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CONTROL AND EMBEDDED COMPUTING: SURVEY OF
RESEARCH DIRECTIONS
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Abstract: This paper provides a survey of the role of feedback control in embedded real-
time systems, presented in the context of ARTIST2, the EU/IST network of excellence on
design of embedded systems. The survey highlights recent research efforts and future research
directions in the areas of codesign of computer-based control systems, implementation-aware
embedded control systems, and control of real-time computing systems.Copyright c2005
IFAC

Keywords: computer control, embedded systems, computer systems

1. INTRODUCTION

The current pervasive and ubiquitous computing trend
has increased the emphasis on embedded and net-
worked computing within the engineering commu-
nity. Already today, embedded computers by far out-
number desktop computers. Embedded systems are
often found in consumer products and are therefore
subject to hard economic constraints. Some exam-
ples are automotive systems and mobile phones. The
pervasive nature of these systems generates further
constraints on physical size and power consumption.
These product-level constraints give rise to resource
constraints on the computing platform level, for ex-
ample, limitations on computing speed, memory size,
and communication bandwidth. Due to economic con-
siderations, this is true in spite of the fast development
of computing hardware. In many cases, it is not eco-
nomically justified to add an additional CPU or to use
a processor with more capacity than what is required
by the application. Cost also favors general-purpose
computing components over specially designed hard-
ware and software solutions.

Although in many application areas embedded sys-
tems are becoming smaller and smaller, there are also
other examples in which the requirements on func-
tionality of embedded systems increases substantially.
The resulting complexity, in particular on the soft-

ware side, makes it necessary to employ implemen-
tation techniques normally not associated with em-
bedded systems. Object-oriented programming lan-
guages such as Java and C# and distributed middle-
ware such as CORBA are increasingly being consid-
ered for embedded applications. One example is the
Golden Gate project where Real-Time Java in the form
of RTSJ (Real-Time Specification for Java) will be
used for the implementation of the next autonomous
Mars rover (Dvoraket al., 2004).

Control systems constitute an important subclass of
embedded computing systems. So important that, for
example, within automotive systems, computers com-
monly go under the name electronic control units
(ECUs). A top-level modern car contains more than
50 ECUs of varying complexity. A majority of these
implement different feedback control tasks, for in-
stance, engine control, traction control, anti-lock brak-
ing, active stability control, cruise control, and climate
control.

Even fairly simple computer-based control systems
are becoming increasingly complex from both the
control and computer science perspectives. Today,
even small embedded control systems often contain a
multitasking real-time kernel and support networking.
Many computer-controlled systems are distributed,
consisting of computer nodes and a communication
network connecting the various systems. It is not un-



common for the sensor, actuator, and control calcu-
lations to reside on different nodes. This gives rise
to networked control loops. Within individual nodes,
controllers are often implemented as one or several
tasks on a microprocessor with a real-time operat-
ing system. Often, the microprocessor also contains
tasks for other functions, such as communication and
user interfaces. The operating system typically uses
multiprogramming to multiplex the execution of the
various tasks. The CPU time and the communication
bandwidth can hence be viewed as shared resources
for which the tasks compete.

At the same as control systems is an important ap-
plication class of embedded systems, feedback con-
trol is also an important basic technology that can
be employed in the design of embedded real-time
systems. Over time applications of real-time comput-
ing have gradually evolved from closed embedded
systems to complex, distributed open heterogeneous
platforms operating in unpredictable poorly modeled
environments such as, e.g., the Internet and, in the
case of sensor networks, the physical world. Hard
guarantees are impractical on such platforms since
load and resource capacities are very difficult to pre-
dict. Yet, many modern applications require some
form of performance assurances, which may include
guarantees on timeliness, bandwidth, data consistency,
or jitter. Traditional approaches for providing these
performances, such as resource pre-allocation and a
priori knowledge of worst case execution conditions
are no longer applicable. Feedback control is a well-
established and mathematically well-founded theory
that is ideal for handling uncertainties. Using control-
based approaches for modeling, analysis, and design
of real-time computing systems is currently receiving
increased attention as a promising foundation for con-
trolling the uncertainty in large and complex real-time
systems. The approach is sometimes called feedback
scheduling. Areas that currently are being investigated
are dynamic models of real-time computing systems
and control of timing behavior, e.g., delays.

The aim of this paper is provide a survey of the
role of feedback control in embedded real-time sys-
tems. The background for the survey is the recently
started EU/IST Network of Excellence ARTIST2 (see
http://www.artist-embedded.org/FP6/Overview)on de-
sign of embedded systems in which control and em-
bedded systems is one of the clusters. The aim of
the survey is to highlight the relevant research direc-
tions in the areas of codesign of computer-based con-
trol systems, implementation-aware embedded control
systems, and control of real-time computing systems.

Outline of the paper

The codesign problem is discussed in Section 2. Tem-
poral determinism in control is discussed in Section
3. Section 4 discusses two alternative approaches to

control system design, the hard real-time approach
and the soft control approach. Codesign tools that al-
low the designer to analyze and simulate how control
loop timing affects control performance are the topic
of Section 5. Special emphasis is given to the True-
Time and Jitterbug tools. Section 6 discusses feed-
back scheduling with a special emphasis on feedback
scheduling of control tasks. Finally, in Section 7 the
most important research directions within the field are
identified.

