Håkanson, Lena

2008

Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

Citation for published version (APA):
Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

Lena Håkansson

Avhandling

Att med tillstånd från Naturvetenskapliga Fakulteten vid Lunds Universitet för avläggande av filosofie doktorsexamen, offentligen försvaras i Geologiska Institutionens föreläsningssal Pangea, Sölvegatan 12, fredagen den 11 april 2008 kl. 13.15.

Lund 2008
Lund University, Department of Geology, Quaternary Sciences
Title and subtitle

Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

Abstract

The aim of this thesis was to use cosmogenic exposure dating to investigating whether highly weathered landscapes in the Northeast Greenland fjord zone have developed during prolonged ice free conditions or have been preserved beneath cold-based ice. Previous work along the Northeast Greenland coast has presented two conflicting hypotheses for the extent of the Greenland Ice Sheet during the last glacial maximum (LGM). Land-based investigations have suggested that low gradient outlet glaciers were restricted to fjord troughs and terminated at the inner continental shelf. In contrast, marine studies have recently indicated that the margin of the Greenland Ice Sheet reached the outer shelf during the LGM. Results from cosmogenic 10Be and 26Al exposure dating show that during the LGM, local cold-based ice-caps covered and preserved weathered interfjord plateaus in the Northeast Greenland fjord zone, whereas fjord troughs were filled up with dynamic ice draining the Greenland Ice Sheet. The dynamic ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund at the southernmost end and probably ~600 m a.s.l. at the northernmost end of the fjord zone, indicating that there was a N-S gradient in glacial style presumably reflecting regional differences in topography of the coastal areas. The results presented in this thesis reveals a dynamic picture for the northeastern sector of the Greenland Ice Sheet suggesting that LGM ice margins were substantially more advanced than indicated by earlier reconstructions from the terrestrial record.

Keywords: Cosmogenic, Greenland Ice Sheet, Glacial history, Ice dynamics, Scoresby Sund, Jameson Land, Store Koldewey

Classification system and/or index terms (if any):

Supplementary bibliographical information:

- 250 copies
- Language: English
- ISSN and key title: 0281-3033 LUNDQUA Thesis

Recipient's notes

- Number of pages: 17 + 4 app.
- Price: 120 SEK

Distribution by (name and address)

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature: [Signature]

Date: 2 March 2008
Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

Lena Håkansson

Quaternary Sciences, Department of Geology, GeoBiosphere Science Centre, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden

This thesis is based on four papers listed below (Appendices I-IV). All papers are published in or submitted to peer-reviewed international journals. Papers I and IV are reproduced with permission from Elsevier Ltd. and Blackwell publishing, respectively. Papers II and III have been submitted to the journals indicated. In the following, the papers are referred to by their Roman numeral.

Appendix I

Appendix II
Håkansson, L., Briner, J.P., Aldahan, A. & Possnert, G. 10Be and 26Al exposure ages of tors and meltwater channels on Jameson Land, east Greenland: implications for the Late Quaternary glaciation history. Manuscript submitted to Quaternary Research.

Appendix III

Appendix IV
Contents

1. **Introduction** ... 1
 1.1 *Background.* ... 1
 1.1.1 The Canadian Arctic ... 3
 1.1.2 Svalbard ... 3
 1.2 **Aims of the present study.** ... 3

2. **Study areas** ... 4

3. **Cosmogenic nuclides** .. 6
 3.1 *History.* ... 6
 3.2 *Theory.* .. 6
 3.3 Cosmogenic exposure dating ... 7

4. **Results: summary of papers.** .. 8
 4.1 Paper I .. 9
 4.2 Paper II .. 9
 4.3 Paper III ... 10
 4.4 Paper IV ... 10

5. **Discussion** ... 11
 5.1 Rethinking the extent and dynamics of the Greenland Ice Sheet during the LGM.... 11
 5.2 Methodological considerations ... 12

6. **Conclusions** ... 12

7. **Ideas for future research** ... 13

8. **Acknowledgements** .. 13

9. **Swedish summary** ... 13

References ... 15

Appendices
1. Introduction

1.1 Background

During periods of the last glacial cycle, ice sheets covered vast continental areas. At present, the Greenland Ice Sheet is the only larger remain from this time in the Northern Hemisphere. Nevertheless, this ice sheet still stores enormous volumes of freshwater and changes in this ice mass might have considerable consequences for the global climate and environment. Studying the history of the Greenland Ice Sheet is thus important for understanding the climate during glacial cycles, which in turn can shed light on what might happen to the ice sheet and the global climate in the nearest future.

Within formerly glaciated regions, the occurrence of highly weathered terrain has often been used as evidence either for the existence of ice free areas during the last glaciation (Ives, 1966; Nesje & Dahl, 1990; Ballantyne et al., 1998; Rae et al., 2004) or for the former distribution of cold-based ice allowing the preservation of pre-Quaternary landscapes (Sugden, 1978; Kleman, 1994; Sollid & Sørbel, 1994; Kleman & Hättestrand, 1999; Davis et al., 2006). Because highly weathered landscapes are often found on upland plateaus, the interpretation of these landscapes can constrain ice thickness and/or the thermal regime of Pleistocene ice sheets.

