 

p.21). I see this in ‘dance’ in techno-mathematics lessons – a myriad of influences 

between students, teachers, computers and mathematics. 

Rabadel introduced the ‘instrumental approach’ which distinguishes between an 

artefact, as a material object, and an instrument as a psychological construct. An 

instrument is an emergent entity that begins its existence when a person appropriates 

an artefact to do something; this has influenced my distinction, above, between an 

artefact and a tool. The instrumental approach has been well known in mathematics 

education since Guin & Trouche (1999). This views an instrument as a composite 

entity composed of the artefact and knowledge (knowledge of the artefact and of the 

task constructed in using the artefact). Artefact and the agent(s) are interrelated: the 

artefact shapes the actions of the agent, instrumentation; the user shapes the use of 

the artefact, instrumentalisation. The process of turning an artefact into an instrument 

is called ‘instrumental genesis’. The agent brings her/his knowledge and the artefact 

brings its potentialities and constraints to the artefact agent interaction.  

I leave my historical tour at this point with the observation that a lot of the 

frameworks used in mathematics education pay scant regard to the nature of the tools 

used in doing mathematics but frameworks initiated by Wartofsky, Vygotsky, Latour, 

Pickering and Rabardel provide interesting, though diverse, insights into the role of 

tools in activity. I now turn to the focus framework of this paper, activity theory. 

ACTIVITY THEORETIC CONSIDERATION OF TOOLS 

I briefly outline activity theory (AT), trace its genesis into mathematics education 

research (MER) and consider differences in approaches. 
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AT is an approach to the study of human practices. It sees constant change (flux) in 

practice. Activity became a focus for Vygotsky in his conviction that consciousness 

originated in socially meaningful activity. In AT ‘object orientated activity’ is the 

unit of analysis, that which preserves the essence of concrete practice. ‘Object’ here 

refers to raison d’etre of the activity. Educators employing AT must take care that 

they do not merely employ the word ‘activity’ without considering the object and the 

unit of analysis. Vygotsky’s AT is often presented via a triangle with ‘subject’, 

‘object’ and ‘mediating artefacts’ at its vertices. Leont’ev (1978) developed 

Vygotsky’s work by considering individual and collective actions (usually with tools) 

and operations (things to be performed or modes of using tools) involved in socially 

organized activity. Engeström (1987) extends Vygotsky’s and Leont’ev’s frameworks 

to ‘activity systems’ and extends the focus on mediation through signs and tools to 

multiple forms of mediation including the community and social rules underlying 

activity. Activity systems research often examines interactive activity systems with a 

focus on the objects of activity in the two systems; the place of tools in such research 

usually emphasises tool use in the context of the whole system. I now turn to the 

influence of activity theory in MER. 

I was curious of AT’s introduction into Western MER literature and I traced its 

introduction into the journal Educational Studies in Mathematics (ESM). Two AT 

papers appeared in ESM in 1996. Crawford (1996) is an exposition of Vygotskian AT 

and asks “What difference does the use of tools such as computers and calculators 

make to the quality of human activity?” (ibid., p.47) but does not explore the nature 

of tools further. Bartolini Bussi (1996) reports on a teaching experiment on geometric 

perspective. The word ‘tool’ has two uses in the paper: Leont’ev’s theory as a tool for 

analysis; ‘semiotic tools’, which are defined via examples. In 1998 two ESM AT 

papers considered tool use in different ways to Bartolini Bussi (1996). Chassapis 

(1998) focuses on the processes by which children develop a formal mathematical 

concept of the circle by using various instruments to draw circles: by hand; using 

circle tracers and templates; and using a compass. “The process of learning to use a 

tool … involves the construction of an experiential reality that is consensual with that 

of others who know how to use [the tool]” (ibid., p.276). Pozzi, Noss & Hoyles 

(1998) focuses on nursing and ask “how do resources enter into professional 

situations, and how do they mediate the relationship between mathematical tools and 

professional know–how?” (ibid., p.110) The paper states that AT provides evidence 

that “acts of problem solving are contingent upon structuring resources, including a 

range of artefacts such as notational systems, physical and computational tools” 

(ibid., p.105). Radford (2000) focuses on early algebraic thinking “considered as a 

sign-mediated cognitive praxis” (ibid., p.237): 
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to accomplish actions as required by the contextual activities … The sign-tools with 

which the individual thinks appear then as framed by social meanings and rules of use 

and provide the individual with social means of semiotic objectification (ibid., p.241). 

The first mention of Engeström in ESM is in Jaworski (2003, p.249). This outlines 

“insider and outsider research and co-learning between teachers and educators in 

promoting classroom inquiry” and is not concerned with tool use in mathematics. 

Thus, although AT is quite an old theory, it is a fairly recent theory in terms of 

Western MER and there is wide variation with regard to the meaning of tools in ESM 

AT papers from 1996 to 2003. After 2003 a considerable number of ESM papers used 

AT as a theoretical papers but I do not have room to summarise. To get a handle on 

contemporary AT conceptions of tools in MER I go to a special edition of The 

International Journal for Technology in Mathematics Education devoted to AT 

approaches to mathematics classroom practices with technology. For reasons of space 

I focus on three (of 11) papers which illustrate a range of approaches. 

Chiappini (2012) focuses on the learning and teaching of algebra with software with a 

visual ‘algebraic line’ and conventional algebraic notation, to draw students’ attention 

to the culture of mathematics. Chiappini is interested in ‘cultural affordances’, which, 

“allow students to master the meanings, values and principles of the cultural domain” 

(ibid., p.138). With regard to tools, Chiappini’s focus is the evaluation of software 

designed to exploit visuo-spatial and deictic affordances and allow teachers to 

consolidate student learning. Ladel & Kortenkamp (2013) focuses on the design and 

use of a multi-touch-digital-table to engage young children in meaningful work with 

whole number operations, “We want to restrict the students’ externalizing actions to 

support the internalization of specific properties … mediation through the artefact is 

characterized by restriction and focussing.” Artefacts are the focus of attention and 

the word ‘tool’ is not mentioned in the paper. They hold that “the artefact itself does 

not have agency and is only mediating … [but] the artefact changes the way children 

act drastically and in non-obvious ways” (ibid., p.3). Mariotti & Maracci (2012) 

outline the Theory of Semiotic Mediation (TSM) with regard to "the use of artefacts 

to enhance mathematics learning and teaching, with a particular focus on 

technological artefacts” (ibid., p.21); like Ladel & Kortenkamp (2013) above, the 

word ‘artefact’ is favoured over the word ‘tool’. This paper continues the work of 

Bartolini Bussi (1996) considered in the previous section and is critical of research 

where “the mediating function of the artefact is often limited to the study of its role in 

relation to the accomplishment of tasks” (ibid.). TSM views that “teaching-learning 

… originates from an intricate interplay of signs… mathematical meanings can be 

crystallized, embedded in artefacts and signs” (ibid.) The paper presents a rather 

strange (to me) take on mediation, “The mediator is not the artefact itself but it is the 

person who takes the initiative and the responsibility for the use of the artefact to 

mediate a specific content” (ibid. p.22). To mediate the learning of mathematics the 
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teacher has to design specific circumstances, a didactical cycle, aimed at fostering 

specific semiotic mediation processes.  

Differences in the papers outlined above include the unit of analysis, cognition, the 

words used, mediation and agency. Some papers explicitly state the unit of analysis, 

e.g. Chassapis (1998), but many do not. Chassapis’ unit of analysis is ‘quite small’ 

compared to Engeström’s, the activity system itself. I think the ‘size’ of the unit of 

analysis impacts on the extent to which the AT analysis permits a study of 

microgenetic learner development with tools (i.e. Chassapis’ unit of analysis allows a 

focus on cognition and tool use but details of cognitive development are easily ‘lost’ 

when the focus is on activity systems). With regard to the words used it is clear that 

some scholars use ‘artefact’ for what I refer to as a tool. This seems unimportant but 

the difference between sign and tool is important and the fact that this difference is 

sometimes blurred does not downplay this importance; some of the papers do not 

consider signs vs tools. With regard to mediation the biggest difference is between 

Ladel & Kortenkamp, where artefact mediation is central, and Maracci & Mariotti, 

which holds that people and not artefacts mediates. My final consideration concerns 

agency. Only Ladel & Kortenkamp  comments on this, to claim that artefacts do not 

have agency. The differences noted above show that AT in MER is a collection of 

approaches, not a unified theory, and there are many ways to view tools within AT.  

ANT IDEAS THAT AUGMENT AN AT ACCOUNT OF TOOLS 

I am drawn to AT as a framework because it mirrors my view that tools are important 

but tool use is not an activity in itself though tool use and activity are interrelated. But 

I detect an anthropocentric position in AT – even though AT recognises that people 

think through/with tools, people are at the centre, they appear as ‘the’ agents. This 

anthropocentrism is explicit in Maracci & Mariotti’s view that artefacts are not 

mediators and Ladel & Kortenkamp’s statement that artefacts do not have agency. I 

think tools can be powerful things and I am drawn to an ANT view on material 

agency, but can ANT ideas be brought into AT? I first look at a potential major 

obstacle to networking these theories and a difference between Latour and Pickering. 

Miettinen (1999) considers ANT and AT as approaches to studying innovations and 

locates the main division between these approaches as ANT’s generalised principle of 

symmetry which states that the same “vocabulary must be used in the description and 

explanation of the natural and the social … no change of register is permissible when 

we move from the technical to the social aspects of the problem studied” (ibid., 

pp.172-173). This is a problem for AT because the object (of activity) is generated 

from human needs. OK, humans do generate the object but once the object is 

established the agency which follows in the activity can be distributed. Indeed, 

Latour (2005) states that he abandoned most of the symmetry metaphor because what 

he had in mind was a “joint dissolution of both collectors” (ibid., p.76). Pickering 

(1999, p.15) also considers the generalised principle of symmetry to be problematic, 
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“As agents, we humans seem to be importantly different from nonhuman agents”. 

With the generalised principle of symmetry ‘put in to perspective’ I now look to two 

commonalities in principles between Latour and Pickering: focus on performance; 

don’t restrict agency to animals (humans) alone.  

Latour (2005) mentions performance with to regard groups, social aggregates. 

Classical sociologists are accused of making ostensive definitions of groups – there’s 

a group of teachers –and focusing on stability but, from an ANT point of view, “the 

rule is performance and what has to be explained, the troubling exceptions, are any 

type of stability over the long term [and this cannot be explained] without looking for 

vehicles, tools, instruments, and materials able to provide such a stability” (ibid., 

p.35). This focus on performance is akin to flux in AT. A sketch of a performative 

view of science is presented early in Pickering (1995, p.6), instead of a world where 

scientists only generate knowledge from facts, he sees a world filled with agency: 

The world … is continually doing things, things that bear upon us not as observation 

statements upon disembodied intellects but as forces upon material beings … Much of 

everyday life … character of coping with material agency, agency that comes at us from 

outside the human realm and that cannot be reduced to anything within that realm. 

Later, in Pickering (1995), ‘disciplinary agency’ and the ‘dance of agency’, as 

described above, are introduced. Neither Latour nor Pickering are concerned with 

mathematics education but their ‘multi-agent’ stance resonates with my experience of 

mathematics classrooms. When a teacher uses a tool in a mathematics class, then s/he 

is only one of the agents in the activity, other potential agents are: other teachers; 

students; the curriculum; the institution; other available artefacts; and the tool itself.  

I now turn my attention to mediation and what it is that mediates. There are at least 

four contenders: language, signs, artefacts and people. I think the problem here can 

be viewed via the ostensive-performative distinction. Scholars have different interests 

and tend to point to something and say “that (those) is (are) the mediator(s)” whereas 

the mediator in a specific situation exists in relation to what is actually done (the 

activity/performance). I am, for instance, interested in artefact/tool-mediation but two 

learners may be involved in ostensibly similar activities with a mathematical tool but 

one learner may be heavily reliant on the tool whereas the use of this tool to the other 

learner may be peripheral; mediation by the tool comes down to the actual use of the 

tool. Similarly Mariotti & Maracci (2012) may expect the mediator to be the teacher 

but I doubt if this is always the case. Latour (2005, p.39) appears to present a similar 

idea in distinguishing between mediators and intermediaries, “An intermediary … is 

what transports meaning or force without transformation … Mediators transform, 

translate, distort, and modify”. 
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A STATEMENT ON TOOL USE IN MATHEMATICS EDUCATION 

The considerations above, together with those in the previous three sections, provide 

a basis for the following statement (in italics) on tool use in mathematics education. 

AT provides a framework to interpret tool use in practice but the level of detail on 

tool use will depend on the ‘size’ of the unit of analysis. An AT account of tools would 

benefit from being augmented by constructs from instrumentation theory and the 

theory of affordances. Activity is mediated by human and non-human mediators but 

this mediation cannot be stipulated in advance of the performance of the activity. 

Human and non-human agents impact the activity; as with mediation, the impact of 

these agents cannot be stipulated in advance of the performance of the activity. 

I now state my networking argument. The theories of affordances and of 

instrumentation have few assumptions and a lot of application. Recognition of the 

relationship between learners and their environments is important in AT as is the 

process by which an artefact becomes a tool for learners. Both theories can be used in 

MER to shed light on the action and operation aspects of AT without compromising 

any tenets of AT. With regard to taking ideas from Latour and Pickering I focus on 

the two principles outlined above. The ‘focus on performance’ principle is entirely 

consistent with the concept of flux in AT. AT focuses on describing practice and 

tools (and, I add, other things) are used as they are used (or not) – there is no pre-

ordained plan. As for not restricting agency to humans alone, well, this is a problem 

for many activity theorists because the object of an activity is generated by humans. 

But if the principle of non-human agency is weakened to restrict non-humans from 

initiating activity, then I don’t think there is a problem. 

NOTES 

1. My initial draft considered the use of his anthropological theory of didactics (ATD) by M. 

Artigue and J-b. Lagrange, but my draft was too long. I look forward to discussing this at CERME. 
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ADAPTIVE CONCEPTUAL FRAMEWORKS FOR 

PROFESSIONAL DEVELOPMENT 

Miguel Perez 

Linnaeus University 

In this paper, I present the notion of adaptive conceptual frameworks that I have used 

to conduct design-based research with the aim of developing ICT supported 

mathematics instruction. In this approach, empirical data is connected with various 

theories in an adaptive and iterative process. I differentiate between Conceptual 

Framework for Development (CFD) and Conceptual Framework for Understanding 

(CFU) depending on how the frameworks are used in the design process. Using 

adaptive conceptual frameworks contribute to the transparency in the design process 

by making explicit the levels at which different theories operate. 

INTRODUCTION 

During the last decades, several similar methodologies have emerged that address the 

desire to conduct educational research with relevance for school practices. For 

example, design-based research aims explicitly at developing theories that could do 

“real work” by providing theoretically underpinned guidance on how to create 

educational improvement in authentic settings (Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003; McKenney & Reeves, 2012). A common feature of these approaches 

is the design of teaching activities in an iterative design process that shares many 

similarities with teachers’ daily work.  

This paper contributes to research by describing how the design process may be co-

determined by the interaction between different stakeholders such as researchers, 

teachers, disciplinary knowledge, theoretical frameworks, and other resources. At the 

core is the development of adaptive conceptual frameworks that were used to guide 

and justify an intervention in a lower secondary school with the overall aim of 

developing ICT supported mathematics instruction. These efforts have been inspired 

by co-design, as a design methodology that highlights the importance of involving 

different stakeholders such as teachers in the design research process in order to 

address the issue of ownership of innovation (Penuel, Roschelle, & Shechtman, 

2007). Furthermore, working in close collaboration with teachers deepens our 

knowledge about pragmatic issues and promotes development of “innovations that fit 

into real classroom contexts” (ibid. p.52). Following the conceptualization of 

knowledge proposed by Chevallard (2007) in the Anthropological Theory of the 

Didactic (ATD), the two different perspectives of understanding and development 

could be viewed as two inseparable aspects of knowledge, integrating a practice that 

includes the things teachers do to solve different educational tasks (Praxis) with a 
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discursive environment that is used to describe, explain, and justify that practice 

(Logos). The adaptive conceptual frameworks explicitly address both perspectives.  

The case study presented in this paper involves two lower secondary mathematics 

teachers. Empirical data is only used to motivate the development of the adaptive 

conceptual frameworks. Thus, a full analysis of the empirical data with respect to the 

intended learning objectives is not provided. The purpose of this paper is to describe 

how the use of adaptive conceptual frameworks has contributed to meet the emerging 

needs in a design process of ICT supported mathematics instruction during one 

design cycle.  

ADAPTIVE CONCEPTUAL FRAMEWORKS 

In this approach the researcher connects empirical data with various existing theories 

that are chosen in retrospect and that are used to generate additional empirical data in 

an iterative, incremental and adaptive process. Thus, theory is not applied onto 

practice, it is more about a “progressive interaction between theory and practice, by 

means of appropriating existing theoretical tools” (Bartolini Bussi, 1994, p. 127). 

