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Abstract

The purpose of this paper is to present a formal model of social net-
works suitable for studying questions in social epistemology. We show how
to use this model, in conjunction with a computer program for simulating
groups of inquirers, to draw conclusions about the epistemological prop-
erties of different social practices. This furnishes us with the beginnings
of a systematic research program in social epistemology, from which to
approach problems pertaining to epistemic value, optimal organization,
and the dynamics of multi-agent inquiry.

1 The Epistemology of Social Networks

Social epistemology concerns the pursuit of truth in groups of inquirers. While
individualistic epistemology studies what properties of an individual are con-
ducive to the attainment of truth, social epistemology centers on those proper-
ties of groups that are irreducible (or at least very hard to reduce) to properties
of these groups’ members, such as the communicative practices and the division
of interrogative labor. But one may also hold that the goals differ: while individ-
ualistic epistemology studies knowledge in a single person, social epistemology
is concerned with knowledge in society.

Given how difficult the search for an exact definition of knowledge in an
individual has been, the question of when a society has knowledge may appear
insurmountable. However, this does not have to stop us from using definitions
that are good enough for most purposes, and we will study some of these later
on. It may even be that when we get clear on what we want social epistemology
to deliver, the question of whether that thing is to be called ‘social knowledge’
properly can take a back seat.

For the purposes of this paper, I will assume that social epistemology aims at
maximizing the strength of people’s true beliefs in a society. Now, true belief is a
very weak form of knowledge (Alvin Goldman, in his seminal book about social
epistemology [5, p. 23], calls it ‘W-knowledge’), but it is clearly something that



is epistemically valuable. It also has the advantage of being subject to formal
modelling, and there are good formal theories of truth and belief around. In
contrast to this, the question of when a belief is justified seems considerably
harder. Since our aim here is to apply formal methods to questions in social
epistemology, it seems prudent to bypass these issues for now.

Starting our model-building, we define a social network as a group of people,
or people-like entities (such as some organizations), among which there are
practices regarding communication. Some examples are university departments,
peer-review boards, circles of friends, or even entire societies. As a limiting case,
the entirety of humanity during a period can be seen as such a network. The
‘during a period’ clause is necessary here: we are taking the network, i.e. the
communicative and investigative practices themselves, to be fairly stable. We
also assume that what participants are in the network is unchanging.

Formally, we can take a social network .S to be a set I', which we for reasons
that will be made obvious shortly will call the set of inquirers, together with a
binary relation R on I', which we call the network structure. This means that a
social network is a directed graph. From another viewpoint, it can thus be taken
to be a Kripke model for a normal modal logic, and we can say that « F p iff «
believes p, and introduce an operator [p to say that every source o has available
believes that p or possibly every source o has available says that p. This way, we
can extend logics of knowledge, belief and belief revision into the social world.
Such approaches are explored in the fields of Public Announcement Logic (cf.
[1]) and Dynamic Epistemic Logic (cf. [3]).

But there is another paradigm of contemporary formal epistemology as well:
Bayesianism. Here, the epistemic state of a person « at time ¢ is assumed to be
given by a credence function CY : L — [0,1] instead of just a set of sentences.
L can be taken to be a classical propositional language, and CY, is assumed to
fulfil the standard axioms of a probability measure. Due to its close connection
to probability theory, Bayesianism is well suited for statistical models, and as
the models that we will investigate in this paper are of this kind, we will adopt
the Bayesian approach.

In a Bayesian model, there is no all-or-nothing concept of belief, and we
should also wish to say that there is no all-or-nothing concept of knowledge
either, even if we interpret it in the weak sense that Goldman does. However,
the important point here is not the knowledge concept itself, but how we evaluate
epistemic states. Furthermore, the Bayesian concept does admit comparisons
(a kind of “degree of knowledge”), and this is all we need for such evaluation.
This approach will be explored in section 3 below.

The inquirers of a social network naturally have an internal structure, and it
is necessary for us to understand this structure, in order to be able to evaluate
the network’s epistemological properties. For the purposes of this paper, let us
confine ourselves to the case where inquiry is aimed at discovering whether a
single proposition p is true or false. We assume, conventionally, that p happens
to be true, since this will simplify calculations further on. At the very least, every
inquirer will then have a credence C? (p) in p, which is a real number between 0
and 1, for every moment ¢. But in order to investigate epistemological behavior,



we need more than this. We also have to model the way that the participants
receive new information. There are two fundamentally different inlets for this:
inquiry and communication.

Inquiry can here be taken to include any kind of method of altering a cre-
dence function which does not base itself on information given by anyone else
in the network. The paradigmatic cases of inquiry are observation, experiment,
and perhaps taking advice from persons outside S. In order for our model to be
applicable, the opinions of participants in S must have fairly little effect on such
“external” persons’ opinions, however. An example where this holds is where the
communication is effected through a book, as when a modern philosopher reads
Kant. Kant himself does not need to be taken as a part of our social network,
since his opinions (perhaps unfortunately!) cannot be affected by anything we
do.

Not all paritcipants’ approaches to inquiry are the same, and they tend
to vary both in their degree of activity and their effectiveness. Let S’ p be
the proposition ‘a’s inquiry gives the result that p at time ¢’, S, —p be the
proposition ‘@’s inquiry gives the result that not-p at t’, and S, =4. Sl.pV
St —p the proposition that a’s inquiry gives some result at t. We represent the
participants’ properties qua inquirers by two probabilities: the chance P(S!,)
that, at any moment ¢, o receives a result from her inquiries, and the chance
P(S! p | S, Ap) that, when such a result is obtained, it is the right one.!
P(S!,) will be referred to as a’s activity, and P(S!,p | S', Ap) as her aptitude.
An inquirer without interest in p would generally have a low value of P(S,,),
while one very interested in p, but engaging in inquiry using faulty methods
would have a high value of P(S,,), but an aptitude close to 0.5, or even below
that. In the latter case, the results of her inquiry would actually be negatively
correlated with the truth. As a simplification, we will assume a’s activity and
aptitude to be constant over time, so we will generally write them without the
time index t¢.

