Darriwilian (Ordovician) graptolite faunas and provincialism in the Töyen Shale of the Krapperup drill core (Scania, southern Sweden)

Maletz, Jörg; Ahlberg, Per

Published in:
Cuadernos del Museo Geominero

2011

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ORDOVICIAN OF THE WORLD

Editors: Juan Carlos Gutiérrez-Marco
Isabel Rábano
Diego García-Bellido
ORDOVICIAN OF THE WORLD

Edited by
Juan Carlos Gutiérrez-Marco, Isabel Rábano and Diego García-Bellido

Instituto Geológico y Minero de España
Madrid, 2011
682 pgs; ils; 24cm .- (Cuadernos del Museo Geominero; 14)
551.733(100)

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher.

References to this volume
It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume:

Cover images (photos by J.C. Gutiérrez-Marco except lower middle –L. Carcavilla– and lower right –N. Sennikov–)
Upper left: outcrops of the Late Ordovician glaciomarine Melaz Shuqran Fm, overlying Cambrian sandstones (Tihemboka Arch, Sahara desert, SW Libya).
Upper right: giant traces (> 11 m long) of marine worms in Early Ordovician quartzites from the Cabañeros National Park (central Spain), which serve as logo for the symposium.
Middle left: outcrops of the Late Ordovician Calapuja Fm (foreground mountains) in the Peruvian Altiplano, more than 4,500 m high.
Middle right: Global Stratotype Section at Point for the base of the Middle Ordovician series and of Dapingian stage, Huanghuachang section, Hubei province (South China).
Lower left: Early Ordovician shales (San José Formation) at the Inambari river, Amazonian basin (Eastern Peru).
Lower middle: A view of the Mount Everest (Tibet), whose summit (8,848 m) is formed by the Early-Middle Ordovician limestones of the Qomolangma Fm.
Lower right: Middle Ordovician dolomitic marls and mudstones of the Middle Guragir Fm at the key Kulyumbe river section (north-western part of the Siberian Platform, Russia).

© INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA
C/ Ríos Rosas, 23. 28003 Madrid
Tel.: +34 91 349 5700, Fax: +34 91 442 6216
www.igme.es
NIPO 474-11-008-4
Depósito Legal: 17559-2011

Fotocomposición: Inforama, S.A. Príncipe de Vergara, 210. 28002 MADRID
Imprime: A.G.S. c/ Bell, 3. 28960 GETAFE (Madrid)
This book is dedicated to our mentors Wolfgang Hammann (Germany, 1942-2002) and Michel Robardet (France, 1939), who dedicated an important part of their lives to the Geology and Paleontology of the Ordovician of Spain.

Both bestowed upon us their passion for the rocks and fossils of this period, and showed us how to study them with a modern vision and an open mind.
DARRIWILIAN (ORDOVICIAN) GRAPTOLOITE FAUNAS AND PROVINCIALISM IN THE TØYEN SHALE OF THE KRAPPERUP DRILL CORE (SCANIA, SOUTHERN SWEDEN)

J. Maletz1 and P. Ahlberg2

1 Department of Geosciences, Colorado State University, 322 Natural Sciences Building, Fort Collins, CO 80523-1482, USA.
yorge.maletz@colostate.edu

2 Division of Geology, Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden.
per.ahlberg@geol.lu.se

Keywords: Ordovician, graptolites, biostratigraphy, biogeography, Krapperup drill core, Sweden, Tøyen Shale Formation, Almelund Formation.

INTRODUCTION

In Scania, southern Sweden, Lower Palaeozoic strata are preserved mainly in the Colonus Shale Trough, an elongated, fault-bounded and NW-SE-trending structure within the Sorgenfrei-Tornquist Zone. The relatively condensed Ordovician succession consists predominantly of graptolitic shales deposited in a foreland basin on a marginal portion of the Baltic plate. Outcrops are generally small and restricted to uplifted fault-blocks. Hence, our knowledge of the stratigraphy and spatial and temporal distribution of the succession is to a large extent based on drillings.

