
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Deterministic Java in tiny embedded systems

Nilsson, Anders; Ekman, Torbjörn

Published in:
Fourth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2001. ISORC -
2001. Proceedings.

DOI:
10.1109/ISORC.2001.922818

2001

Link to publication

Citation for published version (APA):
Nilsson, A., & Ekman, T. (2001). Deterministic Java in tiny embedded systems. In Fourth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, 2001. ISORC - 2001. Proceedings. (pp. 60-
68). IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISORC.2001.922818

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISORC.2001.922818
https://portal.research.lu.se/en/publications/45372511-34b4-4b69-a54c-ad6261863429
https://doi.org/10.1109/ISORC.2001.922818

Download date: 20. Jan. 2026

Deterministic Java in Tiny Embedded Systems

Anders Nilsson
Torbjom Ekman

Department of Computer Science
Lund University, Sweden

{andersn I torbjorn} @ cs.1th.se

Abstract

As embedded systems become more and more complex,
and the time to market becomes shorter; there is a need in
the embedded systems community to find better program-
ming languages that let the programmers develop correct
code faster: The programming languages used today-
typically C and/or Assemblers-are just too error-prone.
The Java technology has therefore gained a lot of interest
from developers of embedded systems in the last few years.

We propose an approach based on compiling Java into
native machine code via C as an intermediate language.
The C code generation process should also add close in-
teraction with a fully pre-emptive incremental garbage col-
lector and a small and eficient real-lime kernel. Tests per-
formed on a small &bit microprocessor show that it is pos-
sible to use a modern object-oriented language with auto-
matic memory management-such as Java-and yet gen-
erate fully predictable code that can be rim in very small
devices with severe memory constraints.

1. Introduction

Embedded systems are traditionally programmed in C or
Assembler, but as the systems grow more complex and the
time to market decrease, the need for a more secure and
structured language has increased.

In the last few years, the programming language Java
[111 has gained more and more interest among embed-
ded systems developers. The object-orientation, strict type
checking, and automatic memory management, are features
that make it easier to write large and complex systems with
less risk of introducing difficult bugs. It's C-like syntax
also appeals to C programmers as it makes it easier for
them learn, as well as makes it easier to port legacy C code
to Java. In the area of automatic control, where domain-
specific languages and run-time systems [9, 13 are prefer-
ably used, our work supports more robust porting of such

systems to even small embedded devices.
However, some serious problems arise when one wants

to use Java in small embedded systems, where the most
significant ones have to do with the inevitable speed- and
memory constraints imposed by using a Java Virtual Ma-
chine (JVM). If hard real-time demands are to be fulfilled,
there are also problems with most garbage collectors not
being predictable with regard to non-preemptable execution
time. This can result in too much jitter in the accomplished
sampling interval of high priority threads, or even missed
samples or deadlines.

1.1. Problem area

Our work is directed towards a certain class of applica-
tions and systems where a traditional Java environment can-
not fulfill our application demands. Examples of such ap-
plications can be found in tiny embedded control devices
used in industrial processes. The demands on that kind of
embedded system are:

Correctness: The system must not crash due to some bug
causing a memory leak or pointer arithmetic failure,
for instance once every three months. Of course a pro-
gramming error can result in too much memory being
consumed, but in such a case controlled error handling
(exceptions) should enable graceful degradation.

Hard Real-Time: The physical process may be very sens-.
itive to jitter in the sampling interval of the control-
ler. Too much jitter may cause the process to perform
badly, or even possibly become unstable[21.

Speed: Applications, such as a servo control, may need a
sampling interval down to a few milliseconds to per-
form well.

Cost: To be able to sell such systems, in some cases, we
cannot use anything more powerful than, say, a simple:
8 bit micro-controller with less than 128KB of RAM.

60
0-7695-1089-2/01 $10.00 0 2001 IEEE

The Correctness demand indicates that we should use a
modem language with strong typing and automatic memory
management, and only use C and assembler for isolated
functions and hardware interfaces. Of course an applic-
ation needs to be correctly written and tested in order to
really be correct. Using a safe‘ language drastically im-
proves the development process. The Hard real-time de-
mand requires predictability in both run-time and garbage
collector. The Speed and Cost demands indicates that we
must look for a reasonably effective solution so that cheap
micro-controllers can be used.

