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Summary

The course 1994 followed two books: Nijmeijer/van der Schaft’s book
“Nonlinear Dynamic Control Systems” and Khalil’s “Nonlinear Systems”.
The course was followed by approximately 12 PhD-students. All students
had taken an introductory course in nonlinear dynamical systems before.

There was a pronounced desire to study the geometrical approach.
We therefore chose to start with the geometrical theory. The two parts
of the course are independent so the order could easily be switched.

The impressions of the books are reasonably good. To ease the read-
ing we prepared explanatory notes to be read before each lecture (2
hours). Each lecture was followed by a problem-session (2 hours). There
were also 3 take-home problems: 1) Problem Solving, 2) Car-parking with
Lie-brackets, 3) Presentation of Nonlinear Article.

Included in this documentation are

Course Program

Errata Nij-vdS

e Errata Khalil

e Session Notes 1-14

o Lecture Slides 1-14 (no figures)

e Article on KYP-Lemma (Rantzer)

o Article on IQC’s (Rantzer/Megretski).

Other material that we used:

e Sastry, Nonlinear Systems, pp 288-314

e Glad, T. Nonlinear Control Theory, Chaps 3,6,7
e Willems, 1972, Dissipative Dynamical Systems
e The LMI-lab manual

Lecture 8 on mechanical systems was given by Rolf Johansson and
lecture 9 on Volterra series by Sven Spanne. Their contributions are grate-
fully acknowledged. We also thank S. Sastry and T. Glad for generously
sharing unpublished text material.

Lund, June 1994

Bo Bernhardsson, Anders Rantzer






NONLINEAR CONTROL THEORY, 1994

Lecturers

Bo Bernhardsson, Anders Rantzer. Special guest stars.

Literature

— H. NIJMEIJER AND A.J. VAN DER SCHAFT, Nonlinear Dynamical Control Sys-

tems. Springer Verlag, Englewood Cliffs, NJ, 1991, ISBN 3-540-97234-X, 2nd
printing.

— H. K. KHALIL, Nonlinear Systems, McMillan Publishing Co., 1992, ISBN 0-2-

363541-X.

— Notes, journal papers and other material.

Meetings

There will be one lecture and one exercise per week (2+2 hours). Participants are
supposed to prepare for the lectures by reading ahead in the book and to take active
part of the exercises.

Lecture Plan:

0  Introduction. Inspiration.

1  Examples. Manifolds. Implicit Function Theorems. Tangent Vectors.

2 Vector Fields. Lie Brackets. Distributions. Frobenius’ Theorem.

3  Local Controllability.

4  One-forms. Codistributions. Observability. Nonlinear Kalman Decomposition.

5  State Space Transformations. Canonical Forms. Exact Linearization SISO. Zero Dynamics.
6  Exact Linearization MIMO. Disturbance Decoupling. I/O Decoupling

7  Center Manifold Theory. More on Zero Dynamics.

8  Mechanical Nonlinear Control Systems.

9  Volterra Series.

10 Lyapunov Theorems. Center Manifolds. Regions of Attraction. Nonautonomous Systems.
11  Absolute Stability. KYP Lemma. Circle/Popov Criteria. Simultaneous Lyapunov Functions.
12 Dissipativity. 1QCs. Slowly Varying Systems.

13 Oscillations. Describing Functions. Perturbation Theory I.

14 Periodic Perturbations. Averaging. Singular Perturbations.

Examination

3 hand-in problems + take-home exam.

Points

Nominally 8p.



Errata list to Nijmeijer-van der Schaft, 2nd Ed

page error correction
5 line 11 7 ¢
15 | (1.46) f=u §=—u
25 -9 p for M, p for M,
32 14 N P (three places)
36 13 (2.32) (2.35)
49 (2.96) X; Y;
51 |-2 Xt X, h
53 (2.108) The vector field and Fig. 2.8 are incompatible
58 -4 [X], Xz] - Xz [X]_,Xz] . —Xz
59 -1 by Theorem 3.36 by Theorem 2.36
60 (2.140) change to % + 32721 bja(r, 3)%(1‘, 3)
2 2
63 |-3 % = Ba_g
69 -10 The reference [So] does not exist in the reference list.
0 |2 The references [B] [S] do not exist in the reference list.
71 Ex. 24b,c Wrong formulation.
71 -7 Y Y
| -8 Should be gy(zo + hg1) = g2(xo) + hgﬁ-(:vo)gl +...
79 7 k=0,1,2,... k=1,2,...
79 11 Should be “the number of Lie-brackets in it +1.”
01 |14 AB; — AB; AB; — B;A
95 -4 Since dim O(zo) =n  Since dim dO(zo) = n
97 9 1 E€p 1 €k
99 |-1 (2.154) (2.164)
101 | -7 (3.92) (3.99)
106 |6 CA? C A
106 | Th. 3.47 system (3.1) system (3.69)
106 | -8 invariant (3.1) invariant for (3.1)
106 | -3 (2.161) (2.168)
107 | Th. 3.49 system (3.1) system (3.69)
119 |6 z(t,s,z,u) z(t, s, z,0)
120 | (4.16),(4.18) | missing )
121 | (4.27) Wiy W1
121 | (4.27) w; Wi
121 | -11 Then it can checked  Then it can be checked
143 | -6 The paper on its turn The paper in its turn
172 | [K1] The journal changed name in 1976, before: STAM J. Contr.




page error correction
209 13 21 =... 29 = ...

218 |7 (7.38) (7.37)

253 |9 A ) is missing

258 | -6 A ( is missing

301 |-7 Let (zo,uo) an Let (20, u0) be an
302 | -6 af the matrix of the matrix
307 | Ex 10.10 | Why use I here when J was used before.?
310 | -8 Should be z = T'(z — o) ?

319 | -1 system systems

334 | (11.37) Should end with k;z

338 | (11.53) | Usinf} +... sin6} +...
360 | (12.48) | Change ( to {

361 | -12 X{q,9;} X({@,9})
361 |-13 X{pi, i} X({pi,pi})
363 |[-9 Xu,... XHyy- -

364 |8 en and

368 |10 {Ho, Fo) {Ho, Fo}
392 |15 The reference [TA] does not exist in the reference list.
392 | -7 symetries symmetries
393 | [HvdS] | This reference must have occured now
439 |4 and an

Discussion: Should probably include the formula (F' o G)* = G* o F*.
Why not define local observability at z, a little sharper:

T, |V:c2 for all 21,2, € W C V 3 z¢7

The main theorem works also with this definition.

In (5.36) I think it should read K+ 1 =0,...,k; + £; — 27 The same in
(5.38). But (5.39) is correct, there it must be 2n — 1. There should be

some more discussion of how (5.36) and (5.39) are obtained.
Please also check (5.69) and (5.78).

I think problem 5.10 is wrong, even in the linear case. If you add an
integrator before a SISO system b(s)/a(s) you lose observability iff b(0) =
0. I dont see how to change problem 5.10 in the nonlinear case so that it
becomes correct.



Errata
NONLINEAR SYSTEMS

Hassan K. Khalil
Michigan State University

The textbook Nonlinear Systems was published in June, 1991. Since then
it has been used by the author and a few colleagues in classrooms at a
number of universities, and some inadvertent errors have been detected.
This errata sheet corrects these errors.

®

Page ii: change ‘Koktovic’ to ‘Kokotovic’.

Page 3, Line 1: change ‘the the’ to ‘the’.

Page 3, Line 13: change ‘the roots’ to ‘the real roots’.

Page 15, Line 10: change to If A(-) is differentiable ...

Page 18, Line 18: change Section 5.3 to Section 5.2.

Page 38, Line 3 from the bottom: change ‘a node’ to ‘a node with
distinct eigenvalues’. A node with multiple eigenvalues could become

a focus after a small perturbation, although it will keep its stability
type; e.g., a stable node could become a stable focus.

Page 39, Line 7 of the 2nd paragraph: change ‘eigenvalues’ to ‘eigen-
value’.

Page 46, Line 5 of the 2nd paragraph: change ‘a node’ to ‘a node
with distinct eigenvalues’.

Page 51, Figure caption: change ‘negative’ to ‘positive’.

Page 54, Figure 1.37 (b): reverse the arrow heads.

Page 60, Exercise 1.14: change ‘For each for’ to ‘For each of’.

Page 60, Exercise 1.15: change ‘For each for’ to ‘For each of’.

Page 65, Line 6 of the 2nd paragraph: change ‘eigenvalue’ to ‘eigen-
value of’.

Page 66, Line 4: change ‘F' : R* — R™ is differentiable’ to ‘F' : R* —
R 1s continuously differentiable’. The mean value theorem is valid
only for a scalar function of a vector argument. It was erroneously
stated for a vector function of a vector argument. At every point in
the book where the mean value theorem is used, it should be applied
component wise, leading to the same conclusions. Corrections will
be made at the respective pages.

Page 71, Line 2 from the bottom: change zx(t) — z to zx(t) — z(t).
Page 72, Line 4 of the Proof: change < to =.

Page 77, Line 5: correct the spelling of the third occurrence of Lip-
schitz.

Page 77, Line 2 from the bottom: change ||0f/0z|| to ||0f/02| -



Page 78, change the first three lines to:
z; on the line segment joining z and y such that

| O%i 4, 2w — )| < Lolle — yllo

|fi(t,2) - fi(t,y

Hence
1£(t,2) = £, ¥)lloo < Lol — ¥l
Page 85, Line 4 from bottom: change ‘<’ to ‘=

Page 91, Exercise 2.2: on the left-hand side of the second inequality,
replace % by % On the left-hand side of the third inequality, replace

1 by L
m y vm’®

Page 94, Exercise 2.2, Line 2: change f(z) to f(¢,z).

Page 101, last line of the text and first line of the footnote: change
‘entirely inside’ to ‘in the interior of’.

Page 104, Line 3: replace the phrase ‘which is ... (nonnegative).’
with a new sentence ‘Also, V(z) is positive definite if and only if all
the leading principal minors of P are positive’. The corresponding
statement for positive semidefinite matrices is only necessary.

Page 110, Line 3 of the second paragraph: change ‘converges’ to
‘converge’.

Page 115, Line 9: change 3k to 1/2k.

Page 116, First line of Lemma 3.1: change ‘bounded’ to ‘bounded
and belongs to D’.

Page 117, Line 2: change Q to Q2 C D.

Page 120, Line 9 from the bottom: change R™ to RZ2.
Page 121, last line: insert the integral sign, f[5*.
Page 129: change the last equation to

sz

filz) = fi(0) + 5~ (=) @

where 2; is a point ....

Page 130: change the first eight lines to
z to the origin lies entirely in D. Since f(0) = 0, we can write f;(z)

* o, o 9 o5,
o) = itago = Lo+ | St - 3

k)

Hence

f(z) = Az + g(=)



where

ﬂ(0), and gi(z) =

_ f
A= Oz [

Lw- o)

The function g;(z) satisfies

of; ]
(o)) < | 50 - o) e

Page 132, Line 18: change ‘in unstable’ to ‘is unstable’.
Page 138, Line 11: change z € R* toz € D.
Page 138, Example 3.16, second equation: change ; to ;.

Page 149, Line 3 of the footnote 18: change ‘it continuous’ to ‘it is
continuous’.

Page 153, Exercise 3.6, part (a): change z € R? to z € R?, =z # 0.

Page 154, Exercise 3.10: change ‘a function V;(z)’ to ‘a continuously
differentiable function V;(z)’.

Page 158, Line 4: change ‘differentiable’ to ‘continuously differen-
tiable’.

Page 159, Exercise 3.23: the set G is a simply connected domain
containing a neighborhood of the origin.

Page 173, Lines 1 and 2: remove ‘piecewise’.

Page 177, Line 2 from the bottom: change ‘a Lyapunov’ to ‘Lya-
punov’.
Page 178: In line 10 replace L by VI’; In lines 10, 12, 13, 15, and 16,

replace f and z by f; and z;, respectively. In line 14, replace f(t,z)
by fi(t,z). Replace lines 17 to 22 by

Hence
f(t,z) = A(t)x + g(t, =)

where

Alt) = ?(t,o) and gi(t,) = [‘gf(t,z,.) - g):(t,o)] :

z
2\ 1/2
) ]2
2

The function g(t, z) satisfies

n

of; of;
lg(t, 2]z < (z L i

%(t) zi) - %(L O)

=1

< L[5

Page 195, line 16: change 3.06 to 3.026.



Page 195, Line 9 from the bottom: change ‘a closed’ to ‘closed’.
Page 199, Line 8: change < to =.

Page 202, Definition 4.4: b, ¢, and T are positive constants.

Page 203, Line 13: remove ‘to(....) or .

Page 210, Line 4 from the bottom: change AF and f to AF; and f;.
Page 218, Line 7: change 1<k<n to 1<k <n.

Page 222: change the footnote to ‘The function v(y,w) is continu-
ously differentiable every where around the origin, but not at the
origin itself. It can be easily seen that the statement of Theorem 3.1
is still valid’.

Page 235, Line 8: change the forth term of V(z) from 2,2, to 2i2s.
Page 282, Line 16: change ‘form a’ to ‘is a’.

Page 286, Line 3: change 2||z||3 to @Hz”z.

Page 286, Line 3: change ||z||2 to %HZHz

Page 292, Line 18: change —a <z, <a to —a<z; <a.

Page 294, Line 12: change the first term on the right-hand side from
MAM™ 'z to MAM™ 2.

Page 295, First equation: change the last element of the right-hand
side column from a(T'(y))/B(T(y)) to —a(T(y))/B(T(y)).

Page 295, the stack of equations in the middle: change the last equa-
tion from o7

o 0T,
Ef(y) =a/f to B_yf(y) = —a/B

Page 296, Equation (5.61): change the numerator of the expression
for o from (0T,/0y)f(y) to —(0T,./0y)f(y)-

Page 298, Line 8, the equation for o: multiply the right-hand side
on the first line by a minus sign and remove the minus sign from the
denominator of the second line.

Page 315: The Kalman-Yakubovich-Popov lemma is proved in the
book only for minimal realizations. In the adaptive control problem,
the realization (A, bm,cl,) could be nonminimal. An extension due
to Miller (see [83, Section 2.6]) shows that the last two equation on
page 315 are valid for nonminimal realizations.

Page 326, Lines 1-2: change Theorem 4.8 to Theorem 5.8.
Page 327, Exercise 5.1: change ZT(—s) to ZT(s*).
Page 332, Exercise 5.16: change the inequality satisfied by V to

cirl|zi]|? < Vi(t, 20) < ca|i]|?

Page 332, Exercise 5.19: change the lower limit of the summation
fromj=1toj=1;j #1.



Page 338, Line 3, Part (b): change p; = v/2 to p; = 2v/2.

Page 338, Exercise 5.38: change ¥(z) to ¥(t,z).

Page 356, Figure 6.7: change ¥(sin6) to ¥(asind).

Page 388, Line 2 of the 2nd paragraph: change ‘Tayolr’ to ‘Taylor’.
Page 395, Line 15: change eo(2, €) to eo(t).

Page 404, Line 5: change 7o < r to o < 7.

Page 429, Line 4 from the bottom: change O(a(¢€)) to O(a(e)) close.

Page 446, Line 14: remove the sentence ‘The origin y = 0 is also an
equilibrium point for the nonautonomous system (8.12).’

Page 447, Equation (8.16): change —c to —¢ < 0.

Page 449, Lines 7, 9, 12, and 14: change 1 — {o to 70 + (o-

Page 450, Line 12: v = %ﬁ.

Page 452, Line 4 from the bottom: change ‘the the’ to ‘the’.

Page 462, equation (4.38): change (i(y) and (:(y) to (i(|ly||) and
G (|lyl]), respectively.

Page 463, Line 4 from the bottom (the line preceding ‘where’):
change < to =.

Page 471, Line 8: change )) to ).

Page 472, Lines 9 and 12: change z(t, €) — Z(t) to ||z(¢, €) — Z(¢)||.
Page 474, Line 17: change ‘a given’ to ‘given’.

Page 474, Line 6 from the bottom: change y, to ym.

Page 475, Line 20: change ky(z — h(t,z)) to K(z — h(t,z)) where
K = [k,,0,0]T.

Page 481, Exercise 8.19: change ¥(z) and ¢(y) to ¥1(z) and ¥, (y).
Page 483, Line 3: change ‘current’ to ‘the current’.

Page 488, Figure A.2: change ¢; to cj.

Page 490, Line 10: change (sI — A) to (s — An)™t.

Page 491, Line 11: change ‘sequences {r;}’ to ‘sequence {r;}’.
Page 495, Lines 3 and 5: change > to >.

Page 498: replace lines 2 to 4 by

_expln ()
HO) = T4y 20

Since 77! is continuous and h is positive, H(s) is continuous on
0 < s < oo, while 77%(s) — oo as s — 0. Hence, H(s) defines a
class K function on [0, co).

Page 507: change Line 6 to

Wi(t;y;n) = 7r,-(t,y, O) + 7riy(ty C)y =y + Wiy(ty C)y



e Page 508, Line 5 from the bottom: change g1 to gi;.
e Page 508, Line 2 from the bottom: change (k1 + k2ks3) to k.
e Page 524: change equation (B.29) to

|6¥| = || Pgvyr — Prgp(y1 + yh)ll/\/ialG(jw)l

e Page 527, Line 4 from the bottom: change d[n(-, #), p, D] to d[n(-, 1), D, p].

e Page 533, Lines 1 and 5: change < to <.

e Page 533: change the second term on the right-hand side of the line
to [61€(ts — to) + 2],

e Page 535, Line 5: change G to G;.

e Page 536, Line 6 from the bottom: change the left-hand side to
[o(7)Il-

e Page 542, Line 3 from the bottom: change ‘Coreless’ to ‘Corless’.

e Page 544, Line 1: change ‘Coreless’ to ‘Corless’.

e Page 558, Line 4 from the bottom: change ‘end’ to ‘end of’.

Hassan Khalil
May, 1992
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Session 1

Ezamples. Implicit Function Theorems. Manifolds. Tangent Vectors.

The course will focus on analysis of nonlinear control systems. The first
half of the course concentrates on the geometric approach. This is the
hardest part of the course and presents several new concepts. To be able
to read modern research articles in nonlinear control it is essential to
understand the mathematical vocabulary, such as manifolds, vector fields,
Lie brackets etc. It is not so difficult if you work with examples at the
same time as you read the material. It will help if the material from
Spanne’s nonlinear systems course is fresh in mind.

Reading Assignment

Nijmeijer pp. 1-43 (until 2.2). Concentrate on the manifold and tangent
vector concepts in Ch. 2.

Chapter 1.

The geometric theory has mainly been developed for systems of the form

& = f(2) + 9(z)u (1)
y = h(z)

where f, g, h are smooth functions. Many nonlinear systems, but of course
not all, are of this form. Read Ch. 1 very briefly, don’t get stuck in
the derivations of the equations. You can skip examples 1.3 and 1.5.
TS* means 'the tangent space to the circle’, something we will describe
in Ch. 2. (1.12)-(1.19) follows from mechanics, you can read more in
e.g. Craig’s Robotics book. Fig 1.6 illustrates the circle divided into two
overlapping sets. Important in Ch. 1 is only the structure of the resulting
equations (1.6), (1.14), (1.19) and (1.35).The author’s goal in the chapter
1s to motivate

e Models affine in control, see (1).

e More general state spaces than R™ (so called 'manifolds’).

You should be familiar with the existence and uniqueness theory of ODEs
on p.11-13, see Spanne’s course otherwise. Stop reading after equation
(1.49), start near (1.50) again. I don’t know why the authors have to
scare away readers in the introduction by this fiber bundle stuff. We will
understand this only much later. The rest of Ch. 1 is probably known to
you.

Chapter 2.

11



This is a tough chapter but all work here is well spent and will pay off
later. There are many new concepts and it is important to get started
with exercises quickly. Don’t wait until you have read the entire chapter.
If you find the survey section 2.0 hard, go directly to 2.1.

The idea with manifolds (svenska: mangfalder) is to give a generalization
to the concept of ‘state space’. This is done by piecing together small
pieces of R". Your friends in finding your way around the manifold M are
the charts ;. These will help us define ’smooth’ state-transformations,
derivatives of states (so called tangent vectors) etc. Draw a lot of pictures
when reading this material. Note that manifolds will be finite dimensional
in this course, a generalization is needed if one wants to study systems
with time delays.

To define a topology on a set M means to decide which subsets will
be called ’open’. This indirectly defines e.g. which functions are called
continuous. Different topologies can be useful at different times. Often
the open sets are defined using ‘distance functions’ d(z,y) (metrics). The
open sets are then those sets U that are such that ’given any point z in
U thereis an € > 0 so that all points y with d(z,y) < € are inside U’. Not
all topologies are ‘metrizable’. That is why one needs the more general
definition.

When you have understood defs. 2.1 and 2.4 the first main step is over.
Theorems 2.11 and 2.12 are very important and you should get experience
in using them. Theorem 2.13 shows the way manifolds are constructed
most oftenly, see Ex. 2.14-5. The proof of 2.13 is a good test that you
have understood Th. 2.12.

Read the discussion on functions between manifolds coordinate charts
and submanifolds carefully, but dont get stuck in the details in immer-
sions, submersions.

The next thing is to define state derivatives &(¢) on the manifold M.
This is nontrivial since the only thing we know about M is through the
looking-glasses of the charts ¢;(z). One should think of a tangent vector
as a pair (z,v) or v, where z is a point on the manifold and v is a tangent
to the manifold at that point. To get a coordinate free formulation we
define the state derivatives, tangent vectors, as abstract objects. This
can be done in several ways. Nijmeijer uses one of the most common
methods: A tangent vector (z,v) is an object that derivates real-valued
functions f(z) on the manifold, i.e. at the point . One should think
of vy(f) as the directional derivative of f in the direction of v at the
point z. Note that the remark on p.38 really don’t make sense unless M
is an embedded manifold since ¢(0) is not defined. Draw a picture for
(2.41). F, is sometimes called the push-forward operator. In coordinates
it’s a Jacobian: F, = (8f;/0z; ). Equations (2.54)-(55) are the important
coordinate-versions of the tangent vector.

12



Exercises Exercises marked with a “*” are either difficult or not so
central.

Exercise 1.1 Show that the sphere S? = {(z,y,2) : 2> +y® + 2% =1}
has the structure of a manifold with atlas, for example, consisting of two
charts (U;, ¢4, = 1,2) in stereographic projection.

Exercise 1.2 Consider a car with N trailers. The front-wheels of the car
can be controlled, and the car can drive forwards and backwards. Describe
a manifold that can be used as state-space. Show that its dimension is

N + 4.
Exercise 1.3 * = Njj 2.1.

Exercise 1.4 Use the implicit function theorem to show that under
a certain condition, determine which, the root-locus, i.e. {s : a(s) +
kb(s) = 0}, locally is a function of k. Determine a differential equation
the branches s;(k) of the root locus satisfy.

