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Abstract

The singularity cancelation scheme initially introduced by Khayat and Wilton
for evaluating singular and near-singular potential integrals with 1/R singu-
larities has in this paper been applied to parameterized quadrilateral cells
containing higher order hierarchical H(div) Legendre basis functions. The
singular and near-singular potential integrals treated in this paper appear in
the method of moment (MoM). Numerical results are presented for different
order numbers of the Legendre polynomials and for quadrilateral cells of dif-
ferent shapes.

1 Introduction

EM-modelling of circuite components has received a growing attention during the
past ten years. In this area it is crucial to be able to compute circuite parameters of
integrated components like transmission lines and other wire based structures, e.g.,
inductors, baluns and transformers, to a high accuracy. A problem that appears
when the MoM is applied to compute the quantities of interest is the "low-frequency
catastrophe". This happens when the common rwg basis functions [5] are applied
in low-frequency problems. In order to handle this problem one must apply a rep-
resentation that allows the decomposition of the surface current into a solenoidal
part and a nonsolenoidal remainder. One alternative is to use the loop-star basis
functions [6] and another is to use large cells including a complex representation
that enables the decomposition. A candidate for the second alternative is the higher
order hierarchical H (div) basis functions that were introduced in [3]. An advantage
of this approach is that the number of degrees of freedom (DOF) can be reduced
considerably.

A problem with quasi-static problems is the high demands on the accuracy of the
matrix elements and thereby the numerical evaluation of the integrals. This put high
demands on the numerical evaluation technique. And due to the properties of the
basis functions the technique must also be flexible in order to handle all different
cases that appear. The Khayat-Wilton method [4], which is based on the Duffy
method [1], fulfills the requirements of accuracy and flexibility. In this paper the
Khayat-Wilton method is generalized to handle parameterized quadrilateral cells.

2 Preliminaries

The higher order hierarchical basis functions, introduced by Jgrgensen et al. |3], yield
an efficient way of representing the current density on the surface of the metalliza-
tion. Since the basis functions are developed for representing currents on quadri-
lateral surfaces they are well suited for wire shaped structures, like transmission
lines. This can be seen by the quadrilateral cell that is illustrated in Figure 1. At
the straight parts of the transmission line the quadrilateral cell has a rectangular
shape but at corners the more general form is used. This means that the two vectors
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Figure 1: A quadrilateral cell. 7;; denotes the coordinates of the vertices.

T01 — Too and r1; — 119 are always parallel to each other and orthogonal to the side
represented by the vector r1g — rgo.
A point in the quadrilateral cell, the domain K,,, is represented by

v (u,v) = 7.+ ur, + or, + uwry,, —-1<u,v<1, (2.1)

where the vectors are

r, = i(roo +rio+ro+7n), T.= i(—TOO + 710 — To1 + T11), (2.2)

i 1
Ty = 7(=Too —T10+ To1 + T11), Tuww = 3(Too — T10 — To1 +T11).

The basis functions in [3] are given by

1 ~ ~
H; (u,v)=a,———Cy,P,(u)C,P,(v),
l-7s(u7 U) (2 3)
I .
H’ (u,v)=a,——C,P,v)C,P,(u),
1) = @y 7 G PP ()
where a, and a, are the contravariant unitary vectors,
or’ or’
a, L Ty + VT, Ay = o Ty + UT Yy, (2.4)

" ou ov

Js(u,v) = |a, X a,| the surface Jacobian and P, the Legendre polynomials. The
functions P, are defined as

11—z, m =0,

Pu(x)=<¢1+ux, m =1,
Po(x) — Pp_ao(x), m>2,

and the coeflicients as
_ {? m=0,1,

Co -
m 1 [em—3)(2m+1)
2 1 M= 2,



The integral that represents the cell to cell interaction can be written as linear
combinations of the generic integral

I = / / / / a(s, 1,1, 1) Po(8) Py () P (1) Pa(0)G (1 (s, £), 7/ (1, v)) dv dudt ds— (2.5)
where a(s,t,u,v) € U and s,t,u,v € [—1,1]. The set is defined as
U ={as(s,t) - a,(u,v),as(s,t) - a,(u,v),ais,t) - a,(u,v),as,t) - a,(u,v),1}.