Furthermore, the adaptive conceptual frameworks are considered in a state of flux 

and changeable according to the different challenges that might emerge when 

conducting design-based research. Thus, the adaptive conceptual frameworks should 

be regarded as tentative and a result of a research work that has similarities with 

research that sometimes is portrayed by the “bricolage” metaphor (Kincheloe, 2001), 

particularly regarding the efforts of embracing methodological flexibility and 

plurality of theories. From this perspective, this research approach aligns with the 

Singerian inquiry system (Churchman, 1971; Lester, 2005). 

The workflow of the formal stages of a design cycle is illustrated in Figure 1. Each 

design cycle starts with a planning phase, followed by an implementation phase 

involving the teachers. The cycle is completed with an evaluation of outcomes. Three 

different frameworks are distinguished depending on their role in the different 

phases:  

 methodological framework for professional development (MFPD), 

 conceptual framework for development (CFD), 

 conceptual framework for understanding (CFU).  

 

Figure 1: The adaptive frameworks for research and professional development 

The researcher uses the methodological framework for professional development 

(MFPD) to plan the interventions involving the teachers and to operationalize his 
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current understandings before engaging in a new design cycle. The conceptual 

framework for development (CFD) is used to describe and justify the different 

activities that the researcher engages in together with the teachers. Finally, the 

conceptual framework for understanding (CFU) is used to understand the outcomes 

of an intervention and to plan the next design cycle. While the CFD and CFU 

naturally share similarities, since they both put focus on the design process, the 

MFPD should be regarded as a separate framework for organizing and supporting the 

teachers’ professional development.  

The different frameworks consist of multiple components, which need to be 

considered carefully how they interact. For this purpose, the categorization presented 

by Prediger, Bikner-Ahsbahs, and Arzarello (2008) of different levels of connected 

theoretical approaches was used. In their landscape of different levels of integration, 

the authors present a scale ranging from one extreme of ignoring other theories to the 

other extreme of unifying theories globally. Those strategies that are intermediate are 

called networking strategies. Networking strategies include strategies such as 

comparing, combining, coordinating and integrating locally. According to Prediger 

et al. (2008) the strategies of coordinating and combining are mostly used for a 

networked understanding of an empirical phenomenon or a piece of data and are 

typical for conceptual frameworks that, as in our case, not necessarily aim for a 

coherent theory. While comparing and contrasting always are possible the strategies 

of coordinating and combining can be a more difficult task especially if the theories 

are not compatible relative a specific purpose. The coordinating strategy is in turn 

used when a conceptual framework is built on well-fitting theoretical elements (ibid.). 

The networking strategies used in this study were comparing and coordinating. 

THE BACKGROUND OF THE CASE STUDY 

The participating teachers were involved in a developmental project in their school 

on how ICT could enhance their students’ learning of mathematics. The teachers 

participated in a one-day event with lectures and hands-on learning activities 

developed by researchers from media technology and mathematics education. One 

specific learning activity was designed to stimulate students to communicate, 

collaborate and generate general problem solving strategies (Sollervall & Milrad, 

2012). Mobile phones were used in this activity to bridge between formal and 

informal learning spaces. During the discussions about the activity the teachers 

seemed to be more worried about the practical issues rather than the didactical issues. 

This made the researcher aware of a possible misunderstanding. My concern was that 

connecting between the students’ actions outdoors and a mathematical content is not 

necessarily a straightforward task. A successful orchestration would depend on the 

quality of the student-generated artifacts as well as the teachers’ ability to orchestrate 

this remaining part of the activity performed indoors.  
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Later on, two of the mathematics teachers from the school and I met to discuss the 

prospects of developing new activities supported by ICT. The teachers expressed 

their concerns about their students’ inability to use the distributive law and we all 

agreed on that it would be interesting to focus on algebra. The teachers had 

themselves completed the above-mentioned activity, which also could be used to 

address students’ conception of the distributive law by connecting multiple 

representations (ibid.). Using the activity with this particular focus towards the 

distributive law would not require any modifications of the activity itself but would 

require the teacher to orchestrate the activity towards this goal. None of the teachers 

seemed to perceive this opportunity and the continued discussions revealed that they 

did not know about possible geometrical representations of the distributive law.  

These circumstances influenced the design process in a very straightforward manner. 

For the planning phase of the design, the researcher decided to address the teachers’ 

ability to adapt ICT to different situations and towards different goals. At the 

moment, perhaps this was more important than developing new activities with the 

teachers. With this pre-understanding the planning phase of the design was initiated. 

METHODOLOGICAL FRAMEWORK FOR PROFESSIONAL 

DEVELOPMENT 

The methodology of collaborative design based research is at the same time a process 

of professional development for the teachers (Penuel et al., 2007) and any change in 

teachers’ knowledge base, attitudes and beliefs that this process may require should 

be regarded as a gradual and difficult (Guskey, 2002). The teachers’ insufficient 

understanding of mathematical representations was taken as a constraining factor for 

the teachers’ participation in the design process. To address this issue, two 

complementary theories were used to guide and plan for the teachers’ professional 

development. One of the frameworks specifically focuses on knowledge for teaching 

mathematics: Mathematical knowledge for Teaching (Loewenberg Ball, Thames, & 

Phelps, 2008) and the other framework focus on the affordances provided by ICT and 

on the integration of ICT in different subject areas: Technological Pedagogical 

Content Knowledge (Koehler & Mischra, 2008).  

The strategy of comparing (Prediger et al., 2008) was used to identify common 

principles in these two theories related to the use of ICT to support students learning 

mathematics. Based on this comparison, the researcher decided to specifically 

recognize and support teachers’ understanding of the affordances for representation 

and communication provided by ICT.  

CONCEPTUAL FRAMEWORK FOR DEVELOPMENT 

The idea was to use the dynamic geometry software GeoGebra (www.geogebra.org) 

to develop an application, with focus put on providing affordances for representation, 

that the teachers could use in a learning activity to address their students’ conception 

http://www.geogebra.org/
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of the distributive law. The researcher was interested in understanding how the 

teachers would perceive and make use of the specific affordances for representation 

and communication provided by the application in “live” settings. Thus, the software 

was an instrument for the researcher to provide competence development as well a 

didactical tool for the teachers to use with their students. The teachers were not 

familiar the software so the application was designed for them as end-users to operate 

only by using “click and drag” features.  

Inspired by the work of Duval (2006), the dynamics of GeoGebra is used to illustrate 

how numerical expression can be interpreted and represented geometrically. 

Although figures and expressions are organized in a determined order in the 

application (see Fig. 2), the teacher still needs to consider how to use the application 

and create a hypothetical learning trajectory (HLT), i.e. “the consideration of the 

learning goal, the learning activities, and the thinking and learning in which students 

might engage“ (Simon, 1995, p. 133). In other words, the researcher made the 

didactical design but the pedagogical design was intended for the teachers to decide.  

 

Figure 2: Snapshot of the application, implemented in GeoGebra 

When the application was presented to the teachers they wanted immediate access to 

it. They seemed to recognize the limitations of the explanations that they normally 

used that were exclusively based on instructions on how to manipulate different 

variables. The teachers were provided with the application and they agreed on using 

it but they never did. Therefore, there was an additional meeting, where the 

researcher demonstrated a possible way to use the application in a learning activity. 

The demonstration was followed by a discussion about possible ways to orchestrate 

the interplay between different representations and the dynamical affordances 

(dragging mode, show/hide figures) supported by the application. By discussing 

related pedagogical issues and offering the teachers opportunities to adapt the 

application according to their needs, the researcher wanted to challenge the teachers 

to create their own hypothetical learning trajectory (HLT).  
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The CFD was developed by using the networking strategy of coordinating (Prediger 

et al., 2008) theoretical components (i.e. representation, GeoGebra and HLT) for 

practical reasons without aiming for a deeper integration. In contrast to the other 

components, the notion of hypothetical learning trajectory (HLT) was not presented 

explicitly to the teachers. In the next section we continue by presenting the 

crosscutting features of the enacted lessons.  

Teachers orchestrating the application in a learning activity 

The teachers used different interpretations of multiplication simultaneously and 

alternately without making explicit why and when an interpretation was preferable in 

some situations and not in others. This lack of explicitness resulted in vague 

connections between the numerical and geometrical representations. Justifications 

were based on computations or algebraic manipulations instead of referring to the 

available geometrical representations in the application. When the teachers became 

uncertain on how to proceed with the activity they tended to rely more on the 

numerical and algebraic representations to maintain the flow of the lesson. A 

significant part of the lessons was also dedicated to what seemed to be other more 

familiar activities such as formulating expressions for area and perimeter.  

Furthermore, the teacher-initiated communication with the students did not seem to 

support a discussion on how and why things work the way they do. Occasional 

misinterpretations of students’ responses, not acknowledging their responses as 

correct, and not connecting their responses to the available representations, further 

contributed to the activity not proceeding as intended.  

CONCEPTUAL FRAMEWORK FOR UNDERSTANDING 

The enacted lessons were also different compared to the suggestions the teachers had 

themselves when discussing different ways to orchestrate a lesson supported by the 

application (when discussing the HLT). During the first two phases of this design 

cycle, the focus was on teacher knowledge but the crosscutting features of the lessons 

revealed another dimension. How does teacher knowledge come into play in the 

moment of teaching? In order to understand why the teachers did not make use of the 

ICT-supported affordances for connecting representations, the researcher decided to 

go beyond the theories of representation and teacher knowledge used previously. In 

other words, a different representation was chosen to address this emerging challenge 

and to evaluate the design process so far.  

Developing the CFU 

The Anthropological Theory of the Didactic (ATD) provides a different 

conceptualization of knowledge. In this theory a body of knowledge (a praxeology) 

consist of two inseparable blocks, the praxis and the logos. The praxis block refers to 

the kind of given tasks that you aim to study and the different techniques used to face 
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these problematic tasks. In this sense the praxis block represents the “know-how” of 

the praxeology and is the minimal unit of human activity. The logos block provides a 

discourse that is structured in two levels with the purpose to justify the praxis. The 

first level of the logos is technology, which provides a discourse about the technique. 

The second level of the logos is theory, which provides a more general discourse that 

serves as explanation and justification of the technology itself (Chevallard, 2007) by 

providing a framework of notions, properties and relations to organize and generate 

technologies, techniques and problems (Barbé, Bosch, Espinoza, & Gascón, 2005).  

The ATD includes the study of didactic transpositions processes, which concerns the 

transformation of knowledge through different institutions. The transposition is a 

process of de-constructing knowledge and rebuilding different elements of 

knowledge into a more or less integrated whole with the aim of establishing it as 

“teachable knowledge” while trying to keep its character and function (Bosch & 

Gascón, 2006). It consists of the four following steps; scholarly knowledge, 

knowledge to be taught, taught knowledge and learned knowledge. The different 

steps provided a new way to describe the intervention. In this case, the focus of the 

intervention was on the connection between intended and enacted knowledge, that is, 

between the second and third step of the transposition of knowledge (see Fig. 3).  

 

Figure 3: The transposition of knowledge 

Furthermore, teaching is a didactic type of task that teachers can solve in a complex 

process of didactical transposition by using a set of available resources (didactical 

techniques), both external resources (curriculum, textbooks, tests, ICT-tools, 

colleagues, manipulatives, etc.) and teachers’ internal resources that in our case of 

ICT-supported instruction could be related to technological-pedagogical content 

knowledge (Koehler & Mischra, 2008). The logos block of a didactical praxeology 

then serves as means to describe and justify teaching and learning practices in the 

considered institution (Rodríguez, Bosch, & Gascón, 2008).  

The notion of HLT was replaced by the notion of routines (Berliner, 2001) with focus 

on the IRE sequence (Initiate, Response, Evaluate). The IRE sequence is a three-part 

pattern where the teachers ask a question, students reply, and teachers evaluate the 

response or gives feedback (Mehan, 1979; Schoenfeld, 2010). In its most basic form 

the teacher initiates the sequence by posing a question to a student to which the 

teacher already knows the answer. The student then replies and the teacher evaluates 

by using phrases such as “yes” or “that’s fine” and continues with the next question 

or next problem. This adaptation was made in order to better describe the teachers’ 

overt orchestration of the lessons and especially the communication patterns between 

teachers and students. Furthermore, communicational exchange patterns, such as the 
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IRE sequence, can be regarded a didactical technique that teachers use in the creation 

of a mathematical praxeology. This theoretical component was further developed in a 

second design cycle into a didactical resource (Perez, 2014). 

Moreover, representations were placed within the notion of praxeologies instead of 

being treated as a separate theoretical component as in the CFD. The role of 

representation is multifaceted. From one perspective it is a generic property of many 

ICT tools (Koehler & Mischra, 2008). From a second perspective, mathematical 

representations have important didactical affordances (Ainsworth, 1999), and finally 

representations are essential to mathematics as a discipline (Duval, 2006). Thus, 

mathematical representation is closely related both to praxis and logos of a 

mathematical praxeology. Furthermore, instructional strategies that systematically 

focus on knowledge about representations could be conceptualized as an element of a 

didactical technique and consequently a part of a didactical praxeology. Thus, 

depending on the purpose in which representations are used, the role of representation 

for a discipline as mathematics could be attributed to both a mathematical and a 

didactical praxeology. These adaptations allowed the researcher to provide a more 

comprehensive description of the crosscutting features in the enacted lessons and to 

evaluate the efforts of providing competence development.  

In summary, the conceptual framework for understanding (CFU) consists of several 

theoretical components where the ATD is used as the dominant theory. The purpose 

of the conceptual framework for understanding (CFU) was to better understand an 

emerging empirical phenomenon (the crosscutting features). The CFU was developed 

by the researcher by using the strategy of coordinating different theoretical 

components (Prediger et al., 2008). To achieve this, the theoretical components of 

representations and routines (the IRE sequence) were interpreted as knowledge 

resources in accordance with the ATD and its focus on the epistemic dimension of 

teaching and learning processes in different institutions.  

Evaluating the design process 

The theoretical notions provided by the CFU allowed the researcher to capture the 

essence of this part of the design process. In summary, the intention to introduce the 

geometrical representation as a technological element in a mathematical praxeology 

was instead treated by the teachers as a didactical technique to allow the students to 

work with more open-ended tasks. Thus, the affordances of the embedded 

geometrical representations as a technological element were not used as intended. 

Furthermore, the communicational patterns (IRE sequence) used by the teachers did 

in many cases not support the creation of a mathematical praxeology including a 

well-developed logos discourse. In summary, the underlying principle-based learning 

objectives did not survive the transposition from how the researcher intended the 

application to be used and how it was actually used by the teachers. The transposition 

of knowledge between “knowledge to be taught” and “taught knowledge” proved to 
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be of greater difficulty requiring more scaffolding than the researcher had anticipated 

and planed for. With this understanding, a new design cycle could be initiated. 

SUMMARY 

In this case study the possibility of viewing a design process as incremental and 

adaptive has been considered. This should not be interpreted as a matter of searching 

for whatever works in the current situation. Instead, it is about the problematic task of 

assuring that the activity of inquiry is meaningful relative to the research objectives, 

i.e. the problem of developing systems guarantors (Churchman, 1971). This is a basic 

problem for any researcher but in this case, the problem of guarantors were not 

settled a priory and once and for all. By questioning the assumptions of the inquiry 

system, the design problem of knowing when and how to revise becomes difficult 

because there is no a priory authority to rely on. Instead, the question of why revise 

would depend on the measure of the performance of the system relative to the 

purpose (Churchman, 1971). Furthermore, in order to make tactical decisions that 

require an authority, the researcher must be prepared to consider a “whole breadth of 

inquiry in its attempt to authorize and control its procedures” (ibid. p. 196). In this 

case study, the choice to change theoretical perspective during the design process was 

considered necessary in order to adapt to an unforeseen and, from the researchers 

perspective, problematic situation. Thus, the question of why revise was motivated by 

an emerging phenomenon that questioned the performance of the design process. 

This resulted in a more comprehensive conceptual framework for understanding 

(CFU) where the Anthropological Theory of the Didactic served as an overarching 

theoretical perspective. The development of adaptive conceptual frameworks could 

be understood as a modeling process that aims at developing system guarantors. But 

as any model it only provides different affordances and constraints that may be used 

with varying levels of success to justify the choices we make and explain different 

phenomena that we seek to understand. The use of adaptive conceptual frameworks 

specifically affords transparency in the design by making explicit the levels at which 

different theories operate and the measures that are used to evaluate the system 

performance.  

Finally, allowing the design process to be co-determined by the interaction between 

different stakeholders and resources is far from an straightforward task, but I believe 

that it allows the researcher to make use of available resources to address authentic 

educational needs as expressed by practicing teachers.  
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COMMUNITIES OF PRACTICE: EXPLORING THE DIVERSE 

USE OF A THEORY 
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The social learning theory of communities of practice is frequently used in 

mathematics education research. However, we have come to recognise that the 

theory is used in diverse ways, regarding both the parts that are used and the ways in 

which those parts are used. This paper presents an overview of this diverse use of the 

theory based on three themes: Are communities of practice viewed as pre-existing or 

are they designed within the study? Are individuals or groups foregrounded in the 

study? Which parts of the theory are mainly used? The aim of the paper is twofold: to 

make visible the diverse possibilities within one single theory, and to make visible 

how, even though we might think we know what a theory implies in research, if we 

look beneath the surface we may find that “the same” theory can imply many 

different things.  