2. THE CODESIGN PROBLEM

By tradition, the design of computer-based control
systems is based on the principle ofseparation of con-
cerns. This separation is based on the assumption that
feedback controllers can be modeled and implemented
as periodic tasks that have a fixed period,T, a known
worst-case bound on the execution time (WCET),C,
and ahard deadline, D. The latter implies that it is
imperative that the tasks always meet their deadlines,
i.e., that the actual execution time (response time) is
always less or equal to the deadline, for each invoca-
tion of the task. This is in contrast to asoft deadline,
that may occasionally be violated. The fixed-period
assumption of the simple task model has also been
widely adopted by the control community and has
resulted in the development of the sampled computer-
control theory with its assumption on deterministic,
equidistant sampling. The separation of concerns has
allowed the control community to focus on the pure
control design without having to worry about how
the control system eventually is implemented. At the
same time, it has allowed the real-time computing
community to focus on development of scheduling
theory and computational models that guarantee that
hard deadlines are met, without any need to under-
stand what impact scheduling has on the stability and
performance of the plant under control.

Historically, the separated development of control and
scheduling theories for computer-based control sys-
tems has produced many useful results and served its
purpose well. However, the separation has also had
negative effects. The two communities have partly be-
come alienated. The assumptions of the simple model
are also overly restrictive with respect to the charac-
teristics of many control loops. Many control loops
are not periodic, or they may switch between a num-
ber of different fixed sampling periods. Control loop
deadlines are not always hard. On the contrary, many
controllers are quite robust to variations in sampling
period and response time. Hence, it is questionable
whether it is necessary to model them as hard-deadline
tasks.

The main drawbacks with the separations of concerns
are that it does not always utilize the available com-
puting resources in an optimal way, and that it some-
times gives rise to worse control performance than



what can be achieved if the design of the control and
real-time computing parts are integrated. This is par-
ticularly important for embedded control applications
with limited computing and communication resources,
with demanding performance specifications and high
requirements on flexibility. For these types of applica-
tions, better performance can be achieved if a code-
sign approach is adopted where the control system is
designed taking the resource constraints into account
and where the real-time computing and scheduling is
designed with the control performance in mind. The
resulting implementation-aware control systemsare
better suited to meet the requirements of embedded
and networked applications.

The control and scheduling codesign problemcan
be informally stated as follows (in the uniprocessor
case): “Given a set of processes to be controlled and
a computer with limited computational resources, de-
sign a set of controllers and schedule them as real-
time tasks such that the overall control performance is
optimized.” An alternative view of the same problem
is to say that we should design and schedule a set of
controllers such that the least expensive implemen-
tation platform can be used while still meeting the
performance specifications. For distributed systems,
the scheduling is extended to also include the network
communication.

The nature and the degree of difficulty of the codesign
problem for a given system depend on a number of
factors:

� The real-time operating system.What scheduling
algorithms are supported? How is I/O handled?
Can the real-time kernel measure task execution
times and detect execution overruns and missed
deadlines?

� The scheduling algorithm.Is it time-driven or
event-driven, priority-driven or deadline-driven?
What analytical results regarding schedulability
and response times are available? What schedul-
ing parameters can be changed on-line? How are
task overruns handled?

� The controller synthesis method.What design
criteria are used? Are the controllers designed in
the continuous-time domain and then discretized
or is direct discrete design used? Are the con-
trollers designed to be robust against timing vari-
ations? Should they actively compensate for tim-
ing variations?

� The execution-time characteristics of the control
algorithms.Do the algorithms have predictable
worst-case execution times? Are there large vari-
ations in execution time from sample to sample?
Do the controllers switch between different inter-
nal modes with different execution-time profiles?

� Off-line or on-line optimization.What informa-
tion is available for the off-line design and how
accurate is it? What can be measured on-line?
Should the system be able to handle the arrival
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Fig. 1. Controller timing.

of new tasks? Should the system be re-optimized
when the workload changes? Should there be
feedback from the control performance to the
scheduling algorithm?

� The network communication.Which type of net-
work protocol is used? Can the protocol provide
worst-case guarantees on the network latency?
How large is the probability of lost packets?

Codesign of control and computing systems is not a
new topic. Control applications were one of the major
driving forces in the early development of computers.
Then, limited computer resources was a general prob-
lem, not only a problem for embedded controllers. For
example, the issues of limited word length, fixed-point
calculations, and the results that this has on resolution
were something that was well-known among control
engineers in the 1970s. However, as computing power
has increased, these issues have received less atten-
tion. A nice survey of the area from the mid 1980s is
(Hanselmann, 1987).

3. TEMPORAL DETERMINISM

Computer-based control theory normally assumes
equidistant sampling and negligible, or constant, input-
output latencies. However, this can seldom be achieved
in practice or is too costly for a particular application.
In a multi-threaded system, tasks interfere witheach
other due to preemption and blocking from task com-
munication. Execution times may be data-dependent
or vary due to the use of caches. In networked control
loops, where the sensors, controllers, and actuators
reside on different physical nodes, the communication
gives rise to latencies that can be more or less de-
terministic, depending on the network protocols used.
The result of all this is jitter in sampling intervals and
non-negligible and varying latencies.