The correctness demand and the other three demands
have so far been contradictory. The topic of this paper
is to resolve that contradiction! On one hand, we want
to use Java, representing a safe object-oriented program-
ming language with many other nice features. On the other
hand, Java in it’s traditional-interpreted byte code-form
is neither predictable regarding timing nor can it be run on
small micro-controllers with very limited amounts of RAM.

We are also committed to not making any extensions to
the Java language as that would make it more difficult to
simulate the software with standard Java tools on a standard
workstation where all 5012s of debugging tools are available.

From a pessimistic point of view, $e Java language does
not support predictability and real-time programming, and
Java VMs and standard class libraries does not fit into very
small systems. From an optimistic point of view, however,
the Java language supports concurrency and it does not ex-
plicitly hinder utilization of real-time support from the un-
derlying system, and for development of embedded systems
we are free to use an appropriate (possibly our own) run-
time system. The following is based on the optimistic ap-
proach.

2. Compiling Java

To be able to meet the demands on speed and memory
consumption*, we need to compile our Java code into pro-
cessor specific machine code. There are basically two ways
to do this:

Native compiler: An ordinary compiler taking Java source
code, or byte code, and producing machine dependent
binary code.

Intermediate language: A tool for converting Java source
or byte code to some intermediate language. The in-
termediate representation can then be compiled with
a standard compiler for the specific machine architec-
ture.

2.1. Native Compiler

Using a native Java compiler seems at a first sight to
be the most straight-forward way to produce machine code
from Java source. There are some native compilers avail-
able, both as commercial packages and as open source.
Most of those are aimed at speeding up execution of large
Java applications, especially on the server side in a client-
server solution, see for example TowerJ3[25] or Jove[l31.
WindRiver Inc. has developed a native Java compiler,
TurboJ[28], that produces object files which can be linked to
their real-time operating system VxWorks. They have how-
ever not dealt with the predictability problem incurred by
the automatic memory management, and thus recommend
that all critical real-time parts of an application should be
written in C/C++ as usual.

2.2. Intermediate language
1.2. Approach

We propose an approach consisting of three parts work-
ing together:

Compiled Java: By compiling Java-via C as an interme-
diate language-we should be able to make typical ap-
plications sufficiently fast and memory effective.

Real-TimeKemel: A small real-time kernel which is
tailored for small micro-controllers and object-
oriented applications.

Predictable Garbage Collector: A predictable garbage
collector, which is integrated with the kernel, helps us
to fulfill also the hard real-time demand.

‘By a sufe h n g w g e we mean a language that ensures that all possible
executions are expressed by the program itself. Specifically C and C++ are
unsafe, whereas Java is safe. C# is safe except where declared unsafe.

61

There are some tools available today which can trans-
late Java to an intermediate language, usually C. Most of
them, for example Toba[20] and Harissa[171 take Java byte
code and converts it to C source code. The other type of
converter-going from Java source to C source-is repres-
ented by jcc[23]. There are good things and bad things in
both approaches. Converting byte code makes it easier to
use pre-compiled Java libraries or applications which may
not be available as source. On the other hand, the byte
code is tailored for a generic stack machine with no hard-
ware registers, which we think will harm the performance
compared to generating C code from Java source, at least
if no special optimization techniques are used. Converting
Java source code also produces a somewhat more readable

2The Java byte codes actually occupies less memory than machine
codes, but a JVM will take some memory space. Both in ROM for itself
and some extra RAM for it’s runtime. A JVM implemented in hardware
would need significantly less ROM, but that solution has other drawbacks.

C code, which makes debugging feasible also for the inter-
mediate code.

The biggest drawback of using Java source as input to the
C code converter is that many of the available Java packages
are only available as pre-compiled byte code. This intro-
duces the limitation that we can only compile Java programs
that are -in itself and for all dependencies-available as
source. However, preliminary tests with Java decompilers,
such as jad [15], shows that the byte code can quite well
be decompiled into Java source, then making our approach
feasible.

methods
virtual table

interfaces
virtual table

inherited
static fields

specific
static fields

23. Our Compiler

"

For portability- and efficiency reasons we are focusing
on going via C as an intermediate language for compiled
Java, rather than implementing a compiler or adapt an ex-
isting compiler, for example GCC[7], to meet our needs. A
tool that converLs Java source to C can also generate object
layout information and calls that makes predictable garbage
collection possible.