Keywords: communities of practice, theory, social, learning, Wenger 

INTRODUCTION  

Since Etienne Wenger published his book Communities of Practice: Learning, 

Meaning, and Identity in 1998 the notion of communities of practice has become 

common in mathematics education research as well as in other areas of educational 

research. Both authors of this paper have been using Wenger’s social theory of 

learning in research within mathematics education. In reading other researchers’ work 

we have discovered that the theory of communities of practice is frequently used in 

mathematics education, but there are many differences regarding both which parts are 

used and how those parts are used. In this paper we will explore some of the ways in 

which the theory of community of practice is used in different mathematics education 

studies. The aim of this is twofold: to make visible the diverse possibilities and uses 

of one single theory, and to make visible how we in research may think we know 

what using a specific theory in a study implies, but when we look beneath the surface 

we may find that “the same” theory can imply different things to different 

researchers.  

The notion of communities of practice has been investigated and discussed before, for 

example by Kanes and Lerman (2008). They investigated similarities and differences 

in how the notion is used by Lave and Wenger (1991) and by Wenger (1998), 

respectively. (However, we find Kanes and Lerman’s (2008) description of Wenger’s 

communities of practice very different from our own interpretation and the 

interpretations we found when preparing this paper.) In this paper we focus only on 

research referring to Wenger’s 1998 book, in which he writes that his aim is to 
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present a conceptual framework where learning is placed “in the context of our lived 

experience of participation in the world” (p.3). In this paper we will not present 

Wenger’s theory more than that, in order to avoid imposing our own interpretations 

of which concepts are the main ones in his theory. Instead, the use of communities of 

practice will be explored according to the differences we found when reading other 

researchers using Wenger’s theories. Hence, the exploration is divided based on the 

following three themes: Are communities of practice viewed as pre-existing or are 

they designed within the study? Are individuals or groups foregrounded in the study? 

Which parts of the theory are mainly used? These three themes will be presented 

under each heading followed by a concluding discussion. 

SELECTION OF STUDIES 

Our selection of studies to explore was limited to those focusing on mathematics 

teaching or learning and/or mathematics teachers’ professional development. We 

searched 19 databases, using the search words communities of practice, mathematic* 

and/or teach*; the search was limited to peer reviewed journals or books. From this 

selection, consisting of more than 8000 articles, we limited the search to communities 

of practice and mathematic* and/or Wenger; although that reduced the number of 

articles, there were still too many in some of the databases. We then removed “or” 

teach*. Thereafter we were able to browse through all the titles and keywords to find 

a selection of research articles using communities of practice. This selection is not at 

all comprehensive, however, the purpose is not to generalise but to illustrate some of 

the differences we have found. Wenger’s theory is also used frequently in studies 

within economy and management, but such studies are not explored in this paper.  

Due to space limitations, this paper cannot present all the articles we have read; 

instead, we present articles that together illustrate the differences we found based on 

our three themes. The following ten studies will be discussed in relation to the three 

themes in the paper: Bohl and Van Zoest (2003); Corbin, McNamara and Williams 

(2003); Cuddapah and Clayton (2011); Cwikla (2007); Franke and Kazemi (2001); 

Goos and Bennison (2008); Graven (2004); Hodges and Cady (2013); Pratt and Back 

(2009) and Siemon (2009).    

DESIGNED OR PRE-EXISTING COMMUNITIES OF PRACTICE 

Some studies using Wenger’s social theory of learning view communities of practice 

as pre-existing. In some other studies, for example, Bohl and Van Zoest (2003), 

Cuddapah and Clayton (2011), Goos and Bennison (2008), Hodges and Cady (2013) 

and Franke and Kazemi (2001), communities of practice are designed by the 

researcher(s). 

In the study by Goos and Bennison (2008), a web-based community of practice is 

designed within teacher education. After graduation, interaction in the community of 

practice continues through the web-based tool developing an “online community” 
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(p.41). In their article, Goos and Bennison discuss the issue of emergent versus 

designed communities of practice. Although, in their study Goos and Bennison 

design the external frames for the community of practice, their interest is in whether 

or not the web-based community develops into a community of practice. To give the 

community the best chance to develop into a community of practice on its own, the 

researchers provide only a minimum of structure concerning how community 

members are to communicate using the web-based tool. As such, they design a 

community, but it is its emergence as a community of practice they investigate in 

their study.  

Hodges and Cady (2013) seek to expand on the work of Goos and Bennison (2008) 

by investigating the development of communities of practice within a professional 

mathematics teacher’s development initiative. In this study a web-based tool is used 

to “foster the development of communities of practice” (p.302). Hodges and Cady 

design a virtual space in order to see the emergence of communities of practice. 

However, unlike Goos and Bennison (2008), Hodges and Cady do not highlight the 

issue of an emergent or a designed community, even though the emergence of 

potential communities of practice is in focus.  

Cuddapah and Clayton (2011) design a community of practice by arranging physical 

sessions with a group of novice teachers. They focus on one of several groups of 

novice teachers that, within a university-sponsored project, meet every second week. 

The novice teachers meet 15 times during the study. Every session has a theme and 

the sessions are planned and led by experienced educators. Cuddapah and Clayton 

write that the group of novice teachers “itself was a community” (p.69) and they use 

Wenger’s theories to analyse the development of the group and its function as a 

resource for new teacher support. In their analysis they present how the “community 

was observed throughout and between the data” (p.72). As such, the group of novice 

teachers being a community of practice was both a precondition and a result of their 

analysis.  

A fourth example of researchers who design communities of practice is Franke and 

Kazemi (2001). In their study they design communities of practice with mathematics 

teachers with the purpose of providing teachers with opportunities to learn about 

mathematics teaching and learning. The teachers in this study do mathematical tasks 

with their students in their classrooms and then they meet and discuss their 

experiences. The researchers take part in the discussions and they also visit the 

teachers at their schools several times. Franke and Kazemi do not describe why or 

how the group of teachers is a community of practice, but they analyse and describe 

the interactions in the group connected to teacher professional development. 

Examples of studies in which communities of practice are treated as pre-existing, 

developed before the study began and without the influence of the researchers, are 

studies by Bohl and Van Zoest (2003), Corbin et al. (2003), Cwikla (2007), Graven 
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(2004), Pratt and Back (2009) and Siemon (2009). In some studies the communities 

of practice are identified in the research process based on concepts from Wenger’s 

theory, whereas other studies do not explain how they are identified as communities 

of practice.  

Bohl and Van Zoest (2003), Graven (2004), Corbin et al. (2003), Cwikla (2007) and 

Pratt and Back (2009) are examples of studies where communities of practice are 

viewed as pre-existing at the start of the study, where the researchers do not explain 

how the communities have been identified as such.  

Bohl and Van Zoest (2003) analyse how different communities of practice in which 

novice teachers participate influence their mathematics teaching. They give an 

empirical example of one novice teacher, in relation to whom they discuss differences 

in the role of novice teachers in different communities of practice, but they do not 

present how they identified these as communities of practice, nor do they explain 

how they identified the novice teacher’s membership in these communities.  

Graven (2004) investigates teacher learning in a mathematics in-service program. In 

this study an in-service program is considered to be a community of practice, but it is 

not explained how this community of practice has been identified as such. This is also 

the case in the study of Corbin et al. (2003), who investigate numeracy coordinators 

in an implementation of a national numeracy strategy. They use the notion of 

communities of practice as a tool to describe the participation of the coordinators in 

different communities, but they do not explain how they define the communities.  

Pratt and Back (2009) investigate participation in interactive discussion boards 

designed for mathematics students. They simply state that “two idealised 

communities of practice” (p.119) were adopted as a means to understand the 

discussion boards. How these communities were created and why they can be seen as 

such is not explained. They even describe the communities of practice as 

“hypothetical communities” (p.128). Cwikla (2007) uses the concept of communities 

of practice in her study of the evolution of a middle school mathematics faculty. The 

concept of communities of practice is used to identify boundary encounters, but the 

article does not present any definition of communities of practice, nor does it specify 

which communities of practice are identified within the study.  

Siemon (2009) is an example of a study where communities of practice are viewed as 

pre-existing at the start of the study, but where the researcher explains how the 

communities of practice have been identified as such. Siemon (2009) investigates 

improvements in indigenous students’ numeracy skills after they worked on key 

numeracy issues in their first language. Three pre-existing communities of practice 

are described and it is explained, using Wenger’s concepts, why these are considered 

to be communities of practice. In the study, the intersection between the 

acknowledged pre-existing communities of practice is investigated. The members of 
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these communities are not described in detail, only as, for example “members of the 

local Indigenous community” (p.225), or “all those that by virtue of their 

responsibilities are concerned in some way with school mathematics” (p.225). The 

intersection between the communities of practice is not highlighted, although the 

author states that the edges of the communities took time to emerge.  

FOCUS ON INDIVIDUALS OR GROUPS   

Wenger’s theory makes it possible to foreground groups (communities of practice) or 

individuals (learning and/or identity) or both. Since Wenger’s theory is very broad 

and yet detailed, it is not surprising that either groups (communities of practice) or 

individuals are foregrounded in the studies. Wenger explains that this is not a 

“change of topic but rather a shift in focus within the same general topic” (p.145). 

Franke and Kazemi’s (2001) study is an exception, however, and an example of 

“both” since they analyse both the interaction within the community of practice and 

the identity development of individual participants.     

In the studies by Cwikla (2007), Cuddapah and Clayton (2011), Goos and Bennison 

(2008), Hodges and Cady (2013) and Siemon (2009), groups of teachers are in the 

foreground and individuals are in the background or are not mentioned as individuals 

at all. Bohl and Van Zoest (2003), Corbin et al. (2003), Graven (2004) and Pratt and 

Back (2009), however, foreground the individuals, trying to understand how they are 

influenced by the different communities of practice in which they participate.  

The issue of communities of practice or individuals being foregrounded in the studies 

as presented in this section is connected to which parts or concepts from Wenger’s 

theory are used in the analyses, which is the focus of the next section.   

WHICH PARTS OF THE THEORY ARE MAINLY USED? 

Another consequence of Wenger’s theory being very broad and yet detailed is that 

researchers focus on and use smaller parts of the theory, selecting just some of the 

concepts within it.  

Graven (2004) uses the concepts of practice, meaning, identity, and community to 

describe and explain teacher learning. These four concepts are, according to Wenger 

“interconnected and mutually defining” (p.5). Graven also mentions Lave and 

Wenger’s (1991) concepts of co-participation and participation, but these are not 

used in her analysis. Even though Graven describes communities of practice in her 

study, the “three dimensions” (p.72) that according to Wenger are the source of a 

community of practice, mutual engagement, joint enterprise and shared repertoire, 

are not used. However, Graven instead wants to add confidence as a supplement to 

practice, meaning, identity, and community.    

Cuddapah and Clayton, like Graven (2004), initially refer to Lave and Wenger (1991) 

but to the concept of legitimate peripheral participation. They discuss this concept as 
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one that can be used when analysing novice teachers as newcomers in teaching. 

However, as all novice teachers in their study are new members of a new community 

of practice designed by the researchers, they instead, like Graven (2004), use 

practice, meaning, identity, and community when coding their empirical material. 

They briefly mention the concepts of mutual engagement, joint enterprise and shared 

repertoire, but they do not use them in their analysis.  

Those three concepts, mutual engagement, joint enterprise, and, shared repertoire, 

are used by Goos and Bennison (2008), Hodges and Cady (2013) and Siemon (2009) 

in their studies. As shown in the last section, these three studies have communities of 

practice in the foreground. Goos and Bennison (2008) use the three concepts when 

they analyse the emergence of their designed web-based community of practice. To 

investigate mutual engagement they count the number of interactions in the web-

based tool. By analysing the content in these interactions they also investigate the 

joint enterprise and the shared repertoire that develops. Siemon (2009) uses the three 

concepts by making lists of what it is in the different communities of practice 

identified in the study that indicates joint enterprise, mutual engagement and a shared 

repertoire. Consequently, in her study communities of practice are pre-existing, but 

she defines them by mutual engagement, joint enterprise and shared repertoire. Three 

communities of practice are acknowledged this way. Hodges and Cady (2013) use the 

three concepts in the same way, but their approach is somewhat different. They use 

the concept in order to find and/or see development of communities of practice in a 

designed web-based tool. In their analysis they look for evidence of joint enterprise, 

mutual engagement and a shared set of ways of interacting in order to see if a 

community of practice has been developed. As such, the concepts of mutual 

engagement, joint enterprise and shared repertoire are used to identify both designed 

(Goos & Bennison, 2003; Hodges & Cady, 2013) and pre-existing (Siemon, 2009) 

communities of practice.  

In addition to mutual engagement, joint enterprise and a shared repertoire, Siemon 

(2009) also uses Wenger’s concept of negotiation of shared meaning when referring 

to a space where the participants in the different communities of practice can meet. 

This space is used both as a place to negotiate meaning and as a research tool to 

“explore the processes involved in building community capital” (p.226). 

Furthermore, Siemon uses Wenger’s concept of boundary objects when defining 

Probe Tasks
3
 as a boundary object in the negotiation described above. Cwikla (2007) 

also uses the concept of boundary objects. In her investigation of the evolution of a 

middle school mathematics faculty, she uses this concept together with the concept of 

brokers, which is also from Wenger. She mentions communities of practice, but she 

                                           
3
 A Probe Task is described in the paper as a specifically chosen or designed task to support indigenous 

teacher assistants as they teach key aspects of number.  



CERME 9, TWG 17, Collected papers, January 2015  

 

168 

 

does not define them. When using the concept of brokers, she refers to Wenger’s 

definition, stating, “a broker can serve as a conduit for communication and translation 

between communities of practice” (p.558). Corbin et al. (2003) also use the concept 

of brokering when investigating numeracy coordinators in an implementation of a 

national numeracy strategy. The concept is used to theorise tensions in the work of 

the coordinators. Corbin et al. find signs of brokering in their analysis by using three 

more of Wenger’s concepts: the modes of belonging: engagement, alignment and 

imagination. Pratt and Back (2009) also use the concepts of engagement, alignment 

and imagination in their analysis. They also use Lave and Wenger’s (1991) concept 

of legitimate peripheral participant as well as peripheral and central participation in 

their analysis. These concepts are used to describe a person’s participation, and 

changes in participation, in two different communities of practice.  

Bohl and Van Zoest (2003) mention that communities of practice develop through 

mutual engagement, joint enterprise and shared repertoire, but in their analysis they 

use two other concepts of Wenger’s: modes of participation (their term for what 

Wenger refers to as modes of belonging) and regimes of accountability. They use 

these two concepts to analyse how novice teachers have different roles in different 

communities of practice and how this influences their mathematics teaching.  

As mentioned, Franke and Kazemi (2001) analyse both the interaction in one 

community of practice and the identity development of individual participants. 

However, they do this without explicitly using any of Wenger’s concepts. The 

artefacts they mention are not identified explicitly as artefacts used by Wenger but as 

used in sociocultural theories in general. They also mention identity and negotiation 

of meaning, both of which are thoroughly elaborated by Wenger, but they do not refer 

explicitly to how the concepts are used by Wenger. As such, Franke and Kazemi refer 

to, and use, Wenger’s social theory of learning, but not explicitly or solely; rather, 

they present it as part of a general sociocultural view of learning.  

Overall, several of Wenger’s concepts are used in the studies presented in this paper, 

including practice, meaning, identity, community, mutual engagement, joint 

enterprise, shared repertoire, modes of belonging, engagement, alignment, 

imagination, identity, brokering, negotiation of meaning, boundary objects, regimes 

of accountability, co-participation and participation. However, seldom are more than 

three or four concepts used in the same study. Since the theory is broad and yet 

detailed, it is not surprising that researchers focus on and use only parts of it. Even so, 

none of the articles referred to in this paper draws attention to the fact that only 

certain parts of Wenger’s theory will be used. Neither do they discuss the eventual 

consequences of not using the theory in its entirety. Hence, anyone reading only one 

of the articles may easily believe that the whole of Wenger’s theory is used.   
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DISCUSSION 

As seen in the examples in this paper, Wenger’s social theory of learning is used in 

different ways in different studies. Wenger (1998) terms his work a “conceptual 

framework” (for example, p.5), a “social theory of learning” (for example, p.4) and/or 

a “perspective” (for example, p.3). According to Eisenhart (1991), there are three 

kinds of research frameworks: theoretical, practical and conceptual. Eisenhart 

distinguishes these as theoretical frameworks based on formal logic, practical 

frameworks based on practitioner knowledge and conceptual frameworks based on 

justification. Somehow Wenger’s social theory of learning comprises all three of 

these features. According to Niss (2007), theories are stable, coherent and consistent 

systems of concepts that are organised and linked in hierarchal networks. Those 

criteria apply to the content of Wenger’s book. However, when researchers use only 

some of Wenger’s concepts the criteria are no longer met. Furthermore, Niss (2007) 

writes that one purpose of theories “is to provide a structured set of lenses through 

which aspects or parts of the world can be approached, observed, studied, analysed or 

interpreted” (p.100). The diverse uses of Wenger’s social theory of learning presented 

in this paper show that the structured set of lenses used in these studies differ 

substantially.   

