

Semi-plenary at CDC08: Distributed Control using Decompositions and Games

Rantzer, Anders
2008
Link to publication Citation for published version (APA): Rantzer, A. (2008). Semi-plenary at CDC08: Distributed Control using Decompositions and Games. Department
of Automatic Control, Lund Institute of Technology, Lund University. Total number of authors: 1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or recognise.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

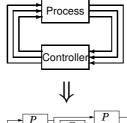
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

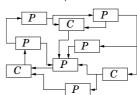
Building theoretical foundations for distributed control

A centralized paradigm dominates theory and curriculum today



We need methodology for

- ► Decentralized specifications
- ► Decentralized design
- ► Validation of global behavior



- ► Rapidly increasing complexity
- ► Dynamic interaction

Three major challenges:

► Information is decentralized

A "Wind Farm" Case Study

Needs for distributed control theory

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_n(t+1) \end{bmatrix} = \begin{bmatrix} 0.6 & 0.1 & 0 \\ 0.3 & \ddots & \ddots \\ & \ddots & \ddots & 0.1 \\ 0 & & 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_n(t+1) \end{bmatrix} + \begin{bmatrix} u_1(t) + w_1(t) \\ u_2(t) + w_2(t) \\ \vdots \\ u_n(t) + w_n(t) \end{bmatrix}$$

Minimize
$$V = \mathbf{E} \sum_{i=1}^{n} \left(|x_i|^2 + |u_i|^2 \right)$$

Approximating the Centralized Controller

Bellman's equation $|x|_P^2=\min_u\left(|Ax+Bu|_P^2+|x|^2+|u|^2\right)$ gives u=-Lx where

$$L = \begin{bmatrix} 0.3420 & 0.0737 & 0.0046 & 0.0002 \\ 0.1839 & 0.3448 & 0.0736 & 0.0047 \\ 0.0103 & 0.1840 & 0.3447 & 0.0726 \\ 0.0008 & 0.0104 & 0.1808 & 0.3296 \end{bmatrix}$$

Diagonal dominance of L suggests natural approximations:

$$\bar{L}_0 = \begin{bmatrix} 0.34 & 0 & 0 & 0 \\ 0 & 0.34 & 0 & 0 \\ 0 & 0 & 0.34 & 0 \\ 0 & 0 & 0 & 0.33 \end{bmatrix}$$

$$\bar{L}_1 = \begin{bmatrix} 0.34 & 0.07 & 0 & 0 \\ 0.18 & 0.34 & 0.07 & 0 \\ 0 & 0.18 & 0.34 & 0.07 \\ 0 & 0 & 0.18 & 0.33 \end{bmatrix}$$

Today's challenges: Distributed controller validation Distributed control synthesis

Outline

- Introduction
- Game theory and dual decomposition
- Dynamic dual decomposition
- Distributed validation for wind farm example
- Distributed synthesis

Inspiration from other fields

- ► Congestion control in networks
- ► Collective motion in biology
- Oscillator synchronization in physics
- ► Parallelization in optimization theory
- Saddle points and equilibria in economics
- Cooperative and non-cooperative game theory

Much focus on convergence to equilibria, less on dynamic performance.

50 years old idea: Dual decomposition

$$\begin{split} & \min_{x,y,z,w} [V_1(x,y) + V_2(x,z) + V_3(x,w)] \\ & = \max_{p,q} \min_{x_1,x_2,y_2,y,z,w} [V_1(x_1,y) + V_2(x_2,z) + V_3(x_3,w) + p(x_1-x_2) + q(x_2-x_3)] \end{split}$$

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respective costs

 $\begin{array}{ll} \text{Computer 1:} & \min_{x_1,y} \left[V_1(x_1,y) + px_1 \right] \\ \text{Computer 2:} & \min_{x_2,z} \left[V_2(x_2,z) - px_2 + qx_2 \right] \\ \text{Computer 3:} & \min_{x_1} \left[V_3(x_3,w) - qx_3 \right] \end{array}$

while the "market makers" try to maximize their payoffs

Between computer 1 and 2: $\max_p \left[p(x_1 - x_2) \right]$ Between computer 2 and 3: $\max_a \left[q(x_2 - x_3) \right]$

Potential game

The three computers try to minimize the potential function

$$V_1(x_1, y) + V_2(x_2, z) + V_3(x_3, w) + p(x_1 - x_2) + q(x_2 - x_3)$$

while the market makers try to maximize it.