Just as inquiry represents the flow of information into the network, com-
munication deals with how this information is disseminated. While, as a first
approximation, we may be interested only in whether or not a can receive in-
formation from (3, we generally need to go deeper. Thus, we take the network
R to be a set of what we will call links, each corresponding to a communication
channel. Such channels can be as direct as conversation, or mediated like a
blog or an instant messaging system. Generally, however, we may want to say
that if the “mediator” is able to choose which messages to transmit, it may be
more apt to be represented as an inquirer instead of a link, even if it engages
in no inquiry itself (this is one case where we may want to let P(S,,) = 0). A
scientific journal could be an example of this. The links from other inquirers
to the journal then summarize the peer review process, and the links from the
journal to the other inquirers represent their individual practices of reading that

IThis is actually only half the story: P(St,p | St, A p) gives the chance of a true result
when the result indicates that p is the case, and does not say anything about reliability when
—p is reported. To simplify matters, we assume that these probabilities are equal, i.e. that
the chance that inquiry gives a true result does not depend on whether p is true or false.



journal.

Like inquirers, links have an internal structure. Although they do not have
anything corresponding to an aptitude, since the messages they transmit are
chosen by the senders and thus not subject to random variation, they have
degrees of activity. Two inquirers who seldom talk have weak links between
them, while researchers who sit in the same room may be assumed to have
stronger links. Analogously to the inquiry notation we define

ShaP =ar. B says that p to a at ¢
Séoﬁp =q¢. [ says that not-p to a at ¢
Sfm =4r. B says either that p or that not-p to o at ¢

This strength of a link Bc is then representable as a probability P(Sza),
being the chance that 8 communicates that p or that not-p to «, at any given
moment ¢.

Given that 8 does communicate with a, what does she say? Prima facie, it
seems that § somehow would indicate how strongly she believes that p, i.e. she
would communicate her credence. But this credence is not in general available
to her. As a subjective degree of belief, it is a product of betting behavior, and it
takes experiments to determine it rather than introspection. We may of course
represent (3’s beliefs about her degree of belief as credences as well, but this
only pushes the problem further back: somehow, we will still need to determine
exactly what to say, given a credence distribution over possible degrees of belief.

Instead, we will adopt a simplified model, but one which hopefully still
has enough complexity to be interesting. We assume that unless she is out to
mislead, § will say p if she believes p, and not-p if she believes not-p. But belief
is not an all-or-nothing matter in the Bayesian tradition, so how sure must she
be of p to say it? And, conversely, if she is out to mislead, how sure must she
be of p to say that not-p? These questions are answered by a property of the
link Sa that we will call its threshold: a value T, between 0 and 1, such that

o if Tg, > 0.5, 3 tells a that p only if C3(p) > Tjq, and that not-p only if
Cs(p) <1—-T, and

o if Ty, < 0.5, 5 tells a that p only if Cs(p) < Tga, and that not-p only if
Cs(p) 21-T.

o if T, = 0.5, B can tell o that p or that not-p independently of what she
believes. We model this by letting her pick which to say randomly.

Thus, a link that consists of systematic lying will have a threshold below
0.5, and one that proceeds through truth-telling (at least insofar as the link’s
source is aware) has a threshold above 0.5. The effect of T, on when the link
Ba is permissible for communication by ( is illustrated in the below image:



0.25 0.75

Degree of belief in p: 0} ! Y { 1.0 T=0.75
Can say Cannot Can say
that not-p communicate that p
0.4 0.6
Degree of belief in p: 0} Y ! { 1.0 T=04
Can say Cannot Can say

that p communicate that not-p

Are there communicative practices not representable as links of this kind?
We have already mentioned the scientific journal, which may be more reasonable
to model as an inquirer. But what of mass broadcasting systems, like a TV
station, or the above-mentioned blog? A link, as we have defined it, has a single
source and a single recipient. However, nothing stops us from representing a
broadcasting system by a set of links — one for each viewer. If we interpret
P(Sga) as the probability that o actually hears what § says, rather than just
the probability that 3 says something, then even a broadcasting system ought
to have different links for different viewers.

2 Trusting oneself and others

We have described how the participants in a social network engage in inquiry
and communicate, but we have as yet said nothing about how they react to the
results of these practices. It seems that, in general, hearing that p from someone,
or receiving a result indicating p from inquiry, should influence an inquirer’s
credence in p. Fortunately, Bayesianism has a universal answer to the question
of how this should be done: belief update proceeds through conditionalization.

But conditionalizing on p whenever one hears that p is not reasonable.
Straight conditionalization really works only for infallible sources, and in general
an inquirer only takes messages proclaiming p as indications of its truth, and
not as conclusive verification. One solution is to use Jeffrey conditionalization
instead of regular conditionalization [7]. This is more of a promissory note than
a solution as such, since we still need to decide on a degree of belief to set p to,
when one hears that p. Furthermore, inquirers can receive several messages at
the same time, and some of these may even contradict one another, so what we
need is a framework that allows us to handle such cases.

One way forward is as follows. To start with, it seems admissible for « to
treat both her own inquiry and the things said to her in roughly the same way:
as indications of whether or not p is the case. We refer to a’s inquiry ¢ and
the other inquirers (3,7,... who can talk to her as her sources. Each of these
may have different connections to the truth, and we can represent these by the
probability of a source to give the right answer. More specifically, we define a’s



source ¢’s reliability as

Raa =df. P(Soap ‘ So(x /\p) = P(Sa'a_‘p | So(x A _‘p)

This definition presupposes that the probability that any source gives the
answer p if p is the case is to be equal to the probability that it gives the answer
not-p, if not-p is the case. This source symmetry simplifies our calculations,
although it can be relaxed if we encounter cases where it does not provide a
reasonable approximation.?