According to Lester (2005), a framework provides structure in research when it 

comes to the questions being asked and the concepts, constructs and processes being 

used. Connected to the overview in this paper, the use of Wenger’s social theory of 

learning appears to coincide with the first (questions), but not the rest. Even though 

the use of Wenger’s social theory of learning differs in the studies presented in this 

paper, one similarity is the type of questions asked. These questions imply that the 

theory is considered suitable for studies of mathematics teachers’, novice teachers’, 

student teachers’ and/or students’ learning. Furthermore, in several of the studies (for 

example, Bohl & Van Zoest, 2003; Siemon, 2009) the social dimension of learning 

provided by Wenger is emphasised as its main strengths. As such, the use of 

Wenger’s theory in mathematics education research seems to be part of the “turn to 

social theories in the field of mathematics education” (Lerman, 2000, p.20). 

According to Lerman (2000), social theories make it possible to foreground 

individuals (practice in person) or practice (person in practice). However, both 

elements (person and practice) are always present and part of the analysis, which is in 

line with Wenger’s “shift in focus within the same general topic” (p.145).   

As shown in this paper there are differences in the presented studies in terms of 

communities of practice being viewed as pre-existing or designed as well as 

communities of practice being identified based on Wenger’s concepts or not. In his 

book Wenger actually writes that since communities of practice are about content and 

negotiation of meaning – and not form – they are not “designable units” (p.229). That 
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is, according to Wenger, it is possible to design the outer limits but not the practice 

that may, or may not, emerge.  

As presented above, there is also diversity with respect to whether individuals or 

(communities of) practice are in the foreground. As also shown, there are differences 

regarding which of Wenger’s concepts is used, even when the same perspective 

(individuals or communities of practice) is in the foreground. In terms of the concepts 

used, we were surprised by the rare presence of reification and negotiation of 

meaning, as these two concepts recur frequently throughout Wenger’s book. 

Furthermore, there are many other concepts of Wenger’s that are not used in any of 

the studies we read, including local/global, identification, economies of meaning, 

ownership of meaning and trajectories. 

Finally, what can be learned from this overview of how Wenger’s social theory of 

learning is used in different ways in mathematics education research? Well, often we 

(think that we) know what researchers imply when they say they have been using a 

specific theory in their research. However, from the overview presented in this paper, 

we know that if a researcher says that (s)he has been using Wenger’s social theory of 

learning, we can be quite sure that we do not know exactly what that use of Wenger’s 

theory might imply. In this paper we have highlighted some of the diverse uses of 

Wenger’s social theory of learning based on three themes: Are communities of 

practice viewed as pre-existing or are they designed within the study? Are individuals 

or groups foregrounded in the study? Which parts of the theory are mainly used? 

Probably further comparisons based on other themes will reveal other diversities. 

Further, based on the breadth and wealth of details in Wenger’s social theory of 

learning, the list of themes and diversities may become quite long.   

REFERENCES 

Bohl, J.V. & Van Zoest, L.R. (2003. The value of Wenger’s concepts of modes of 

participation and regimes of accountability in understanding teacher learning. 

Proceeding of the 27th International Group for the Psychology of Mathematics 

Education Conference, pp.339-346.  

Corbin, B., McNamara, O., & Williams, J. (2003). Numeracy coordinators: 

‘Brokering’ change within and between communities of practice? British Journal of 

Educational Studies, 51(4), 344-368.  

Cuddapah, J.L. & Clayton, C.D. (2011). Using Wenger’s communities of practice to 

explore a new teacher cohort. Journal of Teacher Education, 62(1), 62-75. 

Cwikla, J. (2007). The trials of a poor middle school trying to catch up in 

mathematics: Teachers’ multiple communities of practice and the boundary 

encounters. Education and Urban Society, 39(4), 554-583.   



CERME 9, TWG 17, Collected papers, January 2015  

 

171 

 

Eisenhart, M.A. (1991). Conceptual frameworks for research circa 1991: Ideas from a 

cultural anthropologist; Implications for mathematics education researchers. 

Proceedings of the 13th Annual Meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education. 1, 202-219.  

Franke, M.L., & Kazemi, E. (2001). Teaching as learning within a community of 

practice. In T. Wood, B. Scott Nelson & J. Warfield (Eds.), Beyond Classical 

Pedagogy: Teaching elementary school mathematics. Mahwah: Lawrence Erlbaum 

Associates.   

Goos, M.E. & Bennison, A. (2008). Developing a communal identity as beginning 

teachers of mathematics: Emergence of an online community of practice. Journal of 

Mathematics Teacher Education, 11(1), 41-60.  

Graven, M. (2004). Investigating mathematics teacher learning within an in-service 

community of practice: The centrality of confidence. Educational Studies in 

Mathematics, 57(2), 177-211. 

Hodges, T.E. & Cady, J. (2013). Blended-format professional development and the 

emergence of communities of practice. Mathematics Education Research Journal, 

25(2), 299-316. 

Kanes, C. & Lerman, S. (2008). Analysing concepts of community of practice. In A. 

Watson & P. Winbourne (Eds.), New Directions for Situated Cognition in 

Mathematics Education (pp.303-328). New York: Springer. 

Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate peripheral 

participation: Cambridge University Press. 

Lerman, S. (2000). The social turn in mathematics education research. In Jo Boaler 

(Eds.), Multiple Perspectives on Mathematics Teaching and Learning (pp. 19-44). 

Westport, CT: Greenwood Publishing Group. 

Lester, F.K.Jr. (2005). On the theoretical, conceptual, and philosophical foundations 

for research in mathematics education. Zentralblatt fuer Didaktik der Mathematik, 

37(6), 457-466. 

Niss, M. (2007) The concept and role of theory in mathematics education. In C. 

Bergsten, B. Grevholm, H. Måsøval, & F. Rønning (Eds.), Relating Practice and 

Research in Mathematics Education. Proceedings of Norma 05 (pp. 97-110). 

Trondheim: Tapir. 

Pratt, N. & Back, J. (2009). Spaces to discuss mathematics: Communities of practice 

on an online discussion board. Research in Mathematics Education, 11(2), 115-130 

Siemon, D.E. (2009). Developing mathematics knowledge keepers: Issues at the 

intersection of communities of practice. Eurasia Journal of Mathematics, Science & 

Technology Education, 5(3), 221-234. 



CERME 9, TWG 17, Collected papers, January 2015  

 

172 

 

Wenger, E. (1998). Communities of Practice: Learning, meaning, and identity. 

Cambridge: Cambridge University Press.  



CERME 9, TWG 17, Collected papers, January 2015  

 

173 

 

BEYOND ORCHESTRATION: NORM PERSPECTIVE IN 

TECHNOLOGY INTEGRATION 

Rüya ŞAY & Hatice AKKOÇ 

Marmara University, İstanbul, TURKEY 

The aim of this study is to bring a socio-cultural dimension to “instrumental 

orchestration” framework. Our claim is that social and socio-mathematical norms 

endorsed by teachers are crucial for their pedagogies. A case study was designed to 

investigate how orchestration types and norms affect each other in technology-

enhanced learning environments. Participants are five pre-service mathematics 

teachers. Data were collected through lesson plans, semi-structured interviews and 

observations. Analysis of data indicates that there is a two-way interaction between 

norms and orchestration types. In some cases norms are determinants of 

orchestration types used by participants. In other cases, orchestration types 

challenge participants’ endorsed norms. 

 

INTRODUCTION 

Recently, mathematics teaching in technology-enhanced environments has been 

widespread and mathematics teachers are faced with a large number of resources 

(Drijvers, 2012). Various official curriculum documents around the world emphasise 

the importance of using technology to support learning (NCTM, 2008; DfES, 2013a, 

2013b). This requires certain knowledge and pedagogy. For example, International 

Society for Technology in Education describes technology standards and 

performance indicators for teachers. Teachers should be able to “plan and design 

effective learning environments and experiences supported by technology” (ISTE, 

2000, p. 9).  

Teachers play a key role in effective use of technology in the classroom and the way 

they integrate technology into teaching affects the way students learn mathematics 

(Ely, 1996 as cited in Besamusca & Drijvers, 2013). Therefore, mathematics teachers 

and teacher educators should be guided for the design of learning environments using 

technological tools and resources (Şay, Kozaklı & Akkoç, 2013).  

One of the theoretical categorisation to investigate the use of technological tools in 

the classroom is “instrumental orchestration” which is based on the framework of 

instrumental genesis (Trouche, 2004). Considering the literature on orchestration, it 

can be claimed that this theoretical categorisation focuses on classroom organisation 

but fall in short to explain psychological and sociological development of teachers. 

Teachers and pre-service teachers have different pedagogical approaches and go 

through different professional development phases. Therefore, an investigation of 

technology integration purely based on physical organisation of technology-enhanced 
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learning environments and certain teacher behaviours is only one part of the whole 

picture. Teachers might have different norms and these affect the way they integrate 

technology into their lessons. There is little research in the literature on how teachers’ 

activities in the classroom are shaped by their norms and very few of them 

investigated this in the context of technology. The aim of this study is to bring a 

socio-cultural dimension to instrumental orchestration. Socio-cultural theory aims to 

investigate human action and its relationship with cultural, institutional and historical 

situations. Therefore, it focuses on social interactions and the effects of culture on 

psychological development (Wertsch, del Rio & Alvarez, 1995; Lerman, 2001). 

Technological tools can turn into effective instruments for learning mathematics via 

effective classroom interaction. Social and socio-mathematical norms, as one of the 

aspects of socio-cultural theory, might take a role in shaping student-teacher-tool 

interaction in the classroom. Furthermore, they are also shaped by this interaction. 

Therefore, one could elucidate how teachers use technological tools by embracing a 

norm-perspective within socio-cultural approach. Our claim is that social and socio-

mathematical norms (Višňovská, Cortina & Cobb, 2007) endorsed by teachers are 

crucial for their pedagogies and their choices for different orchestration types. To 

support this argument, this study investigates the interaction between orchestration 

types used by pre-service mathematics teachers and social and socio- mathematical 

norms.  

INSTRUMENTAL ORCHESTRATION  

An instrumental orchestration is defined as the teacher’s intentional and systematic 

organisation and use of the various artefacts available in a learning environment in a 

given mathematical task situation, in order to guide students’ instrumental genesis 

(Trouche, 2004).  

Drijvers (2012) distinguishes three elements within an instrumental orchestration: a 

didactic configuration, an exploitation mode and a didactical performance. “A 

didactical configuration is an arrangement of artefacts in the environment, or, in other 

words, a configuration of the teaching setting and the artefacts involved in it” (p. 

266). An exploitation mode is defined as the teacher’s decisions on the way she or he 

configures a task by providing certain roles for the artefacts to achieve his or her 

didactical intentions.  

A didactical performance involves the ad hoc decisions taken while teaching on how 

to actually perform in the chosen didactic configuration and exploitation mode: what 

question to pose now, how to do justice to (or to set aside) any particular student 

input, how to deal with an unexpected aspect of the mathematical task or the 

technological tool, or other emerging goals” (Drijvers, p. 266). 

Drijvers and his colleagues (2010), Drijvers (2012) and Tabach (2013) distinguish ten 

types of instrumental orchestrations as seen in Table 1 (The last three orchestration 
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types are not in the original table and were added from the literature). In this study, 

pre-service teachers’ lessons will be analysed considering the orchestration types in 

this table. 

The orchestration 

types 

Didactical 

configuration 

Exploitation mode 

Technical-demo 
(Drijvers and his 

colleagues, 2010) 

Whole-class setting, 

one central screen 

The teacher explains the technical details 

for using the tool. 

Explain-the-

screen (Drijvers and 

his colleagues, 2010)  

Whole-class setting, 

one central screen 

The teacher’s explanations go beyond 

techniques and involve mathematical 

content. 

Link-the-screen 

board (Drijvers and 

his colleagues, 2010) 

Whole-class setting, 

one central screen 

The teacher connects representations on 

the screen to representations of the same 

mathematical objects that appear either in 

the book or on the board. 

Sherpa-at-work 
(Drijvers and his 

colleagues, 2010) 

Whole-class setting, 

one central screen 

The technology is in the hands of a 

student, who brings it up to the whole 

class for discussion. 

Not-use-tech 
(Tabach, 2011) 

Whole-class setting, 

one central screen 

The technology is available but the teacher 

chooses not to use it. 

Discuss-the-

screen (Drijvers and 

his colleagues, 2010) 

Whole-class setting, 

one central screen 

Whole class discussion guided by the 

teacher to enhance collective instrumental 

genesis. 

Spot-and-show 
(Drijvers and his 

colleagues, 2010) 

Whole-class setting, 

one central screen 

The teacher brings up previous student 

work that he/she had stored and identified 

as relevant for further discussion. 

Work-and-walk-

by (Drijvers, 2012) 

Students work 

individually or in pairs 

with computers 

The teacher walks among the working 

students, monitors their progress and 

provides guidance as the need arises. 

Discuss-the-tech-

without-it  
(Tabach, 2013) 

Every students have 

own laptops or laptops 

bring classroom with 

wheeled vehicles 

The teacher uses mobile transport system 

if he/she needs computers in teaching 

Monitor-and-

guide  
(Tabach, 2011) 

----- The teacher uses a learning management 

system by giving guidance to students 

Table 1: Orchestration types (Tabach, 2013, p. 3) 
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SOCIAL AND SOCIO-MATHEMATICAL NORMS 

In mathematics education literature, it is widely recognised that social interaction 

promotes learning opportunities. Norms construct how students learn mathematics 

and how they become mathematically autonomous (Cobb & Bowers, 1999; Pang, 

2000). Norms regulate the way teachers and students participate in learning and 

teaching activities within a classroom culture (Cobb & Yackel, 1996). While norm 

emerges from social interaction; belief, value, opinion and attitude are concerned 

with the individual. 

Cobb & Yackel (1996) propose social and socio-mathematical norms to investigate 

how students’ mathematical values and beliefs develop within the classroom culture 

from the psychological and socio-cultural perspectives. Cobb and his colleagues 

(2007) also investigated teachers’ professional development through social and socio-

mathematical norms (Visnoska, Cortina & Cobb, 2007). Social norms apply to any 

subject matter area. Students’ cooperation when solving problems or privileging a 

logical explanation over other correct answers are examples of social norms 

(Hershkowitz & Schwarz, 1999). Another example is the way teachers promote 

students’ thinking and value different ideas. On the other hand, socio-mathematical 

norms are specific to mathematics and are concerned with the way mathematical 

beliefs and values develop in the classroom. For example, acceptability of a 

mathematical explanation or a justification is a socio-mathematical norm (Yackel & 

Cobb, 1996; McClain & Cobb, 2001).  

METHODOLOGY 

This study embraces the interpretive paradigm to investigate how orchestrations types 

and norms affect each other in technology-enhanced learning environments. A case 

study was designed to answer the research question. Participants are five pre-service 

mathematics teachers who were enrolled in a teacher preparation program in a state 

university in Istanbul, Turkey. It was a four-month program which will award its 

participants a certificate for teaching mathematics in high schools for students aged 

between 15 and 18. The program accepts graduates who have a BSc degree in 

mathematics. There were two kinds of courses in the program: education and 

mathematics education courses. The study was conducted during "Instructional 

Technologies and Material Development" and “Teaching Practice” courses. The 

former course focused on six software, namely Geogebra, Graphic Calculus, Derive, 

Geometry Sketchpad, Excel and Probability Explorer. Participants were involved in 

hands-on activities in front of a computer and prepared teaching materials. 

Participants also taught lessons in partnership schools during “Teaching Practice” 

course.  

There were thirty-six participants in the program. They were all interviewed on their 

approach to the use of technology for teaching mathematics. Five participants were 
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purposefully selected. Two of them (one male and one female) had positive attitudes 

and two of them (one male and one female) had negative attitudes towards the use of 

technology. One participant was selected because she had neutral attitude.  

The data collection methods are observation and semi-structured interviews. Each 

participant taught a total of five lessons in a partnership school. At least two of these 

lessons were technology-based. Each participant taught at least two same classes of 

students. They were interviewed after their lessons. During the semi-structured 

interviews they were asked what kinds of norms they endorsed, how they used 

technology in their lessons and differences between their lessons with or without 

technology. Their lessons were video recorded. The first author of this paper 

observed lessons using an observation form. The aim of the observation form was to 

reveal social and socio-mathematical norms endorsed by pre-service teachers. 

Interviews and lesson videos were verbatim transcribed. Data from different sources 

such as interviews, observations and field notes were triangulated. Common themes 

emerged from verbal discussions among pre-service teachers and students, patterns in 

pre-service teachers’ behaviours and statements about their endorsed norms during 

the interviews. For instance, the socio-mathematical norm “Answers which are 

logical are acceptable’’ was determined considering pre-service teachers’ discussion 

with students and how they defined “an acceptable answer” during the interview.  

FINDINGS 

This section presents orchestration types and social and socio-mathematical norms 

used by participants. First we demonstrated how participants used orchestration types 

and then how norms and orchestration types affected each other.  