Finding a Nash equilibrium (where no player has a incentive to change strategy) is greatly simplified by existence of a potential function.

Decentralized Bounds on Suboptimality

Given any $p, q, \bar{x}, \bar{y}, \bar{z}, \bar{w}$, the distributed test

$$\begin{split} V_1(\bar{x},\bar{y}) + p\bar{x} &\leq \alpha \min_{x_1,y} \left[V_1(x_1,y) + px_1 \right] \\ V_2(\bar{x},\bar{z}) - p\bar{x} + q\bar{x} &\leq \alpha \min_{x_2,z} \left[V_2(x_2,z) - px_2 + qx_2 \right] \\ V_3(\bar{x},\bar{w}) - q\bar{x} &\leq \alpha \min_{x_3,w} \left[V_3(x_3,w) - qx_3 \right] \end{split}$$

implies that the globally optimal cost J^* is bounded as

$$V_1(\bar{x}, \bar{y}) + V_2(\bar{x}, \bar{z}) + V_3(\bar{x}, \bar{w}) \le \alpha \min_{x, y, z, w} \left[V_1(x, y) + V_2(x, z) + V_3(x, w) \right]$$

Proof: Add both sides up!

The saddle point algorithm

Update in gradient direction:

Computer 1:
$$\begin{cases} \dot{x}_1 &= -\partial V_1/\partial x - p \\ \dot{y} &= -\partial V_1/\partial y \end{cases}$$
 Computer 1 and 2:
$$\dot{p} = x_1 - x_2$$

Computer 2:
$$\begin{cases} \dot{x}_2 = -\partial V_2/\partial x + p - q \\ \dot{z} = -\partial V_2/\partial z \end{cases}$$

Computer 3:
$$\begin{cases} \dot{x}_3 = -\partial V_3/\partial x + q \\ \dot{w} = -\partial V_3/\partial w \end{cases}$$

Globally convergent if V_i convex! [Arrow, Hurwicz, Usawa 1958] Lyapunov function: $\mathbf{V} = \dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_3^2 + \dot{y}^2 + \dot{z}^2 + \dot{w}^2 + \dot{p}^2 + \dot{q}^2$

What do we achieve?

- Performance criteria for individual nodes
- Suboptimality bounds indicate where things went wrong
- Prices show the relative importance of different terms
- Sparsity structure useful for efficient computations

Outline

- Introduction
- Game theory and dual decomposition
- Dynamic dual decomposition
- Distributed validation for wind farm example
- Distributed synthesis

A General Optimal Control Problem

Minimize
$$V(u) = \mathbf{E} \sum_i \ell_i (x_i(t), u_i(t))$$

subject to

$$\begin{cases} x_1(t+1) = f_1(x_1, v_{1j}, u_1, w_1) \\ \vdots \\ x_J(t+1) = f_J(x_J, v_{Jj}, u_J, w_J) \end{cases}$$

where

$$v_{ij} = x_j$$

holds for all i, j.

Decomposing the Cost Function

$$\begin{aligned} & \max_{p} \min_{u,v} \sum_{i} \mathbf{E} \Big[\ell_{i} \big(x_{i}(t), u_{i}(t) \big) + 2 \sum_{j} (p_{ij})^{T} (x_{j} - v_{ij}) \Big] \\ & = \max_{p} \sum_{i} \min_{u_{i}, v_{ij}} \mathbf{E} \Big[\ell_{i} \big(x_{i}(t), u_{i}(t) \big) - 2 \sum_{j} (p_{ij})^{T} v_{ij} + 2 \big(\sum_{j} p_{ji} \big)^{T} x_{i} \Big] \end{aligned}$$

so agent i should minimize the stationary value of

$$\mathbf{E}\left(\underbrace{\ell_i\big(x_i(t),u_i(t)\big)}_{\text{his own cost}} -2\sum_j \big[p_{ij}(t)\big]^T v_{ij}(t) +2\big[\sum_j p_{ji}(t)\big]^T x_i(t)\right)$$

