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Distributed Control using

Decompositions and Games

Anders Rantzer

Automatic Control LTH, Lund University

Needs for distributed control theory

Three major challenges:

◮ Rapidly increasing complexity

◮ Dynamic interaction

◮ Information is decentralized

Building theoretical foundations for distributed control

A centralized paradigm dominates

theory and curriculum today

We need methodology for

◮ Decentralized specifications

◮ Decentralized design

◮ Validation of global behavior
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A “Wind Farm” Case Study

x1 x2 xn−1 xn




x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)


 =




0.6 0.1 0

0.3
. . .

. . .
. . .

. . . 0.1

0 0.3 0.6







x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)


+




u1(t) +w1(t)
u2(t) +w2(t)

...

un(t) +wn(t)




Minimize V = E
∑n
i=1

(
pxip
2 + puip

2
)

Approximating the Centralized Controller

Bellman’s equation pxp2P = minu
(
pAx + Bup2P + pxp

2 + pup2
)

gives u = −Lx where

L =




0.3420 0.0737 0.0046 0.0002

0.1839 0.3448 0.0736 0.0047

0.0103 0.1840 0.3447 0.0726

0.0008 0.0104 0.1808 0.3296




Diagonal dominance of L suggests natural approximations:

L̄0 =




0.34 0 0 0

0 0.34 0 0

0 0 0.34 0

0 0 0 0.33


 L̄1 =




0.34 0.07 0 0

0.18 0.34 0.07 0

0 0.18 0.34 0.07

0 0 0.18 0.33




Today’s challenges: Distributed controller validation

Distributed control synthesis

Inspiration from other fields

◮ Congestion control in networks

◮ Collective motion in biology

◮ Oscillator synchronization in physics

◮ Parallelization in optimization theory

◮ Saddle points and equilibria in economics

◮ Cooperative and non-cooperative game theory

Much focus on convergence to equilibria, less on dynamic

performance.

Outline

○ Introduction

• Game theory and dual decomposition

○ Dynamic dual decomposition

○ Distributed validation for wind farm example

○ Distributed synthesis

50 years old idea: Dual decomposition

min
x,y,z,w

[V1(x, y) + V2(x, z) + V3(x,w)]

= max
p,q

min
x1,x2,x3,y,z,w

[V1(x1, y) + V2(x2, z) + V3(x3,w) + p(x1 − x2) + q(x2 − x3)]

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respective costs

Computer 1: min
x1,y

[V1(x1, y) + px1]

Computer 2: min
x2,z

[V2(x2, z) − px2 + qx2]

Computer 3: min
x3,w

[V3(x3,w) − qx3]

while the ”market makers” try to maximize their payoffs

Between computer 1 and 2: max
p
[p(x1 − x2)]

Between computer 2 and 3: max
q
[q(x2 − x3)]



Potential game

The three computers try to minimize the potential function

V1(x1, y) + V2(x2, z) + V3(x3,w) + p(x1 − x2) + q(x2 − x3)

while the market makers try to maximize it.

Finding a Nash equilibrium (where no player has a incentive to

change strategy) is greatly simplified by existence of a potential

function.

The saddle point algorithm

Update in gradient direction:

Computer 1:

{
ẋ1 = −�V1/�x − p

ẏ = −�V1/�y

Computer 1 and 2: ṗ = x1 − x2

Computer 2:

{
ẋ2 = −�V2/�x + p− q

ż = −�V2/�z

Computer 2 and 3: q̇= x2 − x3

Computer 3:

{
ẋ3 = −�V3/�x + q

ẇ = −�V3/�w

Globally convergent if Vi convex! [Arrow, Hurwicz, Usawa 1958]

Lyapunov function: V = ẋ21 + ẋ
2
2 + ẋ

2
3 + ẏ

2 + ż2 + ẇ2 + ṗ2 + q̇2

Decentralized Bounds on Suboptimality

Given any p, q, x̄, ȳ, z̄, w̄, the distributed test

V1(x̄, ȳ) + px̄ ≤ α min
x1,y

[V1(x1, y) + px1]

V2(x̄, z̄) − px̄ + qx̄ ≤ α min
x2,z

[V2(x2, z) − px2 + qx2]

V3(x̄, w̄) − qx̄ ≤ α min
x3,w

[V3(x3,w) − qx3]

implies that the globally optimal cost J∗ is bounded as

V1(x̄, ȳ) + V2(x̄, z̄) + V3(x̄, w̄) ≤ α min
x,y,z,w

[
V1(x, y) + V2(x, z) + V3(x,w)

]

Proof: Add both sides up!

