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Sweden

This is an author produced preprint version as part of a technical report series
from the Electromagnetic Theory group at Lund University, Sweden. Homepage
http://www.eit.lth.se/teat

Editor: Mats Gustafsson
©

Mats Gustafsson, Doruk Tayli, Casimir Ehrenborg, Marius Cismasu, Sven Nordebo,
Lund, December 21, 2015

http://www.eit.lth.se
http://www.lnu.se
http://www.eit.lth.se/teat


1

Abstract

Antenna current optimization is a tool that offers many possibilities in
antenna technology. Optimal currents are determined in the antenna de-
sign region and used for physical understanding, as a priori estimates of the
possibilities to design antennas, physical bounds, and as figures of merits
for antenna designs. Antenna current optimization is particularly useful for
small antennas and antennas that are constrained by their electrical size. The
initial non-convex antenna design optimization problem is reformulated as a
convex optimization problem expressed in the currents on the antenna. This
convex optimization problem is solved efficiently with a computational cost
comparable to a Method of Moments (MoM) solution of the same geometry.

In this paper a tutorial description of antenna current optimization is
presented. Stored energies and their relation to the impedance matrix in MoM
is reviewed. The convex optimization problems are solved using MATLAB
and CVX. MoM data is included together with MATLAB and CVX codes to
optimize the antenna current for strip dipoles and planar rectangles. Codes
and numerical results for maximization of the gain to Q-factor quotient and
minimization of the Q-factor for prescribed radiated fields are provided.

1 Introduction

Antenna design can be considered as the art to shape and choose the material to
produce a desired current distribution on the antenna structure. Antenna current
optimization is a preliminary step where the current distribution is determined for
optimal performance with respect to some parameters. This step splits the antenna
synthesis process in two less complex tasks; the first one is to determine the optimal
current and the second is to determine an antenna structure that has similar per-
formance to the optimal current. The current distribution serves as a guideline to
antenna design but it is most useful as an upper bound on the antenna performance,
i.e., a physical bound or fundamental limitation.

Optimization is common in antenna design to augment existing structures and
to construct new designs [62]. Metaheuristic algorithms, such as genetic algo-
rithms [44], particle swarm, and gradient based algorithms dominate the antenna
optimization field due to the inherent complexity of antenna design problems. Opti-
mization of the current density on the antenna is inherently different and can often
be formulated as a convex optimization problem [31]. The formulation in convex
form is advantageous as it covers a broad range of different problems by combining
constraints. There are also many efficient solvers for convex optimization problems
and these solvers can provide error estimates [6, 19]. Antenna optimization pa-
rameters can be combined as quadratic forms, such as stored energy and radiated
power; linear forms, such as near- and far fields and induced currents; and norms to
formulate convex optimization problems relevant for a specific antenna problem [31].

One of the most challenging computational tasks in antenna current optimization
is the evaluation of the stored energy [29, 30, 70]. Fortunately, the matrices used to
compute the stored energy are in principle already implemented in many Method of

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Quadratic_form
https://en.wikipedia.org/wiki/Computational_electromagnetics#Method_of_moments_.28MoM.29_or_boundary_element_method_.28BEM.29
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Moments (MoM) solvers. What is needed in the perfect electrical conductor (PEC)
case is to separate the electric and magnetic parts of the impedance matrix from
the Electric Field Integral Equation (EFIE) and to add a non-singular part. This
is very simple in existing MoM codes that are based on Galerkin’s method [61].
Here, we restrict the analysis to surface currents in free space. The corresponding
stored energies for dielectrics and lossy media are more involved and still not well
understood [38].

In antenna current optimization the currents include both the sources and/or
excitation coefficients. These are then used to analyze, e.g., array antennas, array
pattern synthesis, and small antennas. Wheeler [75] considered an idealized current
sheet to analyze array antennas. In array synthesis the optimal performance of, e.g.,
the beamwidth and sidelobe level [53, 55, 69] is used as the optimization parameter
to determine the array excitation. It is assumed that the excitations for different
elements can be specified arbitrarily and that these excitations generate the desired
current distribution and radiated field. This procedure has been very successful in
radar and communications. Another example, superdirectivity [39, 68] can occur if
the excitation is optimized for maximal directivity [59]. Moreover, the directivity is
unbounded for finite apertures. These superdirective arrays are however impractical
as the magnitudes of the excitations are large implying high losses and strong reac-
tive near fields [39, 68]. The superdirective solutions in the optimization problems
are avoided by incorporating constraints on the losses and the reactive fields [31,
55].

The radiation properties of antennas are considered in antenna current optimiza-
tion. It is assumed that the current distribution can be controlled in the antenna
region, meaning that the amplitude and phase of the current density can be pre-
scribed arbitrarily in this region. Optimization is used to synthesize current densities
that are optimal with respect to antenna parameters such as the Q-factor, gain, di-
rectivity, and efficiency. It should be noted that the current density is in general
non-unique for optimal performance [31, 35].

In this tutorial, a review of antennas, stored energy, and convex optimization for
antenna current optimization is presented. In particular, convex quantities in an-
tenna analysis and electromagnetics and their relation to optimization are discussed.
MATLAB codes for maximization of the gain to Q-factor quotient, minimization of
the Q-factor for superdirectivity and antennas with a prescribed radiated field are
provided. The MATLAB codes can be copied from the pdf-file and are also avail-
able for download. The convex optimization problems are solved using CVX [24,
25] and standard MATLAB functions. The provided codes and data can be used to
construct the results presented in the paper.

The remaining part of this paper is organized as follows. Basic antenna pa-
rameters are reviewed in Sec. 2. Optimal antenna design and antenna current
optimization is discussed in Sec. 3. Expressions for the stored energy, Q-factors,
and bandwidth are given in Sec. 4 with their corresponding matrix formulations
in Sec. 5. Convex optimization and convex quantities in electromagnetics are dis-
cussed in Sec. 6. In Sec. 7, antennas are analyzed using convex optimization. A
dual formulation for the G/Q problem is given in Sec. 8. Generalized eigenvalue

https://en.wikipedia.org/wiki/Computational_electromagnetics#Method_of_moments_.28MoM.29_or_boundary_element_method_.28BEM.29
https://en.wikipedia.org/wiki/Computational_electromagnetics#Method_of_moments_.28MoM.29_or_boundary_element_method_.28BEM.29
https://en.wikipedia.org/wiki/Electric-field_integral_equation
https://en.wikipedia.org/wiki/Galerkin_method
http://www.eit.lth.se/index.php?puid=175&projectpage=135&L=1
http://cvxr.com/cvx/
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Figure 1: Visualization of a radiating capacitive loaded dipole antenna. The orange
shapes are the spherical capacitive caps of the dipole and the contour colors represent
electric field strength, where red is high field strength and blue is low field strength.

problems and their relation to the stored energies are presented in Sec. 10. The
paper is concluded in Sec. 11. Appendices containing table of notation, discussion
of stored energy, discussion of non-negative energy, a derivation of the dual problem,
and MoM data are in App. A, App. B, App. C, App. D, and App. E, respectively.

2 Antennas

Antennas are ’the part of a transmitting or receiving system that is designed to
radiate or receive electromagnetic waves’ according to the IEEE standard [46], see
Figs 1 and 2. A transmitting antenna must be matched to the feed structure such
that the transmitted power is accepted by the antenna. The mismatch is quantified
by the reflection coefficient. We introduce the antenna input impedance to separate
the feed line from the antenna. In many cases we have a transmission line with real-
valued characteristic impedance. This requires the antenna to be self-resonant, i.e.,
having a negligible reactance, and a resistance close to the characteristic impedance.
The antenna input impedance, Zin, can be written

Zin = Rin + jXin =
2Pd + 4jω(Wm −We)

|Iin|2
, (1)

where we also used the time average power and stored energy in the lumped circuit
elements to express the input impedance [76], with the angular frequency ω, dissi-
pated power Pd, stored electric energy We, stored magnetic energy Wm, current Iin,
and imaginary unit j =

√
−1.

https://en.wikipedia.org/wiki/Imaginary_unit
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There are many other parameters characterizing the performance of antennas,
such as [2, 46, 74]

bandwidth f2−f1 and fractional bandwidth B = (f2−f1)/f0, where [f1, f2] is the
frequency interval where the antenna performs according to the requirements
and f0 = (f2 + f1)/2 is the center frequency. The bandwidth requirements are
usually formulated in terms of matching and radiation properties.

directivity D(r̂) is the ratio of the radiation intensity in a direction r̂ to the average
radiation intensity [46]. The partial directivity denoted D(r̂, ê) includes the
dependence on the polarization ê.

gain G(r̂) is the ratio of the radiation intensity in the direction r̂ to the average ra-
diation intensity that would be obtained if the power accepted by the antenna
were radiated [46]. The partial gain denoted G(r̂, ê) includes the dependence
on the polarization ê.

efficiency ηeff , defined as the quotient between the radiated power and the accepted
power, relates the gain and directivity G = ηeffD.

radiation patterns are either specified with the magnitude of the electric field
created by an antenna, |F (r̂)|, or with the polarization, amplitude and phase
F (r̂) of the far field F .

specific absorption rate (SAR) quantifies the amount of power absorbed per
mass of tissue.

The antenna parameter requirements are application specific. For mobile phones,
we strive for a large bandwidth, high efficiency, low directivity, and low SAR in
the considered communication bands. The requirements for base station antennas
are similar to mobile phones for bandwidth, but have usually higher efficiency and
directivity.

For small antennas, we often reformulate the fractional bandwidth in terms of
the quality factor (Q-factor) [48, 74, 79]. The Q-factor is defined as the quotient
between the time-average stored energy and dissipated energy

Q =
2ωmax{We,Wm}

Pd

= max{Qe, Qm}, (2)

where we also introduced the electric and magnetic Q-factors Qe = 2ωWe/Pd and
Qm = 2ωWm/Pd, see also Sec. 4. Radiation properties of antennas are of equal
importance as matching, and are often used to characterize antennas, see Figs 1
and 2. The electromagnetic fields are also useful to determine the antenna quality
factor (Q-factor) [12, 15, 29, 30, 37, 58, 70, 79]. The radiated electromagnetic field
is generated by oscillating currents on the antenna structure, see Fig. 2. From the
radiation point of view, we can even consider antenna design as the art to produce
the desired current distribution to achieve the radiation specifications. This can be
thought as simply modifying the antenna by shaping its structure and choosing its
material properties to obtain the desired current layout.

https://en.wikipedia.org/wiki/Directivity
https://en.wikipedia.org/wiki/Antenna_gain
https://en.wikipedia.org/wiki/Specific_absorption_rate
https://en.wikipedia.org/wiki/Specific_absorption_rate
https://en.wikipedia.org/wiki/Specific_absorption_rate
https://en.wikipedia.org/wiki/Q_factor


5

Oon

’O O
O
.

Electric current density
J(r)

Ω

(reactive and radiated field)
Near field region

Far field region
(radiated field)

ε0

ê
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Figure 2: Reactive and radiated fields from a current density J(r) in the region
Ω [37]. The reactive fields are concentrated in the near-field region around Ω and
vanish far from the source region Ω, where E(r) ≈ F (r̂)e−jkr/r.

3 Optimal antenna design and current optimiza-

tion

Design requirements on antennas are often formulated in terms of combinations
of antenna parameters such as those introduced in Sec. 2. In addition to these
parameters the antenna design is restricted by its size, weight, and price where it
is often desired to have a small size, a low weight, and a low cost. This often leads
to contradictory goals as e.g., electrically small antennas have narrow bandwidths
and low directivity (D ≈ 1.5) [12, 27, 32, 33, 37, 65, 71, 74, 77, 78]. Therefore,
optimization is used to trade antenna performance versus size [44, 52, 62].

Antenna optimization is simply, optimizing the antenna structure with respect to
the antenna performance in a given design space. Consider an antenna region given
by a planar rectangle, Ω = ΩA, with width `x and height `y depicted in Fig. 3a.
The antenna optimization problem is to design an optimal antenna with respect
to some parameters in the region Ω = ΩA by proper placement of metal (PEC)
and feed. Fig. 3b depicts a center fed PEC meander line antenna (one of many
possible antenna designs) that fits in ΩA. The corresponding current distribution is
depicted in Fig. 3c. The antenna current optimization problem is to find an optimal
current distribution in the region ΩA, in this case for radiation in the broadside
direction, see Fig. 3d. The obtained current distribution is not restricted to any
specific feed point or other constraints in the region ΩA. This implies that the
current distribution from any antenna in the region ΩA is a possible candidate for
the current distribution in the design space. Consequently, the optimal current
can be used to determine physical bounds (fundamental limitations) for antennas
restricted to the design region ΩA.

The previous example is sometimes encountered in practice but antenna designers
are often requested to design antennas in (small) parts of devices such as mobile
phones, laptops, and sensors. This case is illustrated in Fig. 4 where the structure
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a) Maximal size of the antenna

`y

`x

Ω = ΩA

b) Antenna geometry with feed point

c) Current distribution on the antenna

d) Current distribution in the antenna antenna region

Figure 3: Antenna and current optimization. In antenna optimization, we design
antennas with optimal performance. In current optimization, we synthesize current
densities with optimal performance. a) maximal antenna region. b) possible antenna
design. c) current density on the antenna structure. d) possible current density in
the antenna region.
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ΩA

ΩG

ΩA

ΩG

Figure 4: Device geometry with a region Ω with current density J , (left) with a
device and (right) the geometry. We assume that the currents JA can be controlled
in the antenna region ΩA. The currents JG in ΩG = Ω \ ΩA are induced by the
currents JA, see also [37].

Ω is divided into two regions; an antenna region ΩA ⊂ Ω and the remaining part
ΩG = Ω \ΩA. Here, we refer to ΩG as the ground plane although it can in principle
be any type of region (metal or dielectric). Consider a typical device geometry to
illustrate the approach, see Fig 4. The device structure is denoted Ω and consists of
an antenna region ΩA and other components such as screen, battery, and electronics.
We assume that the antenna designer is allowed to specify the spatial distribution of
the metal and dielectrics in the antenna region ΩA. The electromagnetic properties
of the remaining region ΩG = Ω \ ΩA are assumed to be fixed. For the antenna
current optimization, we assume that the current density JA in ΩA is controllable
and that the current density JG in ΩG is induced by JA.

We can now formulate several optimization problems. The basic case with min-
imal Q-factor can be written

minimize 2ω
stored energy

radiated power
(3)

for lossless antennas. We minimize the Q-factor for an antenna by changing the
material properties in the antenna region ΩA for fixed material properties in ΩG. For
the approach in this paper, it is advantageous to rewrite the optimization problem as
a constrained optimization problem. The minimal Q-factor (3) is then reformulated
as minimization of the stored energy subject to a fixed radiated power Pr = Pr0,
i.e.,

minimize stored energy

subject to radiated power = Pr0.
(4)

The two formulations (3) and (4) are equivalent but the latter formulation is more
powerful as it is easily generalized by adding additional constraints. Alternatively,
the optimization for the Q-factor can be formulated as maximization of the radiated
power for a fixed stored energy,

maximize radiated power

subject to stored electric energy ≤ W0

stored magnetic energy ≤ W0,

(5)

https://en.wikipedia.org/wiki/Q_factor
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where W0 is a fixed number and the equality constraints are relaxed to inequalities.
The relaxed problem contains stored energy equal to W0 as a special case and hence
the solution to (5) always gives a larger or equal radiated power than the problem
with an equality constraint for the stored energy. Moreover, at least one of the
inequality constraints in (5) will always be an equality (i.e., an active constraint) as
otherwise the radiated power could be increased.

