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Distributed Control using
Decompositions and Games

Anders Rantzer

Automatic Control LTH, Lund University

Building theoretical foundations for distributed control

Process

A centralized paradigm dominates
theory and curriculum today

Controllern

A

We need methodology for

» Decentralized specifications
» Decentralized design
» Validation of global behavior

Approximating the Centralized Controller

Bellman’s equation |x[% = min, (|Ax + Bu|? + |x|? + [u[2)
gives u = —Lx where

0.3420 0.0737 0.0046 0.0002
0.1839 0.3448 0.0736 0.0047
0.0103 0.1840 0.3447 0.0726
0.0008 0.0104 0.1808 0.3296
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Diagonal dominance of L suggests natural approximations:
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Today’s challenges: Distributed controller validation
Distributed control synthesis

Needs for distributed control theory

Three major challenges:

» Rapidly increasing complexity

» Dynamic interaction

» Information is decentralized
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Inspiration from other fields

» Congestion control in networks

» Collective motion in biology

» Oscillator synchronization in physics

» Parallelization in optimization theory

» Saddle points and equilibria in economics

» Cooperative and non-cooperative game theory

Much focus on convergence to equilibria, less on dynamic
performance.

Outline

o Introduction

o Game theory and dual decomposition

o Dynamic dual decomposition

o Distributed validation for wind farm example

o Distributed synthesis

50 years old idea: Dual decomposition

JCrrylizr}u[Vl (x,) + Va(x,2) + Vs(x,w)]

=max min [Vi(x1,) + Va(xs,2) + Va(xs3,w) + p(x1 — x2) + q(x2 — x3)]

DG X1,X2,X3,Y,2,W0
The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respective costs

Computer 1: min [V;(x1,y) + pa1]

X1,y
Computer 2: min [Vy(x2,2) — pxa + gxs)
Computer 3: min [V3(x3,w) — gxs]

3,0

while the "market makers” try to maximize their payoffs
Between computer 1 and 2: max [p(x1 — x2)]
P

Between computer 2 and 3: max [g(x2 — x3)]
q




Potential game The saddle point algorithm

Update in gradient direction:

e =9V, /0x —
The three computers try to minimize the potential function Computer 1: 1 1/0x—p
y=—0V1/0y

Vi(x1,5) + Va(xe, 2) + Vs(xs,w) + p(x1 — x2) + q(x2 — x3) Computer 1 and 2: p=x1— 29
while the market makers try to maximize it. Computer 2: {562 =—0V3/0x+p—q
Finding a Nash equilibrium (where no player has a incentive to 2= —0V»/0z
change strategy) is greatly simplified by existence of a potential Computer 2 and 3: q=x2—x3
function. Computer 3: 5 = —0Vs/0x +q

' w = —9Vs/ow

Globally convergent if V; convex! [Arrow, Hurwicz, Usawa 1958]

Lyapunov function: V = 2 4+ %2 + &3 4+ 52 4+ 22 + w? + p? + ¢°

Decentralized Bounds on Suboptimality What do we achieve?

Given any p, q, %, ¥, Z,w, the distributed test

Vi(%,9) + p% < amin [V1(x1,y) + px1] L .
X1y » Performance criteria for individual nodes
Va(%,2) — px + g% < oo min [Va(xg,2) — pxa + gxa]
X9,2

V3(%,w) — g% < o min [V3(x3,w) — gx3]
X3,W

v

Suboptimality bounds indicate where things went wrong

implies that the globally optimal cost /* is bounded as . o .
» Prices show the relative importance of different terms

Vi(&,9) + Va(%,2) + Va(%,0) < @ min [Vi(x,y) + Va(x,2) + Va(x,w)]

v

Sparsity structure useful for efficient computations

Proof: Add both sides up!

Outline A General Optimal Control Problem

Minimize V (u) = E Y, 4 (x:(2), wi(t))

o Introduction

subject to
o Game theory and dual decomposition
o Dynamic dual decomposition it +1) : fulwr, v u,01)
Distributed validation for wind farm example '
° P xg(t+1) = fy(xs,v55,us,wy)
o Distributed synthesis
where
Vij = Xj
holds for all z, j.
Decomposing the Cost Function Distributed Verification

max}_minE (6 (xi(8), i) — 252, (i) w1 + 2(X ) ")

r UiVij
maxmin > E[6 (x(6), ui(t)) +23,(pi)” (2 —vi)| )
i
. T L i
_ mj‘XZ{PE?E Vi (xi(8), i (£)) — 2Zj(pij)Tvij +2(3,p5) xi} Each agent i makes the comparison
T i

EJ;(%;,a;,%;,p) < a min EJ;(x;,u;,v;5,p)
—_————

X, UiVij

so agent i should minimize the stationary value of - .

Actual cost in node i - - ]

. Optimal cost in node i

what he expects others to pay him
—_——

E ( (i) wi()  —25[pu(@)] vy @) +2[2p(0)] %) )

his own cost what he pays others xi(t+1) = fixi,vij, ui,w;)

where minimization is subject to the local dynamics

If no actual cost exceeds the expected cost by more than 10%,
then the global cost is within 10% from optimal.