In the Northeast Greenland fjord zone, which comprises the presently ice-free continental margin between Scoresby Sund in the south and Germania Land in the north (Fig. 1A), interfjord plateaus and coastal lowlands are commonly strongly weathered, whereas fjords and major valleys are characterized by glacially eroded surfaces. The Late Pleistocene glacial history of this area has been reconstructed through decades of research, and based on intense bedrock weathering and the lack of deposits from the last glaciation many interfjord areas were thought to have been ice-free throughout the last glacial cycle (e.g. Washburn, 1965; Lasca, 1969; Funder & Hjort, 1973; Hjort, 1979, 1981; Björck & Hjort, 1984; Funder & Hansen, 1996; Funder et al., 1994, 1998; Hansen et al., 1999). These studies thus described a last glacial maximum (LGM) scenario with outlet glaciers from the Greenland Ice Sheet restricted to the fjord troughs and terminating on the inner continental shelf. Similar reconstructions of limited LGM ice extent were also presented for Svalbard (Boulton 1979) and for the Canadian Arctic (Dyke & Prest, 1987), suggesting a minimalist glaciation scenario throughout the Arctic during the LGM.

The concept of restricted LGM glaciation in the Northeast Greenland fjord zone has, however, recently been challenged by marine data. Seismic profiling indicates the presence of a prominent moraine c. 50 km from the shelf break off the Kejsar Franz Joseph Fjord (Fig. 1A), interpreted to be a LGM terminal or recessional moraine (Evans et al., 2002). Furthermore, submarine channels, emanating from the lip of shelf troughs down the continental slope, have been interpreted as generated by a grounded ice sheet margin on the outer shelf or at the shelf break (Ó Cofaigh et al., 2004). Both these studies thus suggest grounded ice on the Northeast Greenland shelf during the LGM, but are not giving any further evidence of ice cover on land. However, Wilken & Minert (2006) suggested that channels on the shelf slope could rather have formed by outlet glaciers restricted to cross-shelf troughs and terminating some distance out on the shelf.

In recent years, cosmogenic exposure dating methods have provided new techniques to interpret differentially weathered landscapes (Stroeven et al., 2002; Fabel et al., 2002; Briner et al., 2003, 2005, 2006; Landvik et al., 2003; Marquette et al., 2004; Davis et al., 2006; Harbour et al., 2006) and in combination with new marine coring and imaging techniques this has led to a new understanding of the extent and dynamics of Late
Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

Figure 1. A. Map of Northeast Greenland. Study areas are marked with framed boxes and subaqueous moraine ridges are marked with stars at the mouth of Scoresby Sund (Dowdeswell et al., 1994) and on the shelf off the Kejsar Franz Joseph Fjord (Evans et al., 2002). B. Map of the Store Koldewey island with 100 m contour lines. C. The Scoresby Sund area with distribution of ‘older’ and ‘younger drift’ after Ronnert & Nyborg (1994) and Möller et al. (1994)
Pleistocene ice sheets in differentially weathered fjord zones elsewhere in the Arctic.

1.1.1 The Canadian Arctic

Field investigations on eastern Baffin Island (Fig. 1A) identified areas with differences in the degree of weathering, so-called weathering zones, which were used to suggest restricted glaciation in the eastern Canadian Arctic during the LGM (Pheasant & Andrews, 1973; Boyer & Pheasant, 1974). In the 1980s seismic stratigraphy (MacLean et al., 1986) and marine cores from the continental shelf off Baffin Island (Jennings et al., 1996) revealed evidence for grounded ice in these areas, challenging the minimalist concept presented by earlier studies. Recently, Baffin Island has been the focus of several studies applying cosmogenic exposure dating to weathering zone research. Bierman et al. (1999) obtained cosmogenic 26Al and 10Be data from tors in the southern part of the island, indicating that sampled surfaces had experienced multiple periods of exposure interrupted by shielding by non-erosive cold-based ice. Based on cosmogenic exposure dating and lake cores Miller et al. (2001) suggested that the southernmost part of Baffin Island was inundated by the LGM Laurentide Ice Sheet but that coastal inter-fjord uplands remained ice-free. However, more recent work indicates that the LGM ice was even more extensive further to the north on Baffin Island. There, analyses of cosmogenic exposure dating suggest LGM ages for erratics perched on highly weathered inter-fjord plateaus and coastal lowlands, implying that cold-based ice dynamically connected to the Laurentide Ice Sheet covered these areas while ice streams filled the fjords (Briner et al., 2003, 2006).

1.1.2 Svalbard

During several decades it has been debated whether ice-free areas existed on Svalbard (Fig. 1A) during the LGM (Boyce, 1977; Forman, 1989; Mangerud et al., 1998). Based on cosmogenic 10Be exposure dating of erratics and bedrock, Landvik et al. (2003) presented evidence for the existence of nunataks on northwest Svalbard. Their results indicated that the last ice sheet that covered islands in the northwest retreated more than 80 ka ago and OSL dates of raised marine sediments close to the present-day sea level constrain the deglaciation after the last ice sheet advance to ~50 ka (Landvik et al., 2003). However, seismic stratigraphy and marine cores from further to the south on the continental shelf off western Svalbard have shown evidence for grounded LGM ice at the shelf-break (Landvik et al., 2005). Based on this they now suggest a topographically controlled LGM ice sheet configuration with ice streams filling the fjords and shelf troughs, with less dynamic ice over inter-fjord areas preserving delicate pre-LGM deposits. High resolution sea floor mapping on the shelf off northern and western Svalbard has revealed mega-scale lineations in cross shelf troughs suggesting that a topographically controlled ice sheet reached the shelf break around almost all of western and northern Svalbard (Ottensen et al., 2007).