We can easily generalize the optimization problem to many other relevant an-
tenna cases. The quotient G/Q between the partial gain G = G(r̂, ê) and the
Q-factor is investigated in [12, 32, 33]. The G/Q quotient gives a balance between
a desired (high) gain and a low Q-factor. The G/Q problem can be written as [31,
35]

minimize stored energy

subject to partial radiation intensity = P0.
(6)

Using that the partial radiation intensity is the squared magnitude of the far field [2,
5], we can rewrite the equality constraint in (6) into a linear equality constraint [31,
35]. This gives the optimization problem [31]

minimize stored energy

subject to farfield = F0.
(7)

Antenna optimization problems can be solved by different methods which are
suboptimal due to the numerical complexity of antenna problems. We can charac-
terize the optimization approaches as local, global, model based and their combina-
tions. Local or gradient based optimization is used to improve the design [16, 42,
43, 50]. This works very well if the initial design is close to the optimum otherwise
there is a risk of getting trapped in a local suboptimal design. Global, stochastic, or
metaheuristic optimization algorithms such as genetic algorithms [44, 62], particle
swarm [63], simulated annealing, and Monte Carlo are often used. These methods
are very general and can be applied to almost any object functional. Model based
optimization and combinations of local and global algorithms can also be used [52].
For antenna current optimization, the problem is relaxed to optimal current dis-
tribution instead of the antenna design. Therefore, these problems can often be
formulated as convex optimization problems and can hence be solved efficiently [6,
24, 31].

Below we illustrate the antenna current optimization and the associated physical
bounds for the cases with ΩA = Ω and ΩA ⊂ Ω, see also Figs 3 and 4, respectively.
The region Ω is a planar rectangle with side length `x and `y, see Fig. 3a. The phys-
ical bounds are compared with data from classical dipoles, folded dipoles, loops, and
meanderline antennas in Sec. 3.1 and data from Genetic Algorithm (GA) optimized
antennas in Sec. 3.2. The results indicate that there are antennas that perform close
to the physical bounds. This suggests that the antenna current optimization can be
used to a priori estimate the optimal antenna performance.

https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Stochastic_optimization
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Monte_Carlo_method
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`y
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1

1

`x/λ

G/Q

`y = 0.5`x
`y = 0.1`x
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Figure 5: Upper bounds on G(ẑ, x̂)/Q for rectangular plates with height `x and
widths `y = {0.5, 0.1, 0.01}`x, for `x/λ ≤ 0.5, polarization ê = x̂ and radiation
in the r̂ = ẑ direction. G/Q from simulations of PEC strip dipole, capacitive
dipole, meander and folded meander antennas are included for comparison with the
physical bounds. The antenna feeds are indicated with a dot. The size of the dipole
is `y = 0.01`x, the other antenna dimensions are `y = {0.5, 0.1}`x with different line
widths.

3.1 Example: current optimization and physical bounds

A planar rectangular structure is used to illustrate the antenna current optimization
for the G/Q bound in (6). The rectangles are infinitely thin and have the length
`x and widths `y = {0.5, 0.1, 0.01}`x. The quotient between the partial gain and
the Q-factor G(ẑ, x̂)/Q is maximized for radiation in the normal direction of the
plane (ẑ-direction) and the polarization x̂. Fig. 5 depicts the upper bound on
G/Q for `x/λ ≤ 0.5 (half-a-wavelength). The bounds are identical to the forward
scattering bound1 [32, 33] for small structures [27]. The bound on G/Q improves
with increasing antenna size `y and electrical size `x/λ. This is a result of extending
the degrees-of-freedom of the currents on the structure.

The physical bounds are then compared with numerical results for self-resonant
dipoles, folded dipoles, loops, meanderline and folded meanderline antennas. The
antennas are simulated in the commercial electromagnetic solver FEKO [1]. All
of the antennas are matched to 50 Ω input impedance and the antenna Q-factors
are determined from (9). The simulated antennas have G/Q quotients close to the
physical bounds, see also [3, 27, 32, 64] for additional comparisons. The strip dipole
is resonant around `x = 0.47λ and has an optimal performance according to the G/Q
metric. It can also be seen from the meanderline and folded meanderline antennas
that the G/Q performance increases with antenna thickness. On the other hand
the resonance frequencies are shifted up as the effective length of the antenna is
increased.

1http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq

http://feko.info/
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0.1 0.2 0.3 0.4 0.5

0.01

0.1

1

`/λ

G/Q

100%
25%
10%
6%

0.3 0.6 0.9 1.2 1.5
f/GHz, ` = 10 cm

`

`/2

ΩA

ΩG

x̂
ŷ

ẑ

Figure 6: Solid lines—physical bounds on G(ẑ, x̂)/Q for antenna regions ΩA re-
stricted to rectangular regions. 6 %, 10 % and 25 % of the region at the upper
end in the `x-direction is used for ΩA, cf., Fig. 4. The situation with the entire
region ΩA = Ω used for optimization (100 %) is included for comparison. Marks—
G(ẑ, x̂)/Q values of structures optimized using a genetic algorithm (GA) [13, 14].
Insert—illustration of the considered situations. Blue and gold colored regions are
the antenna ΩA and ground plane ΩG regions used in the convex and GA optimiza-
tion, see also [37].

3.2 Example: Genetic Algorithm and Current Optimization

Antenna current optimization can be combined with global optimization algorithms.
The former optimization is used to determine the physical bound on an antenna pa-
rameter, e.g., the Q-factor, directivity, radiation pattern, etc. The latter optimiza-
tion is used to synthesize structures that perform optimally. Initial investigations of
this automated optimal antenna design is considered in [13] and [14] for single- and
multiband antennas, respectively.

Here we maximize the partial-gain-Q-factor quotient G/Q in (7) for electrical
dimensions `/λ ≤ 0.5. The G(ẑ, x̂)/Q quotient is considered for the ẑ-direction
and x̂-polarization. The structures are considered infinitely thin perfect electrical
conductors (PEC). They are restricted to rectangular regions in the xy-plane with
the length ` = `x and width `y = `/2. The physical bounds on G(ẑ, x̂)/Q are
computed with convex optimization (see Sec. 7) and depicted in solid lines in Fig. 6.
The bounds are computed for an antenna restricted to 6 %, 10 % and 25 % of the
region at one end in the `x-direction; see insert in Fig. 6. Also, the case when
the entire rectangular region (i.e., 100 %) is used for optimization is included for
comparison. The former three cases have been used in a Genetic Algorithm (GA) to
synthesize antennas. The G/Q quotients obtained by the GA optimized structures
are depicted as marks in Fig. 6. The presented results show that GA-synthesized
antennas perform close to the physical bounds of the analyzed situations.
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4 Stored energy, Q-factor, and bandwidth

The Q-factor is a measure of losses in a system, i.e., a high Q-factor describes a
system with low losses. An oscillator with a high Q-factor will oscillate for a long
time after the excitation is removed. In antenna applications we want to dissipate
power out from the antenna, see Fig. 2, thus a low Q-factor is desired. The Q-factor
for an antenna tuned to resonance is defined as the ratio between the maximum
of the stored electric, We, and magnetic, Wm, energies and the dissipated power,
see (2). The electric and magnetic Q-factors correspond to the stored energy in the
capacitors and inductors, respectively, normalized with the dissipated power in the
resistors for lumped circuit networks. The time average stored energy in capacitors
and inductors are

We =
C|V |2

4
=
|I|2

4ω2C
and Wm =

L|I|2
4

=
|V |2
4ω2L

,

C

+ −
V

I
L

+ −V

I

respectively. Synthesis of lumped circuit networks leads to an alternative method
to estimate the Q-factor from the input impedance of antennas [29].

The fractional bandwidth is inversely proportional to the Q-factor, i.e., a high
Q-factor implies a narrow bandwidth. The precise proportionality depends on the
shape of the reflection coefficient. We can often quantify this shape with the distri-
bution of resonances. The simplest case of a single resonance corresponds to series
or parallel RLC circuits

C L
R C LR

where the fractional bandwidth for single resonances is [79]

B ≈ 2

Q

Γ0√
1− Γ 2

0

=
2

Q
for Γ0 = 1/

√
2 (8)

and Γ0 denotes the threshold of the reflection coefficient. The reflection coefficients
for single resonance RLC circuits with Q = {6, 10, 30} are depicted in Fig. 7.

The estimate (8) is very accurate for Q � 2 for the RLC circuit. The special
case of the half-power bandwidth B ≈ 2/Q predicts an infinite bandwidth for Q = 1.
This suggests that the Q-factor is most useful for Q� 1 and in practice it is often
sufficient if Q > 5 or Q > 10. The bandwidth can be increased by using matching
networks [17].
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Figure 7: Magnitude of the reflection coefficient |Γ | for RLC circuits with resonance
frequency ω0 and Q-factors Q = {6, 10, 30} [37]. The fractional bandwidths (8) for
the Q = 6 case with threshold levels Γ0 = {1/

√
2, 1/3} are B ≈ {0.33, 0.12}.

Differentiation of the input impedance Zin is a practical way to approximate the
Q-factor for antennas [36, 49, 79]

QZ′in
=
ω|Z ′in,m|

2Rin

=

√
(ωR′in)2 + (ωX ′in + |Xin|)2

2Rin

, (9)

where Zin,m denotes the input impedance tuned to resonance with a series capacitor
or inductor. The formula (9) is exact for the series RLC single resonance circuits and
often very accurate for antennas with Q� 1 but can underestimate the Q-factor for
lower values of Q, where multiple resonances are common [29, 36, 66]. For accurate
estimates (9) requires that the first order derivative |Z ′in,m| (linear term) dominates
over the second and higher order derivatives. The relation between the fractional
bandwidth and Q-factor (8) for the RLC resonance circuit can also be used to define
an equivalent Q-factor for a given threshold level Γ0 i.e.,

QΓ0 =
2

BΓ0

Γ0√
1− Γ 2

0

, (10)

where BΓ0 denotes the fractional bandwidth for the threshold Γ0.
In this paper, we estimate the Q-factor for antennas using the differentiated

input impedance (9) and the Q-factor QB from Brune synthesized lumped circuit
models [7, 29, 76]. The estimated Q-factors are used to compare the performance
of antennas with the derived physical bounds from current optimization, see Figs 5
and 6.

To analyze the radiation properties of antennas, we need to express the stored
energy in terms of electromagnetic fields or current densities, see Fig. 2. The total
time-harmonic energy is unbounded due to the large contribution from the radiated
field far from the antenna, see [72, 73] for the corresponding time-domain case.
This radiated field does not contribute to the stored energy of the antenna and is

https://en.wikipedia.org/wiki/Otto_Brune
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subtracted from the total energy [15, 21, 29, 58, 73, 79]. In this paper, we restrict
the analysis to currents in free space, see also [38].

The integral expressions by Vandenbosch [70] represent the stored energy as
quadratic forms in the current density, see also Geyi [21] for the case of electrically
small antennas. The expressions are particularly useful as the radiated fields are
generated by the current density on the antenna structure and hence directly ap-
plicable to current optimization [31, 35]. The integral expressions are identical to
subtraction of the energy density of the radiated far field for many cases [30], see
also App. B.

The stored electric and magnetic energies are [30, 70]

We =
η0

4ω

∫

Ω

∫

Ω

∇1 · J(r1)∇2 · J∗(r2)
cos(kr12)

4πkr12

−
(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J∗(r2)

)sin(kr12)

8π
dV1 dV2 (11)

and

Wm =
η0

4ω

∫

Ω

∫

Ω

k2J(r1) · J∗(r2)
cos(kr12)

4πkr12

−
(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J(r2)∗

)sin(kr12)

8π
dV1 dV2, (12)

respectively, where r12 = |r1 − r2|, the asterisk ∗ denotes the complex conjugate,
and we note that η0/ω = µ0/k. We also have the radiated power [22, 29, 70]

Pr =
η0

2

∫

Ω

∫

Ω

(
k2J(r1)·J∗(r2)−∇1·J(r1)∇2·J∗(r2)

)sin(k|r1 − r2|)
4πk|r1 − r2|

dV1 dV2. (13)

For the radiation pattern and the directivity, we use the radiated far field [5, 60],
F (r̂) = rejkrE(r) as r = |r| → ∞, in the direction r̂, see Fig. 2. The far field for
the polarization ê and direction r̂ (with r̂ · ê = 0) is

ê∗ · F (r̂) =
−jkη0

4π

∫

Ω

ê∗ · J(r1)ejkr̂·r1 dV1. (14)

The partial radiation intensity is

P (r̂, ê) =
|ê∗ · F (r̂)|2

2η0

(15)

and the partial directivity and gain are

D(r̂, ê) =
4πP (r̂, ê)

Pr

and G(r̂, ê) =
4πP (r̂, ê)

Pr + PΩ

, (16)

respectively, where Pr + PΩ = Pd. In addition to the Q-factor (2), we consider the
partial gain to Q-factor quotient

G(r̂, ê)

Q
=

4πP (r̂, ê)

2ωmax{We,Wm}
=

π|ê∗ · F (r̂)|2
ωη0 max{We,Wm}

(17)

that replaces the total radiated power in (2) with the radiation intensity.
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Figure 8: Illustration of discretization for a region Ω using rectangular mesh ele-
ments. The region is divided into the antenna region, ΩA, and ground plane region,
ΩG. The amplitudes of six basis functions (18), three (green) in ΩA and three (red)
in ΩG, are depicted. We let overlapping basis functions belong to the antenna part.

5 Matrix formulation

We consider a region Ω in which the current density J = J(r) is excited, see
Figs 2, 3, and 4. This current density is expanded in local basis functions ψn as

J(r) ≈
N∑

n=1

Inψn(r), (18)

where we introduce the N × 1 current matrix I with the elements In to simplify the
notation. For simplicity, we also restrict the analysis to surface current densities.
The basis functions are assumed to be real valued and divergence conforming with
vanishing normal components at the boundary [61]. For simplicity, we use rectangu-
lar elements and basis functions with piecewise constant divergence (charge density),
see Fig. 8. Triangular elements with RWG or higher order basis functions can also
be used [61]. Moreover, we normalize the basis functions with their widths (cross
section for the volume case) giving basis functions with the dimension length−1 (SI-
unit m−1). The expansion coefficients are currents with the SI-unit ampere ( A) and
the impedance matrix (19) is in ohm ( Ω). It is easy to use dimensionless quantities
by a scaling with the free space impedance η0.

A method of moments (MoM) type implementation using the Galerkin procedure
is used to compute the energies (11) and (12). A standard MoM implementation of
the EFIE using the Galerkin procedure computes the impedance matrix Z = R+jX

Zmn = η0

∫

Ω

∫

Ω

(
jkψm(r1) ·ψn(r2)

+
1

jk
∇1 ·ψm(r1)∇2 ·ψn(r2)

)
G(r1 − r2) dS1 dS2, (19)

where the Green’s function [5] is G(r) = e−jkr

4πr
and r = |r|. The expansion coefficients

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Ohm
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Impedance_of_free_space
https://en.wikipedia.org/wiki/Galerkin_method
https://en.wikipedia.org/wiki/Galerkin_method
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I are determined from ZI = V, where V is a column matrix with the excitation
coefficients [61].