The kernel of the integral in (2.5) is weakly singular due to the Green’s function,

G(r,r') = %. The interaction between a point r € K, the field point, and
the system K, is essentially represented by the inner integral

Ir(s,t) ://a(s,t,u,v)Pm(u)Pn(v)G(r(s,t),r'(u,v))dvdu. (2.6)

-1-1

Due to the singularity, quadrature formulas for functions that can be well approxi-
mated by polynomials, e.g., Gauss-Legendre, can not be used to compute the self-
couplings. The integral in (2.6) is integrable since the kernel is weakly singular. On
contours, efficient techniques for high order accurate integration of many types of
singular kernels are readily available, see Section 2 in [2]. On patches, the situation
is more involved, even for non-singular kernels, see [7]. This is a vivid research area
with important applications.

3 Singularity cancelation

3.1 Self coupling

N

Figure 2: Division of the quadrilateral cell into subtriangles in accordance to the
Khayat-Wilton method, i.e., the coordinate system is the laboratory system K,,..

In order to compute (2.6) in the case of singularities or near-singularities, i.e.,
when the field point, r, is close to the source point, 7/, the method proposed by
Khayat and Wilton [4] is utilized. Applying that technique for a quadrilateral cell



leads to that the cell is divided into four subtriangles, as shown in Figure 2. The
four triangles share a common vertex which coincides with the projected field point,
rp. The integral is thereafter evaluated for each of the subtriangles. This works
well as long as the integral is defined in the laboratory system, K,,.. In the case
of parameterized surfaces it is more convenient to evaluate the integral in the local
coordinate system. For the integral in (2.6) the local system, K,, = R[—1,1] x
R[—1, 1], is represented by a square. Applying the same technique as before conveys
four subtriangles in the local system K,,. This is illlustrated in Figure 3. Before

v

Figure 3: Division of the quadrilateral cell into subtriangles in the coordinate
system K.

the integration of the subtriangles the coordinates of the projected field point have
to be determined. That is, given the coordinates (sg,ty) € Ky find (ug,vp) € Kyy.
To do so the coordinate system, K 1,2, that spans the system K, in the laboratory
system, is introduced. The unit vectors of K,i,2 are

. . L r
' =axn, ="
7]
where n = % The coordinates can be found by searching the point (u,v) for
which
&' r(s,t) =a' -r'(u,v), @°-r(s,t) =" r'(u,v) (3.1)

is fulfilled.
Let r, = zla' + 2222, in (2.2), with corresponding expressions for 7., 7,,. Then
the coordinates are given by

ury +vr +uvel = f(s,t), uy?+ vy’ +uvyl, = g(s,t) (3.2)
where
fls,t)=a' - (r(s,t) — 1), gls,t) = a* - (r(s,t) — o).
Combining the two equations in (3.2) yields

O‘uu2 + 5uu - Yu = 07 Oévl)2 + va - Yo = 0



where
Qy, = xivxi - ‘T}Jmiv’ Ay = IL‘}wCL’g - J]il’?w,
By = wyl — @ + [, = g2y, By = 2@ — 2 + fan, — g,
Yu = —f2 + gay, Yo = —frl + gz,
The solutions to the two second order equations are
Oy = Ovﬁu 7'é 0, Uy = VU/ﬂm
au%oaﬁuzoa UOZi ’Yu/a/ua
2
au#ovﬁu#()? UOZ_BU + BU +ﬁ7
2au 2au Oy
Oy = 075@ 7£ 07 Vo = ’Yv/ﬂvy

Qly #07BU:07 UOIj:\/ 71}/0%7
2
av#oaﬁv#()? UOZ_ij:\/(ﬁv> +ﬁ

20, 20, Qy

For the quadrilateral cell (see Figure 1) 7, and 7, are always parallel. This conveys
that o, = 2! 2?2 — xl2? = r,, x r, = 0. The solution for v, is thus given by
Vo = Yo/Puv, B # 0. The case when [, = 0 corresponds to the case when v is
ambiguous which means that there is an infinite number of solutions. This happens
when r, + ur,, = 0, in the expression r = r. + ur, + vr, + uvr,,, and corresponds
to the u-value u, = — ™" Since the solutions to (3.2) are (uo, vo) and (ua, vo), the
correct solution is achieved by simple comparison. If the field point 7(s,t) coincides
with 7, no unambiguous solution exists which means that the point can not be used
as a quadrature point. A simple displacement, r(s,t) := r(s,t) + Ar, is an easy
way to solve the problem. The displacement Ar has to be small in comparison to
the distance between the two closest quadrature points.