Table 2: The orchestration types used by pre-service teachers 

The analysis of the data indicated that participants mostly used technical-demo, 

explain-the-screen, link-the-screen-board, discuss-the-screen, Sherpa-at-work and 

not-use-tech orchestration types as seen in Table 2.  

Explain-the-screen promoted the social norm “the authority is the teacher”. For 

example, Mahir taught a lesson on parabolas using Geogebra software. He started his 

lesson by explaining how to draw a parabola and adding a slide which is defined as 

Orchestration types Pre-service teachers 

Technical-demo Nil, Orkun, Melek 

Explain-the-screen Mahir, Orkun, Melek 

Discuss-the-screen Melek 

Sherpa-at-work Orkun, Melek, Nil 

Not-use-tech Oya, Mahir, Nil, Orkun, Melek 
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the determinant. He then moved the slide and explained what happened to the graph 

of parabola. At this stage he did not questioned the mathematical meanings behind 

what the software performed, but just explained how to use the software.  

When participants used link-the-screen, they explained a concept or a mathematical 

idea on the board followed by an elaboration using the software. For example, Orkun 

taught a lesson on how to draw the graph of y=sinx using Geometry Sketchpad. He 

first plotted a few points and then drew the graph on the board. However students 

claimed that points should be joint using straight lines. He then moved to the software 

and constructed a unit circle. He defined a point A on the unit circle and a point B 

which defines the sine function. Using “trace” feature, he obtained the graph of 

y=sinx. Up until now, the authority was the teacher. Therefore, it can be claimed that 

link-the-screen orchestration type promoted this social norm. Afterwards he asked 

students how to draw y=cosx and y=tanx themselves. His question is an indication of 

a social norm “Students are challenged with the questions of why and how”. This 

social norm required using discuss-the-screen orchestration type. 

Another participant who used discuss-the-screen discussed with their students the 

actions they performed using the software. For example, Melek used Geometry 

Sketchpad to explain how to draw trigonometric functions. She first drew the graph 

of y=sinx and then asked one of her students to draw y=cosx. Later she discussed 

with her students how to draw y=tanx using the software and tried to reach a common 

ground (tanx=sinx / cosx):  

Melek: Is there anyone who wants to draw the tangent line?  

Student A: This time, we will construct a point with x and y (on the unit circle)... 

Student B: Slope 

Melek: What else? What is slope? One of the definitions is opposite over adjacent. 
It’s the ratio of opposite side over adjacent side or what is tan x? 

Student C:  sinx over cosx 

Melek:  Isn’t it sinx over cosx. That’s the expression that everybody knows. 
Therefore, when we want to find the ratio of sinx over cosx, that is when we 
think graphically (showing the point on the unit circle) if we vertically 
projected this point onto x-axis, we say opposite over adjacent to find the 
tanjant 

When pre-service teachers were using discuss-the-screen they endorsed the socio-

mathematical norm “Answers which are logical are acceptable”. For example, Melek 

who used discuss-the-screen aimed at having her students discuss mathematical 

meanings behind what the software perform. When doing this, she considered 

different student answers and did not impose her answers or solutions. She 

encouraged her students discover their own solutions which were meaningful for 

them. As can be seen in this case, the orchestration type used by this pre-service 
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teacher affected her endorsed norm. In other words, a norm has emerged which 

support discuss-the-screen orchestration type.  

Pre-service teachers chose not to use technology (not-use-tech orchestration type) at 

least once out of five lessons they each taught. Before participants had teaching 

experiences with using technology in the classroom, they had the socio-mathematical 

norm which gives the teacher the mathematical authority and believed that 

technological tools were not necessary for teaching mathematics: 

Oya:  I’m quite conservative. I believe that mathematics should be taught using 
the blackboard. I think that maths would be better understood this way  

Oya was a unique case whose social or socio-mathematical norms did not change 

after she started using technological tools in her lessons. On the other hand, Orkun 

who has negative attitudes towards using technology in a mathematics lesson 

changed his endorsed norms and this situation is illustrated with the following 

excerpt: 

Orkun: In my first lesson (which he did not use any technological tool) I wished 
that student would not ask me any questions. Because I was teaching 
inverse trigonometric functions and the questions I prepared were very 
difficult ones…students in this school were very clever and I was worrying 
about receiving different questions. And there was no help from 
technology. I had to teach on the blackboard. But on the next lessons when 
I used technology, I wasn’t afraid of their questions. When I’m stuck on the 
board I knew that I could switch to technology  

As can be seen from the excerpt above, he sees technological resources as a helpful 

tool which gives him confidence. This confidence changed his norms and pedagogy.  

Another orchestration type observed in this study is Sherpa-at-work. Participants in 

this study used this orchestration type in a different way when compared to the 

related literature. In the literature, when using Sherpa-at-work students work in front 

of a computer individually or in pairs and “the technology is in the hands of a student, 

who brings it up to the whole class for discussion” (Tabach, 2013, p. 3). However, 

there was a lack of technological resources in partnership schools and students did 

not get the chance to use their own computers during the lessons.  Participants had 

their own computers which were projected on to a screen. This situation prevented 

active participation of students. Orkun, Melek and Nil tried to resolve this problem by 

having students use the teacher’s computer. This corresponds to Sherpa-at-work 

orchestration type which emerges as a result of  “students who answers correctly go 

to the blackboard” social norm.  

DISCUSSION 

This study investigated how orchestration types and norms affect each other in 

technology-enhanced learning environments. The findings indicated that pre-service 

mathematics teachers used some of the orchestration types frequently such as link-
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the-screen-board and not-use-tech. On the other hand, some of the orchestration 

types such as spot-and-show, work-and-walk-by, discuss-the-tech-without-it and 

monitor-and-guide were not used because of lack of technological resources in the 

partnership school. All classrooms in this school have smart boards but students did 

not have their own computers or tablets. Therefore, some of the orchestration types 

were not observed.  

Drijvers and his colleagues (2010) claimed that teachers make pedagogical choices 

based on their views about how to teach mathematics. This study has similar findings 

by illustrating how orchestration types and norms support each other. Social and 

socio-mathematical norms endorsed by participants affected their choices of 

technological tools for teaching mathematics and as a result orchestration types they 

used.  

Our claim was that there was a two-way interaction between orchestration types and 

social and socio-mathematical norms. This study attempted to justify this claim. As a 

matter of fact, Drijvers (2012) described technical-demo, explain-the-screen and link-

the-screen-board orchestration types as teacher-centred and Sherpa-at-work, spot-

and-show and discuss-the-screen orchestration types as student-centred. Therefore, 

participants who used teacher-centred orchestration types endorsed socio-

mathematical norms accept the teacher as the mathematical authority. On the other 

hand, participants who used student-centred orchestration types endorsed social 

norms which puts students into the centre.  

Findings of this study also revealed that instrumental orchestration categorisation fall 

in short in explaining the socio-cultural aspect of technology integration. When it 

comes to teacher-student-tool interaction, technological tools provide a language 

which supports communication between students and teachers (Noss & Hoyles, 

1996). Examining the micro-culture of the classroom provided by this kind of 

language and social and socio-mathematical norms required by that culture expanded 

our understanding of orchestration framework. Integrating instrumental orchestration 

framework into norm perspective provided an insight on the question of why and how 

particular orchestration types are used.  

This study suggests some implications for researchers and teacher educators. First of 

all, as mentioned above, there is not satisfying research which explicitly investigates 

norms in the context of technology integration. In this study, this was investigated in 

the context of a short-term teacher preparation program in Turkey. There is a need for 

further studies. Second, teacher education programs which aim successful technology 

integration should develop an awareness of social and socio-mathematical norms and 

monitor pre-service teachers’ development with regard to their endorsed norms.  
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TOWARDS A PARADIGMATIC ANALOGY EPISTEMOLOGY: 

SOME EXPLORATORY REMARKS 

Gérard Sensevy 

University of Western Brittany, France 

In this paper, I present some exploratory remarks on the necessity to build a new kind 

of epistemology in mathematics education, and, more broadly, in educational 

sciences as sciences of culture. This epistemological turn asks for theoretical 

constructs grounded on a system of exemplars, in Kuhn‘s sense, theoretically and 

practically related in an analogical way. I give some theoretical and epistemological 

hints about this kind of process, and I try to sketch a first empirical illustration of the 

concrete manner to design such paradigmatic analogies. 

INTRODUCTION 

This paper is devoted to some epistemological considerations. Such a focus lies in the 

fact that one may conceive of a theory as a body of knowledge relying on background 

assumptions that are indeed epistemological assumptions, i.e. assumptions referring 

to the conditions of possibilities of theoretical assertions. For example, claiming that 

a research result achieved in an experimental setting may be useful in an everyday 

life situation rests on the (generally) tacit assumption of the sufficient similarity of 

the two contexts. 

In the following, I shall address the general question of the kind of epistemology that 

could be developed in order to better fit the nature of educational research, and 

specifically mathematics education research, as a science of culture. 

In the first part of the paper, I shall outline some particular features of the Joint 

Action Theory in Didactics (Sensevy, 2012; Ligozat, 2011; Tiberghien & Malkoun, 

2009; Venturini & Amade-Escot, 2013), that will enable me to ground the 

epistemological analysis that follows in the second part. In the third part of the paper, 

I shall present a first attempt of an empirical characterization of my reasoning.    

 

UNDERSTANDING DIDACTIC ACTION: THE GRAMMATICAL INQUIRY 

ON JOINT ACTION 

Within the Joint Action Theory in Didactics (JATD), the empirical studies are 

grounded in the material reality of practice, that one can define as the familiar and 

concrete structure of teachers’ everyday practice. But these studies are carried out in 

a particular approach that I would describe as a grammatical one, following Vincent 

Descombes: 

What makes us able to follow or to draw a straight line? It is nor a psychological 

question – at what age and by using what resources – neither a question of 

transcendental philosophy – what the world has to be so that I can go along a straight 
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line – but a grammatical4 question: in what context saying someone is going along a 

straight line means. (Descombes, 2004, p.444) 

In such a perspective, the didactic action (in this expression, “didactic” means “which 

is related to the teaching and the learning of a particular piece of knowledge”) can be 

studied only if the grammatical necessities of practice have been acknowledged. For 

example, one can draw interesting consequences from the fact that in order to learn, 

the student has to reasonably act on her own, but cannot learn without the teacher. 

Indeed, the teacher has to be reticent  (Sensevy & Quilio, 2002; Sensevy, 2011). She 

has to be tacit about some things she knows, in order to enact student’s first-hand 

relationship to the piece of knowledge. But the teacher has also to talk. She has to be 

expressive in order to accurately orient the students’ work. To understand the 

grammar of teacher’s action thus means understand what the teacher chooses to be 

tacit about and what she chooses to say, what she chooses to hide and what she 

chooses to show, and how she manages that. With this respect, the JATD draws the 

hypothesis that every teaching move enacts a dialectics of reticence and expression. 

This dialectics is not confined to the “mere” interaction between the teacher and the 

student. It is shaped by the system of constraints that delineate the interaction, for 

example the social and mathematical norms that enact the didactic contract. A further 

step is accomplished by acknowledging that such a dialectics cannot be understood 

solely as an a priori system of intentions and decisions. This system is reshaped by 

the in situ didactic action, given that the teacher chooses to say (show) something or 

to be tacit about (hide) it by deciphering, in a specific semiosis process, the student’s 

behavior. Reciprocally, the student is engaged in a particular semiosis process (in a 

complex dialectics of the Ancient, what she already knows, and the New, what she 

has to learn) that enables her to make sense or not of the teacher’s behavior (Sensevy 

& Forest, 2011). It is to say that the student directly influences the teacher’s behavior. 

More strongly, it is to say that the didactic action (i.e. the teaching action and/or the 

learning action) is a joint action, as the grammatical inquiry tells us. This action is a 

joint action because the essential dialectics of the reticence and the expression cannot 

unfold concretely without the reciprocal effects of the teacher on the student, of the 

student on the teacher. This action is also a joint action because it is grounded on a 

sharing of meanings, which constitutes both the condition and the effect of the 

didactic action.  

TOWARDS A PARADIGMATIC ANALOGY EPISTEMOLOGY 

The grammatical inquiry that I described above is a first logical moment essential to 

the research activity. But this logical research (i.e. which tries to understand the logic 

of practice) needs a strong relationship to practice at the same time, which asks for 

both an epistemological and a methodological work.  

                                           
4
 The emphasis is mine. 
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This work rests on the following body of hypotheses. 

1. Sciences of culture are sciences of contexts (Passeron, 2013). 2. The assertions 

produced within the sciences of culture need to be systematically referred to the 

contexts they denote. 3. A good manner to build such a reference consists of 

instituting some contexts as exemplars (Kuhn, 1979), these exemplars then function 

as paradigms (sense 2 for Kuhn
5
). We may hypothesize that a given example of 

practice has to be considered first as an “emblematic example” within a peculiar 

research endeavor, which further needs to pertain to the common knowledge of a 

research community to become an exemplar in this research community. 4. These 

exemplars/paradigms can be described from an abstract formula (Deleuze, 1988), 

which enables one to understand them in their main structural features. In order to be 

scientifically relevant, one has to take continually into account their singularity 

(Agamben, 2009). One of the fundamental components of the research work consists 

of revealing and exploring the singularity of exemplars, which provide its substance 

to the inquiry. 5. The scientific inquiry thus spreads out in the construction of a 

paradigmatic system, a constellation of exemplars, within an epistemology of 

paradigmatic analogy. The inquiry requires building a paradigmatic system, then to 

browse this system in order to compare and to relate the different exemplars it 

encompasses. 6. The browsing of the paradigmatic system, that is to say the work of 

each of the exemplars it contains and their relationships, asks for an “organized 

plurality of systems of descriptions” (Descombes, 1998). In particular, such a work 

needs to hold together thin and thick descriptions, in Gilbert Ryle’s sense (2009), the 

“plurality of descriptions” being given by the different densities of each of them 

(Descombes, 1998), each of them enabling the researcher to document aspects of the 

exemplar that the other ones cannot account for. 7. Such an inquiry radically turns 

upside down the usual relations between the concrete and the abstract, in which the 

abstract is conceived of as the common part shared by some concrete elements. Its 

rests on a Marxian dialectical vision of these relations, in the sense that scientific 

activity allows the “ascent” from the abstract to the concrete (Marx, 2012; Kosic, 

1976; Ilyenkov, 1982; Engeström et al, 2012). In the process I have previously 

described, such an ascent takes place in the comparison of different exemplars of the 

paradigmatic system, based on the abstract formula, which allows a first 

apprehension of each of them.  

The previous system of hypotheses has to be taken as a kind of compass for the 

methodological work. They are put into the test through the design of an 

instrumentation for sciences of culture, grounded on the study film. This expression 

(Sensevy, 2011; Tiberghien & Sensevy, 2012) refers to films of didactic practices, 

                                           
5
 Kuhn (1979) acknowledges himself two fundamental meanings to the notion of paradigm. The meaning that 

I term “sense 1” refers to the notion of “disciplinary matrix”. The sense 2, the most important for Kuhn, refers 
to the exemplar.  
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which may encompass a long period of time relating to the same teaching. They 

provide the fundamental bricks for an instrumentation based on hybrid text-pictures 

systems
6
. The challenge consists in presenting a given activity through pictures 

(photograms) taken from study films, and texts (of various origins and types) relating 

to these pictures. Pictures and texts are in mutual annotation, and thus concretely 

provide the organized plurality of systems of description that I mentioned above. 

Within these hybrid texts-pictures systems, the instrumentation may rely on various 

pictures and discourses analysis software, and profit of statistical analysis (in which 

”individuals” are utterances or pictures structures). The hybrid texts-pictures systems 

thus may provide the conceptual matter of exemplars put in relation within a same 

paradigmatic system. 

It is important to note that the determination of exemplars, notably at the stage of the 

production of the abstract formulas that allow instituting them, needs models, as 

seeing-as (Wittgenstein, 2009), which enable the researcher to identify them. In 

JATD, the exemplars and the paradigmatic systems that they make possible refer to 

various features of the didactic game as those that I have delineated in the previous 

section.  

TOWARDS PARADIGMATIC SYSTEMS: SKETCHING A FIRST 

EMPIRICAL CHARACTERIZATION 

In this section, I would like to envision how could be developed a first paradigmatic 

system relating to the reticence-expression dialectics, by focusing on a case study at 

Kindergarten, the treasures game situation. I will elaborate on a previous study 

(Sensevy & Forest, 2011) that I try to reconceptualize within a paradigmatic analogy 

epistemology. 

A general description of the situation  

Brousseau and his team designed the treasures game for kindergarten students at the 

beginning of the nineteen eighty. This learning sequence takes place over several 

months and it aims to have students build a system of graphical representations. 

Brousseau (2004) has presented a strong theorization of this research design, which 

he considered as a fundamental situation for the notion of a representation. The 

situation was recently re-implemented in some classes in Switzerland (Leutenegger & 

Ligozat, 2009) and in France. It consists of producing a list of objects to be 

remembered and communicated. The game is organized in four stages, the rules 

changing as the game progresses. 

