
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Using cepstral coefficients for Inhalation pause detection in spontaneous speech

Sjöström, Anders; Frid, Johan; Horne, Merle

Published in:
Proceedings of SPECOM 2005

2005

Link to publication

Citation for published version (APA):
Sjöström, A., Frid, J., & Horne, M. (2005). Using cepstral coefficients for Inhalation pause detection in
spontaneous speech. In G. Kokkinakis, N. Fakotakis, E. Dermatas, & R. Potapova (Eds.), Proceedings of
SPECOM 2005 (Vol. 1, pp. 143-146). University of Patras.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://portal.research.lu.se/en/publications/00d5c301-2936-459b-b010-ac810a221d57


Using cepstral coefficients for inhalation pause detection in spontaneous speech

Anders Johansson, Johan Frid, Merle Horne

Department of Linguistics and Phonetics
Lund University, Lund, Sweden

anders.johansson@ling.lu.se, johan.frid@ling.lu.se, merle.horne@ling.lu.se

Abstract

A method for recognizing inhalations in spontaneous speech is
presented. It is similar to the template matching technique; a
distance measure is calculated between a reference sound and
an equally long portion of the same sound being tracked. A fea-
ture representation consisting of the standard Mel Frequency
Cepstral Cofficients (MFCC), obtained by performing a Dis-
crete Cosine Transform of the mel-scaled filterbank spectrum is
used. MFCCs are calculated for every 5 ms. The comparison
is then done by computing the euclidean distance between the
cepstral coefficents of each frame of the two sounds. A low dis-
tance value means that the two compared inhalations are likely
to be similar. The method can detect inhalations in both male
and female spontaneous speech. The method is most suited for
signals with low noise and high average intensity (studio record-
ings) but can also be used on noisier recordings with lower av-
erage intensity, albeit with poorer results.

1. Introduction
During our recent investigations into the prosodic phrasing of
speech fragments following hesitations, it has been observed
that they seem to be grouped into units that have a relatively
constant duration [5]. This idea finds support in memory re-
search. For example, Baddeley [1] has claimed that the part of
working memory where speech processing takes place (‘inner
speech’) has a time limit of around 2 seconds.

Discussions of timing constraints in linguistic research can
be found in studies on speech rhythm; for example, Fant and
Kruckenberg [3] have focussed on the duration of inter-stress
stretches of read speech. Empirical investigations on timing re-
strictions on larger speech production chunks/information units
has not, to our knowledge, been the object of detailed investiga-
tion. Sigurd [7], however, assumes speech chunks of one to two
seconds’ length in his message-to-speech model. We would like
to build on these ideas and to hypothesize that speech planning
units are between 2-2.5 seconds long. We further hypothesize
that they can contain internal silent and/or filled pauses, but not
pauses containing inhalations.

The 2-2.5 second production units that we are envisaging
can be thought to correspond to the ouput of the linguistic For-
mulator in Levelt’s [6] model of speech production. In this
model, one can expect that pauses internal to production units
can be related to e.g. lexical access time. (It should be noted,
however, that Levelt does not assume any timing restriction on
speech coding in his model). Our evidence for this assumed
timing restriction on speech production comes mainly from ob-
servations of prosodic phenomena (accentual and pausal) asso-
ciated with units of speech that are ca. 2-2.5 seconds long (see
Horne et al. [5]).

In addition, to prosodic correlates, it has also been observed
that there is often a constituent boundary after 2-2.5 seconds of
speech. Thus there would seem to be compelling indications
to believe that there exists some kind of timing restriction on
speech coding. If this can be proven to be the case via more
rigorous testing, it is a restriction that can be very useful in de-
veloping algorithms for the parsing of spontaneous speech. In
the investigation and analysis of timing restrictions on produc-
tion units, we are thus making the following basic assumptions:

• A 2-2.5 sec speech production unit can contain internal
pauses

• A 2-2.5 sec speech production unit does not contain in-
ternal inspirations, i.e. inspirations occur only at the
edges of production units

• A 2-2.5 sec speech production unit optimally corre-
sponds to a clause or a constituent.

2. Pauses, inhalations and the internal
structure of production units

Breath pauses (i.e. inhalations) are assumed not to occur inter-
nal to the 2-2.5 sec. production units. Inhalations are rather as-
sumed to occur only at the edges of speech planning units. Since
inhalations occur only at the edges of production units, they can
be thought of as anchor points for the division of speech into
production units.