The relation for «, and (8, can be written as

=t 02— 1ial = (Pyy X Ty R,

Bu :x}}xi — xix% + fx?w — gquw = (ry X 1ry) -1+ ((r(s,t) = 7.) X 7yy) - 1.

Since r,, = 0 in the case of a rectangular quadrilateral we find that «, = 0 and
By # 0. For the more general cell structures, as in Figure 1, r,, X r, # 0 and
Tw * Ty # 0 which conveys a,, # 0. Thus, the case when «, = 0 and £, = 0 does
not occur. The solutions to (3.2) are given by

Oy = 07 Bu 7é 07 Up = /Vu/ﬁua
Oy, 7é Oaﬁu = 07 Up = + ’}/u/Oé,m
2
au%oaﬂu%(h Uoz—ﬁi ﬁu +ﬁ7
20y, 20, Oy

Bv 7& Oa Vo = P)/v/ﬁv-



The domain K, is divided into subtriangles, 7}, by introducing a line, L;, be-
tween the point 7, = (ug,vo) and the four vertices, r;;, as illustrated in Figure 4.
The four lines are represented by

Li: wi(v)=kwv+t, v(u)=pu+q,
Ly us(v) = kov+ 0o, ve(u) = pou+ go,
Ls:  wuz(v) =ksv+ 03, wv3(u) = psu+ gs,
Ly ug(v) = kqv+ Ly, v4(u) = pau+ qu,

where the coefficients are

1;
Ll \\Tl T4 L— L
4
T,
T "0

Figure 4: The quadrilateral cell in the K, domain. The four triangles 7T; are
separated by the lines Lj;.
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1 —
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The integral in (2.6) is divided into four integrals, one for each triangle, T;,

<

2 (u) uz(v)
Jrn (8,1, u,v)

d Ty :
/ ) e (s, t) — ' (w,0)] 2 /
-1 v1(u
1 ug(v)
/ du frn(s,t,u,v) T, . / Y o fran(s,t,u,v)

|r(s,t) —r'(u,v)|’ |r(s,t) — r'(u,v)]

7 Jn (8,1, u,v)
|r(s,t) — r'(u,v)|’

=

vo uz (v

=
<
@
—~
S
N



where
1 . p
Fom(s,t,u,v) = 4—a(s, t,u, v)Pm(u)Pn(v)e_m”(S’t)_” (w)|
T

In order to eliminate the singularity a proper variable substitution in the inner
integral is needed. This is achieved by first inserting (2.1) into | — 7’| in the local
system, K,,. For the triangles 7} and T} this gives

lr —7| = av(u)év(u’v>

where

= \/v2 + by (u)v + ¢, (u), ag(u) = u? |rm,|2 + 22Uy - Ty + |'rv|2,

bo(u) = 2(UPPy - Tyy — UT - Py + UT, - Py FUPy - Ty — T -7y + 7L 1) Ja2 (1),
co(u) = (u? ]ru]2 —2ur -y + 2ur, -, + \r|2 —2r -7, + \ré|2)/af}(u)
and for the triangles Ty and T3 we get
lr —7r'| = au(v)éu(u, v)
where
éu(u, v) = \/u2 + by (v)u + ¢y (v), ai(v) = 2 \ruv|2 + 207y, - Pyy + ]ru|2 ,
bu(V) = 2(0%1y - Py — VT - Ty + VPl TPy + 0Py - Ty — T - Ty + T, - ry) /a2 (v),

(V) = (WP ro> = 20r - vy + 200, vy + 2P = 20 -l + [7L7) Ja2 (v),

By thereafter choosing dw, = R 2 and dw, = d— with the primitive functions

the singularity is eliminated and the four 1ntegrals become

ug we (u,02(u)) .
T, : /du / dwvfm"<87 ,u,v(wv))’
ay(u)
-1 wy (u,v1 (w))
vg wy (ug(v),v)
mn 7t7 uj
Ty : dv / dwuf (5, u(w) U),
au(v)
-1 wy(ur(v),w)
3.3
1 wy (ua(v),v) ; (3.3)
Ts : /dv / dwufm"(s’ ,u(wu),v)’
GU<U)
V0 Wy, (u2 (v),v)
1 wey (u,04 () .
T, : /du / dwvfmn(s’ ,u,v(wv))‘
a,(u)

uo wy (u,v3(w))