The stage 3 of the game aimed at communicating with lists. It takes place in small 

groups of 5 pupils. 4 object representations are drawn by a pupil, who is “the 

                                           
6
 An interdisciplinary collective of educational researchers is participating in this instrumentation endeavor, 

within the Federative Research Structure (SFR) ViSA: http://visa.ens-lyon.fr/visa 
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designer”, and these objects are hidden in the box. The other 4 pupils have to “read” 

the graphic representations of the designer, and name each object to get it out of the 

box. This third stage gives pupils opportunities to debate, firstly in their small group, 

and secondly in the whole classroom during the 4th stage of the game.  We present 

below some objects aimed to be designed by the students. 

 

Figure 1: some examples from the reference collection of 40 objects. 

Solving the problem of pan's representation 

The small episode we study takes place when pupils have to read the representation 

of the designer.  

 

 

Figure 2: the 

representation  

of the pan by the 

“designer” student  

In this episode, the teacher has given the designer four 

quite different objects; one of them is “the pan” (cf. fig.1, 

above). When students have to “read” the designer's 

production (cf. fig.2, shown against), they fail to 

recognize “the pan” (the designed object, fig.1, above), 

confusing it with “the lens”, another object of the 

collection of reference, which has a similar form (cf. 

fig.1, above). 

In the short moment of joint didactic action we present, 

the teacher has first shared with the students the failure 

of the designing and recognizing the pan.  She then asks 

students to find some ideas to better draw and recognize 

the pan.  

Table 1: giving the problem 

 

Iman: we have to make a small line, we have to do 

this... 

The teacher shows the object in her left 

hand, and its representation (cf. fig.2 above) 

by pointing it with her finger, in her right 

hand, and asks the students for a 

comparison. A student, Iman, points a part 

of the object, which is characteristic of it (a 

hole on the handle). In that way, the student 
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links a sensory feature to a specific 

characteristic of the object, which is 

potentially relevant to solve the problem. 

 

 

 

Table 2: another strategy is proposed 

 

Iman: a big ring, and for the lens a small ring 

The teacher looks herself at the representation drawn by the 

designer (cf. fig.3 above). She points it by her left hand 

finger.  Iman “writes” with her finger on the table by 

evoking a possible representation of the difference between 

the pan and the lens (big ring-small ring).  

By showing the representation to the students, and looking herself at it, the teacher 

drives student's attention onto the design. Iman tries to draw on the table, and a 

generic sign emerges (a ring). But the representation “big-small” is not a distinctive 

sign (which may allow to recognize the object in itself) and it will not really work if 

only one object (the lens or the pan) is to be recognized among others: if only the pan 

(or the lens) is represented, the comparisons of representations (between the lens and 

the pan) cannot work. Interpreting in a general way the teacher’s expectations about 

the drawings, the student produces a kind of strategy which can be useful, but which 

is not a winning one in this specific learning game.  

Table 3: the less relevant strategy starts spreading 

 

 Another student: ...a small ring, and a stick 

As in table 3, the teacher shows the object and its 

representation. Again, she asks the students for a comparison. 

Another student writes with his finger on the table, as Iman 

did. He repeats Iman’s proposition (a ring), adding the 

possibility of drawing a stick (for the handle).  

It’s worth noticing that the attention of the students focuses 

on Iman’s action. The teacher’ attention is oriented to the last 

student who had made a proposal. 

The teacher goes on showing the object and its representation in order to have the 

students “comparing” them, but Iman's proposal is taken up and meliorated by others. 



CERME 9, TWG 17, Collected papers, January 2015  

 

189 

 

The new proposal (a small ring and a stick) possibly solves the problem of a generic 

representation for the pan and the lens. From this sole point of view, it is relevant. 

But, as previously, it doesn't work as a distinctive representation between the two 

objects. So it is less relevant in this representation game.  

 

Table 4: the teacher focuses students’ attention on the problem 

Showing the pan and its 

representation, the teacher 

reminds the students the 

current difficulty (we had 

confused with the lens).  

 

In the same time, she 

reformulates the problem, 

relating to the lens (so that 

one guesses every time that 

it's the lens…) 

Moving on her right side, near the 

designer, she formulates the 

problem for the pan. 

When talking, the teacher directs 

her eyes toward different children, 

finishing toward the designer. 

   

The teacher: It's true that we had 

confused with the lens, because it 

was like the drawing of the pan. 

We should try to find a drawing for 

the lens, so that one guesses every 

time that it's the lens… 

...and a design for the pan, so that one 

guesses every time that it's the pan… 

One can see, at this moment, how the teacher works to take on the issues at 

stake by expressing herself (we had confused... we should try to find a design... so 

that one guesses every time). However, the teacher remains reticent. To support her 

reticence, she uses the resources of the proxemics, joining gesture to her talk: first, 

she shows the object and its representation like in the photogram 1, showing them to 

all the students; second, she evokes the lens (which is absent from the package) 

putting the pan and its representation on the left side; third, she moves on the other 

side to finally show the representation which failed, to the designer. The learning 

objective is strongly restated at this time (a drawing for the lens/the pan, so that one 

guesses every time that it's the lens/the pan…): the students have to produce by 

themselves a strategy to design the pan, while taking into account its similarity with 

the lens. 

 

Table 5: Joint action provides a new relevant move 

 

Tilio: Ah yes! so one can make a small hole 

here. 
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The teacher continues showing the object and its 

representation. A student (Tilio) points a part of the 

pan, the same that Iman had pointed on table 3.We can 

perceive the convergence of student’s gaze on Tilio’s 

gesture. 

According to the teacher’ expectation, Tilio acts by pointing the hole on the object 

and by naming it (a small hole for the handle). In a more theoretical language, we can 

say that Tilio deciphered the teacher’s expectation about the playing of the “right 

game”.  He then plays a relevant move in the representation game, by deciphering a 

relevant sign on the pan. Indeed, if the representation of the pan includes “a small 

hole” on the handle, it will allow differentiating the pan from the lens, even though 

the general form of the two representations is similar (a small ring and a stick). 

Tilio’s proposal will be soon institutionalized as a first way of representing the pan.  

A first empirical characterization: some concluding remarks 

The example that we present above may be consider as en emblematic example of 

reticence-expression dialectics. As we have seen, what we term “emblematic 

example” can be seen as a kind of “potential exemplar”, which could be transformed 

in an exemplar after having been worked out and accepted as such in a research 

community. This “emblematic example” highlights the following aspects, which 

concretize the above epistemological reflexion. 1) In order to produce emblematic 

examples, one has to use an abstract formula, a theoretical concept that has to be 

turned into a means of problematization. Here, the reticence-expression dialectics 

enable to acknowledge the way the teacher expresses herself, for example by 

reminding students the goal of the game, and the way she is reticent, for example 

without directly discarding students irrelevant proposals. 2) In a bottom-up move, the 

theoretical construct (the reticence-expression dialectics) is reshaped in its concrete 

unfolding, for example by subsuming under its scope some new phenomena, as we 

can see in this emblematic example, when the teacher’s expression relates to the 

necessity of re-enacting students’ understanding of the problem, or by acknowledging 

that the reticence could no be maintained without a symbolic and material system 

which allows the teacher to remain silent. 3) In a horizontal move, in that by 

connecting with other theoretical concept, the theoretical construct is accommodated. 

For example, using another fundamental dialectics, that of contract and milieu, 

enables the researcher to link the reticence-expression equilibrium to the way in 

which the contract (as a background of common meanings resulting from the 

previous joint action between the students and the teacher) and the milieu (as a 

symbolic and material system which structures the problem to be solved) need to be 

attuned together. 4) The “emblematic example” we focus on is built through a text-

picture hybrid system of which we try to give a taste in the above section. Such a 

system is not confined to the sole elements that we have presented above. It may be 
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built with any kind of texts or picture that is informationally relevant for the inquiry, 

in itself, and/or in its relations to others texts and/or pictures. 5) This emblematic 

example refers to a specific practice that one needs to understand as a connoisseur in 

order to be able to build such an example. It raises the question of several 

specificities, notably that of the piece of knowledge at stake (here the representation 

process), and the educational level (here kindergarten), which are inherent to this 

example. It is the main reason why this example would have to be integrated in a 

paradigmatic system, in which one could find a constellation of emblematic examples 

whose gathering could enable a community of research to jointly build a common 

reference for the concept of reticence-expression dialectics. A good part of the JATD 

researchers’ endeavour is now devoted to this task, through a common work between 

teachers and researchers, what we term cooperative engineering (Sensevy, Forest, 

Quilio, & Morales, 2013).  

In this work, I have addressed the general question of the kind of epistemology that 

could be developed in order to better fit the nature of mathematics education 

research, as a science of culture. I contend that such an epistemology rests on the 

reversal of the usual priority of “the abstract” over “the concrete” in classical 

epistemology. The main issue thus consists in characterizing the “work of the 

concrete” that researchers need to do to give a contextual reference to the abstract 

entities. In this paper, I have tried to show how such a work can rely on the 

description of practice through what I have termed “emblematic examples”, which 

concretize theoretical structures, and that gain their efficiency from being 

analogically related to other emblematic examples of the same theoretical structures, 

within a paradigm (exemplar). I argue that the main challenge in developing such an 

epistemology and the kind of theory it entails consists of building such exemplars on 

the basis of texts-pictures hybrid systems such the one I have sketched in this paper. 

These paradigmatic systems could then be proposed not only as ways of representing 

the meaning of theoretical entities, but also as instruments for Mathematics Education 

and Teacher’s professional Development. 
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COMPETENCY LEVEL MODELLING FOR SCHOOL LEAVING 

EXAMINATION 

Hans-Stefan Siller, Regina Bruder, Tina Hascher, Torsten Linnemann, Jan Steinfeld, 

Eva Sattlberger 

A project group was commissioned to develop a content- and action-related 

competency grid in order to enable quality assessment and comparability of 

mathematics examination questions in the Austrian Matura at the end of the 

Secondary School Level II. Based on theoretical grounds, in the competency grid the 

three dimensions operating, modelling and reasoning are distinguished and 

described on four levels. 

Obtaining information on the development of mathematical competency is a central 

concern of mathematics education (e.g. Leuders, 2014) and empirical educational 

research (e.g. Hartig, 2007). In Austria, an approach with the goal of a standardized 

competency-based written final examination – the so called ‘Matura’ at the end of 

Secondary Level II – (cf. AECC, 2009; BIFIE, 2013) in the context of mathematics 

as a general education subject (cf. Fischer, 2001; Fischer & Malle, 1985; Klafki, 

1985; Winter, 1975, 1996) was applied. Examinees are expected to have both 

mathematical (basic) knowledge and (basic) ability, as well as general mathematical 

skills such as reasoning skills, problem solving skills, and also the ability to use 

mathematics in different situations, i.e. modelling skills. However, in PISA 2000, a 

lack of modelling competency was observed, when students failed to solve (real-life) 

problems with the help of models in a satisfying way (cf. Klieme et al., 2001). Based 

on this result, modelling competence was crucial for competency orientation in the 

curriculum enhancement of mathematics education in the German-speaking region 

(thus also for the Matura in Austria). With reference to Weinert’s definition of 

competencies (2001, p. 27) as “the cognitive skills and abilities which the individual 

possesses, or which can be learned, to solve certain problems, as well as the associated 

motivational, volitional and social readiness and skills in order to successfully and 

responsibly use problem solutions in a range of situations.” 

In an iterative process we developed a competency level model for the written final 

exam in mathematics at the end of Secondary School Level II. The process consisted 

of three elements: the discussion of competency specifications and developments, the 

discussion of mathematical tasks, task rating in due consideration of the competency 

model and the discussion of these ratings. Against the background of theoretical and 

also experience-based ideas about the current development of mathematical skills in 

school learning, we described the following three domains of mathematical 

competencies: operating, modelling, and reasoning
7
 (O-M-A) on four levels. 

                                           
7
 The German word ‘Argumentieren’ is synonym to reasoning. 
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In close cooperation with the Federal Institute of Educational Research, Innovation 

and Development of the Austrian School System (‘BIFIE’), we developed a 

competency level model facilitating the description and comparison of the exam 

requirements, especially with regard to examination questions in the final 

examination in mathematics (Siller et al., 2013).  

COMPETENCY LEVEL MODEL 

In the competency models of the German-speaking countries Austria, Switzerland 

and Germany (AECC, 2008; HarmoS, 2011; KMK, 2012), content areas (such as 

geometry or arithmetic), general mathematical competencies (such as reasoning) and 

skill levels (usually three-stage) are considered. The elements of the model in each 

country are therefore different when compared to one another. The competency levels 

are somewhat vague. Therefore, they can only be described on the basis of empirical 

task difficulty. To put our competency level model in a wider scientific context, we 

follow Leuders (2014, p. 10): “A model is discussed which (i) a priori postulates levels in 

acquiring a certain competence, is describing (ii) through stepped task situations and (iii) 

hierarchically ordered categorical latent ability variable. This allows (iv) determination 

about which competency pupils possess at each level.”  

In comparison to earlier statements, the development that has taken place in this area 

is evident. For example, Helmke and Hosenfeld stated in 2004 (p. 57): “Neither are the 

currently available versions of the educational standards derived at the time from 

comprehensive and didactic accepted competency models (...) nor is there already in all 

relevant areas of content expertise models which meet the abovementioned requirements, 

particularly theoretically coherent developmental and learning psychology based levels 

concepts.”  

Thinking in (competency) levels is common in schools since curricula and teaching 

materials are based on this view (cf. e.g. Kiper, Meyer, Mischke & Wester, 2004). 

Competency level models contribute to the diagnosis of the learners’ levels of 

competency by the assessment of their achievements. Moreover, the models aim at 

describing the development of competencies. Their weaknesses, however, are 

embodied in the fact that it usually remains undetermined how a change to the next 

level can be accomplished and what conditions are necessary for this. Furthermore, a 

fixed sequence is assumed, which implies that neither can any steps be skipped nor 

regressions occur, but which assumes steady, cumulative learning.  

For the present competency level model we have agreed on four stages, which can be 

identified in a manner analogous to Meyer (2007), who described the following four 

levels (Meyer, 2007, p. 5):   

1. Execution of an action, largely without reflective understanding (level 1) 

2. Execution of an action by default (level 2) 
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3. Execution of an action after insight (level 3) 

4. Independent process control (level 4) 

The activity theory forms the background for the didactic interpretation of such 

initially pragmatic levels (cf. e.g. Lompscher, 1985) with the corresponding concept 

of different cognitive actions and their specific dimensional structure. Nitsch et al. 

(2014) developed and empirically verified a competency structure model that 

describes relevant student actions when translating between different forms of 

representations in the field of functional relationships. For example, they could show 

that the two basic actions of acquirement Identification and Implementation 

(Construction) and the basic cognitive actions Description and Explanation differ in 

their cognitive demands, i.e. they are based on different facets of competency. 

Therefore, we used the theoretical model of hierarchical structure of cognitive actions 

(Bruder & Brueckner, 1989) for the description of competency levels. 

DEVELOPMENT OF A COMPETENCY LEVEL MODEL 

Currently existing competency models are primarily based on empirical analyses: 

Based on the solution probabilities of tasks (items), competency levels are modelled 

in the context of large-scale studies. An alternative approach is to primarily derive a 

model from theoretical concepts. This also requires the recognition of central 

instructional goals such as a sustainable understanding of mathematical relationships, 

which in turn presupposes a high level of cognitive activation in the teaching 

processes (cf. Klieme et al., 2006). This can, for example, be achieved by the 

following measures: 

 the preparation of relationships for basic knowledge and skills learned;  

 the challenge to describe mathematical relationships or solutions in application 

contexts; 

 the creation of occasions for reasons or reflections.  

Such criteria of demanding instruction should also be appropriate to form a 

competency level model. 

THE COMPETENCY LEVEL MODEL O-M-A 

Competency level models that are empirically based indicate to what extent tasks 

differ in their level of difficulty in terms of processing. Evidence of existing 

difficulties can be obtained by carefully analysing potential and actual solutions. 

Normative stipulations of difficulty levels imply that it is not possible to successfully 

process the task on a lower level. The levels of the competency model postulate what 

skills are needed to solve them. This does not exclude that there are multiple solution 

strategies, particularly for complex task definitions. 



CERME 9, TWG 17, Collected papers, January 2015  

 

197 

 

For designing the domains of mathematical competencies, we follow an orientation to 

Winter's basic experiences (cf. Winter, 1996, p. 37):  

1. “To perceive and understand phenomena of the world around us that concern or 

should concern all of us, from nature, society and culture in a specific way, 

2. to learn and comprehend mathematical objects and facts represented in language, 

symbols, images and formulas as intellectual creations as a deductive-ordered world 

of its own kind, 

3. to acquire task problem-solving skills that go beyond mathematics (heuristic skills).” 

While the first basic experience corresponds to mathematical modelling as a 

fundamental action area in learning mathematics, there are the other two basic 

experiences “operating” and “reasoning”, which serve the second fundamental 

experience as well as “problem solving” for the third basic experience. In various 

competency models „communicating“ is included to emphasize the linguistic aspects, 

as well as other domains of mathematical competencies. 