A tool called Java2C has been developed. Given Java
source as input, it generates the corresponding C code as
well as the necessary GC administrative calls and informa-
tion about the layout and size of objects.

Thecompiler: The Java2C tool is built in 100% pure
Java2, so it can be used on any platform that can run a
Java2 virtual machine. It also implies that the Java2C
tool could convert itself for native compilation and bet-
ter performance. A parser generator is used to build a
parser for the Java formal grammar. The parser can
then take any valid Java source code file and produce
an abstract syntax tree (AST). From this AST, the C
source code is then generated in one pair of files for
each Java class or interface (one .h and one .c file).

The compiler-compiler: The JavaCC compiler-compiler
[16] is a freely available parser generator written in
Java. It was originally written by Sun Microsystems
but is now freely available from Metamata Inc. Given a
grammar in a BNF-like form, it builds a parser in Java
and optionally also an AST from the parsed file. Each
node of this AST consists of a Java class all inherit-
ing a common ancestor Simplenode. This makes it
fairly easy to traverse the syntax tree by using method
overloading.

Codegeneration The generation of C code is accom-
plished by traversing the AST of a class in two passes.
During the first pass information about inheritance,
field- and method declarations is gathered whereas
the actual code generation is accomplished during the
second pass.

2.4. Object model

Some works has been carried out at the department on
how to model compiled real-time Java [4]. An instance of
any object is represented by a pointer to an object instance
structure, see Figure 1.

Object instance handle A gc dutu

Instiince
StruL'ture

class pointer

Inherited
instance fields

Specific L instance fields

I

/
Class
structure

gc nirtu

methods
virtual table

virtual table

inherited
static fields

\ super clus
Structure

I Method1 I

Figure 1. Run-time model of an object.

Consider a very simple Java class with one constructor
and one method like:

c l a s s Dummy {
i n t a,b;
S t r i n g name;

Dummy0 t
a = 1;
b = 2;
name = new String("dummy');

1

S t r i n g getName 0 f

1
r e t u r n name;

1

This results in the following C code:

62

struct DummyClassStruct {

/ / GC data

/ / Super class ptr
struct ObjectClassStruct *super;

//methods virtual table ptr
void* (**methodTblPtr) 0 ;

//interfaces virtual table ptr
void* (**interfaceTblPtr) (1 ;

Periodic threads These threads have a fixed period and
may not be preempted by threads that have the same
priority, and hence they may not share synchronization
primitives. These limitations makes it possible for all
periodic threads of the same priority to share a com-
mon stack which improves memory consumption.

These types of threads, but not their implementations, are
related to [4] which was inspired by [181.

j ; 3.2. Priority Queues
typedef struct DummyClassStruct Dummyclass;

struct DummyInstanceStruct {

/ / GC data

/ / Class ptr
struct DummyClassStruct *classPtr;

/ / Primitive type fields
int a;
int b;

/ / Field of type String
REF (struct StringInstanceStruct) name;

1;
typedef struct DummyInstanceStruct

DummyInstance;

The REF (U) macro is explained in section 5.

3. Real-Time Kernel

The kernel made is a preemptive multi-threaded kernel
with a fixed priority based scheduler. Effort has been made
in creating predictable lower and upper bounds on each
function in the kernel. Worst case execution times of oper-
ations affecting context switch, interrupts, and initialization
of threads are made to be affected by the number of prior-
ity levels and not the number of currently running threads
to lower the jitter. Much of the kemel properties are stand-
ard, but the structure of the queues, with respect to priorities
and execution time, may not be new but we have not seen it
elsewhere.

3.1. Thread model
-

The kernel supports two different types of threads:

Ongoing threads Each ongoing thread has its own stack
space and will upon completion be removed from the
system. The thread will execute for a small period of
time and then be preempted by another thread. These
threads have no limitations on which kernel primitives
to use, or how common resources are shared.