1.2 Aims of the present study

In Northeast Greenland two conflicting presentations have been presented, from terrestrial and marine records, respectively: (i) extensive coastal areas were ice free whereas glacial ice filled the fjords as low gradient outlet glaciers terminating at the inner continental shelf or, (ii) the margin of the Greenland Ice Sheet reached all the way to the outer shelf or even to the shelf-break.

The aim of this thesis is to evaluate these two hypotheses, by applying cosmogenic exposure dating to erratics and bedrock in weathered inter-fjord areas in Northeast Greenland. A key objective is also to constrain the thermal regimes of the Late Pleistocene ice sheet advances, by investigating whether highly weathered landscapes along the Northeast Greenland coast have developed during prolonged
ice free conditions or have been preserved beneath cold-based ice.

2. Study areas

Fieldwork was conducted during four summer expeditions in 2003-2006 and samples for cosmogenic exposure dating presented in this thesis were collected from two areas in Northeast Greenland: the Store Koldewey island (76 °N) in the northernmost part and the Scoresby Sund area (70 -71 °N) in the southernmost part of the fjord zone (Fig. 1A).

The possibility arose to work on the Store Koldewey island in connection with the Greenland Sea cruise of the German research vessel “Polarstern” in the summer of 2003. This island is ~100 km long and situated at the outlet of the Dove Bugt Embayment blocks the outlet for major glacial advances from the Dove Bugt embayment (Fig. 1A). The landscape is dominated by mountain plateaus (~600-900 m a.s.l.) commonly cut by U-shaped...
Inherited nuclides from the previous exposure

Decreasing production of cosmogenic nuclides

Cosmic radiation can produce cosmogenic nuclides in bedrock and boulders. The production takes place in the uppermost ~2 m of rock and decreases exponentially with depth. B. An example where a bedrock surface is overridden by glacial ice which erodes away >2 m of rock and thus all cosmogenic nuclides produced during the previous exposure are eroded away. When the bedrock surface again gets exposed following ice retreat, it is “zeroed” from old nuclides. C. In this example overriding ice erodes <2 m of rock resulting in that following deglaciation the exposed bedrock surface will still contain nuclides from the previous exposure.

Figure 3. A. Cosmic radiation can produce cosmogenic nuclides in bedrock and boulders. The production takes place in the uppermost ~2 m of rock and decreases exponentially with depth. B. An example where a bedrock surface is overridden by glacial ice which erodes away >2 m of rock and thus all cosmogenic nuclides produced during the previous exposure are eroded away. When the bedrock surface again gets exposed following ice retreat, it is “zeroed” from old nuclides. C. In this example overriding ice erodes <2 m of rock resulting in that following deglaciation the exposed bedrock surface will still contain nuclides from the previous exposure.

valsleys trending from west to east (Figs 1B, 2A). Cosmogenic exposure dating results from boulders sampled on these plateaus (Fig. 2B) are presented in Paper IV.

The main fieldwork area during this project was the Jameson Land peninsula north of Scoresby Sund (Fig. 1C). Here three summer field seasons were spent in 2004-2006. In addition, a one-day helicopter trip took us to the Kap Brewster peninsula, on the southern side and at the very mouth of the fjord. Erratic boulders were sampled on the Kap Brewster Peninsula (Paper I) and samples from both erratics and bedrock were collected from interior Jameson Land (Fig. 2F; Papers II, III).

The Jameson Land Peninsula is composed of Mesozoic sedimentary rocks, mostly sandstone, and has an asymmetric topographic profile. From the interior plateau areas the terrain gently slopes towards Scoresby Sund in the west and south whereas the eastern margin, facing Hurry Fjord, has a steeper gradient (Fig. 1C). On Jameson Land two areas covered with Late Pleistocene sediments have been identified: the ‘older-drift’ on the central plateaus (Fig. 2C) and the ‘younger drift’ on the lowlands along the Scoresby Sund coast (Fig. 1C; Möller et al., 1994; Ronnert & Nyborg, 1994). Between these two sediment covered regions the sandstone landscape is highly weathered, exhibiting blockfields and well-developed tors (Figs 2D, E).
3. Cosmogenic nuclides

3.1 History

Already in the 1950’s it was proposed by Davies & Schaffer (1955) that cosmogenic isotopes produced within minerals could be applied to geological problems. At that time all studies of the interactions between cosmic rays and minerals were restricted to meteorites because production rates in terrestrial rocks were much too low for the analytical instrumentation available. Until the early 1980’s and the development of accelerator mass spectrometry (AMS) the studies of cosmogenic isotopes produced in terrestrial rocks stayed on a theoretical level (Lal & Peters, 1967). With AMS it finally became possible to measure even the extremely low concentrations of cosmic ray-derived isotopes within rocks from the surface of the Earth. Since the first studies demonstrating the usefulness of AMS for routine measurements of cosmogenic nuclides (Nishiizumi et al., 1986; Phillips et al., 1986), the use of cosmogenic nuclides to earth science related problems has increased significantly and this method is still continuously developing. One of the more common general applications to this technique has been to use the cosmogenic nuclide concentrations in a particular rock surface to estimate the time it has been exposed to cosmic radiation, so called cosmogenic exposure dating. If we can assume that a surface is related to a specific geologic event (e.g. a glaciation), then cosmogenic exposure dating provides means of directly dating this event.