It follows at once that the reliability of a’s inquiry is identical to her aptitude.
For other sources, it is an abstraction based on those sources’ performances as
indications of truth. In general, an inquirer has no direct access to this value,
but this does not stop her from forming beliefs about it. Since the number of
possible values for the chance R, is infinite, we need to represent «’s credence
as a density function instead of a regular probability distribution. Thus, for each
inquirer a, each source o, and each time ¢, we define a function 7%, : [0,1] —
[0,1], called a’s trust function for o at t, such that

Cl(a < Roa < b) = / 7t () dp

for a,b in [0, 1]. This function is uniquely defined up to a set of measure 0, ac-
cording to the Radon-Nikodym theorem. 7,,(p) then gives the credence density
at p, and we can obtain the actual credence that a has in propositions about the
reliability of her sources by integrating this function. We will also have use for
the expression 1 — 7/, (which represents a’s credence density for propositions
about o not being reliable) and we will refer to this function as 7¢ .

Now, it is obvious that an inquirer’s credences about chances should influence
her credences about the outcomes of these chances. The way this should be done
is generally known under a name Lewis gave to it: the principal principle [12].
This says that if a knows that the chance that an event e will happen is p, then
her credence in e should be exactly p. Applied to our case, this means that the
following principle (PP) must hold:

C(tx(sé'ap | S:}a AN Ryo=p A p) =p
CL(Sea | Sta N Roa=p A —p)=p

for all ¢, i.e. a’s credence in o giving the report p, given that the source gives
any report at all, that o’s reliability is p, and that p actually is the case, should
be p.

We also have use for an independence postulate. While not strictly necessary,
such a postulate will simplify calculations and modelling considerably. The

2There is another way to define reliability as well, according to which it is the probability
that p is the case, given that p is reported. They are, however, interderivable, and as the
definition used here is simpler for our purposes, we have adopted it. The difference corresponds
to Goldman’s distinction between reliability and power. Cf. [4].



independence assumption we use here will be referred to as communication
independence (CI):

CL(pA Sty N Roa = p) = CL(p) CL(SL,) Rbo(p)

Communication independence implies that whether o says anything is inde-
pendent of whether or not p actually is true, as well as of what reliability o has.
This is true in the current model, since we have assumed that a source’s relia-
bility for reporting that p, given that p is the case, is the same as its reliability
for reporting that —p is the case, given that —p.

From (PP) and (CI) we can derive the following expression for a’s credence
in o’s reliability (see the appendix for the actual derivation):

1
CL(Stp | p) = CL(SL,) / p (o)
0

But the right-hand integral is the also ezpected value (tt,) of the trust
function 7%, so we can rewrite this as

oo’

(*)CL(SEap | p) = CL(SL)(TEL)

Using this equation, an application of Bayes’ theorem together with the
theorem of total probability gives us that

t Cl(p){Tha)
Colp | Soap) = Ct(p)(rt,) + Ct(-p)(T",)
C(p | Stomp) = et 0ol

- CL(Toa) + CL(=p)(Tha)

Since we, by the requirement of conditionalization, must have that C(p) =
C!(p | Syap) whenever o is the only source giving information to « at ¢, this
formula completely determines how a should update her credences in such a
case. Some of the consequences of this can be summarized qualitatively. We
say that o is trusted when (r%,) > 0.5, distrusted when (7%,) < 0.5 and neither
trusted nor distrusted when ( rt.) = 0.5. Furthermore, we say that a message
m is expected if C!(p) > 0.5 and m = p or C!,(p) < 0.5 and m = —p, unezpected
if C* (p) > 0.5 and m = —p or C? (p) < 0.5 and m = p, and neither expected nor
unezpected otherwise (i.e. if C%, (p) = 0.5). The following table (whose derivation
is left as an excercise for the reader) gives the qualitative rules for how belief is
updated. A ‘+’ means that the message reinforces a’s current belief (i.e. her
credence increases if above 0.5 and decreases if below 0.5), ‘-’ that the strength of
her belief is weakened (i.e. that her credence increases if below 0.5 and decreases
if above 0.5), and ‘0’ that her credence is unchanged.



Is source | Is message expected?
trusted? | Yes Neither No

Yes + 0 -
Neither 0 0 0
No - 0 +

The calculations become slightly more complex when we take into account
the possibility of receiving several messages at the same time. Let X, be the set
of sources from which « receives information at ¢, and let m’_, be the message
(i.e. either p or not-p) that o gives « at ¢t. Conditionalization requires that

CL(p) = L (p | \ Stamba) (1)

where the conjunction runs over all sources o in Xf,. This may be a very complex
expression, but we can simplify it if we take inquirers to treat their sources as
independent, given the truth or falsity of p. Formally, this means that we adopt
the following axiom of source independence (SI):

Ct (A Stamta | p) = TTCL (Shamte | 9) (2)

Is this a reasonable assumption to make? In certain cases, it may very
well be. We generally tend to see our sources as not engaged in some kind of
conspiracy so long as we do not receive positive indication that they are. It is
this that makes us attach a greater degree of belief to propositions the more
sources we hear them from. Although this is a simplification — there may be
all kinds of underlying dependences in effect — it is a simplification that is
necessary, not only for the epistemologist, but for everyday practice as well. It
is reasonable as a default assumption.