Distributed Verification

$$\max_{p} \sum_{i} \min_{u_i, v_{ij}} \mathbf{E} \underbrace{\left[\ell_i \left(x_i(t), u_i(t) \right) - 2 \sum_{j} (p_{ij})^T v_{ij} + 2 \left(\sum_{j} p_{ji} \right)^T x_i \right]}_{J_i \left(x_i, u_i, v_{\{i\}}, p \right)}$$

Each agent i makes the comparison

$$\underbrace{\mathbf{E}J_i(\bar{x}_i,\bar{u}_i,\bar{x}_j,\bar{p})}_{\text{Actual cost in node }i} \leq \alpha \min_{\substack{x_i,u_i,v_{ij} \\ \text{Optimal cost in node }i}} \mathbf{E}J_i(x_i,u_i,v_{ij},\bar{p})$$

where minimization is subject to the local dynamics

$$x_i(t+1) = f_i(x_i, v_{ij}, u_i, w_i)$$

If no actual cost exceeds the expected cost by more than 10%, then the global cost is within 10% from optimal.

$$\bar{x}_i(t+1) = f_i(\bar{x}_i, \bar{x}_j, \mu_i(\bar{x}), w_i)$$

where $w_i(t)$ is stationary white noise. If $\alpha \geq 0$, then (I) implies (II):

(I) There exists $\bar{p} = \lambda(\bar{x})$ satisfying

$$\mathbf{E}J_i(\bar{x}_i, \bar{u}_i, \bar{x}_j, \bar{p}) \leq \alpha \min_{x_i, u_i, v_{ij}} \mathbf{E}J_i(x_i, u_i, v_{ij}, \bar{p})$$

when minimizing over stationary solutions to

$$x_i(t+1) = f_i(x_i, v_{ij}, u_i, w_i)$$

(II) $\sum_i \mathbf{E} \ell_i(\bar{x}_i, \bar{u}_i) \leq \alpha \min_u \sum_i \mathbf{E} \ell_i(x_i, u_i)$ when minimizing over stationary solutions to

$$\begin{cases} x_1(t+1) = f_1(x_1, x_j, u_1, w_1) \\ \vdots \\ x_J(t+1) = f_J(x_J, x_j, u_J, w_J) \end{cases}$$

If dynamics is linear, $\ell_i \geq 0$ convex and $\alpha = 1$, then (II) implies (I).

A "Wind Farm" Case Study

Minimize
$$V = \mathbf{E} \sum_{i=1}^4 \left(|x_i|^2 + |u_i|^2 \right)$$

$$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \\ x_4(t+1) \end{bmatrix} = \begin{bmatrix} 0.6 & 0.1 & 0 & 0 \\ 0.3 & 0.6 & 0.1 & 0 \\ 0 & 0.3 & 0.6 & 0.1 \\ 0 & 0 & 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} + \begin{bmatrix} u_1(t) + w_1(t) \\ u_2(t) + w_2(t) \\ u_3(t) + w_3(t) \\ u_4(t) + w_4(t) \end{bmatrix}$$

Today's challenges: Distributed controller validation Distributed control synthesis

$$\bar{L}_0 = \begin{bmatrix} 0.34 & 0 & 0 & 0 \\ 0 & 0.34 & 0 & 0 \\ 0 & 0 & 0.34 & 0 \\ 0 & 0 & 0 & 0.33 \end{bmatrix} \qquad \quad \bar{L}_1 = \begin{bmatrix} 0.34 & 0.07 & 0 & 0 \\ 0.18 & 0.34 & 0.07 & 0 \\ 0 & 0.18 & 0.34 & 0.07 \\ 0 & 0 & 0.18 & 0.34 \end{bmatrix}$$

$$\bar{L}_1 = \begin{bmatrix} 0.34 & 0.07 & 0 & 0 \\ 0.18 & 0.34 & 0.07 & 0 \\ 0 & 0.18 & 0.34 & 0.07 \\ 0 & 0 & 0.18 & 0.34 \end{bmatrix}$$

Introduction

- Game theory and dual decomposition
- Dynamic dual decomposition
- Distributed validation for wind farm example

Outline

Distributed synthesis

Validation Using Centralized Model

The variance $\mathbf{E} \sum_{i=1}^4 \left(|x_i|^2 + |u_i|^2 \right)$ for the optimal centralized controller becomes

$$V_* = 4.9904$$

while the values for the decentralized approximations become

$$V_0 = 5.2999$$
 $V_1 = 4.9917$

These numbers were calculated using a global model.