3.2 Theory

Cosmic ray particles entering the Earth’s atmosphere produce a cascade of secondary radiation, which in turn can produce cosmogenic nuclides (e.g. 10Be, 14C, 21Ne, 26Al, 36Cl) in the atmosphere but also within minerals in the uppermost ~2 m of the lithosphere, so called terrestrial cosmogenic nuclides (Fig. 3A; Gosse & Phillips, 2001). The cosmic ray intensity is significantly reduced closer to the surface of the Earth which causes nuclide production rates to be much lower in rocks compared to the production rates in the atmosphere. Neutrons are those secondary cosmic ray particles responsible for the larger part of the production of terrestrial cosmogenic nuclides. A small fraction of the production is, however, caused by protons and muons.

For cosmogenic exposure dating purposes the most commonly used terrestrial cosmogenic nuclides are 10Be and 26Al, which are often measured in quartz separates. There are several reasons for choosing quartz; it has a simple structure, is widely distributed in rocks at the surface of the Earth and 10Be and 26Al production rates are high within quartz. It is also a relatively resistant mineral and thus easy to separate from other minerals using selective mineral dissolution with dilute acids (Kohl & Nishiizumi, 1992).

The rate at which cosmogenic isotopes are produced in the lithosphere is a function of altitude, latitude and time. The cosmic ray flux increases with higher altitude as air pressure and the shielding effect of the atmosphere decrease. At low latitudes the geomagnetic field will repel more incoming cosmic radiation, resulting in lower production rates compared to areas closer to the poles. In addition, changes in the geomagnetic field intensity will influence cosmic ray flux at low latitudes through time, but can be ignored for high latitudes. However, changes in air pressure over longer time periods might influence production rates on all latitudes. Such changes might be caused by the redistribution of high and low pressure systems due to climatic changes.

Cosmogenic exposure dating depends on correct determination of production rates. At any particular sampling site, two parameters are required to calculate the site specific production rate: (i) a scaling scheme describing the variation in production rates with time, elevation and latitude and, (ii) a reference production rate that is usually taken at present time,
sea level and high geomagnetic latitude. Several different scaling schemes have been suggested for the normalization of data to sea level exposure at high latitudes (Lal, 1991; Stone, 2000; Dunai, 2001; Lifton et al., 2005; Desilets et al., 2006). The most commonly used scaling scheme is the one first developed by Lal (1991) and later modified by Stone (2000), which is also used in this study.

3.3 Cosmogenic exposure dating

The calculation of nuclide exposure ages based on a single nuclide, e.g. 10Be, relies on the assumptions that the sampled surface has, (i) been constantly exposed and lacks inherited isotopes from previous exposures (requiring at least ~2 m of glacial erosion, Davis et al., 1999; Briner et al., 2006) and, (ii) experienced only minimal postdepositional erosion. These requirements will be fulfilled for most scoured bedrock surfaces and erratics in settings where substantial glacial erosion (>2 m) have taken place (Fig. 3B). Also, the texture of a surface (e.g. glacial striations) can provide strong evidence for negligible postdepositional erosion. Under these ideal circumstances a single nuclide may define the actual exposure age of a surface. However, in many cases the nuclide concentrations will reflect at least two variables; exposure and erosion. In terrain that has been covered by cold-based ice, or ice eroding <2m (Fig. 3C) nuclide concentrations might, in addition, reflect a third variable and that is shielding from cosmic radiation for substantial periods of time.

By measuring two radionuclides with different half-lives in the same sample, e.g. 10Be and 26Al, complex exposure/erosion/shielding histories can be constrained. Normally, the 26Al/10Be ratio is plotted against the logarithm of measured 10Be concentration (Fig. 4: Lal, 1991; Bierman et al., 1999; Gosse & Phillips, 2001). The 26Al/10Be ratio of a particular sample can plot in four areas in this diagram, all describing different sample histories which is shown graphically in Figure 4 and explained below.

I. Samples which have experienced constant exposure with no erosion will plot on the “constant exposure curve”. In a continuously exposed surface 10Be and 26Al will be produced at a constant ratio (26Al/10Be=6.1). If a surface is exposed for long enough (>100 ka), then the faster decay of 26Al (half-life of 700 ka) relative to 10Be (half-life of 1.3 Ma; Fink & Smith, 2007) will lead to a gradual decrease in the 26Al/10Be ratio which is reflected in the ‘banana-shape’ of the constant exposure curve in Figure 4A. Examples are shown for where on the constant exposure curve a sample would plot if it has been exposed for 100, 400 or 800 ka, respectively (Fig. 4A). Saturation is reached at the endpoint of this curve, which means that the production of 10Be and 26Al equals the loss of radionuclides through decay.