The basic timing parameters of a control task are
shown in Fig. 1. It is assumed that the control task
is released(i.e., inserted into the ready queue of the
real-time operating system) periodically at times given
by tk = hk, whereh is thenominal sampling interval
of the controller. Due to preemption and blocking
from other tasks in the system, the actualstart of
the task may be delayed for some timeLs. This is
called thesampling latencyof the controller. A dy-
namic scheduling policy will introduce variations in
this interval. Thesampling jittercan be quantified by
the difference between the maximum and minimum
sampling latencies in all task instances,
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= max

k
Lk

s�min
k

Lk
s: (1)

Normally, it can be assumed that the minimum sam-
pling latency of a task is zero, in which case we have
Js = maxk Lk

s. Jitter in the sampling latency will also
introduce jitter in the sampling intervalh. The actual
sampling interval in periodk is given by

hk = h�Lk�1
s +Lk

s: (2)

After some computation time and possibly further pre-
emption from other tasks, the controller will actuate
the control signal. The delay from the sampling to the
actuation is called theinput-output latency, denoted
Lio. Varying execution times or task scheduling will
introduce variations in this interval. Theinput-output
jitter can be quantified by

Jio
def
= max

k
Lk

io�min
k

Lk
io: (3)

Control loop timing issues are further discussed in
(Wittenmarket al., 1995; Törngren, 1998).

It is well known that a constant input-output latency
decreases the phase margin of the control system,
and that it introduces a fundamental limitation on
the achievable closed-loop performance. The resulting
sampled-data system is time-invariant and of finite or-
der, which allows standard linear time-invariant (LTI)
analysis to be used (see e.g., (Åström and Witten-
mark, 1997)). For a given value of the latency, it is
easy to predict the performance degradation due to
the delay. Furthermore, it is straightforward to account
for a constant latency in most control design methods.
From this perspective, a constant input-output latency
is preferable over a varying latency.

The scheduling-induced input-output latency of a sin-
gle control task can be reduced by assigning it a
higher priority (or, alternatively, under deadline-based
scheduling, a shorter deadline). This approach will of
course not work for the whole task set. Another option
is to use non-preemptive scheduling. This will guaran-
tee that, once the task has started its execution, it will
continue uninterrupted until the end. The disadvan-
tages of this approach are that the scheduling analysis
for non-preemptive scheduling is quite complicated
(e.g., (Kleinet al., 1993; Stankovicet al., 1998)), and
that the schedulability of the other tasks may be com-
promised. However, as computing speed increases,
and, hence,C�T , it becomes increasingly interesting
to execute tasks with hard deadlines non-preemptively.

A standard way to achieve a short input-output la-
tency in a control task is to separate the algorithm
calculations in two parts:Calculate Outputand Up-
date State. Calculate Output contains only the parts
of the algorithm that make use of the current sample
information. Update State contains the update of the
controller states and precalculations for the next pe-
riod. Update State can therefore be executed after the
output signal transmission, hence, reducing the input-
output latency. Further improvements can be obtained

by scheduling the two parts as subtasks with different
priorities, see (Cervin, 1999).

Another approach is to try to implement the control
system in such a way that the control and schedul-
ing subsystems are isolated, such that scheduling ef-
fects are not affecting control system performance.
In the seminal Liu and Layland paper (Liu and Lay-
land, 1973) on CPU scheduling, it is assumed that
I/O is performed periodically by hardware functions,
introducing a one-sample delay in all control loops
closed over the computer. This scheme does provide a
quite nice separation between scheduling and control
design. From a scheduling perspective, the controller
can be described by a periodic task with a periodT ,
a computation timeC, and a deadlineD = T. From
a control perspective, the controller will have a sam-
pling period ofT and a constant latencyL = T. This
allows the control design and the real-time design to
be carried out in relative isolation. A similar separa-
tion has been suggested in the embedded systems pro-
gramming model Giotto (Henzingeret al., 2003). In
Giotto, I/O and communication are time-triggered and
assumed to take zero time , while the computations in
between are assumed to be scheduled in real-time.

A drawback with the Giotto approach is that a mini-
mum of one sample input-output latency is introduced
in all control loops. Also if the one sample latency is
compensated for in the control design, the achievable
performance is generally worse than what is obtained
with a shorter, albeit time-varying, latency. This prob-
lem is remedied in the Control Server (Cervin and
Eker, 2003). A control server creates the abstraction
of a control task with a specified period and a fixed
input-output latency shorter than the period. Individ-
ual tasks can be combined into more complex com-
ponents without loss of their individual guaranteed
fixed latency properties. I/O occurs at fixed predefined
points in time, at which inputs are read or controller
outputs become visible. The single parameter linking
the scheduling design and the controller design is the
task utilization factor. The proposed server is an ex-
tension of the constant bandwidth server (Abeni and
Buttazzo,1998).

A control system with a time-varying input-output la-
tency is quite difficult to analyze, since the standard
tools for LTI systems cannot be used. If the statistical
properties of the latency are known, then theory from
jump linear systems can be used to evaluate the stabil-
ity and performance of the system (in the mean sense),
see (Nilssonet al., 1998). Often, it is not possible to
have exact knowledge of the input-output latency dis-
tribution. A simple, sufficient stability test for systems
where only the range of the latency is known is given
in (Kao and Lincoln, 2004). Assuming zero sampling
jitter, the test can guarantee stability forany input-
output latencies in a given interval (whether they are
time-varying, dependent, etc).



