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Summary

The course 1994 followed the second edition of Anderson and Moore’s
book “Optimal Control — Linear Quadratic Methods”. The course was
followed by 10 PhD-students and one MSc-student. The background of
the students were a little diverse. Some had for example taken courses in
matrix theory and optimization and had taught LQG-theory themselves
in the digital control course, others had only the basic course(s) in control
theory. However, all students succeeded very fine in covering the material.

The book was found a little boring and old fashioned. There were
also problems reconstructing most of the examples in the book. There are
obviously a lot of misprints and errors, some more serious than others.
The most disturbing error is the statement on p. 48 were it is claimed
that detectability is a necessary condition for the existence of a stable
closed loop optimal system with finite performance index. That this is
wrong has been known since the work of Martensson in the 70s (which
also is referenced!). Other irritating errors are due to the authors copying
examples from old papers without checking the details, such as at pp. 150-
156. The choice of designs in the examples also shows a lack of engineering
insight which can be disturbing for the ambitious student who checks all
details. Such an example is the resonance suppression design example
which starts at p. 222 and the lightly damped mode example on p. 233.
(Exercise: plot the control signals). Often very central plots are missing.

To ease the reading I prepared explanatory notes to be read before
each lecture (2 hours). Each lecture was followed by a problem-solving
meeting (2 hours) held by Per Hagander. There were also 7 hand-in
problems which were used as the exam on the course.

Material that I used:

e TFRT-7454 A collection of Matlab Routines for Control Analysis
and Synthesis, by Kjell Gustafsson, Mats Lilja and Michael Lundh.

e TFRT-7456, Control Design for two Lab-processes, The Flexible
Servo — The Fan and the Plate, by Kjell Gustafsson and Bo Bern-
hardsson.

e TFRT-7475, Discrete Time LQG with Cross-terms in the Loss Func-
tion and the Noise Description, by Kjell Gustafsson and Per Hagan-
der.

e Note on LQ-optimal Control Using Lagrange Multipliers ny Per Ha-
gander.

e pp. 188-192 of “Linear Robust Control” by Green and Limebeer.
e Chapter 5 of Multivariable Feedback Design, by Maciejowski.

e “Invariant Subspace Methods for the Numerical Solution of Riccati
Equations”, from The Riccati Equation, by Bittanti, Laub, Willems,
Springer-Verlag 1990.

o “Guaranteed Margins for LQG Regulators”, J Doyle, Honeywell
note.



Lecture 7 on numerical methods was given by Per Hagander and
Lecture 8 on singular problems by Anders Hansson. Their contributions
are gratefully acknowledged.

Included in this documentation are
e Course Program
e Session Notes 1-8
e Lecture Slides 1-7 (without the figures)
o Exercise 1-7
e Handins 1-7

Lund, Dec 1994

Bo Bernhardsson



Linear Quadratic Control Theory, 1994

Lecturer

Bo Bernhardsson.

Exercises

Per Hagander.

Literature

— B. D. O. ANDERSON AND J. B. MOORE, Optimal Control — Linear Quadratic
Methods. Prentice Hall, 1989, ISBN 0-13-638651-2.

— Notes, journal papers, Matlab manual.

Meetings

There will be one lecture and one exercise per week (2+2 hours). Participants are
supposed to prepare for the lectures by reading ahead in the book and to take active
part of the exercises.

Lecture Plan:

1  Introduction. Summary. Software. Design Challenges. Ch 1.

2 Full Information Problems (LQ). Finite/Infinite Time Horizon. Riccati Equations. Ch 2-3.
3 Properties of LQ regulators. Design Examples. Ch 5-6.

4  State Estimator Design. The Kalman-Bucy Filter. Ch 7.

5 The Separation Principle. Output Feedback Problems (LQG). Ch 8

6  Tracking/Servo Problems. Frequency Shaping. Ch 4,9

7  Numerical Algorithms.

8  Singular Problems.

Examination

7 Hand-in problems

Credits
Nominally 5p.



Session 1

Introduction. Norms. Formulas for the optimal LQG controller. Software.
Design challenges.

The course will focus on the state-space approach to optimal lin-
ear quadratic design of linear, finite-dimensional systems. The aim is to
present both theory and design applications. It is desirable that you fa-
miliarize yourself immediately with some LQG-software. I will use the
LQGBOX for matlab developed by Kjell Gustafsson at the department.
Other alternatives includes the mubox (only continuous time) and the
control system toolbox (not recommended). Literature references below
correspond to the book by Andersson and Moore if nothing else is men-
tioned.

It will help if you have taken a course in matrix theory, but you
can struggle along without it. Part of appendices A (for instance 18-19
on Jordan forms are not needed but 20 on positive matrices should be
known) and B (6,8 11, 12, 14 not necessary) give sufficient prerequisities

Reading Assignment
e pp. 1-6 + appendices A and B.

Get hold off

e TFRT-7454, “A collection of Matlab Routines for Control System
Analysis and Synthesis”, Gustafsson et.al. Concentrate on the LQG-
BOX.

e The Flexible-servo design in TFRT-7456, “Control Design for Two
Lab-processes: The Flexible Servo, The Fan and the Plate”, Gustafs-
son and Bernhardsson.

e Internal report TFRT-7475, “Discrete Time LQG with cross-terms in
the Loss Functions and Noise Descriptions”, Gustafsson-Hagander.

All of the above available via mosaic.



Session 2

Hamilton-Jacobi-Bellman FEquation. Full Information Problems. Finite
and Infinite Time Horizon.

If you have taken the digital control course what is going to be new
for you are 1) the notation 2) the continuous time results 3) the way to
obtain the infinite time horizon case from the finite time horizon case.

There are many ways of showing the LQG-results. The way chosen in
the text, with the Hamilton-Jacobi-Bellman equation, is not the shortest
but it presents some material that is good to know. Also read App. C
where Pontryagin Minimum Principle is used instead (without proofs).
Remark: It is often preferable to use a 3n X 3n Hermitian formulation

instead of (C13) on p. 364

0 %I -A -B )\(t)
4] — AT Q1 Q12 2(t) | =0
—BT Q21 Q> ’U»(t)

Reading Assignment
e pp. 7-60 + appendices C,D and E

When you start working with LQG-designs in Matlab it will help to read

e TFRT-7454, “A collection of Matlab Routines for Control System
Analysis and Synthesis”, Gustafsson et.al. Concentrate on the LQG-
BOX.

e The Flexible-servo design in TFRT-7456, “Control Design for Two
Lab-processes: The Flexible Servo, The Fan and the Plate”, Gustafs-
son and Bernhardsson.

A more complete presentation of the discrete-time results is given in

e Internal report TFRT-7475, “Discrete Time LQG with cross-terms in
the Loss Functions and Noise Descriptions”, Gustafsson-Hagander.



Session 3

Properties of the LQ-requlator. Weight Selection. FEzamples.

Note that the results on gain margin and phase margin are based
on the return difference formula which is deduced for the “no cross-
term case”. With cross-terms there is no guarantee forsuch nice margins.
Or better said, you have nice gain and phase margins for a transformed
system after introducing the new control signal % = u+ Ly 2. You can skip
the section on polynomial matrix fractions, you can also skip pp. 122-125
if you find it hard.

It is probably time now to decide on which system to use on the
last hand-in. New suggestions are the JAS 39 Gripen model or the wind
power plant in Sven Erik Mattssons PhD thesis (details available via BoB
and Mosaic).

Reading Assignment

o pp. 101-131 + 139-163.



Session 4

There will probably be nothing new for you on pp. 164-71. If you have not
seen Ackerman’s formula before do not bother about that we dont prove
it (there’s a proof in Kailath). It’s a bad formula anyway for numerical
reasons, see the help-text to acker in matlab.

The reduced order estimator (also called luenberger observer) is usu-
ally messy reading the first time you see it. It might help to have matlab-
code available while reading, see /home/bob/matlab/luenberger.m. This
code assumes that C has full row rank. If C' does not have full rank it
means that some rows are linear combination of other, i.e. that you have
redundancy in your sensors. You can then find T and form §y = Ty = TCe
such that C := TC has full rank. It is possible to see that Luenberger
observers correspond to that you have let the variance on the measure-
ments R, tend to zero and have obtained some infinitely fast modes in
the observer by having infinite components in K. The observer tends to
a lower order system in this way. Of course the observer will be sensitive
to noise in y.

Ch. 7.3 is close to the presentation in [Astrém,1970] which I however
find more readable. If you find it hard to think on matrix-valued Z and M
then find the corresponding section in that book instead. He shows that
the optimal estimator for Cz, for an arbitrary vector C, is the Kalman
filter. Then you can use scalar signals instead.

On p. 196 one can of course change [F, D] stabilizable to [F, D] no
uncontrollable jw-modes and still get a stable F + K.H' if the proper
solution to the Riccati equation (7.3.30) is chosen.

The dual to the return difference equation is (7.3.33)

Ry + Cy(sI — A)'Ry(—sI — AT)'CF =
= [I 4 Cy(sI — A) ' K|Ry[I + KT(—sI — AT)'CT]

or with cross-terms
(= %) (o) (o)
RL, R, Dy Dy
N(s) = Dqy + Cz(sI — A)_lBl
N(8)NT(—=s) = [I + Cy(sI — A)* KDy DL [I + KT (—sI — AT)'CT]

The discrete time Kalman filter is really easier to prove. There is al-
most a proof in Ch 11.3 in Computer Controlled Systems. For a complete
proof see [Astrom,1970]. See also Sec. 4 in TFRT-7475.

Reading Assignment
e pp. 164-206



Session 5

This is a highlight of the book where the output feedback problem is
considered. Only the continuous time problem is discussed, there is only
little difference in discrete time. Since the mathematics with stochastic
integrals become so involved the proof of the separation principle is not
made complete. For a rigorous proof see reference [4] on p. 261.

In (8.1-7) notice that £ = ¢ — z. is uncontrollable from u.;;. Remem-
ber this. In polynomial form this turns up as a cancellation in (notation

as in CCS):
o _ BT Budy B

Of course the observer dynamics shows up in all other aspects of the
design, such as attenuation of load disturbances, noise senisitivity, ro-

bustness against model errors etc.

For the example on pp. 222-3 I am missing a plot over the power
spectral density of the control signal. It looks like a nice reduction of noise
in ys and y, but a natural question to ask is how much this reduction
has costed in increased variance of u? (3 extra points to the first one who
hands in a plot of that).

The continuous time separation theorem is often contributed to
Wonham.