Given source independence, the properties of individual links and inquirers
determine how inquirers should update their beliefs when they receive new in-
formation. An application of Bayes’ theorem together with the theorem of total
probability gives that

ct (p] A\ Shamta) =

Co(p) I1CY (Seml, | p)
Ca(p) [1CE (Stmt, | p) + Cal(—p) TTCE (Stml, | —p)

Since the values C%, (Stm? , | p) and C%, (Stml , | —p) are determined by eq.
(), this equation lets us infer exactly what degree of belief an inquirer « should
give p, given the information she receives at any time.

Not only a’s credence in p should be updated, however. Equally important
is for a to keep track of how much to trust her sources. A source that generally
gives very unlikely reports is unlikely to be veridical, and an inquirer should
adjust her trust function in light of this. It turns out that our model already

determines how to do this: given that a’s trust function for the source o is 7%,




at t, and that she receives the result that p, or that not-p from o then, her new
trust function 74+ is given either by?

p Colp) + (1 = p)C4(-p)

Ll =7t
7o (P) =T (0) T o oy 7ty O ()

or by

Sy p Co(=p) + (1 = p)C4(p)
7 (P) = Toal) T Gl () + ) CLp)

depending on whether the report received from o claims that p or that not-p.

That both Cy, and 7,, change as a result of inquiry and communication
gives rise to complex interactions. Assume, for example, that « starts out with a
credence in p slightly below 0.14, and some trust in her own inquiry, as indicated
by a value of expected trust at 0.67. Assume that her inquiry keeps indicating
that p actually is the case. How her trust in inquiry changes after ¢ such inputs
then depends crucially on the trust function 7 she starts out with. But even
if the expected trust is the same, the shape of the trust function influences the
long-term behavior. Figure 1 illustrates three such scenarios, during a time
lapse of 50 inputs. The table that follows gives the corresponding degrees of
belief and values of expected trust for these.

(a) (b) ()

Time | C(p) (1) | C(p) (r) | Clp) (1)
0 | 014 067 0.14 067 0.14 067
1 | 024 056|024 061024 0.62
5 | 018 036|045 052 | 059 0.58
10 | 00 019| 05 05 | 0.94 0.67
50 | 0.0 004] 05 05| 1.0 093

Here, we have three different ways that the inquirer’s credence might evolve,
given the same initial credence, the same obtained evidence, and the same initial
expected trust. Although our inquirer happens to be a perfect inquirer insofar
as her inquiry always gives the right result, the fairly low stability of her faith
in inquiry in (a), together with her prior judgment that p is unlikely, conspire
to make her distrust her own inquiry. This, in turn, gives rise to a vicious circle
in which she becomes more and more convinced that p is false, and that her
inquiry is negatively correlated with the truth.

In (b), the inquirer’s trust happens to be just enough to counter her prior
disbelief in p, but not enough to get her to believe that p, with the result that
her credence converges to 0.5. In (¢), her trust in inquiry is stable enough to
overcome her prior disbelief, with the happy consequence that she converges on
the truth.

What can we learn from these scenarios? The most important lesson is that
trust is a complex issue, impossible to capture in a single number. Although

3See appendix 2 for the derivation



t=50 t=10 t=5 t=1 t=0
e

Figure 1: Influence of the shape of 7 on a’s credence in p.

I mentioned ‘stability’ in the preceding paragraphs, it is also the case that
two numbers are insufficient, so stability should not be seen as some kind of
complement to the expected trust. Although only the expected trust influences
an inquirer’s posterior credence for a single update, this does not hold for further
updates. The general principle, statistically speaking, is that the result of n
updates requires information about the first to nth central moments of 7. In
the infinite limit, all of 7 is necessary.

3 Truth, Error and Epistemic Value

In the preceding sections, we have presented a way to model social networks.
There are several things we can ask about such a network, and the most im-
portant ones for the epistemologist concern how effective its participants are at
getting to the truth of important questions. In other words, how good is the
network, epistemologically speaking?

This question permits a multitude of answers, depending on how we explicate
the notion of epistemc value. This subproblem of the general axiological problem

10



(how do we determine how good a certain state of the world is?) inherits its
difficulties, although we will try to avoid these here as far as possible. An
influential interpretation of the concept is given by Goldman [5, ch. 3], who
equates it with veritistic value, which in turn is defined as the average credence
in the truth in the society. In our terms, the veritistic value V of a social network
state S* = (I'", R') at time ¢ can be written as

1
V(S = [y 3 Chiv)
a€el't

There is certainly something right about this formula: in general, it seems
that if S and S% are states of the same social network, and, no one in S&
believes in p less strongly than she does in S{/, then Sé, should be at least as
epistemically good as St. Thus, epistemic value should conform to a kind of
Pareto principle with regard to credence in the truth, and one advantage of the
above definition is that it fulfils this principle.

But V is much stronger than the Pareto principle, and essentially corre-
sponds to a kind of utilitarianism with credence taking the role of utility. How
can we get to V, or a measure like it, from the Pareto principle?

Generally, a measure of epistemic value can be seen as a function v defined
on individual states of a social network, on practices implementable in such a
network, or on parts of these, which takes values among some ordered set (such
as the real numbers). As with any kind of value, there are primarily three things
we need to know: what is the valuable thing, how much is it worth, and how
should we aggregate this thing over different persons, times, states of the world,
etc.?

Goldman’s suggested answer to what is valuable is that credence in the truth
is what we are after, and its worth is equal to its strength. We have agreed to the
part of the answer that concerns the “what” question, but this does not by itself
settle the “how much” question. This shows up when we combine questions of
amount and weighing. For instance, is the state of one person being certain
of the truth and one person being certain of falsity really just as good as the
state where two persons are completely undecided? Epistemologically, it may
be held that the second is far superior, since the people who are undecided still
are open to revising their beliefs, while those who are certain of something false
are incapable of such revision, at least in the Bayesian model. However, V' gives
both states the same value.