Exercise 1.5 = Nij. 2.2
Exercise 1.6 = Nij. 2.3

Exercise 1.7 = Nij. 2.4a. Find counter-examples to 2.4b,c. Try to re-
formulate 2.4b,c so that they become correct.

Exercise 1.8 Let fi(z),..., fu(z) be n vector fields that are smooth
and linearly independent around zo € R". Let &% (z) be the correspond-
ing transformation groups (defined at least for small ¢). Show that the
transformation

X(t1, e ,tn) £ @;: 0...0 (I)'tfll(illo)
X(tl) R )t'"-) = @%nfn-f-...-}-hfl (mo)

both defines smooth bijections between a neighborhood U of 0 and a
neighborhood of g (i.e. they are diffeormorphisms). These are nice ways
to change coordinates (from z;:s to t;:s).

Exercise 1.9 Transform X, = :z:za%l to polar coordinates (r, ). Calcu-

late X,(f) when p = (z1,2;) = (1,1) and f(z1,z;) = 22 + 3.

Exercise 1.10 Consider the set M = (z1,zs) = (,t?), t € R. Show
that M is a one-dimensional submanifold of R%. Show that a basis for

TM is
0 0 49 0
oy Ty .
ot Oz, 16z,
Exercise 1.11 Let
0 0
X, =
1= B2, + & B2, + z3 B2,

13



Change coordinates to z; = In(z1/22); 22 = z2; 23 = x3, where z; > 0,
and show that span (X;,X;) = span (8—22 =)

1 8z3?
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Session 2
Vector Fields. Lie Brackets. Distributions. Frobenius Theorem.

Reading Assignment
pp- 43-60 + Prop. 3.6.

Chapter 2, continued

A vector field on a manifold is the counterpart to an ODE in R™. To every
point  on M is given a tangent vector X, that starts in that point. Now
we of course want to go from the equation 2 = X(z), or what is the same
in our terminology, the vector field X = EX;(:::)%, to solution curves
z(t) via (2.74). A little thought gives that equation (2.80) follows. Eq.
(2.81) is the point of everything developed so far. Don’t bother if you
don’t understand the discussion about fiber bundles. One example where
a separation between state space and control space, M x U, is impossible
was given in Example 1.7 on page 17. Equation (2.84) is the starting

point for the rest of the geometric theory.

In the good old days Theorem 2.26 was shown in Spanne’s course. The
reason it’s not enough for us is that we have control signals. In what
follows we will generalize vector fields to something called ’distributions’
to cover this.

The concept of Lie-brackets is central. The reason, vaguely speaking, is
that if it’s possible to control a system in the direction of both g;(z)
and gx(z), then one can also drive it in the direction of [g, g»] (approx-
imately). This will be explained more exactly later. Equations (2.94),
(2.96) say how you compute Lie-brackets in practice. Do a couple of such
calculations now. In parallel with page 49-51 you should read Prop. 3.6,
which illuminates Theorem 2.3.3, draw a picture. Go through Ex. 2.35
carefully.

Dont confuse the distributions in 2.2.2 with the unrelated Schwartz’ dis-
tribution theory. A distribution will here be a generalization of a vector
field. It models “all the directions you can control in by varying the con-
trol signal u”. Mathematically it is the linear span of a number of vector

fields.
X(q) = span{Xi(q)} = >_ ai(q)Xi(q)

For example span{=2-,sin(z;)-2-} This distribution does not have con-
. p . 1% Bz ? Oxo
stant dimension.

Involutivity of a distribution means that we can not generate more vector
fields by forming Lie-brackets between two vector fields in the distribu-
tion. From a control point of view it means that the distribution already
describes ’all directions you can control in’.

15



An integral submanifold P to a distribution D is a generalization of the
concept of solution to an ODE, just like distributions were generalizations
of vector fields. In every point of the integral submanifold the tangent
space should equal the distribution T'P(q) = D(q).

It is usually impossible to find an integral submanifold to a given distri-
bution, it can be done if and only if the distribution is involutive. This is
Frobenius theorem, which is classical in the theory of first order PDEs.
Prop. 2.41 is the easy half of the implication involutivity < 3 integral
submanifold. This equivalence is used extensively in geometric nonlinear
control theory. The integral submanifolds generalize the notion of in-
variant subspaces in linear systems like the controllability subspace and
nonobservability subspace (as we will see in Ch. 3).

Skip the remark on page 58. Skip Theorem 2.45. Start reading again at
p- 60 bottom, where D; + D, and D; U D, are defined.

Hand In Problem 1: Hand in solutions to 10 of the following exercises.

Exercise 2.1 Let X(z) = :1:152—2 - ngi—l-. Write the vector field as a set
of differential equations. Find X*(z;, ;). Calculate X:B%J(l.ﬂ)'

Exercise 2.2 = Nij. 2.6.

Exercise 2.3 The SISO system ¢ = f(z) + g(z)u; y = h(z) is said to
have relative degree r at zo if

LyL%h(z) =0 in a neighborhood of 2y 7 =0,...,7 —2
LoL7 h(zo) # 0

Calculate the relative degree for
] T2 n 0
z = U
—zy — T3 — Ty 1
Y = or Y= o

Show also that this definition is consistent with the usual definition of
relative degree for linear systems (as being the excess of poles over zeros).
Can relative degree be changed by feedback u = a(z) + B(z)v?

Exercise 2.4 * Show that the following conditions are equivalent:

LgL’;h(:c)EO Lad;;gh(:c)EO
0<k<puVeelU 0<k<puVeelU

Here ad;g = [f, g] and ad’}g = [f, ad’}_lg] for k > 2.

16



Exercise 2.5 Consider the system

Tg — 2:132173 + 117:23 4323’33
:i: = T3 - —2$3 u
0 1
L1 + 15%
Change coordinates using z = S(z) = | z; + z2
T3

Exercise 2.6 * Let 52"~! be the submanifold of R?™ generated by
el tael4 . ol =1

(Comment for the mathematician: the topology and differentiable struc-
ture are of course the ones generated in the natural way by that in R?>").
Show that the following defines a nowhere vanishing vector field on S~

Ty — L2175 —
= T 0zaia Oxy;

(“It is possible to comb the hair on the 5?"!-spheres.”)

Exercise 2.7 Find a coordinate chart around z = [0 0]T so that 8%1 +

2218%2 is transformed as in Theorem 2.26 to 52—1.

Exercise 2.8 = Nij 2.7.

Exercise 2.9 = Nij. 2.9.

Exercise 2.10 * Can you find matrices A, B so that [4, B] = I?

Exercise 2.11 Show that sl(n), the n x n matrices of trace 0, form a
Lie subalgebra.

Exercise 2.12 = Nij. 2.10. Show also that all such (symplectic) matri-
ces are of the form
" X R
=lo -x7

where R and @ are symmetric.
Exercise 2.13 = Nijj. 2.11.
Exercise 2.14 = Nij 2.8.
Exercise 2.15 = Nij. 3.1ab.

17



Exercise 2.16 Check that the spheres 22 + z2 + 22 = a? are integral
manifolds of the two-dimensional distribution D spanned by

0 0

Xi = 21— — 23—
! mlail)z wzail:l
0 0

X, = $15;; - fﬂaa—wl
0 0

X3 = :Dg'a—ma == 1}36—:62

Check also that D is involutive.

Exercise 2.17 Assume z = f(&,y) is an integral manifold to the dis-
tribution spanned by

0 b
X == +g(:r:,y,z)—

Oz Oz
0 0
Y = 5y + h(w,y,z)a

Show that [X,Y] = 0.

Exercise 2.18 * Discuss the possibility to write a numerical routine
that computes the coordinate charts mentioned in Frobenius theorem
given an involutive distribution. Can it be done using ODEs or does one
need PDE-software?

18



Session 3

Local Controllability.

Reading assignment

pp. 73-93 (to Sect. 3.2) + 101-104.

Chapter 3

Now we start working with control theory. We first discuss nonlinear
controllability. The theory is here quite satisfactory but much remains
to be done from a practical point of view. One point is that the present
theory only gives yes/no answers to controllability questions. A personal
remark is that as an engineer one would like to have more quantitative
measures of controllability. Remember that in the linear case the rank of
the controllability matrix answers the controllability question but that it
is really the singular values of the controllability Gramian P that are more
interesting. This is important in i.e. model reduction. Many mathematical
linear system concepts have been generalized to nonlinear control but the
engineering side, like numerical algorithms, is lagging behind.

Note first that in the nonlinear case there are several different controlla-

bility concepts. In the linear (continuous time) case all of the following
were equivalent

e controllable from zero to arbitrary end point= controllable from ar-
bitrary point to zero

e local controllability = global controllability
e can reach open set = can reach all of R"

e z reachable in some time ¢ =  reachable in arbitrary time ¢

These are not equivalent in the nonlinear case. Another problem is that
different nonlinear authors use different definitions.

In the linear case we also had a duality between controllability and ob-
servability. Keep your eyes open for any corresponding duality in the
nonlinear case.

Most of the results in Ch. 3 generalize in some way to the # = f(z,u)
case. This is mentioned in the end of the chapter. The text, however,
concentrates on the affine case.

Assumption 3.1a allows for restrictions such as u; > 0. Dont worry too
much about Assumption 3.1b, we can often approximate u with such
functions. But note e.g. that u = z formally is not allowed since u is not
piecewise constant then.
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In Def. 3.2 the time T can be chosen freely. Prop. 3.3 says that control-
lability of the linearized system implies local nonlinear controllability.
Note also that T > 0 can be chosen arbitrarily small then. The linearized
system is unfortunately often not controllable, so the proposition is of
limited value. Do exercises 3.1 and 3.2 now.

Note that Prop 3.6 only says that we can control approximately in the
direction of [g;, gs], not exactly in that direction. Remember that even
for linear systems it is almost never possible to make z(t) an arbitrary
function of time just because the system is controllable.

One usually describes C by drawing a Lie-bracket tree; bracketing with
[f,...in the left branch and with [g;, .. ., in the right branches. You might
wonder if this covers all possibilities. The answer is yes, since symmetry
and the Jacobi identity give that all other bracket-combinations are linear
combinations of these. This is Prop. 3.8.

Note that zo does not necessarily belong to Ry.(io). Accessibility is hence
a weak concept. Th. 3.9 is a (partial) success for the concepts developed
so far. It is enough that you get the idea of the proof.

Prop. 3.12 describes what happens if the accessibility condition 3.10 is not
satisfied. S, is a nonlinear version of a controllable subspace. Cor. 3.13
is a converse of Th. 3.9. (A set S is dense in M if every point z € M
can be approximated arbitrarily well by points y € S. For instance the
rational numbers are dense in the set of real numbers.)

Prop 3.15 gives a better controllability concept. If there is no drift term
f =0, the accessibility algebra if often called the controllability algebra
instead.

For systems with drift term the situation is more complicated. The search
for stronger rank conditions implying controllability, instead of just ac-
cessibility, is still an active research area. Most famous is probably the
Sussman sufficient condition of so called “odd” systems: If dim = n and
all Lie-brackets with an even (> 2) number of g:s are linear combina-
tions of brackets with an odd, smaller, number of g:s then the system
is locally controllable. For instance, Ex. 3.14 is not an odd system since

l9,(f, 9] & span(g, [f, 9], [, [f, 9ll, [, [£, [ £, 9ll), - . )-

Page 84 is important, make sure you understand how the linear case
follows from the nonlinear.

The difference between 3.18 and Def. 3.10 is that R”(xo, T') is used instead
of Ry(zo) i.e. you reach the states at a fixed time T'.

Skip the proof of Th. 3.21, except (3.42). Prop. 3.22 and especially (3.45)
are important. Example 3.24 is fun now. Also read the bilinear system
stuff on page 91 carefully.
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Exercise 3.1 When is the linearization of ¢ = 3 g;(z)u; controllable at
U; = 0?

Exercise 3.2 Is Prop. 3.3 true for the more general case ¢ = f(z,u)?
Exercise 3.3 = Nijj. 3.2.

Exercise 3.4 = Nij. 3.4ab.

Exercise 3.5 = Nijj. 3.5.

Exercise 3.6 Write [[f,g], [f,[f,g]]] as a linear combination of two bra-
ckets in the Lie-bracket tree.

Exercise 3.7 Compute the accessibility distribution and its span at
z = 0 for the system

z1=1uy
Ty = Uy

T3z = T1Uy — Toly

Is the system controllable? [Find a control that takes the system from
(0,0,0) to (0,0,1). Hint: Try using u; = sum of some sinusoids.}*.

Exercise 3.8 Consider the system on the cylinder R x S? described by
z=1u
§=1
where § € S is only consider modulo 27. Is the system locally accessible,
locally strongly accessible, controllable?

Exercise 3.9 Show that the rolling penny is locally strongly accessible:

¢ 1 0
d | ¥ 0 i
d|z| |o BT cos ¢ 2
Y 0 sin ¢

Is the system controllable?
Exercise 3.10 Check controllability for
T = u1T3 + Uz

ii’z = U1

ii33 = U1Ty
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Exercise 3.11 * A pendulum with variable length d is described by
6+2d9/d + (1/d)sinf = 0

What can be said about controllability and accessibility if d is the input?

Exercise 3.12 Check that the following system is controllable by show-
ing that it is an odd system:

(i}l = {Bg
(l'lz =1u
Exercise 3.13 The following bilinear model for a fermentor is taken

from [Axelsson and Hagander, CDC90].

s

E=—S+(1—S)’U’
dE
E—S—E’U’

Here S, E, u are sugar, ethanol and flow rate through the reactor respec-
tively. Check local accessibility /controllability around an arbitrary point
(So, Eo).

Exercise 3.14 Construct an example that illustrates Prop. 3.22.; in-
cluding (3.44) and (3.45).
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Session 4

One-forms. Codistributions. Local Observability. Nonlinear Kalman De-
composition

Reading assignment

pp. 61-66, 93-116.

Section 2.2.3

To discuss observability we need the dual concepts to tangent vectors,
vector fields, and distributions. These are cotangent vectors, differential
one-forms and codistributions. This is discussed in Section 2.2.3 that we
skipped on the first reading. A cotangent vector has the form

n
o= Z o;dz;
=1

It acts on a tangent vector X = 37, ai% by

o(X) = Z o0y
=1

The change of coordinate formula (2.149) can also be written

Ak

which perhaps is easier to remember. Do exercises 4.1-3 now.

F*g is often called the “pull-back” of ¢. In coordinates it is just a multiph-
cation with the Jacobian %E and change of evaluation point. (2.150) and
(2.152) are important, make sure you understand them. It is a good check
that you have understood the material to verify (2.169). The discussion
on page 65-66 describes the basis for the duality between controllability
and observability. Make sure you understand the statement of Frobenius’

theorem with one-forms.

Sections 3.2-3.3

We now introduce measurements. Definition 3.27 is a natural general-
ization of linear non-observability (now everything depends on zo and
u however). Local observability means that all states close to zo can be
separated using control signals that keep the states close to zo. To form
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the rank condition we calculate repeated Lie derivatives (3.70) and then

form dO by (3.74). Read props. 3.34, 3.38 but skip the proofs.

Section 3.3 presents the nonlinear Kalman decomposition. In Prop. 3.42
k is the dimension of D. Unfortunately it is often nontrivial to find the
transformations. Prop. 3.46 relates some dual concepts. Remember that
(4, B) is controllable iff (AT, BT) is observable. Note now, however, that
local controllability is a condition that depends only on f, g whereas local
observability depends on f, g, h. So the duality can not be drawn as far
as in the linear case. To enjoy 3.47 you must recap the geometric theory
from linear systems, you can skip 3.47 if you dont have time to do this.
Theorems 3.49 and 3.51 are the goals of Sec. 3.3. Skip the proof of Prop.
3.50.

Exercise 4.1 Calculate df when f = 22+€®2 and “check” that df(X) =

X(f)on X = 8%1 +a:18%2.

Exercise 4.2 Compute o(X) for X = ""26%1 — “’18;:21 o = dr + rd¢
where r, ¢ are polar coordinates.

Exercise 4.3 Transform z;dz; — z2dz, to polar coordinates (7, ¢).

Exercise 4.4 Calculate Lxo when o = z1dz; +22dz, and X = mla%l—l—
mza%z-. Note then that ¢ = df for f = r?/2 and check that Lydf =
d(Lx f).

Exercise 4.5 Show that (F o G)* = G* o F*.

Exercise 4.6 = Nij. 2.13. Verify also(2.169).

Exercise 4.7 = Njj. 3.4c.

Exercise 4.8 * = Nij. 3.5¢c.

Exercise 4.9 * = Nijj 3.6.

Exercise 4.10 = Nij. 3.7.

Exercise 4.11 * = Njj. 3.11.

Exercise 4.12 Consider

0 1 0 0 0 1
z2=|-1 0 Oflz4+u| 0O O 0|z ©u€ER
0 0 O -1 0 0

y=(0 0 1)=
Compute O for the two cases u = 0 and u(t) arbitrary? Interpretation?

Exercise 4.13 Construct an example that illustrates Theorem 3.51.
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Session 5

State Space Transformations. Feedback. Normal Form. Ezact Lineariza-
tion.

Reading assignment

pp. 148-175 4 part of Sastry’s manuscript.

Chapter 5

The goal of chapters 5 and 6 is to present some different versions of
“feedback linearization”. The most famous variant is to change inputs
from u to v by u = a(z) + B(z)v and coordinates from  to z by z =
S(z) in such a way that the new system is a linear system from v to z.
The idea is then to use linear design methods on this new system and
afterwards transform back to the original coordinates. Unfortunately, not
all systems are feedback linearizable. Chapters 5 and 6 shows exactly
what the conditions are.

Peoples opinion about feedback linearization as a design method differ.
Even if the system is feedback linearizable, the transformations needed
can be quite involved and hide any physical insight. See also the discus-
sion on p. 177. Anyway, it is widely discussed and one should know the
results. It is also a nice application of what we have learned so far.

Ch. 5 describes some preliminary results on linearization by coordinate
transformations z = S(z) alone (no feedback). Theorem 5.3 gives a clean
answer to when a system is “coordinate linearizable”. The story is the
following: Linear systems have a very simple Lie-bracket tree, everything
except the linear subtree, g,[f,q],.. .,adig, ... is zero. This structure
18 not changed by coordinate transformations. f and g are changed to
S«f and S.g and Lie-brackets are changed in the same way: S.{f,g] =
[S«f, S«g]. The result of Theorem 5.3 (see also (5.39)) is therefore very
natural. Corollary 5.6 is a stronger version of Theorem 5.3, but is only
needed in the MIMO case, you can skip it.

We will not need all of Ch. 5, in fact you can stop reading after (5.40) and
skip Problem 5.8. Start reading at page 158 after (5.49) again. Th. 5.13
gives the dual result of Th. 5.3. If you find the MIMO-notation cumber-
some, rewrite the equations to the SISO-case. The nonlinear transforma-
tion to observable form (5.59) is of course important. If we allow the *:s
to depend on z the transformation to (5.59) is always possible if (5.46) is
satisfied, which is equivalent to that the linearized system is observable.
You can skip pages 161-165.

Section 5.2 is just a discussion and some definitions introducing feedback.
Ex. 5.20 is the famous ”"computed torque” technique in robotics. Note
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that everything in the controller (5.97) depends on . The only restriction
is that v enters affinely. Dynamic output feedback is more realistic in
practice.

Sastry’s Notes

Sastry’s presentation is now a good complement. Th. 8.7 in Sastry gives
an implicit answer to the exact linearization problem defined by f and
g. A system is feedback linearizable if there is an output function such
that the new system has relative degree n. This might be helpful for the
intuition, but does not answer the problem completely since one often
does not know how to find such an output function. The anwer is given
later: check involutivity of D,_;. The normal form mentioned in Sastry
is sometimes called “the controller form” when v = n (so 5 disappears).

Exercise 5.1 Check Theorem 5.3 on Example 5.1.
Exercise 5.2 What does (5.52) mean for a linear system?

Exercise 5.3 Isthe following system linearizable by z = S(z) (Maple)?

X 1
T, =
! 1+$1

2
. Ty T
e N P

2 3

. ﬁm_ﬂ_:gﬁ 12
3 =12 + 2 9 Zyz + 1+:z:1u

Exercise 5.4 * What is a controllability counterpart to the observabil-
ity canonical form (5.59)7

Exercise 5.5 = Nij. 5.5a

Exercise 5.6 = Nij. 5.6

Exercise 5.7 = Nij. 5.7

Exercise 5.8 * = Nij. 5.8

Exercise 5.9 * = Nij. 5.9

Exercise 5.10 * = Nij. 5.10 (wrong).
Exercise 5.11 Transform

L1 = SIn &

Ty = sin &g

:i:3:u
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into normal form. In what region of the state space is the transformation
well defined? Compute a state feedback v = a(z) + B(z)v giving linear
dynamics with poles in —1, -2, —3. Also compute a feedback u = — Lz
by first linearizing the system (using sinz &~ z etc) and then placing
the poles in —1, —2, —3. Compare the gains of the two feedback laws for
|z;| < 0.5,2 =1,2,3. Do they differ much?

Exercise 5.12 Transform the following system into normal form

L1 = Ty + Tou

:i}zz —iL‘z+'LL
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Session 6

FEzact Linearization (MIMOQO). Disturbance Decoupling. Input Output De-
coupling. Dynamic Extension.

Reading assignment

(Nij. pp. 176-298.)

This lecture will be a very condensed summary of the results in chapters
6-9 in Nijmeijer. You can prepare by looking up the problem statements
in each chapter. It will also help if you have a look on the geometric the-
ory in the linear systems course, especially the algorithm for calculating
maximal A, B-invariant subspace in ker C.

We will not go into any details in this lecture. These chapters should
be read only by those interested in continuing with nonlinear research.
It could then also be a good idea to take a look on the presentation in
Isidori in parallel.

Exercises

There will be no exercises on this material.
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Session 7

Zero Dynamics. Nonlinear Minimum Phase. Center Manifold Theorem

Reading assignment

pp. 310-317 + 323-338 (stop after Ex 11.18).

Chapter 10.3-11

This lecture will give more information on zero dynamics with applica-
tions. The main point will be a proof of stability using center manifold
theory.

Exercises on Ch. 6-11
Exercise 7.1 = Nij. 6.3
Exercise 7.2 = Nij. 6.4
Exercise 7.3 = Nij. 6.5
Exercise 7.4 = Nij. 6.8
Exercise 7.5 = Njj. 6.9
Exercise 7.6 * = Nij. 6.10

Exercise 7.7 Vechicle Dynamics (Sastry). The dynamics (extremely
simplified) of a wheeled vehicle on a flat road from enginge force input
F to the position fo the vehicle center of mass ¢ are described by

mE = F — p(2®)sgn(z) — dpn

In this equation p stands for the coeflicient of wind drag, d,, the mechan-
ical drag and m the mass of the vehicle. Further the engine dynamics are
modeled by the first order system

é = _L. + L

7(z) m7(z)

Here ¢ is a state variable modeling all of the complex engine dynamics,
u is the throttle input and 7(&) is a velocity dependent time constant.
Also F = m¢. Write these equations in state space form and examine
the feedback linearizability of the engine from input u to the output .
What are the relative degree, zero dynamics of the system?