When a thread is in a suspended or in a ready state, it
is placed in a queue. We used the data structure depicted in
Figure 2. The nextpointer references the next element in the
queue. The lust pointer references the last thread in a group
with threads of the same priority. Within each priority level
we use the last-in-first-out strategy. To insert an element we
only have to go through all priority levels in the worst case,
regardless how many threads there are in the queue. We can
dequeue and enqueue all threads with the same priority in
constant time.

33. Scheduling

A thread is assigned a time-slice to execute by the ker-
nel, and control is transferred to that thread during a con-
text switch. The thread can be preempted either by using
a function in the kernel or when it has used its time slice.
The scheduler is then invoked and chooses the next thread
to execute.

The scheduler uses as many ready queues as there are
priority-levels in the kernel. Each queue is of FIFO type.
When a thread is preempted, after it has used its time slice,
it is inserted last in the queue of its priority class. The sched-
uler then chooses the next thread to execute, by selecting the
first element in the queue of highest priority. If the queue is
empty, the queue of second highest priority is used and so
forth.

3.4. Time

The kernel-is interrupted at a given interval and at this
time the tick counter is updated. This period is also used as a
timeslice, so the kernel preempts the current running thread
and reschedules at this time too. There are three primitives
in the kemel for a user program to handle time. The tick
counter can be read as well as a fine-grained timer. The ker-
nel also provides a primitive for suspending a thread until a
certain time.

When the tick counter is increased the kernel also moves
any threads waiting for that tick from their suspended state
to ready state. A time queue that consists of several queues,

63

Riority ti-I Riority II Rioriry n+l

Figure 2. Queue data structure

like the one in Figure 2, are chained together to a long
queue. Each subqueue is sorted by priority and the sub-
queues are chained together in a low-to-hi time order. This
way threads of the same priority class that are waiting for
the same tick can be handled as a unit. We have balanced
the routine that moves threads from the time queue into the
different ready queues to always take the worst case execu-
tion time. This is done to lower the jitter.

3.5. Synchronization

Synchronization is supported in the kemel by semaphore
primitives. Other primitives can in tum be built from sem-
aphores. There exist both binary and counting semaphores.
Trying to take a semaphore which counter is zero suspends
the current running thread and the kemel reschedules.

To solve the well known problem with priority inversion
when using semaphores for mutual exclusion, a mutex form
of semaphore is supplied. The most commonly used priority
inheritance protocol to defeat priority inversion is the basic
priority inheritance protocol. This protocol does, however,
permit a thread to be blocked by several lower prioritized
threads. Both priority ceiling and immediate inheritance
protocol permit only one lower prioritized thread to block
another thread and also prohibit deadlock [21]. The mutex
primitive uses the immediate inheritance protocol as it is
cheaper to implement and has the same worst case behavior
as the more elegant priority ceiling protocol.

3.6. Interrupts

To each hardware interrupt a number of threads with
different priorities can be attached. When an interrupt is
triggered the kemel is invoked and the waiting threads are
moved from an interrupt queue to different ready queues
baqed on priority. The same type of queue as in Section 3.2
is used for interrupt queues. The kernel then reschedules,
and the selected thread’s context is restored.

4. Garbage Collector

The garbage collector (GC) in the run-time system needs
to have short predictable worst-case execution times at each

invocation to fulfill hard real-time requirements. A new
fine-grained incremental mark-compact algorithm. which
ensures no fragmentation as well as bounded worst case ex-
ecution times of all operations, is proposed. An introduction
to incremental mark-compact algorithms and GC in general
is available in [27]. This GC is described in detail in [lo].

4.1. Introduction to the GC

References to the heap stored in processor registers, on
the program stack, or in global variables are called mots.
All objects that are reachable directly through the roots or
through a chain of pointers from the roots are considered LO
be live objects. The GC will trace the reachable objects and
mark them. The rest of the objects on the heap are garbage
and can be reclaimed.

Work done by the GC is interleaved with normal exe-
cution of the user program, often called the mutator [26].
We will use the Vi-color abstraction introduced in [8] to de-
scribe synchronization between the mutator and collector.
Each object on the heap is painted in one of three colors:

Black indicates that the object and its immediate descentl-
ants have been visited.