We will next use dual decomposition to see that the control laws can be both validated and synthesized in a distributed way.

Decomposing the turbine dynamics

Minimize **E**
$$\sum_{i=1}^{4} (|x_i|^2 + |u_i|^2)$$

subject to

$$\begin{bmatrix} x_1^{\bot} \\ x_2^{\bot} \\ x_3^{\bot} \\ x_4^{\bot} \end{bmatrix} = \underbrace{\begin{bmatrix} 0.6 & 0 & 0 & 0 \\ 0 & 0.6 & 0 & 0 \\ 0 & 0 & 0.6 & 0 \\ 0 & 0 & 0 & 0.6 \end{bmatrix}}_{\tilde{A}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}}_{X_4} + \underbrace{\begin{bmatrix} 0.1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.3 & 0.1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.3 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.3 & 0.1 \\ 0 & 0 & 0 & 0 & 0 & 0.3 \end{bmatrix}}_{\tilde{A}} \underbrace{\begin{bmatrix} 0.12 \\ 0.12 \\ 0.23 \\ 0.23 \\ 0.34 \end{bmatrix}}_{X_3} + \underbrace{\begin{bmatrix} 0.1 + w_1 \\ u_2 + w_2 \\ u_3 + w_3 \\ u_4 + w_4 \end{bmatrix}}_{\tilde{A}}$$

when

$$\begin{bmatrix} v_{12} \\ v_{21} \\ v_{23} \\ v_{32} \\ v_{34} \\ v_{43} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & I & 0 & 0 \\ \hline I & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ \hline 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \end{bmatrix}}_{\mathbf{S}} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Problem solved by the first turbine

$$\begin{array}{ccc}
x_1 & p_{12} \\
\hline
p_{21}
\end{array}$$

Minimize
$$\mathbf{E}(|x_1|^2+|u_1|^2+2p_{12}v_{12}-2p_{21}x_1)$$
 when $x_1^+=0.6x_1+0.1v_{12}+u_1+w_1$

using measurements of \boldsymbol{x} and knowledge of the joint spectral density of x, w, p_{13} and p_{21} .

Notice: Once the price sequences $p_{12}(t)$, $p_{21}(t)$ are given, no other knowledge of the outside world is relevant. However, since future prices are usually not available, knowledge of other states can be useful for price prediction.

Problem solved by the first turbine

$$x_1 \qquad p_{12}$$

Minimize
$$\mathbf{E}(|x_1|^2 + |u_1|^2 + 2p_{12}v_{12} - 2p_{21}x_1)$$

when $x_1^+ = 0.6x_1 + 0.1v_{12} + u_1 + w_1$

Test for suboptimality:

$$\begin{split} &\mathbf{E}(|x_1|^2 + |u_1|^2 + 2p_{12}x_2 - 2p_{21}x_1) \\ &\leq \alpha \min_{u_1, u_{12}} \mathbf{E}(|x_1|^2 + |u_1|^2 + 2p_{12}u_{12} - 2p_{21}x_1) \end{split}$$

Performance degradation due to decentralization

$$\tilde{L}_0 = \begin{bmatrix} 0.34 & 0 & 0 & 0 \\ 0 & 0.34 & 0 & 0 \\ 0 & 0 & 0.34 & 0 \\ 0 & 0 & 0 & 0.34 \end{bmatrix} \quad \tilde{L}_1 = \begin{bmatrix} 0.34 & 0.07 & 0 & 0 \\ 0.18 & 0.34 & 0.13 & 0 \\ 0 & 0.13 & 0.34 & 0.18 \\ 0 & 0 & 0.07 & 0.34 \end{bmatrix} \quad \tilde{M} = \begin{bmatrix} 0.03 & 0.26 & 0 & 0 & 0.25 \\ 0.55 & 0.10 & 0 & 0 & 0.25 \\ 0.025 & 0.07 & 0.28 & 0.07 \\ 0 & 0.28 & 0.07 & 0.26 \\ 0 & 0.28 & 0.07 & 0.26 \\ 0 & 0 & 0.10 & 0.55 \\ 0 & 0 & 0.10 & 0.55 \\ 0 & 0 & 0.25 & 0.05 \\ 0 & 0 & 0.10 & 0.55 \\ 0 & 0 & 0.25 & 0.05 \\ 0 & 0 & 0.25 & 0.07 \\ 0 & 0 &$$