II. Any constantly exposed eroding surface will plot within the so-called “steady state erosion island” (Lal, 1991). If a sample has experienced constant, gradual and continuous erosion, then it would plot on the curve for the specific erosion rate. Figure 4A shows examples of erosion curves for three different erosion rates (e=1, 3 and 10 mm ka$^{-1}$). In an eroding surface, saturation will be reached at lower nuclide concentrations as shown by the end-points of erosion curves. The lower boundary of the erosion island, shown with a dashed line, represents the continuum of erosion end points resulting from a range of possible erosion rates.

III. Samples plotting below the “steady-state erosion island” indicate that exposure has been interrupted by one or several shielding events. If the surface gets partly or entirely shielded from cosmic radiation, e.g. by non-erosive ice, then this will lead to a decrease in the 26Al/10Be ratio due to the faster decay of 26Al relative to 10Be. When a surface gets exposed again the 26Al/10Be ratio will increase. The distance below the “steady-state erosion island” is proportional to the duration of shielding. Bierman et al. (1999) described three classes of complex exposure
Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

histories and examples of these are shown in Figure 4B: The red line (1) shows continuous surface exposure without erosion for ~100 ka, followed by ~400 ka of burial by sufficiently thick ice or sediment. The blue zigzagged curve (2) shows how nuclide concentrations can evolve in a sample which had repeated periods of burial and exposure. The amplitude of this curve will be controlled by the duration of each exposure and burial period. The shaded area (3) shows exposure under cover, implying that a surface was only partly shielded from cosmic radiation by, e.g., sediment, snow or thin ice. The “steady-state erosion island” will be displaced to the left in the diagram as the shielding increases.

IV. Samples with 26Al/10Be ratios higher than the production ratio of 6.1 will plot above the “constant exposure curve” and can not be explained by any combination of exposure, erosion and shielding. Such high ratios might be due to problems during preparation or AMS measurement. It seems to be more common for samples with young exposure ages to plot above the constant erosion curve. This might be because low nuclide concentrations will be more sensitive to process blank correction. As an example, if the Be-blank was too high or the Al-blank too low, then this might have a disproportionate effect on the 26Al/10Be ratios, driving them upward on the plot.

Where a rock or boulder surface has been shielded from cosmic radiation for long periods (a total of ~200 ka or longer), the 10Be and 26Al concentrations can be used to calculate a minimum total exposure and total burial duration in accordance to the red line in Figure 4B. An important limitation with this approach is that the 26Al/10Be ratios do not evolve significantly during shorter periods (tens of thousands of years) and thus shorter periods of cold-based ice cover can not be resolved by this approach.

4. Results: summary of papers

Several researchers have contributed to this project. Those who have been involved in data contribution and preparation of the manuscripts appear as authors on Paper I-IV. Contributions are summarized in Table 1.
the presence of ice on the Jameson Land peninsula during the LGM.

4.2 Paper II

Paper II presents \(^{10}\)Be and \(^{26}\)Al results from the weathered sandstone landscapes of interior Jameson Land and aims at testing for the preservation of tors and to investigate if the area was indeed covered by ice during the LGM as indirectly indicated in Paper I. Samples were collected from three different surface types: (i) the top surfaces of tors, (ii) the bottoms of meltwater channels and, (iii) fluvially eroded outcrops adjacent to channels. Isotope concentrations indicate that tors have been preserved through multiple glacial cycles beneath cold-based ice, whereas the average \(^{10}\)Be exposure age of 16.9 ± 2.4 ka on meltwater channels suggests that these
were eroded after the LGM.

It is proposed that the sandstone landscapes on interior Jameson Land evolved by three main processes during at least the last two glacial cycles: (i) during interglacial and interstadial periods of exposure, sandstone surfaces weathered at a rate of ≈10 mm ka\(^{-1}\), (ii) during periods of burial by cold-based ice, weathered rock slabs might have been decoupled from tors by entrainment of cold-based ice and, (iii) during deglaciations, meltwater followed existing fracture systems in the sandstone and eroded areas between tors by >2 m. Paper II presents evidence for that Jameson Land was at least partly covered by cold-based ice during the LGM, but it does not conclude whether this ice was local or dynamically connected to the Greenland Ice Sheet.

4.3 Paper III

Håkansson, L., Alexanderson, H., Hjort, C., Möller, P., Briner, J., Aldahan, A., Possnert, G. The late Pleistocene glacial history of Jameson Land, central East Greenland, derived from cosmogenic \(^{10}\)Be and \(^{26}\)Al exposure dating Submitted to Boreas.

The main objective of Paper III is to test whether or not the Greenland Ice Sheet covered Jameson land during the LGM, by using cosmogenic \(^{10}\)Be and \(^{26}\)Al exposure dating on erratics sampled from the central parts of the peninsula. \(^{10}\)Be-ages from a total of 44 erratics, resting both on weathered sandstone and sediment-covered surfaces, range between 10.7 and 262.1 ka. Eight erratics from weathered sandstone and till surfaces cluster around 70 ka whereas \(^{10}\)Be-ages from glaciofluvial landforms are substantially younger and range between 10.7 and 46.6 ka. Deflation is thought to be an important process on the sediment covered surfaces and the youngest exposure ages from such settings are suggested to result from exhumation. The older (>70 ka) samples have discordant \(^{26}\)Al and \(^{10}\)Be data and are interpreted to have been deposited by the Greenland Ice Sheet several glacial cycles ago. The younger exposure ages (≤70 ka) are interpreted to represent deposition by a Late Saalian Greenland Ice Sheet advance but also by an early Weichselian advance from a local Liverpool Land-based ice-cap. The exposure ages younger than Saalian are explained by periods of shielding by cold-based ice during the Weichselian.