Exercise 7.8 Consider the SISO system

¢ = f(z) + g(z)u + p(z)w
Y= h(“’))
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where w is a disturbance. Show that there is a feedback law v = a(z) +
B(z)v that makes y independent of w if

LyLih(z) =0 for0<k<r—1

where 7 is the relative degree of the system. (The condition is in fact also
necessary.) Note that there is no guarantee for stability, this has to be
achieved separately.

Exercise 7.9 Consider the same system as above, but assume w is
measurable. Show that there exists a feedback/feedforward law u =
a(z) + B(z)v + 8(z)w so that y is independent of w if

LPL’;h(:n)EO for0<k<r-2

What does this mean in words?

Exercise 7.10 Prove that if z = S(z); v = ¢(z,u) € R; ¢ # 0
transforms ¢ = f(z)+ g(z)u to 2 = Az +bv then ¢(z,u) = az) +B(z)u,
for some a(z), B(z). Comments?

Exercise 7.11 Is the following system feedback linearizable with z =

S(z),u = afz) + B(z)v?

:i:1='u,

(i)g = T1T9

Exercise 7.12 * What is the connection between controlled invariant
distributions and controlled invariant submanifolds?

Exercise 7.13 Calculate some center manifolds.
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Session 8
Nonlinear Mechanical Control Systems

Reading Assignment

Take a quick look on Nijmeijer Ch. 12. Rolf] will hand out his own
material.

31



Session 9
Volterra Systems

Reading assignment

T. Glad Manuscript.

Volterra Systems

Guest Lecture with Sven Spanne.
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Session 10
Lyapunov functions, regions of attraction, center manifolds

Reading assignment

Khalil pp. 97-179 + 186-225. The first two chapters are excluded, since

most of their content is known from other courses.

Chapter 3

This chapter is devoted to the study of equilibrium points of nonlinear
autonomous systems. The main issues are the following.

e The use of Lyapunov functions and invariant sets for proofs of asymp-
totic stability (LaSalle’s theorem). Consider in particular its appli-
cation to the pendulum, Example 3.4.

e The use of Lyapunov functions for proofs of instability (Chetaev’s
theorem).
e Stability analysis by linearization.

e Two ways to estimate a region of attraction, by Lyapunov functions
(LaSalle’s theorem) and by computer iteration. Consider in partic-
ular Examples 3.22 and 3.23.

Chapter 4

Here the main new ingredient is time-variations. The terms wuniform
asymptotic stability and exponential stability are introduced to specify
time dependence in the stability behaviour. Main results:

e Uniform asymptotic stability can be proved from time-invariant bounds

on the Lyapunov function. This is Theorem 4.1.

e For linear systems, uniform asymptotic stability is equivalent to ex-
ponential stability (Theorem 4.2).

e Exponential stability implies input-output stability (Theorem 4.13).

e The center manifold theorem is a powerful complement to stability

analysis by linearization. Section 4.7 should therefore be read in
connection to Section 3.3.
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Exercises on Chapter 3-4

Exercise 10.1 = Kha. 3.7

Exercise 10.2 What is the region of attraction for the origin in the
previous example?

Exercise 10.3 = Kha. 3.26
Exercise 10.4 = Kha. 4.34
Exercise 10.5 = Kha. 3.29
Exercise 10.6 = Kha. 4.5
Exercise 10.7 = Kha 4.7
Exercise 10.8 = Kha. 4.11
Exercise 10.9 = Kha. 4.17
Exercise 10.10 = Kha. 4.20

Hand in problem number 3

Select a reasearch article in geometric nonlinear control theory and make
an 8 min presentation of the content on Wednesday, May 4.



Session 11

Absolute stability, Kalman-Yakubovich Lemma, The Circle and Popov
criteria

Reading assignment

Khalil pp. 237 - 268. Extra material on the K-Y-P Lemma and the Matlab
toolbox LMI-lab is provided.

Comments on the text

This section of the book will get the most detailed coverage of all. The
results have played a central role in control theory for a long time and
have recently been vitalized by new progress, both in theory and in com-
putational methods.

The concept absolute stability is introduced for nonlinear systems consist-
ing of two parts, one linear time-invariant and one nonlinear. Detailed
knowledge about the nonlinear part is not used, only inequality con-
straints.

The Kalman-Yakubovich-Popov Lemma shows that a transfer function
inequality is equivalent to a condition on solvability of a linear matrix
inequality (LMI) defined by the state space matrices. In the proof of
the circle and Popov criteria, the LMI appears naturally in the attempt
to construct a Lyapunov function. The K-Y-P Lemma therefore connects
the existence of a certain Lyapunov function to a transfer function condi-
tion on the linear part. Khalil does not provide a complete proof, instead
we refer to separate notes which are distributed this week.

Recently, the same lemma has often been used in the opposite direction,
as frequency conditions on multivariable transfer functions are verified by
translating them into an LMI condition, which can be solved by convex
optimization. Some of the exercises below will illustrate this and the

MATLAB Toolbox LMI-lab will be useful for the calculations.

Soon after the appearance of the Popov criterion, for example in the
textbook by Aiserman and Gantmacher from 1965, it was pointed out
that the Popov criterion holds also with negative slope 1/ on the Popov
line. However, this fact is ignored by Khalil and several other western
textbooks. Can you see why it must be true?

Exercise 11.1 = Kha. 5.5
Exercise 11.2 = Kha. 5.6
Exercise 11.3 = Kha. 5.4
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Exercise 11.4 Solve the previous exercise with the circle criterion re-
placed by the Popov criterion.

Exercise 11.5 a. Find a quadratic simultaneous Lyapunov function
(for example using LMI-lab) for the linear time-varying system

[t 8], L [8 1][a@0) o
r =
6 —13]° " |6 1] 0 &)
R
=111 16]”
where |8(t)| <1, k=1,2.

b. Does Theorem 5.1 prove stability if the §-matrix is replaced by a
memoryless nonlinearity satisfying the sector condition

[Y(t,y)+y) [$(t,y)—y] <0, VE>0,y€ R’

c.* If it is also assumed that 1 is decentralized (Khalil, page 239), then
the matrix G(s) in Theorem 5.1 can be replaced by DG(s)D~! for any di-
agonal invertible matrix D. How can the optimization over D be included
in an LMI formulation? Does it give stability in this case?

Exercise 11.6 Prove Lemma 5.1 in Khalil using Theorem 1 in “A Note
on the Kalman-Yakubovich-Popov Lemma”. What role is played by the
controllability and observability assumptions? How about the positivity
of P?

Exercise 11.7 Consider a p X p matrix function M(s), which is analytic
for Re 3 > 0 and satisfies M(s) = M(5). The matrix function is called

output strictly passive (OSP) if Je > 0 such that for Re s > 0
M(s)+ M(s)" > eM(s) M(s)
input strictly passive (ISP) if 3e > 0 such that for Re s > 0
M(s)+ M(s)* > €
positive real (PR) if for Re s > 0
M(s) + M(s)* >0

strictly positive real (SPR) if 3e > 0 such that M(s—¢€) is PR.
a. For the scalar transfer function M(s) = C(sI — A)"'B + D with A

Hurwitz, show that

ISP = SPR = OSP = PR
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b. Prove a counterpart to Lemma 5.1 with SPR replaced by OSP and
(5.10-12) replaced by a convex LMI.

c.* Modify the proof of Theorem 5.1 to replace SPR by OSP.
Moral: OSP is a nicer concept than SPR.
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Session 12
Dissipativity, Multipliers, IQC'’s, Slow variations, Interconnections

Reading assignment

Khalil pp. 268 - 286. Extra material: An article on dissipativity and a
preprint on integral quadratic constraints.

Comments on the text

In this lecture, the results of absolute stability will be further developed
towards a general theory for analysis of systems with nonlinearities, time-
variations and uncertain elements. This is still research area, so old and
well established results will mixed with recent developments.

The memoryless nonlinearities from the previous lecture are replaced by
more general nonlinear operators. The concepts dissipativity and storage
functions, introduced by Willems in 1972, describe time-domain proper-
ties of such operators. In the frequency domain, we will work with so
called Integral Quadratic Constraints (IQC’s). As it turns out, a large
variety of results in the litterature can be interpreted and unified based
on these few concepts.

Two more sections on Lyapunov functions in Khalil are also covered.
One demonstrates how Lyapunov functions for several subsystems can
be combined in the analysis of their interconnections. The other shows
how the effects of slow time variations can be analysed with Lyapunov
functions. Such analysis is for example appropriate in the context of gain-
scheduling, where controllers are designed for constant model parameters,
but are expected to work also for a certain amount of time-variations.

Exercise 12.1 State and solve your own exercise on this session.
Exercise 12.2 = Kha. 5.18

Exercise 12.3 Isthe center manifold theorem applicable to Khalil 5.187
Compare the results.

Exercise 12.4 Kha. 5.22-24
Exercise 12.5 = Kha. 5.9

Exercise 12.6 Derive an LMI condition for asymptotic stability in Kha-
lil 5.9. Apply it to 5.9(c) using LMI-lab. How do you take into account
the diagonal structure of the nonlinearity?
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Exercise 12.7 a. Let [{°|h(t)|dt < 1. For bounded v(t) and w(t) =
sign v(t), verify the inequality

o) [wle) - /Ot h(t — s)w(s)ds| > 0.

Use this to derive an IQC for the sign -operator.
b*.It is believed by the author of this excercise that also saturations

satisfy the same IQC. Prove or disprove that statement.

Exercise 12.8 Suppose that the operators A; and A, satisfy the IQC’s
defined by II;(jw) and II, respectively. Can you define IQC’s that are
satisfied by

a.[AOl AOZ] b.[i:] c.[A; Ag]
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Session 13
Oscillations, Describing functions, Stability analysis, Perturbation theory

Reading assignment

Khalil pp. 339 - 407.

Comments on the text

Three methods to detect periodic orbits are treated in this course, the
Poincare’-Bendixon theorem (for second order systems only), describing
functions and averaging. This lecture will cover the first two and also
introduce some perturbation theoretic results for later use.

Second order systems Periodic orbits in the plane are special in
that they divide the plane in two parts, the region inside the orbit and
the region outside. No trajectories can pass from one region to the other.
This leads to the fact that the only limit sets that can exist in the plane
are

e periodic orbits
e equilibrium points

e trajectories connecting equilibrium points

Desertbing functions The describing function method applies to
nonlinear systems that can be represented as a feedback connection of
a nonlinear component with a linear system of low-pass character. The
basic idea is that the low-pass filter removes high frequency signal com-
ponents, so the input to the nonlinearity is essentially sinusoidal. The
describing function is therefore introduced as the map from amplitude of
a sinusoidal input to the nonlinearity to the amplitude and phase shift
of the corresponding frequency component in the output.

The results demonstrate how bounds on the low-pass character of the
linear component can be turned into existence and non-existence proofs
for periodic solutions.

Exercise 13.1 Kha. 6.7
Exercise 13.2 Kha. 6.10
Exercise 13.3 Kha. 6.13 (1),(3),(5)

Exercise 13.4 * Outline how the nonlinearity in Khalil 6.13 (5) can be
viewed as a combination of simpler nonlinear components and suggest
how to analyze it with a multivariable describing function.



Exercise 13.5 Kha. 6.14
Exercise 13.6 Kha. 6.19
Exercise 13.7 Kha. 7.3
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Session 14
Averaging, Singular perturbations

Reading assignment

Khalil pp. 408 - 476.

Comments on the text

This last session is devoted to system dynamics that operate on two
time-scales. In the analysis of the slow dynamics, the influence of the
fast variables is essentially governed by their average values. On the other
hand, the slow variables may be considered constant in the analysis of the
fast dynamics. The theory is developed in two steps as described below.

Averaging First, we consider systems where the fast dynamics appear
as explicit time-variations in the system equations. The equations can be
written on the form

dz

Z(E_t)_ = f(t, x, E)

in order to emphasize the two different time scales et and ¢. The main idea
of Chapter 7 is to approximate  with the solution z,, of the equation

:éav = Efav (mav )

1 T
fav(z) = Th_r'r;of/t f(r,z,0)dr
Singular Perturbations In models from first principles there are
often neglected high frequency dynamics, that are caused by “parasitic”
masses, resistors, inductances, etc. System perturbations of this kind,
that change the order of the model are called singular perturbations.

Here the fast dynamics are determined by a differential equation that
includes the slow variables, so the slow and fast dynamics are intertwined.
The general system description takes the form

&= f(t, e, z,€)
ez = g(t, 2, 2, ¢€)

A potentially approximative solution is generated by the equations

81

f(t) :E) h(t)
t, &, h(t,

),0)
),0)

(=T {0
Il
&)
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The second equation is solved for h, and the first equation is used for Z.

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

Exercise

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Kha. 7.8 (1),(2)
Kha. 7.10

Kha. 7.13 (1),(2)
Kha. 7.14

Kha. 7.17

Kha. 8.3

Kha. 8.4

Kha. 8.7

Kha. 8.11
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Nonlinear Geometric Control

Why z = f(z) + g(z)u?

Good models sometimes. Exciting theory has
been built last 10-20 years. Can control in all
z € linear subspace.

Why so much math?

Could have done away with less. Not so much
math, mostly notation. Must learn vocabulary
to be able to read modern research articles.

Why “manifolds”?

Angles. Needed for analysis of global proper-
ties. Extensively used.

Why no noise?

Theory is hard and scattered. Must under-
stand this to have practical theory though.
Work needed.

Why is Nijmeijer's book the best
alternative?

Personal. Must work with the material. Has
hundreds of exercises. Isidori has three (3)
exercises. Better than Isidori in some proofs. A
little more recent. Several drawbacks also.

What is missing?

MUCH !

e Almost no synthesis

e Basic ODE etc elsewhere.

e Differential Algebra Approach

e Optimal Control

o ldentification

e Global results

e Disturbance Models/stochastics

e Algorithms, Numerics

No good material or lower priority.

Summary of Geometric Approach

Mathematical Handwork

9

Lx(f) = Zai(ﬂl)gmii
99 . 8

ol = o251,

Etc




Steer = —

o8
. d 5 o . ,0
Drive = cos(¢ + 0)6_.1: + sin(¢ + 6) 3y + sin 9645
[Steer, Drive] = Wriggle
[Steer, Wriggle] = Slide

Local Controllability:

e A nonlinear system is controllable if the
linearized system is controllable.

o ¢ = f(z)+ g(x)u is “accessible” iff
dim (f,g,[f, gl [f,[frg]],--)=n
e Controllable submanifold.

If f =0 then accessibility = controllability.

Local Observability. Depends on zy and u.
y; = hj(z)

O =spanLy, ... Lx, hj(z)

dO = span (dH | H € O)

The system is locally observable if

dim (dO0) =n

Duality between observability and controllabil-
ity

Nonlinear Kalman Decompaosition

Can find coordinates (1, 3, 3, 4) so that

£ = fl(:z:l, z3) + g(z1, z3)u

Ty = fz(:cl, T2, T3, 24) + (21, T2, 3, T4)U

&3 = f3(z3)
&4 = fH(z1, 23)
y = h(z1,z3)

Relative Degree
Smallest 7 such that L, L} h(zo) # 0
Exact Linearization by Feedback

¢ = f(z) + g(z)u
u=o(z)+B(z)v and 2 = Z(z) => 2 = Az + Bv

The system is feedback linearizable around z
if one can find y = A(z) so the system has
relative degree n. Can be checked with some
Lie-brackets.

Zero Dynamics

Nonlinear Minimum Phase
Disturbance Decoupling
Normal Forms
Stabilization

ETC, ETC

Examples

Exercises !!
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Lecture 1

e Examples
Manifolds

Inverse and Implicit Function Theorems

Tangent Vectors

Must Specialize

z = f(z,u)
y = h(z,u)
No noise
No algebraic equations f(z,,u) = 0.

Important special affine case:

z= f(z)+ g9(z)u
y = h(z)

f : drift term

g : input term

Example Pendulum

6 = sin(6) + u
Natural state space: R x S = cylinder

S = unit circle

Example Robotics

M(8)6+C(6,0) + K(6) =u

Use structure and physical insight.

% [::] - [M‘l(ml)(—C(:,zz)*K(ml))] *

* [ M'?(ml) ] h

Structure is lost, eg sparseness in M,C, K
matrices




Rigid Bodies

Natural State Space

R= [7‘1 T2 7‘3] 650(3)
ie RRT =1 and det(R) =1

F=—rXxwer=-—rS(w)
0 —w3  Wws

S(w) = [ w3 0 —w1]
—wy Uy 0

Gas Jet Actuators

R=—RS(w)
Ju = S(w)Jw + Bu

J inertia matrix

Momentum Wheel Actuators

R=—-RS(w)
Ji = -RS(w)h + Bu
h=0

h total momentum

Linearized dynamics not controllable R =0.

Will see that it is nonlinear controllable

Bilinear Models

k
i::A:c+Zu.'D,-:c+B'u,

i=1

Typically z; concentrations

Car With N trailer

Hard to back. (Must use many Lie-brackets).

Keep your eyes on the last trailer

Rolling Penny

% =u
6= U2
& = uy cos(6)

¥ = uy sin(0)

Can it be moved sideways in small time
(keeping the head up)?

Holonomic constraints h(z) = 0 = h,z = 0.

Non-holonomic constraints a(z)z =0




Manifolds

What are natural mathematical models for
state spaces?

Piece together “bent” pieces of R".
Same local properties as R".
Different globally

Gauss, Riemann, Poincare, Weyl, Whitney

Definition A C*° (=smooth) manifold is
a topological space M together with an
atlas {Uy, po} of pairwise C'°-compatible
coordinate charts that covers M.

Topological space ?
Atlas {Uqy, pa} ?

Pairwise C'*°-compatible coordinate charts ?

Topology

A topology on a set M is a collection T' of
subsets of M.

O is called "open” if O c T.
The collection T' must be such that
e O, McT
° 01,02€T:>O1ﬂ02€T
e {0;}eT = UO; €T
A set C is called closed if M — C is open.

Example M = R™, T = open subsets of R™,
i.e. ¢ € O = B.(z) C O some ¢ > 0.

22 +y2-1<0

More Topology
f:M; — M, is called continuous if

f~1(open) = open

Metric: d(z,y)
Norm: ||z — y||

Sufficient for continuity:

1f(=) - fFW)I| < Cll= -yl

Example f = differential operator d/dx
M; = C! with norm sup |f'(z)|
M, = C° with norm sup |f(z)]




Compatible Coordinate Charts

Yop~i(z) €C™
f smooth if f(¢~(z)) € C*
fop l(z)=foyp logopteC™®

Independent on coordinate charts

Coordinate free descriptions

Example: Cylinder

Yo e~ smooth on UNV = (z3 # 0,22 # 0)

z =P(p!(z)) is given by

z1=2

22 = 4/:32

C*-manifold

Examples

Example (z,mz) € R*™

Example

Example

Example Sphere S2

Global Differences

Smooth velocity field v on S must have (at
least) 1 equilibrium, v(z) = 0 (degree theory).

“You can't comb the hair of a tennis ball”




Many manifolds are given implicitly by

f1(m1,...,:z:,.) =0

fu(@1,...,20) =0

Does this describe an n — k-dimensional
manifold?

Differentials

f : A — B is called differentiable at z € A iff
there is a continuous linear map DF;(h) such
that

If(z + k) - f(z) - DFz(h)l| = 0, h—0

DF, = differential

S5 O
8z, Oz

DF=| 2L
8z,

Definition Rank of f at z := rank(DF;).
If f smooth then

Rank (DF.,)=k —> Rank (DF;)>k

for all ¢ close to zg.

Proof: Di(z) = k x k submatrix of DF, with
det(Dg(mo)) # 0 = det(Dg(2z)) # 0, for z

close to xg.

Inverse Function Theorem

Theorem Let X be openin U and f €
CY(X,V), f(zo) = yo. For the existence of

g € CY(Y,U) where Y is a neighborhood of y,
such that

a) f og = identity near yp
b) g o f = identity near z,
c) a) and b)

it is necessary and sufficient that there is a
linear map A such that respectively

a') f’(a)o)A = IV

b') Af'(zo) =Iu

c') a’) and b')

Condition ¢’ implies that g is uniquely deter-
mined near .

Proof idea: To solve y = f(z) use
zx = zx—1+ f'(20) Ny — f(zr-1))

Prove Y (zx — zx—1) converges for y near yo.




Implicit Function Theorem

h(z,y) =0

% full rank = 2 ==z(y) uniquely

Example

ha,y) = ot +4* — 1, B, =20

So z = z(y) uniquely except near (0,+1).

Infactz = 4/1—9y2, #p, > Oandz =
—\/l—yz, (B0<0.

Discussion
Implicit F. T. = Inverse F. T. c).

h(z,y) =y — f(2); h; = f; => = = 2(y) uniquely

Inverse F. T.c¢) = Implicit F. T.
f(z,y) = (h(=,9),9)
"= b h;} full k
= [ 0 I ] ull ran
So (z,y) locally determined by (k,y) = (0,y)

= & = z(y) uniquely locally

Note
flz,y) =0
, Oz -
fza_y + fy - 0
% _rpiN=1gt
Example

gl —e"2 423 -1=0

2l 42, —22=0

Are z,z; functions of z3 around (1,0,1)?

Functions Between Manifolds

Definition

FEC® < YofopleC™




Submanifolds

fl(:cl,...,z,.) =0

fe(za,...,25) =0

determines an n — k dimensional manifold near
z if

oh  Af

oz, B8z

g% has full rank (= k) atZ
fi,-+-, fr linearly independent at z.