Grey indicates that the object must be visited by the col-
lector. Either grey objects have been visited by the
collector but not all pointers are scanned, or their con-
nectivity to the rest of the graph has been changed.

White objects are unvisited and at the end of the marking
phase considered being garbage.

To make sure that the collector has a coherent view of
the heap during the marking phase the following invariant
must hold:

No pointer in a black object references a white object.

Coherence is maintained by barriers between the mutator
and the heap. These barriers can be either a read-barrier,
trapping reads, or a write-barrier, trapping writes.

64

4.2. The marking phase

A,,,

H,,,

A

R,,,

4.5. Moving objects

maximum number of new objects alloc-
ated during one cycle
maximum number of new objects alloc-
ated by high-priority threads
number of objects allocated so far dur-
ing this cycle
maximum number of root Dointers

During the marking phase we start by coloring all ob-
jects referenced by the root pointers grey. We have a stack
of root pointers for each thread which is processed root by
root. Each object referenced by a root is inserted into a
marking list. The elements in the marking list are the grey
objects. We then visit all grey objects and mark the objects
referenced by them grey. All pointers in the object are pro-
cessed and then the visited object is colored black. The pro-
cedure is repeated for all grey objects. This way all objects
reachable from the roots are visited. In the end of the mark-
ing phase all objects are either black or white. As we don't
want to risk overflowing the stack by recursively travers-
ing the graph we use Cheney's, [6], non recursive marking
strategy with a marking list where the reference to the next
object to mark is placed in each object.

If the mutator, during the marking phase, tries to set a
pointer in a black object to reference a white object we im-
mediately color the referenced object grey to make the in-
variant hold. To ensure that this is done a write barrier is
used that colors the white object grey by inserting it last in
the marking list.

43. The sweeping phase

During the sweeping phase all black objects are moved
into one continuous block at the top of the heap. A scan
pointer is used. which is initially set to reference the last
allocated memory location, from the marking phase of the
previous cycle. All objecLs are processed in a top-down or-
der by decreasing the scan pointer with the size of the cur-
rently scanned object. Black objects are moved to the top
of the heap, and white objects are reclaimed. To be able to
traverse the heap in either direction the object size is placed
in both the beginning and the end of the objects. When the
scan pointer reaches the bottom of the heap all objects are
processed, the current cycle completed, and the next initi-
ated. In the next cycle the heap is traversed in the opposite
direction.

4.4. Allocating new objects

New objects are allocated at the top of the heap. At the
end of the current cycle, these objects and the object moved
during the sweeping phase, are placed in one continuous
block at the top of the heap. These objects will be colored
and marked during the following collection cycle. When an
object is allocated we need to initialize all pointers in the
object to reference null through a table. The use of a table
is discussed in Section 4.5.

When an object is moved to a new location we must en-
sure that all references to that object are changed to refer-
ence the new location. Moving the object and changing the
references must be done as an atomic operation, to make
sure that all accesses to an object are made to the correct
copy of the object. As the number of references to an ob-
ject is not known, we would not get a tight upper bound
for worst-case execution time of that operation. To get an
upper bound on moving an object we access referenced ob-
jects through a table. All pointers reference the target object
indirectly through the table. This way only the reference in
the table needs to be changed. This is the read burrier.

As the entire object needs to be moved all at once, the
kernel may be suspended for a too long time to meet hard
real-time requirements. We allow preemption during copy-
ing of an object, and if we are preempted we restart copying
the object when we resume. This is to ensure that the copy
of the object contains the most recent data.

4.6. Scheduling of GC work

To be sure that the collector will reclaim garbage at a
rate necessary for the mutator never to run out of memory,
we a priori calculate a minimum collection rate. As long
as the current collection rate is above the a priori calculated
worst case, we are ensured never to run out of memory. The
operation that can exhaust the heap is memory allocation,
and therefore we perform an increment of GC at each alloc-
ation. We can in this way make sure that there is space on
the heap for the new object. We also want to make sure not
to do more collection than necessary to interfere as little as
possible with the mutator.