Paper III supports previous studies in that the Saalian ice sheet advance was the last to deposit thick sediment sequences and western erratics on interior Jameson Land. However, instead of Jameson Land being ice-free throughout the Weichselian it is documented that local cold-based ice covered and shielded large areas for substantial periods during the last glacial cycle.

4.4 Paper IV

The aim of Paper IV is to test whether or not the Store Koldewey island on the outer coast of Northeast Greenland was overridden by the Greenland Ice Sheet during the LGM. A total of seven samples for cosmogenic exposure dating were collected from weathered bedrock and boulders on the summit plateau of the island and from a moraine ridge on the glacially scoured lowland adjacent to the fjord. Among the samples from the summit plateaus, the two southernmost boulders give young exposure ages (11.5 ± 0.7 and 14.6 ± 0.8 ka), in contrast to the rest of the boulders (27.6 ± 1.6 and 79.1 ± 3.1 ka). Samples from weathered bedrock also give older ages (42.2 ± 2.2 ka and 147.1 ± 5.0 ka). A sampled boulder from the moraine ridge yields a \(^{10}\)Be exposure age of 13.1 ± 0.9 ka.

Based on these exposure ages, Paper IV suggests that unsoured mountain plateaus at the outer coast in Northeast Greenland were covered, at least partly, by cold-based ice during the LGM. Because the dataset is small and all sampled boulders consist
the mouth of the Scoresby Sund trough reaching at least 250 m a.s.l., thus implying that the LGM ice margin reached further out on the continental shelf than has hitherto been assumed. It is also suggested that active ice in the fjord during the LGM may have been buttressed to the north by cold-based ice, thus giving indirect evidence for the presence of ice on the Jameson Land peninsula. Presented in Paper II, LGM exposure ages of meltwater channels on interior Jameson Land indeed show the presence of cold-based ice. In addition, Paper III presents exposure ages of erratics showing no indications of material transport by the Greenland Ice Sheet onto interior Jameson Land during the LGM. From these three lines of evidence a LGM scenario evolves for the Scoresby Sund area where local, mostly cold-based, ice-caps covered Jameson Land and coalesced with active ice in Scoresby Sund.

Paper IV presents exposure ages from the Store Koldewey island ~650 km further to the north, at the northernmost end of the fjord zone and tests for the regionality of the scenario presented for the Scoresby Sund area (Papers I-III). The exposure age results from Store Koldewey do indeed suggest that also interfjord plateaus in the northernmost part of the fjord zone were covered by cold-based ice. It is however, not concluded in Paper IV whether or not ice was dynamically connected to the Greenland Ice Sheet.

At Store Koldewey and further to the north the shelf is unusually broad and shallow and the modern ice sheet margin is commonly situated at sea level, whereas further to the south in the fjord zone the present ice sheet margin is fringed by high mountains (Fig. 1A). Based on a regional synthesis of the Greenland margin, Bennike & Björck (2002) suggested that these differences in the landscape might have allowed the LGM ice sheet to expand much further out on the shelf north of the fjord zone compared to in the fjord zone. This N-S gradient in glacial style would imply that ice at the outer coast was thicker around Store Koldewey and north thereof compared to Scoresby Sund, which opens up for the possibility that the Greenland Ice Sheet indeed expanded beyond Store Koldewey during of local bedrock, it is, however, left open whether the ice here was dynamically connected to the Greenland Ice Sheet or not. Regardless of the LGM ice sheet extent, this paper adds to a growing body of evidence suggesting considerable antiquity of crystalline unscoured terrain proximal to great ice sheets.

5. Discussion

5.1 Rethinking the extent and dynamics of the Greenland Ice Sheet during the LGM

In the Scoresby Sund area cosmogenic exposure dating results have contributed with three lines of evidence for testing the two contrasting hypotheses presented for the LGM extent of the ice sheet in the Northeast Greenland fjord zone (Papers I-III). The first piece in this jigsaw puzzle was presented in Paper I, which shows evidence for active ice at

Figure 5. Degradation of unconsolidated landforms occurs as fine grained matrix is transported down slope by the action of wind, water and creep. Clasts initially exposed at the surface of the fresh landform are illustrated by black circles whereas clasts deposited within the landform are grey. As the landform degrades clasts are exhumed at the surface. Exhumed clasts will give anomalously young exposure ages.

the LGM. On the southernmost summit plateau of Store Koldewey, closest to the outlet of the Dove Bugt embayment (Fig. 1A), two boulders show apparent exposure ages compatible with the LGM deglaciation, whereas boulders with older exposure ages are situated further to the north (Paper IV). If interpreting the southernmost boulders as deposited by the ice sheet, then a scenario could be suggested where active ice from the Greenland Ice Sheet filled up the Dove Bugt embayment and was buttressed by local cold-based ice on the Store Koldewey plateaus. However, at the outlet of the embayment where active ice was no longer channelized between high mountains, the ice flow would diverge and this could result in glacial transport of erratics onto the very southernmost part of the island. In line with this reasoning the position of boulders with apparent exposure ages compatible with the LGM deglaciation at ~600 m would indicate the thickness of active ice at the outlet of the Dove Bugt embayment.