In our notation the formula for the optimal performance index on
p. 227 can be written in two different ways (no cross-terms):

t1 t1
V* = mT8(to)m + trS(to) Ro - / tr SRydt + [ tr LTQ,LPdt
to

to

¢ t

= mS(to)m + tr5(to) Ro + | "tr PQudt + /t “tr KR, KT Sdt
0 0

(compare with formula (8) in TFRT-7475 in discrete time). It is a medium-

hard exercise to prove this (also worth 3p). There is a nice interpretation

of the different terms in this formula.

(8.3-3) is an example that shows that LQG designs do not auto-
matically have nice gain margins, not even with diagonal weights, cheap
control and almost noise free measurements. This was a surprise to many
people in the end of the 70’s and the breakthrough for a young student
called John Doyle.

Section 8.4 presents a remedy to these problems, the loop recovery
approach (“the poor man’s robust design method”). Here fictious noise is
added at the input, “representing” plant variations or other uncertainties.
It is shown that for minimum phase systems the LQ loop gain is obtained
in the limit. What one does here is really making part of the observer
infinitely fast in a certain Butterworth pattern, see the separate handout
from PH. Read the discussion in 8.4 but skip the technical details. Skip
pp. 242-244, start reading again at “Dual asymptotic ...”.

In (8.4-24) the Byu is wrong, compare with 8.3-5. I suspect plots 8.4-
4 and 8.4-5 are misleading since the measurement noise is not present in

1



these plots. I do NOT think there is less noise on control signal for “robust
LQG” than with nominal LQG. Note that the plot 8.4-6 suggests that
the controller is unstable. This is a common phenomena when you make
the observer very fast.

Section 8.5 treats the so called Q-parametrization which I suggest
you skip right now. It is important and sometime in your life you should
read pp. 251-255, but I think you can wait until the course in linear
systems. There is also a report on the Q-parametrization by Anders,
me and Per that gives some more information. Read however the design
example on p. 257-8 (and perhaps reproduce the calculations).

We now have all the material to treat realistic design examples.

Reading Assignment
e pp. 207-260, except 242-244, 251-257.



Session 6

This session treats the servo problem, i.e. following a non zero reference
signal r(¢). This is a difficult problem since it is nontrivial to formulate
what to optimize. If might for example be unrealistic to require that the
output follows the reference signal y(¢) = r(t) exactly. One solution is
instead to say that the system should react on reference changes as some
nominal model, i.e. y = B, /Anr. Note also that to achieve y(t) # 0
usually requires a non zero control signal so it is a bad idea to minimize
something like

[ = BrfAmr)? + v Qzu

which is done in Anderson and Moore. With this optimization problem
there will be steady state error for non zero 7, since u will be chosen as
a trade off between achieving y = B,/ A7 and keeping u = 0.

One remedy is to instead minimize

/ (4 — B/ Amr)? + 4T Q.

Note however that this gives a high-frequency weighting of the control
signal. This might be a good idea but can also be unwanted.
Another approach is to minimize something like

J @ = B At 4 (4 = ) Qal — )

where u,, is a control signal that “makes the output close to B,,/An,7r".

To be able to find the feedforward part by optimal control methods
one must make some assumption on what is going to happen with the
reference signal in the future. The most common setups are

1. 7 1s known in advance,

2. 7 belongs to some signal class, for example generated by some known
linear system (e.g. 7(t) constant in the future),

3. ris a stochastic signal with known spectral density.

Versions of setup number 1 and 2 are treated in Anderson-Moore. I will
give a more general solution to setup 1 during the lecture.

There are several ways of formulating servo problems. I do not have
sufficient experience to be able to recommend any method as the best.

There are also many ways of introducing integrators in the controller
using LQG methods. I will mention the two most common ways: extend-
ing the system with integrators and adding fictitious bias signals. The two
methods differs in that the order of the model or observer are increased.
The most practical reason for wanting an integrator in the controller is
to achieve zero steady state error even with constant bias errors. And the
most common reason for bias errors is that the input signal “always” has
a bias. This is because when we use linearization around some (uo,yo) to
get a linear model we change variables to &# = u — up and uo is seldom
known exactly.



Reading Assignment

e Ch4. 4+ CCS Ch. 9.5. Skip Ch 9 in Anderson-Moore (or read it very
quickly).



Session 7

This lecture is given by PerH. The article by Laub describes several
different ways to solve the Riccati equation. There is also a good chapter
in Maciejowskis book on numerical algorithms for control if you are more

interested.

Reading Assignment
e Read the article by Laub. Take a look at the code in Matlab.



Session 8

This lecture is given by Anders Hansson. He has an internal report with
more information for those interested.
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Lecture 1

e [ntroduction

e Norms

e Formulas for the optimal LQG controller
e Software

e Handin problems, design challenges

Ch. 1 (pp. 1-6) + App A and B
TFRT 7454, 7456, (7475)
Mosaic

Course Program

Modern Control

More complex control problems (unstable
aircraft, flexible space structures, chemical
processes. . . )

Better sensors and actuators — enhanced
performance possible

Computers

50-60s: Use optimization to find “optimal
controller”

Newton, Gould, Kaiser (1957):

In place of a relatively simple statement of the
allowable error, the analytical design procedure employs
a more or less elaborate performance index. The
objective of the performance index is to encompass in
a single number a quality measure for the performance

of the system.

Optimization based approach

“Optimal” controller

Absolute scale of merit
Limits of performance
“Euphoria” in late 60s

Classical article: “Good, Bad, Optimal”




Why so Popular?

LQG Theory The first “automized” design method

Wiener—Kolmogorov Space Program

Kalman-Bucy Good models

Wonham, Willems, Anderson, Astrom, Stabilizing
Kucera, and MANY others LQ-control u = —La gives

Still active area e [1/2, c0]-gain margin

e 60deg phase margin

Norms
Robustness

A norm is a measure of “size” satisfying
LQ-control robust

~ . [lull > 0

Z Kalman filter robust (dual) lu|= 0= u=0

Output feedback (u = —LZ) NOT necessarily llow|| = ledljull, VeeR
robust. llus + uall < [lual] + [[uel]




Norms of Signals

Example: The Ly-norms (1 < p < o)

lullp = ( [ tupaeyi

With p = 2, energy, (RMS-value)

[lullz = (/00 u(t) T u(t)dt)/? =

_ (/_°° U (jeo)U (jeo)duo / 2) /2
With p = oo:

oo = sup u(t)

Note if u is a vector one must define what is

meant by |u|. We will use [u|? = uTu.

Scalar Products

L, is actually an inner product space:

<u,v>= /°° a® (t)u(t) dt

- 00

> =< 2, w >

u is called “orthogonal” to v if

<u,v>=0

Norms of Systems

Y =G(s)U
y=g*u

¢ = Az + Bu
y=Cz+ Du

The Ly-norm (LQG-norm):
16B=3"3" [ lautt)Pas =
i j V-
=23 [ (i) do 2 =
i j Y-

= ‘/—00 trace G*(jw)G(jw)dw/2m =

H,: As L, but with G(s) stable also.

Li-norm, Ho,-norm etc.

Scalar Product in L,

< G(s), H(s) >,= trace l/;°° Re G"(w)H (w) dw /27

Exercise: Show that if G(s) is stable and H(s)
“anti-stable” (i.e. H(—s) is stable) then

<G H>=0




Interpretation of the Hy-norm

u b

E—

u: white noise, mean zero, unit variance
E(u(‘rl)u(rz)T) =6(n—m)I

then
E(y"y) = ||G|3

Proof

E(y"y) = E(tr yy" ) =
— tr/ g(t — Tl)u(rl)d'rl/ u("'z)TgT (t — 12)dm,

— 00 —00

=tr /_o:o /;o:o g(t — m)u(r)uT (r2)gT (t — 73)didry

= tr/ gt — Tl)gT(t —11)dm

— 00

= |Gl

Alternative
E(tr yy7) =tr /Sy(w)dw/27r =

_ / tr G*(jw)Se ()G (jw)dw /2

“Variance of output with white noise in"”

1 T (2T (cTc CTD z
lim —/ T T dt
Toe T Jy | u D¢ DTD) u

More interprations of the Hj-norm
u= Si(t) y=g : i(t)

— G — ’

el =" llGéill3
i=1

“Energy in impulse response”

Yet another interpration in exercises

How to compute the H); norm

1) Residue calculus

1
161 = 3 5 § Gus(—)7 Gus(o)ds
i

2) Recursive formulas ala Astrom-Jury-Schur
3) With G(s) = C(sI — A)™'B
|G|} = cPCT

where P is the unique solution to the Lya-
punov equation

AP +PAT + BBT =0




Proof of 3

Alt 1: From CCS (6.43) we now that P =
E(zzT) is given by the Lyapunov equation
above. Therefore

G| = BE(yy") = CE(za")CT = CPCT

Proof of 3

Alt 2: Led by the fact that
IG2 = /Ooo Cet“BBT 4™ 0Tt
we define
P:= /0°° et BBT etA” dt.
By integrating both sides of

%etABBTetAT — AetABBT etAT + etABBTetAT AT

we get

~BBT = AP + PAT
That P is uniquely given by this equation
follows from the fact that A stable and matrix
theory.

More on Norms of Signals and
Systems

Linear Controller Design, Boyd, Barrat

An introduction to Hilbert Space, N. Young

Discrete Time

G(s) = C(2I — ®)7'T' + D with A stable

61 = 5ot § 6())6 ()
=3 % (W)g(k)
k

Same interpretations as in continuous time

Exercise to find the corresponding Lyapunov-
formula




Remark

Will also discuss finite time horizon problems

Instead of

one studies

[(2) o (2) areraamm

No stability issues.

The Standard Problem

Unified framework, became popular in 80s
w z

G
L y

u = Control Inputs
y = Measured Outputs

Fixed commands
Unknown commands
Disturbances

w = Exogenous Inputs = g
Noise

Tracking Errors
Control Inputs
Measured Outputs

z = Regulated Outputs =
States

The H; Problem

Closed Loop

u= K(s)y
z=Gi1+ G2K(I - G2 K) 'Gw = Typw

The H; problem:

Find K(s) such that the closed loop is stable

and

i [T l2

is obtained.

Example, Optimal Feedforward

system

Output
y = Gau— Gad

d is a measurable signal d = Gyw

Feedforward regulator

u= KFF d
Minimize a mean square of filtered outputs
and filtered control signals:

min E(ztlrzl + zg'zz)

[ —G5G2G, ] [ Gs5G3 ]
0 Gy
G, 0




The Optimal Controller

Let the system be given by

i}:A$+Blw+B2u
z = Clm + D12’ll,
y = Czz + Dz;w + Daau

under some technical conditions the optimal
controller is of order n and is given by

= —-L%

= Aﬁ-l—Bz’U;-FK(y— CE— ngu)
L = (D;D12)"}(D};C1 + B S)

K = (B1D3; + PCY) (D21 DF;)™?