To simplify the discussion we assume that all objects are
of the same size. This can quite easily be extended to differ-
ent sized objects as in our actual implementation. Through-
out this discussion we will use the following notation:

ing one cvcle in the worst case
E,,,,, I maximum number of live obiects 1

65

We define the minimum GC rate, GCR,,,;, as

W m a x GCR,;, = -
Am,,

and current garbage collection rate, GCR as

W GCR = - A

As long as GCR > GCR,i, we are ensured not to run out
of memory. The work that has to be done during one cycle
is divided in three parts: processing the roots, marking all
live objects, evacuating the marked objects. The maximum
work that has to be done can be written:

Wmaz = a . Rmax + P * Emax + Emax

where the coefficients a and compensate for different
costs in processing a root or marking an object compared
to evacuating an object. For a given hardware, a and P are
constant.

The work Wm,, has to be done during one GC cycle,
and how long this cycle is depends on how much memory
we have. At each allocation we let the collector perform an
increment of GC work. We will start by finding out how
long a cycle is. When finishing a collection cycle the max-
imum number of objects on the heap is the number of live
objects from la5t cycle, E,,,, plus the maximum number
of new objects allocated during that cycle, A,,,. During
the following cycle the mutator may allocate as many as
A,,, new objects. The maximum total number of objects
on the heap is therefore E,,, + 2 . A,,,. As we know
how big the heap is, S, we can easily calculate how many
allocations we can do in one cycle, without exhausting the
heap.

S - Emax
2 Amax =

We now have an expression for the minimum GC ratio ne-
cessary,GCR,,,i,:

a. L a z + P . Emax + Emax
S - Emax

GCR,i, = 2 .

The current GC ratio, GCR, can be expressed as,

a . i + p . j + k G C R = 2 *
S - Emax

where i is the number of processed roots, j the number of
marked objects, and k the number of evacuated objects. As
long as GCR 2 GCR,i, we are ensured not to run out of
memory.

If we divide the maximum total work that has to be done,
W,,,, by the number of allocations we will do during a
cycle, Am,,, we know how much work that will be done
at each allocation. The worst execution time for this work

can be calculated and added to the cost for allocating one
object.

Even if the amount of work that has to be done during
an allocation is small and bounded it can still be too long
for us to meet all deadlines. To improve the real-time cap-
abilities of the collector we use the technique proposed by
Henriksson, [12], and create a semi-concurrent GC. The
threads are divided into groups of high- and low-priority
threads. GC work is done interleaved with allocation for
the low-priority threads. To improve response time for the
high-priority threads we suspend the collector until after the
high prioritized threads have executed. We can view the col-
lector as a mid priority thread, that gets to execute after the
high prioritized threads. We need to make sure that there is
enough free space on the heap for the high-priority threads
to allocate new objects without exhausting the heap. We
denote the maximum number of objects allocated by high
priority threads, assuming they are all released at the same
time, H,,,. If we always have this much space free on
the heap we are ensured not to exhaust the heap, even if
we don't perform any collection work during high-priority
thread allocations. The maximum total number of objects
on the heap is now E,,, + 2 . A,,, + H,,,. The new
minimum GC ratio is:

R m a x + P . Emax + Emax GCR,,,in = 2 .
S - Emax - Hmaz

and the the current GC ratio is changed accordingly.

5. Integration

So far we have designed the kernel, the compiler and the
GC. But to make predictable garbage collection possible,
we need a tight coupling between the compiled application
and the garbage collector.

When using a preemptive mark-compact garbage col-
lector, great care must be taken when handling object ref-
erences as the currently running thread could be preempted
at virtually any time. We must assert that there are no de-
referenced object handles whenever the GC starts moving
objects around. To fulfill these demands, we must consider
all reference manipulations as atomic actions.

We must also inform the GC when new roots of object
trees are created, and when they are dismissed. This hap-
pens whenever a method is called. Consider the example
code below:

class Dummy {
public void aMethod(String s) {

String aString;
...