Differentiating the MoM impedance matrix with respect to the wavenumber k
gives

k ∂Zmn
η0 ∂k

=

∫

Ω

∫

Ω

(
jkψm(r1) ·ψn(r2)− 1

jk
∇1 ·ψm(r1)∇2 ·ψn(r2)

+ (k2ψm(r1) ·ψn(r2)−∇1 ·ψm(r1)∇2 ·ψn(r2))r12

)
G12 dS1 dS2, (20)

where G12 = G(r1 − r2) and r12 = |r1 − r2|. The MoM approximation of the stored
energies (11) and (12) can be written as

We ≈
1

8
IH

(
∂X

∂ω
− X

ω

)
I =

1

4ω
IHXeI (21)

for the stored electric energy and

Wm ≈
1

8
IH

(
∂X

∂ω
+

X

ω

)
I =

1

4ω
IHXmI (22)

for the stored magnetic energy, where the electric Xe, and magnetic Xm, reactance
matrices are introduced and the superscript H denotes the Hermitian transpose. The
expressions (21) and (22) are identical to the stored energy expression (for surface
current densities and free space) introduced by Vandenbosch [70] and were already
considered by Harrington and Mautz [40]. The total radiated power (13) for a
lossless structure can be written as the quadratic form

Pr ≈
1

2
IHRI with R = Re{Z}. (23)

We note that the computation of the reactance matrices and radiation matrix only
require minor modifications of existing MoM codes. This makes it very simple
to compute the stored energies and the additional computational cost is very low
compared to the overall MoM implementation. Using the reactance matrices Xe

and Xm the EFIE impedance matrix is expressed as

Z = R + j(Xm −Xe), (24)

where we also notice the relation

IHZI ≈ 2Pd + 4ωj(Wm −We) (25)

that resembles the energy identity for the input impedance (1). The Q-factor for an
antenna tuned to resonance can be expressed using the reactance matrices and the
radiation resistance matrix

Q =
2ωmax{We,Wm}

Pr + PΩ

≈ max{IHXeI, I
HXmI}

IH(Rr + RΩ)I
, (26)
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where R = Rr + RΩ and PΩ = IHRΩI is the power dissipated due to ohmic losses.
In this paper, we restrict the results to lossless structures so RΩ = 0 and R = Rr,
see also [28, 34, 38].

The far field (14) projected on ê is approximated by the N × 1 matrix FI ≈
ê∗ · F (r̂) defined as

FI = −jkη0

N∑

n=1

In

∫

Ω

ê∗ ·ψn(r1)
ejkr̂·r1

4π
dS1. (27)

Inserting (21), (22) and (26) in (14) we express the partial gain to Q-factor quo-
tient (17) as

G(r̂, ê)

Q
≈ 4π|FI|2
η0 max{IHXeI, IHXmI} . (28)

The electric and magnetic near fields [60] are approximated using the matrices
Ne and Nm defined from

E(r) ≈ NeI =
N∑

n=1

Inη0

∫

Ω

1

jk
∇1 ·ψn(r1)∇G(r− r1)− jkψn(r1)G(r− r1) dS1 (29)

and

H(r) ≈ NmI =
N∑

n=1

In

∫

Ω

ψn(r1)×∇1G(r − r1) dS1, (30)

respectively, where r /∈ Ω.
Embedded antennas, see Figs 4 and 8, are modeled with an antenna region where

we can control the currents and a surrounding structure (ground plane) with induced
currents [13, 14, 31]. For simplicity, we restrict the discussion to induced currents
on PEC ground planes. The induced currents depend linearly on the currents in the
antenna region, and we use the EFIE (19) to determine the linear relation between
the currents as [13, 14, 31]

(
ZAA ZAG

ZGA ZGG

)(
IA

IG

)
=

(
VA

0

)
. (31)

The first row is unknown but the second row gives the constraint

ZGAIA + ZGGIG = CI = 0 (32)

that can be added as a constraint to the convex optimization problems in this paper.
The decomposition of the basis functions into its antenna, IA, and ground plane, IG,
parts is non-trivial as each basis function is supported on two elements, see Fig. 8.
Here, we let basis functions with support in both ΩA and ΩG belong to the antenna
part IA.

In the following we assume that the numerical approximation is sufficiently accu-
rate so the approximate equal to (≈) in (26) to (30) can be replaced with equalities.
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6 Convex optimization and convex quantities in

electromagnetics

Convex optimization problems are solved with efficient standard algorithms, see
e.g., [6, 19, 24]. There is no problem with getting trapped in a local minimum
since a local minimum is also a global minimum [6], see Fig. 9. A convex optimiza-
tion problem is also associated with a dual problem. Dual problems are used to
obtain posterior error estimates. When an optimization problem is formulated as
a convex optimization problem it is considered to be solved. There are of course
difficult convex optimization problems and they can e.g., be ill-conditioned. Lin-
ear programming (LP), quadratic programing (QP), and quadratically constrained
quadratic programing (QCQP) are special cases of convex optimization.

Convex functions f : RN → R satisfy [6]

f(αx + βy) ≤ αf(x) + βf(y) (33)

for all α, β ∈ R, α + β = 1, α, β ≥ 0, and x,y in the domain of definition of f .
A simple interpretation is that the curve is below the straight line between two
points for convex functions, see Fig. 9. Smooth convex functions have a positive
semidefinite Hessian, i.e., the N × N matrix H with elements Hij = ∂2f

∂xi∂xj
. For

functions of a single variable the Hessian simplifies to a non-negative second deriva-
tive d2f

dx2
= f ′′(x) ≥ 0. A simple example is the second order polynomial

f(x) = ax2 + bx+ c (34)

that is convex if a ≥ 0 as seen from f ′′(x) = 2a. A function g(x) is called concave
if −g(x) is convex. The linear function f(x) = bx is both convex and concave.

In this tutorial, we mainly use the following convex functions

linear form f(x) = bx for 1×N matrices b.
quadratic form f(x) = xTAx for symmetric positive semidefinite N×N matrices

A � 0.
norms f(x) = ||Ax||
max max{f1(x), f2(x)} for convex functions f1(x), f2(x)
logarithms − log(x).

We follow the convention in [6] and consider convex optimization problems of
the form

minimize f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

Ax = b

(35)

where the functions f(x) and gi(x) are convex and A a matrix. In convex opti-
mization, we can in minimize convex quantities and maximize concave quantities.
The linear (affine) quantities are both convex and concave so they can be either
minimized or maximized.

https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Duality_(optimization)
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Positive-definite_matrix#Negative-definite.2C_semidefinite_and_indefinite_matrices
https://en.wikipedia.org/wiki/Positive-definite_matrix#Negative-definite.2C_semidefinite_and_indefinite_matrices
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Concave_function
https://en.wikipedia.org/wiki/Concave_function
https://en.wikipedia.org/wiki/Convex_function
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f(αx+ βy)

convex

f(x)
αf(x) + βf(y)

f(y)

g(αx+ βy)

not convex

g(x)
αg(x) + βg(y)

g(y)

Figure 9: Convex and non-convex functions. Convex functions satisfy f(αx+βy) ≤
αf(x) + βf(y) for α + β = 1 and, α, β ≥ 0, i.e., the curve is below the straight
line between two points, see [6] for details. Note that the non-convex function g is
convex if the domain is restricted to the left or right of the local maximum in the
middle.

In order to study complex-valued quantities (e.g., electromagnetic fields), we
need to extend the definition of convexity to complex-valued functions. This can
be achieved by considering the real and imaginary parts as separate real valued
quantities. For our case, we in particular note that Re{·} and Im{·} are linear
operators and that quadratic forms for positive semi-definite real-valued symmetric
matrices A = AT are convex in the real and imaginary parts, i.e.,

zHAz = (x + jy)HA(x + jy) = xTAx + yTAy. (36)

Convex optimization offers many possibilities to analyze radiating structures in
terms of the current density. The expansion of the current densities in local basis
functions (18) and the corresponding matrix approximations for the stored energy,
radiated power, and radiated fields are simple matrix operators in the current, see
Sec. 5.

Examples of quantities commonly found in electromagnetics that are linear,
quadratic, normed, and logarithmic in the current matrix I defined in (18) are

linear: near fields NeI (29) and NmI (30), far field FI (27), and induced currents
CI (32).

quadratic: radiated power 1
2
IHRrI, stored electric energy 1

4ω
IHXeI (21), stored

magnetic energy 1
4ω

IHXmI (22), ohmic losses 1
2
IHRΩI, and absorbed power.

norms: field strengths ||NI||2, far-field levels ||FI||2.
max: stored energy for tuned antennas W = max{We,Wm}.
logarithmic: channel capacity.

We can in general minimize convex quantities and hence convex optimization is very
powerful to minimize (or restrict the amplitude of) power and energy quantities such
as the stored energy, ohmic losses, radiated power, radiation intensity, and side-lobe
levels. This agrees with the goal of antenna design with the exceptions of radiated
power. Consider e.g., minimization of the Q-factor in (5) where we have a finite

https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Channel_capacity
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stored energy (a convex constraint) but we maximize the radiated power. This is
not a convex optimization problem as we should minimize convex quantities. The
corresponding minimization of the radiated power is convex and has the trivial
solution 0 for I = 0. The same problem appears to apply to the gain Q-factor
quotient (G/Q) in (6) and (28), where we minimize the stored energy for a fixed
(partial) radiation intensity. This G/Q problem can however be reformulated to a
fixed far field (7) that is linear and hence both convex and concave. In the following
sections, we first illustrate the G/Q formulation and then generalize the formulation
to super directivity and embedded antennas.

7 Convex Optimization for Antenna Analysis

Optimization can be used to determine optimal currents and physical bounds for
many relevant antenna problems [31, 35]. Convex optimization offers great flexibility
to analyze and formulate optimization problems [6, 31] and is directly applicable to
G/Q in (28). Maximization of the partial gain to Q-factor quotient is analyzed in
Sec. 7.1, applied to strip dipoles in Sec. 7.2, and implemented using CVX in Sec. 7.3.
Minimization of the Q-factor for superdirective antennas is considered in Sec. 7.4.
Short dipoles and embedded antennas are analyzed in Secs 7.5 and 7.6, respectively.
Relaxation and a dual formulation is used reformulate the G/Q-problem in Secs 7.7
and 8, respectively.

7.1 Partial gain to Q-factor quotient

The partial gain to Q-factor quotient (28) in the used MoM approximation (18) is
bounded by maximization of (28) over the current matrix, i.e.,

G(r̂, ê)

Q
≤ max

I

4π|FI|2
η0 max{IHXeI, IHXmI} . (37)

Using the scaling invariance of G/Q in I, i.e., G/Q is invariant for the complex
scaling I → αI, we can rewrite the maximization of G/Q into minimization of the
stored energy for a fixed partial radiation intensity

minimize max{IHXeI, I
HXmI}

subject to |FI|2 = 1,
(38)

where the dimensionless normalization |FI|2 = 1, or equivalently |FI| = 1, has been
used. Moreover, the scaling invariance shows that we can consider an arbitrary phase
FI = −j that removes the absolute value [31]. The particular choice used here is
due to the −j in (14) and produces real valued currents on planar structures for
maximal radiation in the normal direction. In total, we get the convex optimization
problem to minimize the stored energy for a fixed far-field in one direction and
polarization [31], i.e.,

minimize max{IHXeI, I
HXmI}

subject to FI = −j.
(39)

http://cvxr.com/cvx/
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Figure 10: A thin strip dipole with dimensions `x, `y divided into Nx = 16 rectan-
gular mesh elements. Two piecewise linear divergence conforming basis functions
are depicted.

Let Io denote a current matrix that solves (39). The minimum value of the stored
energy in (39) is unique although the current vector Io is not necessarily unique.
The optimum solution yields an upper bound on G/Q for the considered direction
r̂ and polarization ê, i.e.,

G(r̂, ê)

Q
≤ G(r̂, ê)

Q

∣∣∣∣
opt

=
4π|FIo|2

η0 max{IH
o XeIo, IH

o XmIo}
. (40)

The convex optimization problem (39) can be rewritten as follows. A normalized
stored energy w = 4ωW is introduced to obtain the equivalent (convex optimization)
formulation

minimize w

subject to IHXeI ≤ w,

IHXmI ≤ w,

FI = −j.

(41)

The formulation (41) is here referred to the primal problem (P), see App. D. An
alternative optimization formulation is also to maximize the far field for a bounded
stored energy [31].

7.2 Example: strip dipole

We consider a planar rectangular structure to illustrate the antenna current opti-
mization and physical bounds on G/Q in (40). The rectangle is infinitely thin and
has length ` = `x and width `y = 0.02`x, see Fig. 10. The G/Q is maximized by (39)
for radiation in the normal direction of the plane, ẑ, and polarization x̂.

To maximize G/Q, we first compute the electric reactance matrix Xe and mag-
netic reactance matrix Xm from (21) and (22). We can use local basis functions on
triangular elements, rectangular elements or global basis functions; such as trigono-
metric functions. In this example, we start with a rather coarse discretization using
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Nx × Ny = 16 × 1 identical rectangular elements, see Fig. 10. The translational
symmetry gives Toeplitz matrices

Xe = toeplitz(Xe1) and Xm = toeplitz(Xm1) (42)

where Xe1 denotes the first row of Xe and correspondingly for Xm1. The far-field
matrix F is an imaginary valued constant column matrix. In total we have the
MATLAB code

% Parameters and data for a 0.48\lambda strip dipole
eta0 = 299792458 * 4e−7*pi; % free space impedance
kl = 0.48 * 2*pi; % wavenumber,0.48lambda
Nx = 16; % number of elements
N = Nx−1; % number of unknowns
dx = 1/Nx; % rectangle length
dy = 0.02; % rectangle width
Xe11 = 1e3*[1.14 −0.4485 −0.0926 −0.0153 −0.0059 −0.0030 −0.0018 ...
−0.0013 −0.0009 −0.0008 −0.0007 −0.0006 −0.0005 −0.0005 −0.0004];

Xe = toeplitz(Xe11); % E−energy
Xm11 = 10*[1.8230 0.8708 0.2922 0.1664 0.1060 0.0680 0.0411 ...

0.0208 0.0050 −0.0074 −0.0171 −0.0244 −0.0297 −0.0332 −0.0351];
Xm = toeplitz(Xm11); % M−energy
Rr11 = 0.1*[7.0919 7.0668 6.9918 6.8680 6.6974 6.4824 6.2264 5.9331 ...

5.6067 5.2521 4.8744 4.4788 4.0707 3.6558 3.2393];
Rr = toeplitz(Rr11)+eye(N)*2e−5;
F = eta0*(−1i*kl)/4/pi*ones(1,N)*dx; % far field

for a strip dipole with length `x = 0.48λ or equivalently k`x = 0.48·2π ≈ 3. Here, we
use a fixed numerical precision to simplify notation. Also, the radiation resistance
matrix is made positive semidefinite by addition of a small diagonal matrix, see
App. C. More accurate values and refined discretizations are considered in App. E.1.