In the context of automatic speech processing, the recog-
nition of inhalations can be thought of as the first crucial stage
in the chunking of speech into information units. This idea in-
corporates findings of e.g. Winkworth et al. [11] and Hird and
Kirsner [4], who show that inhalations occur predominantly at
grammatical boundaries. Thus the relationship between breath-
ing breaks and prosodic phrasing is to be expected (see Tseng
[9] for a study on the prosodic labelling of speech using breath-
group theory).

Figure 1 shows an example of spontaneous speech illus-
trating how inhalations can function as anchor points for the
segmentation of speech into units corresponding to clauses and
smaller constitutents. Assuming that inhalations can be detected
and labelled at some initial phase of the speech recognition pro-
cess, segmentation of speech could then proceed to the left and
right of the INHALE-labels in 2-2.5 second intervals, search-
ing for prosodic cues which are known to signal boundaries be-
tween clauses. For example, the segmentation algorithm could
move 2 seconds to the right of the first inhalation in the speech
signal in Figure 1; around that point, one would expect to find
a prosodic boundary of some kind. The L% tone followed by
a silent pause is such a cue which could in its turn be expected
to correlate with a syntactic constituent boundary. At this point,



Figure 1: An example of spontaneous speech illustrating how
inhalations (labelled INHALE) can be used as anchors in the
segmentation of speech into processing units. The speech be-
tween the inhalations consists of two clauses:Så tr̈anar man
med j̈amna mellanrum‘So you train regularly’ and det gick
pågick ju under flera m̊anader’it last lasted for several months’.
The clauses constitute two prosodic phrases separated by a
pause.

then, one could insert a production unit boundary after the L%
tone.

In summary, inhaling is assumed to play an important role
in the delimitation of speech production units: Inhalations only
occur at edges and can thus function as anchors for the grouping
of speech into 2-2.5 sec speech chunks. Local prosodic infor-
mation (pauses, boundary tones (H%/L%) and the timing re-
striction, can be used to make a further segmentation of sponta-
neous speech into 2-2.5 sec production units.

Within the area of speech technology, relatively little atten-
tion has been given to the use of information on breathing. Sun-
daram and Narayanan [8] have, however, shown that including
breathing pauses in their model of speech synthesis increased
the naturalness of the synthetic speech. Within the area of
speech recognition, Weilhammer and Schiel [10], using hand-
labelled data, have shown that using information on breathing
improves test set perplexity and recognition accuracy. Breath-
ing is assumed to contribute linguistic information related to its
position in speech. Their results suggested a need to improve
the acoustical modelling of breathing. The current study has
had as its goal to develop a method that would allow one to
automatically detect inhalations.

3. Method
Inhalations are characterized by noise and the lack of funda-
mental frequency, features that they share with voiceless frica-
tives. They can also have a formant structure if the inhalation
is oral. Their duration varies considerably; sometimes it is dif-
ficult to identify inhalations both visually in the waveform and
auditorily.

Our method of finding inhalations in speech is similar to the
template matching technique sometimes used in isolated word
recognition. In our approach, a distance measure is calculated
between a reference sound and an equally long portion of the
sound under examination. A low distance value means that the
two compared sounds are likely to be similar. By using an in-
halation as the reference sound, this method effectively locates
other sound portions that are similar to this inhalation.

Since inhalations were observed to exhibit formant struc-
ture, we decided to use a feature representation consisting of
the standard Mel Frequency Cepstral Cofficients (MFCC), ob-
tained by performing a Discrete Cosine Transform of the mel-
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Figure 2:Distances from test sounds when searched for them-
selves.

scaled filterbank spectrum. MFCCs were calculated for every
5 ms. The comparison is then done by computing the euclidean
distance between the cepstral coefficents of each frame of the
two sounds. This results in a matrix with local distances from
which the global distance may be calculated using Dynamic
Time Warping (DTW). The DTW effectively finds the mini-
mum global distance between the two sounds by using the local
distances. The only requirement is that the endpoints of the two
sounds coincide. Different temporal structure between the ref-
erence and the examined sound is, however, allowed.

The portion of the examined sound is then shifted 10 ms
to the right, and the process is repeated. We thus get a dis-
tance vector, where each value in the vector represents the total
cost between the reference sound and a portion of the examined
sound. In this study we used two reference inhalation sounds,
taken from a female speaker. The two sounds had different du-
rations, 850 and 462 ms, respectively. The MFCC and DTW
analysis were performed using Praat [2] and the distance vector
was saved to a textfile for further processing.

The resulting textfile containing the distances between the
examined sound and the reference sounds is imported into
Matlab for further analysis. The Analysis extracts the parts
of the distance vector where the distance is lower than a thresh-
old, indicating that an inhalation is present.