1
1

66

To register and unregister these two objects as roots in
the GC, we introduce the calls GC-PUSH (ref) and
GC-POP (nbr) which, respectively, pushes a reference ref
onto the GC stack and pops nbr references from the stack.
The code example above then results in the following gen-
erated code:

Process a root
Mark an object
SWCXO an obiect

void Dummy-aMethod (REF (DummyInstance) this,
REF (StringInstance) s) {

REF (StringInstance) astring;
GCJUSH (this) ;
GCgUSH (5) ;
GC-PUSH(aString) ;

GC-POP (3) ;
...

1

To implement the read-barrier we use a macro REF (a) , and
for the write-barrier we use a macro GC-SET (a , b) .

83 64
110+78.i+118.n 110+78*Z+60.n
169 + 9 . s 104

6. Experimental verification and experiences

Table 1. Measured performance with IC priority
levels and object size s bytes with n pointers
divided into i groups. 1 CPU cycle is 0.25 ps.

diet worst-case execution times and worst-case memory de-
mands of the different threads, in combination with execu-

tion times of the kernel operations, we can use generalized
scheduling theory [22], to check if the system is schedulable
or not.

7. Problems and Future Work

Problems concerning C as the intermediate language is
not so much about the C language- which is very allow-
ing, to say the lea$t-but how the C compilers generate ma-
chine code. In the current implementation, the mandatory
atomicity of object reference manipulations is obtained by
using pre-emption points in the code, and by turning off all
compiler optimizations. A very interesting problem is to be
able to utilize compiler optimization techniques , but that is
outside the scope of this paper.

Another problem is to calculate a good upper bound on
the maximum number of live objects in the system. A guar-
anteed upper bound tends to be very pessimistic and will
degrade the performance of the system. There is, however,
recent work done [191 which provides a much better estim-
ate.

There is still some work to be done in the Java to C trans-
lator. Some of the more important features of the Java lan-
guage that is being implemented are interfaces and excep-
tions. The implemented object model is also, at the time of
writing, a somewhat simplified version of the one depicted
in Figure 2.4.

8. Related Work

There has been quite some work done on natively com-
piling Java, but not much on hard real-time Java for small
systems. Sun Microsystems Inc. has published a white
paper[24] on using the Java 2 Platform Micro Edition
(J2ME) for mobile devices. The J2ME is centered around
a small JVM called KVM and aimed at devices with a total
memory amount in the range of 128 - 5 12 KB. A J2ME ap-
plication can also be compiled to native code and linked to
the KVM for better performance. J2ME is, however, not yet
suited for use in systems with hard real-time demands.

Various issues concerning real-time behavior in Java
are dealt with in The Real-Time Spec$cation for Java[S].
There are significant drawbacks in this specification from
our point of view, specifically concerning memory manage-
ment. Instead of adopting a predictable run-time system, it
exfends Java with a new memory organization. In addition
to the normal HeapMemory, it adds ImmortalMemory, tm-
mortalPhysicalMemory and ScopedMemory memory areas
which are all treated differently by the automatic memory
management system. These additions place responsibility
on the programmer to always do the right thing, since a
wrongly placed memory allocation type in an application
could totally void the real-time behavior of that application.

67

There has also been some work done on implement-
ing very small and memory efficient Java virtual machines
which can be deployed in systems with hard real-time de-
mands [141 but that requires more time and memory.

9. Conclusions

We have shown that it is possible to use Java as a
programming language for developing small embedded
systems with very limited resources of CPU power and
memory. Given a few assumptions on the memory usage
of an application, we can also show that hard real-time tim-
ing demands are met.

By choosing C as an intermediate language-and choos-
ing a suitable object representation model-we can achieve
the efficiency needed for running applications on very small
CPUs while still maintaining some platform independency.

By combining natively compiled Java with a very small
and efficient RT kernel and a pre-emtive garbage collector
we can write and test multi-threaded programs in a normal
Java runtime environment which can later be compiled for
small hard real-time systems.

10. Acknowledgments

VINNOVA (formerly NUTEK, the Swedish Board for
Tech. R&D) is acknowledged for financial support. We
are grateful for input and feedback from Anders Blom-
dell (@control.lth.se), and we thank Klas Nilsson (formerly
@control.lth.se and @abb.com, now @cs.lth.se) for inspir-
ing suggestions to work in this direction. We also thank
our GC-expert Roger Henriksson for many valuable com-
ments.