> e

where P > 0 and S > 0 satisfy the Riccati
equations

0=S4+4T5+CTc, - LT DL, Dy L
0=AP 4 PAT + B,BY — KD;; DL KT

“Technical Conditions”

1) [A, B,] stabilizable, i.e. 3L : A — B,L stable
Stable uncontrollable modes allowed.

2) [Cy, A] detectable, i.e. 3K: A — KC, is
stable.

Stable undetectable modes allowed.

More Technical Conditions

3)

] =n+4+m Yw

[ jwI—A —-B,
rank
Cy Dy,

and D13 have full column rank.

4)

jwI—A —-B ]
rank =n+p Yw
[ C; Dy

and D,; have full row rank.

3) and 4) can be relaxed somewhat. Singular
Optimal Control. Special lecture later.

Examples

min |z|® + |u]?, &=u;+us

min|z|?, &= u

Software

Read about the LQGBOX in TFRT-7575

[X,P] = 1qec(4,C,R1,R2,R12)

[L,s] lqrc(A,B,Qi,QZ,QlZ)
1r = refc(4,B,C,D,L)

[Ac,By,Byr,Cc,Dy,Dyr] = 1lqgc(4,B,C,D,L,1r,K)

lqged, Iqrd, refd, Iqgd in discrete time

Works reasonably well

@ Q of
(o on) = [1g,) (e 2a)

R, Rlz] [ By ]
— BT DT
[ R, R Dy, ( : B ]




Design Challenges

Hand-in problem 8, due 941220

LQG-design on (choose one)

Hand In Problems e Hot Rolling Mill (LMP) 2 inputs, 3

outputs, control thickness

Girst e Gt 3L e Aircraft (p. 152) lateral dynamics, 2

All info on Mosaic inputs

e Helicopter Control, 2 inputs, 2 outputs,
no model available yet.

e IFAC Benchmarks Problems (13 different)
e ACC Benchmark (two cars with spring)

Next Lecture

Prepare by reading chapters 2 and 3.1-3.4 and
App C,D,E.

Concentrate on the principle of optimality and
how to get the infinite time horizon as a limit
of the finite time case.

Next lecture Monday 31/10 13.15
First exercise on Friday 21/10 10.15
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Lecture 2

Full information, y = @

Optimal Control

e Hamilton-Jacobi-Bellman

Pontryagin

Finite Time Horizon

e Infinite Time Horizon

Ch 2. Ch 3.1-3.4. App C; D and E.

Matrix Theory

A>0 & z*Az >0, Vo #0

A>B & A-B>0
A B -1

[ =A—-BD™"C "“Schur Complement”
C D),

# [A B] =D-CA™'B
C D

(1) [ 5) (2=

A is Hurwitz if and only if
SA+A'S=-Q

has unique solution S > 0 for any @ > 0

If [4, C] is detectable then A is Hurwitz if and
only if there exists unique S >0

SA+AS+C'C=0

Optimal Control

&= f(z,u,t) =z(to) given

Find u* that minimizes

V(z(to), u(-), to) = / ia(r), u(r), 7) dr + m(=(T))

to

V*(z,t) = min V(z,u(-),t)

Existence ?

Smoothness assumptions important

(easy in LQG)

Principle of Optimality

If V* exists then

*

ov* ) ov
_W(m(t),t) = nhm{l(m, u,t) + 92

V*(2(T), T) = m(X(T))

firu)

Hamilton-Jacobi-Bellman

Gives u* = u(z(t)).




LQ

= Az + Byu

min/OT [”’]TQ [u] +2(T)@ra(T)

u

Page 21: If V* exists then

V*(2(t),t) = 2'(t)S(t)2(t)

HJB then gives

T

—2'$(t)s = min (:c’,S’(t) (4 B) [
[el2)

Riccati equation

)+

Riccati

-8 =(SA+A'S+Q),

where
A By
4= (&, )
Ci D2
(o o)
S =
0 0
0= [ CiC:1 CiDj2 ]
Dg.201 DS,ZDIZ

Existence

u = 0 gives an upper bound on V*(z,t).

Riccati equation hence always has a solution.

Derivation using Pontryagin
Appendix C
2= Az + Bau

T
min/ 2T Qqiz + uT Qaudt + z(T) Qrz(T)
0

Hamiltonian
H(t,z,u,)) = %(mTle + 'u,TQzu,) + AT(A:E + Bu)

H, =0 gives uo(t) = —Q3 ' BA(t) and

;i;:H,\:A:c+B2u
“A=H,=AT)+ Q1z

Boundary cond.: #(to) = o and A(t1) = Q.




Pontryagin

()= %) ()

Finite Time Horizon

& = A(t)e(t) + Bi(t)w(t) + Bau(t),

z(0)=10

2(t) = C1z(t) + D12(t)u(t)
5 (?) u(t) = =(t)
A
. . u € R™: control inputs
Trying )‘(t) - S(t)m(t) gives w € R': external disturbances
A — S:B-l" S — _Qlw _ ATA z€ RP: objectives
y € R?: measurements
from which
~5=S8SA+A'S+Q,—-5B;Q;*BYS, S(T)=0
follows.
The Euler matrix above is heavily used in
numerical algorihtms for solving Riccati
equtions
Finite Time Horizon Simplification

Woanted : Causal, linear controller
u=K(s)y

minimize closed loop finite-horizon 2-norm

1 /7T ;
| Tzw ]2, 0,21 = E{T/ 2z dt}
0

Full information: y = .

Lets start with simpler subproblem

z = Az + Byu

= o)

where D'D = 1.
No noise
No cross terms

No loss of generality, see later




LQ-optimal control

T
Jo(K, 2, T, Qr) = / 2’z + 2 (T)Qrz(T)
t
If Riccati equation
~§=8A+A'S+C'C—-8B;ByS, S8(T)=@Qr
has a solution on [t, T'|. We obtain
T
7, = o(t) S(t)(t) + / (u+ BLSa) (u+ BySa)dr
t
Optimal controller
u*(t) = — B2 S(t)z(t)

Optimal cost

Jt(K*; Ty, T) QT) = m'(t)S(t)m(t)

Non-negativity of S
Since Jy(K,z:, T,Qr) >0V K,z

z,S{t)ze >0 = S(t) >0Vt

Existence, Yes!

Existence of solution S(t) to Riccati?

S(t) is bounded from above Vt < T
2 S(t)ze < Je(0,2¢, T, Q) = |23 pr,) + &' (T)Qr & (T)

where & = A% is the open loop trajectory.

Therefore, no finite escape time

Infinite Time Horizon Conjecture

Stability

Necessary to have (A, B,) stabilizable.

u*(t) = —BSa(t)
0=SA+A'S+C'C-SB;B;S

Which 57

Closed loop dynamics with noise:
& = (A — ByBLS)z + Biw

must have A — B, B, S stable

Necessary for existence: (A, C) no unobserv-
able modes on imaginary axis:

Az = jwz, Cz=0= BySz = (A— B3;B3S)z = jwz




Infinite Time Horizon

T
J(K,zo) = Tl'l.ngo {/0 2'zdr + :n'(T)QTm(T)}

subject to

¢ = Az + Byu, z(0) = xo

=]

where D'D = I and (A, B,, C) stabilizable

with no unobservable jw-modes.

Choice of Q1

Necessary to choose Q)1 correctly to have
S(t,T,Q1) — Sopt, where S(¢t,T, Q1) denotes

solution to

S=SA+A'S+C'C—-SB;B,S, S(T)=Qr

Choose any @r > 0 such that

QrA+A4'Qr+C'C—QrB;B,Qr <0

(4 ()
A, is detectable
Qr

Such a choice is possible: Take any L such
that A — B,L is stable and let Q1 be the
unique solution of

and

Qr(A— B;L)+ (A—-B:LYQr +C'C+L'L=0

Monotonicity of S(¢, T, Q1)

—~§ = 8(A — ByB,S) + (A — B;B,S)S
S(t) = 8@, T)S(T)® (¢, T) > 0

S(t,T,Qr) increases with ¢

Since
S(t,T—I—T,QT) = S(t—T,T,QT)

it also decreases with T'.

0 S S(t,T1 QT) S QT

Steady-state solution

S = Thm S(t,T, QT)
(independent of t).

S is solution to Riccati equation:

§ = lim S(,T,Qr)

= th(t, T1, S(Tl, T, QT))
= S(t,Tl,Tlim S(Ty,T,Qr)) continuity

= S(t,T1,S)
Since S =0

0=SA+A'S+C'C~ SB,B,S




Stability

Let L = B,S where S is obtained as T' — oo
as above. Then A — By L is stable.

Proof: Let Ly = BBT Sy then
Sr(A— ByL)+ (A— ByLY Sy + Lip Ly + C'C+ 57 = 0

Assume (A - By L)z = Az, show Re(A) > 0

impossible (see Green-Limebeer).

Letting T'oo we have Il — L. Continuity
shows that A — BL has all eigenvalues in
ReA < 0. But ReA = 0 is impossible by
detectability on jw-axis (see Green-Limebeer).

Cross-Terms

2= Ciz + Diyu

Assumption: Dj, full rank

Introduce

i = (D12D12) " Y*(u + D),C1z)

This gives

Z2=2'Ci{Ciz + @'%

aaa

) o el (N
y Diz)  \Ci Dip —D},C1  (DjyD1g) M2

[

(@]

Cross-Terms

(A, (:’1) no unobservable modes in jw:

[A—ij]
0= N z
Cy

[ A—jwl B, ] [ I ]
e T
C1 D12 —Dizol

Detectability condition becomes

[ A—jwl B;
rank

=n+m Vw
Ci D12]

Control Law:

With State Noise

We now verify that u* = —B, Sz with S > 0
satisfying the Riccati equation minimizes also

1 Tzuwll-

Consider any full-information controller

£ = Ft + Giz + Gaw,
u=HE¢+ Jiz + Jow

£(0)=0

Closed loop system

IS -1
o
Cu me
B 8t
+ +

b
5 g

€

where & = [z¢'].




H,-optimality

Must have J, = 0 for finite Hy-norm.