“Problem solving” is not separated as an independent domain in the Austrian 

requirements for the final examination (BIFIE, 2013). “Problem solving” is  defined 

as a more complex aspect of action and therefore includes the domains of the 

mathematical competencies Operating, Modelling and Reasoning, especially in 

higher levels of performance. “Communicating” is seen as an important domain of 

mathematical competencies for teaching mathematics, but cannot be specifically 

differentiated from 

Operating, Modelling 

and Reasoning and is 

therefore included in 

the other aspects. 

The domain 

“Reasoning” is 

related to the 

suggestions of 

Bruder and 

Pinkernell (2011), 

who also pick up on 

considerations of 

Walsch (1972). 

“Modelling” served 

as the basis of the 

fundamental work of Niss (2003) and other ideas, e.g. of Boehm (2013) or Goetz and 

Siller (2012). There are relatively few preparations for a levelled conception of 

competencies in the mathematical domain “Operating”. For example, Drueke-Noe 

Figure 1 O-M-A Grid 
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(2012) shows that complex algorithms are required already in early grades. But for a 

high level of expertise, it is not only necessary to use complex algorithms, but also to 

find the right algorithm to apply in a given situation and to combine different 

algorithms where appropriate.  

The result of our considerations as part of this project is a model with three domains 

of mathematical competencies (cf. Fig. 1) that substantially captures the key aspects 

of mathematical work at school. The competency level model is aimed at fulfilling all 

essential requirements with regard to the conception of mathematical learning 

outcomes in Austrian mathematics education of the Secondary School Level II (cf. 

BIFIE, 2013). Complex problem solving situations can be described by the 

interaction of the three domains of mathematical competencies.  

WHAT EMPIRICAL EVIDENCE EXISTS FOR THE DIFFERENTIATION 

OF THE THREE DOMAINS OF COMPETENCIES OPERATING, 

MODELLING, REASONING AND ITS GRADATION IN 4 LEVELS? 

The question about an empirical verification of the theoretical competency level 

model with respect to the separation of domains of mathematical competencies and 

the gradation can be answered only in the context of a sufficient number of processed 

tasks for each area of expertise.  

Data were taken from the so-called “school experiment” in 2014. Before the central 

final examination throughout Austria will be implemented in the school year 

2014/2015, secondary academic schools and maths teachers were invited to 

voluntarily take part in a pilot study on graduating students’ math competences. In 

this study, the math tasks were processed under the same conditions as they would be 

processed at the mandatory central final examination. It is important to note that the 

performance in the tasks contributes to students’ final grade. For the school 

experiment whose data are being reported here, there were 803 students (m = 345, f = 

458) from 42 classes from 9 districts in Austria. The examination consisted of two 

separated parts with so-called type 1 and type 2 tasks (cf. 

https://www.bifie.at/node/2633). 

Type 1 tasks “focus on the basic competencies listed in the concept for written final 

examination. In these tasks, competence-oriented (basic) knowledge and (basic) skills 

without going beyond independence are to be demonstrated.” (cf. BIFIE, 2013, p. 23). 

They are coded as solved against non-solved. The various bound response formats 

such as multiple-choice format and a special gab-fill format enable accurate scoring. 

For the award of points in tasks with open and semi-open response format, solution 

expectations and clearly formulated solution keys are specified.  

The characterization of type 2 tasks presents serious challenges to the basic principles 

of modern test theory. The tasks are considered “for the application and integration of the 

basic competencies in the defined contexts and application areas. This is concerned with 
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extensive contextual or intra-mathematical task assignments, as part of which different 

questions need to be processed and operative skills are, where appropriate, accorded greater 

importance in their solution. An independent application of knowledge and skills is 

necessary” (cf. BIFIE, 2013, p.23). These tasks are also consistently structured in 

design and presentation, as well as in terms of scoring (cf. BIFIE, 2013). 

A total of 16 (type 1) tasks in the competency domain of operating, 2 tasks (type 1) in 

the competency area of modelling, and 4 tasks (type 1) in the competency area of 

Reasoning were tested in the 2014 school experiment. Thus, no level analyses could 

be conducted.  

There is a relatively high variation of the solution frequency within competency 

domain Operating (cf. fig. 2), which can be explained by the heterogeneity of tasks 

presented, especially with regard to high profile/over-training. Variation of solution 

frequency was also observed for the competence domain Modelling (cf. fig. 3) as 

well as Reasoning (cf. fig. 4). The parameter “difficulty” was not measured, only the 

percentage of solution as an indicator for the level of difficulty of a task.  

 

 

 

 

 

 

 

 

 

 

Two of the type 1 tasks are positioned on 

competency level 2 and could be analysed. A 

heterogeneous picture emerged for these two 

tasks: While task 2 could rarely be solved, task 

16 was easily mastered by the students. 

Can the pre-defined four levels be confirmed 

empirically in all the three areas of competency? 

This question can be answered in a first 

approximation only on the basis of type 2 tasks 

for levels 1 and 2 due to the fact that higher 

Figure 2 Difficulty level of 
the tasks for the competence 
domain Operating (n = 803) 

Figure 3 Difficulty level  
of the tasks for the domain 
Modelling (n = 803) 

Figure 4 Difficulty level of 
the tasks for the domain 
Reasoning (n = 803) 

Figure 5 Empirical difficulties of 
type 2 tasks separated by type and 
level (n = 803) 
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graduations did not appear in these exam booklets. 

As can be seen in Figure 5 (in general) and Figure 6 (separated among O-M-A), the 

level 2 tasks seem to be more difficult in general. Thus the competency level of the 

task gives us a good statement about the level of difficulty.  

SUMMARY AND OUTLOOK 

The provided model with the three domains of 

mathematical competencies Operating, Modelling 

and Reasoning (O-M-A) distinguishes three basic 

mathematical operations on four levels. It is based 

on considerations from educational sciences and 

learning theories as well as insights and experiences 

with regard to relevant factors for learning 

mathematics in school. It is part of a complex effort 

to gain a sound basis for competency diagnostics 

and performance assessment in mathematics in the 

German-speaking countries. It differs from other 

models by its consistent theoretical foundation and 

by the focus on potential lines of development for 

long-term competency building. The model O-M-A 

provides a normative setting for relevant levels of 

requirement in the three domains of mathematical 

competencies. This facilitates a certain comparability of type 1 and type 2 tasks 

provided for the final examination.  

The added value of the developed model lies in several areas: 

 It provides guidance both for the assessment of (written) performance and for 

the learning tasks in the classroom. 

 It serves the purpose to reveal potential for development in the classroom. 

 It allows for the identification of development potential in the task structure  

Limitations of the competency level model O-M-A lie in the coarseness of the 

approach. Neither can all the differences between the test tasks relevant to their level 

of difficulty be considered in detail (such as linguistic complexity), nor can individual 

developmental trajectories be mapped in learning processes. Further restrictions of 

the model are also indicated by the fact that of all the mathematical content and 

activities implied in each task only a basic competency referring to the list of basic 

skills (cf. BIFIE, 2013) can be adopted. The specific situation of each school class or 

priorities of teachers cannot be reflected. Thus, many tasks can prove to be easier, but 

also more difficult than in the rating. 

Figure 6 Empirical difficulties of  
the type 1 and type 2 tasks among  
O-M-A (n = 803) 
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The competency level model O-M-A aims at describing levels of competencies by 

identifying the qualitative differences of each competence. The growing body of 

research on maths learning served as the theoretical background. The data and results 

presented so far are preliminary and did not account for not controllable influence 

factors such as training effects. However, they can be interpreted as a first clue that 

the O-M-A can be rudimentarily verified empirically. Therefore, further research is 

necessary to empirically test the levels of the model and to test the model against 

level 3 and level 4 tasks. 

The model O-M-A is indefinite in explaining the attainment of the next higher level. 

For this reason we define it as a competency level model and not a competency 

development model. To answer the question as to whether this model could map 

potential lines of students’ long-term competency development, more theoretical and 

empirical work is needed. So far, it cannot be applied to the development of a math 

learning process.  
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STRUCTURALISM AND THEORIES IN MATHEMATICS 

EDUCATION 

Pedro Nicolás Zaragoza 

University of Murcia (Spain) 

We present the structuralist conception of scientific theories as a Deus ex Machina 

which allows to resolve the entanglements of theories in Mathematics Education. We 

illustrate with examples how this conception, which forms a solid and solvent body of 

knowledge in Philosophy of Science, provides us with tools to perform a careful 

analysis of a theory, both by itself and in connection with other theories.  

RECONSTRUCTION OF SCIENTIFIC THEORIES 

As it is the case in many other disciplines, in Mathematics Education there are several 

theories living together: Theory of Didactic Situations (Brousseau, 1997), 

Anthropological Theory of the Didactic or ATD (Chevallard, 1999; Bosch et al. 

2011), APOS
8
 theory (Dubinsky & McDonald, 2002), Onto-Semiotic Approach 

(Godino et al., 2006), Theory of Abstraction in Context (Dreyfus et al., 2001), Theory 

of Knowledge Objectification (Radford, 2003)… Whereas the cohabitation of 

theories is perfectly normal, efforts aiming to connect some of them, especially from 

the CERME working team “Theoretical perspectives and approaches in mathematics 

education research” (CERME 8, 2013), are also very natural and desirable. 

We defend in this work that, for a better understanding of the possibility of 

connection of two theories, we must reconstruct them by using the same language. 

The reconstruction of a theory can be carried out from different conceptions. When 

we speak of ‘conceptions’ we mean ways of giving an account of what a scientific 

theory is, and not of how a scientific theory (in particular, a scientific law) is 

constructed. Thus, a priori these conceptions do not pay attention to methodological 

aspects. 

The one favoured here is the so-called structuralist conception (Balzer et al., 1987). 

This is an elaboration of the semantical conception (initiated by Suppes and Adams 

in the 1970s), and it seems to reconcile the most important aspects of the syntactical 

conception (advocated by Reichenbach, Ramsey, Bridgman, Campbell, Carnap in 

several works from the 1920s to the 1950s) and the historicist conception (advocated 

by Kuhn, Lakatos, Laudan in several works in the 1960s), while avoids their 

problems (Diez and Moulines, 1997). 

Now we will give a brief explanation of the main points of the structuralist 

conception. For a more extensive treatment see (Balzer et al., 1987). 

                                           

8
 This is the short form for “Action, Process, Object and Scheme”. 
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According to the structuralist conception, a scientific theory is a net of many nodes 

(which will be called elements of the theory or theory-elements) connected in several 

via specialization, see Definition 2 below. Of course, such a net does not appear out 

of the blue, but it is developed little by little along the time. This is how the 

structuralist captures the diachronic character of a theory. The synchronic character 

of a theory appears in the description of the theory-elements. 

Definition 1: To determine a theory-element one has to specify: 

i) The portions of reality the theory-element conceptualizes, i. e. the portions of 

reality the theory can speak of, called potential models. These potential models are 

described as portions of reality which can be modelled by using a structure (that is 

to say, a tuple (D1, D2, …, R1, R2, …) of sets Di and relations Rj between these 

sets) and a list of properties applicable to the structures of the former type. We call 

Mp the set of potential models. 

ii) The laws with which the theory-element aims to enlighten reality. Each law is a 

property applicable to the structures of the specified type. The laws distinguish the 

so-called actual models among the potential models. We call M the set of actual 

models. 

iii) The partial potential models, which are these portions of reality which can be 

checked to be potential models without assuming the laws of the theory-element. 

Notice that to verify that a portion of reality is a potential model we check, in 

particular, that the relations Rj appearing in the type of structure are satisfied. In 

this checking we use some method and this method might, or might not, assume 

the laws of the theory-element. A relation Rj is theoretical with respect to a theory 

element T (or, in short, T-theoretical) if every method of determination of Rj 

assumes the validity of the laws of this theory-element. Thus, a partial potential 

model of a theory-element is nothing but a potential model in which we omit the 

theoretical relations. We call Mpp the set of partial potential models. 

iv) Those partial potential models that are expected to be actual models. These partial 

potential models are, after all, the intended applications of our theory-element. 

We call I the set of intended applications of our theory-element. 

Thus a theory-element is an ordered pair T = (K, I) where I is the set of intended 

applications and K = (Mp, Mpp, M) is the core, formed by the set of potential models 

the set of partial potential models, and the set of actual models. 

The empirical claim of a theory-element is just the statement which asserts that the 

intended applications are actual models, I  M, that is to say, that in certain portions 

of reality, which can be detected without assuming the laws of the theory-element, 

these laws actually hold. 

In the next section we will give several examples of theory-elements but, 

unfortunately, we will not point out a theoretical relation in any of them. It is an 
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important open question whether there are theoretical relations in the current theories 

of Mathematics Education. In Classical Mechanics (CM), the relations of position or 

time are not CM-theoretical, since you can determine them without assuming any 

proper law of Classical Mechanics. However, the relation mass is CM-theoretical, 

since any method of determination of the amount of mass of an object assumes a law 

proper of the CM. For examples in other disciplines see (Balzer et al. 1987). 

NETWORKING THEORIES 

In what follows we use the structuralist approach to present different kinds of 

possible connections between theory-elements. 

Definition 2: A theory-element T’ is an specialization of another theory-element T, 

and we write T’ σ T, if:  

(1)  

1.1) M’p = Mp, that is to say, both theory-elements conceptualize the world in the 

same way. 

1.2) M’pp = Mpp, that is to say, both theory-elements consider the same theoretical 

relations. 

1.3) M’  M, that is to say, every law in T is also a law in T’. 

(2) I’  I, that is to say, every portion of reality aimed to be explained by T’ is also a 

portion of reality aimed to be explained by T. 

In short, to specialize consists of increasing the amount of laws without changing the 

conceptual architecture. 

Definition 3: A net-theory is a pair N = ({Ti}, σ) where {Ti} is a non-empty set of 

theory-elements and σ is a specialization relation on {Ti}. 

Next we are defining the notion of theorization, but first we need the following: 

Definition 4: Given two structures (see Definition 1) x = (D1, …, Dm, R1, …, Rn) and 

y = (D’1, …, D’p, R’1, …, R’q), we say that y is a substructure of x if: 

1) p  m, q  n. 

2) Every D’i is a subset of some Dj. 

3) Every R’i is a subset of some Rj. 

Definition 5: A theory-element T’ is a theorization of a theory-element T if: 

1) Every intended application of T’ admits an actual model of T as substructure.  

2) There are potential models of T’ which are not substructures of potential models 

of T (because they contemplate new domains and/or new relations). 
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The first condition says that every portion of reality T’ aims to explain satisfies the 

laws of T. The second condition says that T’ includes new (not necessarily T’-

theoretical) concepts not contemplated by T.  

Next I will show in examples some tentative structuralist descriptions of some 

elements of the ATD.  

Example of theory-element: Our first example is inspired in the so-called Herbartian 

scheme (Chevallard, 2012), which is probably the most general structure proposed by 

the ATD to deal with situations of study. In this structure there are things like a task 

or question which requires some answer, a series of partial answers, and a final 

answer. Therefore, the structure corresponding to our theory-element T1 will be the 

tuple ({1, …, n}, P, s) where {1, …, n} is the set of the first n natural numbers, P is a 

non-empty set P, and s is a map from {1, …, n} to P. The image of 1 is said to be a 

generating question, the image of n is said to be a final answer and the other images 

are said to be partial answers. Since no law is stated, there is no distinction between 

potential, partial potential and actual models. Notice that every temporal sequence of 

n events fits in this structure, but, of course, not every such sequence is an intended 

application of T1. This is why it is important to explain which are our intended 

applications, namely, those sequences of events consisting in finding an answer to a 

question. 

Example of theorization: If, moreover, in each of the partial answers of T1 we 

distinguish between tasks, techniques and logos elements
9
, that is, if we look at the 

constituent parts of the so-called praxeologies (Chevallard, 1999), we would have 

reached a theorization, T2, of T1. The structure corresponding to T2 will be a tuple 

({1, …, n}, ST, St, SL, s) where ST, St, and SL are non-empty sets whose elements are 

called tasks, techniques and logos-elements, respectively, and s is a map from {1, …, 

n} to ST  St  SL. Since no law is stated there is no distinction between potential, 

partial potential and actual models. Now not every temporal sequence of n events fits 

in the structure of T2. Not even every temporal sequence of n events consisting in 

finding an answer to a question! In fact, our intended applications are temporal 

sequences of events consisting in finding an answer to a question such that in each of 

these events we find three components and such that, moreover,  

- all the first components of the events are ‘of the same nature’ (this is encoded in 

the fact that they belong to the same set), namely, tasks, 

- all the second components of the events are of the same nature, namely, solutions 

to the task specified in the corresponding first component, and 

                                           

9
 For the sake of simplicity, we do not distinguish between task and type of task, and between technological and 

theoretical elements among the logos elements, even if they are important distinctions in the ATD. 
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- all the third components of the events are of the same nature, namely, explanations 

of why the corresponding second element solves the corresponding first element. 

