
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Simulation-based Inference

From Approximate Bayesian Computation and Particle Methods to Neural Density Estimation
Wiqvist, Samuel

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Wiqvist, S. (2021). Simulation-based Inference: From Approximate Bayesian Computation and Particle Methods
to Neural Density Estimation. [Doctoral Thesis (compilation), Mathematical Statistics]. Lund University (Media-
Tryck).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://portal.research.lu.se/en/publications/f0a13485-bf5e-42df-a67f-60aeaa660054


Simulation-based Inference
From Approximate Bayesian Computation and 
Particle Methods to Neural Density Estimation

SAMUEL WIQVIST 

Lund University
Faculty of Science
Centre for Mathematical Sciences
Mathematical Statistics

 –  CE N T R U M  S C I E N T I A R U M  M AT H E M AT I C A R U M  –





Simulationbased Inference
From Approximate Bayesian Computation and Particle Methods to Neural

Density Estimation





Simulationbased Inference
From Approximate Bayesian Computation
and Particle Methods to Neural Density

Estimation

by Samuel Wiqvist

Thesis for the degree of Doctor of Philosophy

to be presented, with the permission of the Faculty of Science of Lund University, for public criticism
at the Centre of Mathematical Sciences, Lund University, room MH:R, on Friday, the 24th of

September 2021 at 1:00 pm.

Faculty opponent: Prof. Darren J. Wilkinson.
School of Mathematics, Statistics and Physics,

Newcastle University, UK.





D
O
K
U
M
EN

TD
A
TA

B
LA

D
en

lS
IS

61
41

21

Organization

LUND UNIVERSITY

Centre of Mathematical Sciences
Box 124
SE–221 00 LUND
Sweden

Author(s)

Samuel Wiqvist

Document name

DOCTORAL THESIS
Date of disputation

20210924
Sponsoring organization

Title and subtitle

Simulationbased Inference– From Approximate Bayesian Computation and Particle Methods to Neural Density
Estimation
Abstract

This doctoral thesis in computational statistics utilizes both Monte Carlo methods (approximate Bayesian com
putation and sequential Monte Carlo) and machinelearning methods (deep learning and normalizing flows) to
develop novel algorithms for inference in implicit Bayesian models. Implicit models are those for which calcu
lating the likelihood function is very challenging (and often impossible), but model simulation is feasible. The
inference methods developed in the thesis are simulationbased inference methods since they leverage the possi
bility to simulate data from the implicit models. Several approaches are considered in the thesis: Paper II and Iv
focus on classical methods (sequential Monte Carlobased methods), while paper I and III focus on more recent
machine learning methods (deep learning and normalizing flows, respectively).

Paper I constructs novel deep learning methods for learning summary statistics for approximate Bayesian com
putation (ABC). To achieve this paper I introduces the partially exchangeable network (PEN), a deep learning
architecture specifically designed for Markovian data (i.e., partially exchangeable data).

Paper II considers Bayesian inference in stochastic differential equation mixedeffects models (SDEMEM).
Bayesian inference for SDEMEMs is challenging due to the intractable likelihood function of SDEMEMs. Paper
II addresses this problem by designing a novel a Gibbsblocking strategy in combination with correlated pseudo
marginal methods. The paper also discusses how custom particle filters can be adapted to the inference procedure.

Paper III introduces the novel inference method sequential neural posterior and likelihood approximation
(SNPLA). SNPLA is a simulationbased inference algorithm that utilizes normalizing flows for learning both
the posterior distribution and the likelihood function of an implicit model via a sequential scheme. By learning
both the likelihood and the posterior, and by leveraging the reverse Kullback Leibler (KL) divergence, SNPLA
avoids adhoc correction steps and Markov chain Monte Carlo (MCMC) sampling.

Paper Iv introduces the accelerateddelayed acceptance (ADA) algorithm. ADA can be viewed as an extension
of the delayedacceptance (DA) MCMC algorithm that leverages connections between the two likelihood ratios
of DA to further accelerate MCMC sampling from the posterior distribution of interest, although our approach
introduces an approximation. The main case study of paper Iv is a doublewell potential stochastic differential
equation (DWPSDE) model for proteinfolding data (reaction coordinate data).
Key words

Bayesian statistics, computational statistics, deep learning, mixedeffects, sequential Monte Carlo, stochastic dif
ferential equations

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title ISBN

9789178959679 (print)
9789178959686 (pdf )

Recipient’s notes Number of pages

218
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the abovementioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the abovementioned dissertation.

Signature Date 20210816 v





Simulationbased Inference
From Approximate Bayesian Computation
and Particle Methods to Neural Density

Estimation

by Samuel Wiqvist

Thesis for the degree of Doctor of Philosophy
Thesis advisors: Assoc. Prof., Umberto Picchini
Faculty opponent: Prof. Darren J. Wilkinson

to be presented, with the permission of the Faculty of Science of Lund University, for public criticism
at the Centre of Mathematical Sciences, Lund University, room MH:R, on Friday, the 24th of

September 2021 at 1:00 pm.



© Samuel Wiqvist 2021

Mathematical Statistics
Centre for Mathematical Sciences
Lund University
Box 118
SE221 00 Lund
Sweden

Doctoral Theses in Mathematical Sciences 2021:09

ISSN: 14040034
ISRN: LUNFMS10292021
ISBN: 9789178959679 (print)
ISBN: 9789178959686 (pdf )

Printed in Sweden by MediaTryck, Lund University, Lund 2021



Contents

Abstract v

Popular science summary vii

Acknowledgements ix

List of papers xi

List of notation xiii

Introduction 1

1 Bayesian analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Bayesian implicit model . . . . . . . . . . . . . . . . . . . . 6

3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Static models . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Standard dynamic toy models . . . . . . . . . . . . . . . 11

3.3 Protein folding modeling via stochastic differential equations 12

3.4 Stochastic differential equations mixedeffects models . . . 14

4 Simulationbased inference . . . . . . . . . . . . . . . . . . . . 15

4.1 Mathematical tools . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Statespace models and particle filters . . . . . 16
4.1.2 Deep learning . . . . . . . . . . . . . . . . . 20
4.1.3 Conditional neural density estimation . . . . . 24

i



4.2 Approximate Bayesian computation . . . . . . . . . . . . 28
4.2.1 Learning summary statistics . . . . . . . . . . 31

4.3 Pseudomarginal MetropolisHastings . . . . . . . . . . . 33
4.3.1 Correlated pseudomarginal MetropolisHastings 37

4.4 Bayesian inference for stochastic differential equationsmixed
effects models . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Delayedacceptance . . . . . . . . . . . . . . . . . . . . 41
4.5.1 Accelerateddelayed acceptance . . . . . . . . . 42

4.6 Neural density estimation . . . . . . . . . . . . . . . . . 44
4.6.1 Sequential neural posterior estimation . . . . . 44
4.6.2 Sequential neural likelihood estimation . . . . . 46
4.6.3 Sequential neural posterior and likelihood approx

imation . . . . . . . . . . . . . . . . . . . . . 48

4.7 Additional methods . . . . . . . . . . . . . . . . . . . . 49

5 Outline of papers and author’s contributions . . . . . . . . . . . . 51

5.1 Paper I: Partially exchangeable networks and architectures
for learning summary statistics in approximate Bayesian com
putation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Paper II: Efficient inference for stochastic differential equa
tion mixedeffects models using correlated particle pseudo
marginal algorithms . . . . . . . . . . . . . . . . . . . . 52

5.3 Paper III: Sequential neural posterior and likelihood ap
proximation . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Paper Iv: Accelerating delayedacceptanceMarkov chainMonte
Carlo algorithms . . . . . . . . . . . . . . . . . . . . . 54

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Paper I: Partially exchangeable networks and architectures for learning sum
mary statistics in approximate Bayesian computation 65

Supplementary material for Paper I: Partially exchangeable networks and
architectures for learning summary statistics in approximate Bayesian
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ii



Paper II: Efficient inference for stochastic differential equation mixedeffects
models using correlated particle pseudomarginal algorithms 89

Paper III: Sequential neural posterior and likelihood approximation 123

Supplementary material for Paper III: Sequential neural posterior and like
lihood approximation . . . . . . . . . . . . . . . . . . . . . . . 137

Paper IV: Accelerating delayedacceptance Markov chain Monte Carlo algo
rithms 155

Supplementarymaterial for Paper Iv: Accelerating delayedacceptanceMarkov
chain Monte Carlo algorithms . . . . . . . . . . . . . . . . . . . 179

iii





Abstract

This doctoral thesis in computational statistics utilizes both Monte Carlo methods
(approximate Bayesian computation and sequentialMonte Carlo) andmachinelearning
methods (deep learning and normalizing flows) to develop novel algorithms for infer
ence in implicit Bayesian models. Implicit models are those for which calculating the
likelihood function is very challenging (and often impossible), but model simulation
is feasible. The inference methods developed in the thesis are simulationbased infer
ence methods since they leverage the possibility to simulate data from the implicit
models. Several approaches are considered in the thesis: Paper II and Iv focus on
classical methods (sequential Monte Carlobased methods), while paper I and III fo
cus on more recent machine learning methods (deep learning and normalizing flows,
respectively).

Paper I constructs novel deep learning methods for learning summary statistics for
approximate Bayesian computation (ABC). To achieve this paper I introduces the
partially exchangeable network (PEN), a deep learning architecture specifically de
signed for Markovian data (i.e., partially exchangeable data).

Paper II considers Bayesian inference in stochastic differential equation mixedeffects
models (SDEMEM). Bayesian inference for SDEMEMs is challenging due to the
intractable likelihood function of SDEMEMs. Paper II addresses this problem by
designing a novel a Gibbsblocking strategy in combination with correlated pseudo
marginalmethods. The paper also discusses how custom particle filters can be adapted
to the inference procedure.

Paper III introduces the novel inference method sequential neural posterior and like
lihood approximation (SNPLA). SNPLA is a simulationbased inference algorithm
that utilizes normalizing flows for learning both the posterior distribution and the
likelihood function of an implicit model via a sequential scheme. By learning both
the likelihood and the posterior, and by leveraging the reverse Kullback Leibler (KL)
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divergence, SNPLA avoids adhoc correction steps and Markov chain Monte Carlo
(MCMC) sampling.