4. DESIGN APPROACHES

The temporal non-determinism caused by the imple-
mentation platform can be approached in two different
ways: the hard real-time approach or the soft control-
based approach.

The hard real-time approach strives to maximize the
temporal determinism by using special purpose hard-
ware, software, and protocols. This includes tech-
niques such as static cyclic scheduling, time-triggered
computing and communication (Kopetz and Bauer,
2003), synchronous programming languages (Benveniste
and Berry, 1991), and computing models such as
Giotto. This approach has several advantages, spe-
cially for safety-critical applications. For example,
it simplifies attempts at formal verification. The ap-
proach also has drawbacks. The approach has strong
requirements on the availability of realistic worst-case
bounds on resource utilization, something which is
very difficult to obtain in practice. A result of this
could be under-utilization and, possibly, poor control
performance due to too long sampling intervals. The
approach also makes it difficult to use general-purpose
implementation platforms. This is particularly serious,
since it is these systems that have the most advanta-
geous price-performance development.

The soft, control-based approach instead views the
temporal nondeterminism caused by the implementa-
tion platform as an uncertainty or disturbance acting
on the control loop and handles it using control-based
approaches. This can be done using a number of tech-
niques. The simplest way is to rely on the inherent
robustness of feedback. It is well-known that feedback
increases the robustness towards plant variations. The
same holds for variations caused by the implementa-
tion platform, i.e.,temporal robustness. Another ap-
proach to deal with jitter in the control design is to
explicitly design the controller to be robust, i.e., treat
the delay as a parametric uncertainty. Many robust
design methods are available, such asH∞, quantitative
feedback theory (QFT), andµ-design. The majority of
these methods are developed for plant uncertainties.
Although parts of the results carry over to temporal
robustness it is likely that there is room for much more
research here.

It is also possible to let the controller actively compen-
sate for the delay in each sample. This can be com-
pared to traditional gain-scheduling and feedforward
from disturbances. An optimal, jitter-compensating
controller was developed in (Nilssonet al., 1998). The
controller compensates for time-varying delays in a
control loop, which is closed over a communication
network. The setup is shown in Fig. 2. The sensor
node samples the process periodically, sending the
measurements over the network to the controller node.
The controller node is event-driven and computes a
new control signal as soon as a measurement arrives.
The control signal is sent to the event-driven actuator

Actuator
node Process Sensor

node

Controller
node

Network

h

τk
scτk

ca

u(t) y(t)

Fig. 2. Distributed digital control system with network
communication delaysτk

sc andτk
ca.

node, which outputs the signal to the process. The LQ
(linear-quadratic) state feedback control law has the
form

u(k) =�L(τk
sc)

�
x(k)

u(k�1)

�
; (4)

where the feedback gainL depends on the sensor-to-
controller delayτk

sc in the current sample. The com-
putation of the gain vectorL is quite involved and
requires that the probability distributions ofτsc andτca

are known. The state feedback can be combined with
an optimal state observer that takes the actual delays
into account.

The above approach cannot be directly applied to
scheduling-induced delays. The problem is that the
delay in the current sample will not be known until
the task has finished, and by then it is too late to
compensate. A simple scheme that compensates for
delay in the previous sample is presented in (Lincoln,
2002). The compensator has the same basic structure
as the well-known Smith predictor, but allows for a
time-varying delay.

Many other heuristic jitter compensation schemes
have been suggested, e.g., (Hägglund, 1992; Albertos
and Crespo, 1999; Martiet al., 2001). The approaches
have in common that they require language and/or
operating system support for instrumenting an appli-
cation with measurement code.

In order to fully apply these techniques it is neces-
sary to increase the understanding of how temporal
nondeterminism affects control performance. This re-
quires new theory and tools that are now beginning to
emerge. An important issue that still is lacking is the-
ory that allows us to determine which level of temporal
determinism that a given control loop really requires in
order to meet given control objectives on stability and
performance. Is it necessary to use a time-triggered
approach or will an event-based approach perform
satisfactorily?How large are the input-output latencies
that can be tolerated? Is it OK to now and then skip a
sample in order to maintain the schedulability of the
task set? Ideally one would like to have an index that
decides the required level of temporal determinism
through a single quantitative measure. One possible
name for such an index would be the schedulability
margin. This measure would need to combine both a
margin with respect to input-output latency and jitter



and a margin that decides how large sampling jitter the
loop can tolerate. For constant input-output latencies
the classical phase margin can be applied.

An extension of the classical delay margin to time-
varying delays is proposed in (Cervinet al., 2004).
The jitter marginJm(L) is defined as the largest input-
output jitter for which closed-loop stability is guaran-
teed for any time-varying latency∆ 2 [L;L+ Jm(L)],
whereL is the constant part of the input-output la-
tency. The jitter margin is based on the stability the-
orem defined in (Kao and Lincoln, 2004). The jitter
margin can be used to derive hard deadlines that guar-
antee closed-loop stability, provided that the schedul-
ing method employed can provide bounds on the
worst-case and best-case response times of the con-
troller tasks. What is still missing in order to be able
to define a reasonable analytical concept for a schedu-
lability margin is a simple sampling jitter criterion.
The criterion should ideally tell how large variations
around a nominal sampling interval that the process
could tolerate and still be stable, alternatively maintain
acceptable performance.