Tangent Vectors

Different definitions

e Define it only for manifolds embedded
in R™:
4 = Jim 2(8) = ¢(0)
h—0 1

Velocity vectors in R™.

o Coordinate free version.

o(t) ~ $(t) if (0) =¥(0) =z and
L 208 = %(1)

h—0 it

in some chart

Tangent vectors at z = equivalance
classes of curves with p(0) = z

Our Definition
Derivative operator X(f): (f: M —» R)— R

X(ef +8g) = aX(f) + BX(g)
X(fg) = fX(g) +9X(f)

Example: Take any coordinate chart (U, »)
with coordinates z. Then

n
0
Xa - Zai aa:‘-

i=1

is a tangent vector, where

n

Xolf) = Y 22

i=1

Theorem All tangent vectors are of this form

Proof: Taylors formula

flz) = @ +§:(-’Bi - ai)%i?:}- higher terms
A= Iinearvterm =0
= ]
— X(f) = X(ei — a) T
i=1 ¥ ¥

Different notation

Lx(f) = X(f) Lie-derivative = fishermans derivative

Examples




231
_[.2 )
x=(& - &)
Qn
i = 8z
Change coordinates 8 = 3Za or
s 2 Y_ (.2 o ) 92
6, °*°' Oz, - Bz; ' Bzn 3—1!
Example
Z1 =2

2 =21+ 22

6 621 i 622 6 6 6

3_231_=6_351321 a_zlazz :3_21+8_zz_
Note that z; = 2; does not imply 8%1 - 5.2_1

Tangent Space

U %

pEM

Xp close to Y, if (p close to q) AND (ax,
close to fy,)

Push Forward Operator. Derivative.

[f«X](g) :=X(go f)
Alternative

£.X = 55 6(®)le=o

(gof),.,:g*of,.,

Example

Next Week

X (z) vector field.

o(t) solution curve to z = X () if
d
= f(o) = X(Plozoty, V1,

Lie-bracket. New vector field

x,v]= X x_ 28X

5z X " Y

Frobenius Theorem

Given k vector fields. Find a k& dimensional
submanifold P such that

TP =span(Xy,..., Xg)

i.e. find lin. independent fy,..., f,_x such
that

Xi(f;)=0 Vi j
Theorem This can be done if and only if
Xi,..., Xk involutive, i.e. Ja;j; such that

E
(X, X;] = za.’thx Vi,j=1,...,k
=1

Controllable submanifold.

To think on: Construct a pair of vector fields in
R3 that does not have an integral manifold P.
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Lecture 2

Vector Fields

e Lie Brackets

Distributions

e Frobenius Theorem

pp. 43-60 + Prop. 3.6 (skip Sect. 2.2.3)

Last Week
Manifold

IFTs

dJA: ff[A=1 & JgeC': fog=id
flz,y)=0: z=2(y) & f. full rank
Submanifolds {f, =0,..., fi, = 0}

Tangent Vector

0
Xp :zaiawi R

s o ) _ (.2 o) 92
oz, e Oz, - Oz, S Oz, 62}

F.X,(9) = Xp(go F)

Vector Fields

P Xp
X = i]{.(p)ai
i=1 Zi
Xi(p) smooth functions of p.
Notation:
Xi(z1,. -y 2n)
. ]
Xon(z1,. .y 20)

Integral Curve

o(t) is an integral curve to X if

a'..(%) — X(o(t)) Vi€ (to,t1)

In local coordinates

2 (a(o®) = X(o(®)(s)

99 doy _ s~y 00
By @t = 2 NlotD g,

o1 = Xi(o(t))

G = Xa(a(t))

A set of ODEs




Transformation Group, Flow

X*(p) = solution to & =

X(z),=(0)=p
Xt is smooth. X° = id

Lx(9) = X(¢9) = =

Loxypy =alx +BLy, a,B €R

&= f(z,u) f:MxU—TM

9(p)

9(X"(p)) —
-5 1l - )=l

Example

z = f(z) + g(z)u

y = h(z)
i oh . oh
y=5,8= —z(f +gu) = Lyyguh
= L_fh+uLgh

y®) = (Lpygu)th

Change of Coordinates

As before
Zy X,
8z | .
oz :
Zn Xn
Push Forward
As before

(Fo )|y (9) = Xp(g 0 F)

F,.X =X(goF)oF!

The Flow-Box Theorem

Theorem Let X be a vector field with
X(p) # 0. Then there exists a coordinate

chart (U, zy,...,&,) around p such that
7] .
X = 6_:151 inU
Integral curves : z;(q) = const., 1 =2,...,n.
Proof idea
T(a1,a2,...,an) = X% (0,02,...,ay)

T.o = full rank

n()-x




Example

2y = arctan(zy/21)

23 = /2% + 23

3 le 0 822 3 6 3
= + 2

a1 82102, @ 02107 0z

822

Lie-Brackets

(X, Y]p(f) = Xp(Y(f)) - Yo(X(S))

X1 Y
X~ ]; Y~
Xn Y,
[X,Y]:%X—%—):Y
Example
Xmemslirld (24
g ()
xn=( o) () -0 797 ()
_ [°°s¢_—r5in¢] = (cos¢—sin¢)%—r%

Lie-Brackets

Prop. 3.6 &= g,u; + gsus
(1,0) te[o,h)
0,1) teh,2h
(u1(2), ua(t)) = E_l,)o) te {Zh, 32)
(0,—-1) t € [3h,4h)

a(4h) = 2o + h’[g1, 92] + O(R®)

Trotters Product Formula
£] < T =\ "
‘I’fx.y] = nll{{}o (@ﬁ@ﬁ@%@f)

Proof sketch

(Lot

Lie-Bracket Formulas

[fX,9Y] = fg[X,Y] + fX(9)Y — gY (F)X

[X)Y} . —[Y1X]

(X1, [ X2, Xa]] + (X2, [ X3, X1]] + [ X3, [X1, X2]] = 0
F.[X,Y] = [F.X, F.Y]

1
LxY =[X,Y] = lim - [X]"Y - V]

Campbell-Baker-Hausdorff Formula

x hn hZ
~h —
Xty =3 :ad}Y——n! = Y+h[X, Y]+ X, [X, Y]]

n=0
related to

1
etef = e C=A+B+ 4 Bl+...

bl




Vector Fields, Summary
A vector field X is associated with

a) A system of differential equations

b) A flow & : M — M,t € [to,t,], where
o(t) = ®%(z) is the solution to

do
i X (o), o(0) ==

c) A directional derivative
X,f = SH@E)|

d) A derivation of the algebra C>°(M).
e) A partial differential operator

0

a — b solution to differential equations
b — ¢ direct

¢ — d direct

d — e proposition

e — a direct

Park Your Car Using Lie-Brackets!

(z,y) : position
¢ : direction of car
8 : direction of wheels
(z,y,6,8) € R? x S* x [0ip, Omax]

Steer := —

a6

Drive := cos(¢ + 0)5% + sin(¢ + 0)3_63/ + sin(e)%

[Steer, Drive] =

0 0 0
[aa,cos(d) + 0)6— + sin(¢ + 0)6_ + sin

= —sin(¢ + 19)6i + cos(¢p + 6) aa + cos(

()39

6)%
:= Wiriggle




Define Slide := —sin(¢)2 + cos(¢)8%.

Slide*(z, y, ¢,6) = (z — tsin(g), z + t cos(¢), ¢, §)
An easy calculation (exercise) shows that

[Wriggle, Drive] = Slide

Fundamental Parking Theorem You can

get out of a parking lot that is larger than

the car. Use the following control: Wriggle,
Drive, —Wriggle (this requires a cool head),
—Drive (repeat).

Proof: Trotters Product Formula

Linear Systems
& = Az + Bu = f(z) + g(z)u
[f,9] = [Az,B] =0 - 4B

l9,[f,g]]=0
[f,[f,g]] = [Az, ~AB] = A’B

Ad’}:y . [fs [.f; ceey [.fa g]H = (_l)kAkB

k Lie-brackets

o related to controllability indices

Nonholonomic Systems

Z2=g1% + ...+ gmUm
F = span{gli*“)gm}
Fy = Fy + [Fy, F1] = span {g;, [9i, 9;1}

Fy=F;_{+ [Fy,F;_1] brackets to level 1 — 1
If dim F; constant on neighborhood Vi, define
m; =dim F; growth vector

g1 =m

oi =m; —m4_1 relative growth vector

Fi, CFC...C F

~ S~
dim=m dim=n
p = degree of nonholonomy

o= (01,...,0p) = relative growth vector

Example Car with N-trailers has

p:N+3, 0':(2,1,...,1)

Lie Algebra

Vector space V with operation V X V — V,
denoted [, -], satisfying:
i) [aavs + agvs, w] = ay[vy, w] + agfvs, w]
i) [v,w] = —[w,7]

iti) [v1, [v2,vs]] + [v, [vs, v1]] + [vs, [v1,22]] =0

Example The n X n matrices form a Lie-
algebra, with [A, B] := AB — BA (check).

Jacobi identity: 12 terms, each occurring
twice with different signs

Example GI(n), the invertible n X n matrices,
do not form a Lie-Algebra (why?)




Distributions

p+— linear subspace of T, M (smoothly)

D = span{X,,...,Xx}
D, + D, D;ND,

D is involutive if

X,YeD = [X,Y]eD
Enough to check on basis.

k
[Xi, X;]=) ;X1 Vi,j
=1

Examples

Example A single vector field {X;} is always
involutive, since [X,X;] = 0.

Example An n-dimensional distribution
{X1,...,X.} (n=dimension of manifold) is
always involutive.

Example
0] 0] 0
X1 = G + mza—zz + %3 52a
/]
Xz = 6_1:3
is involutive since [X;, X,] = — X,

Integral Manifold

T,P = D(q)

3 integral manifold =—> [X;, X,] € D i.e. D involutive

Frobenius Th.: Reverse implication also true

Frobenius Theorem

Let D be an involutive, constant dimensional,
distribution

Version 1 For each p there is a coordinate

chart (U, ¢) so that ¢(p) = 0 and
p, = {q ev I ¢k+1(‘I) = Qk41,y-- ')¢n(Q) = an}

are integral manifolds to D.

Version 2 For each p there is a coordinate
chart (U, zy,...,z,) such that

0 0 ;
D = span {a—ml,m} inU

D is then called a flat distribution.

Classical PDE result




Proof Idea for Version 2
Step 1: If [X;, X;] =0, Vi,j then
T(a1,...,an) = X7 X3 - X3 (0,...,0,0k41,...,0n)

defines a coordinate transformation (Ex. 1.8)
such that

/]
T.— =X; i =1,...,
Ba; X i=1 k

Step 2: Reduce to this case by projecting away
everything outside the distribution, see book

w:R" > R*

Example

1= 16211 2(9.‘82 33233 o 61‘
0
X2_3_123

D involutive (checked before).

21 = 22/251
22 = &2
23 — T3

P is given by z; = constant, i.e. z; = cz;.

Software

e Condens (Macsyma), Maryland.
e Maple

¢ Omsim (Simnon, Gnans)

Matlab. Nonlinear Toolbox

Much left to do

Homework Problems

Problem Set 1 Hand in solutions to 10 of the
exercises 2.1-2.18.

Due: Monday Feb 7, 13.15

Problem Set 2 Find an (open loop) control
that steers the cars out from a tight parking
lot (e.g. 1.25 times the car length). Simulate.

Alternative (harder): Find a control that backs
the car with N = 1 trailer into a parking lot
(sideways).

Hint can be obtained on request.

Due: Monday Feb 21, 13.15




Next Week
Controllability
z = f(z) + g(z)u

C = smallest Lie subalg. containing {f,91,...,9m}
Co = smallest Lie subalg. containing {g1,...,9m}
and satisfies [f, X] € Co, VX € Cy

Accessibility

dim C =n —> can reach open set

If f = 0 then equivalent to “controllability”,
i.e. that one can steer from ¢ to every z{ in
a neighborhood.

Controllable submanifold: Can find local
coordinates z,..., &, such that

z(t) € Sz, Vul(t); Sz, integral manifold to C
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Lecture 3

e Local Controllability
o Linear Controllability
o Linearization
o Nonlinear Rank Conditions
o Control Submanifolds
o System Decomposition

pp. 73-93 + 101-104.

Last Week

Vector fields & = f(z)
Flow X*(z) or e*/(z)

Lie brackets [X,Y]
Distribution {Xi,..., Xs}

Frobenius theorem [X;, X;] € D. Change
coordinates so

D= span{bi—l,...,a;:k}

So = {m]mk+1:ak+1,...,mn=an}

Review of Linear Controllability
z = Az + Bu
Controllability

0 — z(T)

z(0) — 0

2(0) — 2(T)
T > 0 arbitrary

Rank Condition

W, = [B AB A"-lB] full rank

z(T) € e*Tz(0) 4 Im(W,)

Linear Controllability

Controllability indices. Crate ll, row by row

bi| | by
I X | eee| X
A X
A? | x

_—

K=Ky >...2 Ky length of columns

W, full rank, s controllability index

: [ Ann Ay ] [ B, ]
T = T + u
0 Aj 0
where (A11, B1) controllable.

Ez = Az + Bu




Linearization at (z,uo)
& = f(z) + g(e)u

Prop. 3.3 Suppose f(zo) + g(zo)uo = 0 and
let U contain a neighborhood of ug. If

z2=Az+ Bv

a 0]
4= (20) + 2 (zo)uo
B= 9(20)

is controllable, then for all T',e > 0
Xr,e = {2(T); |u—uol < e}

contains a neighborhood of z.

Proof Can assume z5 = 0, ug = 0. Will use
inverse function theorem on

£ a(T,€); ult,b,...,6n) = &0 () +... + & (2)

If Z(T) = 35(t,€)l¢=0,4=r has full rank the
theorem follows. But Z(t) satisfies

Z(t) = AZ(t) + B (vl(t) () ), 2(0)=0

and by controllability the columns of Z(T)
can be made independent by choice of vi(t).

Exercise Is the theorem true also for

z = f(z,u)?

Example

&

[mz) * (const)
. + u
sin 4 cos Ty
(5 o)+ (1)
1 0)%711)°

Linearization is controllable at 0.

z

Example Rolling penny

¢ 1 0
d | ¥ 0 1
dt |z |~ 0]u1+[cos¢]u2
Y 0

sin ¢

v+ )

e = =)

1
0
0
0 0

Linearization is not controllable at 0.

Linearization around (z(t), uo(?))

Assume zo(t) = f(zo(t),uo(t)). The
linearization of £ = f(z,u) is then given by

i = A()s + B(t)o(t)
A(t) = 2L (a4 (8), wo(t))

0z
B(t) = 2L (s0(t), uo(t))

With u(t) = uo(t) + ev(t) we get

z(t) = zo(t) + €2(t) + O(€?)

Equivalent with the so called variational
equations.




Nonlinear Controllability

& = g1u1 + gauz

What about e3-terms etc?

&= f(z) + Zgi(m)u.' = Z gi(z)u;

where go = f and uo = 1.

Can one control in e.g. [f, g]-direction?

Assumptions

z = f(z)+ g(z)u

where u(t) € U for some set U and define

F = {f(z:)+g(m)u|u€U}

Assumption 3.1 Linear span of F contains

{f)gl7"‘7g‘rVI}'

Example Two inputs u1,u; where
U = {(u1,u2) | w1 > 0,u; € {0,1}}

satisfies Ass. 3.1.

Piecewise constant controls.

Local Accessibility
Definition

RV (2o, T)={2(T) : =2(t)€V, 0<t< T}
Ri(z)= |J R"(z0,7)

0<T<T

Definition A system is locally accessible at z,
if R¥(zo) contains an open set for any T > 0

and any V 3 xo.

The Accessibility Algebra C

Definition The smallest subalgebra C' with

{f,g1,---,gm}€C

(subalgebra = linear subspace such that
v,w € C = [v,w] € C). “Involutive closure”.

Lie-bracket tree

Example

[[f1 gl]a [gls92]] + [917 [921 [f; 91]]] + [gZ) [[f7 91]191]] =0




Example
z = Az + Bu

Example, bilinear systems
z = Az + Z 'u,ijz
i=1

Direct calculation shows that C = {Mz}

where
M= [Dk: [ . '[D2) Dl]]]

for some D; € {A, B,,...,B,}.

Finite dimensional Lie algebra.

Rank Condition

Theorem 3.9 If dim C(zo) = n, then the
system is locally accessible at z¢ for all 7' > 0

and all V > =z.
Proof

(tn,...,tl)—'X,,t,,"o...OX;I(:Eo)

full rank in 0 < 07 < t; < €. Here
X; = f + gu;. Then use the inverse function
theorem.

Example

= (o) + (1)v osust
T = 0 1 u <u<

Dim C = 2. LS.

Example The car.
C = span{g1, g2, [91, 92], [92, [91, 92]]}

Dim = 4 so locally accessible.

Necessity of Rank Condition

Local accessibility at all z, = dim(C) =n in
open and dense set.

Example
&1 = e~ /122
9(0) = [(1)]
f(0) =[f,g]l(0)=...=0

Locally accessible everywhere. Satisfies
accessibility rank condition except at line
Ly = 0.




Control Manifold

Theorem Assume that dim(C) =%k < nin a
neighborhood of &, and that

Szo = {¢ | 2k+1(q) = 2 41(20), . . ., 2a(g) = zn(20)
are integral manifolds of C. Then
Rg(zo) C S-‘Eo'

Moreover RY.(xo) is open as a subset of S,.

Local Strong Accessibility

Definition A system is locally strongly accessi-
ble at z, if for all neighborhoods V' 3 x4 and

all sufficiently small T > 0 the set RV (zo,T)

contains an open set.

Can reach open set for fixed time T.

Definition The strong accessibility alge-

bra Cj is the smallest subalgebra containing
{g1,.-.,9m} which is closed under bracketing
with f.

91,---,9m € Co
XeC = [f,X]ECo
X, YeC = [X,Y]€eC

Same tree as before but without drift field f.

C = span{f, Co}.

Local Strong Accessibility

Theorem If dim Co(zo) = n, then the system
is locally strongly accessible at zo for all
T >0 and all V > z.

Proof Add ¢ = 1 as equation and reduce to
previous case. See book.

Control Manifold C)

Theorem Assume dim Cy = k < n around o,
then one can change coordinates such that

z1 = fi(z) + g1(z)u

Zr = fi(z) + gr(z)u
Zrge1=0o0r 1

Try2 =0

Zn,=0

Here 2y = 0if f € Cp and &y = 1 if
f & Co.

Moreover, the system restricted to z1,...,zg
is locally strongly accessible.




Example, Satellite

Jw = S(w)Jw + Bu
e Lin. is controllable only if dim(B) = 3.
e dim(B) =2 : LSA iff
dim span {b, b3, S(w)J "w; w € span(by, b2)} =3

which is often true.

e can be LSA even if dim(B) = 1.

Local Controllability at z,

Definition ¢ = f + gu is small time

locally controllable (STLC) qat x, if for every
neighborhood V of z, there is a neighborhood
W to z¢ so that for every sufficiently small
time T > 0 every state z; € W can be
reached from z in exactly time T'.

zg e W C RV(E(),T)

Example

. 2 3
Ty =5+ 25

:i:z:u

NOT locally controllable at 0.

Controllability Theorems, 1

General U:

Theorem If 7 = —F 4 LSA, then R} (o)
contains open neighborhood of z4, VI' >
0, V> Zo-

Proof

Controllability Theorems, 2

If U contains a neighborhood of u = 0, then
STLC if

e f =0 + locally strongly accessible at zo.

o fespan{gs,...,gm} + LSA at z.
o dim ad%g = n and f(=zo) = 0 (controllable
linearization).

o “odd system” + f(zo) =0 4+ LSA at z.

A system is “odd” if all brackets with an
even number of g:s are linear combination
of brackets with a smaller number of g:s
(Sussman).

“even brackets are evil brackets”




Example

:&1:1:%

1-}2=’u,

is not an odd system, because [g,[f,g]] is not

a linear combination of f, g, [f,g], [f,[f, 9]l
...at ¢ = 0.

Example

&1 = sin(z2) — @2

Ty = U

is an odd system; [g,[f,g]] = 0 and g and
[g) [ga [f)g]]] span R2

Decompositions

V invariant subspace to A if AV C V.

A A B
[ ) ()

0 Az
If AV CV and ImB C V then

5 [An A12]w+[B1]u
L0 A 0

Local Nonlinear Decomposition

Let D be an involutive distribution which
contains g; and is invariant under z = f + gu

g €D
[f,D]Cc D
[gji‘D]C'Di j=1...,m

Then by Frobenius

il — fl(El,(cz) +g(:t:1,:z:2)u,
1.:2 — f2(m2)

For every fixed z? the system in z! is locally
strongly accessible.

Proof [f7a%.~] € D,i1=1,...,k etc. See book

Research Topics

o Quantitative controllability. Relate to model
reduction.

Ez = f(z) + g(z)u

Includes f(z,z) + g(z,)u = 0.

e Numerical algorithms




Next Week
One-forms. Linear functions of tangent

vectors.
o= E oidz;

Co-distributions
{o1,-..,0k}
Local observability
O ={Lx,...Lx,k}
dim(d®) = n

Nonlinear Kalman Decomposition
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Lecture 4

e Cotangent Vectors
e One-forms

e Codistributions

e Local Observability

e Nonlinear Kalman Decomposition

pp. 61-66, 93-116.

Last Week

C= {f:gl’)[frgl']a“'}
Co= {gis[fsgi]r"'}

dim C=n = Can reach open set int < T
dim Co=n => Can reach open setint=T

&' = (2!, 2%) + g(z', 2*)u
i? = f2(?)
For fixed z, the system in x; is LSA.
Szo = {2 | 2k+1(2) = zr41(20); - - -, 20 (q) = @n (o)
integral manifolds of C. Control Submanifold

R’I'V(mo) C Sz,-

Cotangent Vectors, T; M

Linear form

o : LM—R
Determined by o; := a’(e—‘:—.) so

O'(Z X.-(—az—) = ZO’.‘X,’

1
. dz,
0‘='20'id$i= (0’1 ...a'n] :
i=1

de,

Here {dz;} is the dual base defined by

doi(5) =li =13

Cotangent Vectors

Notation
o(X) =
dzy Xy
[0'1 an][ ] [5% 32..] .
. de, | Xn
=I

= E 0','X.'

Often o(X) is denoted < o, X >.

Example

o= mgdml + zadzo
d . 7]
X = 216_211 + 8111(1}2)6—mz

o(X) = o122 + 22 sin(z;)




Differential df

Definition If f : M — R then the differential
dfp is a cotangent vector defined by

dfp(Xp) = Xp(f)
By evaluating df; on X, = %|p we see that

dfy = (%Ll(p)d:cl+... aaf

Tn

(p)dzn

Coordinate Change

dzl dzl
Oz

~ 8z :
dzy, dzy,

Example z; = sin(z; + z2); 22 = @,

dzy = cos(zy + z2)dey + cos(zy + @2)dzs

d22 = dmz

Note that z; = z; gives dz; = dz;.

Pull-back F*

Remember that
F.X|p@)(f) = Xp(f o F)
We now define F*o by
(F*0)X := o(F.X)
oF ,

Transformed by Jacobian %:

" oF
Flo=op@) 5

Example z = F(z1,2;) = 2323 and o = zdz

F*o = [ z ] [ 2z1z; =2 ] = 2z3z2dz, + zizyde,

One-forms

p— T, M smoothly, ie ;(p) smooth

Dual to vector fields

Example o = df defines a one-form by
df(X) = X(f)

Such a o is called exact

F*df =d(f o F)




Lie-Derivative of One-forms

(X*)'o—0o

Lo = Jim

Good exercise to show that the row vector
representing Lxo is given by

W

(Hint: Calculate the Jacobian of X*).