A core drilling at Krapperup, northwestern Scania, in 1946 reached a depth of 155.06 m and penetrated a significant portion of the Lower–Middle Ordovician succession. The drilling was carried out by Wargön AB at a site 1.0 km west of the Krapperup castle. The core has diameter of 63 mm, shows no evidence of significant core loss, and is housed at the Division of Geology, Lund University. Graptolites from the lower part of the core, spanning the upper Tremadocian Kiaerograptus supremus [Kiaerograptus sp. A] Biozone, followed by the Araneograptus murrayi [Dictyonema ex. gr. murrayi] Biozone through the lower Dapingian Pseudophyllograptus angustifolius elongatus Biozone, have been studied by Lindholm (1981, 1991a, 1991b). The succession in the Krapperup core is the only one representing an unbroken shaly sequence across the boundary between the Tøyen Shale and the Almelund Shale, two units that in Scania are usually separated by the early Middle Ordovician (Darrwilian) Komstad Limestone.

BIOSTRATIGRAPHY

The graptolite succession in the Krapperup drill core is only explored in parts, but has already provided important insights into the biostratigraphy and biogeography of the Lower to Middle Ordovician graptolite faunas of southern Scandinavia and beyond. Lindholm (1981) first recognized the base of the Kiaerograptus supremus [Kiaerograptus sp. A] Biozone at 151.56 m, followed by the Araneograptus murrayi [Dictyonema ex. gr. murrayi] Biozone at 147.66 m. It is followed by a considerable fault zone...
The bases of the *Didymograptus balticus* Biozone (88.15 m), the *Pseudophylograptus densus* Biozone (80.78 m) and the *Pseudophyllograptus angustifolius elongatus* Biozone (75.30 m) have also been determined, but the higher part of the succession was not investigated. Lindholm (1991a) described the *Kiaerograptus supremus* and *Araneograptus murrayi* biozones for the first time from Scandinavia based on data from this drill core. The *Hunnegraptus copiosus* Biozone was not recognized in the core, but is known from surface outcrops (Lindholm, 1991a).

The Upper Dapingian (Yapeenian) may be recognized by the presence of *Arienigraptus jianxiensis* sensu Cooper and Ni (1986) at 62.95–62.98 m (Fig. 1J), as the species is neither known from Castlemainian nor from Darriwilian strata. The species is very robust and large, reaching dimensions usually only attained by the genus *Pseudisograptus*. It bears an isograptid development and possesses strong prothecal folds in the manubrium.

The base of the Darriwilian is here recognized by the presence of *Arienigraptus zhejiangensis* Yu and Fang at 60.67–60.68 m, where the genus is associated with *Pseudisograptus manubriatus* spp. Biserial graptolites of the genus *Levisograptus* (*L. austrodentatus* in particular) are not present and the oldest known biserial, *Levisograptus mui* (Fig. 1B, H) was found only at 54.10–54.20 m. Mitchell (1992, 1994) illustrated specimens of *Levisograptus sinicus* from 48.88–48.53 m and 50.5 m. Maletz (2005) already recognized the late appearance of biserials in the Albjära and Lovisefred drill cores of Scania. The differentiation of the early Darriwilian is difficult, even though numerous biserials of the genus *Undulograptus* are present and the next definitively identifiable level is the base of the *Holmograptus lentus* Biozone in the 24.85–25.15 m interval. The *Holmograptus lentus* Biozone includes a number of different *Holmograptus* species, some of which appear to be new. The excellent relief preservation (Maletz, 2011: figs. a, b) of a number of specimens allows to recognize the specific differences, the presence/absence of prothecal folds, and apertural differentiations.

The *Nicholsonograptus fasciculatus* Biozone is defined by the FAD of its index species at 18.88 m. All specimens are completely flattened. It is interesting to note, that in the Kropperup drill core there is a number of *Holmograptus* specimens in the *Nicholsonograptus fasciculatus* Biozone, and such a biostratigraphic overlap of both genera has not been noted before.

DARRIWILIAN FAUNAS AND BIOGEOGRAPHY

The graptolitic succession of the Kropperup drill core provides some interesting insights into the faunal diversity and composition of early to mid-DarrIWilian graptolite faunas of the Atlantic Faunal Realm (Fig. 1). The faunal composition of the Floian to early Dapingian time interval is well known from the Lerhamn drill core (Maletz and Ahlberg, 2011). The interval includes a variety of characteristic *Baltograptus* species...
as the most important biostratigraphic and biogeographic marker species, restricted to the Atlantic Faunal Realm and providing important biostratigraphic marker species (Toro and Maletz, 2007; Maletz and Ahlberg, 2011).