Paper Iv introduces the accelerateddelayed acceptance (ADA) algorithm. ADA can
be viewed as an extension of the delayedacceptance (DA) MCMC algorithm that
leverages connections between the two likelihood ratios of DA to further accelerate
MCMC sampling from the posterior distribution of interest, although our approach
introduces an approximation. The main case study of paper Iv is a doublewell po
tential stochastic differential equation (DWPSDE) model for proteinfolding data
(reaction coordinate data).

vi



Popular science summary

Bayesian methods have become increasingly popular in the last 30 years, due to the
development of advancedMonte Carlo based samplingmethods and associated pow
erful and easytouse computer programs. In the standard case, the likelihood func
tion is analytically known. If that is not the case, the likelihood function may be
unavailable in closedform or be too computationally expensive to evaluate or even
approximate. However, it is typically the case that we can run a computer model
that generates artificial data. In this case, the likelihood is said to be known implicitly
through the model simulations, and we then talk of implicit models. In that case, the
model is defined by a computer program that generates data for given model parame
ters. By defining the model via a computer program, we can handle very complicated
and flexible models since the only restriction is that we should be able to create a com
puter program that generates data for given model parameters. The Bayesian infer
ence problem then consists of running the computer program for the implicit model
many times to discover the parameter values that are most probable conditionally
on the observed data. However, this inference problem can be very computationally
challenging for complex implicit models. For this reason, the purpose of this thesis
has been to develop new algorithms that solve the inference problemmore efficiently.
The thesis presents four papers that, in different ways, address inference problems of
different implicit model classes and by using different approaches.

Paper II and Iv further develop classical Bayesian inference methods. The algorithm
presented in paper II is specially designed for mixedeffects stochastic dynamic mod
els. These models are very relevant for pharmaceutical and biological applications.
In contrast, paper Iv presents a new general Monte Carlo algorithm for Bayesian
inference that can be applied to many different types of implicit Bayesian models.

In paper I and III, machine learningmethods are used instead. Paper I presents a novel
deep learning architecture, and this architecture is used to summarize the informa
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tion in data efficiently. Paper III presents a new general algorithm for inference in
implicit Bayesian models that leverages complicated datagenerating machine learn
ing methods.
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Introduction

This doctoral thesis in computational statistics utilizes both Monte Carlo methods
(approximate Bayesian computation and sequentialMonte Carlo) andmachinelearning
methods (deep learning and normalizing flows) to develop novel algorithms for in
ference in implicit Bayesian models. Implicit models are those for which calculating
the likelihood function is very challenging (and often impossible), but model sim
ulation is feasible. Thus, for implicit models, we have that the likelihood function
is implicitly defined via model simulation. Therefore, implicit models are very flex
ible since their only requirement is that, give model parameters, we should be able
to simulate data from the model. This also means that we can interpret the implicit
model as some random mechanism that generates data given model parameters, and
this random mechanism can be implemented as some blackbox computer program.

The inference methods developed in the thesis are called simulationbased inference
methods since they leverage the possibility to simulate data from the implicit mod
els. Some important simulationbased inference methods discussed in this thesis are:
pseudomarginal MetropolisHastings (see Section 4.3), approximate Bayesian compu
tation (see Section 4.2), sequential neural posterior estimation (see Section 4.6.1), and
sequential neural likelihood estimation (see Section 4.6.2). Some additional methods,
that are not discussed in this thesis are: Bayesian synthetic likelihood [Price et al.,
2018], Likelihoodfree Inference by Ratio Estimation [Thomas et al., 2020], Bayesian
Optimization for LikelihoodFree Inference [Gutmann and Corander, 2016], Amor
tized Approximate Likelihood Ratio MCMC [Hermans et al., 2020], and BayesFlow
[Radev et al., 2020]. Several of these methods are discussed in a recent overview of
simulationbased inference [Cranmer et al., 2020] and several simulationbased infer
ence methods are benchmarked in Lueckmann et al. [2021]. Applications of implicit
models can, for instance, be found in particle physics, population genetics, epidemi
ology, and economics [Cranmer et al., 2020]. The field of simulationbased inference
is currently developing quickly, and a trend is to leverage machinelearning methods
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for inference in implicit models [Cranmer et al., 2020]. Thus, this thesis provides a
timely contribution to the field of simulationbased inference. The idea of utilizing
machinelearning methods is considered in two out of the four papers included in
this thesis.

This introductory chapter has the following outline: Bayesian analysis is introduced
in Section 1. Section 2 introduces the Bayesian implicit model, and applications are
presented in Section 3. Simulationbased inference methods are discussed in Section
4. This introductory chapter ends with Section 5 where we give an overview of the
papers, including my own contributions.

1 Bayesian analysis

Before introducing the Bayesian framework, we have to clarify the interpretation of
probability used throughout the thesis. The most common interpretation of proba
bility is the frequentist interpretation of probability, which states that the probability
P (E) for an event E is the limit of E’s relative frequency over many trials [Venn,
1866]. However, the Bayesian analysis used in this thesis instead utilizes the Bayesian
interpretation of the probability. The Bayesian interpretation of the probability states
that P (E) is our subjective quantified belief for an event E [De Finetti, 2017]. The
Bayesian interpretation makes it possible to state probabilistic statements about non
repetitive events, and importantly for our purpose, it is the probability interpretation
that underpins the Bayesian analysis [Gelman et al., 2013, chapter 1].

The Bayesian framework that utilizes the subjective interpretation of probability in
troduced above is sometimes called the subjective Bayesian analysis, and this approach
is concisely explained by [Goldstein, 2006, page 1] as follows:

You are uncertain about many things in the world. You can quantify
your uncertainties as probabilities, for the quantities you are interested
in, and conditional probabilities for observations you might make given
the things you are interested in. When data arrives, Bayes theorem tells
you how tomove from your prior probabilities to new conditional prob
abilities for the quantities of interest.

Let us now formalize this approach: We assume that we have a probabilistic model
p(x|θ) parameterized with the parameter θ ∈ Rdim θ. We also assume that we have
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collected some data x ∈ X . The task that we will consider is parametric inference
for the model p(x|θ). The model, or the likelihood,

x ∼ p(x|θ) (1)

which for now is some analytical distribution, is such that data x ∈ X is modeled
conditional on the parameter θ via the conditional distribution p(x|θ). However,
in our setting the model p(x|θ) is not what we are uncertain about. Instead, we are
uncertain about the parameter of the model. i.e. θ. Thus, we will incorporate our a
priori beliefs about θ in the prior distribution p(θ). Now, we have that the prior p(θ)
is some probability distribution that incorporates our subjective probabilistic beliefs
regarding the parameter θ that we have before considering the data x. However, since
we use the Bayesian framework, someone else can, of course, choose to use some other
probability distribution for the prior p(θ) than the one we have specified, and thereby
apriori incorporating different probabilistic beliefs about the parameter θ. Once
accessing the data x, we can update our beliefs about the parameter θ by obtaining
the posterior distribution p(θ|x). The posterior distribution is the distribution of
the parameter of interest θ conditioned on the data x. Hence, when obtaining the
posterior distribution we compute the inverse probability for θ given x instead of x
given θ. The posterior distribution is computed via Bayes’ rule

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (2)

In Equation (2), p(θ|x) is the posterior distribution and p(x) =
∫
p(x|θ)p(θ)dθ

is the marginal likelihood (also sometimes denoted model evidence). The marginal
likelihood acts as the normalizing constant for the posterior. However, most inference
algorithms, e.g Markov chain Monte Carlo (MCMC), only require that we know the
posterior up to a proportionality constant independent of θ [Dunson and Johndrow,
2020], and we will therefore not further consider the marginal constant. We instead
notice that the posterior, up to proportionality, is given by

p(θ|x) ∝ p(x|θ)p(θ). (3)

The posterior can be obtained either via analytical calculations (if we have a conjugate
model), sampling (i.e. MCMC [Brooks et al., 2011]), or direct density estimation (e.g.
integrated nested Laplace approximations [Rue et al., 2017] and variational inference
[Blei et al., 2017]). The posterior distribution contains information about which
parameters are more probable to have generated the observed data (for instance, via
the posterior mean or mode). Uncertainty quantifications of θ in the from of interval
estimations can also be obtained via quantile intervals, credible intervals, or high
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posterior density intervals. Thus, we have that the posterior contains essentially all
information regarding the parameter θ that we are uncertain about. However, in
our analyses, we will also employ several useful analytical tools such as prior and
posterior predictive simulations, which additionally utilize the sampling distribution.
The prior predictive distribution is given by [Gelman et al., 2013, chapter 1]

p(x) =

∫
p(x, θ)dθ =

∫
p(x|θ)p(θ)dθ. (4)

We notice that the prior predictive distribution is the same component as themarginal
likelihood (or evidence) of Equation (3). The prior predictive distribution is uncon
ditional on the data and it can therefore, via prior predictive simulations, be used
to investigate how informative the prior distribution is. An example of this type of
analysis is provided in Example 1. We notice that generating a sample x⋆ from the
prior predictive distribution is easily achieved by:

1. Sample θ⋆ ∼ p(θ).

2. Generate x⋆ ∼ p(x|θ⋆).

The posterior predictive distribution is given by [Gelman et al., 2013, chapter 1]

p(x⋆|x) =
∫

p(x⋆, θ|x)dθ, (5)

=

∫
p(x⋆|θ, x)p(θ|x)dθ, (6)

=

∫
p(x⋆|θ)p(θ|x)dθ, (7)

In the posterior predictive distribution x is the observed data set and x⋆ is the pre
dicted data set obtained conditionally on x. The step between Equation (6) and
Equation (7) is due to the fact that that x and x⋆ are conditionally independent
given θ. The posterior predictive distribution is important since it can be used for
model evaluation purposes. A concrete example of this type of analysis is provided in
Example 1. We again notice that generating a sample x⋆ from the posterior predictive
distribution is easily achieved by:

1. Sample θ⋆ ∼ p(θ|x).

2. Generate x⋆ ∼ p(x|θ⋆).

4



Example 1 (Modeling car stopping distances with Bayesian simple linear regression)

In the spirit of Gabry et al. [2019], here we will develop a Bayesian simple lin
ear regression model for predicting the car stopping distance at different speeds.
While this toy example is trivial, it will be akin to the Bayesian approach (im
plicitly) used in all papers.

The data that we will use is the R-dataset cars [R Core Team, 2018]. The
data is plotted in Figure 1a. We will consider the task of predicting the stopping
distance (in feet) as a function of the speed (in miles per hour). And for this
purpose, we introduce the following Bayesian simple linear regression model

yi = β0 + β1xi + ϵi, ϵi ∼ N (0, σ), i = 1 : 50,

β0 ∼ N (0, 10),

β1, σ ∼ Γ (2, 3).

(8)

In Equation (8), yi is the stopping distance for observation i and xi is the corre
sponding speed. Thus, we have that the observed data is given by y = [y1, . . . , y50],
while x = [x1, . . . , x50] denotes the covariate of the model. The unknown pa
rameter that we are uncertain about is θ = [β0, β1, σ]. Our prior beliefs about
the parameter are incorporated in the normal and gamma priors of the Bayesian
model in Equation (8). The likelihood function for the full data set y is given by

p(y|x, θ) =
50∏
i=1

N (β0 + β1xi, σ). (9)

The first step in our analysis is to investigate if our priors are reasonably infor
mative of the parameter. To investigate this, we sample from the prior predictive
distribution. Prior predictive samples are presented in Figure 1b, and they show
that a large range of data sets can be generated from the prior predictive distri
bution, indicating that the priors are weakly informative of the parameter.