AQ+QA+C'C=0
~ [ P 0 ]
P =
0 0
Riccati+Lyapunov gives Q — P > 0.
Equality if J; = —B3S,H = 0. Then

| Tew |3 = trace(B;SB;)

Return Difference Formulas

C'C =(—sI — A')S + S(sI — A)+ SBQ;'B'S
Hence
Q2 +G'(~9)G(s) = (I + H'(—5)|Q:[I + H(s)]
where
G(s)=C(sI - A)'B

H(s)=L(sI — A)"'B

SISO case with @, = p:

Open Loop : G(s) = B(s)/A(s)

Closed Loop : C(sI — A+ BL)™'B =
B(a)/P(s)

Return Difference : 1 + H(s) = P(s)/A(s)

pA* (s)A(s) + B* (s)B(s) = pP"(s)P(s)

Symmetrisk root locus wrt p.

Example

Gle) = (s —1)s
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Lecture 3

Properties of LQ

e Return Difference Formula
e Gain and Phase Margins
Choise of Weights

Classical Control Concepts

Ch 5 and 6

Closed Loop

Loop Gain: L(sI — A)™'B
Return Difference: I + L(sI — A)_lB

A Factorization

0 sI-A -B
—sI— AT CTC CTD | =37 (—5)8,3(s)
—BT pT¢ DTD

where

0 I 0 I S 0
$=1|1 0 0 i ®(s)=|0 sI-A B

0 L I

det®(s) = det(sI — A + BL)

Return Difference Formula

Exercise:

MT(-s)M(s) =
(I+ L(—sI — AT)*BYT DT D(I + L(sI — A)"'B)

where M(s) =D + C(sI — A)"'B

If no crossterms:
If CTC =@y, CTD =0 and DTD = Q,

Q2+ BT (—sI — AT)"1Qi(sI — A)"'B =
(I+ L(—sI — AT)"'B)TQ4(I + L(sI — A)™'B)

(I+L(—sI - AT) 'B)TQa(I + L(sI — A)"'B) > Q,




Scalar Case

g2+ |C(sI — A)TB|? = 3|1 + L(sI — A)"'B|?
therefore

|1+ L(sI - A)"'B[>1

Gain Margin

|1+ L(sI — A)"'B|< 1
Gain Margin [1/2, 00]
Phase Margin 60 degrees.

Not simultaneously. No cross-terms. All states
measurable.

Gain Margin, MIMO

With
S=(1+L(sI-A)'B)?!
5(Qy"5Q; ") <1

If @, diagonal this gives nice MIMO
gain/phase margins see book.

Robustness against nonlinearities

Circle Criterion

Stability with any nonlinear time-varying input
gain with slopes in (1/2, 00).




Note

min/('u,+ Lz)T (u + Lz)

gives u = — Lz (if stabilizing).

Cross-terms.

A Matrix Equality

(I+L(sI—A)'B)y'=I-L(sI-A+BL)"'B

Proof: Using

¢ = Az + Bu
u=—-Lz+r

gives

r=u+Lz=[I+L(sI — A)"'Blu
u=r—Lz=[I-L(sI — A+ BL) 'B]r

(...)*Q@a2(I — L(jwI — A+ BL)"'B) < @,

Bounded Real

A real rational matrix S(s) is bounded real
(BR) if all poles lie in Re(s) < 0 and

§T(—jw)S(jw) <1,  Vw

Clear that
ST (—5)S(s) < 1

where

S(s) = QY*(I — L(sI — A+ BL)"'B)Q;"/*

Positive Real

A real rational matrix Z(s) is positive real
(PR) if all poles lie in Re(s) < 0 and

7" (—jw) + Z(jw) 20,  Vw
Not so clear that
Z(s) = QzL(sI — A+ %BL)‘lB

is PR.




Closed Loop Eigenvalues Scalar Case, no cross terms

Given by eigenvalues of A — BL Introduce
0 sI-A -B Q2= pl .
det | —sI— AT CTC  CTD | = det(&7 (—s)@o3(s) Gila)= Gigel = A)=1Bi=ib(@) /(@)
_BT DTC DTD I+H(3):I+L(SI_A)_1B:P(8)/A(S)

This gives Closed loop characteristic equation P(s) =0

det(—sI — AT)(sI — A)det(MT (—s)M(s))
= det(—sI — AT + LT BT )det(DT D)det(sI — A + BL) Q2+ GT(—9)G(s) = (I + BT (—5))Qa(I + H(s))

pA(~5)A(s) + B(~s5)B(s) = pP(~s)P(s)

Symmetric Root Locus

symlocc, symlocd in matlab

Cheap control p — 0 Expensive Control p — oo
Eigenvalues of closed loop tend to stable zeros Eigenvalues of closed loop tend to stable zeros
of B(—s)B(s) and the rest to oo as stable of A(—s)A(s)
roots of

5% = const - p
Example

minu?, Z=z+u
A(s) = s+ 1 unstable.

u = —2x gives

P(s)=A(—s)=—-s+1




High Frequency Behaviour

L(jwI — A)"'B=LB/w=Q;'BTSB/w

Controller has “roll-off” 1

Same conclusion for

L(jwl — A+ BL) 'B=LB/w = Q;*BTSB/w

Rules of Thumb

Q. = diag(ay,...,a,)
Q2 = diag(,@l, [ ,,Bm)

Let a; ~ (z;)"% and B; ~ (u;)"% where z;
and u; denote allowable sizes on state 7 and
input 2

More ideas

Punishing
(1.:.' + a:z:.-)z

“should” give z; = —au;.

Moving Eigenvalues
Can move one eigenvalue at a time by using
Q1 =4qq"

where g is orthogonal to the A-invariant
subspace of the rest of the modes




Example

G(s) = /(s +1)(s? + 1)
Increase damping without moving pole in
s =—1.

8=
0.7071 0.7071 0.4082

0 + 0.7071i 0-0.7071i -0.4082
0 0 0.8165
d =
0 4 1.0000% 0 0
0 0 - 1.0000i 0
0 0 -1.0000

1 2
Q=gq4dl, @=|1], g@=]0
0 -1

Classical Control Concepts

y=PC(I+PC)y }r—n)+(I+PC)d
e=r—y—~n=(I+PC)yYr-d)—(I+PC) 'n
u=C(+ PC) }(r—n-d)

S=(I+PC)™' sensitivity
T = PC(I+ PC)™' complementary sensitivity

Trade-offs

Should have S small where good tracking and
good disturbance suppression are wanted

Should have T small to have good noise
suppression

S+T=1

Sensitivity
S sensitivity: Let H = PC(I + PC)™! (scalar)

oH [H _
P/ P~

Another similar interpretation in book




Unstructured Multiplicative
Perturbations

If P(jw) is changed to (I + A(jw))P(jw) then
the disturbed system is stable if

7(A) < (a(T))™

Should have T small to get robustness against
multiplicative perturbations.
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Lecture 4

State Estimation

Preliminaries, Projection Theorem

Kalman-Bucy Filter Discrete Time

Duality

Kalman-Bucy Filter Continuous Time

Ch7

Prediction

Assume that

then the vector
z=z—my — K(y —my) K:RWR‘,;1

has zero mean, is uncorrelated with y and has
covariance

R, =R, — RoyR;'R],

Proof

E(z) = 0 obvious

()00
(0GR )
(0 ) a2

B [Rz—R,,,RglRfy 0 ]
= 0 s

This proves it

Note the Schur complement again !

0
I

)

Prediction of Gaussians

Theorem If z,y are Gaussian with mean and
variance as above then

2 = Elz|y] = mz + K(y — my) (1)
E{(z—2)(z—2)T|y} = R; — KRyKT = Ra (2)
Ry = KRy

z and ¢ — & are independent.

Proof: Introduce Z := 2 —mg, §: =y —my




Proof cont’d

—f(w,y)Nex _lz —lz
=5 o L)

z=2—mgy — K(y —my)

So |y is Gaussian with mean (1) and vari-
ance (2)

z and y uncorrelated hence independent.

E(z |y) = MLE

Corollary: & = E(z | y) is obtained by
X _ [z:—mm]T[Rz Rzy]_l[:c—mz]l
:z::argmln T

E) y—my R;, Ry y—my

Therefore E(z | y) = MLE.

Geometric Interpretation

Another Theorem

Let z, u and v be jointly Gaussian random
vectors and let u and v be independent, then

Elz —mg | u,v] = B[z —mg | u] + E[z — my | 1]

Proof:

Elz —mg | u,v] = (RWR;1 R R;* ) [u—mu]

V— My
= RouRy ' (u — my) + Roo Ry M (v — my)
=E[z — mg | u]+ Elz — mg | ]




Prediction

o(t + 1) = Az(t) + Bie(t)
y(t) = Ca(t) + Dazie(t)

where E(e) = 0 and E(eeT) = I.
Add u(t) later

Prediction
&(t+1]1)=E(e(t+1) | Ve-1,9(t))

Introduce

§(t) = y(t) — E(y(t) | Yi-1)
= y(t) - Cad(t |t — 1)

Y:-1 and () independent.

E[T'(t) — mg|Pe_1, ﬂ(t)] =
E[2(t) — mg|Ye—1] + E[2(t) — m,|§(t)]

7(t) “innovations”

Gram-Schmidt

Discrete Time Kalman Filter

z(t + 1) = Az(t) + Bie(t)
y(t) = sz(t) + Dzle(t)

Let
P(t) := E(3(t|t — )3T (¢|t — 1))
be the covariance matrix for
B(tft — 1) = (t) — &(tlt — 1)
Then

P(0) = P,
(0| — 1) =mo

Kalman Filter for z(t + 1 | )
E(a(t+1) — A8(¢ [t — 1) | Vi) =0

(e = (e n) ()

Hence E(xz(t+1) — Ad(t |t —1) | %) = Ki(t)

2t+1]t)=A8@t|t—1)+ K(y— Cod(t |t — 1))
K = (APCT + B, DL)(C;PCT + Dy DT) 71
P(t+1)= APAT 4+ BB — K[C,PC] + Dy DL )K"

where P = P(t).




Kalman Filter for z(¢ | ¢)

E(e(t) — 8(t |t — 1) | Yos) = 0

(5 )= (6 5 (7]
Hence E(x(t) — &(t |t — 1) | V) = K,i(t)

Bt |t)=8(t|t—1)+ Kp(y — Cod(t |t — 1))
K; = PC](C2PCY + Dy D7)~
Ps(t) = P — PCT(C,PCT + R;)"'CP

)

where P4(t) is covariance for z(t) — &(t | ¢
and P is covariance for @(t) — (¢t |t — 1).

Innovations

Corollary

0 s#£t
E(§(s)g)T) =
(F=)g(2)") {Czpc;-”+1)211)’5"1 P
Proof §(t) and );_; are independent. If s <t
then §(s) is a linear function of Y;_;.