Compare expected and actual costs for the two control laws:

$$\begin{array}{ll} u = -\bar{L}_0 x \text{ and } \bar{p} = \bar{M} x : & u = -\bar{L}_1 x \text{ and } \bar{p} = \bar{M} x : \\ \\ 1.5647 \leq 1.5350 \, \alpha & 1.5741 \leq 1.5740 \, \alpha \\ \\ 1.0853 \leq 0.8558 \, \alpha & 0.9132 \leq 0.9217 \, \alpha \\ \\ 1.0853 \leq 0.8558 \, \alpha & 0.9132 \leq 0.9217 \, \alpha \\ \\ 1.5647 \leq 1.5350 \, \alpha & 1.5741 \leq 1.5740 \, \alpha \end{array}$$

$$1.062 = \frac{V}{V_*} \le \alpha = 1.27 \qquad \quad 1.0003 = \frac{V}{V_*} \le \alpha = 1.0094$$

Minimize $V = \mathbf{E} \sum_{i=1}^n \left(|x_i|^2 + |u_i|^2 \right)$

- Introduction
- o Game theory and dual decomposition
- o Dynamic dual decomposition
- Distributed validation
- Distributed synthesis

$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_n(t+1) \end{bmatrix} = \begin{bmatrix} 0.6 & 0.1 & & 0 \\ 0.3 & \ddots & \ddots & \\ & \ddots & \ddots & 0.1 \\ 0 & & 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ \vdots \\ x_n(t+1) \end{bmatrix} + \begin{bmatrix} u_1(t) + w_1(t) \\ u_2(t) + w_2(t) \\ \vdots \\ u_n(t) + w_n(t) \end{bmatrix}$

We will optimize a tri-diagonal control structure

$$ar{L} = egin{bmatrix} * & * & & 0 \ * & & \ddots & \ & \ddots & & * \ 0 & & * & * \end{bmatrix}$$

Optimal Prices by Dynamic Programming

Optimal control problem:

Minimize
$$\mathbf{E}(|x|^2 + |u|^2)$$

when
$$x^+ = \bar{A}x + \tilde{A}v + Bu + w$$
 and $v = Sx$

Dynamic programming gives control law as well as prices:

$$|x|_P^2 = \max_p \min_{u,v} \left[|\bar{A}x + \tilde{A}v + Bu|_P^2 + |x|^2 + |u|^2 - 2p^T(v - Sx) \right]$$

$$p(t) = \begin{bmatrix} p_{12}(t) \\ p_{21}(t) \\ p_{23}(t) \\ p_{32}(t) \\ p_{34}(t) \\ p_{43}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0.0342 & 0.2574 & 0.0010 & 0.0002 \\ 0.5545 & 0.1013 & 0.0382 & 0.0038 \\ 0.0364 & 0.0676 & 0.2755 & 0.0025 \\ 0.0025 & 0.2755 & 0.0676 & 0.0364 \\ 0.0038 & 0.0382 & 0.1013 & 0.5545 \\ 0.0002 & 0.0010 & 0.2574 & 0.0342 \end{bmatrix}}_{M} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix}$$

The same P and u(t) = -Lx(t) as in classical solution.

Prices by distributed gradient iteration

Diagonal dominance suggests a tri-diagonal structure for $\it M$

$$\begin{vmatrix} \bar{p}_{12}(t) \\ \bar{p}_{21}(t) \\ \bar{p}_{23}(t) \\ \bar{p}_{32}(t) \\ \bar{p}_{34}(t) \\ \bar{p}_{43}(t) \end{vmatrix} = \begin{vmatrix} m_{11} & m_{12} & 0 & 0 \\ m_{21} & m_{22} & 0 & 0 \\ 0 & m_{32} & m_{33} & 0 \\ 0 & m_{42} & m_{43} & 0 \\ 0 & 0 & m_{53} & m_{54} \\ 0 & 0 & m_{63} & m_{64} \end{vmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix}$$

After running the system with fixed prices and control laws during a time interval $t=1,\ldots,T$, the correlation between state measurements and constraint violations can be estimated as

$$\mathbf{E}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} (v_{12} - x_2) \quad \approx \quad \frac{1}{T} \sum_{t=1}^T \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} [v_{12}(t) - x_2(t)]$$

If the correlation is non-zero, the prices $\begin{bmatrix} m_{11} & m_{12} \end{bmatrix}$ are adjusted.