The next step is to obtain the posterior distribution. For this example, we gener
ate samples from the posterior distribution via the standardMetropolisHastings¹(MH)
algorithm [Hastings, 1970, Metropolis et al., 1953]. The resulting marginal pos
terior distributions (see Figure 1c) are quite tight (atleast for β1 and σ); we can
also conclude that β1 is inferred with the highest precision. However, we do
not know the true parameter value; thus, it is not fruitful to assess the inference
quality only based on the marginal posterior distributions.

5



Therefore, the final step of our analysis is to sample data from the posterior pre
dictive distribution. The posterior predictive samples are presented in Figure 1d.
We conclude that the inferred model appears reasonable since the posterior pre
dictive samples in Figure 1d are similar to the observed data set. Thus, when
sampling parameters from the posterior, we manage to generate data that re
sembles the observed data set, which indicates that our model is realistic for our
observed data.

Example 1 above shows how to conduct a Bayesian analysis for a simple toy problem.
However, several additional steps can be included in the analysis [Gelman et al.,
2020]. But, we have here focused on the procedures that are most commonly used
in the papers included in this thesis.

2 The Bayesian implicit model

A simulator

x =M(θ), or, more precisely x =M(θ, z), (10)

is some random mechanism that takes as input the parameter θ and the underlying
pseudorandom numbers z and returns a data set x. For the implicit Bayesian statis
tical model {

x ∼ p(x|θ),
θ ∼ p(θ),

(11)

the likelihood function p(x|θ) ··= M(θ) is now a simulator which allows us to
simulate data from the likelihood give the parameter θ. However, the likelihood
now implicitly depends on the pseudorandom numbers z that are used internally in
the randommechanism that simulates data [Cranmer et al., 2020]. Thus we have that
the random mechanism that simulates data from the likelihood p(x|θ) is described
by following

x ∼ p(x|θ, z), z ∼ g(z). (12)

¹There is a controversy regarding the naming of this algorithm since its name does not correctly
credit the coauthors’ (and particularly Arianna Rosenbluth’s) contributions to the original paper
Metropolis et al. [1953] [Carrier, 2021]. However, in this thesis, we will use the nameMetropolisHastings
since that is the current naming convention.
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(a) cars data set from R-dataset
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(b) Prior predictive simulations. The observed
data set is in black. Each sample is repre
sented with a separate color.
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(d) Posterior predictive simulation. The ob
served data set is in black. Each sample is
represented with a separate color.

Figure 1: Car stopping distance example. The subplots show: (a) observed data; (b) prior predictive simula-
tions; (c) marginal posteriors (and prior distributions); and, (d) posterior predictive simulations.

Hence, the model p(x|θ, z) will simulate data x for some parameter θ by utilizing
some internal pseudorandom numbers z, drawn from some distribution g(z), that
governs the internal randomness of the simulator. The simulator described in Equa
tion (12) is illustrated in Figure 2. The likelihood p(x|θ) is obtained by integrating
out the pseudorandom numbers z

p(x|θ) =
∫

p(x, z|θ)dz =

∫
p(x|z, θ)g(z)dz. (13)

However, the integral in Equation (13) is analytically intractable and we can therefore
not evaluate the probability density function (pdf ) of p(x|θ). But since simulations
from p(x|θ) are possible we can instead implicitly define the likelihood via the ran
dom mechanism that simulates data from p(x|θ). We therefore say the that model
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Simulator 
θ x

z

Figure 2: Illustration of the simulator of the Bayesian implicit model.

p(x|θ) is an an implicit statistical model [Bretó et al., 2009], which also entails that
the model in Equation (11) is denoted a Bayesian implicit model.

To specify the implicit Bayesian model in Equation (11), we also have to introduce
a prior distribution p(θ) over the parameter θ. Similarly, as before, the prior p(θ)
incorporates our apriori beliefs about the parameter θ.

Implicit models are advantageous since themodel (or simulator) p(x|θ) can be imple
mented as a blackbox computer program. Many scientific models are also described
by complex generative processes for which simulationbased inference methods are
suitable [Cranmer et al., 2020].

The main goal for our analysis is to in some way approximate, or sample from the
posterior distribution

p(θ|xobs) ∝ p(xobs|θ)p(θ). (14)

Here the posterior distribution p(θ|xobs) is the posterior distribution that we obtain
when conditioning on the specific data set xobs ∈ X , which is assumed to be gener
ated by the model p(x|θ). In a simulation study we of course know that xobs indeed
was generated by p(x|θ), but for a realdata case study we have to assume that the
observed data xobs indeed was generated from the model p(x|θ). However, we will
typically not consider the model uncertainty related to whether the model p(x|θ)
is the true data generating process of xobs. For recent amortized simulationbased
inference methods methods [Radev et al., 2020, Hermans et al., 2020] the posterior
of interest is the global posterior distribution denoted by p(θ|x). The global poste
rior distribution is the posterior distribution for any data set x ∈ X produced by
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the model p(x|θ). The distinction between the global posterior and the posterior
distribution p(θ|xobs) might seem subtle, but this distinction will be of importance
in Section 4.7 where we will briefly present amortized inference methods.

3 Applications

Wewill now give some examples of implicit models that are common in the literature
and that are also used as examples in the papers included in this thesis.

3.1 Static models

We will present three static models: the Gandk distribution, the αstable distri
bution, and the twomoons model. In this thesis, the GandK distribution and the
αstable distribution are used as case studies in paper I. The twomoons model is con
sidered in paper III. (However, please notice that we here present a slightly different
version of the twomoons model, compared to the one included in paper III).

GandK distribution A classical application in the simulationbased inference lit
erature is the GandK distribution, used for instance in Allingham et al. [2009],
Picchini and Anderson [2017], and Fearnhead and Prangle [2012]. The GandK
distribution is a flexible univariate distribution used to model highly skewed data
[Prangle, 2017]. The GandK distribution is defined via its quantile function and
its probability density function (pdf ) is unavailable in closedform [Prangle, 2017].
However, the pdf can be approximated numerically [Prangle, 2017]. The GandK
distribution is parameterized with θ = [A,B, g, k, c], and it is common practise to
let c = 0.8 [Allingham et al., 2009, Picchini and Anderson, 2017, Fearnhead and
Prangle, 2012], and a valid distribution is then produced ifB > 0 andK ≥ 0 [Pran
gle, 2017]. A sample x ∈ R from the GandK distribution is generated via [Prangle,
2017]

x = A+B · (1 + c · tanh(g · z
2
)) · z · (1 + z2)k, z ∼ N (0, 1). (15)

We notice that Equation (15) allows us to generate samples from the model, even
though we cannot evaluate the pdf of the model.
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αstable distribution Theαstable distribution is defined via its characteristic func
tion [Ong et al., 2018]. Thus, the αstable distribution is another distribution with
an analytically intractable pdf. Since the pdf is intractable, the inference problem is
challenging; however, simulationbased approximate Bayesian inference approaches
can be found in Peters et al. [2012], and Ong et al. [2018]. The αstable distribution
is heavytailed, and it is therefore used for financial applications [Peters et al., 2012].
The characteristics function φ(s) is given by [Ong et al., 2018]

φ(t) =


exp

(
iδt− γα|t|α

(
1+

iβ tan πα
2 sgn(t)(|γt|1−α − 1)

))
, α ̸= 1,

exp
(
iδt− γ|t|

(
1 + iβ 2

π sgn(t) log(γ|t|)
))

, α = 1,

(16)

where sgn is the sign function, i.e.,

sgn(t) =


−1 if t < 0,

0 if t = 0,

1 if t > 0.

(17)

The unknown parameter of the αstable distribution is θ = [α, β, γ, δ].

Twomoons model A rather simple static model with a complex posterior is the
twomoons model [Greenberg et al., 2019]. The main feature of the twomoons
model is that the posterior, for certain parameter values, is crescentshaped [Green
berg et al., 2019]. (The analytical posterior of the twomoons model for a case
where the posterior is crescentshaped is presented in Figure 3.) Thus, for the two
moons model, MCMCbased inference methods (e.g sequential neural likelihood [Pa
pamakarios et al., 2019b]) might not work well due to the potentially complex ge
ometry of the posterior. The twomoons model generates data x ∈ R2 according to
the following process [Greenberg et al., 2019]:

a ∼ U(−π/2, π/2), (18)
r ∼ N (0.1, 0.01), (19)
p = (r cos(a) + 0.25, r sin(a)), (20)

xT = p+
(− |θ1 + θ2|√

2
,
−θ1 + θ2√

2

)
. (21)

The unknown parameter of the model is θ = [θ1, θ2].
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Figure 3: Samples from the analytical posterior of the two-moons model.

3.2 Standard dynamic toy models

Examples of dynamic toy models are: the moving average model of order q (MA(q)),
and the LotkaVolterra model (LV). In paper II a MA(2) model with additional mea
surement noise is included as one of the case studies. The LVmodel is one of the case
studies in paper III.

Moving average model A moving average model of order q (MA(q)) is given by

xi = zi + zi−1θ1 + zi−2θ2 + . . .+ zi−qθq, i = 1 : N. (22)

Here the zi’s are the unobservable error terms, and N the number of observations.
We typically assume that zi

iid∼ N (0, 1). Approximate Bayesian computation (ABC)
methods have been used for inference in the MA(2) model in Marin et al. [2012]
and Jiang et al. [2017]. Exact Bayesian inference can also be obtained since we can
evaluate the pdf of the MA(q) model.

A version of the MA(2) model with additional measurement noise is used in paper I.
Thus, let us now specifically discuss the MA(2) model. The MA(2) model is identi
fiable over the following triangle:

θ1 ∈ [−2, 2], θ2 ∈ [−1, 1], θ2 ± θ1 ≥ −1, (23)

and this triangle, therefore, defines the bounds for the uniform prior in R2 used in
Marin et al. [2012] and Jiang et al. [2017], as well as in paper I. ABC methods often
utilizes summary statistics to avoid the curseofdimensionality (see Section 4.2) and
natural summary statistics for the MA(2) model are the first two autocorrelations
since these converge to a onetoone function of the parameter θ = [θ1, θ2] [Jiang
et al., 2017].
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LotkaVolterra The LotkaVolterra model (LV) is another dynamic model com
monly used as an example in the simulationbased inference literature (see e.g., Pa
pamakarios et al. [2019b], Papamakarios and Murray [2016], Greenberg et al. [2019],
and Picchini and Everitt [2019]).