Theorem on Verification

Consider control laws @; = u; (%) and stationary solutions to
%i(t+1) = fi (%, %), (%), w;)
where w;(¢) is stationary white noise. If & > 0, then (I) implies (I1) :
(I) There exists p = A(x) satisfying
EJ;(%;,u;,%;,p) < o xfrlll}llh EdJ; (xi,ui,vij, p)
when minimizing over stationary solutions to
xi (¢ + 1) = fi(xi,vij, ui, wi)

(I1) >, Ei(%;,u;) < oomin, Y, E4; (x;,u;) when minimizing
over stationary solutions to

x1(t+1) = fi(a, ), u1,w1)
xy(t+1) = fr(xs,2,us,ws)

If dynamics is linear, ¢; > 0 convex and « = 1, then (1) implies (I).

A “Wind Farm” Case Study

Minimize V = E X% (Jo[? + |ui|?)

x1(t+1) 06 01 O 0 x1(t) w1 (t) +wi(t)
JCQ(t + 1) _ 03 06 01 O xg(t) uz(t) + I,UQ(t)
xs(t+1) 0 03 06 0.1| |xs(t)| T |us(t) +ws(t)
x4(t+ 1) 0 0 03 0.6] |x42) u4(t) + wa(t)

Distributed controller validation
Distributed control synthesis

Today’s challenges:
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Decomposing the turbine dynamics
Minimize E Y0, (|2 + |wi]?)
subject to
+ v12
it 06 0 0 07 [x 01 0 0 0 0 07 |var Uy +w;
K1 0 06 0 0| |=|, [0 03 o1 o 0 0| |vag| , |uz+uwy
A R YRR
X 0 0 0 06| |xyg 0 0 0 0 0 03] |vsy uy + 1wy
V43,
A A
when
V12 [0 I 0 O
V21 I 0 0 O X1
U23 _ 0 0 I O X2
vs| |70 I 0 0| |xs
U34 00 0 I X4
U43 L 0 0 I O
R
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o Introduction

o Game theory and dual decomposition

o Dynamic dual decomposition

o Distributed validation for wind farm example

o Distributed synthesis

Validation Using Centralized Model

The variance E Y1, (|x:|? + |u;|?) for the optimal centralized
controller becomes

V. =4.9904
while the values for the decentralized approximations become
Vo = 5.2999 Vi =4.9917

These numbers were calculated using a global model.

We will next use dual decomposition to see that the control laws

can be both validated and synthesized in a distributed way.

Problem solved by the first turbine

X1 P12
O=+——»
P21

Minimize E(|x1|2 + |u1|2 + 2p1ov12 — 2[)21361)
when xf = 0.6x1 + 0.1v1g + w1 + wy

using measurements of x and knowledge of the joint spectral
density of x, w, p13 and po;.

Notice: Once the price sequences pis(¢), p21(t) are given, no
other knowledge of the outside world is relevant. However,
since future prices are usually not available, knowledge of other
states can be useful for price prediction.

Problem solved by the first turbine

X1 P12
P21

Minimize E(|x1|2 + |u1|? + 2p12v12 — 2p21%1)
when xf = 0.6x1 + 0.1v12 + u1 + wq

Test for suboptimality:

E(|x1[? + [u1]® + 2p122s — 2pa11)

S o 51’1})1’1 E(|x1|2 + |U1|2 + 2p12U12 — 2p21x1)
1,012

0.03 026 0

055  0.10 0
0 0.07 028
0 028  0.07
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Compare expected and actual costs for the two control laws:

u=—Loxand p = Mx: u=—Lxandp = Mx:

1.5647 < 1.56350 o
1.0853 < 0.8558 «r
1.0853 < 0.8558 «r
1.5647 < 1.56350 o

15741 < 1.5740
0.9132 < 0.9217 ¢
0.9132 < 0.9217 ¢
15741 < 15740

1.062 = <a=127 1.0003 = < a =1.0094

=<
=<

Performance degradation due to decentralization

0.55
0.03

|




Outline “Wind Farm” Revisited

Minimize V = E Y% (|2 + [wi]?)

o Introduction x1(t+1) 0.6 0.1 0] [xa(z+1) u1(t) +wa ()
xg(f+1) 03 . - xg(t+1) uz(t) + wa(t)

o Game theory and dual decomposition . = o1 . + .

o Dynamic dual decomposition %t +1) 0 03 06| [xa(t+1) un (8) + wn ()

o Distributed validation
We will optimize a tri-diagonal control structure
o Distributed synthesis