Centering on the weighing issue, how should we value a network over time?
Is it only the ‘final’ state that matters, or should the credences during all times
count? If so, how should they count? If time is infinite, there is no way to keep
all times equally important while avoiding infinities and incomparabilities. And
how should differing populations affect the value? If we take epistemic value
to be determined by the average credence, we can increase epistemic good by
killing off everyone who is not absolutely certain of the truth. This may fairly
be held to be a quite unappealing feature of a measure of epistemic value.

These questions are very important but unfortunately also very difficult.

11



Their difficulty stems primarily because from the complexity of ethical conse-
quentialism, although we in the epistemic case are dealing with a specialization
to a certain type of value. However, I think there may be ways forward if we
are careful and methodological.

To start with, the most important question to ask is “what do we use epis-
temic value for?”. My proposed answer is that epistemic value is what is maxi-
mized by the decisions of an idealized social epistemologist and decision maker
(the evaluator), who values knowledge alone. Typical examples of such deci-
sions concern what practices to adopt in a group or society, how such groups
are to be assembled, and what rules should be adhered to by inquirers. That
the evaluator should value nothing but knowledge entails that any two states of
the world (or in our case, the social network) that have the same epistemological
properties must be assigned the same value.

By tying epistemic value to epistemic decisions, we open for the possibility
of applying decision theory to derive the properties of epistemic value. We do
not have the space to go into details of how this may be done here, but a few
observations are in order. First of all, decision theory requires that values should
be determined up to a positive affine transformation. This, in turn, means that
as long as we assume the inquirers involved to be idealized decision makers as
well, the total value of a practice must be determined fairly strictly from the
values of individual states.

For this to work, we first need to determine what we mean by a practice.
Let an individual state consist of the values of the epistemic variables of a
single inquirer «. Let a metwork state be defined as an assignment of values
to these variables for all inquirers in a network, as well as for the links, and
a network evolution as a sequence E = S9 S S% ... such that state S**! is
obtainable from the state S? by having the participants in S? conditionalize on
new information according to the model laid out in the previous sections.

A practice m can, to a first approximation, be viewed as a constraint on
such evolutions, or, equivalently, as a set of them — those evolutions that are
compatible with the practice. But every evolution is determined (at least proba-
bilistically) by its initial state S°, so we may as well say that the practice is a set
of network states, which are to be taken as allowed initial states in applications
of the practice.

To be able to evaluate a practice then requires us to weigh over these appli-
cations, but decision theory demands that this is to be done by simply adding up
the probability-weighted values of the possible evolutions, where the probabili-
ties are those of the evaluator. Thus, assuming P to be her personal probability
measure over the space of all possible initial states, the probability to be used
is the conditional one P(E | 7 is adopted), which we can expand as

P(SY is the actual initial state | 7 is adopted)- H P(S™T | %)
t=0

for any evolution E. How are we to evaluate evolutions then? Again, decision
theory helps. Assuming that not only the evaluator, but also the inquirers are
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to be bound by its axioms, we can apply a theorem of Harsanyi [6] to prove that
the value of an evolution € must be a homogenous function of the values of its
individual states. A function f(xg,x1,x2,...) is homogenous if its value, when
any of its arguments is multiplied by ¢, also is multiplied by 4.

For functions of a finite number of variables, f(z1,...,2,) is homogenous iff
f(z1,...,z,) is a weighted sum of z1,...,x,. But evolutions are not finite in
general, and thus a few more ways of weighing are allowed. One of these is the
limit function, so the weighing

v(E) = lim v(S")
t—o0
is permissible as well.

There is reason to distinguish between two sorts of practices: the temporary,
which are implemented so as to have a projected end, and the continual, which
do not have such an end. An example of the first is an investigation made by
a committe, while the second type includes policies such as free speech. For
the first, there is for any evolution a specific final state ST, and the difference
between this state and the initial state appears reasonable to use as a measure.
Thus we assign S° the weight —1.0, S/ the weight 1.0, and all other states weight
0. This agrees with Goldman’s own suggestion for how to evaluate practices.

For a continual practice, the problem is harder. Although we can use
tlggo v(S?), it is not certain that this value is very relevant, since we have no

guarantee that it is approached except in the infinite limit. It may be that the
only reasonable thing to do is to identify some finite period during which the
practice is to be evaluated. Doing this introduces another degree of arbitrariness
in our evaluation procedure, however.

Disregarding these problems and pressing on, we then come to the evaluation
of a single society state S! in terms of the evaluation of its individual states
af, ... al. Another application of Harsanyi’s theorem yields the result that
we must use a weighted average here. Although it may seem attractive to
assign equal weights to everyone, this is not strictly required, and for some
applications it may even be better to assign some of the inquirers zero weight.
Such a situation can arise when it is more important for some of the inquirers
in the network to have the correct opinion than for others, for example because
the former have more power to influence further decisions.

This means that, given a measure v of epistemic value for an individual at
a time, the value of a practice is largely determined by that measure. This, in
turn, can be conventionally decided on as an explication of what we mean by
epistemic value. One way to arrive at Goldman’s V' is to adopt some axiom such
as “adding any equally good amount of certainty in the truth to two states that
are equally good preserves their equality” together with structural assumptions.
This process essentially gives rise to an extensive measurement structure, which
allows certainty in truth to be measured in much the same way as, say, mass
or length. The classical reference for this procedure is the trilogy of books on
measurement theory by Krantz, Luce, Suppes and Tversky [10].
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As advertised, we will not work out the details of how to measure epistemic
value here, but I hope that the remarks I have given illustrate that the problem
may be approachable in a systematic way. Our present concern is with another
aspect of social epistemology: given a measure v of epistemic value, how do
we find social networks or practices that maximize the value of this measure?
The complexity of this problem itself seems staggering: not only do we have to
consider all the possible evolutions of a social network, but for a practice also

all the possible initial states it may be applied to. How are we to accomplish
this?

