Active distances and cascaded convolutional codes

Höst, Stefan; Johannesson, Rolf; Zigangirov, Kamil; Zyablov, Viktor V.

Published in:
[Host publication title missing]

DOI:
10.1109/ISIT.1997.613022

Published: 1997-01-01

Citation for published version (APA):
Active Distances and Cascaded Convolutional Codes

Stefan Höst(1), Rolf Johannesson(1), Kamil Sh. Zigangirov(1), and Viktor V. Zyablov(2)

(1) Dept. of Information Technology
Lund University
P.O. Box 118
S-221 00 Lund, Sweden
stefanh@it.lth.se, rolf@it.lth.se, kamil@it.lth.se

(2) Inst. for Problems of Information Transmission
of the Russian Academy of Science
B. Karetnyi per., 19, GSP-4
Moscow, 101447 Russia
zyablov@ippi.ac.msk.su

Abstract — A family of active distances for convolutional codes is introduced. Lower bounds are derived for the ensemble of periodically time-varying convolutional codes.

I. INTRODUCTION
The "extended distances" were introduced by Thommesen and Justesen [1] for unit memory (UM) convolutional codes. We present (non-trivial) extensions to encoder memories \(m \) and call them active distances since they stay "active" in the sense that we consider only those codewords which do not pass two consecutive zero states [2].

II. ACTIVE DISTANCES
Consider the ensemble of binary, rate \(R = b/c \), periodically time-varying convolutional codes encoded by a polynomial generator matrix of memory \(m \) and period \(T \),

\[
G(t) = \begin{pmatrix}
G_0(t) & \cdots & G_m(t + m) \\
G_0(t+1) & \cdots & G_m(t + m + 1) \\
\vdots & & \ddots \\
\end{pmatrix}
\]

(1)
in which each digit in each of the matrices \(G_i(t + T) \) for \(0 \leq i \leq m \) and \(0 \leq t \leq T - 1 \), is chosen independently and equally likely to be 0 and 1.

Let \(U_{[1-m,t+j+m]} \) be the set of information sequences \(u_{t-1, t} \ldots u_{t+j+m} \) such that the first \(m \) and the last \(m \) subblocks are zero and they do not contain \(m + 1 \) consecutive zero subblocks.

Let \(U_{[t-m,t+j]} \) be the set of information sequences \(u_{t-1, t} \ldots u_{t+j} \) such that the first \(m \) subblocks are zero and they do not contain \(m + 1 \) consecutive zero subblocks.

Let \(U_{[t-1, t+j]} \) be the set of information sequences \(u_{t-1, t} \ldots u_{t+j} \) such that at least one subblock is nonzero and they do not contain \(m + 1 \) consecutive zero subblocks.

Next we introduce the truncated time-varying generator matrix

\[
G_{[t,t+j]} = \begin{pmatrix}
G_m(t) \\
G_0(t) & \cdots & G_m(t + j) \\
\vdots & & \ddots \\
G_0(t+j) & \cdots & G_m(t + j) \\
\end{pmatrix}
\]

III. CASCADED CODES
Consider a scheme with two convolutional codes in cascade.

Theorem 1 There exist cascaded convolutional codes in the ensemble of periodically time-varying cascaded convolutional codes whose active distance satisfies

\[
\delta_{t}^{(l)} = \frac{a_j^{(l)}}{mc} \geq \left(1 + \frac{1}{l+1}R\right) - O\left(\frac{\log_2 m}{m}\right)
\]

for \(l \geq l_0 = O\left(\frac{1}{m}\right) \),

\[
\delta_{t}^{(l)} = \frac{a_j^{(l)}}{mc} \geq \left(1 + \frac{1}{l+1}R\right) - O\left(\frac{\log_2 m}{m}\right)
\]

for \(l \geq l_0 = O\left(\frac{\log_2 m}{m}\right) \), and

\[
\delta_{t}^{(l)} = \frac{a_j^{(l)}}{mc} \geq \left(1 + \frac{1}{l+1}R\right) - O\left(\frac{\log_2 m}{m}\right)
\]

for \(l \geq l_0 = \frac{1}{l+1}R + O\left(\frac{\log_2 m}{m}\right) \).

By minimizing the lower bound on the active row distance we obtain nothing but the main term in Costello's lower bound on the free distance, viz., \(\frac{R}{\log_2(2^{m-1})} \).

REFERENCES

0-7803-3956-8/97/$10.00 ©1997 IEEE