7.3 CVX implementation

There are several efficient implementations that solve convex optimization problems,
here we use CVX [24], that gives the MATLAB code

% CVX code for maximization of G/Q
cvx begin

variable I(N) complex; % current
variable w; % n. stored energy
minimize w
subject to

quad form(I,Xe) <= w; % n. stored E energy
quad form(I,Xm) <= w; % n. stored M energy
F*I == −1i; % far−field

cvx end
GoQ = 4*pi/(w*eta0) % bound on G/Q
x = linspace(0,1,N+2); % x coordinates
plot(x,real([0; I/dy; 0]),x,imag([0; I/dy; 0]))

https://en.wikipedia.org/wiki/Translational_symmetry
https://en.wikipedia.org/wiki/Translational_symmetry
https://en.wikipedia.org/wiki/Toeplitz_matrix
http://cvxr.com/cvx/
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for the maximization of G/Q in (40) using (41). CVX solves the convex optimization
problem iteratively, see the CVX manual [24] for details and gives G/Q ≈ 0.3. This is
consistent with a half-wave dipole that is self-resonant at ` ≈ 0.48λ and the forward
scattering bound D/Q ≤ 0.3 in [26, 32]. The resulting radiation intensity (15),
radiated power (23), directivity (16), stored electric energy (21), stored magnetic
energy (22), and Q-factors (2) for the resulting current distribution are computed
as

% antenna parameters from the max. G/Q problem
P = abs(F*I)*abs(F*I)/2/eta0; % radiation intensity
Pr = real(I'*Rr*I)/2; % radiated power
D = 4*pi*P/Pr % res. directivity
We = real(I'*Xe*I)/4/kl; % stored E energy
Wm = real(I'*Xm*I)/4/kl; % stored M energy
W = max(We,Wm); % stored energy
Q = 2*kl*W/Pr % Q
Qe = 2*kl*We/Pr; % Q electric
Qm = 2*kl*Wm/Pr; % Q magnetic

The normalized electric and magnetic stored energies are Qe ≈ Qm ≈ 5 and the
directivity is D ≈ 1.65, for the strip dipole data in Sec. 7.2.
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Figure 11: The optimized current distribution on the strip dipole with length ` and
width `/50 discretized with Nx = {16, 32} rectangles in the blue and red curves for
the half wavelength case `/λ = 0.48 (wavenumber k` ≈ 3). The radiation pattern,
with D(ẑ, x̂) ≈ 1.64, is also depicted.

The current density distribution is depicted in Fig. 11. Here, we note that the
current density J = Jxx̂ + Jyŷ is real valued. This is due to our special case
with r̂ = ẑ giving an imaginary valued far field vector F and hence a real valued
current matrix I as seen from (36). This a priori knowledge can be used in the CVX

formulation above by declaring

variable I(N); % real valued current

http://cvxr.com/cvx/
http://cvxr.com/cvx/
http://cvxr.com/cvx/
http://cvxr.com/cvx/
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In this presentation we continue to use the complex valued form to simplify the
notation and avoid errors when we treat the general case with r̂ 6= ẑ.

We also note that it is preferable to use ||X1/2
e I||2 = IHXeI to replace the

quadratic forms quad_form(I,Xe) with norms norm(sqrtXe*I) in CVX [24], where
sqrtXe=sqrtm(Xe), giving the modified MATLAB code

% CVX code for maximization of G/Q
sqrtXe = sqrtm(Xe);
sqrtXm = sqrtm(Xm);
cvx begin

variable I(N) complex; % current
variable w; % sqrt stored energy
minimize w
subject to

norm(sqrtXe*I) <= w; % sqrt stored E energy
norm(sqrtXm*I) <= w; % sqrt stored M energy
F*I == −1i; % far−field

cvx end
w = w*w; % n. stored energy
GoQ = 4*pi/(w*eta0) % bound on G/Q
Pr = real(I'*Rr*I)/2; % radiated power
D = 2*pi/Pr/eta0; % directivity
Q = w/Pr/2; % Q
x = linspace(0,1,N+2); % x coordinates
plot(x,real([0; I/dy; 0]),x,imag([0; I/dy; 0]))

where we used that the radiation intensity (15) is P = |FI|2/(2η0) = 1/(2η0) due to
the normalization FI = −j of the far field in the optimization problem (41). The
reformulation with norms improves the convergence but requires pre-computation of
the matrix square roots. We have observed that CVX works well for reasonable size
problems and additionally solves the dual problem for improved performance [6],
see also Sec. 8. Similar to Example 7.2 it is also important to make sure that the
reactance matrices Xe and Xm are symmetric and positive semidefinite [35], see
App. C.

7.4 Superdirective antennas

Superdirective antennas have a higher directivity than a typical antenna of the same
size [4, 39, 51, 57]. The directivity given by (16) hints that the partial directivity is
at least D0 if

D0 ≤ D =
4π|ê∗ · F (r̂)|2

2η0Pr

⇒ Pr ≤
2π|ê∗ · F (r̂)|2

η0D0

. (43)

http://cvxr.com/cvx/
http://cvxr.com/cvx/
https://en.wikipedia.org/wiki/Positive_semidefinite
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This is added as the convex constraint 1
2
IHRrI ≤ 2π/(η0D0) to the optimization

problem (39) giving

minimize max{IHXeI, I
HXmI}

subject to FI = −j

IHRrI ≤
4π

η0D0

(44)

with the CVX code

% CVX code for minimization of Q for D\geq D0
D0 = 2; % directivity
cvx begin

variable I(N) complex; % current
variable w; % stored energy
minimize w
subject to

quad form(I,Xe) <= w; % stored E energy
quad form(I,Xm) <= w; % stored M energy
imag(F*I) == −1; % far−field
quad form(I,Rr) <= 4*pi/D0/eta0;%radiated power

cvx end
GoQ = 4*pi/(w*eta0); % bound on G/Q
Pr = quad form(I,Rr)/2; % radiated power
D = 2*pi/Pr/eta0; % res. directivity
Q = w/Pr/2; % res. Q
x = linspace(0,1,N+2); % x coordinates
plot(x,real([0; I/dy; 0]),x,imag([0; I/dy; 0]))

where we also note that the quadratic forms can be rewritten as norms for improved
computational efficiency [24]. The resulting current is depicted in Fig. 12, where we
observe the typical sub wavelength oscillatory current distribution for superdirective
antennas [57]. The Q-factor is increased to Q = Qe ≈ 160 for D = 2 in comparison
with Q ≈ 5 for the G/Q case (39) with D ≈ 1.65. Moreover, the used discretization
Nx = 16 is not sufficient for accurate description of the current. The case with
Nx = 32 is added and reduces the Q-factor to Q ≈ 150.

7.5 Short dipole

Reducing the size of a dipole conserves the shape of the radiation pattern but ad-
versely affects the Q-factor and thus the bandwidth. We consider a short dipole by
increasing the wavelength to λ = 10`. The MATLAB code is

% Parameters and data for a 0.1\lambda strip dipole
eta0 = 299792458*4e−7*pi; % free space impedance
kl = 0.1*2*pi; % wavenumber,
Nx = 16; % number of elements
N = Nx−1; % number of unknowns
dx = 1/Nx; % rectangle length

http://cvxr.com/cvx/
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Figure 12: Current distribution on the strip dipole with length `x = ` and width `/50
discretized with Nx = {16, 32} rectangles for the half wavelength case `/λ = 0.48
(wavenumber k` ≈ 3). The radiation pattern, with D(ẑ, x̂) ≈ 2, is also depicted.

dy = 0.02; % rectangle width
Xe11 = 1e3*[5.4722 −2.1527 −0.4441 −0.0729 −0.0272 −0.0133 −0.0075 ...
−0.0046 −0.0031 −0.0022 −0.0016 −0.0012 −0.0009 −0.0007 −0.0006];

Xe = toeplitz(Xe11); % E−energy
Xm11 = [3.8082 1.8348 0.6484 0.4050 0.2968 0.2340 0.1926 0.1630 ...

0.1407 0.1232 0.1091 0.0975 0.0876 0.0792 0.0718];
Xm = toeplitz(Xm11); % M−energy
Rr11 = 1e−2*[3.0819 3.0815 3.0800 3.0777 3.0743 3.0701 3.0649 ...

3.0587 3.0516 3.0436 3.0347 3.0248 3.0140 3.0024 2.9898];
Rr = toeplitz(Rr11)+eye(N)*3e−6;
F = eta0*(−1i*kl)/4/pi*ones(1,N)*dx; % far field

Solving the short dipole with the CVX code listed in Sec. 7.3, gives G/Q ≈ 0.0028
and assuming a lossless structure Q ≈ 544 and D ≈ 1.5. In this case the stored
electric energy Q = Qe ≈ 544 (540 with Nx = 32) dominates over the stored
magnetic energy Qm ≈ 25, i.e., the short dipole is capacitive. This dipole illustrates
the design difficulties of small antennas; reduced size also reduces the bandwidth.
The current distribution of the short dipole is similar to that of a half-wave dipole
antenna, see Fig. 11, since the dipole mode is relatively invariant under decreasing
antenna length [35].

7.6 Embedded antennas

Current optimization is easily generalized to the case of antennas embedded into a
(PEC) ground plane as depicted in Fig. 4. The current density is then decomposed
into the controllable current IA, and the induced current IG. Similarly, the region
is divided into ΩA, the antenna structure, and ΩG, the ground plane. In ΩA we can
fully control the currents IA, that in turn induce IG in ΩG [13, 31]. We use that
Maxwell’s equations are linear implying that IG depends linearly on IA (32).

The strip dipole geometry with length ` = `x and width `y is decomposed into
the antenna region ΩA in the center and ground plane regions ΩG at the edges, see

http://cvxr.com/cvx/
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Figure 13: A thin strip dipole with dimensions `x, `y divided into Nx = 16 rectan-
gular mesh elements. The region is decomposed into the antenna region ΩA in the
center with 4 elements and the surrounding PEC ground plane region ΩG at the
edges with totally 12 elements. The corresponding basis functions are divided into
5 basis functions in the antenna region ΩA and 10 basis functions in ΩG. Two basis
functions are depicted, one in ΩA (green) and one in ΩG (red).

Fig. 13. This resembles a center fed strip dipole with an extended feed region. The
coupling matrix C in (32) is computed with the MATLAB code

% antenna region in the center of a strip dipole
Nf = 7; % start of antenna region
indA = [Nf:(N−Nf+1)]; % antenna region indices
indG = [1:(Nf−1) (N−Nf+2):N];% ground plane indices
Zm = Rr+1i*(Xm−Xe); % EFIE impedance matrix
Cm = Zm(indG,:); % induced current Cm*I=0

The constraint CI = 0 (32) is added to the G/Q optimization problem (41) giving
the convex optimization problem

minimize w

subject to IHXeI ≤ w,

IHXmI ≤ w,

FI = −j,

CI = 0

(45)

with the corresponding CVX code

% max. G/Q for an embedded antenna structure
sqrtXe = sqrtm(Xe);
sqrtXm = sqrtm(Xm);
cvx begin

variable I(N) complex; % current
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variable w; % sqrt stored energy
minimize w
subject to

norm(sqrtXe*I) <= w; % sqrt stored E energy
norm(sqrtXm*I) <= w; % sqrt stored M energy
F*I == −1i; % far−field
Cm*I == 0; % induced currents

cvx end
w = w*w; % n. stored energy
GoQ = 4*pi/(w*eta0) % bound on G/Q
Pr = real(I'*Rr*I)/2; % radiated power
D = 2*pi/Pr/eta0; % directivity
Q = w/Pr/2; % Q
x = linspace(0,1,N+2); % x coordinates
plot(x,real([0; I/dy; 0]),x,imag([0; I/dy; 0]),x(1+indA),0*x(indA),'d')

The constraint CI = 0 can alternatively be used to eliminate IG from the optimiza-
tion problem [31].
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Figure 14: The optimized current density distribution on the strip dipole with length
` and width `/50 discretized with Nx = {16, 32} rectangles in the blue and red curves
for the case `/λ = 0.1 (wavenumber k` ≈ 0.63). The antenna region consists of the
2 (blue curve) and 10 (red curve) center elements in the Nx = 16 case and twice
as many in the Nx = 32 case. The width of the antenna region is also marked by
circles.

The G/Q quotient for the short dipole case in Sec. 7.5 is considered with the
discretization Nx = {16, 32}. The center of the strip is used for the antenna (feed)
region ΩA. The first case has 2 elements and the second case has 10 elements for
Nx = 16 and twice as many for Nx = 32. This corresponds to widths of 2`/16 =
0.125` and 10`/16 = 0.625`, see the circular marks in Fig. 14. The obtained G/Q
values are {0.0022, 0.0027} with the corresponding Q-factors Q ≈ {677, 551} for
the two cases. Increasing the discretization to Nx = 256 reduces the Q-factors to
Q ≈ {673, 546}. The resulting current density is depicted in Fig. 14. Here, it is seen
that the current density approaches the triangular shaped current distribution on a
short center fed dipole as ΩA decreases [2], see also [31, 35]. The antenna region can
thus be considered as the feed region.
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7.7 Relaxation of G/Q and Pareto fronts

Before we introduce the dual problem for the G/Q optimization problem (41), we
note that the solution of (41) produces a (unique) minimum value of w and a
minimizing current I. The current I can be used to investigate if the constraints
in (41) are equalities or inequalities. This answers if the antenna performance is
constrained by the stored electric or magnetic energies. To further investigate the
dependence of the stored electric or magnetic energies, we can consider simultaneous
minimization of We and Wm. This leads to multicriterion optimization and Pareto
fronts [6]. The Pareto front is determined using the scalarization

αWe + (1− α)Wm =
1

4ω
IH(αXe + (1− α)Xm)I =

1

4ω
IHXαI (46)

with 0 ≤ α ≤ 1 and the optimization problem

maximize
Iα

4π|FIα|2
η0IH

αXαIα
. (47)

This problem has a closed form solution as shown below in (53) and provides infor-
mation about the tradeoff between the stored electric and magnetic energies. Small
values of α emphasize the stored magnetic energy, whereas large values emphasize
the stored electric energy.

The multicriterion optimization (47) simplifies the optimization problem (37)
considerably as the max operator in the denominator is removed. This can alter-
natively be interpreted by use of the inequality max{A,B} ≥ αA + (1 − α)B for
0 ≤ α ≤ 1 to replace the max operator, i.e.,

max{IHXeI, I
HXmI} ≥ IH(αXe + (1− α)Xm)I = IHXαI (48)

in the denominator of (37). Maximization with this relaxation increases the value
and gives an upper bound on G/Q

G

Q

∣∣∣∣
opt

≤ max
Iα

4π|FIα|2
η0IH

αXαIα
(49)

for 0 ≤ α ≤ 1. As the bound (49) is valid for all α, we can consider the minimization
problem

G

Q

∣∣∣∣
opt

≤ min
0≤α≤1

max
Iα

4π|FIα|2
η0IH

αXαIα
(50)

associated with the maximization problem (37). This is an example of duality and
as shown below provides an alternative way to solve (37).

