Characterization and emission measurements of multi-walled carbon nanotube release during production

Ludvigsson, Linus; Isaxon, Christina; Nilsson, Patrik; Hedmer, Maria; Tinnerberg, Håkan; Messing, Maria; Rissler, Jenny; Skaug, Vidar; Gudmundsson, Anders; Bohgard, Mats; Pagels, Joakim

Published in:
Proceedings of the European Aerosol Conference 2013

2013

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Characterization and emission measurements of multi-walled carbon nanotube release during production

L. Ludvigsson1,2, C. Isaxon2, P. T. Nilsson2, M. Hedner3, H. Tinnerberg3, M. E. Messing1, J Rissler2, V. Skaug4, A. Gudmundsson5, M. Bohgard1, J. Pagels2

1Solid State Physics, Lund University, SE-22100, Lund, Sweden
2Ergonomics and Aerosol Technology, Lund University, SE-22100, Lund, Sweden
3Occupational and Environmental Medicine, University Lund University Lund, SE-22100, Lund, Sweden
4National Institute of Occupational Health, PB 8149 Dep, 0033 Oslo, Norway

Presenting author email: Linus.Ludvigsson@ftf.lth.se

Keywords: Carbon nanotubes, emission measurement, SEM

The fields in which carbon nanotubes (CNTs) are found useful are rapidly growing, causing an increased demand worldwide. The industry is looking for ways to improve their production and thus increase the amount of CNTs being handled. This, together with the fear that exposure to CNT particles may cause similar health effects as asbestos (Donaldsson, 2006), create a need for accurate methods of emission assessments. We present results from field measurements performed using a range of techniques to assess emissions and exposure at a small-scale CNT producer that utilize the arc-discharge method for production of multi-walled CNTs.

Emissions and exposures when performing different work tasks in the production were examined including full-shift personal measurements. Samples of airborne particles were collected both in the emission zone and in the breathing zone of the workers. By using cyclones (BG4L, BGI) respirable (cut-off 4µm aerodynamic diameter) dust fractions, were collected on polycarbonate (37 mm, 0.4 µm pores) filters. Particles were studied with Scanning Electron Microscopy (SEM) and online instruments were used both in the emission zone (<10 cm from the source) and in the background (3 m from the closest known source). CNT containing particles were classified into 4 types displayed in figure 1. The size distribution of all measured particles in one sample is shown in figure 2.

Emissions of CNTs were detected in 9 out of 16 samples, with a CNT content of up to 11 CNT particles per cm³. The CNT containing particles found in the respirable fraction did seldom exceed a length of 5 µm. Most of the CNT particles had dimensions larger than 1 µm, i.e. much larger than the mean particle diameter (0.2 µm).

Figure 2 Distribution of measured particles in one sample, blue and red dots marks non-CNT containing particles. Particles between the blue and red line have an aspect ratio <3:1 and particles below the red line have an aspect ratio >3:1. The pie chart shows the distribution of the four different CNT types.

The combination of online instrumentation and SEM analysis contributed to clearly showed when emissions occur and what kind of particles that were emitted. The results show that several tasks in the production could cause workplace exposure.

This work was performed within the FAS centre METALUND and supported by the Swedish Council for Working Life and Social Research (FAS) and nmC@Lund