Example of theorization: If, moreover, we take into account the dynamics of each of 

these praxeologies, recognizing the so-called study moments (Chevallard, 1999), we 

would have a theorization, T3, of T2. The structure corresponding to T3 will be a tuple 

({1, …, n}, ST, St, SL, {0, 1}, {*}, s) where  

- {1, …, n}, ST, St and SL are as before. 

- s is a map from {1, …, n} to S  (S ∪ {*})  (S ∪ {*})  {0, 1}  {0, 1}  ([0, 

1]∪ {*})  (N ∪ {*})  (N ∪ {*}), where S is the union of ST, St and SL, called the 

study sequence map, and its images are called events. 

The structure is now more complicated because it has to model more ambitious 

intended applications. Indeed, in the events of the sequence we still look at tasks, 

techniques and logos, but we also pay attention to the way they are related: 

- The first (respectively, second, third, fourth and fifth) component of an event 

refers to the first (respectively, second, third, fourth and fifth) study moment 

(Chevallard, 1999). 

- The last three components of an event refers to the sixth study moment, namely, to 

the evaluation moment. More precisely, the sixth component refers to the scope of 

the technique (it is a bounded magnitude which reaches the value 1 if the technique 

covers all the possible cases of the task), the seventh component refers to its 

economy and the eighth component refers to its reliability (see Sierra Delgado et 

al., 2013)
10

. 

For example, an event which is an element of ST  St  SL  … is regarded as a task 

followed by an elaboration of a technique followed by an explanation of why this 

technique works, whereas an element of St  ST  {*}  … is regarded as a technique 

followed by a task which is solved by the technique followed by no explanation of 

why the technique works. We use * to express absence of activity in the second, 

third, sixth, seventh and eighth components, and we use 0 (respectively, 1) to express 

absence (respectively, presence) of activity in the fourth and fifth components. We 

can add some axioms devoted to prevent us from considering impossible events, for 

example: 

Axiom 1: There are not events starting with a task and continuing with a logos 

element. 

                                           

10
 Actually, the last two components should be interpreted as evaluations of a technique in comparison with another 

technique. Indeed, we typically speak of a technique as being more or less economic or reliable than another technique. 

However, for the sake of simplicity, we do not take into account this aspect here. 
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Axiom 2: If an event starts with a technique, then it cannot continue with a logos 

element. 

Axiom 3: In an event there are not two tasks, two techniques or two logos elements. 

Thus, for instance, there are not events which are elements of ST  ST  …  

Axiom 4: If in an event there is no task, then the last three components of the event 

are (*, *, *). 

Axiom 5: If the fourth component of an event is *, then the last three components are 

(*, *, *). 

Examples of specialization: Imagine we create a new theory-element T4 by adding the 

following law to the theory-element T3: 

Law: The last three components of every event are (*, *, *). 

The new theory-element T4 is a specialization of T3. Indeed, there are actual models 

in T3 which are not actual models in T4, namely, those study sequences having at 

least an event in which the last three components are not (*, *, *). After the axioms, it 

is clear that the former law holds for those study sequences in which each event si = 

(si1, si2, si3, si4, si5, si6, si7, si8) satisfies that none of the sij are a task or that si4 = *. 

Hence, those study sequences would be actual models of our theory-element T4. 

The notion of didactic contract (Brousseau, 1996) is a good source of laws for 

theory-elements dealing with study sequences. Indeed, a didactic contract can be 

regarded as a special family of clauses or conventions, and, inspired in Lewis (1969), 

we could express a convention as a law stating that a certain regularity in the events 

of a study sequence holds (see for instance the law above).  

Remark: In (Chevallard, 1988b) there is a sketch of the possible sets and relations of 

the structures an anthropological theory of the didactics would deal with. It would be 

interesting to compare them with the ones used in our examples above. 

Remark: Brousseau (1986), inspired among others by (Suppes, 1969, 1976)
11

, used 

finite automata to give a structuralist formulation of the notion of situation. Our 

structuralist formulations of notions of the ATD are more in the spirit of the 

Stimulus-Sampling Theory (Estes et al., 1959). It is worth noting that, as proved in 

(Suppes, 1969), given any finite connected automaton there is a stimulus-response 

model that asymptotically becomes isomorphic to it. 

Finally, let us consider the relation of reduction between theory-elements. 

                                           

11
 It is remarkable the fact that Suppes was the main promoter of the semantic conception, direct precedent of the 

structuralist conception.  
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Definition 6: A theory-element T is reducible to a theory-element T* if there exists a 

relation ρ  Mp(T)  Mp(T*) such that: 

1) If (x, x*)  ρ and x*  M(T*), then x  M(T). 

2) If y  I(T)  r(M(T)) then there exists y*  I(T*)  r(M(T*)) such that (y, y*)  
r(ρ). 

The underlying idea is to regard the elements (x, x*) of ρ as pairs of portions of 

reality so that x* is the T*-version of x. The first condition says that the laws of T can 

be derived from those of T*. The second condition says that all the successful 

applications of T admit T*-versions which are also successful applications of T*. In 

other words, the successes of T can be explained in virtue of those of T*. Notice that, 

in contrast to what happened with the theorization (Definition 5), reduction does not 

require an increase in the conceptual map, that is to say, the kind of structures 

contemplated as potential models. Indeed, the conceptual map of T* might be 

completely different to the conceptual map T. 

Examples of reduction: The classical mathematics education (see Gascón, 1998) 

explains certain phenomena with laws involving cognitive or motivational concepts. 

Indeed, these would be the kind of concepts used by the classical mathematics 

education to explain the kind of phenomena presented in (Equipe Elémentaire IREM 

de Grenoble, 1982). One can use (Chevallard, 1988a) to sketch how part of this 

classical mathematics education can be reduced to a theory-element including among 

the laws the clauses of the didactic contract. On the other hand, one can also use 

(Chevallard et al., 1997) to reduce part of this classical mathematics education to a 

theory-element with laws stating the incompleteness of scholar study processes (this 

incompleteness can be expressed in terms of the study moments, for example, by 

saying that the moment of the construction of the technological-theoretical frame or 

the moment of the work of the technique is lost). 

In Bikner-Ahsbahs and Prediger (2010) the following “networking strategies” are 

presented: to ignore other theories (as an extreme strategy of non-connection), to 

make your own theory and foreign theories understandable, to compare/contrast, to 

coordinate/combine, to integrate locally/synthesize and to unify globally (as an 

extreme strategy of total connection). Next, let us clarify this taxonomy by 

presenting, in a brief and simplified way, possible translations of these strategies to 

the structuralist language:  

- To ignore other theories: not to consider the possibility of (even partial) 

specialization, theorization or reduction (see Definitions 2, 5 and 6) as a relation 

among two theory-elements. 

- To make your own theory and foreign theories understandable: to accomplish this, 

as we said at the beginning of this paper, one need to translate both theories to the 
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same language. What we suggest here is to use the structuralist language. So, in a 

sense, in the present work we take seriously this second networking strategy. 

- To compare/contrast: to check which are the potential models shared by two 

theory-elements. Thus, when comparing/contrasting we could be performing a 

theorization. 

- To coordinate/combine two theory-elements T and T’: consists in saying that a 

common intended application is both an actual model of T and an actual model of 

T’. It is important to notice that, for this to happen, T and T’ must share the partial 

potential models. This last sentence explains the meaning of the following 

statement of (Bikner-Ahsbahs & Prediger, 2010): “Whereas all theories can of 

course be compared or contrasted, the combination of (elements of) different 

theories risks becoming difficult when the theories are not compatible.” 

- To integrate locally/sythesize two theory-elements T and T’: to find a third theory-

element T” to which we can reduce the theory-element derived from T when 

considered just some sub-structures z of the structures x of T, as well as the theory-

element derived from T’ when considered just some sub-structures z’ of the 

structures x’ of T’. Notice that the structures x” of T” should admit both z and z’ as 

sub-structures. 

-  To unify globally: to find a theory to which any other theory could be reduced. 

CONCLUSION 

Here we suggest to use the structuralist formalization of scientific theories to the 

benefit of the questions about the theoretical status of different approaches in 

Mathematics Education. Needless to say, we do not mean one can not work properly 

in theory unless this is formalized. For example, it is not reasonable to say that 

Newton were not doing Mechanics just because he did not have at hand an strict 

formalization. On the other hand, theories in Mathematics Education are still far from 

being formalizable, being this (even partial) formalization a long-term project in any 

case. Concerning this, it is important to point out that the degree of resistance of a 

theory to be formalized is inversely proportional to its degree of development. For 

example, if we can not distinguish the actual models among the potential models, 

then we can not identify any law of the theory (and at this point we should wonder 

whether this forces us to accept this theory is nonexistent…). Anyway, regardless of 

the difficulty of a complete formalization, we defend that: 

- The framework offered by the structuralist conception of scientific theories is 

illuminating to the extend that it provides us with high order tools which allow a 

better understanding of the theoretical scene in Mathematics Education.  

- Even if we were not interested in networking theories, the attempt to formalize a 

theory in the structuralist way forces us to consider extremely interesting questions 
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about this theory. For instance: which are the underlying structures?, which are the 

laws?, which are the theoretical relations?,… 

Among many other things, it is still an open question which are the links between our 

structuralist approach, the definition of theory by Radford (2008) and the notion of 

research praxeology by Artigue et al. (2011a, 2011b). 
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in sorting geometrical objects 

Abdel Seidou 

Örebro University - Sweden 

This poster presents a language for describing and analysing students’ language 

“moves” while reasoning in an open-ended sorting activity. A close analysis of one 

individual student’s language moves in a collaborative activity is supposed to shed 

light on individual contribution to the collaborative reasoning process. Furthermore, 

these moves give indications on what pupils decided to be relevant in the 

simultaneous enterprise of reasoning in collaboration, and even the prior knowledge 

available in the classroom. 

Keywords: inferentialism, deontic scorekeeping, mathematical reasoning, 

collaboration. 

THEORETICAL FRAMEWORK 

The purpose of this poster is to present an inferentialist language for describing 

reasoning in terms of moves in language game. Inferentialism is introduced by Robert 

Brandom (1994), and it advocates a new order of explanations. Inference is to 

prioritize over reference or representation, and it is set at the heart of human 

knowing. Inferentialism identifies the meaning of an expression by its inferenetial 

relationship to other expressions. Brandom (2000) stated: 

To grasp or understand […] a concept is to have practical mastery over the 

inferences it is involved in – to know, in the practical sense of being able to 

distinguish (a kind of know-how), what follows from the applicability of a 

concept, and what it follows from. (Brandom, 2000, p. 48, his italics) 

The introduction of inferentialism to mathematics education research is recent. 

Nevertheless, ideas based on inferentialism have already been used in different 

ways in mathematics education research. Schindler and Hußmann (2009) used 

the status of claims (commitments and entitlements) to investigate 6
th
 grade 

students' individual learning process and concepts formation in the topic of 

negative numbers. Bakker and Derry (2011) draw upon inferentialist 

epistemology, to design tasks in teaching statistics inferences. Based on 

inferentialism, this poster will present a language to describe and analyze young 

learners’ collaborative mathematical reasoning.  

Geometrical objects (2D) of different sizes and shapes were presented to groups 

of four first grade young learners (6-7 year olds) by the teacher. They were 

challenged to collaboratively come to an agreement on ways of sorting. The 

open-ended aspect of this task creates favorable conditions for a fruitful game of 

giving and asking for reasons.  
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Brandom (1994; 2000), used the term deontic scorekeeping to name a process 

embedded in the game of giving and asking for reasons. During this process, 

different competent interlocutors keep track of their own and others’ linguistic 

performance. It describes the course by which different interlocutors converge 

toward the same meaning, in search of agreement or/and objectivity. It 

comprises both collaboration and the reasoning. The analysis of the deontic 

scorekeeping, especially the “moves” will serve as tool to characterize and 

analyze young learners’ collaborative mathematical reasoning.  

The “moves“ express how claims are put forward: Attributing, acknowledging 

and undertaking. Attributing is just a kind of reporting, and it does not indicate 

an understanding or knowing. Acknowledging is to take something to be true. 

Undertaking a claim is to be aware of the premises and consequences of it. The 

moves are interrelated and depend on each other. For instance undertaking a 

commitment is something that makes it appropriate for others to attribute it 

(Brandom 2000).  

I believe the “moves” could also show signs of participating norms/rules in a 

classroom if they are investigated with appropriate quest. To illustrate the 

analytical points of the proposed theoretical framework, the poster presents 

video recorded data from a Swedish classroom  

POSTER DESIGN  

The poster will be designed in three columns. The first presents excerpts to illustrate 

the three moves and their significance on individuals’ learning trajectory. The second 

column will conceptualize how these moves are interrelated in the deontic 

scorekeeping. The last column will draw on possible implications of the previous 

columns for teaching and learning in classrooms. 
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CROSSROADS OF PHENOMENOLOGY AND ACTIVITY 

THEORY IN THE STUDY OF THE NUMBER LINE PERCEPTION 

Anna Shvarts, Andonis Zagorianakos  

Lomonosov Moscow State University, Manchester Metropolitan University 

The problem of the development of perception is investigated in mathematics 

education by Luis Radford from a Marxist perspective (Radford, 2010). Radford 

supposes that only through social practice the “domestication” of a perceptive organ 

(an eye) can occur, and that the phenomenological approach towards perception as a 

system of intentional acts cannot explain acquiring of the new, culturally specific 

ways to approach objects. Our research shows the productivity of a dual analysis of 

the same phenomenon from the cultural-historical activity theory (CHAT) and the 

phenomenological perspectives. 

We analysed the eye-movements of participants while they operated with the number 

line. The SMI RED eye-tracker was used with sample rate 120 Hz. The task was to 

answer on which point on the number line from 0 to 10 the grasshopper was sitting. 

There were 6 pairs of adults and pre-schoolers. We consequently collected three sorts 

of data, concerning adults’ perception, the interaction between children and parents 

when we asked each parent to teach her/his child, and the children’s perception. The 

results derive from the detailed qualitative analysis and they will be presented as 

several series of pictures, which represent synchronized data of short time interval 

(0,5-5 seconds) tracks of eye-movements, speech oscillograms, audio transcriptions 

and pictures of gestures, taken by an external camera. Here is a space-saving 

summary of interweaving ways to address results from the two perspectives. 

(1) Adults’ perception and teaching strategies revealed a vivid difference in how the 

parents detected the point on the number line themselves, and how they taught the 

children to do it. All adults either immediately grasped the answer by one fixation, or 

by a couple of fixations while they were counting from the midpoint or the last point. 

While teaching, most of our adults showed the child a strategy of counting from zero 

up to the point, making arc movements with their finger from point to point, and 

rhythmically counting or making pauses for the child to count. From the CHAT 

perspective that focuses on cultural practices and artefacts (Vygotsky, 1981) we need 

to interpret the adults’ kind of perception as mediated by previous knowledge and by 

the number line itself—which is a visual semiotic means that has sedimented the 

activity of counting. We can judge the way that adults performed counting as a 

developed perception that has a form of mental action that keeps only a general form 

of real action and misses the intermediate parts (Davydov, 1959). Following the 

Husserlian phenomenology by adopting the first person perspective in our analysis, 

we see the adults’ perception as immediate, where a number line is “taken for 
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granted” (Husserl, 2001), i.e. approached as a natural object of their living world 

without treating it as a product of previous mathematical work.     

(2) In the teaching stage the attention of the children was strongly driven by a system 

of means used by the adult. Each pointing movement of the finger of the adult 

corresponded to a prosodic stress and to a fixation of the child’s glance on a point on 

the number line; the adult made a theoretical perception possible through involving 

the child into social practice, “through an intense recourse to pointing gestures, 

words, and rhythm”, as Radford (2010, p. 5) puts it. Now let us look more closely at 

the children’s eye-movements. In one case the child followed the adult’s movements 

precisely in counting from zero up to ten, but at the moment when her finger was 

passing the point where the grasshopper was sitting, the child found time to look at 

the written question of the task. In another example a child misperceived an adult’s 

gestures: she was moving her eyes one point ahead of where the adult was pointing. 

But being in contact with the original task she managed to correct herself at the end 

of the counting: she was making two fixations on the same point where the 

grasshopper was, corresponding to two separate arc movements of her father’s finger. 

Thus, being “moved” by the adult activity the children caught up the meaning of it 

through the goal, which was retained at a grounding level of the children 

intentionality. So, our data show that it is exactly a complex system of intentionality 

that makes possible the “crucial form of communication in which two consciousness 

meet in front of the cultural mathematical meaning” (Radford, 2010, p. 6) within the 

social practice. From a phenomenological perspective this meaning should not be 

perceived as a "ready-made entity” which a child is expected to follow; instead, only 

a serious and genuine move back to the intentional origins of this meaning gives us a 

real understanding of its constitutive potential (Husserl, 1970, 2001). 

Conclusions. CHAT analysis focuses on cultural means and social practices, which 

necessarily mediate the transformation of perception, while phenomenological 

analysis aims towards understanding of the role of intentionality in acquiring new 

forms of immediate perception. Hence these two perspectives attempt to grasp two 

important aspects of the educational/learning complexity, and seem to be neither 

contradictory nor reducible to each other, but rather essentially complementary. 
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