8 Dual problem formulation for G/Q

When solving the optimization problems in Sec. 7.3, it is observed that CVX states
that the dual problem is solved for improved efficiency. Duality is a powerful prin-
ciple in optimization. Dual problems can be used to construct efficient algorithms,
to estimate errors, and to provide insight into the optimization problem [6].

http://cvxr.com/cvx/
https://en.wikipedia.org/wiki/Duality_(optimization)
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The upper bound on G/Q in (37) is reformulated to the convex optimization
problem (41). The primal problem (P) in (41) is associated with a dual optimization
problem (D), see App. D. The dual function d(α) (see the general definitions in (94)
and (102)) is defined as the minimum value of the following optimization problem

minimize IH
α (αXe + (1− α)Xm)Iα

subject to FIα = −j,
(51)

where 0 ≤ α ≤ 1 is a Lagrange multiplier. The explicit solution is given by (see (115)
and (116))

d(α) =
1

F(αXe + (1− α)Xm)−1FH
=

1

FX−1
α FH

(52)

and

Iα =
−j(αXe + (1− α)Xm)−1FH

F(αXe + (1− α)Xm)−1FH
= −jX−1

α FHd. (53)

The dual optimization problem (D) is

maximize d(α)

subject to 0 ≤ α ≤ 1,
(54)

that can be solved efficiently by a line search such as the Newton’s method, bisection
method, golden section search, and parabolic interpolation [19]. The dual formula-
tion also yields useful interpretations and bounds in terms of the dual current Iα and
the associated electric Qeα, magnetic Qmα, and total Q-factors Qα = max{Qeα, Qmα}
in (2), as well as the partial gain Gα. Here, weak duality (97) (dual cost ≤ primal
cost) implies that

d(α) =
4π

η0

αQeα + (1− α)Qmα

Gα

≤ max{IH
αXeIα, I

H
αXmIα}

|FHIα|2
=

4π

η0

Qα

Gα

, (55)

which should be compared to the inequality (48). Use that Iα is a suboptimal
solution to (41) and rewrite in G/Q to get the final bounds

Gα

Qα

≤ G

Q

∣∣∣∣
opt

≤ Gα

αQeα + (1− α)Qmα

, (56)

which is compared with the relaxation (50).
Strong duality (the duality gap is zero) can be shown for the optimization prob-

lem (41) by using Slater’s constraint qualification [6], see also App. D. Here, the
strong duality implies that

min
0≤α≤1

Gα

αQeα + (1− α)Qmα

=
G

Q

∣∣∣∣
opt

. (57)

It is noted that the dual formulation (54) normally provides a much more efficient
way of maximizing the partial gain to Q-factor quotient defined in (37) than by
direct use of the primal problem formulation (P) given by (41).

https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Line_search
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Golden_section_search
https://en.wikipedia.org/wiki/Successive_parabolic_interpolation
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The derivative of the dual function is given by

d′ =
dd

dα
= −d2 d

dα

1

d
= IH

α (Xe −Xm)Iα = −IH
αXIα, (58)

where it is seen that d(α) increases (decreases) for capacitive (inductive) cases.
The opposite relation holds for Gα/(αQe + (1 − α)Qm), i.e., the G/Q quotient
decreases (increases) for capacitive (inductive) cases. The second derivative of the
dual function

d′′ =
d2d

dα2
= 2

(d′)2

d
− 2IH

αXX−1
α XIα (59)

can be used to solve (54) with Newton’s method based on the update

αn+1 = αn − d′(αn)/d′′(αn). (60)

Newton’s method is very efficient for cases with the optimal value αo in the inner
region 0 < δ < αo < 1− δ such that d′(αo) = 0. Newton’s method can be combined
with the bisection method or golden section search for cases with αo approaching 0
or 1.

Small electric dipole type antennas are often capacitive and have a dominant
electric stored energy (We ≥ Wm). This implies that d(α) is increasing (d′ ≥ 0)
and the maximal value of (54) is obtained for αo ≈ 1. The resulting Xα = Xe for
α = 1 in (52) is often singular and hence difficult to invert. These cases with small
electric dipole type can be solved with an initial α close to 1, e.g., α = 1 − δ with
δ = 10−4. A simple algorithm would be to evaluate Gα/Qα and check if the duality
gap is below the desired threshold. If not update δ → 2±1δ with the − sign (+ sign)
for the capacitive (inductive) case, cf., the bisection method.

8.1 Numerical example: strip dipole

The upper bound on G/Q for the strip dipole in Sec. 7.2 is determined using the
dual formulation (54) with the inequality (56). The optimization (54) is solved using
the MATLAB function fminbnd with the reformulation of max. d(α) as min. −d(α)
together with the explicit solution (52). This gives the MATLAB code

% maximization G/Q using a dual formulation
da = @(a)−1/real(F*((a*Xe+(1−a)*Xm)\F'));% −d(a)
[a,d] = fminbnd(da,0,1); % min −d(a)
GoQ = −4*pi/eta0/d

with the result αo ≈ 1 and G/Q|opt ≈ 0.3 for Nx = {16, 32} and ` = 0.47λ.
The fminbnd function uses a combination of golden section search and parabolic
interpolation [19] and minimizes the functional until the error in α is below some
threshold.

The inequality (56) can be used to obtain error estimates for G/Q|opt (for the
used MoM approximation). The parameter α is used to determine the current Iα
and the associated stored energies and Q-factors, i.e.,

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Golden_section_search
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Golden_section_search
https://en.wikipedia.org/wiki/Successive_parabolic_interpolation
https://en.wikipedia.org/wiki/Successive_parabolic_interpolation
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Figure 15: Gain Q-factor quotient, G/Q, from the dual optimization problem (54)
with the inequalities (56) for a strip dipole with size ` × `/50, `/λ = 0.47, r̂ = ẑ,
and ê = x̂.

% antenna parameters from the dual problem
Xa = a*Xe+(1−a)*Xm;
J = Xa\F';
d = 1/real(F*J) % dual value
Ia = −1i*d*J; % current
P = abs((F*Ia)*(F*Ia))*4*pi/eta0;% n. rad. int.
QoGe = real(Ia'*Xe*Ia)/P; % Qe/G
QoGm = real(Ia'*Xm*Ia)/P; % Qm/G
GoQa = 1/max(QoGe,QoGm) % G/Q
GoQd = 1/(a*QoGe+(1−a)*QoGm) % dual G/Q
GoQd−GoQa % duality gap in G/Q

giving the duality gap in G/Q|opt of the order 10−7 for the strip dipole. Note that
this is an estimate of the error in the maximization of G/Q for the used numerical
approximation, i.e., the MoM with Nx = {16, 32}. It is essential to investigate the
convergence of the MoM approximation by refinement of the discretization, i.e., to
increase Nx and Ny.

The inequality (56) for the Nx = 32 case is depicted in Fig. 15. The function
values used by fminbnd are depicted by the dots. Here, it is seen that the evaluation
for α ≈ 0.4 already gives the bound 0.29 ≤ G/Q|opt ≤ 0.31. The gap is larger for
smaller values of α and becomes negligible as α→ 1. This is due to the weighting of
the stored magnetic and electric energies in (51), that emphasize either the magnetic
or electric energy.

The physical bound on G/Q for the strip dipole is depicted in Fig. 16 for ` ≤
0.5λ. The strip dipole is divided into Nx = {50, 100} and Ny = {1, 2} rectangular
elements and the resulting Xe, Xm, R matrices are described in App. E.4. The
dual formulation (54) is used to maximize G/Q. The result is also compared with
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Figure 16: Gain Q-factor quotient, G/Q, from the optimization problem (39) for a
strip dipole with sides `× `/50, `/λ ≤ 0.5, r̂ = ẑ, ê = x̂, and Nx = {50, 100}. The
forward scattering bound [32, 33] on G/Q is also included.

the forward scattering bound on D/Q from the polarizability2 and the generalized
absorption efficiency 1/2 [32, 33]. The differences between the discretizations and
methods are negligible.

8.2 Numerical example: planar rectangle

Although the strip dipole geometry in Secs 7.2 and 8.1 is very good to illustrate the
optimization concepts it has a trivial polarization dependence and cannot radiate a
magnetic dipole pattern efficiently (negligible loop currents). We consider a planar
rectangle to obtain polarization dependence and loop currents. Place the rectangle
in the xy-plane and let the side lengths be `x = ` and `y = `/2, see Fig. 17. To
start, we consider an equidistant discretization using Nx = 2, Ny = 64, and hence a
total of Nx(Ny − 1) +Ny(Nx − 1) = 4000 expansion coefficients, see App. E.5. This
is a significant increase in optimization variables compared to the strip dipole case
and it is also observed in the increased computational time to solve the optimization
problems.

The G/Q quotient is maximized for combinations of radiated fields in the r̂ =
{x̂, ŷ, ẑ}-directions and polarizations ê = {x̂, ŷ, (x̂ + jŷ)/

√
2}. The maximal gain

Q-factor quotient, G/Q, normalized with k3a3 is depicted in Fig. 18. The result is
also compared with the forward scattering bound on D/Q from the polarizability3

and the generalized absorption efficiency η = 1/2 [32]. The resulting Q-factor is
depicted in Fig. 19 for ` ≤ λ/2, where we see that Q is lowest for the r̂ = ŷ
direction and ê = x̂ polarization. The optimization (39) is solved using CVX [24]
and using the dual formulation (54) with the fminbnd function in the MATLAB code

2http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq
3http://www.mathworks.com/matlabcentral/fileexchange/26806-antennaq

http://cvxr.com/cvx/
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ẑ

ΩA

Figure 17: A planar rectangular region with dimensions `x×`y divided intoNx×Ny =
12×6 rectangular mesh elements. Four piecewise linear divergence conforming basis
functions are depicted.

and Newton iterations (60). The final results are indistinguishable but the Newton
iteration is faster for larger problems. Note that several solvers can be used in CVX

for improved performance, see [24] for details. There are also many quadratically
constrained quadratic program (QCQP) solvers with better performance.

The dual problem (54) is illustrated in Fig. 20 for the rectangular patch in Fig. 19
with ` = 0.1λ and radiation in the r̂ = ẑ-direction for the ê = x̂-polarization. The
four curves Gα/(αQeα + (1 − α)Qmα), Gα/max{Qeα, Qmα}, Gα/Qeα, and Gα/Qmα

are depicted for 0 ≤ α ≤ 1. The stored electric energy dominates until α ≈ 1
and the resulting radiation pattern is similar to that of an electric dipole. We
note that Gα/(αQeα + (1 − α)Qmα) decreases towards its minimum at α ≈ 1 and
contrary Gα/max{Qeα, Qmα} increases towards its maximum at α ≈ 1. The dual
problem (54) is solved using Newton iterations (60) starting from α0 = 0.5. The
evaluation points are marked with circles in Fig. 20. The first iteration gives α1 > 1
and then we set α1 = 0.99 and combine the Newton and bisection methods. As
seen the convergence is very fast and the optimal value G/Q ≈ 0.0123 is obtained
after 3 iterations. The resulting current distribution gives Q ≈ 125 and D ≈ 1.53.
The corresponding results for Nx = 2Ny = 32 are G/Q ≈ 0.0121, Q ≈ 126, and
D ≈ 1.53.

The resulting current distribution and charge density ρ = −1
jω
∇ · J are depicted

in Fig. 21 for the case Nx = 32 and Ny = 16. The current density is aligned with the
longest edges (±x̂-directions) and concentrated close to the edges. The direction of
the current density is however counterintuitive. The current is x̂-directed in the edge
elements but −x̂-directed in some neighboring elements. This is a small antenna
structure ` = λ/10 that is dominated by the stored electric energy, see Fig. 20. The
stored electric energy (11) can be approximated by the electrostatic energy [21, 35]
in the limit k`→ 0, i.e.,

We ≈
1

4ε0

∫

Ω

∫

Ω

ρ(r1)ρ∗(r2)

4π|r1 − r2|
dS1 dS2. (61)

Here, it is seen that the stored electric energy is determined by the charge density
for small antennas, see Fig. 21. This charge density is similar to the induced charge

http://cvxr.com/cvx/
http://cvxr.com/cvx/
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Bisection_method
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Qk3a3

r̂, ê
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Figure 18: Gain Q-factor quotient, G/Q, from the optimization problem (39) for a
rectangular plate with side lengths ` and `/2, wavelength λ ≥ 2`, r̂ = {x̂, ŷ, ẑ},
and ê = {x̂, ŷ, (x̂+ jŷ)/

√
2}. The G/Q is normalized with k3a3, where a = `

√
5/4

is the radius of the smallest circumscribing sphere.

density on a PEC rectangle in an electrostatic field [35]. The corresponding current
density is non-unique as ∇ · (J + ∇ × J c) = ∇ · J for any J c. The term ∇ × J c

contributes to the magnetic energy and current densities of the form ∇ × J c can
be added without affecting max{We,Wm} as long as Wm ≤ We, see also Sec. 9 and
App. C.

The corresponding case with radiation in the ŷ-direction for the x̂-polarization
is depicted in Fig. 22. The stored energy is dominantly electric for low values
of α but changes to dominantly magnetic at α ≈ 0.67. This value of α gives
also the maximum of Gα/max{Qeα, Qmα} for the considered Iα and the minimum
value of Gα/(αQeα + (1 − α)Qmα). The Newton iteration (60) converges as α ≈
{0.5, 0.73536, 0.67677, 0.66629, 0.66602, 0.66602} with the corresponding dual gap in
G/Q approximately 10−{2,2,3,4,8,16}. The optimal value is G/Q ≈ 0.0259 that results
in Q ≈ 102 and D ≈ 2.66. The resulting current density is depicted in Fig. 23. The
real part of the current density is an x̂-directed current radiating as an x̂-directed
electric dipole mode. The imaginary part is a loop type current density that radiates
as a ẑ-directed magnetic dipole, see also Fig. 24.

9 Minimum Q for prescribed radiated fields

Maximization of G/Q aims for a low Q-factor and a large gain. The gain is related
to the directivity by the efficiency G = ηeffD and the maximal directivity is in the
range 1.5 to 3 for small antennas. It is hence mainly the Q-factor that changes for
small antennas, see Fig. 19. The Q-factor also increases rapidly if the antenna is
excited for superdirectivity as seen in Sec. 7.4.

The obtained current distribution from the maximal G/Q problem can be used
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ẑ, x̂
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Figure 19: Resulting Q from the optimization problem (39) for a rectangular plate
with side lengths ` and `/2, electrical size `/λ ≤ 0.5, directions r̂ = {x̂, ŷ, ẑ}, and
polarizations ê = {x̂, ŷ, (x̂+ jŷ)/

√
2}, see Fig. 18.

to compute a resulting Q-factor. This Q gives the lower bound on Q for small lossless
antennas with dipole type radiation patterns, i.e., antennas with G = D = 1.5 or
G = D = 3. The directivity increases often with the electrical size of antennas,
e.g., half a-wave-length dipoles have D ≈ 1.64 that is larger than D = 1.5 for the
Hertzian dipole. Although, the resulting Q-factor from the G/Q problem is still a
good estimate for bounds on Q, there is no guarantee that it is the lower bound on
Q.

The G/Q problem can be reformulated to minimization of Q for a projection
of the radiated field on the desired field [31], see also [31] for other possibilities.
Small antennas radiate as electric and magnetic dipoles and the radiation pattern of
larger antennas can be described in spherical modes [5]. The optimization problem
is identical to (41) with the change of F to the regular spherical modes expanded in
basis functions (18), see [31]. Here, we use the MATLAB function

% Fm for projection of spherical modes
l = 1; % order of the mode, 1 for dipoles
m = 0; % Fourier component (azimuthal), 0,1,..,L
t = 1; % 1 for TE and 2 for TM
s = 0; % 0 for even and 1 for odd
Fm = sphmodematrix(k,bas,meshp,[l m t s]);

and then either use CVX or the dual formulation to solve the convex optimization
problem.