In addition to being temporally robust, it is also impor-
tant for a control system to be robust towards faults.
A large amount of theory and methods have been
developed for fault detection, diagnosis, and fault-
tolerance within the control community. However, the
large majority of this work concerns faults that oc-
cur within the plant, sensors, or actuators. As most
software engineers are sadly aware of, faults in the
software system are far more common than in the plant
under control. In spite of this, the amount of work
that considers robustness against these types of faults,
i.e., functional robustness, is very small. In (Gäfvertet
al., 2003) a method is presented that renders a control
system more robust to computer-level faults leading
to data errors. The method is based on the introduc-
tion of artificial signal limits in combination with an
anti-windup scheme. Related to this, in (Askerdalet
al., 2003), a methodology is developed for analyzing
the the impact that these types of data errors have on
control system dependability.

5. CO-DESIGN TOOLS

In order for co-design of control, computing, and com-
munication systems to become feasible, it is neces-
sary to have software tools that allow the designers to
analyze and simulate how timing affects control per-
formance. Such tools have recently begun to emerge,
both from the control and the computing communi-
ties. Most of the available tools are simulation tools.
However, there are also tools that provide analysis of
control performance subject to timing variations or
integrate schedulability analysis with task allocation.

Here, two such tools will be briefly described: Jitter-
bug1 and TrueTime2, together with an overview of
other related tools.

5.1 Jitterbug

Jitterbug (Cervinet al., 2003; Lincoln and Cervin,
2002) is a MATLAB-based toolbox that computes a
quadratic performance criterion for a linear control
system under various timing conditions. Using the
toolbox, one can easily assert how sensitive a control
system is to delay, jitter, lost samples, etc., without
resorting to simulation. The tool is quite general and
can also be used to investigate jitter-compensating
controllers, aperiodic controllers, and multi-rate con-
trollers. The main contributionof the toolbox, which is
built on well-known theory (linear quadratic Gaussian
(LQG) theory and jump linear systems), is to make it
easy to apply this type of stochastic analysis to a wide
range of problems.

Jitterbug offers a collection of MATLAB routines that
allow the user to build and analyze simple timing mod-
els of computer-controlled systems. A control system
is built by connecting a number of continuous- and
discrete-time systems. For each subsystem, optional
noise and cost specifications may be given. In the
simplest case, the discrete-time systems are assumed
to be updated in order during the control period. For
each discrete system, a random delay (described by a
discrete probability density function) can be specified
that must elapse before the next system is updated.
The total cost of the system (summed over all subsys-
tems) is computed algebraically if the timing model
system is periodic or iteratively if the timing model is
aperiodic. A higher value of the cost function typically
indicates that the closed-loop system is less stable
(i.e., more oscillatory), and an infinite cost means that
the control loop is unstable. The cost function can
easily be evaluated for a large set of design parameters
and can be used as a basis for the control and real-time
design.

5.2 TrueTime

TrueTime (Cervinet al., 2003; Henrikssonet al.,
2002a) is a MATLAB/Simulink-based tool that facil-
itates simulation of the temporal behavior of a mul-
titasking real-time kernel executing controller tasks.
The tasks are controllingprocesses that are modeled as
ordinary continuous-time Simulink blocks. TrueTime
also makes it possible to simulate models of standard
MAC layer network protocols, and their influence on
networked control loops.

The main use of TrueTime is for simultaneous sim-
ulation of all aspects of distributed real-time control

1 Available at http://www.control.lth.se/˜lincoln/jitterbug.
2 Available at http://www.control.lth.se/˜dan/truetime.



Fig. 3. The TrueTime block library.

applications. By co-simulation of continuous process
dynamics, task execution in real-time kernels, and
network communication, it is possible to evaluate the
performance of control loops subject to the constraints
of the target system.

In TrueTime, kernel and network Simulink blocks are
introduced, the interfaces of which are shown in Fig-
ure 3. The kernel blocks are event-driven and execute
code that models, e.g., I/O tasks, control algorithms,
and network interfaces. The scheduling policy of the
individual kernel blocks is arbitrary and decided by
the user. Likewise, in the network, messages are sent
and received according to the chosen network model.

The level of simulation detail is also chosen by the
user—it is often neither necessary nor desirable to
simulate code execution on instruction level or net-
work transmissions on bit level. TrueTime allows the
execution time of tasks and the transmission times of
messages to be modeled as constant, random, or data-
dependent. Furthermore, TrueTime allows simulation
of context switching and task synchronization using
events or monitors.

The kernel block is a MATLAB S-function that sim-
ulates a computer with a simple but flexible real-time
kernel, A/D and D/A converters, a network interface,
and external interrupt channels. The kernel executes
user-defined tasks and interrupt handlers. An arbitrary
number of periodic and aperiodic tasks can be created
to run in the TrueTime kernel. Tasks may also be
created dynamically as the simulation progresses.

Each task is characterized by a number of static (e.g.,
relative deadline, period, and priority) and dynamic
(e.g., absolute deadline and release time) attributes. It
is possible to attach two overrun handlers to each task:
a deadline overrun handler (triggered if the task misses
its deadline) and an execution time overrun handler
(triggered if the task executes longer than its worst-
case execution time).

Interrupts may be generated in two ways: externally
(associated with the external interrupt channel of the
kernel block) or internally (triggered by user-defined
timers). When an external or internal interrupt occurs,
a user-defined interrupt handler is scheduled to serve
the interrupt.