The LV model is a Markov jump process that describes the evolution of the size of a
population of predators X and population of prey Y [Wilkinson, 2011].We we will
here consider the version of the LV model from Papamakarios et al. [2019b], and that
version of the LV model is parameterized by θ = [θ1, θ2, θ3, θ4]. For the LV model
of Papamakarios et al. [2019b] the following events can occur

1. With rate exp(θ1)×X × Y : A predator is born, and X increases with one.

2. With rate exp(θ2)×X : A predator dies, and X decreases with one.

3. With rate exp(θ3)× Y : A prey is born, and Y increases with one.

4. With rate exp(θ4) × X × Y : A predator kills a prey, and Y decreases with
one.

The LV model can be simulated exactly via the Gillespie algorithm [Gillespie, 1977].
We can define the population sizes at time t as [Xt, Yt], andN discrete observations
of the LV model during the time period 0 ≤ t ≤ T constitutes the observed data
set [x1:N , y1:N ], where xi is the population size at time 0 ≤ ti ≤ T . However,
it is common to introduce handpicked summary statistics. (Handpicked summary
statistics are statistics of the data set [x1:N , y1:N ] that are assumed to be informative
of the parameter θ.) After introducing these summary statistics we assume that the
summary statistics are observed instead of the timeseries [x1:N , y1:N ] [Papamakarios
et al., 2019b, Papamakarios and Murray, 2016]. Machinelearningbased summary
statistics have also been considered in Greenberg et al. [2019].

3.3 Protein folding modeling via stochastic differential equations

Protein folding is a complex process in which a protein chain is translated into a
functional protein molecule. Studying the time dynamics of the protein folding
process results in a very highdimensional problem. Bayesian analysis of this very
highdimensional data is challenging, and one strategy is, therefore, to instead study
the time dynamics along a single reaction coordinate. The reaction coordinate is a
onedimensional projection of the actual dynamics in highdimensional space. The
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timedynamics of the reaction coordinate data can be modeled with diffusion pro
cesses [Best and Hummer, 2011].

Paper Iv utilizes a stochastic differential equation (SDE) model to model the reaction
coordinate data (which is presented Figure 4). The reaction coordinate data has the
following features: marginal bimodal structure, irregular changepoints where the
mean shifts, and a local noise structure. Due to these data features, paper Iv utilizes
the following doublewell potential SDE (DWPSDE) model

Zt = Xt + Yt,

dXt = −∇V (Xt) dt+ σ dW x
t ,

dYt = −κYt dt+
√
2κγ2 dW y

t .

(24)

In Equation (24), Zt is the onedimensional observable process, which consist of the
sum of the solution of the latent onedimensional DWPSDE process Xt and the
onedimensional noise process Yt. The noise process Yt is an Ornstein–Uhlenbeck
process, which means the the noise process allows for autocorrelated noise. W x

t

and W y
t are two independent Brownian motions. The potential function V (Xt) in

Equation (24) is a DWP parameterized as

V (x) =
1

2

∣∣∣1
2
|x− c|p1 − d+ gx

∣∣∣p2 + 1

2
Ax2. (25)

The DWP function in Equation (25) is inspired by the potential described in Equa
tion 1 of Fang et al. [2017]. TheDWP function in Equation (25) is quite flexible in the
sense that many different potentials can be specified by varying the parameters of the
potential. The parameters of the DWP function in Equation (25) have the following
interpretations: c specifies the location for the potential (i.e. where the potential is
centered); d determines the spread of the potential; A is an asymmetry parameter; g
compresses the two modes of the long term (stationary) density of the latent process
xt; parameters p1 and p2 control the shape of the two modes (if the parameters p1
and p2 are set to low values the long term probability distribution becomes more
flat with less distinct modes); and σ governs the noise in the latent Xt process. The
noise process Yt of the DWPSDEmodel in Equation (24) is an OrnsteinUhlenbeck
process specified by parameters κ and σ, where κ is the autocorrelation level, and γ
is the noise intensity. All parameters of the DWPSDE model in Equation (24) are
positive so we would in principle be interested in inferring the full set of parameters
θ = [log κ, log γ, logA, log c, log d, log g, log p1, log p2, log σ]. However, the pa
rameters A and g are “stiff”, i.e., small changes in their values result in considerable
changes in the output, and are therefore hard to estimate. The parameterA and g are
therefore assumed to be known in paper Iv and the following parameters are instead
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inferred θ = [log κ, log γ, log c, log d, log p1, log p2, log σ]. Some promising infer
ence results are presented in paper Iv. However, additional analyses (still under de
velopment) show: 1) that the DWP function in Equation (25) is overparameterized,
and 2) that the DWPSDE model’s performance can improve by considering a less
flexible DWP function with fewer parameters.
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Figure 4: Reaction coordinate data.

3.4 Stochastic differential equations mixedeffects models

Stochastic differential equationsmixedeffectsmodels (SDEMEMs) is a class of stochas
tic dynamic models for population inference using mixedeffects, where dynam
ics are driven by stochastic differential equations [Lavielle, 2014]. Applications of
SDEMEMs can for instance be found in pharmacokinetic/pharmacodynamic mod
els [Donnet and Samson, 2013] and singlecell models [Persson et al., 2021] (i.e, in
paperA). SDEMEMs distinguish between three sources of variability: 1) the between
individual variability, 2) the intrinsic stochasticity of the model, and 3) the residual
variability due to measurement error. As an illustration, simulated data from an
OrnsteinUhlenbeck SDEMEMmodel (i.e, a SDEMEMmodel with latent dynam
ics driven by an OrnsteinUhlenbeck process) is presented in Figure 5. Indeed, in
Figure 5 we consider data from M trajectories. Each trajectory is one individual or
unit of the model and we see that the trajectories share some common structure, but
that each trajectory also has some individual variability.
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Mathematically, we describe the SDEMEM by the following
Y i
t = h(Xi

t , ϵ
i
t) ϵit|ξ

indep.∼ pϵ(ξ), i = 1 : M,

dXi
t = α(Xi

t , ϕ
i) dt+

√
β(Xi

t , ϕ
i) dW i

t ,

ϕi ∼ p(ϕi|η).
(26)

Here Y i
t and Xi

t are the ddimensional observable process and latent process for
individual i, respectively. Furthermore, we have that the SDEMEM consists of M
individuals, and for each individual, we have discrete observations yij . The index i
runs over the individuals and the index j denotes the j:th observation (of individual
i) at timepoint tj . The latent process Xi

t is a solution to an SDE parameterized
with a different parameter (or random effect) ϕi for each individual i. Each latent
process is also driven by an independent Brownian motion W i

t . Each latent process
models the intrinsic stochasticity of the data for the corresponding individual, and the
betweenindividual variability is accounted for via the random effects. The function
h maps the latent process to the observations, and the residual variability due to the
measurement error, governed by ξ, also enters the system here. In paper II, h can
be both nonlinear and nonGaussian, which allows for flexible modeling. Finally,
p(ϕi|η) is a distribution parameterized by η that models the random effects. The
parameter of inferential interest is θ = [ξ, η], Hence, we are interested in inferring
the parameter η that governs the model for the random effects and the measurement
error parameter ξ, but we are not interested in inferring the random effects ϕ1:M .
The SDEMEM can also include a nonvarying parameter κ that is the same for all
individuals. In the case where the nonvarying parameter κ is included the parameter
of inferential interest is θ = [ξ, κ, η].

4 Simulationbased inference

The following section constitutes the main component of this thesis, and the section
is structured as follows: Section 4.1 introduces the mathematical tools (statespace
models and particle filters, deep learning, and neural density estimation) utilized in
the thesis. In Sections 4.2–4.6 we introduce the different simulationbased inference
methods that are used in this thesis. Sections 4.2–4.6 also show how the mathemat
ical tools of Section 4.1 are utilized for simulationbased inference. Some additional
simulationbased inference methods not primarily considered in the thesis are briefly
discussed in Section 4.7.
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Figure 5: Simulated trajectories of an Ornstein-Uhlenbeck SDEMEM.

4.1 Mathematical tools

4.1.1 Statespace models and particle filters

Statespace models In experiments we often measure some quantity of interestX .
However, our measurements are commonly also effected by some exogenous noise
(i.e measurement error) so that we actually obtained observations from

Y = X + error. (27)

We can also have the case that we obtain observations from

Y = h(X) + error. (28)

Here, h(·) is some possible nonlinear function.

Statespace models (SSMs) are a special case where X is a latent (unobservable)
Markov process taking values on a continuous set. The latent Markov process is
governed by the transition density p(xt|xs), t > s. The observable process Y is gov
erned by the conditional density p(yt|xt), and is such that observations Y1, . . . , YN
at time points t1 : tN are conditionally independent given states of the latent process
X1, . . . , XN . SSM are computationally tractable (see below) and have been success
fully used for applications in signal processing, ecology, epidemiology, neuroscience,
and finance [Chopin et al., 2020, chapter 1].
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The SSM is given by{
yt ∼ p(yt|xt; θy),
xt ∼ p(xt|xs; θx), x0 ∼ p(x0) t0 ≤ s < t.

(29)

Here the processxt ∈ Rdimx is the unobservable latent process, where the initial state
is governed by the model p(x0). The process yt ∈ Rdimy is the observable process
at time point t. The timediscrete representation of the SSM model is illustrated in
Figure 6. In Equation (29), θy and θx are the parameters of the observable and latent
process, respectively. Thus, the full set of unknown parameters is θ = [θy, θx]. The
data that we observe is the timeseries y = [y1, y2, . . . , yN ] of in totalN observations
at timepoints t1, t2, . . . tN . Thus we have that yi is the observation of system at time
ti. The SSM framework is a flexible modeling framework since both p(yt|xt, θy)
and p(xy|xs, θx) can be nonlinear and nonGaussian. A simple SSM used in the
literature for benchmarking purposes is presented in Example 2 [Cappé et al., 2007].

Example 2 (Simple nonlinear Gaussian SSM)

Let us now consider the following SSM governed byyt =
x2
t

20 + vt,

xt = xt−1

2 + 25 xt−1

1+x2
t−1

+ 8 cos(1.2t) + ut,
(30)

where, ut ∼ N (0, σu) and vt ∼ N (0, σv). The parameters σu and σv are typi
cally assumed to be known and fixed at σu =

√
10 and σv = 1. The initial state

for the model in Equation (30) follows x0 ∼ N (0,
√
10). Notice that Equa

tion (30) introduces the timediscrete representation of the model. However, we
can also write the model in Equation (30) in terms of the the general SSM of
Equation (29) and we then have

yt ∼ N (
x2
t

20 , σu =
√
10),

xt ∼ N (xs
2 + 25 xs

1+x2
s
+ 8 cos(1.2t), σv = 1),

x0 ∼ N (0,
√
10), t0 ≤ s < t.

(31)

In the case where both the latent model p(xy|xs; θx) and the observation model
p(yt|xt; θy) are linear and Gaussian the Kalman filter [Kalman, 1960] can be used to
obtain the likelihood function exactly. Cases where p(xy|xs; θx) is nonlinear but
still Gaussian can be handled by advanced Kalman filters (e.g., the extended Kalman
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filter [Särkkä, 2013, chapter 5.2]). However, for general nonlinear and nonGaussian
SSMs, particle filters (i.e., sequential Monte Carlo) must be deployed.

XtXt-1 Xt+1

ytyt-1 yt+1

Xt ~ p(xt|xt-1; θx)

yt ~ p(yt|xt; θy)

Figure 6: Illustration of the general time-discrete SSM.