4 A Voyage to Laputa

Laputa is a program developed by the author, for use as as a sandbox environ-
ment for experiments in social epistemology.* It is intended to be useful for
investigating several kinds of models of society, but currently it implements the
above model, and thus allows us to study the Bayesian social networks presented
in this paper.
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Figure 2: Laputa.

Laputa allows an experimenter to design social networks, to simulate their
evolution, and to collect statistics. It also contains methods for evaluating social
practices of the kind discussed in the preceding section. Let us, as an example,
try to model the editorial process of a scientific journal. Let ¢ be the sentence

4The name is taken from the flying city of pseudo-intellectuals in Gulliver’s travels. It is
freely available for academic purposes, complete with source code, at [...].
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‘The paper currently under review makes enough of a new contribution to be
published’. Let p be either ¢ or not-¢q, depending on whether the paper in
question actually meets the criteria or not. We, as evaluators, do not in general
know whether p = g or p = —¢q, but this does not hinder us from evaluating the
performance of the review process.

To create the social network needed for the model we will use three types of
inquirers:

e The author. In general, she is quite convinced of ¢ (or she wouldn’t have
submitted the paper), and thus she is quite convinced either of p or of not-
p. We model this by letting her degree of belief in p be selected according
to a beta distribution with parameters a = 8 = 0.5 (the beta distribution,
for these values, has sort of a ‘U’ shape.) Apart from this, we can not say
much about the author, so we let her other properties vary freely.

e The editor. This is an inquirer only in a loose sense of the word, since
she in general does not perform any inquiry into the truth of p herself,
but relies on the referees for this. We model this by setting the editor’s
inquiry activity to 0.

e Referees. These are to read the paper, do their own inquiry, and give
recommendations and comments to both the editor and the author. In
general, referees may be expected to be fairly reliable as inquirers, so
while we do not want to guarantee their competence, we model them as
having an random inquiry aptitude with a mean of 2/3.

Between these are the links. We can expect the editor to have high trust in
the referees (or she wouldn’t have consulted them in the first place), but neither
the editor not the referees can be taken to know anything about the author’s
trustworthiness to start with. Putting it together, for two referees, we end up
with a social network with the structure depicted in fig. 3.

Now, there are a number of modifications we could make. What if we had
more than two reviewers? Are the two we have necessary at all? What if the
reviewers were able to send comments to one another, in addition to sending
them to the editor and the author? Laputa makes it easy to study these scenarios
— all we have to do is to set up the network, and then define an abstract practice
to test. The following table lists the influence of three network structures on
the editor’s credence in the truth as a consequence of the process.?

5The results were obtained after running 100000 networks for ten steps each. They are
statistically significant at the 99% level.
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Figure 3: An editorial board.

Referees allowed Increase in editor’s
Number of referees to communicate credence in truth

0 — 0.00
2 Yes 0.10
No 0.10
4 Yes 0.10
No 0.12

Looking at the table, we see that the referees definitely help, since without
them, the editor has no way to improve her opinion on whether p is the case
or not. It is also the case that having 4 reviewers is better than having 2 when
we do not allow them to communicate. In that case, we thus obtain a sort of
justification for the usual practice of not allowing communication among the
referees.

This model uses the assumption that while the referees in general are com-
petent inquirers, neither they nor the editor can be expected to have prior
knowledge of whether or not p is true, so their prior degrees of belief may vary
freely. But there are also cases where the articles sent to a journal tend to be
about things that its editor and referees already have informed opinions on.
Changing the prior beliefs of the editor and the referees to be randomly spread
out according to a beta distribution with a mean at 2 /3, we obtain the following
result:
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Referees allowed Increase in editor’s
Number of referees to communicate credence in truth

0 — 0.08
2 Yes 0.28
No 0.29
4 Yes 0.31
No 0.32

As the editor is assumed to have some prior knowledge on p, she can use
this to evaluate the author’s claim even without relying on referees. But, as the
table shows, having referees makes for a much larger increase in her credence in
truth. The difference between 2 and 4 referees is not very large, though in both
cases not allowing the referees to communicate is somewhat better than doing
SO.

The recommendation that communication among referees should be disal-
lowed is thus stable over the scenarios we have studied here. But one might
hold that we have evaluated the question in the wrong way: we have looked at
reduction in the editor’s degree of error only. This is reasonable, since after all,
it is the editor who makes the decision as to whether a paper should be pub-
lished or not. But there is also another side to the story. The review process
sometimes tends to improve the credences of both the author and the referees
as well.

This means that we have reason to take into account every participant’s
credence. Although the question of how to weigh these, as we pointed out in
the last section, is far from straightforward, the following table lists the average
increase in credence in the truth among all participants in the network, for the
scenarios we have studied so far. This value is equal to Goldman’s V-value.

Editor and Referees Increase in
referees have Number of allowed to average credence
prior knowledge referees communicate in truth

Yes 0 0.04

2 Yes 0.28

No 0.24

4 Yes 0.33

No 0.25

No 0.00

2 Yes 0.28

No 0.24

4 Yes 0.09

No 0.14

What conclusions can we draw from these results? At least when the re-
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viewers and the editor have prior knowledge of p, allowing communication is
definitely better than disallowing it, which is contrary to our earlier recommen-
dation. Thus, when we value the quality of articles publushed only, the currently
more common system (which does not allow communication) is preferrable, but
when we step back and consider the effects on everyone involved, it may be that
we should consider inter-referee communication as well. Furthermore, whether
it is better depends on parameters such as the number of reviewers and their
prior opinions on p.