Distributed gradient iteration for control law

By the maximum principle, optimal solutions to

Minimize
$$\mathbf{E}(|x_1|^2+|u_1|^2+2p_{12}v_{12}-2p_{21}x_1)$$

when $x_1^+=0.6x_1+0.1v_{12}+u_1+w_1$

must minimize the Hamiltonian

$$\mathbf{E}[|x_1|^2 + |u_1|^2 + 2p_{12}v_{12} - 2p_{21}x_1 - \lambda_1(0.6x_1 + 0.1v_{12} + u_1 + w_1)]$$

This allows us to modify the control law

$$u_1 = \begin{bmatrix} l_{11} & l_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

in the gradient direction using correlation estimates from the time interval $t=1,\ldots,T$.

Gradient iteration for the wind park

cost =

7.4944

L =

cost =

4.4277

C	.0138	0.0195	0	0	0
C	.0162	0.0283	0.0294	0	0
	0	0.0264	0.0333	0.0294	0
	0	0	0.0264	0.0283	0.0195
	0	0	0	0.0162	0.0138

Gradient iteration for the wind park

Gradient iteration for the wind park

cost =					
3.9476					
L =					
0.1187	0.0812	0	0	0	
0.0987	0.1494	0.0885	0	0	
0	0.1146	0.1509	0.0879	0	
0	0	0.1144	0.1479	0.0777	
0	0	0	0.0976	0.1155	

cost =				
3.6674				
L =				
0.1820	0.0903	0	0	0
0.1324	0.2041	0.0920	0	0
0	0.1419	0.2032	0.0917	0
0	0	0.1416	0.2023	0.0853
0	0	0	0.1296	0.1743

Gradient iteration for the wind park

Gradient iteration for the wind park

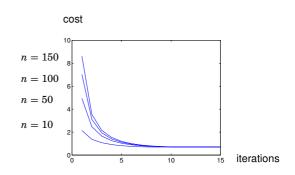
cost =				
3.5166				
L =				
0.2654	0.0777	0	0	0
0.1611	0.2684	0.0755	0	0
0	0.1607	0.2674	0.0759	0
0	0	0.1604	0.2672	0.0731
0	0	0	0.1549	0.2479

cost =				
3.4732				
L =				
0.2347	0.0393	0	0	0
0.1152	0.2363	0.0449	0	0
0	0.1187	0.2393	0.0444	0
0	0	0.1189	0.2369	0.0410
0	0	0	0.1103	0.2131

Gradient iteration for the wind park

cost = 3.4949 L = 0.2579 0.0679 0 0 0 0.0704 0.1464 0.2673 0 0 0.1507 0 0.2676 0.0702 0 0 0 0.1504 0.2664 0.0664 0 0 0 0.1414 0.2389

Convergence rate versus state dimension



For a fixed number of iterations and fixed sparsity structure of $L,\,M,$ the computational cost grows linearly with n!

Conclusions

We have seen dynamic dual decomposition used for

- Distributed validation
- ► Distributed synthesis

Benefits to be obtained

- Reduced complexity
- ► Control structure reflects plant structure
- ► Flexibility and robustness

We have the tools to deal with dynamics!

Welcome to join the efforts!

Much (most) remains to be done and much is happening already at this conference!

See [Rantzer CDC07]

[Rantzer ACC09] covers much of this lecture. Working paper on www.control.lth.se/user/anders.rantzer

Lund University funds postdocs and will also hire new faculty members to complement the competence of our current staff.

Acknowledgements	
Thanks to numerous colleagues who have commented on this work, in particular some current and former PhD students	
Peter Alriksson	
Ather Gattami	
Pontus Giselsson Toivo Perby Henningsson	
Karl Mårtensson Andreas Wernrud	
Financial support has been obtained from	
Swedish Research Council	
Swedish Foundation for Strategic Research European Commission	
I .	- 1