E 0
L=1"
ES
0 x %
Optimal Prices by Dynamic Programming Prices by distributed gradient iteration
Optimal control problem:
Minimize E(|x|? + |u|?) Diagonal dominance suggests a tri-diagonal structure for M
when x* = Ax + Av+ Bu+wand v = Sx P1a(t) myi mi 00
. . . L Da1(t) mg1 mez 0 0 x1(t)
Dynamic programming gives control law as well as prices: Da3(t) 0 ms maz 0 | |x(t)
2 _ T Y 2 2L 2o Tl P2(t)| | O map maz O | |xs(t)
|x|p = m}?xn'}}vn [|Ax + Av + Bulp + |x|° + |[u]* —2p" (v Sx)} Paa(t) 0 0 msy mss| |xat)
Pas(t) 0 0  me3 mey
pi2(t) 0.0342 0.2574 0.0010 0.0002 After running the system with fixed prices and control laws during a
pa1(t) 0.5545 0.1013 0.0382 0.0038] [x:1(¢) time interval t = 1,..., T, the correlation between state
() = p2s(t)| _ [0.0364 0.0676 0.2755 0.0025| |xa(t) measurements and constraint violations can be estimated as
PU= 1 pse@) | = [0.0025 02755 0.0676 0.0364 | |x3(t) ,
P3a(t) 0.0038 0.0382 0.1013 0.5545| |x4(t) X B R SEA0) B
pis(t)|  |0.0002 0.0010 02574 0.0342 Bl r-x) ~ 5 ; ()| [P12(0) — ()]
M

If the correlation is non-zero, the prices [m11  ma2] are adjusted.
The same P and u(t) = —Lx(t) as in classical solution.

Distributed gradient iteration for control law Gradient iteration for the wind park

By the maximum principle, optimal solutions to

cost =
Minimize E(|x1|2 + |u1|2 + 2p19v190 — 2p21x1)
when x} = 0.6x; + 0.1v1 + 13 + wy 7.4944
must minimize the Hamiltonian
L =
E[|x1|2 + |u1|2 + 2p12012 — 2p21x1 — 11(06361 + 0.1012 + ul + wl)}
This allows us to modify the control law 0.0138 0.0195 0 0 0
0.0162 0.0283 0.0294 0 0
x1 0 0.0264 0.0333 0.0294 0
ur = [l11 l2]
1 X2 0 0 0.0264 0.0283 0.0195
0 0 0 0.0162 0.0138
in the gradient direction using correlation estimates from the
timeintervalt =1,...,T.
Gradient iteration for the wind park Gradient iteration for the wind park
cost = cost =
5.3183 4.4277
L= L =
0.0366 0.0411 0 0 0 0.0709 0.0629 0 0 0
0.0386 0.0623 0.0546 0 0 0.0666 0.1025 0.0749 0 0
0 0.0555 0.0686 0.0544 0 0 0.0853 0.1070 0.0744 0
0 0 0.0554 0.0620 0.0405 0 0 0.0851 0.1016 0.0611

0 0 0 0.0385 0.0363 0 0 0 0.0662 0.0697




Gradient iteration for the wind park

cost =
3.9476
L =
0.1187 0.0812 0 0 0
0.0987 0.1494 0.0885 0 0
0 0.1146 0.1509 0.0879 0
0 0 0.1144 0.1479 0.0777
0 0 0 0.0976 0.1155
Gradient iteration for the wind park
cost =
3.5166
L =
0.2654 0.0777 0 0 0
0.1611 0.2684 0.0755 0 0
0 0.1607 0.2674 0.0759 0
0 0 0.1604 0.2672 0.0731
0 0 0 0.1549 0.2479
Gradient iteration for the wind park
cost =
3.4949
L =
0.2579 0.0679 0 0 0
0.1464 0.2673 0.0704 0 0
0 0.1507 0.2676 0.0702 0
0 0 0.1504 0.2664 0.0664
0 0 0 0.1414 0.2389

Gradient iteration for the wind park

cost =
3.6674
L =
0.1820 0.0903 0 0 0
0.1324 0.2041 0.0920 0 0
0 0.1419 0.2032 0.0917 0
0 0 0.1416 0.2023 0.0853
0 0 0 0.1296 0.1743
Gradient iteration for the wind park
cost =
3.4732
L =
0.2347 0.0393 0 0 0
0.1152 0.2363 0.0449 0 0
0 0.1187 0.2393 0.0444 0
0 0 0.1189 0.2369 0.0410
0 0 0 0.1103 0.2131

Convergence rate versus state dimension

cost
10
n =150
8
n =100
6
n =50
4
n=10
2
% 5 10 15 iterations

For a fixed number of iterations and fixed sparsity structure of
L, M, the computational cost grows linearly with n!

Conclusions

We have seen dynamic dual decomposition used for

» Distributed validation
» Distributed synthesis

Benefits to be obtained

» Reduced complexity
» Control structure reflects plant structure
» Flexibility and robustness

We have the tools to deal with dynamics!

Welcome to join the efforts!

Much (most) remains to be done and much is happening
already at this conference!

See [Rantzer CDC07]

[Rantzer ACCO09] covers much of this lecture. Working paper on
www.control.lth.se/user/anders.rantzer

Lund University funds postdocs and will also hire new faculty
members to complement the competence of our current staff.
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