More Formulas

Loxypyo =alxo+BLyo
Lxdf =d(Lxf)
Lx <o Y>=<Lxo0,Y>+<o,LxY >

Proof of the last equality:

d
Lx <o,Y >= foa (0:Y3)
i
0X;

—Y;
Bz, 7

8
<Lxa, ¥ >= Zx, "‘Y+ o

Y; 0X;
<o, LxY >= Za. .' aija)

Co-distributions

P(q) = span{o1(q),...,01(q)}
Dual to distributions

Definitions

ker P =span{X |o(X)=0; VYo e P}
ann D =span{c | o(X) =0; VX € D}

D C ker(ann(D))
P C ann(ker(P))

Equality if D and P are constant dimensional.

Involutivity and Frobenius

Definition A codistribution P is involutive if
ker P is involutive.

Frobenius: P is involutive iff 3fi,..., fi
(coordinates) such that

P(g) = span{dfi(g),-..,dfi(q)}

In words: P is spanned by exact one-forms.

P+ P, PPN Py, F*P

If you ever see something like

f(z)dl‘.]_ A dmz SN dz:k

it is a k-form.

Differential forms. Tensors.

End of Differential Geometry




Observability
z = f(z) + g(z)u
y = h(z)

Definition: z; and x, are called indistinguish-
able (z, I z,) if

y(t, @1, u) = y(t, 22, u) WVt Vu

(for those t where y is well-defined). The
system is called observable if

21l — =2,
Depends on u. Depends on {f,g,h}.

Local Observability

211"z, if 2(t) € V for all t and give same y

Local observability at xo: For every sufficiently
small neighborhood V' 3 =z, one has that
2, IV z, implies , = z,.

Example

1 = T2u
i}2:0
y=2a1

Observable, e.g with u = 1. Not observable
with u = 0.

Example
&1 = p(z2)
a'tz =Uu
y=o

QObservable, not locally observable at z, < 0.

The Observation Space O

Definition O is the smallest linear space
containing hq,...,h, and all repeated Lie
derivatives:

Lx,Lx,...Lx,hj, k=12,...

with X; in the set {f,g1,...,9m}-

Remember y(k) =Lk, ki

1
O contains the output functions and all
derivatives of the output functions along all
possible system trajectories, i.e. as above but
with Z; = f + gu'.

Can also define O using all X; € C, the
accessibility algebra.

Same tree as before.

Observability Codistribution dO

dO(q) = span{dH(q) | H € O}

Main Theorem Assume
dim dO(zo) = n

then the system is locally observable at z.

Proof: Assume z;I"z, then
h,-(Z,tc" 0...0Z)(z,) = h.-(Z,tc" 0...0 Zil)(mg)

with Z; = f + gu‘. Differentiation w.r.t.
tk,tk—1,...,t1 at O gives

Lzlez oy .szh;(zzl) = LZ1L22 .o .szh.-(mz)

This means that H(z;) = H(z;) for all

H ¢ O. But this gives that z; = z, by the
linear independence of dH;(zo),...,dH,(zo)
and the inverse function theorem.




Example
5:1 = TU
:i!z = 0
y=2a

Here h = 2, and Ljh = z, span O and
dim dO = dim {dz,,dz;} = 2

so the system is locally observable.

With u # 0 we in fact have

T =y z2=1y/u

Nonobservable Submanifold

Theorem If dim dO = k < n around zg, then
by Frobenius we can find coordinates so that

Sz, ={q €U | zi(q) = zi(x0)yi=n—k+1,...,n}

is an n — k dimensional integral manifold of
ker dO, an unobservable manifold. Locally

{z|eIV2o} =8, NV

Proof: Change coordinates using H,,..., H.
See book.

A Converse

Corollary If the system is locally observable
near o then dim dO(z) = n for all z in an
open and dense subset near ;.

Proof: Use previous theorem.

Remark: If the system is LA and analytic
then dO is constant dimensional. Hence the
rank condition at x, is both necessary and
sufficient for LO at zq.

Linear Case

z = Az + Bu
y=Cz
O = {ciz, ciAz,. .., c.-A"_l:z:} + constant functions

Hence rank condition becomes

C

CA
rank . =n

CAn—l




Invariant Distributions
A distribution D is invariant for ¢ = f(z) if

[f,X]€eD, VXeD

Theorem Let D be an involutive distribution
of constant dimension k which is invariant for
z = f(z). Then we can change coordinates

z = (z1,...,%q) so that with z' = (zy,...,zk)
and z? = (Tgt1,...,2n)

a':l — fl(ml’ZZ)
1':2 — f2(z2)

Proof: D = span{a—i, e

af;
[f)az Zam‘a_m;e.l)i

Ofi o ._
B =0, :=1,...,

Invariant Distributions 11

A distribution D is invariant for the system

= f(z) + g(z)u if

[f,D]C D
[gj,D] cD

Invariant Codistributions

A codistribution P is invariant for the system

= f(z) + g(e)u if
L_fP CcCP
L,PCP
If D and P are constant dimensional then

ker P invariant & P invariant

ann D invariant & D invariant

Proof: Follows from (see book)

Li(o(X)) = (Lyo)(X) + o([f, X])

Linear Case

W, = Im [B AB A"‘lB]

W. is the smallest A-invariant subspace
containing B.

c
CA

W, = Ker
CA™-?

W, is the largest A-invariant subspace
contained in ker C

Nonlinear Invariance
Proposition

e C, is the smallest {f, g}-invariant
distribution containing {g1,...,9m}-

e ker dO is the largest {f, g}-invariant
distribution contained in ker dh.

Proof: Direct from definitions, see book.




Nonlinear Decomposition

Theorem

a) Choose Frobenius-coordinates so Cp =
span{zx}, then

1-:1 - fl(zl, zZ) + g(zl, 1:2)11,
iz — f2(z2)
The system in z! is LSA.

b) Choose Frobenius-coordinates so ker dO =
span{52;}, then

8! = fi(z') +g(z")u

éz — f2(z1’ 22) + gz(zl, z=2),u‘

y = h(z')

The system in 2! is locally observable.

Kalman Decomposition

X2 =X;NnX,

X, = X'@ X? controllable
X; = X2® X* nonobservable
X=X'eox’ex’ex*

Ay 0 A3 O B
A A A A B

A 21 Az2 A2z Aag B 2
0 0 A3za 0 0
0 0 Ayz Ay 0

C:[c1 0 Cs o]

Generalized Frobenius’ Theorem

Theorem If D,, Dy, and D, + D, are constant
dimensional involutive distributions then one
can change coordinates to ¢ = (z',z?, 2%, z*)

so that

a 0
Da = sparl 57 gt

0 0
Dy = span{s: gaa}

Proof: Redo the last part of the old proof of
Frobenius theorem more carefully. See book.

Nonlinear Kalman Decomposition

Assume Cy, ker dO and Cy + ker dO all
have constant dimension. Then we can find
coordinates z = (z!, 2%, 23, z*) so that

gl = fl(mlx 1’3) + gl(mla z3)u

:bz = f2(m1’ w2’ :1;3, 1:4) + g2(m1’ m2, w3’ 2:4)’!1.

i = (%)
i!4 - f4(1}3,1!4)
y = h(z?!, 2°)
Here
0 0
Co = span {ﬁ’ w}
o 0
ker dO = span {W' ﬁ}

Proof: Follows from the generalized Frobenius'
theorem.




Next Week

State Space Transformations
e Feedback

Normal Form

Exact Linearization |

Zero Dynamics |

Chapter 5 + Sastry’s notes




Last Week

1-forms: o = Y oi(z)dz;.
Exact 1-form: df = %dm;
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Lecture 5 Co-distribution: P = span{oy,...,01}.
kerP ={X |<o,X >=0, Vo€ P}

Feedback, Definitions Frobenius:

State Space Transformations (SST) ker P involutive <=> P = span{dzgy1,...,deg}

e Linearization by SST .
Observation Space

e Canonical Forms
o Observability Form O =span{Lx,Lx,..-Lx,h;}; Xi €{f,91,..-,9m}
o Controller/Normal Form
e Exact Linearization Local Observability <= dim dO = n.

¢ Zero Dynamics Nonlinear Kalman Decomposition

Nij. pp. 148-175 4 Sastry

State Feedback Output Feedback
Strict Static State Feedback Strict Static Output Feedback
u = a(z) u=a(y)
Regular Static State Feedback Regular Static Output Feedback
u=oaz)+0(z)v u = a(y) + B(y)v

B(z) non-singular. New input v.

Need full state =

Example Computed Torque in Robotics

M(0)6 + C(6,6) + K(6) = u
uw= M(8)v + C(8,6) + K(6)
= 0 =7




Dynamic Feedback
Dynamic State Feedback

2 =9(z,2z) + 6(z,z)v
u=o(z,z)+ B(z,z)v

z are controller states and v new input.

Dynamic Output Feedback

2 =v(2,y) + 6(2, y)v
u = a(z,y) + B(z, y)v

Can also study more general feedback struc-
tures, e.g. u = afz,v).
Another Useful ldea:

&= f(z,u)

U=v

States ,u, new control v. Affine system.

Transformations, Invariants

¢ = f(z) + g(z)u (1
v = h(z)

When is (1) equivalent to a linear system?

(51 1, g) = S(wv u, y)

Invariants under transformations?
(SST): z = S(z) state space trans.
(IT): w = a(z) + B(z)v input trans.

State Space Transformations

z=8(z); =z=2581(2)
i = 22 (4(2) + o(opu)

= B () (F(S(2) + 957 () w
= 8.f + S.gu

So

f—58f
gi —* Sugi
h hoS™1
z(t,0, zo, u) — 2(t,0, S(zo), u)

Example
Transform
1.51 — _632—2z1 + e—2zlu
iﬁz - e'Zzl—wz

using z = S(z) given by
21 = eZ:nl -1

Zz:ez’—l

Solution:
oS 2¢221 0
S* ~ % - [ 0 e%2 ]

(2e271 0 ) (—e"2mim 2z, — 2
s (0 ezz] \ 27172 ] - [ 21 +1 ]
7282::1 0 re—2z1 2
e O e] 0 ]=[0]

== u
=11 07" Lo 1




The Linear Subtree

SST Linearization of (£, g)
Theorem 5.3’
¢ = f(z) + g(z)u

can be transformed using z = S(z) locally
around z, to a controllable linear system

z2=Az+ Bu+v?
if and only if

(i) dim(span{adtgj(zo),k <n—1})=n
(i) [g:,ad%g;)(z) =0, Vi,j,k around .

Remark (i) <= linearization is controllable.

Remark (ii) Everything in Co except linear
subtree is zero.

Remark v = 0 if f(xzo) =0.

Remark By the Jacobi identity:
[ad}g, adfg] = —[ad} g, ad}*'g] — [[ad} ! g, ad}g], f]
one can see that (ii) is equivalent to
(ii") [ad}gi,adfg;](z) =0, Vi,j k,1 around zo.

which is the condition in Nij.

Proof of Theorem 5.3’

e Necessity of (i) and (ii): They are satisfied
for a linear system. The conditions are
invariant under S, for instance:

S [gj) [f; gi]] = [S*gj1 [S*f: S*gi]] = [B) [Az + v, B]] =0

e Sufficiency of (i) and (ii): Choose linearly
independent vector fields X;,..., X, from (i)
so that by (ii'):

[Xi:Xj] =0 Vi, j

Choose Frobenius-coordinates so that

0

S*Xi = a—z"

0
[, 8:0] = Su[Xi,05] =0 = Sug; =b;

o .0
[a_zj’ 6—Zi,s*f]]=s*[xj,[x..,f]]:o:>3*f=Az+,,

0S
v =5, f(zo)




Example

d T1 —&2 + 223 — Eg 4zy3
W z3 | = —2Z3 + | 223 | u
T3 0 1

4(82:63 -"232 1
g(m),adfg(z),adig(z) £ [ —2z5 ] , [ 1 ] ) [0]
1 0 0

dim=3 for all & so (i) is satisfied.

Also easy to check that (ii) is satisfied:

[g,adsg] =0
[9,ad3g] =0

Example, Continued

Need to find S such that

42‘,2 L3 —22}2 1
S* —22‘,3 1 0 =

1 0 0

0 0 1
S... = 0 1 2213
1 222 0

With S(0) = 0 we get

3
z=8(z) = [z2+z§]

T + 1:%
This gives
;2'1 =u
=2
23 = 23

Improved Condition (ii)

(ii) involves infinitely many conditions
However from (i)

adjgi(z) =) 2 onk,i(z)ad}g; (=)

j k=0
From (ii') it follows (after some work) that
ayr ;(z) is independent of .

Using this, (ii) can be changed to

[9;,adfgi] =0, 0 <k <2n—2(7)

Details left as exercise.

In book: £ =1,3,...,2n — 1. Mistake ??

Canonical Forms, Linear Case

Observability Form (S1SO)

c
CA
z=S8z = ] z
cAr—?
S invertible gives
0 1 hy
ha
z= 0 0 z -+ u
1
—a; —az ... —Qyn hn
y= [ 1 0 ... 0) z

Nice observability matrix: W, = I.




Nonlinear Observability Form

z = f(z) + g(z)u

y = h(z)
h(z)
th(:c)
s=S@)=|
L}"lh(z)
S(z) full rank gives

. _ Oh,
z = az = Lsh+ Lyhu = 23 + by(2)u

Zz = z3 + ba(2)u

%y = L}h + bp(2)u =: — Zaj(z)zj + ba(2}u

SST Linearization of (f,h).

Theorem 5.13 Consider the nonlinear system

z = f(z)
y = h(z)

Assume f(zo) = 0 and h(zo) = 0. Then the
system can be transformed using z = S(z)
locally around z, to

z= Az

y=0Cz
if and only if

(i) Linearization is observable: S(zo) full

i=1 rank.
0 | bi(z (ii)
| o 0 ba(2) el
= ) wak | L%h(z) = — E a; L} h(x)
—a1(z) —az(2) —an(z) bn(2) e
y= ( 1 0 0] B where a; are constants.
Proof of Theorem 5.13 SST Linearization of (f,g,h)

Necessity of (i) and (ii): Follows from linear
case.

Sufficiency of (i) and (ii): Immediate from the
observability form.

Theorem 5.9 The nonlinear system

z = f(z)+ g(z)u
y = h(z)

with f(zo) = 0, k(o) = 0 can be transformed
using z = S(z) locally around z, to

z=Az+ Bu
y=Cz

if and only if

(i) Linearization is controllable

(i) Linearization is observable

(i) LgLidh(z) =0, j=0,...,n—1, Va

Proof: Skip.




More Linear Canonical Forms

Controller/Normal Form

&= f(z) + g(z)u
y = h(z)

Introduce an auxiliary output § = ¢(z).
Remember that the relative degree v satisfies
LyLi¢(z) =0 Vz, i=0,...,7-2
LyL} ™ ¢(xo) # 0

Now use the same first coordinates as in the
transformation to observability form

¢(z)
Lig(z)

Sy(z) =

L7 4(2)

Controller Form

If v = n (full relative degree) for the system
with output ¢(z) then z = §5,(z) gives the
nonlinear controller form:

21:22

Zy =23

Zn = a(z) + b(2)u
y = h(57(2))

Where a(z) = L}¢(z) and b(z) = LyL} ™ ¢(z).

Exact Linearization (SISO)

Definition A system f,g is exact linearizable if
there is an IT v = a(z) + B(c)v and a SST

z = S(z) so that the new system is linear
z=Az+ Bv

Also called state space linearizable.

Theorem S8.7 A system is exact linearizable
if and only if one can find an output function
#(z) so that the system has relative degree n.

Proof:

Sufficiency: Put w = b~(2)(—a(z) + v) in the
controller form.

Necessity: Relative degree is invariant under
SST and IT. A linear system in controller
form with ¢(xz) = ; has relative degree n.




Exact Linearization (S1SO)
Given f(z),g(z). When is there a ¢(z) that
gives relative degree n?
Theorem Nij. 6.17 A system is exact
linearizable if and only if
(i) Linearization is controllable, i.e.
D,, := span {g(z),adsg(z),...,adf" g(z)}

has dimension n around z.
(i1) The distribution

D, _; :=span {g(z),adsg(z),...,adf" " ?g(z)}

is involutive.

Proof of Nij. 6.17

Relative degree = n if and only if

9¢

. [g(z) adsg(z) ad}'_zg(z)] =0

This means that the one-dimensional co-
distribution ann(D,_;) is spanned by an exact
one-form (given by o = d¢). Frobenius
theorem then gives the result.

See Sastry for some more details.

Normal Form, Zero Dynamics

z= f(z)+ g(z)u
= h(z)

What if relative degree < n ?

¢(z)
Lig(z)
Sy(z) = :
L} (z)
Complement with 7:(z),...,7—y(z) such that
Lgn;(z) =0, Vi (by Flow-box Theorem):
¢(=) )
Ly ()
z=98(z) = L}*lqﬁ(m)
m(z)

\ 7]“..7($) /

Normal Form, Zero Dynamics

In the new coordinates

2 =z

Z3 =23

zy = a(z,m) + b(z, n)u
1= q(zm)
y=2

The last dynamical equations with z =0
1 = q(0,7) (2)

are called the zero dynamics of (f,g,h).

The system is said to be locally asymptotically
minimum phase at zq if (2) is locally asymp-
totically stable.




Example

Nonlinear Ball and Beam

1 3 0
T2 _ mlzi — Gsinz; 0
:i:3 - T4 0
Ty 0 1
(21, T3, 23, 24)T := (2, 2,0,0)T.
0 0 2:31124
0 —2z324 —2z3z4— Gcosza
Dy =
0 -1 0
1 0 0

has full rank since detD, = G? # 0.

However
221

—2252
0
0

[g,ad%g] =

does not lie in the span of the first 3 columns.

D3 not involutive.

Not exact linearizable.

S ¥

[=}

Elastic Robot Arm

Gi1+qg1+e—q=u
do+da+4qgz2—q1+cosgz=10

z = (q1,92, @1, 42)" gives

fla) = o g(z) =

1 — T3 — T3

L1 — L2 —COST2 — g

(= e — -]

Elastic Robot Arm

State Space Linearizable?
Using y = z, gives

h =2,

Lih =24

L}h = fa(zq, w2, 24)
Lgh=LyLyh=LyLih =0
LyLih#0

so relative degree is 4.
Linearizing coordinates: g, qz,qz,qg“).
Linearizing feedback:

_ —Ljh(z)+v
~ LgLih(z)
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Lecture 6

6 Feedback Linearization (MIMO)
7 Disturbance Decoupling

8 Input/Output Decoupling |

9 Input/Output Decoupling |i

Nij. pp. 176-298

NOTE: This is a very short summary of parts
of the book that we will skip. No details. No
exercises.

Last Week

Feedback, definitions

State Space Transformation z = S(z)
Linearization by SST, [g,ad%g] = 0.
Observability Form S(z) = [k, Lsh, ..., L} A]
Controller/Normal Form. h(z) = ¢(z).
Linearization by SST and IT: u = a(z)+8(z)v

SISO: Possible if relative degree = n (for some

¢(2))

& D, _y =span{g,adysg,..., ad_';_zg} involutive

Zero Dynamics: 7 = ¢(0,7)

6. Feedback Linearization (MIMO)

z = f(z)+g(z)u
u= a(e) +Bla)y

z = 85(z)
z2=Az+ Bv
A= 5(f+gu)
B = S.(gB)

Introduce

Di(z) = span{ad}g,...,adjgm} r<k-—1

Linear Subtrees

6. Feedback Linearization

Theorem 6.3 Assume f,g LSA in ¢ then

Feedback Linearizable to z = Az + bv + f(=zo)
—
Dy, ..., Dy involutive

Proof: Technical MIMO-fication of our
previous SISO proof + super-duper Frobenius’
theorem.

Remark The conditions are “generically”
NOT satisfied. Transformation is not easy to
find.

Remark From Sastry we know that in the
single input case we only need to check

dim D, (z9) =n and Dy,_; involutive




6. Feedback Linearization

¢=f(z,u);  f(zo,u0)=0

Definition Feedback Linearizable if

o Ju = ofz,v) with o(zo,0) = uo and &=
nonsingular

e 35(z) such that S(zo) = 0.

S f(z, o(z,v)) = AS(z) + Bv

Idea Extend to affine system

&= f(z,u)

w=w
New state: (z,u). New input: w.
Theorem 6.12 Assume LSA in (o, uo) then

¢ = f(z,u) FL <= Extended system FL

6. Example Rocket

oy = T3

Ty = T4

&3 = —gR*/2? + T/mcosu + z,23
&4 = —2z324/21 + T/me;sinu

Extended system:

z3
T4
f=|—gR?*/2? +T/mcosu+z123 | g =
—2z3z4/21 + T/meisinu

0

= o O o o

Easy to see that D, = span{g,|[f,g]} not
involutive since (g, [f, g]] ¢ D

So the rocket is NOT feedback linearizable

7. Disturbance Decoupling

z = f(z) + g(z)u + e(z)d
y = h(z)

y is decoupled from d if d does not influence y
(for any u.)

Disturbance Decoupling Problem When is
there u = a(z) 4+ B(z)v such that y becomes
decoupled from d?

7. Invariant Distributions Revisited

D invariant under f,g if

(f,D]C D
[gi:D] cD

Prop 4.23 y is decoupled from d if there
exists D such that

[f,D]CD

lg:;s D]C D Vi
ejED Vi
D C ker dh




7. Locally Controlled Invariant D

Controlled invariant if o, 8 such that u =
a + Bv makes f = f + ga , g = gB invariant.

Example Linear system: V controlled invari-
ant, or (A, B)-invariant, if

JF:(A+BF)VCV & AVCV+ImB

Theorem 7.5 D is locally controlled invariant
if G, D, D NG are constant dimensional and D
involutive and

[f,DICD+G
g, D) CD+G Viem

7. Linear DDP
2= Az + Bu+ Ed
y=Cz
V* = max A, B-invariant subspace in ker C
Av*CcV*+ B
V* C kerC

Theorem DDP solvable if and only if

imECV*

7. Nonlinear DDP

Maximally Controlled Invariant Involutive
Distribution D* in ker dh:

D*(f; g; ker dh)

Theorem 7.14 Assume G, D*,D* N @
constant dimensional. Then nonlinear DDP
solvable if and only if

span(ey,...,e1) C D*

D* is closely related to the zero dynamics.

7. Algorithm for D*

In the linear case:

V0.=R"
VEtl = ker C N A™Y(V* +Im B)

In the nonlinear case:

D°.=TM
DEtL.— ker dh N
{X :[f,X] € D" + G, [g:, X] € D* + G}

Prop. 7.16 Under some assumptions on
constant dimensions

e D°D>D'D...D"=D*

e D* is involutive

Note that the algorithm converges in at most
n steps.