Particle filters Particle filters or (sequential Monte Carlo methods) are methods for
filtering, inference, and smoothing in statespace models (SSM) [Särkkä, 2013, Cappé
et al., 2007, Chopin et al., 2020]. The term sequential Monte Carlo, however, also
refers to a broader group of methods that can be studied under the general Feynman
Kac model [Chopin et al., 2020, chapter 4]. However, in this thesis, we only use
particle filters to estimate the likelihood of SSMs. We will, therefore, not further
discuss the FeynmanKac formulation of particle filters.

The likelihood of the general SSM is given by

p(y1:N |θ) = p(y1|θ)
N∏

n=2

p(yn|y1:n−1; θ). (32)

where,

p(yn|y1:n−1; θ) =

∫
p(yn, xn|y1:n−1; θ)dxn, (33)

=

∫
p(yn|xn; θy)p(xn|y1:n−1; θ

x)dxn. (34)

However, the integral in Equation (34) is in the general case intractable, but it can be
estimated via the following Monte Carlo estimate:

p̂(yn|y1:n−1; θ) ≈
1

P

P∑
p=1

p(yn|x̃pn; θy), x̃1:Pn
indep.∼ p(xn|y1:n−1; θ), (35)
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where the xpn’s are draws from p(xn|y1:n−1; θ). Simulating from p(xn|y1:n−1; θ)
is achieved by utilizing particle filters, such as the bootstrap filter [Gordon et al.,
1993, Stewart and McCarty Jr, 1992] (outlined in Algorithm 1). The advantages of
the bootstrap filter are: it is easy to implement, it does not rely on selecting suitable
proposal distributions, and it is not restricted to special types of SSMs. However,
for challenging SSMs, it can be advantageous to use the auxiliary particle filter [Pitt
and Shephard, 1999], or if the model allows for it, the bridge filer [Golightly and
Wilkinson, 2011].

Algorithm 1 Bootstrap particle filter
Input: Data y1:N , number of particles P , and model parameter θ.
Output: The likelihood estimation L̂PF (θ).
1: Initialize particles: x̃1:P

0 ∼ p(x0).
2: Propagate particles: For p = 1 : P , sample, xp

1 ∼ p( ·|x̃p
0; θ

x). ▷ First iteration
3: Compute importance weights: For p = 1 : P , compute,

wp
1 = p(y1|xp

1), w̃p
1 =

wp
1∑P

p=1 w
p
1

. (36)

4: Compute likelihood estimate: p̂(y1|θ) =
∑P

p=1 wp
1

P .
5: for n = 2 : N do ▷ Loop over iterations
6: (optional) Sorting: Euclidean sort the particles (x1

n−1, ..., x
P
n−1).

7: Resample: SampleP times with replacement from (x1
n−1, ..., x

P
n−1)with associated

probabilities (w̃1
n−1, ..., w̃

P
n−1) to obtain a new sample (x̃1

n−1, ..., x̃
P
n−1).

8: Propagate: For p = 1 : P , sample, xp
n ∼ p( ·|x̃p

n−1; θ
x).

9: Compute importance weights: For p = 1 : P , compute,

wp
n = p(yn|xp

n; θ
y), w̃p

n =
wp

n∑P
p=1 w

p
n

. (37)

10: Compute likelihood estimate: p̂(yn|y1:n−1; θ) =
∑P

p=1 wp
n

P .
11: end for
12: Compute full likelihood estimate:

L̂PF := p̂(y|θ) = p̂(y1|θ)
N∏

n=2

p̂(yn|y1:n−1; θ). (38)
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4.1.2 Deep learning

Deep learning is a class of machine learningmethods that can be used for several tasks,
including but not limited to classification, regression, and generative models. The
defining feature of deep learning methods is that they automatically construct use
ful representations of the input data and combine these simple representations into
complex representations [Goodfellow et al., 2016, chapter 1]. Recent wellknown ap
plications of deep learning approaches are, for instance, DeepMind’s AlphaGomodel
used to play the game of Go [Singh et al., 2017], and DeepMind’s AlphaFold model
used to predict protein structures [Jumper et al., 2021].

Deep learning regression methods are used in paper I to learn summary statistics for
ABC (the methodology of paper I is discussed in Section 4.2.1). Furthermore, deep
generative models (normalizing flows, see Section 4.1.3) are used in Paper III for the
construction of a novel simulationbased inference algorithm. We will first focus on
deep learning regression methods, then we will give a short presentation of the deep
learning architectures used in paper I.

The multilayer perceptron network Inspired by Higham and Higham [2019], we
will introduce the multilayer perceptron (MLP) network [Goodfellow et al., 2016,
chapter 6] by considering the simple MLP model in Example 3.

Example 3 (A simple 2hiddenlayer MLP network)

Figure 7 presents a simple twohiddenlayer MLP network. In the notation be
low, the input layer is layer 1, the two hidden layers are layers 2 and 3, and the
output layer is layer 4. The function f : R8 → R4 that the network in Figure 7
learns is

f(x) = g4(w4g3(w3g2(w2x+ b2) + b3) + b4), (39)

where x ∈ R8 is the input. The trainable weights w2:4 and biases b2:4 have the
following dimensions

w2 ∈ R12×8,

w3 ∈ R10×12,

w4 ∈ R4×10,

b2 ∈ R8,

b3 ∈ R10,

b4 ∈ R4.

(40)

Thus, the full set of learnable parameters are ϕ = [w2, b2, w3, b3, w4, b4]. The
functions g2:4 are the activation functions that introduces the nonlinearities to
the model. Typically, g2:3 are ReLU activation functions [Glorot et al., 2011], and
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since we are considering a regression task g4 will most commonly be the identity
function. Now, let us denote with ai, i = 1 : 4 the i:th action, or output, of the
network, we can then write the model in Equation (39) as{

a1 = x,

ai = gi(wiai−1 + bi), i = 2 : 4.
(41)

Now, assume that we have training data
(
xn, yn(xn)

)
n=1:N

, consisting of the
features x1:N and the associated targets y1:N (x1:N ). The quadratic loss function
with respect of the trainable parameters of the model is then

L(ϕ) ∝
N∑

n=1

∣∣∣∣yn(x1)− a4(xn)
∣∣∣∣2
2
. (42)

The model in Equation (39) is now trained by minimizing the loss of Equation
(42). For this task is typically the minibatch stochastic gradient decent algorithm
used. One step of the minibatch stochastic gradient descent algorithm is com
puted as following:

1. Select integers k1:m at random without replacement from 1 : N .

2. Update the parameter ϕ according to

ϕ→ ϕ− η
1

m

m∑
i=1

∇Lxki (ϕ). (43)

Here∇Lxki (ϕ) is the gradient of the loss computed for the data point xki , and
η is the learning rate. The learning rate is akin to the steplength of numerical
optimization, and the learning rate governs how quickly we move or update the
weights ϕ in the weightspace. Assuming that we have selected m such that
mod (N,m) = 0, then after running the algorithm above for N/m iterations,
we have cycled through the training data

(
xn, yn(xn)

)
n=1:N

; and, thus, we
have completed one epoch. The standard approach to compute the gradient
∇Lxki (ϕ), which consists of the partial derivatives of all weights and biases, is
to use the backpropagation (backprop) algorithm [Rumelhart et al., 1986]. The
main feature of backprop is that it only requires one forwardpass of the network
to collect all components that are needed to compute the partial derivatives of all
weights and biases. Computing one forwardpass consists of feeding some input
to the network’s input layer and letting this input traverse through the hidden
layers until we finally obtain the result of the output layer.
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The example above shows via a simple example how the multilayer perceptron model
is constructed and how this model is trained. However, in this thesis, models are
not implemented from scratch. We instead employ deep learning frameworks with
automatic differentiation [Baydin et al., 2018] capabilities (e.g., PyTorch [Paszke
et al., 2019]), which allows us to easily and efficiently develop novel architectures.

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ⁴

Figure 7: Example of a multilayer perceptron network. The illustration was created with the online tool at
http://alexlenail.me/NN-SVG/index.html.

Leveraging features of the data While the MLP architecture is simple and useful
for certain tasks it has the distinct drawback that knowledge of the structure of the
input data x ∈ X is not exploited. Whichmeans that the structures of the data x also
must be learned since the MLP architecture is not adapted for them. For instance, if
x is a timeseries the MLP architecture will need to learn both the timedependency
of the features of x and the transformation f : X → Y . If we instead employ a
convolutional neural network (CNN) [LeCun et al., 1989] the timedependency of
x can more easily be utilized since the CNN architecture is set up to leverage this
specific property. Similarly, if x is an image with some temporal structure it is also
likely that a CNN architecture that leverages this property of the data would perform
better than an MLP architecture. Thus, a benefit of utilizing deep learning models
is that the models can be adapted to the features of the data, while still allowing for
flexible and nonparametric modelling.
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i.i.d data Now, assume that the data x = [x1, x2, . . . xU ] ∈ XU , xi ∼ X consists
of U units which are i.i.d, and that X is a countable space. Then, for a permutation
invariant function f : 2X → Y , we have that

f(x1, x2, . . . , xU ) = f(xπ(1), xπ(2), . . . , xπ(U)), (44)

where π is any permutation of the data. Notice that the range space Y does not have
to be countable. We also say that the function f is exchangeable, since it is invariant
to the permutations for the i.i.d data x. Thus, if the data x is i.i.d, we would like
to set up an network architecture that is permutation invariant. Designing permu
tation invariant networks at least dates back to [Minsky and Papert, 1988, Chater 2]
and ShaweTaylor [1989], and a recent review on the topic is BloemReddy and Teh
[2019]. However, we will here focus on Zaheer et al. [2017], in which they introduce
the deep learning architecture DeepSets. Deepsets is permutation invariant and thus
suitable for i.i.d data. The DeepSets architecture learns the function f : XU → Y
which is a composition of the functions ϕ : X→ R and ρ : R→ Y , such that

f(x) = ρ(
U∑
i=1

ϕ(xi)), (45)

where ρ and ϕ are suitable functions, and Y = R. The functions ρ and ϕ are in
practice parameterized by MLP networks. Zaheer et al. [2017] provides a universal
approximation theorem for the decomposition in Equation (45). Hence, they show
that the decomposition in Equation (45) is valid for suitable transformations ϕ and
ρ.

Markovian data In paper I we consider the problem of constructing invariant net
works for Markovian data of order d. To solve this task, paper I introduces the
network architecture partially exchangeable network (PEN), which is invariant for
Markovian data. The PEN architecture of order d learns the function f : XU → Y ,
which is a composition of the functions ϕ : Xd+1 → R and ρ : Xd ×R→ Y , such
that

f(x) = ρ(x1:d,

U−d∑
i=1

ϕ(xi:(i+d))). (46)

We notice that PEN of order d = 0 corresponds to DeepSets. Furthermore, to
most efficiently leveraging the Markovian property of the data, the order of the PEN
architecture should be the same as the Markov order of the data. In paper I we
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provide a universal approximation theorem for the architecture in Equation (46). We
also show in paper I how the PEN architecture can be used to develop dataefficient
models for learning summary statistics for Markovian models that are informative
for use in approximate Bayesian computation algorithms.