Representation of y

B(t+ 1) = Ad(t) + K§
y(t) = Ca2@(t) + §(t)

Gives

[Ca(sI — A)~'K + I][CoPCT + D2y DTN . I
= [Cz(SI . A)_]'B]_ + Dzl][Cz(——sI == A)_lBl + D21]T

Duality
For convenience Ry5 = 0.
z(t+ 1) = Az(t) + v(2)
y(t) = Caz(t) + e(t)
Estimate [Tz linearly in J;_; so

min E(lT:l:(t1) - le’(tl))2

As the estimate is linear we have

Ta(t) = — i u” (t)y(t) + bTm

t=tg

for some u(t).




How choose u(t),5?
Introduce z as

2(t) = AT2(t + 1) + Cau(t + 1)
Z(tl) =1

Can show

IT(E(tl) — ﬁ(tl)) = ZT(to - 1)1‘.(t0) — bTm +

DT ()o(t) + uT (t)e(t)]

t=to
Squaring and taking expectations gives

Bli%a(t:) — Fa(t)]? = [(a(to — 1) — b)Tml? +
zT(to — 1) Roz(to — 1) + 12_: zT(t)Rlz(t) + uT(t)Rzu(t)

t=tqo

Optimal estimate independent of [.

Duality

Optimal Control Problem where

optimal control state estimation

t —t
to i
4 to
A AT
B, CcT
Cy BT
D12 D},
S p
A K

Continuous Time

Stochastic Integrals, hard

In Anderson-Moore the duality calculation is
done in continuous time

Hard (?) to prove that linear estimates are
optimal

Hard (?) to prove separation principle rigor-
ously

Anderson-Moore /Astrom

pp. 182-195 in Anderson-Moore
pp. 241-248 in Astrom 1970

& = Axz(t) + Bie(t)
y(t) = Cz:ﬂ(t) + Dzle(t)

E(e(t)) = 0 and E(e(s)eT(t) = I§(t — s).

E(z(to)) = m and E(z(to) — m)(z(to) —m)T =
Po

Everything Gaussian




Assume Linear Estimates

Admissible estimates

ty
Tat) =— / uT (£)y(t)dt + ¥Tm
to

Criterion
E[Tz(t,) — 1T2(t1))2

Duality

Introduce z through

53=—-AT2 - CTu
Z(tl) =1

Then

E["2(t1) - lTﬂﬁT(lh)]2 = [(2(to) — b)" m]* + 2 (to) Poz(to)
o, L) (oa) (7 28 (Gg)

Optimal Control Problem = u(t)

Optimal Estimator

Rewriting the estimate
ty
() = — / T (E)y(t)dt + BTm
to
in recursive form gives
& = Ad + K(y — Ca)

where

P=AP+ PAT 4+ ByBf — KDy D51 K"
K = PCT + B, DI (D21 D31)7?

Introducing u
If the state equation is changed to
:i:A:lJ-}-Ble-l-Bz’u.

the estimator changes to

& = A% + Bou+ K(y — C2)

Proof Add a deterministic signal Byu to all
calculations




Infinite Time
Assumptions 1:

[4, C;] detectable

Assumptions 2:

) [ij—A B, ] iy v

ran =n+p Yw
C; Dy

and rankD,; = p (“noise on all measure-

ments” )

Then there exists solutions P, K to

0 = AP + PAT + B]_Bg_[‘ - KD21D21KT
K = (PCT + By DY) (D21 D21) 7t

so that
A—-—KC,

is asymptotically stable

Proof: Duality

Representation of y

Gives

[Ca(sI — A)™ K + I|D2, DT [.. ]
= [Cz(sI == A)—]'Bl + Dz]_][Cz(—SI — A)_IB]_ + Dzl]T

7(t) orthogonal “innovations”

The H, approach
Output Estimation Problem Find z which
minimize
min E||z — Lz||3

This means minimize H; norm from input w
to output z — Lz where system is

z A By 0 z
z2—Lz|=|-L 0 I w
Yy Cz Dz]_ 0 Z

H, approach

Idea: Let any estimator be given by

§=Ft+Gy
8=HE+Jy

Calculate Hy-norm for extended system with

state .
(¢)

Show that || - ||2 > trace(LPLT)
Equality obtained for Kalman Filter

Details are left as an exercise




47
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Lecture 5
Output Feedback

Ch 8

Separation Principle
Example 1 p. 222
Example 2 p. 232
LQG/LTR

Example 3 p. 233

e Q-Parametrization

An H, proof of continuous time

The Optimal Controller

Let the system be given by

z = Az + Biw + Bau
z=Ciz+ Disu
y = Caz + D31w + Dyou

Optimal controller

—Lz

AZ + Byu+ K(y — CT — Djau)
(D1, D12)"H(D1,C1 + B3 S)
(B1D3; + PCY)(D21D3y)

u
z
L
K

where P > 0 and S > 0 satisfy

0=8SA+ATS+cfc, - LTDL, Dy, L
0=AP+ PAT + B:BT — KDy DL KT

such that A — ByL and A — K, stable

“Technical Conditions”

1) [A, B, stabilizable
2) [Ca, A] detectable

3) “No zeros on imaginary axis" u — 2

[ij — A —B,
rank

=n+m Yw
Cy D2 ]

and D, have full column rank.

4) “No zeros on imaginary axis” w — y

[ij —A —By
rank

=n++ Vw
C, Dy, ] P

and Dy; have full row rank.

Separation Principle, basic idea
u+Le=u+ L+ LE

E[(u+ Lz)T (u+ Lz)] = E tr[(u+ Le)(u + Lz)T] =
E(u+ L&) (u+ L&) +
E tr(u+ L2)3T LT +
E wr(L#3TLT)

Orthogonality theorem:
E(usT) =0
= minimum for u = — L& and

min E[(u + Lz)T (u+ La)] = tr (LPLT)

where P = E 37




Bellman Equation

ty

G(y) = I11;1(1§1E(Z | )

Then if u(t) = f(Vi—1):
G(yt—l) - 1’!11‘1;11 E[G(yt) | yt—l;ut]
or if u(t) = f(Qr):

G(:) = 1111‘111 E[G(Vis1) | Vi, us]

e Markov Dynamics

o Decomposable cost function

For a proof see [Astrom, 1970]

Discrete time u = —Lz(t[t — 1)

Using previous slides on

N-1
vV =z7(0)5(0)z(0) + [u+ Lz]T[Bf $B; + Q2)[u + L
k=0
N-1 N-1
+ Z w' Bf §Byw + Z w? BT S[Az + Byu] +
k=0 k=0
N-1
+ Z S[Az + Byu]T SByw
k=0

gives since E(u(k)wT(k)) =0

J(Yi—1) = min EV = mT S(0)m + tr RoS(0) +

cost for initial condition

N-1 N-1
Z tr BTSB, + Z tr LT[B] SB; + Q:]LP
k=0 k=0

h_v_l v
cost of state feedback cost of state estimation

]

Discrete time u = —L&(t|t) — L,0(t|t)
As before but with

V =27(0)5(0)z(0) +
N-1

+ Y [u+ Lz + L) [B] SB; + Qs)[u+ La + Lyv] + ...
k=0

gives
N-1

J(Y;) = J(Yi-1) — Y tr M[CPCT + Ry)MT[B] $B; + Qo]
k=0

Continuous Time u(t) = — Lz

(t)
Harder mathematics
Derivate E(z?Sz) when & = v. (answer: SR;)

Ito-calculus, stochastic integrals

“Such derivations are beyond the scope of this
text”

decreased cost when y(t) is measureq

Details in TFRT-7475




Closed Loop, continuous time

z A—ByL B, L
[ﬁ]z[ 0 A—KCZ]
B
- [31—KD21] v

2= (Cl—DlzL DlzL] [

Z uncontrollable from u,

A — KCj dynamics cancelled from u, to y.

Controller, continuous time

éz:A£+Bzu+K(y—Cg:ﬁ—D22u)
u=—LZ+ u,

u=Gssu, — Gppy
Gsp=L(sI — A+ BoL+ KC; — KD, L) 'K
Gjs=—L(...) (B2 — KD32) +1

Loop gain
Wor = Gyu(s)P(s)
where P(s) = Ca(s] — A)™' By + Dy,
No longer Wor, = L(sI — A)™'B; as in LQ

Loss of guaranteed margins

Example 1, p. 222

LQG1
min E[yjzK + 92 +0.204%

LQG2

min B[y} + 93 + 423 + 4z2 + u?

Plot control signal also !

Results, Examplel

Would not recommend the LQG2-design

/home/fulqg/lqg94/matlab/fig822.m
(Very ugly code)




Example 2, p.232

2)=6 ) (2)- () L)
v=(10) (2] +ou
min E[z? + 22 + pu?]

What happens as p — 0 and o — 07

Result, Example 2

Terrible gain and phase margins

/home/fulqg/lgg94/matlab/doyle.m

LQG/LTR

Loop Transfer Recovery

Goal: To recover a return difference close to

L(sI — A)"'B,

Idea: Add fictious input noise :

Ry := Ry +qB;BY

For minimum phase systems this gives

lim Gp(s)P(s) = L(sI — A)"'B,
g—c0

Easy to try this idea, doesn't work always

Dont let ¢ — o©

Example 3, pp 232-6 and 246-250
See Figure 8.3-4

1 Nominal LQG
2 LQG/LTR
3 (LQG/LTR with colored noise)

Warning: Calculations and plots in book have a
lot of errors (also in article [6])




Results, Example3 ()-parametrization

LQG/LTR with ¢ = 0.1 seems good

Hard (?) to find by pole placement (?)
3. Bad idea to do LTR at high frequencies

/home/fulqg/lqg94/matlab/fig834.m Q(s) stable = stable closed loop

Equivalence An H, proof of continuous time

All stabilizing controllers can be obtained in

this way (for different stable Q(s))! o= i Bausetay

z=Ciz + Diau
The closed loop can be written y = Cyz + Dyyw
Tyu(5) = Tua(s) + Ti2(5)Q(s)Tau(s) Assume for simplicity that

DT, [01 D, ) = (0 I]

for some fixed 711, T1a, T5;.
D [BlT D;—,ﬁ] = [0 I]

Idea: Optimize over Q(s).