7. Dual Algorithm

P%:=0
P! :=span{dhy,...,dhy}
petl.— ps 4 Ly(P*Nann G) + ZLW(P" Nann G)

D# = ker P¥

D* = ker P*

7. Explicit Formula for D* in SISO
Theorem 7.21 Let r be relative degree
LyLy 'R #0
then

D* = ker (span {dh,.. .,dL;'lh})
P* =span {dh,. ..,dL;_lh}

Compare Normal Form and Zero Dynamics

7. Modified DDP

Feedforward: d also measurable.

Theorem 7.24 The MDDP = Feedfor-
ward /Feedback problem is solvable iff

span (e,...,e1) C D" 4+ G

Remark The system ¢ = f(z) is not
necessarily stable. Stabilization can be treated
as a separate problem.

Output Dynamic DDP? More realistic.

8. Input/Output Decoupling |

z = f(z) + g(c)u
y = h(z)

Definition 8.1 //O-decoupled if, after possible
relabeling of inputs,

(i) j #3:

(i) y; not invariant under wu;.

y; invariant under u;.

Prop. 4.14 (i) is equivalent to

j?l:i:Lijxln-LX;.hl’:O: Xke{f)glv"'rgm}




8. Static State Feedback

When does there exist v = a(z) 4+ B(z)v such
that the new system is IOD?

8. 1/0-Decoupling Theorem

Theorem 8.9 The IOD-problem is solvable if
and only if

LglL?lkl(E) LgmL?l h;(a:)
Definition The Characteristic Numbers Az) =
p1,--.,pp of the outputs are the smallest o= :
integers such that Lg, L§™ hm(2) L, Ly hm(z)
LyLihi(z) =0 k=0,...,p; — 1 has full rank m.
LyL¥ hj(z) #£0 In fact
(p1+1) Lm+1h (:B)
. Yi f B
= Relative Orders (r; = p; + 1.
(ri=pj+1) : _ + A(a)u
ysr’f"‘“) L}’"""lhm(m)
8. Static I0OD 8. Normal Form (MIMO)
So the static state feedback If we define
Llf’l-l-lhl(m) h,(a:)
w=—(4(z))} +(A(2)) b | =
L+ b () k
L?’h.—(z)

gives a new system:

ygpl-l-l) vy
ygm ) Um

Automatically “l/O-linearized”.

Not state space linearized, since there might
be nonlinear zero dynamics.

and choose Z so that (Z,2,...,2™) = S(z)
forms a local coordinate system, then

F=Ad by, i€em
£=f(z,2Y ..., 2™) + §(3, 2, ..., 2™

Yi = 2i1
where A;, b; are in Brunovsky canonical form.

Still nonlinear, except when

Z(Pi+1)=n

(full relative degree)




8. Dynamic State Feedback 10D

What if A(z) is not invertible?

Dynamic State Feedback:

z=7v(z,2) +6(z,z)v
v = a(z,z) + B(z,z)v

Still requires full state .

Problem 8.16 Consider a square system.
When is there a dynamic state feedback such
that the modified dynamics are |IOD?

Linear Case If and only if det G(s) Z 0.

8. Dynamic State Feedback IOD

Nonlinear Case?

Dynamic Extension Algorithm If A(z) is not
invertible then add integrators at the inputs
(in a systematic way) so that the new system
gets invertible A(z).

Treat the integrators as part of the controller.

Theorem 8.19 Dynamic State Feedback 10D
if and only if the “rank” of the nonlinear

system is full:
qg =n.

For details see book.

Still nonlinear unless full relative degree.

Robotics Example (Ola Dahl)

Read Ola’s Report

9. 1/0 Decoupling I

Geometric Approach

z = f(z) + g(z)u
y1 = hai(c)

Yp = hp(2)
where now h; € RFi (vector valued).
Not only square systems
Assume LSA, MIMO

Necessary conditions for block 10D:

Ly, Lx, ...Lx,ha(z) =0, 1€pi,j#1
.X;’ € {fagla---rgm}1

“No interaction from input j to output block
i." (then automatically by LSA: input i does
influence output block z, so |IOD-problem is
solved).




9. Static IOD I

When is there u = a(z) + B(z)v so that |IOD?

Linear Case: u = Fz + Gv. Answer: Iff

imB=ImBNV*+...lmB NV}

where V;* is the maximal controlled invariant
subspace contained in Njy;ker C;.

9. Nonlinear Static 10D I

Introduce

D; = D*(f;g;Njziker dhj)

Theorem 9.7 Under some technical assump-
tions the static |IOD problem is solvable if and
only if

G=DiNG+...D, NG

For square systems this can be shown to be
equivalent to the previous condition on A(z).
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Lecturex =

10.3 Center Manifold Theory

11 More on Zero Dynamics

Nij. pp. 310-317 + 323-338

What Have We Covered?

1 Introduction

2 Mathematics

3 Controllability; Observability
5 State Space Transformations
6 Feedback Linearization

7 Disturbance Decoupling

8 1/0 Decoupling |

9 1/0 Decoupling Il

Future

Volterra Systems (Ch 4): Sven Spanne
Mechanical Systems (Ch 12): Rolf J
Will skip Ch 13-14

2nd half of the course: Khalil

Recaption; |/O Decoupling

When does there exist v = a(z) + B(z)v such

that the new system is IOD, i.e. diagonal?

p=m

Definition The Characteristic Numbers
p1,- .., Pp of the outputs are the smallest
integers such that

LyL¥ hi(z) # 0

Relative Orders r; = p; + 1.




1/0-Decoupling Theorem

Put
( L91 L?l hl(:r.) .l.;_qm.l'/;1 hl(:c)
A(e) = :
\ Ly, L™ b () Ly, L™ hin(z)
¢ L?1+1h1($)
B(z) = :
\ L?m+1hm($)

Theorem 8.9 The IOD-problem is solvable if
and only if A(z) is invertible.

Static IOD

1 1
yierty)

= B(z) + A(z)u
ylem )
So the static state feedback
u=—(A(2))"" (B(z) +)

gives a new system:

y&p’“) ] [ v ]

yigm ) Um
Automatically “I/O-linearized” v — .

Not state space linearized v — .

Not Stable !

Normal Form

If we define
hi(=)
; Lyhi(z)
2=
L?"f;.-(:n)
and choose % so that (z,2,...,2™) = S(z)

forms a local coordinate system, then

Py :A;zi+b¢v, i€Em
Z= f(z,24 ..., 2™) +§(z,24 ..., 2™

Yi = 2i1

where A;, b; are in Brunovsky canonical form.

Zero Dynamics

In the case p = m and A(z) invertible the
Zero Dynamics are given by

z = f(%,0,...,0)

In Ch. 11.1-11.2 the zero dynamics are
defined in a more general situation.

The system is called asymptotically nonlinear
minimum phase at z = 0 if the zero dynamics
is asymptotically stable.




Zero Dynamics for Linear SISO

n—r
G(s):K E] +1+b0
" +ap-18"""+...+tao
= (a0 e ) ()
T =
—agp ... —Aapn-1 e K “
y=(b0 ...b-,,,_,-_]_ 1 0 ... 0]12

Transform to normal form using

Zero Dynamics for Linear SISO

2z =Pz+Qz+ Ku

. [ 0 I ]_+[0 0]
= Z zZ

ol U SR S 1 ... 0

The zero dynamics are given by

(2 Z=Rz
° where the eigenvalues of R=zeros of G(s).
\ Tp—r
( Cz
z= '
{CA™ 'z
Stability Theorem 10.3 Center Manifold Theorem

Theorem 11.16 Consider a square system
with invertible A(x). Assume that the zero
dynamics are locally asymptotically stable
around Zp. Then there exist a decoupling
feedback u(z) = a(z) + B(z)v such that
the closed loop system for v = 0 is locally
asymptotically stable around z,.

To prove this we will use the center manifold
theorem.

Assume

z'l — AOZI +_f0(z1,z2)
2= A% 4 f (21, 2%)

A~: asymptotically stable
A®: eigenvalues on imaginary axis

f° and f~ second order and higher terms.




Center Manifold Theorem Assume z = 0 is
an equilibrium point. For every k& > 2 there
exists a C* mapping ¢ such that ¢(0) = 0 and
dé(0) = 0 and the surface

22 = ¢(z")
is invariant under the dynamics above.

Proof ldea: Construct a contraction with the
center manifold as fixpoint.

Example

Example

Usage
1) Determine 2, = ¢(2;), at least approxi-
mately

2) The local stability for the entire system can
be proved to be the same as for the dynamics
restricted to a center manifold:

2, = A% + fo(zl, #(21))




Center Manifold Theorem

Example
2l =zy20+ zi’ + z1z§
22 =~z — 2zf + z'fzz
Here A =0 and A~ = —1. 25 = ¢(21) gives
—¢ =223 +2{¢ — ¢'[216 + 2] + 214%] = 0

hence
$(z1) = —22} 4+ O(|1[*)

Substituting into the dynamics we get
2= =223 + 22 + 0(2})

so z = (0,0) is asymptotically stable.

Nonuniqueness

The center manifold need not be unique

Example

22 = ¢(z1) gives
¢'z} = 23 = ¢(21)

which has the solutions ¢ = Ce~1/%,

10D with Stability

Theorem 11.16 A(z) invertible + Zero

Dynamics locally asymptotically stable
= u=(4()" (~B(e)+v)

gives a stable, 1/O-decoupled system.

Proof First transform to normal form. Then
stabilize A; by additional feedback v =
¥ + k;2*. Setting ¥ = 0 gives

3t = A2t
M= A, 2™
z=f(z2'...,2™) + ) §ik#

Proof continued

The eigenvalues of the linearization are the
eigenvalues of A; ..., A, together with

linearization of the zero dynamics. Rewrite
the zero dynamics into (with z = (s!, 5%)):

st = A% + fO(s1, 52)

82 = A~ s® + f(s1,82)
From center manifold theorem there is an
invariant submanifold s = ¢(s'). This is also

a center manifold for the entire system. The
theorem follows from the stability of

él _ Aosl +f0(81,¢(81))
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Lyapunov Theorems
Linearization and Center manifolds
Regions of Attraction

Nonautonomous systems

pp. 97-179 + 186-225

Autonomous systems

For f: R® — R" locally Lipschitz, consider

& = f(z).

(1)

Stability of autonomous systems

The equilibrium point ¢ =0 is

stable if Ve > 0 : 3§ > 0 such that

lz(O)ll <6 = ll=()l| <€ Vt>0

unstable if not stable

asymptotically stable if it is stable and there

38 > 0 such that

l2(0))) < 6 = lim a(t) = 0

globally asymptotically stable if

tlim z(t) =10

independently of z(0) € R".

Example: Pendulum

21 = 2

&y = —(g/sinzy, |21 <7

Stable equilibrium: (0, 0)
Unstable equilibria: (£, 0)

No asymptotic stability




Lyapunov’s stability theorem

Let f(0) = OandletV : D — R be
a continuously differentiable function on a
neighbourhood D of z = 0, such that

V(0)=0
V(z) >0 for z #0
V<o

then z = 0 is stable and V is called a
Lyapunov function for (1). Furthermore,
asymptotic stability holds if in addition

V<0 forz#0

and global asymptotic stability holds if also

V(z) — oo as ||z]| — oo

Level curves for Lyapunov functions

LaSalle’s stability theorem

Let D be a compact set, which is invariant
for (1). Let V : D — R be a continuously
differentiable function on D such that

V<0inD

Let M be the largest invariant set in D such
that

V=0in M.

Then every solution starting in D approaches
M ast — oo.

Proof

Let ¢(t,zo) = z(t), where
z(t) = f(z), =(0)==o

Introduce

Lt (z0) = Nr>o{d(t,z0) : t> T}
L= UEOGDL-‘-(:EO)

For any zo, L* (o) is invariant because for
y € L*(zo) there is a sequence {t;} such that

y = lim ¢(t;, zo)
¢(t) y) = 11_1.12) ¢(t1 ¢(ti1 mO))
= lim ¢(t + t;, o) € L1 (z0)

and furthermore V =0 in Lt(zo).

Hence L is invariant, V = 0in L and
every solution starting in D approaches L as
t — oo.




Chetaev'’s instability theorem Example: Pendulum Revisited

Let f(0) = OandletV : D — R be The energy function
a continuously differentiable function on
V(z) = (¢9/1)(1 — cosz1) + (1/2)z2

a neighbourhood D of & = 0, such that :
V(0) = 0. Suppose that the set V(z) 2 0 with equality iff z = (0, 0)

U={zeD: |z|]|<r,V(z)> 0} Without friction:

is nonempty forevery r > 0. If V > 0in U, V(t)=0 = =z =/(0,0) stable by Lyapunov
then z = 0 is unstable.

Pendelum with friction Region of Attraction by LaSalle
If
&g = —(g/1)sinzq — (k/m)z2 &y = —4(z1 + z3) — sin(27(z1 + z2))

then by LaSalle's theorem, the region of

V(t) = —(k/m)a} < 0
attraction contains the set

D={z: V(z) < (2-¢€)g/l} for some small ¢ > 0
M = {(0,0)} Q= {(21,22): (21 +22)% <1, (214 23)% + 22 <10}

(z1,2z2) — M by LaSalle's theorem




Region of Attraction by Computer

For the system

1':1 = -T2

&3 =21+ (Ei - 1):1:2

We compute the following estimates by
computer iteration.

Stability Analysis by Linearization

Suppose f(0) = 0. The equilibrium = = 0 of

is asymptotically stable if all eigenvalues of
0f/0z(0) have negative real part.

It is unstable if at least one eigenvalue has
positive real part

Proof. Apply Lyapunov's theorem and
Chetaev’s theorem using quadratic Lyapunov
functions from the linearization.

Center Manifold Theory

Assume

T, = AO:cl + fo(:cl, 2:2)
o= A 2o+ f~ (2}1, (L‘.z)

A™: asymptotically stable
A®: eigenvalues on imaginary axis

f° and f~ second order and higher terms.

Center Manifold Theorem

Assume z = 0 is an equilibrium point. For
every k > 2 there exists a 6, > 0 and C*
mapping ¢ such that ¢(0) = 0 and ¢'(0) = 0

and the surface
o2 = P(z1) ||za] < 6k

is invariant under the dynamics above.




Proof Outline

For any continuously differentiable function
¢k, globally bounded together with its first
partial derivative and with ¢,(0) = 0,

¢'(0) = 0, let ¢41 be defined by the equations

&1 = A% + fO(21, dr(21))
o= AT z9+ f_(zla ¢k(m1))

Pry1(21) = 22

Under suitable assumptions, it can be verified
that this defines @1 uniquely, satisfying

the assumptions for ¢;. Furthermore, the
sequence {¢;} is contractive in the norm
sup,, @i(z1) and the limit ¢ satifies the
conditions for a center manifold.

Usage
1) Determine 22 = ¢(z;), at least approxi-
mately

2) The local stability for the entire system can
be proved to be the same as for the dynamics
restricted to a center manifold:

2.11 = A021 + f0(21, ¢(21))

Example
1':1 =22
Lo = —22 + a.mf + bzyzq
Here A° =0 and A~ = —1. z; = ¢(z,) gives

—¢+azi+bzip—¢'p=0

hence
¢(21) = az} + O(Jz4[°)

Substituting into the dynamics we get
é1 = azf + O(Jz1|*)

so ¢ = (0,0) is unstable for a # 0.

Nonuniqueness

The center manifold need not be unique
Example

d:l = —&;

Tz = —22

Ty = ¢(z1) gives
¢'z3 = z5 = ¢(z1)

which has the solutions ¢ = Ce™1/*2,




Nonautonomous systems

Let
& = f(t,z), (2)

where f is piecewise in t € [0,00) and locally
Lipschitz in z € R™.

Definition of Uniform Stability

The equilibrium point =0 is
uniformly stable if Ve > 0: 3§ > 0 such that
llz(to)ll <6 = llz@)ll <€ VE>102>0

uniformly asymptotically stable if it is
uniformly stable and d6 > 0 such that

llz(to)l| < 6 = lim z(t) = 0 uniformly in to

exponentially stable if dc, k,v such that for
t >ty >0, ||z(to)|| < c one has

”m(t)“ < k”m(tg)”e_'V(t—tu)

Nonautonomous Stability Theorem

Let f(-,0) = 0, let a1, as, az be strictly
increasing functions on [0, 00) with o;(0) =
az(0) = a3(0) =0 andlet V : R? — R be a

continuously differentiable function, such that

ai(lz]]) < V(¢ 2) < az(]l=]])

ov oV
o+ 5o t2) < —as(llal)

fort > 0, ||z|| < ». Then ¢ = 0 is uniformly
asymptotically stable.

If the conditions hold with
oi(r) =kir®, ki >0,¢>0,1=1,2,3

then z = 0 is exponentially stable.

Proof

The second part is proved as follows. The first
part is analogous, but less concrete.

V(t) :ﬂ) S V(to, zo)e—(ka/kz)(t_to)
e kZHfﬂollce‘(’“a/kz)(t_to)

e < (L)

ks 1/c
1




Linear Time-varying Systems

A linear time-varying system is uniformly
asymptotically stable if and only if it is
globally exponentially stable.

Proof

Uniform asymptotic stability means that for
any ¢ € R" there exists a function p, : R > R
such that

h — o0

Pz(h) N\ 0,

|8t to)z|| < pa(t —to), Vi>to

Let p(h) = Y 7_; pe,(h) and choose T' > 0
with p(T) < 1/efor h > T. Forty < t, let N
be the integer part of (¢t —to)/T. Then

I8t to)ll = max [|2(t, to)e] < p(t —to)

[12(2, o)l

— |8t to + NT) - --
< p(0)(1/e)¥?

< p(0)e™C=t)/T

®(to + 2T, 20 + T)®(to + T, to)||

Input-OQutput Stability

Consider the dynamical system

&(t) = f(t, z, u)
y(t) = h(t, z,u)

where f is continuously differentiable and
h is continuous. Let z = 0 be a globally
exponentially stable equilibrium of

z = f(t,z,0)

If the Jacobians —‘t( ,+,0) and —i are globally
bounded and ||h(t, z,u)| < kl”“’” + ko ||u|| + ks
for some ky, ka, ks > 0, then for ||z(0)|| < 7,
there exist v > 0,8 > 0 such that

sup ||y(t)|| < -y sup||u(t)|| + 8.
t>0 £>0

If n = k3 =0, then 8 =0.

Proof outline

View f(t,z,u) as perturbation of f(t,z,0).

Global exponential stability plus bounded
Jacobian g—i(-,-,O) gives uniformly bounded
Lyapunov function for ¢ = f(t,x,0).

The global bound on % gives a bound on the

perturbation caused by the input.

Bounds on Lyapunov function and the bound
on the perturbation together give the desired
inequality.




Next week

Absolute Stability

Circle Criterion

Popov Criterion

Kalman - Yakubovich - Popov Lemma

Robustness Analysis
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e Absolute Stability
e Kalman - Yakubovich - Popov Lemma

Circle Criterion

Popov Criterion

e Simultaneous Lyapunov functions

pp. 237 - 268 + extra material on the K-Y-P
Lemma

Global Sector Condition

Let ¥(t,y) € R be piecewise continuous in
t € [0,00) and locally Lipschitz in y € R.

Assume that 1 satisfies the global sector
condition

a<P(t,y)/y<B, Vt>0,y#0 (1)

Absolute Stability

The system
¢ = Az+Bu, t>0
y = Cz 2)
U = _"/}(t: y)

with sector condition (1) is called absolutely
stable if the origin is globally uniformly
asymptotically stable for any nonlinearity ¢
satisfying (1).

The Circle Criterion

The system (2) with sector condition (1) is
absolutely stable if the origin is asymptotically
stable for ¥(¢,y) = ay and the Nyquist plot

C(jwI— A)"'B+D, weR

does not intersect the closed disc with
diameter [—1/a, —1/8].




Special Case: Positivity

Let M(jw) = C(jwI — A)"'B + D, where A is
Hurwitz. The system

& = Az+ Bu, t>0
y = Cz+ Du
u = _¢(t1y)

with sector condition
Y(t,y)/y>0 VE>0,y#0
is absolutely stable if

M(jw) + M(jw)* >0, Yw € [0, 0]

Proof

Set
V(z) = zT Pz

where P is an n X n positive definite matrix.
Then

V =227 Pz

—2:TP[4A B][_?

<27P[A B] [_2;- + 2y

e S A

By the Kalman-Yakubovich-Popov Lemma,
the inequality M(jw) + M(jw)* > 0

guarantees that P can be chosen to make
the upper bound for 1% strictly negative for

all (z,v) # (0,0).

Stability by Lyapunov’s theorem.

The Kalman-Yakubovich-Popov
Lemma

e Exists in numerous versions

e Idea: Frequency dependence is replaced
by matrix parameter or vice versa

The K-Y-P Lemma, version |

Let M(jw) = C(jwI — A)"'B + D, where A
is Hurwitz. Then the following statements are
equivalent.

() M@w)+ M(jw) <0 for all w € [0, 0]

(it) 3P = PT > 0 such that

o Ale 216 2l [6 o<




Compare Khalil (5.10-12):

—M is strictly positive real if and only if
1P, W, L,¢:

PA+ ATP PB-l—CT] [eP+LTL LTW]
BTP+C D+DT | wTL wTw

The K-Y-P Lemma, version |l

For

5] 8)ox-ara-ne[ 3]

with s4 — A nonsingular for some s € C, the
following two statements are equivalent.

(i) ®(jw)*@(jw) + <‘I~>(jcg_)*<1>(jw) < 0 for all
w € R with det(jwA — A) # 0.

(ii) There exists a nonzero pair (p, P) €
R x R™™™ such thatp > 0, P = P~

and
A B1'[P o A B
C D 0 pI C D
iBl're o A B
JE 812 808 2

The corresponding equivalence for strict
inequalities holds with p = 1.

Some Notation Helps

Introduce
M=[A B)], M=I[I 0],
N=[cCc D], ~N=[o0o I].
Then
y = [C(jwl - 4)7'B + Dlu
if and only if

MRt

for some w € C™+™ satisfying Mw = jwMuw.

Lemmal

Given y,z € C™, there exists an w € [0, o0}
such that y = jwz, if and only if yz*+2zy* = 0.

Proof Necessity is obvious. For sufficiency,
assume that yz* + zy* = 0. Then

|v*(y + z)|2 - v*(y — z)|2 =2"(yz" + 23" )v = 0.

Hence y = Az for some A € C U {oo}. The
equality yz* + zy* = 0 gives that A is purely
imaginary.




Proof of the K-Y-P Lemma

(i) and (ii) can be connected by the following
sequence of equivalent statements.

(a) w*(N*N + N*N)w < Oforw # 0
satisfying Mw = jwMw with w € R.