The base of the Darriwilian interval is not identified by the presence of the earliest biserials of the Levisograptus austroodentatus group, but the species Arienigraptus zhejiangensis (Fig. 1 L, M) and related forms are extremely common and often occur in nearly monospecific assemblages. A similar Arienigraptus species with a shorter arienigraptid suture can be differentiated (Fig. 1K). It can easily be mistaken as an isograptid in flattened specimens in which the manubrium is unrecognizable. Specimens of Pseudisograptus are also common at a number of levels in the basal Darriwilian of Baltoscandia (Maletz, 2005) and have been found in the Krapperup drill core.

The axonophoran (biserial) faunas are dominated by members of the genus Undulograptus with a rounded proximal end and lacking the typical apertural spines on th11 and th12 of the genus Levisograptus. A number of species can be differentiated in the Krapperup drill core, some of which are preserved in full relief, showing the proximal development in reverse and obverse views. Due to the poor taxonomic documentation of basal Darriwilian graptolite faunas, a specific identification is impossible to provide at the moment for most of the species. The earlier members often show indications of a th11 spine and the species Undulograptus cumbrensis has been identified in the 41.88–46.42 m interval. Species of Undulograptus possess a simplified proximal end development with a possible dicalycal theca at th11 and a connecting arch between th21 and th22 (Fig. 1E). The thecal shapes vary between a strongly geniculate type and a straight to curved, outward inclined, ventral thecal side without evidence of a geniculum. The thecal apertures are outswards inclined to horizontal. The thecae possess a double-sigmoid shape. The median septum is strongly zigzag (Fig. 1O) to straight (Fig. 1E). The genus Proclimacograptus with a modified pattern C astogeny (Mitchell, 1987) and short interthecal septae appears first in the upper part of the Holmogratus lentus Biozone (Fig. 1D, G), much earlier than the record from the Oslo Region of Norway (Maletz, 1997) suggested.

The evolution of a derived simple proximal end development, resembling Mitchell’s (1987) pattern G and pattern H astogenies, can be seen in the genus Skanegraptus (Fig. 1C, F) and in a single obverse view of a Normalograptus specimen (Fig. 1A) from the 22.73–22.74 m level. This material may provide early evidence of a transition from complex proximal development types to simple types in the early Darriwilian. As comparable faunal elements are not found in the Pacific Faunal Realm, it may be assumed that the transition and early evolution of the Normalograptidae (sensu Mitchell et al., 2007) may have taken place in the cold water Atlantic Faunal Realm and the normalograptids invaded the Pacific Faunal Realm much later during their evolutionary history.

CONCLUSIONS

The Krapperup drill core in Scania (southern Sweden) represents one of the longest and stratigraphically most complete successions of the Scandinavian Tøyen Shale Formation and its direct transition into the Middle Ordovician Almelund Shale. A preliminary investigation indicates the presence of a number of graptolite biozones that range from the late Tremadocian Kiaerograptus supremus Biozone to the mid-Darriwilian Nicholsonograptus fasciculatus Biozone. The typical southern Swedish Komstad (Orthoceras) Limestone is not present in the succession and the Tøyen Shale Formation grades into the overlying Almelund Shale. This unusual development has not been recognized in any outcrop in
Scandinavia, where the Orthoceras limestones in general attains a thickness of at least a few meters. The Darriwilian graptolite fauna includes largely endemic biserial elements with a number of Undulograptus and Proclimacograptus species. The Levisograptus austrodentatus group of early Darriwilian biserials makes a late and only sporadic appearance in the succession, while species of the genus Arienigraptus are common and indicative for the basal Darriwilian strata.

Acknowledgements

The research by JM was possible through grants from the Wenner-Gren Foundations (Stockholm, Sweden), Gyllenstiernska Krapperupstiftelsen (Nyhamnsläge, Sweden) and the Royal Physiographical Society (Lund, Sweden). Kristina Lindholm (Kävlinge, Sweden) provided invaluable information on the lower part of the drill core from her unpublished thesis (1981) and helped to trace core boxes and additional fossil material.

REFERENCES

Maletz, J. 2011 (in press). The proximal development of the Middle Ordovician graptolite Skanegraptus janus from the Krapperup drill core of Scania, Sweden. GFF.