Consider the planar rectangle with side lengths `x = 2`y = 0.1λ, see Fig. 17.
The minimum Q-factor for radiation of an x̂-directed electric dipole mode gives
Q ≈ 120 with D ≈ 1.5 for the Nx = 2, Ny = 64 case. This can be compared with
the G(ẑ, ê)/Q case in Fig. 20 that has Q ≈ 125 and D ≈ 1.53. The quotient G/Q is
approximately the same for the two cases but Q and G = D is slightly lower for the

http://cvxr.com/cvx/
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Figure 20: G/Q determined from the dual problem (54) and bound (56) for a rect-
angular plate with side lengths `x = 2`y = λ/10, direction r̂ = ẑ, and polarization
ê = x̂, see Fig. 19. The maximal value is G/Q|opt ≈ 0.0123 giving Q ≈ 125 and
D ≈ 1.53.

J(r) ρ(r)

Figure 21: Resulting current density and charge density for the rectangular plate in
Fig. (20). The current density is x̂-directed and strongest at the edges. The charge
density is close to the charge density on a PEC plate in a static electric field [35].

case with a desired dipole mode. The corresponding case with the combined electric
and magnetic dipole mode in Fig. 24 gives Q ≈ 102 and D ≈ 2.65. This is similar
to the G(ŷ, x̂)/Q case and the current density resembles the distribution in Fig. 23.

The projection on the spherical modes can be interpreted as a minimization of
the Q-factor where the radiated power is replaced with the radiated power in the
considered mode. Consider a factorization of Rr as Rr = FH

s Fs, where Fs is the far-
field. The decomposition Rr = FH

s Fs is not unique and can e.g., be computed from
a Cholesky decomposition of Rr or a mode expansion. Here Rr is first transformed
to a positive semidefinite matrix, see Sec. C. The radiated power is rewritten

Pr =
1

2
IHRrI =

1

2
IHFH

s FsI =
1

2
|FsI|2 =

1

2

N∑

n=1

|Fs,nI|2 (62)

where Fs,n denotes the nth row of Fs. The decomposition FsI can be interpreted
as a mode expansion of the radiated field. The lower bound of the Q-factor is the

https://en.wikipedia.org/wiki/Cholesky_decomposition
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Figure 22: Gα/Qα from (56) for the plate in Fig. 19, `x = 2`y = 0.1λ, r̂ = ŷ, and
ê = x̂. The resulting current distribution is depicted in Fig. 23. The radiation
pattern is depicted for three values of α, see also Fig. 24. The maximal value is
G/Q|opt ≈ 0.0259 giving Q ≈ 102 and D ≈ 2.66.

Re Im

Figure 23: Resulting current density for the G/Q problem in Fig. 22. Real and
imaginary parts to the left and right, respectively. The real part is dominated by an
x̂-directed current radiating as an x̂-directed electric dipole. The imaginary part is
a loop type current that radiates as a ẑ-directed magnetic dipole, see also Fig. 24.

minimum of
max{IHXeI, I

HXmI}∑N
n=1 |Fs,nI|2

≤ max{IHXeI, I
HXmI}

|Fs,n0I|2
(63)

where Fs,n0 is the far-field of the desired radiation pattern. This optimization prob-
lem is mathematically identical to the G/Q problem (37) if only one mode is con-
sidered or if Rr is a rank 1 matrix. This problem can be solved with convex opti-
mization (41). Note that this is similar to the dual problem of (51) rewritten as the
quotient

minimize
IHXαI

IHFHFI
(64)

this is a Rayleigh quotient with the rank 1 matrix FHF in the denominator.

https://en.wikipedia.org/wiki/Rayleigh_quotient
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Figure 24: Illustration of spherical modes. ẑ-directed electric dipole (left) and
Huygens source composed of an x̂-directed electric dipole and a ẑ-directed magnetic
dipole (right).

10 Eigenvalues

We observe that the Q-factor (26) resembles a Rayleigh quotient that is efficiently
analyzed using generalized eigenvalues. However, the maximum of the stored en-
ergies in (26) is difficult to handle and has to be removed by explicitly assuming
that either of the stored energies is larger. The G/Q quotient also has a closed form
solution under similar assumptions [35].

Current optimization for the Q-factor (26) differs from the G/Q case (28) by the
use of the radiated power instead of the radiation intensity. Although this difference
appears to be negligable, minimization of the antenna Q is much more involved than
maximization of G/Q. This is mainly due to the possibility to reformulate the partial
radiation intensity |FI|2 in the G/Q problem (28) as the field FI in (39) and hence
obtain a convex optimization problem. That is, we can replace maximization of the
radiation intensity (power) with maximization of the field strength, see also (63).

10.1 Optimization for antenna Q

Instead of convex optimization, we can use that the Q-factor (26) resembles a gen-
eralized eigenvalue problem except for the max operator. A possible approach is to
relax (26) using convex combinations of We and Wm, i.e.,

Q =
max{IHXeI, I

HXmI}
IHRI

= max{Qe, Qm}

≥ αQe + (1− α)Qm =
IH(αXe + (1− α)Xm)I

IHRI
(65)

for 0 ≤ α ≤ 1, cf., (48). The lower bound on the Q-factor, Qlb, is hence formulated
as a minimization problem for the right-hand side of (65), i.e., a Rayleigh quotient
that can be solved efficiently as a generalized eigenvalue problem

(αXe + (1− α)Xm)Iα,n = Q̃α,nRIα,n (66)

with the eigenvalues Q̃αn = αQeα + (1− α)Qmα ordered ascendingly. Let Iα denote

the eigenvector associated with the smallest generalized eigenvalue (eigenmode) Q̃α,1

https://en.wikipedia.org/wiki/Rayleigh_quotient
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem
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in (66) and Qeα and Qmα the corresponding electric and magnetic Q-factors. This
gives the following estimate

αQeα + (1− α)Qmα ≤ Qlb ≤ max{Qeα, Qmα} (67)

for the lower bound Qlb.
The solution of (66) is depicted in Fig. 25 for a planar rectangle with side lengths

`x = 2`y = 0.1λ. The stored electric energy Qe dominates for α < 0.8 and the stored
magnetic energy Qm dominates for α > 0.8. We note that the convex combination
αQe + (1 − α)Qm is increasing up to its maximum Q̃α ≈ 102 at α ≈ 0.8. The
corresponding Qα = max{Qeα, Qmα} is close to its minimum Qα ≈ 123 for a range
of 0.1 < α < 0.8. There is hence a minimum gap of approximately 21 between
the minimal eigenvalue, Q̃α,1, in (66) and the realized Q-factor, i.e., we have the
estimate

102 ≤ Qlb ≤ 123 (68)

for the lower bound Qlb of the considered region.
One problem with the minimization of the Q-factor using (65) and (66) is the

lack of control of the radiated field. This is illustrated by the radiation patterns
in Fig. 25. The electric dipole pattern dominates for the lower values of α, where
the stored energy is electric. The pattern changes abruptly from an electric dipole
pattern to a magnetic dipole type pattern around α ≈ 0.8, i.e., where the stored
energy changes from electric to magnetic.

The bound (67) can be combined with the convex optimization problems for
maximization of G/Q in (39) and the minimization of the Q-factor for a desired
radiated field in Sec. 9. The resulting Q-factor from the maximization of G(ŷ, x̂)/Q
in Fig. 22 gives a resulting Q ≈ 102 and as Qlb ≥ 102 according to (68) Qlb ≈ 102.

The eigenmodes of (66) are orthogonal

IT
α,mXαIα,n = IT

α,mRIα,n = 0 (69)

for m 6= n and Xα � 0 and R � 0. The modes form a basis if R is positive definite,
R � 0. The resistance is however in general only positive semidefinite R � 0, see
also App. C.

A self-resonant antenna has an equal amount of stored electric and magnetic
energy We = Wm. This special case simplifies the Q-factor in (2) for a lossless
antenna with α = 0.5 in (65), i.e.,

Q̃ 1
2

=
ω(We +Wm)

Pr

=
Qe +Qm

2
=

IH(Xe + Xm)I

2IHRI
. (70)

This is considered in [23, 40] and solved as the generalized eigenvalue problem

(Xe + Xm)In = 2Q̃ 1
2
,nRIn. (71)

Here, it is essential to observe that the solution of (71) is in general not self-resonant,

i.e., We 6= Wm. Moreover there is no simple relation between Q̃ 1
2

and the fractional
bandwidth for the untuned case.
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Figure 25: Q-factor from the optimization problem (65) for the rectangular patch
in Fig. 19. The parameters in (67) are depicted.

10.2 Characteristic modes

Generalized eigenvalues are used to define characteristic modes of metallic struc-
tures [8, 9, 11, 20, 41, 54]. The EFIE impedance matrix (19) is used to formulate
the generalized eigenvalue problem

ZI = (R + jX)I = (1 + jΛ)RI or XI = ΛRI. (72)

The eigenvalues Λ are real valued and the eigenvalues with the smallest magnitude
are most significant. The eigenvalue problem (72) is associated with the Rayleigh
quotient

Λ =
IHXI

IHRI
=

IH(Xm −Xe)I

IHRI
. (73)

The Rayleigh quotient (73) resembles (70) but with the difference between the stored
energies instead of the sum. The characteristic modes strive for a low reactive power
(resonance) instead of a low stored energy.

10.3 Reduction of the number of degrees of freedom

Eigendecomposition of the Xe,Xm,R matrices can be used to reduce the number of
unknowns in optimization problems. Consider one of the optimization problems in
this paper, e.g., the G/Q problem (41). Assume that the resulting current distribu-
tion I has the Q-factor Q ≤ Q0, i.e.,

IHXeI

IHRI
≤ Q0 and

IHXmI

IHRI
≤ Q0. (74)

This implies that it is interesting to consider the subspace of current matrices that
satisfy these inequalities. Subtracting and adding the inequalities suggests the eigen-
decomposition

IH(Xe ∓Xm)I

IHRI
≤ 2Q0 (75)

https://en.wikipedia.org/wiki/Characteristic_mode_analysis
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
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(Xm −Xe)In = ΛnRIn (Xm + Xe)In = ΛnRIn

1

2

3

Figure 26: Eigenmodes associated to the three smallest magnitudes of generalized
eigenvalues of (Xm ∓ Xe)In = ΛnI for a planar rectangle with side lengths ` and
`/2 and wavelength λ = 10`. The rectangle is discretized with Nx = 2Ny = 32
equidistant elements.

or equivalently to determine the eigenspace associated with the generalized eigen-
values Λ ≤ Q0 to (Xe ∓ Xm)I = νRI. There is however no requirement that the
solution to the optimization is an eigenmode. Assume for simplicity that the optimal
current is of the form of two eigenmodes I = I1 + I2, with corresponding eigenvalues
Λ1 and Λ2. Then the orthogonality (69) implies

(I1 ∓ I2)H(Xe ∓Xm)(I1 + I2)

(I1 + I2)HR(I1 + I2)
=

IH
1 (Xe ∓Xm)I1 + IH

2 (Xe ∓Xm)I2

IH
1 RI1 + IH

2 RI2

(76)

and hence that a high Q-factor for mode I2 does not imply a high Q-factor for I1∓I2

as the denominator consists of the sum of the dissipated powers of the modes.
The reactance matrices Xe and Xm have very few or no negligible eigenvalues,

i.e., they have full rank. The radiation resistance matrix Rr has many small eigen-
values that can be discarded to reduce the number of unknowns in the optimization
problem (degrees of freedom), see Sec. C. Numerical tests indicate that it is more ef-
ficient to use the eigenspace induced by the generalized eigenvalues from (66) or (72),



42

i.e.,
(Xm ∓Xe)In = Λ∓,nInR (77)

with the smallest magnitude |Λ∓,n|. The smallest 45 eigenvalues for the planar
rectangle with `x = 2`y and `x = {0.1, 0.25, 0.5}λ are depicted in Fig. 27. There are
potentially N = 4000 eigenvalues but it is only approximately 20 that are reliable
due to the spectrum of R for `x = 0.1λ, see Fig. 28. The eigenmodes for (71) and
the characteristic modes (72) are similar. The first three eigenmodes are depicted
in Fig. 26. Their radiation patterns are similar to the patterns of x̂ and ŷ-directed
electric dipoles and a ẑ-directed magnetic dipole, respectively. The eigenvalues
decrease as the electrical size increases, see the `x = {0.25, 0.5}λ cases.
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Figure 27: The smallest 45 eigenvalues |Λ∓,n| of (77) for the planar rectangle with
` = `x = 2`y and ` = {0.1, 0.25, 0.5}λ. The rectangle is discretized with Nx = 2Ny =
64 equidistant elements, see Fig. 26.

Consider the eigenvalue decomposition (77) and order the eigenvalues Λn in order
of ascending magnitude. Divide the eigenvalues such that Λn ≤ δ for 1 ≤ n ≤ N1

and Λn > δ for n > N1 where δ is the chosen threshold level for the negligible
eigenvalues. Let the columns of U consists of the eigenmodes In for n = 1, ..., N1 ≤
N normalized as In/

√
IT
nRIn, where it is used that the eigenmodes In are real valued.

This decomposition reduces the number of unknowns.

I ≈ UĨ (78)

that gives the approximation

We ≈
1

4ω
IHXeI ≈

1

4ω
ĨHŨTX̃eŨĨ =

1

4ω
ĨHX̃eĨ (79)

and similarly for Xm,R and F, i.e.,

X̃m = UTXmU, R̃ = UTRU, and, F̃ = FU. (80)



43

Giving the approximation of the optimization problem (39)

minimize max{ĨHX̃eĨ, Ĩ
HX̃mĨ}

subject to F̃Ĩ = −j.
(81)

and similarly for the other optimization problems in Sec. 7 and 8. This reduces the
number of unknowns from N to N1.

Maximization of G/Q using (81) with the N1 = 20 � N = 4000 smallest
eigenmodes (77) gives negligible differences (39). It is even sufficient to use the
three smallest modes N1 = 3 for relatively high accuracy. The reduction of the
number of unknowns can be very efficient for the solution of complex optimization
problems. The reduction can also provide physical insight from the interpretation
of the characteristic modes [8, 9, 11, 20, 41, 54]. The computational advantage for
the G/Q type optimization problem (39) is however limited as (39) can be solved
with a few Newton steps (60) and the generalized eigenvalue decomposition can have
higher computational cost.

11 Discussion and conclusions

A tutorial description of antenna current optimization has been presented. The
presentation is intended to illustrate different possibilities with the approach. The
included examples and data are chosen to illustrate the theory and be simple enough
to stimulate investigations using MATLAB and CVX . It is also straightforward to
convert the codes to other languages.

Antenna current optimization can be used for many common antenna geometries.
In this tutorial, we have focused on the case with antennas occupying the entire
region, i.e., ΩA = Ω, see Fig. 3. The case with a PEC ground plane is also discussed,
see Fig. 4 and [13, 14, 31]. Generalization to antennas embedded in lossy media is
considered in [28] and antennas above ground planes in [67]. Geometries filled with
arbitrary inhomogeneous materials can also be analyzed using optimization of the
equivalent electric and magnetic surface currents [5] for some cases [47].