Taking another step back, we can ask ourselves not only how the process
affects the ones involved, but the readers of the journal as well. This invites
us to include more inquirers in the network. While the complexity increases
gradually, the work involved is still manageable.

5 Further Adventures in Social Epistemology

The last section gave an example of how to use the model presented here, in
conjunction with Laputa, to shed light on problems in social epistemology. This
makes the process more craftsmanlike, and perhaps less philosophical. The
philosophical work, in turn, is largely displaced to the posing and explication of
the problem itself. What model to use is a philosophical as well as mathematical
problem. I believe that the one presented here has several useful features, but
it also has shortcomings.

For one thing, communication among inquirers is limited to saying p or not-
p. There is no such thing as saying ‘I have faily good evidence that p’, for
instance. Inquirers also cannot say ‘I believe p because ¢’, which may be held
to be an important practice in scientific communication. In Goldman’s terms,
we have modelled testimony, but not argumentation, since inquirers are unable
to give justification for their claims.

If we were able to model argumentation, this could furthermore allow us
to measure the value of stronger senses of knowledge as well. Actually, as the
model is now, we can capture parts of the reliabilist conception of knowledge.
The number R,,, for any source o, gives a notion of reliability of that source,
and we could consider only valuing increases in belief that are produced due to
input from sources with high values of R, or possibly weighing the value of
credence by this number. But to some degree, this is already taken into account
because our model is statistical. Since a source that has low reliability tends
to produce less true belief, it will raise the average degree of belief in truth less
than one that has high reliability, and thus typically have less influence on the
total epistemic value anyway.

On the other hand, one could hold that on the internalist interpretation,
justification has a special value. We do not even need to see it as knowledge,
since it appears that having justification for p would increase your understand-
ing, and understanding is arguably epistemically valuable whether it is part of
knowledge or not (the most well-known contemporary argument for this is made
by Kvanvig, cf. [11]). Thus, being able to model justification can allow use of
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more detailed measures of epistemic value.

Another limitation is that the model currently only allows discussion of
one question: whether or not p. If this is a reasonable assumption to make
depends on how inquirers were to handle trust in each other with regard to
different questions. We can isolate two strategies here: the generalist and the
particularist. A generalist assigns one trust function to each source, and thus
treats these as roughly equally trustworthy for every question. A particularist
keeps a separate trust function for every question, and can thereby treat any
given source as an expert on some questions but not others.

Now, if everyone is a particularist, and the questions are logically indepen-
dent, no interaction between the inquirers’ behavior will occur, and we can
model a social network studying n questions by simply modelling n networks,
and averaging the results. The interesting cases occur with logical dependence
between questions, or in networks with generalist inquirers. For a generalist,
a source can build up an inquirer’s trust by feeding her expected information
(i.e. information that agrees with her prior beliefs), and then use this trust to
change her beliefs about something else.

It may be that most people work in the generalist manner, or perhaps accord-
ing to some mixture of generalism and particularism. Nevertheless, it seems that
particularism would be preferrable from an epistemological standpoint, since
inquirers generally are not equally reliable when it comes to different areas of
expertise. As it also seems like logical dependence in questions can be circum-
vented by rephrasing them, it may be that the model’s limitation to discussion
of a single question is quite innocent.

Somewhat less innocent is the assumption of source independence (SI). We
have accepted it as an approximation, but it may be that it makes the model
deviate too much from actual practice. For one thing, sources are treated both
as independent among one another and over time: if § tells a that p twice,
a will treat 8 as having obtained new evidence for p the second time. A side
effect of this is that the model will treat nagging as a potentially effective way
of spreading one’s beliefs. This might be realistic, but it is still a defect.

The way to solve this problem seems to be to model inquirers’ beliefs about
other inquirers’ sources and evidence as well. This, however, adds a large level
of complexity, and also requires communication about sources and evidence to
be in place. The model, as it is now, seems to be a reasonable approximation: as
we mentioned, we do not usually keep track of dependences among our sources,
so it might be defensible for the inquirers in a social network not to do so either.

Another possibility for refinement concerns the dynamics of a network. The
current model handles changes in degrees of belief and in degrees of trust, but
there may be occasions where other variables can change over time as well. We
have treated the network structure itself as static, but an interesting class of
problems in social epistemology concerns how such networks come into being,
and studying these requires the links and perhaps even what inquirers are in
the network to be subject to change.

More fundamentally, we can question the approrpriateness of Bayesianism
and standard decision theory for modelling social epistemology. While there
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once seemed to be fairly good evidence that people made their decisions in
accordance with its axioms (cf. [2]), later experiments showed that systematic
deviations are common as well (cf. [8, 9]). This poses a problem for us: should
we model inquirers as they should act (in which case Bayesianism seems more
easily defensible), or as they actually do act (in which it may be better to model
belief update in some other way). There is a good case to be made for the second
of these alternatives, and this opens up the possibility of a fruitful collaboration
between epistemologists, empirical psyhologists and sociologists.

This brief overview should make it clear that I see both the social network
model and Laputa itself as proposals for a research program, rather than a
finished answer. The aim of such program would be to work out a systematic
methodology for concrete problems in social epistemology, such as the one with
the review board that we studied. Such a methodology is built on two pillars:
modelling and simulation. We approach a social epistemological question by
building a formal model of the type of society or group it pertains to. This
is done in the first two sections of this paper. To actually draw conclusions,
computer simulation is used. It is likely that the complexity of the models
required will preclude use of analytical methods, save in certain simple, highly
idealized cases. Therefore, a general framework for studying and comparing
models is required. It is my hope that Laputa, in time, will evolve into such a
framework.