What do we achieve?

◮ Performance criteria for individual nodes

◮ Suboptimality bounds indicate where things went wrong

◮ Prices show the relative importance of different terms

◮ Sparsity structure useful for efficient computations
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○ Game theory and dual decomposition

• Dynamic dual decomposition

○ Distributed validation for wind farm example

○ Distributed synthesis

A General Optimal Control Problem

Minimize V (u) = E
∑
i {i

(
xi(t),ui(t)

)

subject to





x1(t+ 1) = f1(x1,v1 j ,u1,w1)
...

xJ(t+ 1) = fJ(xJ ,vJ j ,uJ ,wJ)

where

vi j = x j

holds for all i, j.

Decomposing the Cost Function

max
p
min
u,v

∑

i

E

[
{i
(
xi(t),ui(t)

)
+ 2

∑
j(pi j)

T(x j − vi j)
]

= max
p

∑

i

min
ui,vi j
E

[
{i
(
xi(t),ui(t)

)
− 2

∑
j(pi j)

Tvi j + 2
(∑

jpji
)T
xi

]

so agent i should minimize the stationary value of

E

(
{i
(
xi(t),ui(t)

)
︸ ︷︷ ︸

his own cost

what he expects others to pay him︷ ︸︸ ︷
−2

∑
j

[
pi j(t)

]T
vi j(t) +2

[∑
jpji(t)

]T
xi(t)︸ ︷︷ ︸

what he pays others

)

Distributed Verification

max
p

∑

i

min
ui,vi j
E

[
{i
(
xi(t),ui(t)

)
− 2

∑
j(pi j)

Tvi j + 2
(∑

jpji
)T
xi

]

︸ ︷︷ ︸
Ji(xi,ui,v{i},p)

Each agent i makes the comparison

EJi(x̄i, ūi, x̄ j , p̄)︸ ︷︷ ︸
Actual cost in node i

≤ α min
xi,ui,vi j

EJi(xi,ui,vi j , p̄)

︸ ︷︷ ︸
Optimal cost in node i

where minimization is subject to the local dynamics

xi(t+ 1) = fi(xi,vi j ,ui,wi)

If no actual cost exceeds the expected cost by more than 10%,

then the global cost is within 10% from optimal.



Theorem on Verification

Consider control laws ūi = µ i(x̄) and stationary solutions to

x̄i(t+ 1) = fi
(
x̄i, x̄ j , µ i(x̄),wi

)

where wi(t) is stationary white noise. If α ≥ 0, then (I) implies (I I) :

(I) There exists p̄ = λ(x̄) satisfying

EJi(x̄i, ūi, x̄ j , p̄) ≤ α min
xi,ui,vi j

EJi(xi,ui,vi j , p̄)

when minimizing over stationary solutions to

xi(t+ 1) = fi(xi,vi j ,ui,wi)

(I I)
∑
iE{i

(
x̄i, ūi

)
≤ α minu

∑
iE{i

(
xi,ui

)
when minimizing

over stationary solutions to




x1(t+ 1) = f1(x1, x j ,u1,w1)...
xJ(t+ 1) = fJ(xJ , x j ,uJ ,wJ)

If dynamics is linear, {i ≥ 0 convex and α = 1, then (I I) implies (I).
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A “Wind Farm” Case Study

Minimize V = E
∑4
i=1

(
pxip
2 + puip

2
)




x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)


 =




0.6 0.1 0 0

0.3 0.6 0.1 0

0 0.3 0.6 0.1

0 0 0.3 0.6







x1(t)
x2(t)
x3(t)
x4(t)


+




u1(t) +w1(t)
u2(t) +w2(t)
u3(t) +w3(t)
u4(t) +w4(t)




Today’s challenges: Distributed controller validation

Distributed control synthesis

L̄0 =




0.34 0 0 0

0 0.34 0 0

0 0 0.34 0

0 0 0 0.33


 L̄1 =




0.34 0.07 0 0

0.18 0.34 0.07 0

0 0.18 0.34 0.07

0 0 0.18 0.34




Validation Using Centralized Model

The variance E
∑4
i=1

(
pxip
2 + puip

2
)

for the optimal centralized

controller becomes

V∗ = 4.9904

while the values for the decentralized approximations become

V0 = 5.2999 V1 = 4.9917

These numbers were calculated using a global model.

We will next use dual decomposition to see that the control laws

can be both validated and synthesized in a distributed way.