We end this section by concluding that deep learningmodels can be powerful tools for
function approximation tasks. An important feature of deep learning architectures is
that they can be set up to leverage features of the data, which can allow us to develop
more dataefficient and interpretable models.

4.1.3 Conditional neural density estimation

A conditional neural density estimator (CNDE) is a model p̃ϕ(u|v) that takes inputs
u ∈ U and v ∈ V , and outputs the conditional density of u|v. Thus we have that

p̃ϕ : U × V → R+. (47)

Themodel p̃ϕ(u|v) is parameterized with parametersϕwhich typically are the weights
of some deep learning architecture. Given training data (un, vn)n=1:N the CNDE
model p̃ϕ(u|v) can be trained by minimize total negative logprobability [Papa
makarios et al., 2019b]

L(ϕ) = −
N∑

n=1

log p̃ϕ(u
n|vn). (48)

Utilizing CNDEs for inference in Bayesian implicit models CDNEs can be used
to learn both the posterior distribution and the likelihood function of implicit mod
els, a feature utilized in paper III. Now, assume that we have samples (θn, xn)n=1:N

from the prior predictive distribution; thus, we have that

(θn, xn) ∼ p(x, θ) = p(x|θ)p(θ), n = 1 : N. (49)

If we want to learn the posterior distribution, we then introduce the CNDE model
p̃ϕ(θ|x), which we train with the following loss

L(ϕ) = −Ep(x,θ)

(
log pϕ(θ|x)

)
(50)

∝ Ep(θ)

(
DKL(p(θ|x)||p̃ϕ(θ|x)

)
. (51)

In Equation (51),DKL(P ||Q) is the Kullback–Leibler (KL) divergence between the
distributions P and Q. After training the model p̃ϕ(θ|x), the posterior distribution
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for the observed data set xobs is obtained by p̃ϕ(θ|xobs). The loss in Equation (51) is
typically approximated via Monte Carlo.

If we instead are interested in learning the likelihood function, we can then introduce
the corresponding CNDE model p̃ϕ(x|θ). The likelihood model p̃ϕ(x|θ) is trained
via the following loss

L(ϕ) = −Ep(x,θ)

(
log pϕ(x|θ)

)
(52)

∝ Ep(θ)

(
DKL(p(x|θ)||p̃ϕ(x|θ)

)
. (53)

Again, the loss in Equation (53) is typically approximated via Monte Carlo. Thus, we
can conclude that CNDEs can be used to learn either the posterior or the likelihood
with training data generated from the prior predictive distribution. However, this
approach is very datainefficient since we do not condition the training data on the
observed data xobs. We will, therefore, in Section 4.6 discuss more efficient algo
rithms for inference in implicit Bayesian models.

Gaussian Mixture Networks A simple CNDE model is the Mixture Density Net
work (MDN) model [Bishop, 1994]. An MDN models the density p(u|v) via a
Gaussian Mixture distribution, such that

p̃ϕ(u|v) =
K∑
k=1

N (u|mk, Sk). (54)

where K is the number of mixture components. The mixture components are pa
rameterized with mean vectors m1:K and covariance matrices S1:K computed with
anMLP network parameterized with weights ϕ. TheMDNmodel can learn complex
distributions ifK is large and the network that computes themk’s andSk’s has a large
capacity. MDNs have been used for simulationbased inference in Papamakarios and
Murray [2016], and Lueckmann et al. [2017].

Normalizing flows The normalizing flow model [Rezende and Mohamed, 2015]
(see also Kobyzev et al. [2020] and [Papamakarios et al., 2019a] for reviews) is a more
complicated CNDE that has become popular to use for simulationbased inference
recently [Greenberg et al., 2019, Papamakarios et al., 2019b, Radev et al., 2020].

The unconditional normalizing flow model is a probabilistic model that transforms
a simple base distribution u ∼ pu(u), u ∈ U into some complex target distribution
x ∼ px(x), x ∈ X via the following transformation

x = T (u), u ∼ pu(u). (55)
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The function T is parameterized with an invariant neural network such that T−1 ex
ists, and where both T and T−1 are differentiable, i.e. the function T is diffeomorphic.
Thus, the normalizing flow consists of the two functions

T : U → X , (56)

T−1 : X → U . (57)

In Equation (56), T takes a simple distribution pu(u) (typically a Gaussian or uni
form distribution) and maps that distribution into the complex target distribution of
interest px(x). An illustration of the learning process of the normalizing flow trans
formation T is presented in Figure 8. The function T−1 in Equation (57) does the
exact inverse operation, i.e. T−1 maps the target distribution x into the simple base
distribution pu(u). The probability density function (pdf ) of x is computed via the
change of variables formula{

p(x) = pu(u)|det JT (u)|−1, u ∼ T−1(x),

p(x) = pu(T
−1(x))|det JT−1(x)|.

(58)

In Equation (58), JT is the Jacobian of T , and correspondingly, JT−1 is the Jacobian
of T−1. Due to the structure of the pdf, it is easy to construct complex transfor
mations by composing, say, n transformations such that T = T1 ◦ T2 ◦ · · · ◦ Tn

where each transformation Ti is diffeomorphic, and where the Jacobian contribu
tion of each transformation Ti can be computed. Normalizing flow models that
allow for building these kinds of nested structures are, for instance, RNVP [Dinh
et al., 2017], Neural Spline Flow [Durkan et al., 2019], and Masked Autoregressive
Flow [Papamakarios et al., 2017].
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Figure 8: Illustration of a normalizing flow transformation T from the simple base distribution to the target
distribution. The figure shows the approximated target distribution after 500, 1000, 1500, and 2000
epochs.

Now, assume that we have a normalizing flow model p̃x(x;ϕ) (with weights ϕ of the
neural network composition T ), and that our target distribution is denoted px(x).
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We want to train p̃x(x;ϕ) so that it approximates px(x). Let us also assume that we
can obtain samples from the target px(x), then we can use the forward KL divergence
to fit the flow model by utilizing the following loss function

L(ϕ) = DKL

(
px(x)

∣∣∣∣p̃x(x;ϕ)), (59)
= −Epx(x)

(
log p̃x(x;ϕ)

)
+ const., (60)

= −Epx(x)

(
log pu(T

−1(x; θ)) + log | det JT−1(x;ϕ)
)
+ const.. (61)

The expectation in Equation (61) is approximated via Monte Carlo.

If we do not have access to samples from the target distribution px(x), but we can
evaluate the pdf of px(x), it is possible to fit p̃x(x;ϕ) via the reverse KL divergence
using the loss

L(ϕ) = DKL

(
p̃x(x;ϕ)

∣∣∣∣px(x)), (62)
= Ep̃x(x;ϕ)

(
log p̃x(x;ϕ)− log px(x)

)
, (63)

= Epu(u)

(
log pu(u))− log | det JT (u;ϕ)| − log px(T (u;ϕ))

)
. (64)

It is shown in Papamakarios et al. [2017] that the forward and the reverse KL diver
gence are equivalent. The loss in Equation (64) is again typically approximated via
Monte Carlo.

In paper III of the thesis we develop a novel simulationbased inference algorithm that
leverages conditional normalizing flows. Hence, the problem of interest in this thesis
is conditional density estimation via normalizing flows. Thus, we want to introduce
a normalizing flow model p̃x(x|v;ϕ) that leans the conditional target distribution
p(x|v), where v ∼ V is the quantity we condition on. (For simulationbased infer
ence applications, the quantity will either be the data x or the parameter θ, depend
ing on if we construct a normalizing flow model for the posterior of the likelihood.)
However, the normalizing flowmodel can readily be extended to the conditional case
by considering the following transformations T and T−1 [Winkler et al., 2019]

T : U × V → X , (65)

T−1 : X × V → U . (66)

Additionally, it is also possible to utilize a conditional base distribution u ∼ pu(u|v)
such that the quantity we condition on enters both the transformations T and T−1,
and the base distribution [Winkler et al., 2019].

Normalizing flows are particularly useful for simulationbased inference since den
sity estimation and sampling both can be done efficiently if one utilizes appropriate
normalizing flows architectures [Papamakarios et al., 2019a].
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4.2 Approximate Bayesian computation

Approximate Bayesian computation (ABC) [Beaumont et al., 2002, Marin et al.,
2012] is a popular simulationbased inference method. A very simple ABC algorithm
is ABC rejectionsampling (ABCRS) [Tavaré et al., 1997], and themain idea of ABC
RS is to simulate parameterdata pairs (θ⋆, x⋆) from the prior predictive distribution
and then keep samples θ⋆ where the associated simulated data x⋆ is similar to the
observed data xobs. Of course, one main question is whether the approach outlined
above samples parameters from the intended posterior distribution. We will here
address this question by giving an example from Marin et al. [2012].
Example 4 (ABCRS with exact datamatch)

Let us consider the following case: We assume that the data x ∈ X is count
able and that we have observations xobs ∼ p(x|θ), xobs ∈ X. Then, we keep
simulating parameterdata pairs from the prior predictive distribution

x⋆ ∼ p(x|θ⋆), θ⋆ ∼ p(θ), (67)

until we have that x⋆ = xobs. The distribution for accepted θ⋆ obtained this way
is

p(θ⋆) ∝
∑
x⋆∈X

p(θ⋆)p(x⋆|θ⋆)1xobs(x⋆), (68)

∝ p(θ⋆)p(xobs|θ⋆), (69)

∝ p(θ⋆|xobs). (70)

Thus we indeed manage to sample from the correct distribution by following the
procedure above.