The work presented in this thesis suggests a topographically controlled configuration of the northeastern sector of the Greenland Ice Sheet. Based on the cosmogenic exposure dating efforts alone, the exact ice marginal position on the continental shelf can not be constrained. However, I hypothesize that relatively fast-flowing ice draining the ice sheet was channelized in cross-shelf troughs and was thus capable of reaching further out on the shelf compared to the local cold-based ice-caps on interfjord areas which would have had steeper surface gradients.

5.2 Methodological considerations

Recently, many studies have shown the importance of considering surface lowering of landforms for interpreting cosmogenic exposure age on drift, especially on old (pre-LGM) features. Putkonen & O’Neil (2006) proposed that degradation universally affects all sloping unconsolidated landforms and in a case study from southernmost South America, Kaplan et al. (2007) show that apparent exposure ages from erratics are much younger than the landforms that they rest upon. Cobble and boulders can be exhumed from the surface of unconsolidated landforms as fine grained matrix is transported down slope by the action of wind, water and creep (Putkonen & Swanson, 2003). These processes might lead to that cobbles and boulders will not get exposed at the sediment surface until long after their deposition, which in turn will lead to anomalously young exposure ages (Fig. 5; Putkonen & Swanson, 2003).

The above mentioned studies have major implications for the application of cosmogenic exposure dating to an area like interior Jameson Land, which is to a large extent covered by pre-Weichselian sediments. Paper III suggests that wind erosion is one of the most important surface lowering processes acting on unconsolidated landforms on Jameson Land. This is based on the existence of extensive deflation surfaces on sediment covered plateaus and the accumulation of sand dunes in sheltered positions (Adrielsson & Alexanderson, 2005). Stormy conditions during periods of the last glacial cycle are further indicated by dust in the Renland ice core (Fig. 1; Johnsen et al., 1992). Based on the cosmogenic exposure dating results from the ‘older drift’-covered areas on interior Jameson Land (Paper III) it is stressed that deflation is an important process to consider when applying exposure dating to clasts on sandy unconsolidated landforms elsewhere in the Arctic.

6. Conclusions

In this thesis I suggest that during the LGM, local cold-based ice-caps covered and preserved weathered interfjord plateaus in the Northeast Greenland fjord zone whereas fjord troughs were filled up with dynamic ice draining the Greenland Ice Sheet. In Scoresby Sund and probably also in the Dove Bugt embayment, the active ice was so thick
that it must have been buttressed by cold-based ice on interfjord plateaus. This scenario further implies ice streams thick enough to reach at least 250 m a.s.l. at the mouth of Scoresby Sund and ~600 m a.s.l. at the outlet of the Dove Bugt embayment.

The work presented here demonstrates that throughout the Northeast Greenland fjord zone the LGM ice limits were substantially more extensive than defined by earlier land-based work but that there was a N-S gradient in glacial style presumably reflecting regional differences in the topography of the coastal areas.

7. Ideas for future research

Taken together, my work applying cosmogenic exposure dating to differentially weathered landscapes in the Northeast Greenland fjord zone has provided insights into the dynamic behavior of the northeastern sector of the Greenland Ice Sheet during the LGM. The regionality of these results could be further investigated by applying this approach to other weathered interfjord plateaus in Northeast Greenland. This would be of particular importance for further constraining whether the Greenland Ice Sheet indeed overrode some coastal plateaus in the northernmost part of the fjord zone. Furthermore, an important focus would be to further investigate the LGM ice marginal position on the continental shelf.

8. Acknowledgements

First of all, I would like to thank my main PhD-advisor Christian Hjort for introducing me to the exiting field of polar research and for supporting me and sharing his extensive knowledge and experience from East Greenland. I also want to thank my co-advisors Per Möller, Svante Björck, Raimund Muscheler and Johan Kleman for their assistance and support.

I am deeply grateful for all the help and support that I have got from Jason Briner at the Geology Department in Buffalo, NY. Thank you for your never-ending enthusiasm and interest in my work and for introducing me to your amazing lab! I also want to acknowledge all the people in the Paleoclimate Lab in Buffalo and especially Elizabeth, Dale, Nic and Yarrow for being such a great team.

I want to thank everybody at the Quaternary Department in Lund and especially Lena Adrielsson and Nicolaj Krog Larsen for many constructive and inspiring discussions.

I also want to thank Anders Schomacker, Helena Alexanderson, Maria Jensen, and Lena Adrielsson (again), not only for being such great colleagues but also for making my life during the last four years so much easier.

I had the pleasure of spending a great field season on Store Koldewey in 2003 with Ole Bennike, Holger Cremer, Nadja Hultzsch, Martin Klug, Svenja Kobabe and Berndt Wagner. Thank you!

The research presented here was generously funded by the following grants: Helge Ax:son Johnsons Foundation, Swedish Society of Anthropology and Geography, Kungliga Fysiografiska Sällskapet, Kungliga Vetenskapsakademien, Kurt and Alice Wallenbergs Foundation, NorFa and the Japetus Steenstrup Foundation.

Special thanks go to my family and friends for their support, especially to Sanna and Anja for always being there for me and to Staffan for being so patient and for believing in me.