The execution of tasks and interrupt handlers is de-
fined by user-written code functions. These functions
can be written either in C++ (for speed) or as MAT-

LAB m-files (for ease of use). Control algorithms
may also be defined graphically using ordinary dis-
crete Simulink block diagrams. The execution may be
preemptive or non-preemptive; this can be specified
individually for each task and interrupt handler. At
the interrupt level, interrupt handlers are scheduled ac-
cording to fixed priorities. At the task level, dynamic-
priority scheduling may be used. At each schedul-
ing point, the priority of a task is given by a user-
defined priority function, which is a function of the
task attributes. This makes it easy to simulate different
scheduling policies.

The network block is event-driven and executes when
messages enter or leave the network. A message con-
tains information about the sending and the receiving
computer node, arbitrary user data (typically measure-
ment signals or control signals), the length of the
message, and optional real-time attributes such as a
priority or a deadline.

The network block simulates medium access and
packet transmission in a local area network. Six
simple models of networks are currently supported:
CSMA/CD (e.g. Ethernet), CSMA/AMP (e.g. CAN),
Round Robin (e.g. Token Bus), FDMA, TDMA (e.g.
TTP), and Switched Ethernet. The propagation delay
is ignored, since it is typically very small in a local
area network. Only packet-level simulation is sup-
ported, i.e., it is assumed that higher protocol levels
in the kernel nodes have divided long messages into
packets.

5.3 Other Tools

While numerous other tools exist that support ei-
ther simulation of control systems (e.g., MATLAB
Simulink) or scheduling algorithms (e.g., DRTSS
(Storch and Liu, 1996) and RTSIM (Casileet al.,
1998)), very few tools have been developed that sup-
port co-simulation of control systems and real-time
scheduling. The RTSIM simulator has been extended
with a numerical module (based on the Octave li-
brary) that supports simulation of continuous dynam-
ics (Palopoliet al., 2000).

Ptolemy II is the third generation of software produced
within the Ptolemy project (Hylandset al., 2003).
Ptolemy II supportsheterogeneous, hierarchicalmod-
eling, simulation, and design of concurrent systems,
especially embedded systems. The focus is on com-
plex systems mixing various technologies and opera-
tions. Simulation models are constructed undermod-
els of computationthat govern the interaction of the
components in the model. Different models of compu-
tation are used for modeling different types and parts
of systems. The recently developedtimed multitasking
(TM) domain (Liu and Lee, 2003) adds the possibility
to model fixed-priority scheduling of tasks with fixed
execution times.



Orccad (Simon and Girault,2001) is a CAD system
and approach aimed at the development of robotic sys-
tems from high-level specifications down to the imple-
mentation details. It deals with hybrid systems where
continuous-time aspects relating to control laws, must
be merged with discrete-time aspects. The Syndex
tool supports rapid prototyping of reactive data-driven
algorithms implemented on distributed heterogeneous
hardware architectures (Pernet and Sorel, 2003). Syn-
dex lets the user specify both the algorithm and the
distributed hardware in a graphical environment, and
then automates the mapping and scheduling of func-
tions and communications on the processors and com-
munication buses.

The Aida toolset (Redellet al., 2004) is an environ-
ment for model-based codesign and analysis of real-
time control systems that also supports timing analy-
sis. The toolset consists of a modelling environment,
Aidasign, which interfaces with MATLAB/Simulink,
and a response time analysis tool,Aidalyze. The real-
time system design starts with the translation of the
Simulink model to adata-flow diagram(DFD) in
Aidasign. The timing aspects of the controller, such
as sampling periods and delays then constitute re-
quirements on the real-time system design. Another
fundamental model in Aida is thehardware struc-
ture diagram(HSD), where the hardware architecture,
in terms of processors and their interconnections via
communication links, is designed. In the HSD the
functions and data flows in the associated data-flow
diagram(s) are mapped to processors and communi-
cation links, respectively. Based on this, a real-time
implementation is designed. XILO (El-khoury and
Törngren, 2001) is a toolset that is related to AIDA
and intended for similar usage. XILO also contains
support for fault-injection in blocks and signals.

For networked control loops the communication as-
pects also must be included in the codesign. There
exists a large number of network simulators today, but
very few of them include any co-design aspects. One
of the most well-known network simulators is NS-
2 (NS-2, 2004), which is a discrete-event simulator
for both wired and wireless networks. It also supports
simple movement models for mobile applications. An-
other discrete-event computer network simulator is
OMNeT++ (OMNeT++, 2004). There are also some
network simulators geared towards the sensor network
domain. TOSSIM (Leviset al., 2003) compiles di-
rectly from TinyOS code and scales very well. Net-
work in a box (NAB) (NAB (Network in A Box), 2004)
is another simulator for large-scale sensor networks.