To find expressions for the inverse functions, u(w,) and v(w,), the alternative rep-
resentation of the primitive functions

b,/2 b,/2
Wy (u) = sinh~! Ut Ou/s u/ ; wy(v) = sinh~! _UH /2 v/
cy — b2 /4 c, — b2 /4

is applied to achieve

b2 by, b2 b,

u(wy) =1/ Cy — Z“ sinh(w, ) — o> v(wy) =1/ ¢y — Z” sinh(w,) — >

Example 3.1. Consider the quadrilateral in Figure 5. The field point, 7, is chosen
to be in the first quadrant of the quadrilateral cell, as is illustrated in the left figure
in Figure 5 where the field point is marked with a cross. To illustrate how the
singularity cancelation works we choose the triangular region 75, see the right figure
in Figure 5, and maps it on the region 7 in the K,, domain. This is illustrated
in Figure 6. Due to the limitations in the Gauss-Legendre method stair-case

Yy v

A A

N
B

A

Figure 5: The quadrilateral surface and the K,, domain with the singular point
(uo,v9) in Example 3.1.

approximations are used to represent the contour of the T3 region. This implies
that the shape of the region 77 affects the accuracy of the quadrature method. The
stair-case approximation works well as long as the contour does not contain lines
of sharp curvature and the corners not are too sharp. Since the T} region is very
close to a parallelogram, where the contour consist of lines that are almost straight,
it is expected that the shape only will have a minor impact on the accuracy of
the quadrature method. This means that the accuracy essentially is determined
by the integrand in (2.6). The integrand is a polynomial in uw and v times an
exponential function. In the low frequency case, when the cell size is much smaller
than the wavelength, the exponential function is almost constant and the numerical
integration becomes quite straightforward, especially in the case of zeroth order
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Figure 6: The integration region in the K,,, domain. The 7} region is the mapping
of the T5 triangle in Figure 5.

polynomials. In that case the integrand is almost constant which means that only
one or two quadrature points, in each direction, are necessary in order to achieve a
sufficient accuracy.

3.2 Mutual interaction

The emphasis so far, in the analysis, has been to the case when the projection of the
field point is in the domain of integration, i.e., r, € K,,. To be able to handle the
case when r, € K, the integrals in (3.3) can not be used directly. The reason is

AN 2 3
12 4
5
11 u
10 .- 6
9 8 7

Figure 7: Twelve different regions where the near-singular point can be.

that the argument of the Legendre polynomials is outside K, which leads to several
bad features, e.g., the orthogonality is lost and the P, do not fulfill P, € [—1,1].
Since P, might loose its polynomial behavior in the domains w, and w, the rapid
variation of the function, for the larger values of the order number, outside the K,
domain can affect the convergence of the Gauss-Legendre algorithm in a negative
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way. In order to handle the case when the projection of the field point is outside

the quadrilateral cell special rules have to be developed
Now focus on Figure 7. Here the domain outside K,, has been divided into

twelve regions. If region two and three are considered, as special cases, we find
that when the field point is in region two the three integrals that correspond to the
triangles 77, Ty and T} are applied and when the field point is in region three the two
integrals that correspond to the triangles 7} and 75 are applied. This is illustrated
in Figure 8. The two cases can be seen as representations of the different cases of

v v )
U,V
0V
(uorvo) L
///}\ ”,f'/',
'/ ‘\\\ ”” S
’ \\ \\ ”,, |‘
- L - !
T 1
g ' T, :'
1
| T2 T
u I, |/ U
1
1
U
I

Figure 8: Two of the basic cases of integration.

integration that exist. The partial integrals in region two are given by

ul(l) 1
Ty - / du / dv Jn(s,t, 4, v)

b Y ) "T‘(S,t) - ’I"/(U,U>|’
1 u3z(v)

T, : /dv / du frn (s, 8, 1, )

B [r(s,t) = '(u, )]
/ du / dv fm" 5,10, V)
| (s, 0) = /(0]

us3 vs(u)

and in region three by
1

u1 (1) 1 1
Tl : / du / dv fm’n<87tau7 /U) ’ 1—72 . /d’l} / du fmn(S t j,L ’U) .
|~ )| r(s,8) — 7'(u,0)]