However, comparing simulated data sets x⋆ to the observed data xobs is often very in
efficient for highdimensional data. To avoid this curseofdimensionality one typically
introduce a function S(x) = s that maps the data into a set of (lowdimensional)
summary statistics. To compare simulated summary statistics s⋆ with observed sum
mary statistics sobs we have to specify a distance function ∆(s⋆, sobs). In ABC the
likelihood is approximated with via some unnormalized kernelKϵ(·, ·) such that

p̂ϵ(sobs|θ) =
∫

Kϵ

(
∆(s⋆, sobs)

)
p(s⋆|θ)ds⋆. (71)

Here p̂ϵ(sobs|θ) is the ABC likelihood for the observed summary statistics. By utiliz
ing the likelihood approximation in Equation (71) we have that the ABC posterior
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that we aim at sampling from is given by

p̂ϵABC(θ|sobs) ∝ p̂ϵ(sobs|θ)p(θ) =
∫

Kϵ

(
∆(s⋆, sobs)

)
p(s⋆|θ)p(θ)ds⋆. (72)

From Equation (72) we notice that we can view ABC as a pseudomarginal method
since the posterior of interest p̂ϵABC(θ|sobs) is obtained by marginalizing out s⋆ from
the extended posterior

p̂ϵABC(θ, s
⋆|sobs) ∝ Kϵ

(
∆(s⋆, sobs)

)
p(s⋆|θ)p(θ). (73)

For the ABC posterior, a standard choice is to use a uniform kernel, give by

Kunifrom
ϵ (x) =

{
1, if |x| ≤ ϵ,

0, otherwise,
(74)

and the Mahalanobis distance function which is give by,

∆Mahalanobis(s∗, sobs) =
√

(s∗ − sobs)TW (s∗ − sobs),

where W is the estimated covariance matrix. However, other choices are available.
The threshold parameter ϵ governs the precision of the ABC posterior since we have
that

p̂ϵABC(θ|sobs)→ p(θ|sobs), as ϵ→ 0, (75)

and, correspondingly,

p̂ϵABC(θ|sobs)→ p(θ), as ϵ→∞. (76)

Thus, we wish to run ABC with the smallest possible threshold ϵ, which is com
putationally feasible. Furthermore, the ideal case would be that S(·) computes the
sufficient statistics of the model since we then would have that

p̂ϵABC(θ|sobs) = p̂ϵABC(θ|xobs). (77)

In Equation (77), p̂ϵABC(θ|sobs) is the ABC posterior produced after introducing the
summary statistics, and p̂ϵABC(θ|xobs) is the ABC posterior produced when directly
comparing the data sets. Thus, we would in this case not lose any information regard
ing the posterior. However, computing the sufficient statistics is unfeasible outside
the exponential family and we therefor aim at using informative summary statistics,
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such that the loss of information due to introducing the summary statistics is small
in some sense, and we then have that

p̂ϵABC
(
θ|sobs)

)
≈ p̂ϵABC(θ|xobs). (78)

The problem of learning informative summary statistics is discussed in Section 4.2.1.

We will now introduce the ABC rejectionsampling (ABCRS) algorithm which is
outlined in Algorithm 2. The idea of a rejection sampling algorithm is to sample
from some target distribution f(x) via some proposal distribution g(x) [Givens and
Hoeting, 2012, chapter 6]. Hence, a proposal x⋆ ∼ g(x) is sampled from the pro
posal distribution and the proposal is accepted with probability

f(x⋆)

Mg(x⋆)
, (79)

whereMg(x⋆) ≥ f(x⋆),∀x⋆ ∈ X . For ABCRS the target that we want to sample
from is the extended posterior p̂ϵABC(θ, s

⋆|sobs). However, we do not sample from
the extended posterior directly, instead we sample from some proposal distribution
g(θ, s⋆), and for the ABCRS algorithm presented here we have that g(θ, s⋆) =
p(s⋆|θ)p(θ). The acceptance probability of the ABCRS algorithm is now give by

p̂ϵABC(θ, s
⋆|sobs)

Cg(θ, s⋆)
∝

Kϵ

(
∆(s⋆, sobs)

)
p(s⋆|θ)p(θ)

Cp(s⋆|θ)p(θ)
, (80)

=
Kϵ

(
∆(s⋆, sobs)

)
C

. (81)

In Equation (81), C is some constant such that C ≥ Kϵ(0). The ABCRS algorithm
outlined in Algorithm 2 is the same algorithm as discussed Example 4. But with the
important difference that the ABCRS algorithm in Algorithm 2 produces samples
according to Equation (72) instead of the true posterior. In this thesis, we show in
paper I how probabilistic symmetries of the prior predictive distribution can be used
to develop a dataefficient deeplearning model (i.e. the partially exchangeable net
work model) for learning summary statistics (see Section 4.2.1). However, in paper
I, we only consider the ABCRS algorithms. Thus developing or utilizing more ad
vanced ABC algorithms have not been the focus of this thesis. Nonetheless, some
more advanced algorithms, where the idea is to sample proposals in a more efficient
and guided way, are: ABCSMC [Toni, 2010, Sisson et al., 2007, Beaumont et al.,
2009], and ABCMCMC [Marjoram et al., 2003].
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Algorithm 2 ABC rejectionsampling
Input: Number of draws from the prior predictive distribution N , ABCthreshold ϵ.
Output: Samples from the ABC posterior θ1:N

′
.

1: for n = 1 : N do
2: Sample θn ∼ p(θ).
3: Generate xn ∼ p(x|θn).
4: Accept θn with probability

Kϵ

(
∆
(
S(xobs), S(xn)

))
C

, (82)

where C ≥ Kϵ(0).
5: end for

4.2.1 Learning summary statistics

As mentioned earlier, selecting which summary statistics to use is one of the main
challenges when employing ABC in practice. Learning summary statistics has been
an active research area, and some of the proposed methods are reviewed in [Sisson
et al., 2018, chapter 5]. Another more modern approach is not to consider the sum
mary statistics and instead match the data sets directly, for instance, by utilizing the
Wasserstein distance [Bernton et al., 2019, Drovandi and Frazier, 2021].

An interesting line of research has been to use regression models to learn the sum
mary statistics. This idea is also considered in paper I and we will therefore review
this approach here. The idea of utilizing linear regression models for learning sum
mary statistics was introduced by Fearnhead and Prangle [2012], where they showed
that the best summary statistics in terms of the quadratic loss is the posterior mean.
However, the posterior means is, of course, unknown, but we can learn the posterior
mean as a function of the parameter θ via simulations. In Fearnhead and Prangle
[2012] they therefore consider the following regression model

θij = E(θj |xi) + ϵij = β0j + βjh(x
i) + ϵij . (83)

Here, the index j runs over the dimension of the parameters space, i.e., j = 1 :
dim θ, the index i runs over a set of simulated data sets from i = 1 : N , the function
h(xi) is some (non)linear transformation of the data, and ϵij is some meanzero
noise. The model in Equation (83) is fitted to dataparameter pairs (xi, θi)i=1:N

obtained from the prior predictive distribution. Once the linear regression model
is fitted, the j:th summary statistic for some new simulated data set x⋆ is given by
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S(x⋆) = β̂0j + β̂jh(x
⋆).

The idea of using regressionbased models to learn the summary statistics as the pos
terior mean was further developed in Jiang et al. [2017] where they used a multilayer
perceptron (MLP) network to model the regression function; thus they used the fol
lowing model

θi = E(θ|xi) + ϵi = fϕ(x
i) + ϵi. (84)

Here, fϕ is an MLP network parameterized with weights ϕ, that are estimated by

min
ϕ

1

N

N∑
i=1

∥fϕ(xi)− θi∥22. (85)

Thus, Jiang et al. [2017] utilize the same loss function as in Fearnhead and Prangle
[2012]; hence, the only difference of these two approaches is that Jiang et al. [2017] use
a more advanced nonlinear regression model, i.e. the MLP network, while Fearn
head and Prangle [2012] utilize a linear regression model. Jiang et al. [2017] show
that their MLP approach outperforms the linear regression model of Fearnhead and
Prangle [2012]; however, the MLP approach requires a much larger computational
budget.

In Creel [2017], they notice that MLPs are not particularly good at handling time
depended input data. They, therefore, introduce a preprocessing step such that they
feed the network with a set of summary statistics si instead of the data xi. The
drawback of this method is that it requires the user to know which summary statistics
are reasonable to use as inputs to the network.

Paper I further develops the deep learningbased approach. Paper I, particularly, con
siders Markovian data and introduces a network architecture, partially exchangeable
networks (PEN), that is partially exchangeable and, therefore, invariant for Marko
vian data. In Paper I we show that PEN is much more dataefficient than MLP. The
results of paper I show that PEN works well for Markovian data, and a case study
also shows that PEN might be useful for quasiMarkovian data.

Convolutional neural networks (CNNs) have also been used for the task of learning
summary statistics for ABC [Åkesson et al., 2020]. The advantage of CNNs is that
they can utilize the structure of the timedependent data, and the CNN is expected
to work well if the temporal structure is correctly exploited. However, for Markov
models with known order of Markovianity, PEN is naturally suited to exploit such
features using small computational resources.
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While the network approaches indeed have shown to outperform linear regression
models, the main drawback is that all network approaches (and linear regression
models) require us to simulate a large number of samplesN from the prior predictive
distribution, fit the network, and then run the ABC inference. However, training
the networks can constitute a computationally challenging task. Therefore, it is of
interest to consider approaches that directly target the posterior and thereby circum
vent the separate summary statistics learning step. Such methods will be considered
in Section 4.6 where we will discuss direct density estimation methods, which are
methods that can directly learn the posterior (or the likelihood) from model simula
tions.

4.3 Pseudomarginal MetropolisHastings

The MetropolisHastings (MH) algorithm [Metropolis et al., 1953, Hastings, 1970]
is a popular method to numerically sample from some target distribution p⋆(x). A
recent review that covers the MH algorithm’s 50 year old history, as well as current
developments of the MH algorithm is Dunson and Johndrow [2020]. The idea of
the MH algorithm is to construct a Markov chain, where the stationary distribution
is the target distribution p⋆(x). Let us assume that the current value of the Markov
chain is x#. The Markov chain is now advanced by first sampling a proposal x⋆ ∼
q(x|x#), from proposal distribution q(x|x#) that generates a proposal x⋆ based on
the currently accepted value x#. The proposal x⋆ is then accepted according to the
acceptance probability

α = 1 ∧ p⋆(x⋆)

p⋆(x#)
· q(x

#|x⋆)
q(x⋆|x#)

. (86)

A noteworthy feature of the MH algorithm is that we do not need to know the nor
malizing constant of the target distribution p⋆(x) to compute the acceptance proba
bility in Equation (86). Tuning the proposal distribution so that the MH algorithm
does not take too small (or too big) steps in the space of x ∈ X is of critical impor
tance when running the MH algorithm. To alleviate this problem, several adaptive
MH algorithms have been developed [Haario et al., 2001, Andrieu andThoms, 2008,
Vihola, 2012], and these methods try to tune the proposal distribution concurrently
during one run of the MH algorithm.

We will now introduce the pseudomarginal MetropolisHastings (PMMH) algo
rithm in the context of Bayesian parametric inference, in the case where we have
obtained some observed data set xobs. In this thesis, PMMH is used for Bayesian
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parametric inference in both papers II and Iv. Thus, let us now consider the case
where we want to sample from some posterior p(θ|xobs) using the MH algorithm.
The acceptance probability is then given by

α = 1 ∧ p(xobs|θ⋆)
p(xobs|θ#)

· p(θ
⋆)

p(θ#)
· q(θ

#|θ⋆)
q(θ⋆|θ#)

. (87)

In Equation (87), θ# is the current position of the chain and θ⋆ is the proposed pa
rameter. However, the acceptance probability in Equation (87) is only tractable if
we can evaluate the likelihood p(xobs|θ). The pseudomarginal MetropolisHastings
(PMMH) algorithm [Andrieu and Roberts, 2009, Beaumont, 2003] however allows
us to ease this restriction, since PMMH allows us to replace the true likelihood
p(xobs|θ) with an nonnegative unbiased stochastic approximation p̂(xobs|θ). The
fascinating result of [Andrieu andRoberts, 2009] and Beaumont [2003] is that PMMH
still targets the true posterior, while utilizing and unbiased stochastic approximation
of the target.