9. Swedish summary

Senpleistocen nedisningshistoria på Nordöstgrönland: kosmogen exponeringsdatering, isutbredning och isdynamik

Under den senaste istiden var periodvis stora delar av landmassorna på norra halvklotet istäckta. Idag är den Grönländska inlandsisen den enda
Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

större återstoden av detta, men likväl binder den tillsammans med isen i Antarktis och jordens mindre glaciärer väldigt stora mängder vatten. Förändringar i dessa isars utbredning och volym kan få mycket stora konsekvenser för den globala miljön och för balansen i klimal. Att undersöka spåren från den Grönländska Inlandsisens forntid är därför en viktig del i att skapa en ökad kunskap om istidscyklernas klimatförhållanden som i sin tur kan bidra till en bättre förståelse för vad som är på väg att hända med våra polarisar idag.

Dagens kunskap om Östgrönlands nedisnings-historia bygger på de omfattande studier som utförts framför allt under de senaste decennierna. Det råder dock fortfarande delade meningar om Inlandsisens utbredning och om förekomsten av isfria områden under det senaste globala nedisningsmaximat för ca 20 000 år sedan. Resultat från undersökningar på land tyder på att stora delar av de idag isfria landområdena också varit fria från is under hela den senaste istiden. Uppfattningen om en begränsad glaciation under denna tidsperiod står dock i kontrast till resultat från maringeologiska undersökningar vilka tolkas som att isens underlag har varit mycket mer utsträckt än vad som är nätt hela vägen ut till kontinentalsockeln under det senaste nedisningsmaximatet.

Inom mitt avhandlingsarbete har jag velat testa hypoteserna om den Grönländska inlandsisens utbredning genom en omfattande dateringsatsning baserad på analys av kosmogena isotoper (\(^{10}\)Be och \(^{26}\)Al) i berggrund och flyttblock, s.k. kosmogen exponeringsdatering. Nedan följer en beskrivning av denna metodik.

Vår jord utsätts för en ständig dusch av kosmisk strålning, till största delen neutroner och protoner med tillräckligt stor energi för att orsaka kärnreaktioner då de kolliderar med andra partiklar. Vid dessa kärnreaktioner kan kosmogena isotoper bildas. Produktionen sker i huvudsak uppe i atmosfären men förekommer även i berggrundens översta två meter, orsakad av den kosmiska strålning som när jordens yta. Då en bergya täcks av ett tillräckligt tjockt lager is, snö, sediment eller vatten upphör denna produktion. Dessutom medför sönderfall av de radioaktiva isotoperna, samt erosion av berget, att koncentrationen av redan ackumulerade isotoper minskar. Om erosionen från en täckande is varit tillräcklig (mer än 2 meter) så kommer isens underlag att bli ”nollställd” från gamla isotoper. Om isen däremot inte har eroderat fullt så mycket, eller kanske inte alls, så kommer den bergya som exponeras efter isens tillbakadrängande att innehålla ”ärvda” isotoper från tidigare exponeringsperioder. När isen drar sig tillbaka och bergytter exponeras igen, fortsätter produktionen av kosmogena isotoper. Om man analyserar innehållet av kosmogena isotoper i en yta som sen ”nollställt” får man en uppskattnings av hur lång tid som gått sedan området blev isfritt och metodiken fungerar som en absolut dateringsteknik. För en yta som inte blivit ”nollställd” ger analysen av två olika radioaktiva isotoper med olika sönderfallshastigheter (oftast \(^{10}\)Be och \(^{26}\)Al) inte någon absolut ålder, men kan däremot påvisa huruvida en bergya under upprepade perioder har varit omväxlande exponerad och överväxt av icke-eroderande glaciär-is.

Senare års utveckling av tekniken att analysera kosmogena isotoper som ackumulerats i litosfären har öppnat nya möjligheter för att testa de motsägelsefulla hypoteserna om den Grönländska inlandsisens utbredning i tid och rum samt förekomsten av isfria områden under den senaste nedisningen. Genom att provta och analysera både berggrund och flyttblock på de starkt förvittrade högländerna och de kustnära lågländerna i den Nordöstgrönländska fjordzonen är det alltså nu möjligt att utforska både Inlandsisens utbredning, och dess eroderande, alternativt landskapsbevarande karaktär. Analyser av flyttblocken gör det möjligt att avgöra när en dynamisk och materialtransporterande is satt var så stor att den täckte dessa områden. Berggrundsproverna kan visa om de starkt förvittrade ytorna bevarats under upprepade perioder av överväxt av kallbaserad, mer passiv is eller om vittringen är ett resultat av att dessa områden var isfria under senaste nedisningen.

Detta tillvägagångssätt har lett till en ny och mer dynamisk bild av den Grönländska inlandsisen

References

Fink, D. & Smith, A. 2007: An inter-comparison of 10Be and 26Al AMS reference standards and the
Glacial history of Northeast Greenland: cosmogenic nuclide constraints on chronology and ice dynamics

Hjort, C. 1979: Glaciation in northern East Greenland during the Late Weichselian and Early Flandrian. Boreas 8, 281-296.
Ives, J. D. 1966: Blockfields, associated weathering forms on mountain tops and the nunatak hypothesis. Geografiska Annaler 48A, 220-223
MacLean, B., Williams, G.L., Jennings, A.E. &