(s,t) — r'(u,v
-1 w(v)

-1 v1(u)

The integral expressions for the other cases are achieved in a similar way

Example 3.2. Consider the quadrilateral cell in Figure 9. In order to illustrate how
the domain of integration is mapped in the case of mutual interaction the field point
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Figure 9: The quadrilateral surface and the K, domain with the singular point at
(up,v9) in Example 3.2. The cross in the left figure indicates the singular point in
the K,,. domain. The region of integration is the darker shaded region.

has been chosen to be on the positive y-axis, outside the quadrilateral cell. This is
marked with a cross in the left figure in Figure 9. Once again the triangular domain,
T5, is chosen to illustrate the mapping. As can be seen in the right figure in Figure 9
the triangular region is divided into two sub-regions. This is due to the properties
of the Legendre polynomials. This means that only the part of the triangle that
coincide with the K,, domain is mapped to the K, domain. This region, Ty, is
the darker shaded region and is illustrated in Figure 10. The darker shaded region

20
15 | |
10 | / / |
v 05
00
05
10 T S
210 -08 06 04 02 00 02 04 06 08 10

w

Figure 10: The integration region in the (v,w) system. The Tj region is the
mapping of the 75 triangle in Figure 9. It is only necessary to integrate over the
darker shaded region.

corresponds to the domain of integration whereas the remaining part corresponds to
the region outside the K, domain and does not belong to the domain of integration.
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Note that the limits of the v-variable, in the K, domain, are v € [—1,1]. Since the
T} region is very close to a parallelogram the shape of the region will not significantly
reduce the accuracy of the quadrature method leading to that the accuracy of the
method is essentially limited by the integrand.

Example 3.3. In the previous two examples the chosen position of the field point
resulted in an partial integration region, the Tj-region, with a shape close to a
parallelogram. This form is suitable for the Gauss-Legendre quadrature rule since
the stair-case approximation of the contour of the Tj-region only has a minor impact
on the accuracy of the quadrature method. By moving the field point closer to one
of the corners, illustrated in the left figure in Figure 11, the dark shaded sub-region,
in the right figure in Figure 11, becomes more complex. The mapping of the dark

)

\ §
\

Figure 11: The quadrilateral cell and the K,, domain with the singular point at
(up,v9) in Example 3.3. The cross in the left figure indicates the singular point in
the K,,. domain. The domain of integration is the darker shaded region.

shaded region, in the K., domain, is illustrated in Figure 12 where the mapping
corresponds to the dark shaded region, in the K, domain, the 7, region. The light
shaded region in Figure 12 corresponds to the light shaded region outside the K,
domain. As can be seen the T} region no longer has the shape of a parallelogram.
The almost straight lines, on the left and right side of the T region, have been
replaced by curved lines where the line on the right side has the largest curvature.
Due to the limitations in the stair-case approximation the introduction of the curved
lines lead to a degradation of the accuracy of the quadrature method. This means
that it requires a larger number of quadrature points to achieve the same accuracy
which leads to a slower convergence rate.
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Figure 12: The integration region in the K, domain. The dark shaded region is
the mapping of the domain of integration in Figure 11 and the light shaded region
is the mapping of the light shaded sub-region.

Example 3.4. By moving the field point even closer to the top right corner, com-
pared to the position of the field point in Example 3.3, yields an integration region
that is more severe than the one presented in Example 3.3. The quadrilateral cell
and the field point is illustrated in Figure 13 and the resulting integration region 7,
is illustrated in Figure 14. And as in the previous examples it is only the dark shaded

Y

N
T

Figure 13: The quadrilateral cell and the K,, domain with the singular point at
(ug,v9) in Example 3.4. The cross in the left figure indicates the singular point in
the K,,. domain. The domain of integration is the darker shaded region.

region that represents the integration region. By studying the T} region in the K,
domain in Figure 14 it is found that the upper right corner has been replaced by a
curved line for which the curvature is rather high. This part becomes the bottleneck
during the numerical quadrature, due to the stair-case approximation, which leads
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to a significant reduction of the convergence rate.