See linear systems course




H, proof

Let L be solution from Riccati, A— By L stable

Then (exercise)
Tyw(K) = G, + UG, (K)

where

G — ( A— ByL Bl]
‘T lCi—Di2L 0
g [ A-Bal Bz]
{ C1 — D12L Dy,

(A By B
GE)=|L o0 I |xk
(C2 D1 O

Note that G.(s) and U(s) stable
K stabilizes G, & K stabilizes G

H, proof

ITzwll; = lIGe + UG (X))l
Stability, so can change H, norm to L; norm

IToulld = < G. + UG (K), Go + UG (K) >1,
=< G.,G:>L,
+2 Re < G4(K),U*G. >,
+ < Gy(K),U"UG(K) >L,
= [IGelf} + |G (Kl

H, proof
Since (exercise)
U (—jw)U(jw) =1
and
UT(—jw)Ge(jw) = — BT (jwI + A+ B,L)™'S

SO
< Go(K), U*G,
N——

stable anti-stable

>r,=0

Analytic function theory version of orthogonal-
ity theorem

H, proof

min |Gy ()3

where
A By B
GuK)=|L 0 I |xK
Cy, Dy;y O

Output estimation problem (small modifica-
tion of previous lecture, add B, term).

Solution: Kalman Filter
Minimum:

n}(inHTmH% =tr (B $B;) +tr (LPLT)

(remember: no cross-terms here)

This completes our noise-free proof of continu-
ous time LQG




Linear Quadratic Control Design 94 Servo Problems

Which problem to solve?

Lecture 6
If optimal control is going to be used we must
Servo Problems, Loop Shaping assume something about future reference
signal
Ch 4 + (9)
CCS Ch 9.5

Three approaches (at least)

1. 7 is known in advance
e Servo problems

2. r belongs to some signal class, e.g. is

e Integrators etc .
generated by some known linear system

3. 7 is a stochastic signal with known mean
and variance

Servo problems, quick solution Servo Problems ala CCS

Without any optimal control motivation:

Control signal

u=—-Lé+1r

[, usually chosen to get unit gain

[(C-DL)(-A+BL)"'B+ DI, =1




Servo Problems ala CCS

Example

Servo design on pendulum
Collocated sensor

Improve introduction of reference signals

Before
u=—-L%+ L u,

Good idea not to excite the oscillatory modes
by the reference signal.

Bn _ am
A, s+am
Easiest if  and x,, have same physical
interpretation
Example Example

Servo design on pendulum

Phase jdeg]
E & o 8
=43
3 F §

Frequency frad/s}

L L L L
20 30 40 50 60

=02 10 20 an 40 50 0




Approach 1, future known signals
Criteria

#(t) = Az(t) + Bu(t) + a(t)

=[O (& %) (200

+(2(T) = 2m(T))" Qr(2(T) — 2m(T))

Zyn, Um, @ known in advance.

Solution
0 sI-A -B A a— Qg
—sI-AT Q1  Qn w—mm] = [ 0
_BT Qf2 Qﬁ U — U 0

where a,, = (%I — A)zy — B,

Proof: Pontryagin

H=J+ MAz 4+ Bu+ «)

First row : &= 0H/0A
Second row : A= —9H/dz
Third row : 0= 0H/0u

Boundary conditions

E(O) =29
NT) = Qr(2(T) — zm(T))

|

Future known signals

Using

A a— oy
T (—5)Bo®(s) [ T — Ly ] =t [ 0 ]
U — Uy 0

where

Inverting ®T(—s) gives

DT D[u — upm + L(z — o))
= —BT(—%I — AT + I"BT)"1S(a — am)

Recaption
Optimal control signal
U = Upn — L(z — 24,) — (DT D)"'BT g
where

—6=(A-BL)Y o+ S(c—an), oT)=0

Qg = (%I - A)Em - Bum

Need future z,,, unm, .




Remark

Note that if
a=10
= (iI— A)eym — Bup =0
[ 7 di T m —
then

U= Uy — L(z — 2y)

This structure is recommended in CCS, even
for the case that we dont know ,,, Z,, in
advance. Then put the anticipative term a,,
to zero.

Approach 2

Anderson-Moore:
min/(m - :z:m)TQl(:c —2m) + uT Qou dr

where z,, = Lyy., is the shortest vector «
satisfying y,, = Ctpy,.

Approach 2

Solution

w=—Le — Lz
where L, is given by Riccati equations
involving both system A, B, (), and
reference model A,,, C,,

Approach 3, stochastic r

r = G,w,
where w, is white noise and G, frequency
shaping filter.
Large GG, where good tracking is wanted.

Many possibilities, for example




Integrator 1

CCS 271-273

Extend system with integrators

min/ 2T Qiz + uT Qau + 37 Qa2

gives [L L ] . Kalman filter as before.

Z noise-free so nonstandard LQG

(D71 not full rank).

Integrator 1
Use controller
u=—L& — L& + 4,
(is this the limit as oy — 07)
Increased order model (A,, in CCS)

Observer order (A, in CCS) not increased

Integrator, 2

Extend system with fictious bias signals

Non-stabilizable states so nonstandard LQG

Integrator, 2

Use controller (for D = 0)

%@: [‘3 1;] + [Ig]u+K(y— (¢ 0) 9

u:—(L Ln+1]:i:

where L, is chosen to cancel bias at
outputs

C(A—BL)™ (B, — BLy4+1) =0 (for D =0)




Integrator 2
Controller has integrating action
Proof Controller has A matrix (for D = 0)

[A—BL—KlC B, —BL,H.l]
-K,C 0

which is singular. Hence pole at s = 0, i.e.
integrator in controller.

Increased observer order (4,)

Not increased model order (4,,)

(what if D # 07)

Pre-specified factors in R(s)

These approaches can be generalized to other
pre-specified modes in the controller

Change 1/s to a 1/Ry(s).

Prespecified factors in S(s)

Want pre-specified transmission zero of LQG-
controller

Exercise

Prespecified factors in T'(s)

Exercise




Numerical Solution of Riccati equations

941212, PH

ATS + SA+Q: - SBQ;'BTS=0
ATSA+Q,— ATSB(BTSB+Q;)"'BTS4=S

s2o, (2 9] =(c p)" (c »)

. Q

Ref. Bittanti-Laub-Willems, 1990.

Solve diff. equation to stationarity

Unique solution? Influence of intial condition?
Asymptotic rate of convergence?

Doubling algorithms, square root formulation

Newton refinement — Kleinman
Approximation Sy gives Ly = Q; BT Sx. Solve
Lyapunov equation

(A— BLg)TS + 5(A — BL) + Q1+ LY Q2Lx =0

for new approximation Si,;. Converges for
stable 4 — BL,, quadratically. C.f exercise.

Euler matrix

Lagrange multiplier p = Sz, u =Lz
stable invariant subspace

0 sI—A —-B ) (p)
—sI—-AT CcTc CTD z | =0
—BT DTc DTD) Lu,

0 zI-A —B ) 'pw
z-11-AT CTCc CTD | =0
—BT DTc D™D ) (u)

Hamilton Jacobi Bellman — LMI-solution

Completion of squares — Schur complement

(Cz+ Du)T(Ce 4 Du) + (Az + Bu)T S(Az + Bu) =
(Lz + w)TG(Lz + u) +2T(S — AS)z
G=BTSB+D™D, GL=BTSA+D'C

(656G 8-
7GR 60

(Cz + Du)*(Cz + Du)+
2T §(Az + Bu) + (Az + Bu)T Sz =
(Lz 4+ uw)" DT D(Lz + u) — 2T Sz

[:z:]T [ATS+SA+CTC SB+CTD] [
u BTS 4+ DTC DTD

]:
G ) G

f

Invariant subspace methods

Use stable eigenvectors:

A —-BQ;'BT -A 0
F= . , ET=T
—@1 —-A 0 A

to form § = Ty T,
or any stable invariant subspace

EX = XA,
AXy - BQ;'BTX, = X1 A,
Q1 X; — ATX, = X2 A,
=X, X{1(A - BQ;'BTX, X[ )X,

i.e. the Riccati equation with § = X, X1,
X, invertible? § > 07 A, stable?

Ordered Schur form, triangular

first step in the QR-iteration

see course in matrix theory or the LAPACK-
manual (Mosaic).

Pencils and generalized eigenvalues.

New gzorder in Matlab.




Singular Discrete-Time Riccati-Equations
Per Hagander and Anders Hansson

Department of Automatic Control
Lund Institute of Technology
P.0. Box 118
§-221 00 LUND, Sweden

When solving the discrete-time Riccati equation there are many practical cases where
common software does not behave well. We will sort out cases that fail just because
of a bad algorithm design from cases that are really difficult. The standard form of
the discrete-time Riccati equation is

g = ATSA+ Q.- ATSB(BTSB + Q,) *BTSA
where Q1 = C{rCl and Q2 = DT D,. Symmetric solutions S > 0 correspond to
min BJ, J=2TQ1z +ufQou = 22

u=-Lz

Clm

gz = Az + Bu+v, 2= [Dzu

] , TER", uE€ R™
where g is the forward shift operator, and where v is discrete time white noise with
unit covariance. Also require that {A, B} is stabilizable.

Some codes, like the one still in the Matlab Control System Toolbox, require
invertible Q, and also A. This is just bad choice of solution method. Using such
software you are not able to solve a minimum-variance problem or a problem with
a pure time-delay. You fail on many examples in standard texts like [1]. Another
weakness with many codes is that they don’t handle crossterms in the loss J cor-
rectly, i.e. when

z2=Cz + Du

with CT D # 0. Crossterms appear €.g. for problems on polynomial form, AlQ)y =
B(q)u+ C(g)v, and their inclusion should be straightforward for most methods.

The maximal positive semidefinite Riccati-solution $ corresponds to closed-
loop eigenvalues A; of A — BL inside or on the unit circle. Systems with some
|A\;] = 1 show a first type of singularity. This happens only if A; is also a zero of
H(q) = C(q] - AY B + D, the transfer operator from u to 2. The solution S is
then singular, e.g. (2]. A second type of singularity occurs when (BTSB + Q2) is
singular giving nonuniqueness in the state-feedback u = —Lz

(BTSB +Q2)L = BTSA+ DTC

Some of the solutions L may give |A:] > 1. That singularity shows up when H(q)
lacks left-invertibility, i.e. when there are "redundant” control signals, e.g. [3]-

Many codes have difficulties with the first type, and the second type is a major
challenge to most algorithms. Still both types are often possible to handle, if great
care is taken in the design of the numerical methods. Really singular cases may occur
when small changes of [4, B;C, D] make an uncontrollable mode controllable by a
control-signal without penalty. Then S could be discontinuous like in [1/2,6;1,0],
whereS=4/3f016:0butS:lforé';éo.

