An Eye Tracking Study of Swedish Filler-Gap Dependencies: Processing Relative Clause Extractions

Tutunjian, Damon; Heinat, Fredrik; Klingvall, Eva; Wiklund, Anna-Lena

2015

Document Version:
Publisher’s PDF, also known as Version of record

Link to publication

Citation for published version (APA):
An eye-tracking study of Swedish filler-gap dependencies: Processing relative clause extractions

Damon Tutunjian*, Fredrik Heinati**, Eva Klingvall*, and Anna-Lena Wiklund*

Lund University* and Linnaeus University**
damon.tutunjian@engelund.lu.se, frederik.heinati@nlu.se, eva.klingvall@englund.lu.se, anna-lena.wiklund@nordlund.lu.se

Introduction

Complex noun phrases involving relative clauses (1) are standardly treated as instances of "strong islands" structural configurations into which a filler-gap dependency (FGD) cannot be formed between the filler (those kinds of flowers) and the gap (3) (Ross, 1967, den Dikken & Szabolcsi, 2002). This constraint is widely assumed to be universal.

Unexpectedly, Swedish and the other Mainland Scandinavian languages allow relative clause extractions (RCEs) (2) (Engdahl & Ephred, 1982; Erteschik-Shir, 1973), thus presenting a challenge to the universality of island constraints.

Existing accounts for the Swedish data

• Discourse-organizational factors (Eretech-May & Lappin, 1979)
• Island obviation by way of covert resumption (Cinque, 1986)
• Structural reanalysis during parsing (Kush et al., 2013)

Unfortunately, none of these accounts stands up under closer scrutiny (see Christensen & Nyvad, 2014; Engdahl, 1997; Heintik & Wiklund, 2015; Lindahl, 2015; Müller, 2015). Thus, what does the apparent fidelicity of Swedish RCEs remain undetermined.

Approaching the question via processing

• No on-line processing data exists for Swedish.
• Not clear whether processing patterns track intuitive well-formedness.

First step:

• look for basic differences in processing between Swedish RCEs and other FGDs at the embedded verb (tvättade) and the following PP region (tvättade på bensinmacken).

Second step:

• Two studies suggest that in acceptability judgments and in online processing, only non-islands should show any modulating effects from plausibility and working memory on any primary manipulation.
• Sprague et al. (2012) found no evidence that acceptability-based island-effects show any modulation from individual differences in general processing resource capacity, as measured via two Working Memory Span (WMS) tasks and grammaticality judgement data (cf. Hofmeister & Sag, 2010).
• Trasker and Pickering (1996) demonstrated via eye-tracking that manipulations to the plausibility of a filler as a continuation of a verb only affected integration for non-island structures, with no differences being found for island structures.

If correct, the presence of an interaction between structural and non-structural factors on Swedish RCEs could then serve as a positive possible interpretation:

• If correct, the presence of an interaction between structural and non-structural factors on Swedish RCEs could then serve as a positive possible interpretation:
• Structural reanalysis during parsing (Kush et al., 2013), thus presenting a challenge to the universality of island constraints.

Research goals and predictions

Use eye-tracking to test whether:

• Swedish RCEs elicit processing costs similar to licit or illicit long-distance FGDs at the embedded verb (tvättade) and the following PP region (tvättade på bensinmacken).
• Any basic structural differences are modulated by non-structural factors (e.g., pragmatic fit, working memory).

Possible outcomes:

• Swedish RCEs will pattern more like non-islands, in line with their intuitive acceptability. Such a finding would leave us with at least two possible interpretations:
• Swedish RCEs do not involve island structures, and thus a structural account is still needed.
• True variation exists in island constraints
• Swedish RCES, although intuitively acceptable will pattern more like island structures. Such a finding would disfavor "deep variation" in the island constraints themselves (see Phillips, 2013).

Method

Eye-tracking while reading experiment

Eighty long-distance FGD sentence items (constructed using the Korp corpus), each appearing in four structural variants (Structure: 3-6) and six distractor items rotated over four lists.

Eye-tracking while reading experiment

Reversal Digit Span (DS) (adapted into Swedish from MacKenney et al., 2001). Participants hear a series of digits (3-7: infinite set size) and then enter them on a computer keyboard in reverse.

Automated O-span task (OS) (adapted into Swedish from Unsworth et al., 2010). Mouse-driven recall task. Participants complete three interleaved sets: math operation and letter recall, each set size (3-7 count). Total of 75 letters and 75 math problems.

Participants

48 native Swedish speakers

Approaching the question via processing

No on-line processing data exists for Swedish.
• Not clear whether processing patterns track intuitive well-formedness.

Early measures:

• RCE and TCE show similar facilitation relative to RCE in early measures (First Fixation and Gaze Duration) at the verb (Region 1). This similarity was also present in one early measure (Gaze Duration) at the PP (Region 2). In Region 1, RCE also showed additional facilitation against the pcRCE control as OS and Prag increased.

Late measures:

• For both late measures of processing in Region 1, and for Total Durations in Region 2, RCEs were processed with more ease than RCEs, patterning more similarly to TCEs as both OS and Prag increased. In Region 1 Total Durations, RCEs also showed some facilitation against the pcRCE control as Prag increased, but this could just be reflective of a late repair mechanism.

• Interpretation: Swedish RCEs are processed more similarly to non-island TCEs during late stages of integration.

Conclusions

• RCEs appear to be easier to process than RCEs. Facilitation is dependent in part on non-structural factors (working memory span and pragmatic fit).
• Our study thus provides novel evidence that Swedish RCEs are not processed like syntactic islands, in line with offline intuitions.

References

This research was conducted at the Lund University Humanities Lab and was funded by a grant from the Crafoord Foundation and the Bank of Sweden Tercentenary Foundation. We thank Joost van de Weijer for his assistance with our statistical analysis

Acknowledgements

The authors thank the Swedish Research Council (DAlanT02052027 to DAM and CH and FAK, a grant from the Crafoord Foundation and the Bank of Sweden Tercentenary Foundation). We thank the anonymous reviewer who made this work substantially better.

Table 1: Description of structural measures for Region 1 and Region 2.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Region 1</th>
<th>Region 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixation duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaze duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS (centered and scaled)</td>
<td>5.70</td>
<td>6.00</td>
</tr>
<tr>
<td>Prag (centered)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of mixed linear model comparisons for Region 1 and Region 2.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Region 1</th>
<th>Region 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixation duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaze duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS (centered and scaled)</td>
<td>5.70</td>
<td>6.00</td>
</tr>
<tr>
<td>Prag (centered)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>