Decomposing the turbine dynamics

Minimize E
∑4

i=1

(
pxip

2 + puip
2
)

subject to

2

6
6
4

x+
1
x+
2
x+
3
x+
4

3

7
7
5
=

2

6
6
4

0.6 0 0 0

0 0.6 0 0

0 0 0.6 0

0 0 0 0.6

3

7
7
5

| {z }

Ā

2

6
6
4

x1
x2
x3
x4

3

7
7
5
+

2

6
6
4

0.1 0 0 0 0 0

0 0.3 0.1 0 0 0

0 0 0 0.3 0.1 0

0 0 0 0 0 0.3

3

7
7
5

| {z }

Ã

2

6
6
6
6
6
4

v12
v21
v23
v32
v34
v43

3

7
7
7
7
7
5

+

2

6
6
4

u1 + w1
u2 + w2
u3 + w3
u4 + w4

3

7
7
5

when



v12
v21
v23
v32
v34
v43



=




0 I 0 0

I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I

0 0 I 0




︸ ︷︷ ︸
S




x1
x2
x3
x4




Problem solved by the first turbine

x1 p12

p21

Minimize E(px1p
2 + pu1p

2 + 2p12v12 − 2p21x1)

when x+1 = 0.6x1 + 0.1v12 + u1 +w1

using measurements of x and knowledge of the joint spectral

density of x, w, p13 and p21.

Notice: Once the price sequences p12(t), p21(t) are given, no

other knowledge of the outside world is relevant. However,

since future prices are usually not available, knowledge of other

states can be useful for price prediction.

Problem solved by the first turbine

x1 p12

p21

Minimize E(px1p
2 + pu1p

2 + 2p12v12 − 2p21x1)

when x+1 = 0.6x1 + 0.1v12 + u1 +w1

Test for suboptimality:

E(px1p
2 + pu1p

2 + 2p12x2 − 2p21x1)

≤ α min
u1,v12

E(px1p
2 + pu1p

2 + 2p12v12 − 2p21x1)

Performance degradation due to decentralization

L̄0 =

2

6
6
4

0.34 0 0 0

0 0.34 0 0

0 0 0.34 0

0 0 0 0.34

3

7
7
5

L̄1 =

2

6
6
4

0.34 0.07 0 0

0.18 0.34 0.13 0

0 0.13 0.34 0.18

0 0 0.07 0.34

3

7
7
5

M̄ =

2

6
6
6
6
6
4

0.03 0.26 0 0

0.55 0.10 0 0

0 0.07 0.28 0

0 0.28 0.07 0

0 0 0.10 0.55

0 0 0.26 0.03

3

7
7
7
7
7
5

Compare expected and actual costs for the two control laws:

u = −L̄0x and p̄ = M̄ x:

1.5647 ≤ 1.5350α

1.0853 ≤ 0.8558α

1.0853 ≤ 0.8558α

1.5647 ≤ 1.5350α

1.062 =
V

V∗

≤ α = 1.27

u = −L̄1x and p̄ = M̄ x:

1.5741 ≤ 1.5740α

0.9132 ≤ 0.9217α

0.9132 ≤ 0.9217α

1.5741 ≤ 1.5740α

1.0003 =
V

V∗

≤ α = 1.0094
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“Wind Farm” Revisited

Minimize V = E
∑n
i=1

(
pxip
2 + puip

2
)




x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)


 =




0.6 0.1 0

0.3
. . .

. . .
. . .

. . . 0.1

0 0.3 0.6







x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)


+




u1(t) +w1(t)
u2(t) +w2(t)

...

un(t) +wn(t)




We will optimize a tri-diagonal control structure

L̄ =




∗ ∗ 0

∗
. . .

. . . ∗
0 ∗ ∗




Optimal Prices by Dynamic Programming

Optimal control problem:

Minimize E(pxp2 + pup2)

when x+ = Āx + Ãv+ Bu+w and v = Sx

Dynamic programming gives control law as well as prices:

pxp2P = max
p
min
u,v

[
pĀx + Ãv+ Bup2P + pxp

2 + pup2 − 2pT (v− Sx)
]

p(t) =




p12(t)
p21(t)
p23(t)
p32(t)
p34(t)
p43(t)



=




0.0342 0.2574 0.0010 0.0002

0.5545 0.1013 0.0382 0.0038

0.0364 0.0676 0.2755 0.0025

0.0025 0.2755 0.0676 0.0364

0.0038 0.0382 0.1013 0.5545

0.0002 0.0010 0.2574 0.0342




︸ ︷︷ ︸
M




x1(t)
x2(t)
x3(t)
x4(t)




The same P and u(t) = −Lx(t) as in classical solution.