Recently, support for wireless networks has been
added to TrueTime making it possible to simulate
control application using sensor/actuator networks
or wireless mobile ad hoc networks. Another tool
for joint network/control simulation is presented in
(Branicky et al., 2003). Ptolemy II has recently also

been extended to support wireless sensor net applica-
tions, (Baldwinet al., 2004)

6. CONTROL OF REAL-TIME COMPUTING
SYSTEMS

Feedback control is a well-established and mathe-
matically well-founded theory that is well suited for
handling uncertainties. Traditionally, the uncertainties
are associated with the physical plant that should be
controlled. However, the theory and design principles
can also be applied to arbitrary systems containing
uncertainties, e.g., real-time computing and communi-
cation systems with uncertainties in, e.g. workload and
resource utilization patterns. When feedback is used in
combination with real-time resource scheduling, pre-
cise schedulability models are not needed. Instead, the
systems adjusts its resource allocation dynamically to
achieve the desired temporal behavior. Many aspects
of the real-time performance of a computing system
can be inferred from the behavior of resource queues
(for example the ready queue, semaphore queues and
communication queues). On a high-level, the queue
can be modeled as an integrator of request flows. The
actuators acting on a request queue can be divided into
enqueue and dequeue actuators. The former type of
actuator adjust the input flow to the queue. An admis-
sion controller is an example of this. The latter type
of actuators adjust the output flow from the queue,
by, e.g., changing the quality-of-service level of the
currently served requests.

Control of real-time computing systems is an area that
currently is receiving a lot of attention, in particular
from the real-time community. A recent survey of the
area with many further references can be found in (Sha
et al., 2004). Recently also textbooks have emerged
(Hellersteinet al., 2004). Control can in principle be
applied to any resource allocation problem in real-
time computing and communication. However, the
majority of the work so far can be found in three areas:
control of web-servers, control of the CPU utilization
of periodic task sets, and the use of feedback control
in network communication. Here we will focus on the
second application area.

Here we consider the case where the computing sys-
tem implements multiple digital control loops, with
each controller being realized as a separate periodic
task. The main resource of concern in these types
of problems is the CPU time. The objective for the
feedback scheduler is to dynamically adjust the CPU
utilization of the controller tasks so that the task set
remains schedulable and the stability and performance
requirements of the individual controllers are met. The
feedback scheduling problem can therefore be stated
as an optimization problem where the objective is
to maximize the global control performance of the
physical systemaccording to some criterion, subject
to resource and schedulability constraints.
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Fig. 4. A general feedback scheduling structure.

One reason why feedback is needed for the scheduler
is the uncertainty associated with the WCET estima-
tion. In some control applications, the computational
workload can change dramatically over time as differ-
ent control algorithms are switched in and out. Others
use anytime algorithms, which may execute a varying
number of iterations.

Different structures are possible in feedback schedul-
ing (Cervin et al., 2002). A pure feedback scheme
is reactive in the sense that the feedback scheduler
will only remove a utilization error once it is already
present. By combining the feedback with feedforward
a pro-active scheme is obtained. The feedforward path
could be use to allow controller task to inform the
scheduler that they are changing their desired amount
of resources, e.g., changing nominal sampling periods,
and to give the scheduler the possibility to compensate
for this before any overload has occurred. The feedfor-
ward path can be also be used for dynamic task admis-
sion. A block diagram of the feedback-feedforward
structure is shown in Fig. 4.

It is also possible to consider a layered or cascaded
control structure. The outer layer would consist of a
feedback scheduler that, based on a desired set-point
for the overall utilization, generates as outputs the
desired utilization foreach controller task. Associated
with each controller task is then a local feedback
scheduler that is responsible for adjusting the timing
parameters of the task in order to fulfill the desired
utilization. The utilization assigned toeach controller
task can be viewed as its share of the total resource,
e.g., the total CPU capacity. This approach can be
combined with reservation-based scheduling in order
to provide temporal protection for the individual tasks
(Merceret al., 1993). Each task can then be seen as if
it is executing on its own virtual CPU. One example of
a reservation-based scheduling scheme is the constant-
bandwidth server (CBS) (Abeni and Buttazzo,1998).
Analysis of a reservation-based feedback scheduler is
presented in (Abeniet al., 2002).

The actuators in the feedback scheduler loop are
means with which the scheduler can modify the CPU
utilization of individual controllers. For a controller
task the task period is a natural actuation knob. Chang-
ing the task period dynamically may be more or less
difficult depending on how the controller is imple-
mented. For a controller implemented on input-output
form it is generally more difficult to change the sam-
pling period than for a controller that is realized on

state-space form. In certain cases it may be necessary
to use a Kalman filter to estimate the values of the state
at the new sampling instants.

An alternative actuation knob is the execution time
demands of the controller. This can be achieved us-
ing a multiple-versions approach or using an any-
time approach. One example where the latter ap-
proach is applicable is model-predictive controllers
(MPC) in which an quadratic optimization problem is
solved iteratively in every sample, see (Henrikssonet
al., 2002b).

The sensor in this type of feedback scheduler is a
measurement of the actual CPU utilization. This as-
sumes that the processor and RTOS are equipped with
the means to perform such measurements. In order to
avoid control actions caused by spurious measurement
outliers (noise) a low-pass filter may be included in
the sensor. The low-pass filter can also be used to
calculate an average of the utilization over a certain
time period (e.g., the sampling period of the feedback
scheduler). Such filters are an important source of loop
dynamics.

Stating the feedback scheduling problem as an op-
timization problem, a suitable optimization metric
must be used. For off-line optimization, the sum of
a set of quadratic cost functions has been suggested
(Setoet al., 1996). The performance ofeach control
loop is described by a functionJi(h) =

R
(xTQ1x+

uTQ2u)dt wherex is the plant state andu is the control
signal. Given a set ofn controllers with execution
timesCi, the optimization problem is stated as finding
minh1;:::hn ∑Ji(h) subject to schedulability constraints.
Using a tool such as Jitterbug, it is possible to evaluate
such cost functions analytically.