There are many possible formulations for the antenna current optimization prob-
lem. This offers a large flexibility and possibilities to model many relevant antenna
cases. The simple case with maximal G/Q leads to minimization of the stored en-
ergy for a fixed radiated field in one direction (41). The generalization to antennas
with directivity D ≥ D0 is obtained by addition of a constraint of the total radiated
power (44). The stored energy can also be minimized for a desired radiated field
or by projection of the radiated field on the desired far field [31]. The case with
antennas embedded in a lossy background media is very different as there is no far
field in the lossy case. It is however simple to instead include constraints on the near
field [28]. It is also possible to impose constraints on the sidelobe level or radiation
pattern in some directions, cf., the cases in array synthesis [53, 69].

Validation of the results against simulations and/or measurements is very im-
portant. The bounds on G/Q are compared with classical antennas in Fig. 5 and
GA optimized antennas in Fig. 6, see also [3, 13, 29, 32, 45, 64]. It is essential

http://cvxr.com/cvx/
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to compute the stored energy and Q-factors for the antennas accurately in these
comparisons. The QZ′in

formula (9) is very useful for single resonance cases but it
can underestimate the Q-factor for cases with multiple resonance [36, 49, 66, 79].
The stored energy in circuit models synthesized from the input impedance offers
an alternative approximation of the stored energy [29]. The circuit models are syn-
thesized using Brune synthesis [7] technique, this requires an analytic model (PR
function) of the input impedance from zero frequency and up to the frequency of
interest [29].

The computed current densities can be used for physical understanding. The case
with the half-wavelength strip dipole in Fig. 11 is e.g., recognized as the classical
cosinus shaped current distribution. This shape is also close to optimal for longer
wavelengths [35]. The oscillatory current distribution of the superdirective dipole in
Fig. 12 resembles the case with superdirective arrays. The current distributions for
more complex structures are harder to visualize. Typical dipole and loop currents
are seen on planar rectangles in [31]. Here, it is important to understand that
the value of the objective functional (e.g., G/Q) is unique but there are in general
many current distributions that gives this value. The same holds for the derived
quantities such as; the resulting Q-factor and, directivity calculated from currents
that minimize G/Q.

The accuracy of the convex optimization solution is easily verified using the dual
formulation (56) and hence is not a major problem. The underlying accuracy of the
MoM type discretization of the problem is however essential for the reliability of the
computed results. Here, as for all MoM solutions it is important to investigate the
convergence of the discretization, i.e., how the results depend on mesh refinement.
Moreover, if it is a priori known that a specific mesh is sufficient to model all
antennas, then the same mesh can be used for current optimization.

The accuracy of the expressions for the stored energies (11) and (12) are also
essential for antenna current optimization. It is known that (11) and (12) equal the
sum of the stored energy defined by subtraction of the energy in the far field and a
coordinate dependent term [29, 30]. The coordinate dependence vanishes for small
structures and also for structures with a symmetric radiation pattern [30, 79]. The
stored energies (11) and (12) also reduce to the classical stored energies in the static
limit. However, the stored energies (11) and (12) can produce negative values for
electrically large structures [35]. This questions the validity of (11) and (12) for
larger structures. The expressions have been validated against the QZ′in

formula [79]
and circuit models for several antennas in [13, 14, 29]. The values agree for cases
with large Q-factors but can disagree as Q approaches unity [29]. This coincides
with the region where Q is a useful concept and can be used as an estimate for the
fractional bandwidth. In this tutorial, we have restricted the size of the structures to
approximately half-a-wavelength (ka ≈ 1.5 to 2). This is much larger than the clas-
sical definitions of small antennas ka ≤ 0.5 or ka ≤ 1. For the planar rectangle it can
lead to low Q-factors and hence questionable results when comparing the antenna
performance, e.g., Q = 1 corresponds to an infinite bandwidth using (8). There is
still no consensus of the stored energies for larger structures and for inhomogeneous
materials, so much research remains in these areas.
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Appendix A Notation

Scalars are denoted with an italic font (f, F ), vectors (in R3) with a boldface italic
font (f ,F ), and matrices with a boldface roman font (f ,F). We consider time
harmonic fields in free space with the time convention ejωt.

c0 Speed of light, c0 = 1/
√
ε0µ0

η0 impedance of free space, η0 =
√
µ0/ε0

µ0 permeability of free space, µ0 = η0/c0

ε0 permittivity of free space, ε0 = 1/(η0c0)
E electric field
H magnetic field
J current density
Jn Jn = J(rn) for n = 1, 2
ρ charge density, ρ = −1

jω
∇ · J

F far field
Zin input impedance
Rin input resistance, Rin = ReZin

Xin input reactance, Xin = ImZin

We stored electric energy
Wm stored magnetic energy
Pd dissipated power
Pr radiated power
PΩ ohmic losses
Q Q-factor (2)
Qe electric Q-factor (2)
Qm magnetic Q-factor (2)
QZ′in

Q from Z ′in (9)
QΓ0 Q from the fractional bandwidth and Γ0

QB Q from Brune circuit [29]
Γ reflection coefficient, see Fig. 7
Γ0 threshold level for the reflection coefficient, see Fig. 7
D directivity, also partial directivity D(r̂, ê)
G gain, also partial gain G(r̂, ê)
r position vector in R3, see Fig. 2
r magnitude of r, i.e., r = |r|, see Fig. 2
r12 distance |r1 − r2|
r̂ (unit) direction vector, i.e., r̂ = r/r, see Fig. 2

http://www.stratresearch.se/
http://www.eit.lth.se/index.php?puid=175&projectpage=projektfakta
http://www.eit.lth.se/index.php?puid=175&projectpage=projektfakta
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Impedance_of_free_space
https://en.wikipedia.org/wiki/Vacuum_permeability
https://en.wikipedia.org/wiki/Vacuum_permittivity
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Charge_density
https://en.wikipedia.org/wiki/Near_and_far_field
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Directivity
https://en.wikipedia.org/wiki/Antenna_gain
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ê (unit) polarization vector, see Fig. 2
Ω source region, see Fig. 2
ΩA antenna region, ΩA ⊂ Ω, see Fig. 4
ΩG ground plane region, see Fig. 4
` side length of a rectangle, also `x, `y, see Fig. 3
f frequency
ω angular frequency ω = 2πf
k wavenumber k = ω/c0, kη0 = ωµ0, k/η0 = ωε0
λ wavelength λ = c0/f
ψ basis function (18)
I current matrix
Z impedance matrix (19)
R resistance matrix, R = Re Z
X reactance matrix, X = Im Z
Xe electric reactance matrix (21)
Xm magnetic reactance matrix (22)
F far-field matrix (27)
N near-field matrices (29) and (30)
C induced currents matrix (32)
Iα current matrix in the solution of dual problems
Qα Q-factor for the current Iα
Qeα electric Q-factor for the current Iα
Qmα magnetic Q-factor for the current Iα
Q̃α convex combination Q̃α = αQeα + (1− α)Qmα

Gα gain for the current Iα
G free space Green’s function, G = e−jk|r|/(4π|r|)
j imaginary unit, j2 = −1
∗ complex conjugate, (a+ jb)∗ = a− jb
T transpose
H Hermitian transpose
� positive definite, IHAI > 0 for all I 6= 0
� positive semidefinite, IHAI ≥ 0 for all I
ˆ unit vector, |r̂| = 1
ν Lagrange multiplier, also ν for matrices
∇ nabla operator
dV volume element
dS surface element

https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Angular_frequency
https://en.wikipedia.org/wiki/Wavenumber
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Green%27s_function
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Complex_conjugate
https://en.wikipedia.org/wiki/Transpose
https://en.wikipedia.org/wiki/Conjugate_transpose
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix#Positive-semidefinite
https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Volume_element
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Appendix B Stored energy

The stored energy expression (11) is motivated by the identity [30]

lim
r0→∞

ε0
4

∫

|r|≤r0

|E(r)|2 − |F (r̂)|2
r2

dV = We +Wc,0

=
η0

4ω

∫

Ω

∫

Ω

∇1 ·J1∇2 ·J∗2
cos(kr12)

4πkr12

−
(
k2J1 ·J∗2−∇1 ·J1∇2 ·J∗2

)sin(kr12)

8π
dV1 dV2

+
η0

4ω

∫

Ω

∫

Ω

Im
{
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

}r2
1 − r2

2

8πr12

k1(kr12) dV1 dV2, (82)

where 1(κ) = (sin(κ) − κ cos(κ))/κ2 is a spherical Bessel function and F is the
far-field, see Fig. 2. The identity (82) is valid for arbitrary current densities with
support in a bounded region Ω radiating in free space, see Fig. 2. The derivation
of (82) is solely based on integral identities for the free space Green’s function and
vector analysis [30]. The integral in the left-hand side is the difference between the
electric energy density and the energy density of the far-field term [18, 23, 79]. The
first integral in the right-hand side is coordinate independent and identical to the
stored electric energy We in (11) proposed by Vandenbosch [70]. The second term
Wc,0 contains the coordinate dependent factor r2

1 − r2
2 = (r1 − r2) · (r1 + r2) and

Wc,0 has the coordinate dependence

Wc,d = Wc,0 −
ε0
4

∫

|r̂|=1

d · r̂|F (r̂)|2 dSr̂ (83)

for a shift of the coordinate system r → d+r, see [30], where the integration is over
the unit sphere. The expression (12) for the stored magnetic energy is motivated by
the analogous identity

lim
r0→∞

µ0

4

∫

|r|≤r0

|H(r)|2 − |F (r̂)|2
η2

0r
2

dV = Wm +Wc,0. (84)

Note that the identities (82) and (84) are valid for current densities with arbitrary
frequency dependence and that they differ from the expressions in [23], see also [10].

Appendix C Non-negative stored energy

The integral expressions for the stored energies are not positive semidefinite for all
structures [35]. In [30], this is interpreted as an uncertainty of the stored energy due
to the subtraction of the radiated power in the interior of the structure. The convex
optimization approach in this paper relies on having positive semidefinite quadratic
forms. The expressions are observed to be positive semidefinite for sufficiently small

https://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions:_jn.2C_yn
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structures but can be negative when the size is of the order of half-a-wavelength [35],
see also Figs 29 and 30. In practice there might be some small negative eigenvalues
for smaller structures due to the finite numerical precision in the MoM approx-
imation and the relatively large subspace with small eigenvalues. Note that the
stored electric energy at statics has an infinite dimensional null space consisting of
all solenoidal current densities, e.g., of the form ∇×A for some vector field A. The
resistance matrix has a null space containing non-radiating sources [5], i.e., current
densities of the form

J =
1

jωµ0

(k2f −∇×∇× f) (85)

for vector fields f = f(r) with compact support.
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n
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Figure 28: Eigenvalues Λn of Xe,Xm,R for a planar rectangle with side lengths
`x = 2`y = 0.1λ divided into 64× 32 elements (4000 basis functions).

The eigenvalues Λe,n, Λm,n, and Λr,n of Xe, Xm, and R, respectively, for a planar
rectangle with side lengths ` and `/2 and wavelength λ = 10` are depicted in Fig. 28.
The rectangle is divided into 64× 32 identical elements giving 64× 31 + 63× 32 =
4000 basis functions. The definite sign of the eigenvalues Λm,n > 0 shows that
Xm is positive definite Xm � 0. The electric reactance matrix is also positive
definite Xe � 0 with approximately half of the eigenvalues Λe,n much larger than
the remaining ones. The small eigenvalues belong to divergence free eigenmodes and
they approach 0 as `/λ→ 0. The resistance matrix R should be positive semidefinite
but the finite numerical accuracy of the evaluation of (19) makes R indefinite. In
Fig. 29, it is seen that R has a few (≈ 20) dominant large eigenvalues and lots of
small eigenvalues. The small eigenvalues are of the order 10−12 smaller than the
dominant eigenvalues. These small eigenvalues are very sensitive to the numerical
evaluation of the impedance matrix (19) and similar to the eigenvalues of a random
matrix, cf., the MATLAB plot

A=rand(1000);



49

semilogy(abs(eig(A+A')))

These random errors results in approximately 2000 small negative eigenvalues. The
negative eigenvalues are marked with circles.
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Figure 29: Eigenvalues Λn of Xe,Xm,R for a planar rectangle with side lengths
` and `/2 divided into 64 × 32 elements (4000 basis functions) for the wavelength
λ = 2`. The negative eigenvalues are marked by circles, i.e., Λn < 0. The eigenmode
(current) to the negative eigenvalue Λe,4000 is also depicted, cf., with the loop current
in [35].

The corresponding case with the wavelength λ = 0.5` is depicted in Fig. 29. The
positive eigenvalues Λm,n > 0 show that Xm is positive definite Xm � 0. Xe has
one negative eigenvalue Λe,4000 showing that Xe is indefinite. The corresponding
eigenmode (eigenvector) is an equiphase loop current as depicted in the inset, see
also the explicit construction in [35]. The resistance matrix R is indefinite due to
the used numerical accuracy similar to the λ = 10` case in Fig. 28. The matrix R
has a few more dominant large eigenvalues compared to the λ = 10` case as the
number of radiating modes increases with the electrical size `/λ.

The negative eigenvalue for Xe vanishes for longer wavelengths and Xe � 0 for
electrically small structures. Fig. 30 illustrates maximal size of a planar rectangle
such that Xe � 0. The rectangle side lengths `x and `y are normalized with the
wavelength. The longest side of the rectangle is divided into 32 equidistant regions
and the highest frequency with Xe � 0 is determined using Cholesky factorization
as depicted by the blue curve marked with circles. The corresponding value with
an indefinite Xe is illustrated by the red curve marked with circles. The results
are similar to discretization using 64 regions. The region below the curves is the
region with positive semidefinite Xe. The corresponding Q-factors determined from
the forward scattering bound [32, 33] on D/Q assuming D = 1.5 are depicted with
the contours for Q ≈ {1, 2, 5, 10, 20, 100}. The classical regions for small antennas
ka ≤ {0.5, 1} are shown with the dashed blue quarter circles. The region where Xe

https://en.wikipedia.org/wiki/Cholesky_decomposition
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Figure 30: Illustration of the maximal size of a planar rectangle with side lengths
`x and `y such that Xe is positive semidefinite Xe � 0. The blue (red) curve with
circular marks illustrate the largest (smallest) case with Xe positive semidefinite
(indefinite). The contours illustrate the region with Q ≥ {1, 2, 5, 10, 20, 100}, where
the Q-factor is estimated from the forward scattering bound [32, 33] assuming an
electric dipole pattern. The classical regions for small antennas ka ≤ {0.5, 1} are
also depicted with the blue dashed quarter circles.

is indefinite corresponds to Q-factors below 2 and hence values where Q loses its
meaning and there is in practice no restriction on the bandwidth (8).

In this paper, we consider the stored energy as zero if the integral expressions
are negative [31]. This is performed by an eigenvalue decomposition of the reactance
matrices Xe and Xm and the resistance matrix R, e.g.,

Xe = UΛeU
T, (86)

where Λe is a diagonal matrix containing the eigenvalues Λe,n. Negative eigenvalues
are replaced by 0, i.e., Λe,n → max{Λe,n, 0}, giving the electric reactance matrix

Xe → U max{Λe,0}UT (87)

and similarly for Xm and R.
Although this approach eliminates the problems with indefinite matrices, it is

not entirely satisfactory. One minor problem is that the reactance Xm − Xe is
changed. This is however easily solved by addition of the same quantity to both Xe
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and Xm. In this paper, we restrict the size of the antenna structure to approximately
half-a-wavelength to mitigate the problem with negative stored energies. This also
coincides with the typical range where the antenna performance is restricted by the
Q-factor (bandwidth), see Fig. 30. The energy expressions produce reliable results
for some simple antennas for substantially larger structures [29], but much research
remains before we can draw any definite conclusions.