(b) ©NP =0, where
0=

{(w*(ﬁ*N+N*ﬁ)w, Muww* M* + M'ww*ﬁ*) :

wiw = 1}

P ={(r,0): » > 0}

(c) (conv O)NP =0.

(d) There exists a hyperplane in R x R™*"
separating © from P, i.e. 3P such that
Vw # 0

0> w (ﬁ*N +N*N+MPM+ JTI*PM) o

Time-invariant Nonlinearity

Let ¢(y) € R be locally Lipschitz in y € R.

Assume that i satisfies the global sector
condition

a<y(y)/y<B, Vt>0,y#0

Popov criterion

Let M(jw) = C(jwI — A)™'B, where A is
Hurwitz. The system
Ce

{ y
u —9(y)

with sector condition 0 < ¥(t,y)/y < k, is
absolutely stable if dp € R such that

Az + Bu, t>10

1/k+ Re[(1+ jwn)M(jw)] >0, Vw € [0, c0]

Popov proof |

Set
Cz
V(z) = 2T Pz 4 29k Y(o)do
0

where P is an n X n positive definite matrix.
Then
V =2(2TP 4+ nkyC)i
— 9(zTP + nkyC)[A B] [_“’w]
<2eTP4niy0) (4 B]| % | - 20w - k)
LT PA PB ] [ z ]
=2[=" —¥] [—kC—nkCA —1-nkCB]| | -¢

By the K-Y-P Lemma there is a P that makes
the upper bound for V strictly negative for all

(z,9) # (0,0).




Popov proof ||

Forn > 0, V > 0 is obvious for z # 0.

Stability for linear 1 gives V — 0 and V<0,
so V must be positive also for 7 < 0.

Stability for nonlinear 3 from Lyapunov's
theorem.

Example

:u'l =22
€3 = —z1— 22— P(21), 0<Y(z1) <k

Simultaneous Lyapunov functions

Let ¢(t,z) € R™ be piecewise continuous in
t € [0,00) and locally Lipschitz in z € R™.

Given matrices Ay,..., Ay € R™", suppose
that

P(t,z) € conv{A4;z,...,Ayz}, Vi, =z

If there exists a P = PT > ( such that
PA,+ATP<0 k=1,...,N

then the origin is globally uniformly asymptot-
ically stable for the system

&=y, 2)

Multi-loop Circle Criterion

Let M(jw) = C(jwl — A)"'B + D, where A is
Hurwitz. The system

@
Y
Uq

with sector condition

Az + Bu, t2>0
Cz + Du
—¥i(t, %), i=1,...,m

¢i(t,y)/y20 Vt>0,y#0,i=1,...,m

is absolutely stable if 3X = diag {z1,...,Zm}
such that

XM(jw)+ M(jw)*X >0, Yw €[0,00]




Next week

Dissipativity
Multipliers
Slowly varying systems

Interconnected systems

Extra: Lemma 2

If R and S are matrices of the same size and
satisfying RR* = S5S*, then there exists a
unitary matrix U such that R = SU.

Proof Introduce the polar decompositions

R=HgrUg
S =HsUs

where Hg and Hg are hermitean and positive
semidefinite, while Ugr and Ug are unitary.
Then

Hg = (RR*)I/Z — (Ss*)l/Z = Hg

so the unitary matrix U = UgUpg satisfies
R=_S5U.

Extra: Lemma 3

0= MWM* + MWM* (3)

for some W = W* > 0, then W has the form
W = S wpwy*, where

0= Hwkwk*M* + kawk*ﬁ*

fork=1,...,n+m.

Extra: Proof of Lemma 3

The equality 0 = MWM* + MW M* gives
(M + M)W (M + M)* = (M — M)W (M — M)*,

so by Lemma 2, 'illere is a unitary matrix U
such that (M + M)W'? = (M — M)W*'/?U.
Diagonalize

n+m )

U= Z e upug*

k=1

where 4y, ..., Unim € C™™ and 3, upuf = 1.

Then wy, = WY 2uy, k= 1,...,m + n fulfil the
conditions.




Nonlinear Control Theory 94

Lecture 12

e Dissipativity
e Integral Quadratic Constraints

e Comments on interconnections and slowly
varying systems

pp. 268 - 286 + extra material on dissipativity
and integral quadratic constraints

Dissipativity

Consider a nonlinear system
ft,z(t),u(t)), t>0

{ z(t)
y(t) h(t, z(2), u(t))

and a locally integrable function

w(t) = w(t, u(t), y(t)).

The system is said to be dissipative with
respect to the supply rate w if there exists a
storage function S(t,z) such that for all ¢o,¢,
and inputs u on [to, ;]

S(to, a(te)) + j: " w(t)dt > S(tr, 5(1)

Example: Memoryless Nonlinearity

The memoryless nonlinearity u = —(t,y)
with sector condition

a<yty)/y<p, Vi20,y#0

is dissipative with respect to the supply rate
w(t) = —[u(t) + ay(t)][u(?) + By(?)]

with storage function

S(t,z) =0

Linear System Dissipativity

The linear system (minimal realization)

Az(t) + Bu(t), t>0
Cz(t) + Duf(t)

—_——
< 8-
N
T ok
e’ N
Il

is dissipative with respect to the supply rate
w(t) = u(t) y(t)

if and only if G(s) = C(sI — A)"'B+ D is

positive real, i.e.
G(s)+ G(s)* >0 for Res >0
A storage function is given by
! r
S(z) = 3 Pz

for any P = PT > 0 satisfying

PR EAN P




Proof

S - uly = 2T Ps —uTy

=2TP[A B] [:] — Ty

-t e % D)L

<0

by K-Y-P Lemma. Hence

S(t1) — S(to) — [1 w(t)dt = [’(S —uTy)dt <0

which is the desired dissipation inequality.

Feedback Dissipativity |

%

)}

For two dissipative systems X, 33 with corre-
sponding inputs u;,us, outputs y1,ya, supply
rates wy,w, and storage functions S, S;, sup-
pose that the feedback interconnection

U2 =Y U1 =Y2
is “well posed” and that
0 = wy(u,y) + wa(y,u) (neutral interconnection)
Then the feedback system is dissipative with

respect to the supply rate w(yi,y2) = 0 and
the storage function

S1(z1) + S2(z2)
Linear system with memoryless Applicability?
feedback
%
, —t |
" 22
1 G(s)

A “well posed” interconnection of the memo-
ryless nonlinearity u = —(t,y) satisfying

Y(t,y)y >0 V>0

with the positive real system

{ &(t)
y(t)
gives a closed loop system that is dissipative

with respect to zero supply rate, with storage
function

Az(t) + Bu(t), t>0
Cx(t) + Du(t)

S(z) = %:cTPm

How find supply rate that make X; and X,
simultaneously dissipative?




Integral Quadratic Constraint

The nonlinear bounded operator ¥ : L' — LT

is said to satisfy the IQC defined by 1I, if

[ ls] mo [ ] >0

for u,y € L3 with y = X(u).

Feedback Dissipativity Il

X

2

Suppose II;;(jw) > 0 and Iy (jw) < 0.
If X, satisfies the IQC defined by

[Hll(jw) ;2 (jw)
M2 (jw) Ma2(jw)

and X, satisfies the IQC defined by

|5 e

then the feedback system, if “well posed”, is
dissipative with supply rate zero.

Contractiveness

A contractive operator satisfies the IQC
defined by

o i

0 -I

I denotes the unit matrix of appropriate
dimension.

Passivity

A passive operator satisfies the IQC defined by

ol




Linear Time-invariant Dynamics

I(jw) [——

A linear time-invariant contractive operator
satisfies any 1QC defined by

-

where z(jw) > 0 is a bounded measurable
function.

Linear Time-invariant Scalar
Dynamics

LA FTENY { N

An operator, defined by multiplication in
frequency domain with a scalar contractive
transfer function, satisfies any IQC defined by

X(jw) 0
0 —X(jw)

where X(jw) = X(jw)* > 0is a bounded
measurable matrix function.

Constant Real Scalar

< Y

—— I

Multiplication with a real constant satisfies
IQC’s defined by matrix functions of the form

0 Y(jw)
Y (jw)* 0
where Y(jw) = —Y(jw)* is bounded and
measurable.

(Upper bound for structured singular values)

Time-varying Real Scalar

u

()T 2L~

Multiplication in the time-domain with a
scalar function § € Lo, with ||§||cc < 1 satisfies

IQC's defined by
[ = ]
VS X

where X = XT > 0and Y = —Y7 are real
matrices [Feron, 1994!].




IQC for Transfer Function

v G(jw) Y,

The transfer matrix G(s) satisfies the 1QC
defined by II if and only if it is stable and

[G(;w)]*“("“’) [Géw)] 20

for w € [0, o0].

Dissipativity from IQC’s

u Y

— E

Suppose
0> Mp2(jw), Ywe€ER
I(jw) = 2(jw) + &(jw)"
&(jw) = Cs(sI — As) " 'Bs + Ds
= / ” e Iwt(t)dt

0

Let (0) = 0 and z3(0) and

z = f(t,z,u)

2y = Azzs+ Bs [uT yT ]T (1)
y = h(tz,u)

ys = Caza+Dgl[ul 71"

If the map from u to y satisfies the IQC
defined by II, then (1) with supply rate
7]

WZ[UT Yy jys

is dissipative with storage function
t

S(t, z(t), zs(t)) = ilt}f/ w(r)dr

0

Proof

Given u and y = X(u), define
(ue(7), (7)) = { (u(r)iy(r)), <t

(0,0), T>t
Then

Jiowae=[ ] (e [}])
B /ooo [EZ;)]T <¢ *T[EZL)D @
~fn [E(u,())—y,] (¢*[2(”t;}—yt})dT
=3 [ L) s
L fee

3 _m[z’@;’—a]*“[z‘@?—@]d‘”
ST ENEI SN

“*¥" denotes convolution

Proof of Feedback Dissipativity |1

Y1 : u — y is dissipative with supply rate

w=[v" y]ve

o (e[

¥, : y — u is dissipative with supply rate

v 1o )

Feedback Dissipativity |l therefore follows
from Feedback Dissipativity .




Example: Friction model

Interconnected systems

{ 21 = fi(t,z1)+91(¢,2)
bm = fultsm) + gm(t 2)

Suppose Vi(t,z1),..., Vm(t,zm) > 0 with

av;  oV;

Tt ) S (e
av;
‘6:::.- < Bidi(zs)

lgstt, e)ll < ) 1iidiles)
i=1

Then, with D = diag{dy,...,d} and
properly defined S

Sdivit,e) <Y di [—amﬁ?(wa) + ) Biviibi(mi) b3 (z;)
B i 7 |
= —¢"(DS + STD)¢/2
Stability if DS + STD > 0 for some D!

Slowly varying systems

Suppose
& = f(z,u(t)) (2)
where ||% is small. Equilibrium
0= f(h(u),v)
Change variables z = @ — h(u). Analyse
2= f(z + h(u),u)

for “frozen" u. Bounds on Lyapunov function
plus bounds on Oh/Ou gives results on (2).

Next week

Oscillations
Describing functions
Stability analysis

Application: Delta-Sigma Modulators
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e Oscillations
e Poincare-Bendixon Theorem

e Describing functions
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X

T,

For two dissipative systems X, Y, with corre-
sponding inputs u;,us, outputs y1,y2, supply
rates w;,wy and storage functions 51, S,, sup-
pose that the feedback interconnection

U2 =% U1=Y2
is “well posed” and that
0 = wi(u,y) + wa(y,u) (neutral interconnection)
Then the feedback system is dissipative with

respect to the supply rate w(y1,y2) = 0 and
the storage function

S1(z1) + S2(z2)

Yakubovich’s Oscillation Condition

Periodic Orbits

e Second Order Systems
e Describing functions

e Averaging




Poincare-Bendixon Theorem

Suppose that z(t) satisfies
¢ = f(z)

and stays fort > 0 in a compact set K C (,
that contains no equilibrium. Then, either z is
a perodic orbit, or it spirals towards a perodic
orbit as t — 00.

Proof

Limit point y by Bolzano-Weierstrass.

Periodic orbit through y:

z spirals towards the periodic orbit:

Example

Consider

1.51 = &2 +$1(1 b 2% bt E%)
2y = —z1 + 22(1 — 22 — 22)

and

V(z) = 1% + z?
V(Z) = 22,181 + 229Ey
= W (a)(l - V(=)

Poincare-Bendixon can be applied to the
region

{z:1-e<V(z)<1l+e}

for any € € (0,1).

Problem Statement

Detect periodic solutions of
z
Yy
u

Y(—y) = —¥(v) Yy

a(yz — 1) < ¥(y2) —¥(1) <B(yz —y1) Y <2

Az + Bu
Cz

—9(y)

Assumptions




Describing function

G(s)

_,‘/} .
—9(y) < y

y = asin(wt) + yn

P(asin(wt)) = Z byelwkt

kodd

Describing function

Describing function idea

A solution (w,a) of

G(jw) = -

¥(a)

indicates a periodic orbit with asin(wt) as the
output of the linear part.

by 2w [Tv . .
¥(a) = /2~ ma )y ¥ (a sin wt) sin widt
Notation Complete Intersection
Loss-pass measure
a+ 1

plw) = k>1i,Illcf;>dd 2 T G(jkw)
Error circle frequencies
Q= {] pw) > (8- )/2}
Error circle radius

)

U(w p(w) =

High frequency interval

ﬁ:{w

|a+p 1
o2 G(jkw)

A region of complete intersection T is a
connected component of the set

{(w,a) : lql(a) + @l < a(w)}

that contains a unique pair (w,,a,) satisfying

¥(e) + griy =
d

—¥(a)

0
da a

a=a,

%Im ciw)|  #0

W=w,




Theorem on Describing Functions

(a) There exist no half-wave symmetric
periodic solutions with frequency w € Q

(b) There exist no half-wave symmetric
periodic solutions with frequency w € '
unless for some a

¥ + g | < o)

1
G(jw)
(c) There exists at least one half-wave

symmetric periodic solution for each
region of complete intersection

[see Mees, Dynamics of Feedback Systems,

1981, pp. 126-160]

Example

— 8

82 40.85+8

sat

Unique intersection at (w,,a,) = (2\/5,1.455)
with region

T = [1.37,1.54] x [2.81,2.85]

and regularity conditions satisfied.

Hence periodic orbit exists.

Equations for a Periodic Orbit

For y(t) = Ykoaa are’®, define

9l =2 ) laxf?

k odd

yi(t) = Py(t) = a_1e 79kt 4 g elk?

yn(t) = (I — P)y(t) = Z ape’vt

|k|>1,kodd

gy(t) = Z G(jwk)arel“*t

k odd

A periodic orbit solves 0 = y + gy¥(y), or
componentwise

{ 0=y + Pg¥(y1 + vn)
0=1yn+(I—P)gy(y1 +yn)

Proof of (b)

Set —a = 3 = 1. Given y;, the operator
Tyn = (P — I)g¥(y1 + yn)

satisfies the Lipschitz condition

ITy® ~ TyD|| < max|G(jwk)| [l — 3|
L
p(w)
A periodic orbit with y;(t) = asinwt satisfies
Tyr = yn and T(—y1) =0, so

lly® — ™|

lvall = |1 Twn — T(—32)i] < ﬁ(nyhn +a)

llynl < = ao(w)

a
plw) -1
Hence a necessary condition is that

la + G(jw)¥(a)al = ||y + Pgv(y1)l|
= ||Pg[¥(y1) — ¥(y1 + wu)lll
< 1G(w)l [yl < |G(jw)lo(w)a




A Homotopy Approach to (c)

Define

y1+ (1 — w)Pgeb(y1) + pPgy(y1 + yh)]

Pu(y1, yn) = yn + (I — P)g¥(y1 + yn)

A periodic orbit solves
Pu(y1,yn) =0

for p = 1. Harmonic balance

0:‘1’(0:)-{-@

means solvability for p = 0.

Degree Theory Review

Suppose D is a bounded open subspace

of a normed space E. Let ¢ be compact
perturbation of the identity, with p ¢ ¢(8D).
Define the degree of ¢ relative to D by

d(¢,D,p) = Z sign det [%(z,)]

z;ep~1(p)

Then the degree has the following two basic
properties.

e If d(¢,D,p) # 0, then ¢(z) = p has at

least one solution in D.

e Suppose ¢, = I+h,, where h, is compact
for u € [0,1] and depends continuously on
p. 1fp & ¢.(0D) for all p € [0,1], then
d($,, D, p) is independent of p on [0, 1].

Proof of (c)

Without resctriction, set —a = 3 = 1. For any
complete intersection I', define

D = {(asinwt,y) : (w,a) €T, ||l < o(w)a}

Then d(¢o, D,0) # 0. It remains to prove that

Su(y1,yn) # 0 for (y1,yn) € 0D. On 0D, we
get from the definition of D that

lly1 + Pg(y1)|l < G(jw)a(w)a
llynl| < o(w)a

where at least one inequality holds as equality.

Proof of (c) Continued

For (y1,yn) € 0D we get

llys + (1 — p)Pg(y1) + pPg¥(ys + yn)ll
> |lys + Pgv(yo)ll — pllPg(yr + yn) — Pgp(v1)ll
> lyr + Pgp(yo)l| — pG(iw)llyn ]|
> |lys + Pgy(y1)|| — pG(jw)o(w)a

Using that p(w)(1 + o(w)) = o(w) we also get

llyn + (I — P)g(y1 + un)|l
> |lyn{l = pll(T — P)g(y1)ll — pll(I — P)gsp(yn)l|
> |lynll — po(w)a — pp(w)o(w)a
> |lgnll - po(w)a

At least one of the right hand sides must be
strictly positive for p < 1, so ¢,(y1,yn) # 0 on
8D and the proof is complete.




Delta-Sigma Modulators

e Fast digital circuits rather than precise
analog circuits

o Feedback shapes noise spectrum

e Feedback may cause instability

Describing functions help design

Stability Analysis

Indication of stable oscillations

Indication of unstable oscillations

Warning Example

System in polar coordinates:

1— 2\3
(-
T
=1+ (1-r%?2
has solution

1/2
1—-r13

VIt 41— r2)?

0(2) = 8o + t + 7 In[1 + 44(1 — r2)?)

r(t) = |1-

Should the orbit £; = cost, £3 = sint be
considered stable?

Next Week

Averaging

Singular Perturbations
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(a) There exist no half-wave symmetric
periodic solutions with frequency w € ()

(b) There exist no half-wave symmetric
periodic solutions with frequency w € Q'
unless for some a

1

aGay| <@

l\Il(a) 4

(c) There exists at least one half-wave
symmetric periodic solution for each
region of complete intersection

Today: Two Time-scales

Averaging

z=cf(t, e €)
The state z moves slowly compared to f.
Singular perturbations

z = f(t,z,2¢€)

ez =g(t,z, z,¢€)

The state 2 moves slowly compared to z.

Example: Vibrating Pendulum |

Newtons law in tangential direction

m(16 — aw? sinwt sin 6)

= —mgsinf — k(lé + aw coswt sin 6)
With € = a/l,7 = wt, a0 = wol/wa, B = k/mw,

;=0

22 = € 1(df/dr) + cos Tsin 6
fi(r,2) = @2 —cosTsinz,
fa(m, ) = —aBz; — a’sinz,

+ZT3cOo8TCOS T — cos? rsinz; cos 2,

the state equation is given by




Averaging Assumptions

Consider the system
& =e€f(t,z,e), z(0)= 2o

where f and its derivatives up to second order
are continuous and bounded.

Let z,, be defined by the equations

Zay (0,€) = o

Tay (t; 6) &S efav (mav (ty 6))1

T
fav (15) = T].Ln;o % L f('r, z, O)dT

Example: Vibrating Pendulum Il

The averaged system
&= €far (3)
| . |
= —afzy — a?sinz — %sin 2z,

has

Ofw, [ 0 1
Oz (,0) = [a2—0.5 —a,B]

which is Hurwitz for 0 < a < 1/\/5, B > 0.

Can this be used for rigorous conclusions?

Periodic Averaging Theorem

Let f be periodic in £ with period T'.

Let 2 = 0 be an exponentially stable
equilibrium of z,, = €f(zav,0).

If |zo| is sufficiently small, then

z(t, €) = Tay (t,€) + O(e) for all t € [0, 00]

Furthermore, for sufficiently small ¢ > 0,
the equation ¢ = €ef(¢,z,¢€) has a unique
exponentially stable periodic solution of period

T in an O(€) neighbourhoodd of z = 0.

General Averaging Theorem

Under certain conditions on the convergence
of

1T
fav (2, €) _Tli.n;o_fl_‘/; f(r,z,€)dr

there exists a C > 0 such that for sufficiently
small e > 0

|z(t, €) — Zav (£, €)] < Ce

for all t € [0,1/€].




Example: Vibrating Pendulum [lI

The Jacobian of the averaged system is

Hurwitz for 0 < a < 1/4/2, 8 > 0.

For a/l sufficiently small and
w > V2wol/a

the unstable pendulum equilibrium (9,9) =
(m,0) is therefore stabilized by the vibrations.

Periodic Perturbation Theorem

Consider
z = f(z) + eg(t, z,€)

where f, g, 8f/0z and 8g/0z are continuous
and bounded.
Let g be periodic in t with period T'.

Let z = 0 be an exponentially stable
equilibrium point for € = 0.

Then, for sufficiently small € > 0, there is a
unique periodic solution

Z(t,€) = O(e)

which is exponentially stable.

Proof ideas of
Periodic Perturbation Theorem

Let ¢(t, zo, €) be the solution of
¢ = f(z) +eg(t,z,€), z(0)==2o

e Exponential stability of z = 0 for ¢ = 0,
plus bounds on the magnitude of g,
shows existence of a bounded solution
z for small € > 0.

e The implicit function theorem shows
solvability of

z=¢(T,0,z,¢)

for small e. This gives periodicity of Z.

e Put z = & — Z. Exponential stability of
z = 0 for € = ( gives exponential stability
of z = 0 for small € > 0.

Proof idea of Averaging Theorem

For small € > 0 define u and y by

u(t,z) = /0 [f(r,2,0) — fav (2)]dT
z =y +eu(t,y)

Then

Ooul| . Ju
[I + Ea_y] y=ef(t,y+ eu,€) — ea(t,y)

== e-fav (y) + ezp(t, Y, E)

With s = €t,

4 _ fav (¥) + €9 (S,y, e)

ds
which has a unique and exponentially stable
periodic solution for small €. This gives the

desired result.