A Derivation of the Credence Update Function

We make the following assumptions, for any inquirer ¢, any source o connected
to «, any time ¢, and p € [0, 1].

Principal Principle (PP)
Cé(soap | Soa N Rga = p A p) =p
Ci(saaﬁp | So’a A Raa =p A jp) =p
Communication Independence (CI)
CL (PN Sbo AN Roa = p) = Cl(p) CL(SLL) Tha(p)
Cé (_‘p A Séa A RUOé = p) = C(i(_'p) Cttx(Sctra) Fffoz(p>
Source Independence (SI)

Ci | N Seamba |9 | = I Ck(Stamba | p)

oext oeX?

Co| N Seamia | v | =TI Ci(Stamba | -»)

oeXt, oext,
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where X! is the set of sources that give information to « at ¢, and m?  is what
this information says (i.e. p or not-p). The derivation proceeds as follows. By
conditionalization, we must have that

Cettp) =Ci | p /\ Soaiq

oeXl

Applying first Bayes’ theorem and then (SI) to this expression, we get
Cip) =Ch | p| N\ Soamba

oeX?,
t t t
oeXl,

Cé( N Seamia Cé(p)JrCé( N Seamiq

o€XE oeX?

p) CL(p)

p

ﬂp> Ct(=p)

[1 GG (Stamia | p) Co(p)

oext,

"I CL(Stamba [9) Cap) + TI Ck (Seambq | -p) C4(-p)

oEXY, oeXl

which gives the posterior credence in terms of the values C? (St p | p) and
CL(St.p | —p), for all sources o. Our next task is thus to derive these ex-
pressions. First of all, since S%_p is equivalent to S, p A SL,, CL(SL.p|p) =
Ct (St pASt, | p). Applying first the definition of conditional probability and
then the theorem of total probability, the definition of conditional probability,
and finally (CI), we get

1

CL(SEap N Sho A
i) (Sgab )

CL(Stap | p) =

Ci(Seap NSy AN Roo = p Ap) dp

CL(SLap | Sta NRLL = p AP)CL(SEL)CL(D)TL(p) dp

1
0/
1 1
= /Ci(Séap | Sea ARL, = pAD)CL(Sta ARG, (D) = p A D) dp
0
/1

0
1
— (st / CL(SLup | Sto A RLo(p) = p Ap)Th(p) dp
0
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But because of (PP), CL (St p| St ARL, (p) =pAp)=p,sowe get

1
CL(Stap | 9) = CA(S5a) [ 074(0) dp = CL(SEa) (rke)
0

Parallel derivations give that

Ca(Soap I p) = Coa(Sta) (Toa)
Ca(Ssap | =p) = Ci(S5a) (T70)
Ca(Szap | =) = Co(S5a) (Toa)

Plugging this into our earlier result gives

Cap) 11 CL(S5a) (Toa)

oeXl

CLp) 11 Ch(Sta) (Tha) + Ch(=p) 11 CL(SEa) (Toa)

oeXl oeXl
Ce(p) T (75a)

oeXt,

T CLp) T1 (the) + Ch(=p) T (oo

oeXY, oeXt,

Cﬂ+1()

which is the result sought.

B Derivation of the Trust Update Function

Again, we assume (PP) and (CI) of the last appendix to hold (although we do
not need (SI) for this derivation). The value we wish to derive is

d d
7—;—;1 = CTp ny-H(Rooz =p)= d7p Cé(Raa =p| Sctmmfm)

for an arbitrary source o of a, and an arbitrary message m! , given by o to « at
t. For simplicity, assume that m! , = p (the case where m’ , = —p is completely
parallel). Applying the definition of conditional probability, the equivalence
St NSt p<e St p, and then the theorem of total probability, we get

C(tx(RO'a =pA Saap) _ Ct (RUQ =pA SUOzp/\ S(t,.a)

CL(Rya = p | St.p) = =

1 . t t t
T ot(at ) oo — A o = A
(St Calfloa =P Soap Sta AD)+Ch(Roa = pASLap NSk A-p)
I S . L
= LSt (CL(SLap | Roalp) A S D) ChlRo = p A St A D)

+ CL(Sto | Roa = p A Shq A=) Ch(Roa = p A St A=)
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Now, we apply (PP) and (CI), and then again the equivalence St AS! p <
SoaP:

C(];(Rrroz =p | Sgozp)
e pCL) 4 (1—p) CL-p)
= Ca(Ro'a - P) Ca(SUOC) Cé(sa(xp)
p CL(p) + (1= p) Ct(-p)
CL(Stap | SL,)

= Cé (Raa = ,0)

How do we calculate the denominator C?% (S p | St,) here? We use the
definition of conditional probability and expand twice using the theorem of
total probability:

Ca(Seap N Sga)

CL(SEa)
_ CalS5ap N Sga AP) + Co(S5ap A Soa A D)
CL(Ska)

CL(SLap| Sty) =

1
AN St /C Spal A Spa A Roa = pAp) +Co(Seap A Sga A Roa = p A —p) dp
0

C’t St /Ct o’ap‘sfra/\RO'a:p/\p) C:;(Sfra/\RUa:p/\p)

+ Cé(Sfmp | ctra A RUOt = p/\ _‘p) C;(S(tra /\RUOL = p/\ _'p) dp

Applying (PP) and (CI) to this expression then yields

1

1
CL(Skap | S5a) = Grrgry (C) ChiSta) [ 0 CllRon = ) dp +
«a o 0
1
1 Ct(-p) CL(S / Roo = p) dp)
0

= CL(p) (1La) + CL(=p)(Tha)

Putting it all together, we finally get

p CL(p) + (1 = p) CL(—p)

it = L O (Roa(p) | Stap) = ) i) () + Ch(p) (o)

o« dp
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