Prices by distributed gradient iteration

Diagonal dominance suggests a tri-diagonal structure for M




p̄12(t)
p̄21(t)
p̄23(t)
p̄32(t)
p̄34(t)
p̄43(t)



=




m11 m12 0 0

m21 m22 0 0

0 m32 m33 0

0 m42 m43 0

0 0 m53 m54
0 0 m63 m64







x1(t)
x2(t)
x3(t)
x4(t)




After running the system with fixed prices and control laws during a
time interval t = 1, . . . ,T , the correlation between state
measurements and constraint violations can be estimated as

E

[
x1
x2

]
(v12 − x2) (

1

T

T∑

t=1

[
x1(t)
x2(t)

]
[v12(t) − x2(t)]

If the correlation is non-zero, the prices
[
m11 m12

]
are adjusted.

Distributed gradient iteration for control law

By the maximum principle, optimal solutions to

Minimize E(px1p
2 + pu1p

2 + 2p12v12 − 2p21x1)

when x+1 = 0.6x1 + 0.1v12 + u1 +w1

must minimize the Hamiltonian

E
[
px1p

2 + pu1p
2 + 2p12v12 − 2p21x1 − λ1(0.6x1 + 0.1v12 + u1 +w1)

]

This allows us to modify the control law

u1 =
[
l11 l12

] [x1
x2

]

in the gradient direction using correlation estimates from the

time interval t = 1, . . . ,T .

Gradient iteration for the wind park

cost =

7.4944

L =

0.0138 0.0195 0 0 0

0.0162 0.0283 0.0294 0 0

0 0.0264 0.0333 0.0294 0

0 0 0.0264 0.0283 0.0195

0 0 0 0.0162 0.0138

Gradient iteration for the wind park

cost =

5.3183

L =

0.0366 0.0411 0 0 0

0.0386 0.0623 0.0546 0 0

0 0.0555 0.0686 0.0544 0

0 0 0.0554 0.0620 0.0405

0 0 0 0.0385 0.0363

Gradient iteration for the wind park

cost =

4.4277

L =

0.0709 0.0629 0 0 0

0.0666 0.1025 0.0749 0 0

0 0.0853 0.1070 0.0744 0

0 0 0.0851 0.1016 0.0611

0 0 0 0.0662 0.0697



Gradient iteration for the wind park

cost =

3.9476

L =

0.1187 0.0812 0 0 0

0.0987 0.1494 0.0885 0 0

0 0.1146 0.1509 0.0879 0

0 0 0.1144 0.1479 0.0777

0 0 0 0.0976 0.1155

Gradient iteration for the wind park

cost =

3.6674

L =

0.1820 0.0903 0 0 0

0.1324 0.2041 0.0920 0 0

0 0.1419 0.2032 0.0917 0

0 0 0.1416 0.2023 0.0853

0 0 0 0.1296 0.1743

Gradient iteration for the wind park

cost =

3.5166

L =

0.2654 0.0777 0 0 0

0.1611 0.2684 0.0755 0 0

0 0.1607 0.2674 0.0759 0

0 0 0.1604 0.2672 0.0731

0 0 0 0.1549 0.2479

Gradient iteration for the wind park

cost =

3.4732

L =

0.2347 0.0393 0 0 0

0.1152 0.2363 0.0449 0 0

0 0.1187 0.2393 0.0444 0

0 0 0.1189 0.2369 0.0410

0 0 0 0.1103 0.2131

Gradient iteration for the wind park

cost =

3.4949

L =

0.2579 0.0679 0 0 0

0.1464 0.2673 0.0704 0 0

0 0.1507 0.2676 0.0702 0

0 0 0.1504 0.2664 0.0664

0 0 0 0.1414 0.2389

Convergence rate versus state dimension

0 5 10 15
0

2

4

6

8

10

iterations

cost

n = 10

n = 50

n = 100

n = 150

For a fixed number of iterations and fixed sparsity structure of

L, M , the computational cost grows linearly with n!

Conclusions

We have seen dynamic dual decomposition used for

◮ Distributed validation

◮ Distributed synthesis

Benefits to be obtained

◮ Reduced complexity

◮ Control structure reflects plant structure

◮ Flexibility and robustness

We have the tools to deal with dynamics!

Welcome to join the efforts!

Much (most) remains to be done and much is happening

already at this conference!

See [Rantzer CDC07]

[Rantzer ACC09] covers much of this lecture. Working paper on

www.control.lth.se/user/anders.rantzer

Lund University funds postdocs and will also hire new faculty

members to complement the competence of our current staff.
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