09} f
08! /
07!
06!
05!
041

03}

-06 -04 -02 00 02 04 06 08 10 12
w

Figure 14: The integration region in the K, domain. The dark shaded region is
the mapping of the domain of integration in Figure 13 and the light shaded region
is the mapping of the light shaded sub-region.

4 Results

The integral I, in (2.6), has been computed for three examples including two differ-
ent cell shapes: a quadrilateral and a rectangular cell. The coordinates of the vertices
for the quadrilateral cell are oo = (—1,—1.5,0), o1 = (—1,2,0), r10 = (1,—1.5,0),
r1; = (1,1,0) and the coordinates for the rectangular cell are rog = (—1,—1.5,0),
ror = (—1,1.5,0), 70 = (1,—1.5,0) and r1; = (1,1.5,0). In order to measure the
accuracy of the method a relative error is introduces. It is defined as

y = Iy — I
|15

where [ is the reference value, computed via the software Mathematica, and I,
is computed via the method presented in this paper. N represents the number of
quadrature points.

The first example addresses the impact of the cell shapes on the accuracy. The
convergence rate for the quadrilateral and the rectangular cell is compared for the
case when the field point is placed at » = (0,0,0). The results are presented in
Figure 15 and Figure 16. For the rectangular cell the case m = n = 1 is missing.
The reason is that the integral vanishes for this case and has therefore not been

included.
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-10 - -10 -

log(] Re(n)])
log(] Im(n)|)

7Y -15 F o B—sb—tb -

-20 | | | |
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Figure 15: The relative error at » = (0,0,0) in the case of a quadrilateral cell as
a function of the number of quadrature points. The results in the left (right) figure
are the real (imaginary) part of the relative error for the quadrilateral cell.

0 T T - 0 T T -
=¥ m =¥ m=0, n=0
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N N

Figure 16: The relative error at » = (0,0,0) in the case of a rectangular cell as a
function of the number of quadrature points. The results in the left (right) figure
are the real (imaginary) part of the relative error for the rectangular cell.
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In the second example the field point is placed at the position » = (0,0,d), d > 0
(see Figure 2). The convergence rate is thereafter examined for two different values
on d. The results are presented in Figure 17 and Figure 18.

0 T T T T 0

!
ot

210 |
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Figure 17: The relative error in the case of a quadrilateral cell. The left (right)
figure represents the real (imaginary) part of the relative error at r = (0,0, 1).
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Figure 18: The relative error in the case of a quadrilateral cell. The left (right)
figure represents the real (imaginary) part of the relative error at = = (0,0,0.01).

In the third example the field point is placed at a position outside the domain
of integration but on the same plane, i.e., r = {r, : v, € K,,}. The convergence
rate is thereafter investigated for two different positions in this domain: one position
on a distance from the boundary of the cell and one position at the vicinity of the
boundary. The results are presented in Figure 19 and Figure 20.
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19: The relative error in the case of a quadrilateral cell. The left (right)

figure represents the real (imaginary) part of the relative error at r = (1.2, 1.5,0).
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Figure 20: The relative error in the case of a quadrilateral cell. The left (right)
figure represents the real (imaginary) part of the relative error at » = (1.01, 1.02,0).
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5 Conclusions

The Khayat-Wilton method has in this paper been applied to parameterized quadri-
lateral cells containing higher order hierarchical H(div) Legendre basis functions.
The algorithm conveys an effective method for the numerically evaluation of the
weak singular integrals. The results show that when the cell is changed from a rect-
angular to a quadrilateral shape the accuracy is essentially not affected, despite that
the quadrilateral cell includes a sharp corner. This is of course only valid up to a
certain degree, when the corner is not too sharp, but since the two shapes represent
a straight line and a sharp corner it cover most of the common cases. The results
also show that when the field point r» = {r, : 7, & K, } is close to the boundary of
the cell, or the point r = {r, + nd : r, € K,,,d > 0} is close to the quadrilateral
surface the domain of integration includes regions of rapid variations which affects
the accuracy of the integration. These points are stated as near-singular points. To
overcome this problem the domain of integration is divided into several parts such
that the quadrature points from the Gauss-Legendre algorithm are distributed in a
more advantageous way. Points that are close to the boundary, but are not regarded
as being near-singular, do not suffer from a slow convergence rate (see Figure 19
and Figure 20). Since the number of near-singular points are rather few the results
convey that the influence on the accuracy is in most cases limited.
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