A general form of the Riccati equation, covering crossterms and singularities, is

s1ITGL = ATsA+CTC, GL= pTsa+ DTc, G=BTSB+ DTD

- GGG RS



Singular Discrete-Time Riccati-Equationg

Per Hagander and Anders Hansson

Department of Automatic Control
Lund Institute of Technology
P.O. Box 118, 5-221 00 LUND, Sweden

Discrete-time Riccati equation
S=ATSA+ Q) — ATSB(BTSB + Q;)"'BTSA

Symmetric solutions § > 0 correspond to

min EJ,

J=2TQiz+uTQou = 272
u=—~Lgz

012}

=Az+ B , Zz=
qT + Bu+v [Dzu

],mER",ueR’"

where Ql = C:IPC]_ and Qz = D;Dz

Bad algorithms or difficult problem?

Standard codes often fail for standard ex’s.
Singular Q;
Singular 4 — time-delays

Cross-terms,
z=Cz+ Du
with CTD # 0

- sampling or
polynomial form

Two types of singularity

Type 1:
); of A— BL on unit circle
); also a zero of H(q) = C(¢gI—A)"'B+D
Ex:
H(g)=(¢" ~q+1)/¢’
Notice H(q) has no zeros when Q2 > 0
Type 2:

(BTSB + Q3) is singular
State-feedback u = —Lz nonunique
Some solutions L may give |X;] > 1
H(q) lacks left-invertibility

Ex:

_[10]+
qz_02mu

J = (uy + uz — 21)* + (21 + 22)?

How hard?

Type 1 difficult for many algorithms
Type 2 major challenge to most algorithms

Both types often possible to handle, provided
great care in design of the numerical methods.

For Type 2 we have that S is often discontinu-
ous for some small changes of [4, B; C, D).

Ex: gz = z/2 + 6u, J = 2? giving

52{4/3 if §=0

1 otherwise

Here a mode becomes controllable
by a control-signal without penalty.

The parameter structure is important.

— minimum-variance control




LQ-optimal control using Lagrange multipliers

First order optimality conditions:

0 E 0) (A(k+1) 0 A B A(k)
[~AT 0 0] z(k+1)] = [—ET ctc CTp z(k)] (1)
-BT 0 0 u(k + 1) o DTCc DTD u(k)
ETX(N) = CLCnz(N)
z(0) = zo

A(k+1)=S(k+ 1)Bz(k+ 1) gives

DTCz(k) + DT Du(k) = —BTA(k + 1) = —BT S(k + 1) [Az(k) + Bu(k)]
u(k) = —L(k)z(k)
[DTD + BTS(k+1)B] L(k) = DTC + BTS(k +1)4

Now find (using qzorder) orthogonal @ and Z such that

0 E 0) (E, % %)
QT | -4T o0 o|lz=]|0 E, «
-BT 0 0 L0 0 0}
2
0 A B ) (A: % %) (2)
QT | -ET CTCc CTD | Z=| 0 A, «
o0 DTc DTD) L0 0
where [zE; — A.] has all eigenvalues inside (or on) the unit circle. With
A(k) Z11 SE
:B(k) = Z21 Z.;ll:c(k) = I :c(k)
u(k) Z31 -L
we get that the “stable”, “optimal”, closed loop
0 E 0 I
QT | -4T o0 oz |o]| zle(k+1)=
-BT 0 o 0
0 A B I
QT | -ET ¢Tc CTp |z | 0| Z;'=(k)
o0 DTc DTD 0
or
'EC 'A'C
0 | Zlz(k+1)=| 0 | Z;;'z(k) (3)
0 0

satisfies the first order optimality conditions.



Exercise 1

Compute the H;-norm of the continuous time systems G(s) =
a') 1 b) ﬁ’ c) n’+2Ct’s+w’
Is the H;-norm invariant under time-delays, i.e. is

IG(s)ll2 = IG(s)e™*"]|2?

Show that if G(s) is stable and H(s) anti-stable (both strictly proper) then
< H,G>p,=0
“Stable and anti-stable systems are orthogonal.

Prove or disprove that

|G1 + G2llz < [|Gillz + [|G2llz

|G1G2|lz < ||G1l|2]|Gal2

Prove that if g is a SISO system then

|| g2l 0
ax ——— — =
w0 ”'U.”z ||g”2

where ||2||o = sup, |2(t)| and ||z||2 = [, |u(t)|?dt for a signal z(t).

Which of the following qualifies as norms of smooth signals u(t)?

- sup [u(t)]
b. |u(0)| + sup |u(t)]

Prove that

1 [ .
1612 = 5 [ S eHG(iw)as
where o; denotes the singular values.

Prove or disprove that

G
sup ||Gull, = sup Gl
ufla<1 [||a

where || - ||, and || - |5 are arbitrary signal norms.



10.

11.

12.

Use the Riccati equation
~S=8SA+ ATS+Q, - SBBTS, S(t)=Qo
to rewrite
IR
/tn E(a: z)
in order to prove that

ty
J = 2T Qz + uT Q udt + 27 (t1)Qoz(t1)
to
ty
_ / (u+ Q5 BT S2)TQa(u + Q5 BT Sz)dt + 27 (t0) S (to)z(to)
to
Remark: This trick probably gives the most direct way to solve the LQ-problem,

and it actually provides both necessary and sufficient conditions. The discrete
time version is given in CCS p. 343

In the following problems L can be any linear mapping between two inner
product spaces. The norm is given by ||z||> =< z,& > and one says that L* is
an adjoint to L if < L*y,z >=< y, Lz >. If you do not understand what this
means, think of L as a matrix and L* as the transposed matrix.

Show that
min ||ul|, such that < z,u>=a

is solved by
i = a2/ 2]
If LL* is invertible then show that

min ||u|, such that Lu==
u

is solved by
Umin = L*(LL*) 'z

the minimum is given by

[tmin||* =< (LL) " 2,2 >

Let Lup,,) = f;‘ e(t1=t)4 By(7)dt

. Show that L*z; = BTet:=t)4" g,

b. Show that

Ju:||ul: £l,z=Lu & TPz <1

where P = [* eA* BBT eA"tdt.
“The Gramian P describes the directions in which it is easy to control”.



2.

4.

=2.2.1

=2.3.5

=2.3.6

=3.2.1

=3.2.2

=3.24

=3.2.8

=3.2.9-12

Exercise 2



Exercise 3

=5.2.1
=5.3.1
=544
Show that
0 sI-A -B
~sI— AT CTC CTD | =37 (—5)%:%(s)
—-BT DTC DTD
where
0 I 0 I S 0
®,=|1 0 0 ; ®(s)=]10 sI-A B
0 0 DD 0 L I
and that

det®(s) = det(s] — A+ BL)

Also deduce the return difference formula from this.

In the MIMO case: Investigate the closed loop poles as p — 0 for C' B invertible.
A reference could be Molander, Egardt, Int. J. Control 28, p. 253.

An iterative method for refinement of a solution is the Kleinman “Newton-
Raphson” method. You first stabilize the system using a state feedback L,.
Then solve S, from the Lyapunov equation

So(A — BLo) + (A — BLo)"So = —Q1 — LT Q5 L,

Then choose L; = —Q;*BT S, and use that as the suggested feedback instead.
Solve for S; etc. Show that S;_; — §; > 0 and that S; converges to the Riccati
Solution.

How does the formula
pAT(~s)A(s) + BT (~8)B(s) = pP(~5)P(s)
change when cross-terms are introduced?

Choose a system for the last hand-in.



Exercise 4

7.2.7-8 (but with -2 changed to 0, i.e. a double integrator).

Show that when R; and R; are changed to aR; and aR, then the estimator
dont change.

7.3.3
7.3.4
7.3.6
7.3.7
7.3.8
Construct the optimal estimator for
z=0; y=z+te

where E(z(0)) = m, E(2(0)?) = o2, E(e) = 0 and E(e?) = ¢. What happens
in stationarity? (This is a common model for an unknown bias.)



Exercise 5

Remember: Bode diagram, Nyquist, Pole/zeros, Root-loci, sensitivity .. ..
MATLAB: 1qrc, lgec,lqgc,frbox,frcss,symlocc

It would be nice if every exercise have been done by at least one of you. You probably
dont have time to do all of them. Hence it might be a good idea if you randomly
choose which to do first. What “Comment” means below is up to you!

1.

o T p

&

Plot symmetric root-loci for
Gi(s) =1/s?

Gals) = (s + 1)/

Gs(s) = 50(s +1)/(s + 10)(s — 5)
G4(8) = 20/(s — 1)(s® + 10s + 25)

. Gs(s)=(s—1)/s*

Consider the system from AC Aug 79 by Doyle and Stein:
=0 e fo) e ()
1 0 0 35
Y= [ 1 2 ] z+w

Check the details in the article. Calculate the loop transfer for LQG and
LQG/LTR with ¢ = 0,10%,103,10% Evaluate the designs in all ways you find

interesting. Comment!

Read the design example in Franklin et.al “Feedback Control of Dynamical
Systems” pp. 506. Comment!

Read the design example in the CCS-course (flexible servo), see TFRT-7456.
Comment!
What happens if you do LQG/LTR on the nonminimumphase system
s—1
(s +1)?
Evaluate the designs in all ways you find interesting. Comment!

Read the design example of LQG in Maciejowski Ch 5.8 pp. 244-259. (We will
talk more about introduction of integrators in the next lecture.) Comment!

Read the mosaic-page on LQG-surf. Find an LQG-article.
For the Hy~fan: Check that

T,o(K)=G.+UG,(K)
Ul (—jw)U(jw) =1
UT(-jw)G.(jw) = =BT (jwI + A+ B,L)7'S.
(notation as in the lecture). Check also the formula for the optimal H,-norm.

(Hard. Only for the duality master Sketch a dual proof to the H,-proof in the
lecture. Also write down the discrete time H, proofs of LQG.



Exercise 6

Find the optimal control signal for ¢ = —# + u, (0) = 0 that minimizes

10
(2 —2m)® + (u—uy)? dt
0

where 2,, = 0for t < 5 and z,, = 1 for ¢t > 5. Do this both for the case u,, =0
and u,, = &,,. Note: u,, and z,, are signals known in advance.

Show that extending the system with integrators at the output and using
u=-Lz - Ln+1mn+1

gives a controller with integrating action.
How about extending the system with integrators at the input and minimizing

/ y* + p(i)”

using state feedback with Kalman filter. Will this always give integrating action
in the controller?

Show how to introduce prescribed factors of R, S and T in the LQG-formalism
(when the LQG controller is written in the form R(s)u = —S(s)y + T(s)r).

(Hard) Show how to obtain smoothing formulas (giving &(¢[t + m) for m > 0)
using a calculation dual to the one in Lecture 6.



2.

Exercise 7

Run the Matlab-demo per/tex/undervisning/FFU/lqg/examples.m. If you
are interested in LMIs read the file Imid.m also.