Application:
Second Order Oscillators

For the second order system

§+wly=eg(y,9) (1)
introduce
=G Eing
ifo=rcoss
o) = e
)= o [ 167,008
- 2:”2 /0 " g(r sin 6, wr cos §) cos dds

Then (1) is equivalent to

:j_; = Ef(¢, Ty 6)

and the periodic averaging theorem may be
applied.

lllustration: Van der Pol Oscillator |

Example: Van der Pol Oscillator |

The vacuum tube cicuit equation

§+y=ey(l—y?)

gives
1 27
fav (7) = —/ rcosg(l — r? sin? @) cos pdo
21r 0
1 1
=gr—3"

The averaged system

dr_e 1r 17«3
d¢ ~ \2 8

has equilibria = 0, » = 2 with

dfav

dr =-1

r=2

so small € give a stable limit cycle, which is
close to circular with radius r» = 2.

Singular Perturbations

Consider equations of the form

& = f(t,z,2,¢), z(0)==azo

ez =g,z 2,¢) 2(0)=2z0

For small ¢ > 0, the first equation discribes
the slow dynamics, while the second equation
defines the fast dynamics.

The main idea will be to approximate = with
the solution of the reduced problem

5 = f(t, 2, h(t,5),0) 3(0) = o
where h(t,Z) is defined by the equation

0 = g(t, , h(t, 2),0)




Example: DC Motor |

dw
Ja—k’b

di i
L-d—t =—kw—-Ri+u

With ¢ = w, z =1 and € = Lk?/JR? we get

T=2z

€EzZ=—-c—2z+Uu

Linear Singular Perturbation
Theorem

Let the matrix Ay, have nonzero eigenvalues
Y1,--.,Ym and let Ay,..., A, be the eigenval-
ues of Ao = Au e A12A2_21A21.

Then, V6§ > 0 3dey > 0 such that the
eigenvalues a;,...,ant+m of the matrix

[ Ay Agg ]
Azife Axfe

satisfy the bounds

IA,'—(X.'I<6, i=1,...,n
[Yi-n —€ai] <6, i=n+1l,...,n4+m

for 0 < € < €.

Proof

Ajs is invertible, so it follows from the implicit
function theorem that for sufficiently small €
the Riccati equation

€A11 P+ A1z — €P Ay P — P, Ay =0

has a uniqe solution P, = A;345; + O(e).

The desired result now follows from the
similarity transformation

I:I —€P5:| l: A11 A12 ] I:I EPE:I

0 I A21/E Azz/é 0 I

[I -—€Pe:| [ A11 A12 +€A11Pe :|
0 I Azi/e Axzfe+ An P

Il

[AO +*0(€) Azz/e(-)+-0(1) ]

Example: DC Motor II

In the example

T=2z

€e2=—-c—2z2+u
we have
[Au Alz] _ [ 0 1 ]
Ayp Ap| -1 -1
Ajg — ApAg Az = —1

so stability of the DC motor model for small

_LE?
T JR?

is verified.




The Boundary-Layer System

For fixed (t,z) the boundary layer system

dij X X
d_z = g(t,z,§ + h(t, 2),0), §(0) = 20 — h(0, zo)

describes the fast dynamics, disregarding
variations in the slow variables ¢, z.

Tikhonov's Theorem

Consider a singular perturbation problem with
f,g,h,0g/0z € C'. Assume that the reduced
problem has a unique bounded solution Z on
[0,T] and that the equilibrium § = 0 of the
boundary layer problem is exponentially stable
uniformly in (¢,z). Then

z(t,€) = Z(t) + O(€)
2(t,€) = h(t, (1)) + §(¢/€) + O

uniformly for ¢ € [0, T).

Example: High Gain Feedback

Closed loop system
@p = Azy + Buy
1

k—ﬂp = YP(u — up — k2Czp)
1

Reduced model

&p = (A — Bk2C)ep + Bu

Proof ideas of Tikhonov’s Theorem

Replace f and g with F' and G that are
identical for |z| < r, but nicer for large .

For small ¢, G(t,z,y,¢€) is close to G(t,z,y,0).

y-bound for G(-,-, -, 0)-equation
= y-bound for G-equation
=> ¢, y-bound for F, G-equations

For small € > 0, the z,y-solutions of the F, G-
equations will satisfy |z| < r. Hence, they also
solve the f, g-equations




The Slow Manifold

For small € > 0, the system

has the invariant manifold
z=H(z,e¢)

It can often be computed approximately by
Taylor expansion

H(z,€) = Ho(z) + eHi(z) + e Ha(z) + - - -
where H, satisfies

0= g(E,Ho)

The Fast Manifold

All solutions of

z = f(z,2)

ez = g(z, 2)

approach the slow maifold along a fast
manifold approximately satisfying

¢ = constant

Example: Van der Pol Oscillator [11

Consider
d2y 2, dV
E?_#(l_v )"E-F’U—O
With
_lav +o 11)3
T pds 3
zZ="
t=s/p
e=1/u
we have the system
z=2z
ez2=—-z+z 1z3
o 3

with slow manifold

[llustration: Van der Pol 11l
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A Note on the Kalman-Yacubovich-Popov Lemma

Anders Rantzer

1 Statement of the Main result

The purpose of this note is to present a new elementary proof for the so
called Kalman-Yakubovich-Popov lemma [And67]. The basic idea has been
suggested in connection to the theory for structured singular values [PD93].
Here we give the details and refinements needed to cover all main versions
of the classical result.

Theorem 1 For

®(s) | | C ~ -1 ~ D
[5(3)]—[5](5A—A) (B—sB)+[l~j},

with A, A € R™*", B,B ¢ R~*™, C,C € R”", D,D € R*™ and sA — A
nonsingular for some s € C, the following two statements are equivalent.
(i) B(jw)* B(jw)+ 3(jw)*®(jw) < 0 for all w € R with det(jwA— A) # 0.

(#3) There exists a nonzero pair (p, P) € RxR™*™ such thatp > 0, P = P*
and

R EHIEREE

The corresponding equivalence for strict inequalities holds with p = 1.

Remark There is another version of the theorem, where the condition in
(¢) is instead that ®(s)*3(s) + &(s)"®(s) < 0 for all s € C with Re s > 0
and det(sA — A) # 0. The corresponding change in (43) is the additional
condition P > 0. This version can be proved analogously.

It is instructive to state also the following equivalent theorem, which
applies to discrete time systems.



Theorem 2 With notation from Theorem 1, the following two statements

are equivalent.
(1) B(e™) ®(e¥) + B(e7)*B(el¥) < 0 for w € R with det(e™ A — A) # 0.

(i) There exists a nonzero pair (p, P) € RxR™*" such thatp > 0, P = P*
and

IR

The corresponding equivalence for strict inequalities holds with p = 1.

B
~ [l
5| <0

Q1

This theorem follows directly from Theorem 1, by substituting e’* with
(jw+1)/(jw — 1) and noting that

@ ((Jjw+1)/(jw—-1))
= C ((jw+ 1A~ (jw-1)4)  ((jw-1)B - (jw+1)B) + D

= C (jw(A-A) - (A+ A) " ((B+B)-ju(B-B))+D.

Alternatively, it can be proved analogously to Theorem 1.

2 The New Proof

First recall the following standard result, which we prove here for complete-

1ness.

Lemma 3 Let R and S be matrices of the same size. Then RR* = SS*, if
and only if there exists a unitary matriz U such that R = SU.

Similarly, RS* + SR* = 0 if and only if there ezists a unitary matriz U
such that R(I + U) = S(I-U).

In particular, given monzero r,s € C", there is an w € R such that
r = jws, if and only if rs* + sr” = 0.
Proof. Each of the first two statements follows from the other by replace-
ment of R and S with R+ 5 and § — R. The third statement follows from
the second since (1 + U) = s(1 — U) # 0 and (L — U)(1 4 U)~* is purely
imaginary when U*U = 1.



It remains to prove the first statement. Let the size of R and S be k X [.

Consider first square matrices, i.e. the case k = [. Introduce the polar
decompositions

R = HRUR

S = Hs Us

where Hyr and Hg are hermitean and positive semidefinite, while Ug and Us
are unitary. Then

Hp = (RR")'?* = (5§5*)"/* = H;

so the unitary matrix U = U3Ug satisfies R = SU.

The case k < [ follows immediately by extending R and § with zero rows
to square matrices.

If £ > I, then let R, be a submatrix of R with the same rank, but a
minimal number of rows. Let S; be defined by the corresponding rows in
S1. Then R R} = 5,57 and we have proved the existence of a unitary
matrix U such that Ry = S, U. In fact, since all rows of R and S are linear
combinations of the rows in R, and S, the desired equality B = SU is
proved. m]

The next lemma is central for the proof.
Lemma 4 Let M and M be matrices of the same size. If
0=MWM + MWM"
for some W = W* >0, then W has the form W = S p 27 wywy,*, where
0= kawk*M* + kawk*ﬂ*, wy € C™T™ (1)
fork=1,...,n+m.
Proof. By Lemma 3, there is a unitary matrix U such that
MWYYI+U)= MWY*I - U)
Being unitary, U = 327" e/®uju,* where up € C*™ and ¥, wpul = I.
With wy, = W 2u,, we get 027" wyw,* = W oand
Muwi(1+ %) = MWY*(I + U)uy,
= MWY(I — U)w,
= Muw(1 - ')
for k = 1,...,n 4+ m. Another application of Lemma 3 gives (1) and the
proof is complete. o



Proof of Theorem 1. The two statements will be connected by a sequence
of equivalent reformulations. Introduce

M=[4 B|, M=[4 B,
oy D], =16 Bl

For any u € C™, w € R with det(j A) # 0, we have by definition

- Hm

where z = (]wA A)y"Y(B - ]wﬁ )u, or equivalently

o 2] = 2]

Hence (7) can be rewritten as

(a) w*(N*N + Jy*ﬁ)w < 0 for all w satisfying Mw = jwMw with w € R
and det(jwA — A) # 0.

At this point, the condition det(ij— — A) # 0 does not make any difference.
Application of Lemma 3 gives the equivalent statement

(b) The sets

0 = {(v*(¥*N + N* N)w, Mww M + Mww* ") : w € C*+m}
P ={(r,0): » > 0}
are disjoint.

At this point, we take the main step of the proof, replacing ® by its convex
hull. Indeed, any element of conv ©@ has the form

(trace[W(N*N + N*N)|, MWM* + MWM*) W >0
If it also belongs to P, then by Lemma 4 it can be written as

Z(wk*(N*N + N*N)’U)k, kawk*M* + kawk*M*),
k
for some wy, ..., Wy, € C*T™. At least one term of this sum is in P N ©.
This gives the following reformulation of (b) .



(¢) The convex hull of ® does not intersect P.

The non-intersection is equivalent to existence of a hyperplane, separating ©
from P. Equivalently, there is a nonzero functional on R x R**", that is non-
positive on ® and non-negative on P. Let this linear functional be defined
by the nonzero pair (p, P) € R x R**" and the standard scalar product.
Then the non-negativity on P means that p > 0 and the non-positivity of
©® that

0> pw*(N*N + N*N)w + trace [P(Mww* M* + Mww* M*)]
= w" (p]v*N +pN*1V +M*PM + M*PM) w.
This demonstrates the equivalence between (c) and (i¢) .
The argument for strict inequalities is analogous. Furthermore, it is clear

that p # 0 is necessary for strict inequality in (i7) . Without restriction, we
can therefore let p = 1. a
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Abstract

It is demonstrated how a number of widely used tools for stability
analysis can be conveniently unified and generalized using integral
quadratic constraints (IQC’s). A purely IQC based stability theorem
is presented, which covers classical small gain conditions with anti-
causal multipliers, but gains flexibility by avoiding extended spaces
and truncated signals.



1 Introduction

In this paper, the term IQC (Integral Quadratic Constraint) is used
for an inequality describing a relation between variables in a dynam-
ical system. The system variables appear in a weighted quadratic
frequency integral. Implicitly, IQC’s have been present in the con-
trol literature ever since the 60s, when passivity and circle criteria
were introduced in the stability analysis of nonlinear feedback sys-
tems [Zames, 1966, Willems, 1971, Desoer and Vidyasagar, 1975]. For
example, positivity of a map from u to y, can be expressed by the IQC
2 y(jw) u(jw)dw > 0.

To enhance flexibility of the approach, so-called multipliers were
introduced to exploit the fact that several different IQC’s may be
applicable to the same operator. Most of this classical theory was
devoted to scalar feedback systems. This lead to conveniently visu-
alizable stability criteria based on the Nyquist diagram, which was
particularly important in times when computers were less accessible.

In the 70-s, IQC’s were used (and named so) by Yakubovich to
treat the stability problem for systems with complex nonlinearities,
including amplitude and frequency modulation systems [Yakubovich,
1967, Yakubovich, 1971, Yakubovich, 1973]. Some new IQC’s, unre-
lated to the passivity or small gain arguments, were introduced, and
the so-called S-procedure was applied to the case of multiple IQC’s.

An important step towards modern robust control was the intro-
duction of analysis methods which essentially rely on the use of com-
puters. One example is the theory for quadratic stabilization [Leit-
mann, 1979, Gutman, 1979, Corless and Leitmann, 1981}, another is
the multiloop generalization of the circle criterion based on D-scaling,
[Safonov and Athans, 1981, Doyle, 1982]. At the same time, the H*
control methods were introduced for synthesis of robust controllers,
see for example [Zames, 1981, Tannenbaum, 1982]. Again the results
can be viewed in terms of integral quadratic constraints. Both the
search for a Lyapunov function and the search for D-scales can be in-
terpreted as optimization of parameters in an IQC, and optimal design
with respect to an IQC leads to H* optimization.

During the last decade, a variety of methods were developed within
the area of robust control. As was pointed out in [Megretski, 1993]
and further emphasized below, many of them can be reformulated to
fall within the framework of IQC’s. Two recent developments are par-



ticularly noticeable. Firstly, the development of interior point meth-
ods for solving systems of Linear Matrix Inequalities (LMI:s) strongly
improves the possibilities to analyze complex systems using combina-
tions of different IQC’s. Secondly, a series of necessity results for IQC-
related stability conditions [Khammash and Pearson, 1991, Shamma,
1992, Megretski and Treil, 1993, Tikku and Poolla, 1993] further em-
phasize the role of IQC’s and their analogs as being the most elemen-
tary units of uncertainty description.

2 1IQC’s for Simple Operators

Let us first define the term IQC more exactly. Suppose the function
w - M(jw) = O(jw)* = I(—jw) € C*™*?™ js bounded and measur-
able. A given bounded causal map A : L} — LI is said to satisfy the
IQC defined by 11, if

L7130 ey |30 | a0
—oo | B(jw) (jw)
for any @, 7 being the Fourier transforms of u,v € L, with v = A(u).

The purpose of this section is to review a number of IQC’s, that
are satisfied by elements appearing in models of uncertain systems.

Linear Time-invariant Dynamics

Let A be any linear time-invariant operator on L' with gain (H
norm) less than one. Then A satisfies any IQC defined by a matrix
function of the form

0 —z(jw)l

{m(jw)] 0 l

where z(jw) > 0 is a bounded measurable function and I denotes the
unit matrix of appropriate dimension.

Linear Time-invariant Scalar Dynamics

Suppose A is defined by multiplication in frequency domain with a
scalar transfer function having H.-norm less than one. Then, A sat-



isfies IQC’s defined by matrix functions of the form
X(jw) 0
0 —X(jw)

where X (jw) = X(jw)* > 0 is a bounded measurable matrix function.

Constant Real Scalar

If A is defined by multiplication with a real number, then it satisfies
IQC’s defined by matrix functions of the form

0 Y(jw)
Y(jw)" 0
where Y (jw) = =Y (jw)* is bounded and measurable.

These first three types of IQC’s are the basis for standard upper
bounds for structured singular values [Fan et al., 1991].

Time-varying Real Scalar

Let A be defined by multiplication in the time-domain with a scalar
function § € Ly, with [|§]|s < 1. Then A satisfies IQC’s defined by a

matrix of the form
X Y
YT -—-X

where X = X7 > 0 and Y = —Y7 are real matrices [Feron, 1994].

Periodic Real Scalar

Let A be defined by multiplication in the time-domain with a periodic
scalar function § € Ly, with ||§]lc < 1 and period T. Then A satisfies
IQC’s defined by matrix functions of the form

[ X(jw)  Y(jw) ]

Y(jw) -X(jw)

where X and Y are bounded, measurable matrix functions satisfying
X(jw) = X(j(w+2n/T)) = X (jw) 20
Y(jw) = Y (j(w + 27/T)) = =Y (jw)".

This set of IQC’s can be used to prove the result by Willems on sta-
bility of systems with uncertain periodic gains [Willems, 1971].

4



Memoryless Nonlinearity

Suppose A operates on scalar signals according to the nonlinear map
v(t) = 6(t, u(t)), where § is a time-varying function on R satisfying

az® < zé(t,z) < 2?/p

for some constants @ < 0 < 3. Then A satisfies the IQC defined by
the 2 X 2 matrix

~2a aff+1
af+1 28 |

The Sign Function

If v = A(u) is defined by the sign function, v;(t) = 1 if u;(t) > 0, else
v;(t) = —1, then A satisfies the IQC defined by

[ 0 I+ H(jw)]
I+ H(jw)* 0 ‘

where H is an arbitrary transfer function with || H||f, < 1. (A proof
will be included in the final version of the paper.)

Although the collection of IQC’s presented in this section is far
from being complete, it supports the idea that many important prop-
erties can be characterized by IQC’s.

3 IQC’s for Signals

Performance of a linear control system is often measured in terms of
disturbance attenuation. An important issue is then the definition
of the set of expected disturbances. Here again, integral quadratic
constraints can be used as a flexible tool.

A signal f € L, is said to satisfy the IQC defined by II if

[ fuernge)fie)ds = o

Next follows some examples of signal properties that can be described

by IQC’s.



Bounds on Auto Correlation

A bound on the auto correlation of f can be expressed as

o)

[ awrse-na<a [ g0 som,

- — o0

where a < 1. This IQC is defined by II(jw) = 2a — €T — e=347,

Dominant Harmonics

The integral

[ 17w

measures intuitively how much energy of f that is concentrated on the
spectral interval [a, b]. Therefore, the assumption that f is dominated
to a certain degree by harmonics in the interval [a, b] may be expressed
by an IQC defined by II(jw) = p(jw)I, being small positive for w €
[a, b] and large negative on the rest of spectrum.

Finite Sets of Signals

In some applications, f is considered as a reference signal from a given
finite set F = {f,}, of functions. Then a set of IQC’s describing F

can be found by solving the system of linear inequalities

/°° ﬁc(jw)*ﬂ(jw)ﬁ(jw)dw >0 k=1,...,N.

— 00

4 A General Stability Condition

It will now be demonstrated how IQC’s can be applied in stability
theory of feedback systems. For most dynamical systems considered
in the theory of robust control, any reasonable type of stability is
equivalent to invertibility of an operator. The invertibility is often
implied by some quadratic inequalities relating its input and output.
For example, the operator I + D on L, where I denotes identity, is
invertible if D is contractive, i.e. ||[Df||> < (1 —¢€)||f||? for f € L, and
some € > 0. The main idea of this section is to combine many IQC’s



obtained from various sources to get a quadratic inequality which im-
plies invertibility and therefore stability.
Consider the feedback system

v = G(s)ute
{u = Afv)+ 7, (1)

where G is a stable strictly proper linear transfer function and A is a
bounded nonlinear operator on L}*. The feedback system is said to be
L,-stable if there is a constant C' > 0 such that for every e, f € LY,
the equations have unique solutions u,v € L' and

[l rPa<c [ jel? + 11

The following theorem covers a large number of small gain and
passivity type theorems, even with so called anti-causal multipliers.
However, unlike most formulations of such results, it is purely based
on IQC’s and no signal truncations are involved. This allows for more
flexibility than the traditional results.

Theorem 1 LetIly,...,II, be bounded measurable matriz functions,
that are Hermitean and indefinite on the itmaginary azis and satisfy
[I 0]IL(jw)[I 0]" > 0 and [0 I]IL(jw)[0 I]" < 0. Then
the feedback system (1) is L,-stable for all bounded continuous causal
operators A satisfying the IQC’s defined by Iy, ...,II,, , if and only
if 3zy, ..., Ty > 0,€ > 0 such that Yw € [0, oo]

[G(;W)]* li ’”fﬂi(a‘d} [G(;W)] < —eG(jw)'C(iw)  (2)

Proof outline. Let us first consider the sufficiency. Suppose A is an
operator satisfying the IQC’s defined by II,,...,IL,. The conditions
on II; are sufficient to make sure that for any 7 € [0,1], also the
operator TA satisfies the IQC’s. In particular, the IQC defined by
IT =%, «,II; is satisfied.

We will prove that the operator I — 7AG has a bounded inverse
for 7 € [0,1]. The inequality (2) and the boundedness of II gives
straightforwardly that there exists an € > 0 such that

lu — TA(Gu)|| > €|Gu|| for any u € Ly, 7 € [0,1]. (3)



This proves injectivity of the operator. The idea is now to prove that
the set of T-values with surjectivity, is both closed and open in [0, 1].
This completes the sufficiency proof, because the invertibility, is trivial
for 7 = 0. Closedness follows from the compactness of the operator
PrAG, where Pp means truncation at time T'. Openness is shown
by application of the Schauder-Tichonov fixed point theorem. The
causality of G and A is crucial, both for closedness and openness.
The necessity part is essentially analogous to the necessity proof of
the multi-loop circle criterion in [Megretski and Treil, 1991, Shamma,
1992]. mi

5 Computations Based on LMI:s

In practical applications of Theorem 1, it is useful to introduce state
space representations of ITy, ..., II,,, and G. The search for z,,..., 2,
can then be converted using the Kalman-Yakubovich-Popov Lemma
into a convex optimization problem defined by linear matrix inequal-
ities (LMLs). For such problems there has recently been a strong
development of numerical algorithms based on interior point methods
[Nesterov and Nemirovski, 1993, Boyd et al., 1993).

To concretize this idea, let G have the state space representation

G(jw) = C(jwl - A)"*B+D

and let II; = 5;‘@.- + <I>f<i,-, where ®; and 5,- have the state space
representations

@i(]'UJ) = Gi(jUJI— E)_]'F + H,'

$;(jw) = Gi(jwl — E)™'F + H;
In fact, any rational matrix that is hermitean and bounded on the
imaginary axis can be written this way with &; = I. However, in

parametrizing a class of II;:s, the flexibility in ®; is sometimes useful.
Finally, introduce the notation

A
K =

o o~ o
~ o g
o Qo ~
O O~ o
~ Olo o

0
C
0



for i = 1,...,m. Then the following proposition is useful for the
application of Theorem 1.

Proposition 2 Given zy,...,z,, > 0, the inequality (2) is equivalent
to existence of a symmetric matrizc P such that

Y KT Pl LK + KTLT 210 LK} <.
i1 0 mif 0 IEl'I
Note that the inequality is linear in (P, 21,...,&y).

5.1 Example: LTI Uncertainty with Nonlinear
Gain

to be written...
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