The approach above does not consider input-output
latency in the control loops. An approach to joint opti-
mization of sampling period and input-output latency
subject to performance specifications and schedulabil-
ity constraints is presented in (Ryuet al., 1997). The
control performance is specified in terms of steady
state error, overshoot, rise time, and settling time.
These performance parameters are expressed as func-
tions of the sampling period and the input-output la-
tency. The use of robustness measures in off-line opti-
mization has been suggested (Palopoliet al., 2002).

The optimization problem can also be solved online
via feedback to the scheduler. For this purpose, a
model of the scheduler is needed from a control per-
spective. The dynamics involved in feedback schedul-
ing are often of low order or even purely static. The
reason for this is obvious. If a task is given more or less
CPU time the total utilization will change as soon as
the next job of the task is started. Often the dynamics
in the feedback loop comes from the filtering in the
sensor. A consequence of this is that it is often enough
with very simple control strategies in the feedback
scheduler.



In (Ekeret al., 2000; Cervinet al., 2002) it was shown
that a simple linear proportional rescaling of the nom-
inal task periods in order to meet the utilization set-
point is optimal with respect to the overall control
performance under certain assumptions. It holds if the
control cost functions are quadratic, i.e.,Ji(hi) = αi +

βih2
i , or if they are linear,Ji(hi) = αi + γihi; and if the

objective of the feedback scheduler is to minimize the
sum of the control cost functions or a weighted sum of
the control cost functions. The result is a simple and
fast calculation that can be applied on-line.

7. RESEARCH DIRECTIONS

Implementation-aware control design, control and
computation codesign, and feedback scheduling are
challenging research areas where a lot or progress
have been made in recent years. However, a number of
research issues are still open and candidates for future
research. In the following some of these are discussed.

Temporal Robustness of Control Loops.The ques-
tion of how much temporal nondeterminism a given
control loop can handle and still meet stability and per-
formance requirements is still not completely solved.
If the distributions of the sampling jitter and latency
jitter are known, then it is possible to calculate an
optimal controller that minimizes a given quadratic
performance criterion. This problem was solved long
time ago, see, e.g. (Davidson, 1973). However, what is
more interesting is the robustness of a controller that
only has partial information about the distributions
and/or has been designed assuming perfect sampling
and constant latency.

Event-driven Control. A consequence of the soft
control-based approach to control design is an in-
creased emphasis on aperiodically sampled control
systems. Analysis of systems with event based sam-
pling is related to general work on discontinuous sys-
tems, (Utkin, 1987), and to work on impulse control,
see (Bensoussan and J.-L., 1984). Much work on sys-
tems of this type was done in the period 1960–1980.
Analysis of event-based sampled systems is consider-
ably harder than for time-based sampled systems. This
is due to the fact that sampling is no longer a linear
operation. There are several papers that treat special
system setups, such as observers for linear system with
quantized outputs, e.g., (Delchamps, 1989), many of
which use classical ideas from Kalman observer de-
sign. In (Åström and Bernhardsson, 1999) it is shown
that event-based sampling can be more efficient than
equidistant sampling. However, we are still very far
from a general theory for aperiodic event-triggered
sampled systems.

Event-driven Control of Computing Systems.Com-
puting systems are generally event-driven. Although
they can be approximated by continuous-time models
and it is possible to apply time-driven control, it is
plausible that more can be gained with event-driven

control. Here the control action is generated each time
a request enters or leaves a request queue, or when a
controller tasks exceeds its deadline. An example of
work in this direction is (Henrikssonet al., 2004).

Dynamic Models of Computing Systems.Comput-
ers are engineering artifacts whose behavior generally
does not obey any first principles. Hence, the models
used in control design are often generated from input-
output measurements. Research is needed on what
types of models that are most appropriate for these
types of systems.

Feedback Scheduling Control Structures and Ar-
chitectures. Feedback scheduling systems can be
structured in several ways, both with respect to which
controller structures that should be used and how the
controller structures should be combined. An interest-
ing approach is to view the feedback scheduler as a
resource broker (e.g. CPU time broker and communi-
cation bandwidth broker) that uses quality of service
based approaches (quality of control) to negotiate with
the resource users, e.g., controllers. This approach is
discussed in (Sanfridson, 2004).

Constrained Resource Control. Resource control
problems often contain a combination of local con-
straints of minimum type and global constraints of
maximum type. Each resource user or client must at
least be given a certain amount of base resources while
at the same time the global amount of resources that
may be handed out is limited. This situation gives
rise to interesting control problems especially for dis-
tributed systems with communication delays and lim-
ited communication channels. An example of this is
distributed power control in third generation cellular
mobile phone systems.

8. CONCLUSION

Control and embedded real-time systems have sev-
eral connections. Control systems are an important
application area for embedded systems with spe-
cial requirements and possibilities. Control is also a
fundamental technology which can be used in the
design of embedded real-time computing systems.
Implementation-aware control is especially important
for embedded applications with limited computing re-
sources.

This survey has been performed as a part of the
EU/IST FP6 NoE ARTIST2.
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