Experiment with Riccati-solvers in Matlab. Try to figure out what the achiev-
able performance is today. How large problems can we typically solve in rea-
sonable time without too much numerical difficulties. What kind of problems
are the hardest?

Implement the matrix sign algorithm
Zoss = —(Zy + 7Y
k1= 52 k

where Z, = H € R?7 and sign(H) := limZ;. Try both ¢ = 1 and ¢ =
|detZ|'/9. Use it to find the Riccati solution to

ATS + SA+CTC-SBBTS =0

by putting M - ]

-CTc -AT

[ VAP ]S—— [Z11+I]
Z22+I Z21 '

Check your algorithm on some example. How is the performance on large prob-
lems? Does the algorithm seem numerically reliable?

(Research problem: Has anyone tried the matriz sign algorithm on the H,,
Riccati equations? How is the performance?)

Z = sign [

and solving

We will use the rest of this exercise to discuss any open questions from the lec-
tures, handins and old ezercises. I will also talk about recommended literature.



Handin 1 — Due Oct 31 10.15

The internal report TFRT-7456 (see the Mosaic-page for the LQG-course) de-
scribes an LQG design for the so called flexible servo. This is used as a demo in
the digital control course. All macros are available under the /home/kursdr/demo
directory.

Use the variable A to find a state-feedback controller giving a reasonable tension
in the spring ( state z3). Hand in plot(s) showing how z3 reacts on a reference
change, load disturbance and some measurement noise. Make sure you read
and understand the matlab-files defmod, deflqg, dolqg, doeval.

Hints :

Start matlab3 and simnon in two different windows
add “kursdr/demo/discrete to your matlab and simon paths
(or copy all files)

Some usefule commands:

Matlab

>>1qgbox

>>defmod

>>rho=5;lambda=0;v1i=10000;v2=1e7;

>>deflqg

>>dolqg

>>frbox

>>evpl(gp,gfb,gff,gl,gn,gz)

Simnon

>syst servo aafilt dsf sfcon
>evaxes

>get sfpar

>doeval

Compute the H; norm of the aircraft example on page 152 (with sideslip angle
B as output). Hint: lyap or h2norm in matlab

Assume G(s) = C(sI — A)~!B is stable. Show that the continuous time H,-
norm equals the square root of tr(BSBT) where S is the unique solution to

SA+ ATS+CTC =0.
What are the corresponding formulas for the discrete time case?
Fig 1 shows an input estimation problem. w, and w, are white noise and the

goal is to design the filter K such that z has minimal variance. Rewrite this as
a so called standard problem.




Handin 2 — Due Nov 7 13.15

No cross-terms in these problems. Here is the Riccati equation (DRE)
—$=8A+ A'S+C\C,— SB,B,S.

The algebraic Riccati equation (ARE) is obtained by putting $ = 0. That § is
“stabilizing” will mean that A — B, B;,S is Hurwitz (all eigenvalues in open left half
plane). In problem 2 you might need the fact that if A is Hurwitz then

SA+AS5<0 = §2>0.

1. Solve the finite time horizon problem

T
m.in/ uz(t) dt + quz(T)
0

t=z+u, =(0)==z.

Show that there are two solutions S > 0 two the algebraic Riccati equation.
Which one, Sy, should be used for the infinite time horizon problem where
stability is reqiured? For which gr does S(0,T) approach this S,p; when T' —
oo?

Remark: In this problem we have [C, A] not detectable but an optimal stabiliz-
ing controller still exists. Note that this controller will not be found as T — oo
if S(T,T) = 0 is used as final condition (as in the book). The problem gives
a counterezample to the statement on page 48 10 lines from the bottom in the
book. This is why we did not follow the book in the lecture on the point of choice
of S(T,T).

2. Assume that S; solves the ARE and A— B; B, S, is asymptotically stable. Show
that S; > 0. Show also that

(S1— S2)(A— B3BLS:)+ (A — ByBLS,)(S1— S2) + (51— S2)BaBy(S1— S2) = 0

where S; is any other solution to the ARE. Conclude that S; > S;. Can there
be more than one stabilizing solution of the ARE? (No assumptions on [Cy, A]
needed in this exercise.)

Remark As we saw in problem 1 there might be several S > 0 solving the ARE
and one must be careful in checking that one chooses a stabilizing one. It can
be shown that with the stronger conditions of the book (stabilizability of [A, B;]
and detectability of [C1, A]) there is only one S > 0, in which case it is the
stabilizing solution.



Handin 3 — Due Nov 18 13.15

Prove that in discrete time (SISO system with cross-terms in the loss)
¢’ P(z7")P(2) = B (27")Bu(2) + [Ba(27") + pA(z7")][Ba(2) + pA(2))]
see TFRT-7475 p. 7 for the definitions.

Consider the design in Ch. 6.2. Check the calculations of v) and 2,7 =1,...,4.
Also check the calculation of D, R and K,. Do not bother about that we have
not proven (6.2.5-13). If you are interested in this design technique read more
in [Harvey and Stein AC 78, pp. 378-387).



Handin 4 — Due Dec 2 10.15

Choose TWO of the following three problems.

Consider the system on observer form

= (5 o) =+ 1)
—— z w
1o o 1)
y=(1 O]a:+a"w2

) s+1
ie. y= 2 wy + ows.

Here w; and w, are independent white noise with zero mean and variance 1.
Calculate the optimal stationary Kalman filter and write it on the form

& bi(s)/as(s)
[ ] ) [ ba(s)/as(s) ] !
What happens when o — 0?7 Explain! (8 p)
Consider the “random-walk” vector
z(t+1) = z(t) + bo(t) zo € N(0,00])

where z,b € R™. Determine the one-step predictor (t|t — 1) and the covariance
P(t) when we have the observations

y(t) = z(t) + e(t)
Show that
P, = tlirglo P(t)

exists and is singular. Explain ! (5 extra points for those who obtain an explicit
formula for P,,).

The white noise signals v and e, with covariance 1 and I, are independent and
independent of z,.

Hint: It might be a good idea lo use a transformation of the form z = Uz to
simplify things. Ezperiment in Matlab to guess P,. (10 p)

Consider the system

z = Az + Byw
y = Cyz + Dyw

To simplify the calculations we assume that By DI, = 0 and D, D, = I. Show
that among all linear filters

£=F¢+Gy
2=H¢{+Jy

one that minimizes the stationary variance

E(sz) z=2—Lz




is given by the Kalman filter

(5 9= (5 %)

where

0= AP + PAT + B,BT — PCTC,P

and A — PCTC, is stable.
Hint Check that the closed loop is given by

[2]:[622 1?«*] [Z]Jr[G%zl]w
2= (-L+JC, H) [z]+mnw

Conclude that J = 0 and that the resulting norm is given by

Tuli=tr (-5 #) P |

HT
- [P 0]
P - >0
0 0

which gives the bound tr LPLT. Show that equality is obtained by the estimator
above. (10 p)

Show that



2.

Handin 5 — Due Fri Dec 9 10.15

|Do one of the following two a.lternatives|

Make a reasonable LQG design for the 5th order example below. Evaluate your
design in many several ways. Comment!

% System description for "Flexible Transmission" benchmark
%

% /Micke

% Real pole

omega_0 = 0.5;

% Complexe conjugate pair 1

omega_1 = 12;
zeta_1 = 0.04;

% Complexe conjugate pair 2

omega_2 = 33;
zeta_2 = 0.02;

% Form transfer function G(s) = b(s)/a(s) with static gain 1.

a = conv([1 omega_ 0], ...
conv([1 2*omega_1l*zeta_1 omega_1-2], [1 2%omega_2+%zeta_2 omega_2-2]));
b = a(length(a));

% Do some plotting

fr = frc(b,a,0,-2,2,1000);

figure;

pzpl(b,a);

pzgrid;

title(’Pole-Zerc Plot for Flexible Transmission’);
figure;

bopl(fr);

bogrid;

title(’Bode Plot for Flexible Transmission’);
figure;

nypl(fr);

nygrid;

title(’Nyquist Plot for Flexible Transmission’);

The real control engineer of course want real stuff. We have a system in the lab
with almost the same dynamics as above. Do an LQG-design on this system.
Talk with me about this problem. This problem involves more work since an
identification is also needed. You can also use this example on the last handin.



Handin 6 — Due Fri Dec 16 10.15

LQG-balanced realizations You have probably heard about the “balanced
realization” algorithm to obtain a reduced order system that models the “most
important part” of a system. This is achieved in matlab with the command
balreal. What balreal does is to find a state space transformation to a real-
ization where both the controllability and observability gramians are diagonal
and equal, i.e. W, = W, = X. Small elements in in ¥ corresponds to states
that are very little controllable and observable, i.e. they do not influence the
open loop transfer function very much. It is then natural to use a reduced order
model where theses states are skipped. See the command modred that achieves
this. This is taught in the system identification course.

It is however natural to argue that one should not consider which states are
important for the open loop, since it is the closed loop that is important.
(That the balreal command above only works for open loop stable systems is a
direct consequence of this.) Of course one should insted consider how important
different states are for the closed loop behavior.

This is achieved with “LQG-balanced realization”. This is based on the as-
sumption that the loop is going to be closed with the LQG-optimal controller.
One then finds a state space tranformation T such that S = P = X, are
digaonal, where S and P are solutions to the two LQG-Riccati equations.

. Show that after a state space transformation A — T-'AT, B — T~ !B etc we
have T-*PT-T and TT ST as new solution to the Riccati equations. Conclude
that the eigenvalues of SP are invariant under state space transformations.

. The file
/home/fulqg/lqg94/matlab/lqgbalreal.m

gives the state space transformation needed to diagonalize S and P as above.
(5 extra points to those who explain why the algorithm works). Run the demo

/home/fulqg/lqg94/matlab/handiné.m

that describes LQG-control of an integrator with a resonances. The demo shows
what happens when the bandwith of the closed loop system is increased (by
punishing states more and more and decreasing the assumed measurement
noise).

Explain, based on the the LQG-balanced values, for which bandwidths a first
order model (and hence first order controller) suffices for the LQG-design?



Handin 7 — Due Fri Dec 19 24.00

Do a good LQG-design on an interesting process. Suggestions for processes:

Landau Benchmark Problem (can be combined with Handin 5)

JAS 39 Gripen (Ask BoB)

Hot Rolling Mill (Lars Malcolm has details)

Horizontal Axis Wind Power Plants (Sven Erik’s Thesis)

IFAC Benchmark Problems 1990 (several different suggestions, ask BoB)
Velocity control of horizontal axis in our inverted pendulum (good model
exists)

Our lab helicopter (need identification)

e Your own favorite process