References

[I] IEC 1131-3, Programmable controllers, Part 3: Program-
ming Lunguages. International Electrotechnical Commis-
sion, !992.

[2] K. J. Astriim and B. Wittenmark. Computer Controlled Sys-
tems: Theory and Design. F’rentice Hall, 3rd edition, Janu-
ary 1997.

[3] ATmegal03(L) Preliminary (Complete), Jan. 2000.
http://www. a h e l . com/acrobat/dod)945.ps.

[4] L. A. Bigagli. Real-time java, - a pragmatic approach. Mas-
ter’s thesis, Department of Computer Science, Lund Institute
of Technology, October 1998.

[5] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time SpeciJication
for Java. Addison-Wesley, June 2000.

[6] C. J. Cheney. A non recursive list compacting algorithm.
Commmunications of the ACM, 13(1 l), 1970.

[7] Cygnus. The GNU compiler for the java language.
http://sourceware. cygnus. com.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S . Scholten, and
E. E M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM, 21(1 l), 1978.
J. Eker. A tool for interactive development of embedded
control systems. In Preprints 14th World Congress of IFAC,
Beijing, P.R. China, 1999.
T. Ekman. A real-time kernel with automatic memory man-
agement for tiny embedded devices. Master’s thesis, Depart-
ment of Computer Science, Lund Institute of Technology,
November 2000.
J. Gosling, B. Joy, and G. Steele. The Java Language Spe-
cikarion. The Java Series. Addison-Wesley, 1st edition, Au-
gust 1996.
R. Henriksson. Scheduling Garbage Collection in Embed-
ded Systems. PhD thesis, Department of Computer Science,
Lund Institute of Technology / Lund University, 1998.
Jove, super optimizing deployment environment for java,
July 1998. Instantiations Inc. http:/hww. instantiations.com.
A. Ive. Implementation of an embedded real-time java vir-
tual machine prototype. Licentiate thesis, Department of
Computer Science, Lund Institute of Technology, 2001. In
preparation.
P. Kouznetsov. Jad - the fast java decompiler, 2000.
http://www.geoci ties.com/SiliconValley
/Bridge/8617/jad.html.
Java-cc parser generator. Metamata Inc.
http://www. metamata.com.
G. Muller, B. Moura, E Bellard, and C. Consel. Harissa: h
flexible and efficient java environment mixing bytecode and
compiled code. http://www. irisa.fr/accueiVindex-uk. him.
K. Nilsen and S. Lee. Perc real-time api, July 1998.
P. Persson. Predicting time and memory demands of object-
oriented programs. Licentiate thesis, Department of Com-
puter Science, Lund Institute of Technology, April 2000.
T. A. Proebsting, G. Townsend, P. Bridges, J. H. Har-
man, T. Newsham, and C. A. Watterson. Toba: Java
for applications, a Way ahead of Time (wat) compiler.
http://www. cs. arizona. edu .
L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9), 1990.
L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-
monotonic scheduling theory: A framework for developing
real-time systems. In Proceedings of the IEEE, volume 82,
1994.
N. Shaylor. Jcc - a java to c converter.
hrtp ://w ww. geocities. c o d
CapeCanaiuraWHangar/4040/jcc. html.
Java 2 platform micro edition (j2me) technology for creating
mobile devices. http://www.java.sun.com, May 2000. Sun
Microsystems Inc. White Paper. http:/hww.jaja\,a.swz.com.
Deploying high-performance and flexible server-side applic-
ations, an introduction to towej3. Tower Technology Cor-
poration. http:/hww.towerj. com.
P. L. Wadler. Analysis of an algorithm for real time garbage
collection. Communications ofthe ACM, 19(9), 1976.
R. R. Wilson. Uniprocessor garbage collection techniques.
In Proceedings of IWMM’92. Springer-Verlag, 1992.
Turboj. WindRiver Inc. hrtp://www.windrive~com.

68

mailto:abb.com
http://www
http://sourceware
http:/hww
http://instantiations.com
http://www.geoci
http://www
http://metamata.com
http://www
http://www
http://www.java.sun.com
http:/hww.jaja\,a.swz.com
http:/hww.towerj