Diagonalization of the reactance matrix can be used to separate X into two
positive semidefinite matrices X = X+ − X−, where X+ � 0 and X− � 0. The
simplest case is to diagonalize X, i.e.,

X = UΛUT = UΛ+UT −UΛ−UT = X+ −X−, (88)

where Λ± � 0. Note that the decomposition is non-unique and that any positive
semidefinite matrix can be added to X+ and X−. The decomposition (88) resembles
the decomposition of the reactance matrix into the electric and magnetic reactance
matrices (24).

Appendix D Duality in convex optimization

A brief overview of duality in convex optimization, and its application to the mini-
mization of the maximum of quadratic forms is given below, see also [6, 56].

D.1 Primal and dual problems

Consider the primal optimization problem (P)

minimize f(x)

subject to g(x) ≤ 0,

Ax = b,

(89)

where x ∈ Rn, f(x) ∈ R is a convex function, g(x) ∈ Rm a vector of convex
functions, A ∈ Rp×n and b ∈ Rp. Let X denote the affine space X = {x ∈
Rn|Ax = b}.

Define the Lagrangian function

L(x,ν) = f(x) + νTg(x), (90)

where ν ∈ Rm is a vector of Lagrange multipliers. It is readily seen that for any
x ∈ X

max
ν≥0

L(x,ν) =

{
f(x) if g(x) ≤ 0,
+∞ otherwise,

(91)

and hence the primal optimization problem (P) in (89) is equivalent to the min-max
problem

minimize
x∈X

max
ν≥0

L(x,ν). (92)

https://en.wikipedia.org/wiki/Lagrange_multiplier
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The dual optimization problem (D) is defined by interchanging the order of the
minimization and maximization, and is hence defined by the problem

maximize
ν≥0

d(ν), (93)

where d(ν) is the dual function

d(ν) = min
x∈X

L(x,ν), (94)

and where ν ≥ 0.
It is readily seen that for any x̃ ∈ X and ν̃ ≥ 0

min
x∈X

L(x, ν̃) ≤ L(x̃, ν̃) ≤ max
ν≥0

L(x̃,ν) (95)

and hence that
max
ν≥0

min
x∈X

L(x,ν) ≤ min
x∈X

max
ν≥0

L(x,ν), (96)

or
max
ν≥0

d(ν) ≤ min
x∈X,g(x)≤0

f(x), (97)

which is a statement of weak duality.
Slater’s constraint qualification [6] states that if there exists an x ∈ X such that

gi(x) < 0 for i = 1, . . . ,m (x is strictly feasible) in (89), then strong duality holds
for the convex optimization problem, i.e.,

max
ν≥0

d(ν) = min
x∈X,g(x)≤0

f(x). (98)

D.2 Minimizing the maximum of quadratic forms

Consider the convex optimization problem

minimize max{xTAix}mi=1

subject to Ax = b,
(99)

where x ∈ Rn, Ai ∈ Rn×n are symmetric positive semidefinite matrices, A ∈ Rp×n

and b ∈ Rp. This problem is equivalent to the following primal formulation (P)

minimize y

subject to xTAix ≤ y,

Ax = b,

(100)

which is an optimization problem over (x, y) ∈ Rn+1. Let X denote the affine space
X = {x ∈ Rn|Ax = b}. The dual function d(ν) is given by

d(ν) = min
x∈X,y∈R

{y +
m∑

i=1

νi(x
TAix− y)}

= min
x∈X,y∈R

{y(1−
m∑

i=1

νi) +
m∑

i=1

νix
TAix}, (101)
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or

d(ν) =





min
x∈X

xT

(
m∑

i=1

νiAi

)
x if

m∑

i=1

νi = 1,

−∞ otherwise,

(102)

where ν ∈ Rm is a vector of real valued and non-negative Lagrange multipliers,
νi ≥ 0.

The linearly constrained quadratic minimization problem above has an explicit
solution with

x =

(
m∑

i=1

νiAi

)−1

AT


A

(
m∑

i=1

νiAi

)−1

AT



−1

b. (103)

The dual optimization problem (D) in (93) becomes

maximize bT


A

(
m∑

i=1

νiAi

)−1

AT



−1

b

subject to
m∑

i=1

νi = 1,

νi ≥ 0,

(104)

which consists of an m−1 dimensional search over explicit solutions to the quadratic
minimization problems (based on convex combinations of the matrices Ai) as de-
fined in (102). The dual problem (D) in (104) can sometimes be computationally
advantageous in comparison to the primal problem (P) in (100), in particular when
m is small and the system dimension n is large.

It is readily seen that the convex optimization problem (P) in (100) satisfies
Slater’s constraint qualification [6] by choosing an arbitrary x ∈ X and a y ∈ R
such that

xTAix− y < 0, (105)

for all i = 1 . . . ,m, i.e., an (x, y) exists that is strictly feasible. Hence, strong duality
holds for this convex optimization problem.

D.3 Linearly constrained quadratic optimization in complex
variables

Let I = Ir + jIi ∈ Cn×1 where Ir, Ii ∈ Rn×1. The complex gradient with respect to
I∗ is defined by

∂

∂I∗
=

1

2

(
∂

∂Ir

+ j
∂

∂Ii

)
. (106)

It is noted that the condition ∂f
∂I∗

= 0 is equivalent to the Cauchy-Riemann equations

when f is holomorphic, and to the condition ∂f
∂Ir

= ∂f
∂Ii

= 0 when f is real valued.
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The following differentiation rules are also readily verified





∂
∂I∗

FI = 0,

∂
∂I∗

IHFH = FH,

∂
∂I∗

IHRI = RI,

(107)

where F ∈ C1×n and R ∈ Cn×n.
Consider now the linearly constrained quadratic optimization problem

minimize IHRI

subject to FI = g,
(108)

where g ∈ C is a constant. The corresponding Lagrange function is given by

L(I, ν) = IHRI + Re {ν∗(FI− g)} , (109)

or
L(I, ν) = IHRI + νr Re {FI− g}+ νi Im {FI− g} , (110)

where ν = νr + jνi is the complex valued Lagrange multiplier. Now, since

∂

∂I∗
Re {ν∗(FI− g)} =

∂

∂I∗

{
ν∗(FI− g) + ν(IHFH − g∗)

2

}
=
ν

2
FH, (111)

the condition for optimality is

∂

∂I∗
L(I, ν) = RI +

ν

2
FH = 0, (112)

and hence
I = −ν

2
R−1FH. (113)

The multiplicator ν is found from the constraint requirement FI = g. Hence,

−ν
2
FR−1FH = g. (114)

The optimal solution becomes

I =
g

FR−1FH
R−1FH, (115)

and the corresponding minimum value is

IHRI =
|g|2

FR−1FH
. (116)



55

Appendix E MoM data

MATLAB functions, scripts, and data for planar rectangles can be downloaded
from http://www.eit.lth.se/index.php?puid=175&projectpage=135&L=1. The
zip-file contains the MATLAB functions

Calc RX matrices rec(k1,k2,kN,lx,ly,Nx,Ny,lib)
% calculates parts of the Xe,Xm,Rr matrices
% for a lx,ly−rectangle and wavenumbers linspace(k1,k2,kN)
% the data is stored in the folder lib
[X,p] = RX rec sym2full(X11,X12,X22,BxN,ByN,txN,tyN,pdef)
% calculates the Xe,Xm,Rr matrices from their parts
F = farfieldmatrix(k,bas,meshp,evh,rvh)
% calculates the far−field matrix F for the direction rvh and ...

polatization evh
F = sphmodematrix(k,bas,meshp,sphn)
% calculates the F−matrix for the spherical modes sphn
[a,GoQai,m,GoQrgap,adiff] = ...

AntennaGoQ NewtonIt(a,Xe,Xm,F,gap0,adiff0,m0,ab1)
% Maximizes G/Q using Newton iterations for the dual problem

and the scripts

maxGoQ CVX 1 strip
% calculates the Xe,Xm,Rr matrices for a strip
% and used CVX to maximize G/Q
maxGoQ CVX 2 strip
% calculates the Xe,Xm,Rr matrices for a strip geometry for a range ...

of wavenumbers and used CVX or Newton iterations to maximize G/Q
maxGoQ CVX 2 rec
% calculates the Xe,Xm,Rr matrices for a rectangle geometry for a ...

range of wavenumbers and used CVX or Newton iterations to ...
maximize G/Q

The length `x is normalized to `x = 1 m and wavenumber is in units of 1/`x, i.e.,
the dimensionless quantity k`x is used.

E.1 Strip dipole ` = 0.48λ, Nx = 32

eta0 = 299792458 * 4e−7*pi; % free space impedance
kl = 0.48 * 2*pi; % wavenumber, 0.48 lambda
Nx = 32; % number of elements
N = Nx−1; % number of unknowns
dx = 1/Nx; % rectangle length
dy = 0.02; % ractangle width
Xe11 =1e3*[1.57397 −0.57065 −0.15929 −0.02964 −0.01124 −0.00552 ...
−0.00314 −0.00197 −0.00133 −0.00094 −0.00070 −0.00055 −0.00044 ...
−0.00036 −0.00031 −0.00026 −0.00023 −0.00021 −0.00019 −0.00017 ...
−0.00016 −0.00015 −0.00014 −0.00013 −0.00013 −0.00012 −0.00011 ...
−0.00011 −0.00010 −0.00009 −0.00009];

http://www.eit.lth.se/index.php?puid=175&projectpage=135&L=1
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Xe = toeplitz(Xe11); % E−energy
Xm11 = [6.77879 3.65774 1.50119 0.93418 0.66881 0.50954 ...

0.40106 0.32110 0.25892 0.20865 0.16685 0.13135 0.10073 ...
0.07402 0.05053 0.02977 0.01136 −0.00497 −0.01944 −0.03222 ...
−0.04345 −0.05324 −0.06169 −0.06887 −0.07487 −0.07975 −0.08358 ...
−0.08640 −0.08828 −0.08928 −0.08944];

Xm = toeplitz(Xm11); % M−energy
Rr11 = 0.1*[1.77456 1.77298 1.76826 1.76042 1.74947 1.73548 1.71847 ...

1.69854 1.67573 1.65016 1.62190 1.59106 1.55777 1.52213 1.48430 ...
1.44439 1.40257 1.35897 1.31376 1.26710 1.21916 1.17009 1.12008 ...
1.06929 1.01789 0.96607 0.91398 0.86181 0.80971 0.75785 0.70639];

Rr = toeplitz(Rr11)+eye(N)*5e−6;
F = eta0*(−1i*kl)/4/pi*ones(1,N)*dx; % far field

E.2 Strip dipole with `x = 50`y = 0.48λ and Nx = 100

k1=0.48*2*pi; k2=k1; kN=1; lx=1; ly=0.02; Nx=100; Ny=1; % ...
\ellx=0.48\lambda

lib = '..\data'; % path to the data library
Calc RX matrices rec(k1,k2,kN,lx,ly,Nx,Ny,lib);
% load the data files
load(strcat(lib, ...
'/RowRX rec x=1 y=0p02 Nx=100 Ny=1 k=3p0159'));

E.3 Strip dipole ` = 0.1λ, Nx = 32

eta0 = 299792458 * 4e−7*pi; % free space impedance
kl = 0.1 * 2*pi; % wavenumber, 0.1 lambda
Nx = 32; % number of elements
N = Nx−1; % number of unknowns
dx = 1/Nx; % rectangle length
dy = 0.02; % ractangle width
Xe11 =1e3*[7.55508 −2.73908 −0.76452 −0.14218 −0.05383 −0.02634 ...
−0.01488 −0.00924 −0.00614 −0.00428 −0.00311 −0.00233 −0.00179 ...
−0.00141 −0.00112 −0.00091 −0.00075 −0.00063 −0.00053 −0.00045 ...
−0.00038 −0.00033 −0.00029 −0.00025 −0.00022 −0.00020 −0.00018 ...
−0.00016 −0.00014 −0.00013 −0.00011];

Xe = toeplitz(Xe11); % E−energy
Xm11 = [1.41378 0.76478 0.31782 0.20212 0.14925 0.11844 0.09816 ...

0.08376 0.07298 0.06460 0.05789 0.05239 0.04779 0.04388 0.04052 ...
0.03760 0.03503 0.03275 0.03071 0.02887 0.02721 0.02570 0.02431 ...
0.02304 0.02186 0.02078 0.01976 0.01882 0.01793 0.01710 0.01632];

Xm = toeplitz(Xm11); % M−energy
Rr11 = 1e−3*[7.70515 7.70486 7.70397 7.70248 7.70040 7.69773 ...

7.69447 7.69061 7.68616 7.68112 7.67549 7.66927 7.66246 7.65507 ...
7.64709 7.63852 7.62938 7.61965 7.60934 7.59845 7.58699 7.57495 ...
7.56234 7.54915 7.53540 7.52109 7.50621 7.49076 7.47476 7.45821 ...
7.44110];

Rr = toeplitz(Rr11)+eye(N)*1e−8;
F = eta0*(−1i*kl)/4/pi*ones(1,N)*dx; % far field
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E.4 Strip dipole with `x = 50`y = 0.1λ and Nx = 100

k1=0.1*2*pi; k2=k1; kN=1; lx=1; ly=0.02; Nx=100; Ny=1; % lx=0.1\lambda
lib = '..\data'; % path to the data library
Calc RX matrices rec(k1,k2,kN,lx,ly,Nx,Ny,lib);
% load the data files
load(strcat(lib, ...
'\RowRX rec x=1 y=0p02 Nx=100 Ny=1 k=0p62832'));

E.5 Planar rectangle with `y = `x/2, Nx = 64, and Ny = 32

The MoM data for a plane rectangle can be downloaded from http://www.eit.lth.

se/index.php?puid=175&projectpage=135&L=1. The zip-file contains the matrix
elements associated with the first basis functions in the x̂ and ŷ directions. Run
the matlab function

RX rec sym2full

to construct the Xe, Xm, and R matrices. The matrices are computed using an
equidistant mesh with Nx and Ny elements in the x̂ and ŷ-directions, respec-
tively. The data is evaluated for planar plates with length `x and width `y us-
ing Nk equidistant samples of the wavenumbers k from the interval [k1, k2], i.e.,
linspace(k1,k2,Nk). The file

load Xm rec x=1 y=0p02 Nx=50 Ny=1 k=0p02 3p2 50 6

contains data for a plate with length `x = 1 and width `y = 0.02 meshed using
Nx ×Ny = 50× 1 elements. It is the 6st wavenumber from the samples, i.e.,

kk = linspace(0.02,3.2,50);
k = kk(6);

The far-field matrix F in (27) for the direction r̂ and polarization ê is computed
with the MATLAB script

evh = [1 0 0]; % unit vector in the x−direction
rvh = [0 0 1]; % unit vector in the z−direction
F = farfieldmatrix(k,bas,meshp,evh,rvh);

The structures bas and meshp contain the basis functions and mesh used to discretize
the structure. The corresponding F matrix for the spherical modes are computed
using

sphn = 6; % x−directed electric dipole
F = sphmodematrix(kl,bas,meshp,sphn);

http://www.eit.lth.se/index.php?puid=175&projectpage=135&L=1
http://www.eit.lth.se/index.php?puid=175&projectpage=135&L=1
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