The need for a threshold value is quite obvious when ap-
plying the algorithm in a search for the reference sounds them-
selves. In figure 2 one can clearly see that even though the ex-
amined sound is the reference sound itself, the algorithm does
not produce a value of zero (indicating a perfect match) at any
point. This is due to the fact that the alignment of the reference
sound can differ from the examined sound by as much as 9ms.

In figure 3, the distance vectors for both a long (850ms)
and a short (462ms) sound are shown. Notice the minima in the
two vectors. The plot of the corresponding spectrum of the ex-
amined sound in the lower part of the same figure exhibits two
distinct inhalations aligned with the aforementioned minimas.
The minimas have their lowest points at theendof the inhala-
tions, which is to be expected given the implementation of the
detection algorithm.

When applying the method on recordings of different
speakers and environments, it is apparent that the single most
important variable is thethresholdvalue.This value is what ul-
timately governs which parts are to be labeled as inhalations and
which are not. A lowthresholdvalue yields few but accurately
identified inhalations and a high value results in many identi-
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Figure 3:Distances from test sounds applied on female speaker.

272 273 274 275 276 277 278
−0.4

−0.2

0

0.2

0.4
Waveform for female speaker (field recording)

seconds

272 273 274 275 276 277 278
200

220

240

260

280

300

seconds

Long reference sound distance vector for female speaker (field recording)

Figure 4: Distance vector of field recording of female speaker
as generated from long reference sound. Stars indicate detected
inhalations, lines indicate tagged inhalations. Recording from
the SweDia material.

fications but at the cost of lower precision. The length of the
reference sound is also an important factor as regards detect-
ing inhalations; a longer reference sound performs poorer than
a shorter one as can be seen in figures 4 and 5.

4. Results
We used the algorithm to search for speech pauses in three dif-
ferent sets of recordings where the inhalations had previously
been tagged manually. In no instance did the algorithm find
all of the tagged inhalations. As can be seen in figures 6 to 8,
the number of correctly identified inhalations can be relatively
high but this also comes at the cost of a large number of false
identifications. These false identifications seem to be associ-
ated mainly with sounds of the following types: exhalations,
word-final aspirated sounds, whispers and voiceless fricatives.
To minimize the erroneously identified inhalations, some sort of
heuristic must be applied so as not to identify these parts of the
speech signal as inhalations.

As the sounds used as references when searching for breath
pauses were taken from a female speaker, one might have ex-
pected that the algorithm would be most successful when ap-
plied to other female speakers. However, this is not the case.
Comparing the number of correct, false and missed identifica-
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Figure 6:Number of correct, false and missed identifications of
inhalations in studio recording of female speaker as generated
from short reference sound.

tions of inhalations for a male speaker with a female one clearly
indicates that the algorithm works better for the male speaker
than for the female one (see figures 6 to 8).

As can be seen, the distance vector generated from the short
reference sound (figure 5) has three distinct minimas which cor-
respond to the two inhalations present in the speech signal. The
longer reference sound (figure 4) exhibits a much more ambigu-
ous set of minimas. Applying the algorithm to noisier record-
ings illustrates another major problem; the number of false hits
increases almost exponentially as thethresholdvalue increases
(see figure 9). This is probably due to the noisier nature of the
signal and the fact that the relative distance between the highest
and lowest value in the distance vector is greater than the same
distance in the vector generated from the studio recordings.

5. Conclusions and further work
The proposed method to identify breath pauses in spontaneous
speech performs fairly well on recordings in a environment
where the quality of the recording can be controlled. For noisy
signals or signals of low average intensity, the method still can
identify breath pauses but at the cost of high rate of erronously
identified inhalations. This problem can presumably be ad-
dressed by transforming the signal to a normalised space and
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Figure 7: Number of correct, false and missed identifications
of inhalations in studio recording of male speaker as generated
from long reference sound.
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Figure 8: Number of correct, false and missed identifications
of inhalations in studio recording of male speaker as generated
from short reference sound.

thus minimise the effect of noise and low intensity in the signal
and is something that we would like to investigate further.

The idea on which the method is based, i.e. that the inhala-
tion signal exhibits properties that are always present, seems
to hold and can be utilised in an automatic inhalation detector.
These properties do not seem to be dependent on gender, a fact
that is most promising, since we then only need to consider one
set of properties when constructing a detector for inhalations.

Towards the end of the investigation it was suggested (Franz
Clermont, personal communication) that one could use solely
the information from the cepstral coefficients in order to de-
velop a direct method for detecting inhalation pauses. The idea
is to use sums of the squares of subsets of cepstral coefficients,
thus utilizing the fact that the higher order coefficients indicate
the presence of F0, while the lowest are related to the energy
of the signal. Preliminary results from this approach appear
promising and are currently being investigated in more detail.
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