Thus, we are in the cases where p(xobs|θ) is intractable. However, instead we target
the joint distribution p(xobs, z|θ) (where z ∼ g(z) is some useful auxiliary variable).
In this cases it is possible to write p(xobs, z|θ) as

p(xobs, z|θ) = p(xobs|θ, z)p(z|θ) = p(xobs|θ, z)g(z). (88)

The last step in Equation (88) holds since we assume independence of z and θ. The
likelihood p(xobs|θ) can be obtained via marginalization

p(xobs|θ) =
∫

p(xobs, z|θ)dz =

∫
p(xobs|θ, z)g(z)dz = Ez

(
p(xobs|θ, z)

)
.

(89)

The stochastic approximation p̂z(x
obs|θ) can now be constructed by estimating the

expectation Ez(p(x
obs|θ, z)) via Monte Carlo, thus

Ez

(
p(xobs|θ, z)

)
≈ 1

P

P∑
p=1

p(xobs|θ, zp), zp
iid∼ g(z). (90)

Furthermore, theMonte Carlo based stochastic approximation p̂z(xobs|θ) of the like
lihood can now be defined as

p̂z(x
obs|θ) ··=

1

P

P∑
p=1

p(xobs|θ, zp), zp
iid∼ g(z). (91)
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For the stochastic approximation p̂z(x
obs|θ) in Equation (91), the auxiliary variable

z = [z1, z2, . . . , zp] is the set of underlying (pseudorandom) numbers used to
compute the stochastic approximation. Before continuing our construction of the
PMMH method, we notice the similarities between the Monte Carlo estimate in
Equation (91) and the likelihood approximation for a statespace model (SSM) in
Equation (35). These similarities are not surprising since the likelihood approxima
tion in Equation (35) is a special case of the more general stochastic approximation
in Equation (91) obtained when considering SSMs. The unbiasedness of p̂z(xobs|θ)
follows from

Ez

(
p̂z(x

obs|θ)
)
= Ez

( 1
P

P∑
p=1

p(xobs|θ, zp)
)
, (92)

=
1

P

P∑
p=1

Ez

(
p(xobs|θ, zp)

)
, (93)

=
1

P

P∑
p=1

∫
p(xobs|θ, zp)g(zp)dzp, (94)

= p(xobs|θ). (95)

Equation (95) shows that the Monte Carlo based likelihood estimate p̂z(xobs|θ) in
deed is unbiased; hence, this estimate fulfills the condition necessary for PMMH.
The next step is to show that the posterior that we obtain when utilizing stochastic
likelihood approximation of Equation (91) indeed is the correct posterior. To do that,
let us now consider the true posterior, which is given by

p(θ|xobs) = p(xobs|θ)p(θ)
p(xobs)

. (96)

Hence, we can write the evidence p(xobs) as

p(xobs) =
p(xobs|θ)p(θ)
p(θ|xobs)

. (97)

By, utilizing Equation (97) we can now write the extended posterior p(θ, z|xobs) as

p(θ, z|xobs) = p(xobs|θ, z)g(z)p(θ)
p(xobs)

=
p(θ|xobs)p(xobs|θ, z)g(z)

p(xobs|θ)
. (98)

We are now targeting the joint posterior p(θ, z|xobs). However, obtaining samples
of the marginal posterior p(θ|xobs) via the extended posterior p(θ, z|xobs) is in prac
tice very easy to do. Since that is achieved when utilizing MetropolisHastings to
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sampling from p(θ, z|xobs), by simply disregarding from recording the z’s. We have
that the marginalized posterior targets the true posterior since∫

p(θ, z|xobs)dz =

∫
p(θ|xobs)p(xobs|θ, z)g(z)

p(xobs|θ)
dz, (99)

=
p(θ|xobs)
p(xobs|θ)

∫
p(xobs|θ, z)g(z)dz, (100)

=
p(θ|xobs)
p(xobs|θ)

p(xobs|θ), (101)

= p(θ|xobs). (102)

In conclusion, instead of directly targeting p(θ|xobs) PMMH allows us to target the
extended posterior p(θ, z|xobs), where z is some suitable auxiliary variables that al
lows us to construct and unbiased stochastic approximation of the intractable like
lihood. However, PMMH will still produce exact Bayesian inference, regardless of
choice of P , since the marginal posterior of p(θ, z|xobs) will target the true posterior.
The PMMH algorithm is presented in Algorithm 3, notice in lines 7 and 8 that we
only compute the likelihood estimate for the proposal θ⋆.

The method outlined above can, for instance, been used for inference in statespace
models (SSMs). Indeed, PMMHhas become particularly popular for SSMs since, for
SSMs, an nonnegative unbiased approximation of the likelihood can be computed
using particle filters (i.e., sequential Monte Carlo) [Andrieu et al., 2010]. As men
tiond in Section 4.1, the bootstrap particle filter is the most straightforward method
to estimate the likelihood of general SMMs. The bootstrap filter is particularly useful
for this task since it has the key feature that it can produce a nonnegative unbiased
approximation of the likelihood [Naesseth et al., 2019, chapter 4.1]. Another advan
tage when using the bootstrap filter is that PMMH is then a plugandplay method
since only forward simulations of the model are used. A nontrivial problem when
running the PMMH algorithm is to decide on how many particles to use for the
likelihood approximation. While PMMH is theoretically valid for any number of
particles P , it is the case that PMMH will be very inefficient (i.e., produce a chain
that mixes very slowly or get stuck) if the variance of the likelihood estimation is
too high. Furthermore, the variance of the likelihood estimation is inversely pro
portional to the number of particles used. Doucet et al. [2015] and Sherlock et al.
[2015] suggest tuning the number of particles such that the variance of loglikelihood
approximation at some central posterior parameter value is around 2. However, this
goal can be hard to obtain for challenging SSMs when using the bootstrap filter since
an unfeasibly large number of particles then has to be used. For challenging SMMs,
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Algorithm 3 Pseudomarginal MetropolisHastings (PMMH)
Input: Number of iterations R, start value θ0.
Output: Samples θ1:R from the posterior distribution p(θ|xobs).
1: Set θ1 = θ0. ▷ First iteration
2: Sample z1 ∼ g(z).
3: Compute p̂z1(xobs|θ1).
4: for r = 2 : R do ▷ Iterations 2 : R
5: Sample θ⋆ ∼ q(θ|θr−1).
6: Sample z⋆ ∼ g(z).
7: Compute p̂z⋆(xobs|θ⋆).
8: Compute

α = 1 ∧ p̂z⋆(xobs|θ⋆)
p̂zr−1(xobs|θr−1)

· p(θ⋆)

p(θr−1)
· q(θ

r−1|θ⋆)
q(θ⋆|θr−1)

. (103)

9: Sample u ∼ U(0, 1).
10: if u < α then
11: Set θr = θ⋆, zr = z⋆.
12: else
13: Set θr = θr−1, zr = zr−1.
14: end if
15: end for

several other methods can be employed; it is sometimes possible to employ a more
efficient particle filter (e.g see Pitt and Shephard [1999], and Golightly and Wilkin
son [2011]). The Monte Carlo within Metropolis (MCWM) algorithm [Beaumont,
2003, MedinaAguayo et al., 2016, Andrieu and Roberts, 2009] can also alternatively
be utilized; at each iteration, MCWM computes two likelihood approximations, one
for the likelihood in the numerator and one for likelihood in the denominator, and
this procedure reduces the need for likelihood estimate with a low variance; how
ever, MCWM does not produce exact Bayesian inference; and, due to this, using
MCWM might not be of interest. Another alternative is to consider the correlated
pseudomarginal method, which is introduced in the next section and is used in paper
II.

4.3.1 Correlated pseudomarginal MetropolisHastings

The likelihood ratio of PMMHconsists of the two likelihood approximations p̂z⋆(xobs|θ⋆)
and p̂z#(xobs|θ#). The two approximations are computed using some auxiliary vari
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ables z⋆ and z#, which are the pseudorandomnumbers used for the approximations.
From line 8 of Algorithm 3, we see that the likelihood ratio of PMMH is given by

p̂z⋆(x
obs|θ⋆)

p̂z#(x
obs|θ#)

. (104)

The idea of the correlated pseudomarginal (CPMMH) method [Deligiannidis et al.,
2018, Dahlin et al., 2015] is to correlate the auxiliary variables z⋆ and z# such that
the corresponding likelihood approximations p̂z⋆(xobs|θ⋆) and p̂z#(x

obs|θ#) also
are correlated. When the two approximations in the likelihood ratio are correlated
the variance of the likelihood ratio is reduced, allowing us to use fewer particles for
each approximation and still obtaining an algorithm that samples from the posterior
distribution efficiently. Hence, for PMMH we have to control the variance of the
likelihood approximation p̂z(xobs|θ), but for CPMMH, we only need to control the
variance of the likelihood ratio.

For PMMH we have that the auxiliary variables are generated from

z⋆ ∼ g(z). (105)

However, CPMMH generalizes PMMH and generates z⋆ from K(z⋆|z#) where
K(·|·) fulfills the detailed balance equation

g(z#)K(z⋆|z#) = K(z#|z⋆)g(z⋆). (106)

In paper II the correlation is induced by using a CrankNicolson proposal [Deligian
nidis et al., 2018], for which,

g(z#) = N (z#|−→0 , I), K(z⋆|z#) = N (z⋆|ρz#, (1− ρ2)I). (107)

In Equation (107), ρ is the correlation level. The correlation can also be induced by
using blockcorrelation [Tran et al., 2016]. The CrankNicolson proposal method’s
main advantage is that the statistician can explicitly control the correlation level via
the parameter ρ (a standard choice is to select ρ ≈ 0.9). The correlation level of the
blockcorrelation method, on the other hand, depends on which problem we con
sider. To retain the correlation during the particle filter, it is necessary to add a sorting
step of the particles in the particle filter [Deligiannidis et al., 2018, Dahlin et al., 2015]
(see line 6 of the bootstrap filter in Algorithm 1). A drawback of introducing the cor
relation is that the auxiliary variables have to be stored, and the memorycomplexity
of the CPMMH algorithm will, therefore, increase compared to PMMH; however,
it is typically still advantageous to use CPMMH since the correlation allows us to
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use much fewer particles for CPMMH compared to PMMH.The sorting step in the
particle filter also introduces an additional computational cost. Similarly to PMMH,
it is not trivial to select how many particles to use for CPMMH, but one method for
particle selection is presented in Tran et al. [2016]. Both PMMH and CPMMH
produce exact Bayesian inference.

4.4 Bayesian inference for stochastic differential equations mixedeffects
models

We introduced the stochastic differential equations mixedeffects model (SDEMEM)
in Section 3.4, and we will now discuss Bayesian inference for SDEMEMs. Bayesian
inference for SDEMEMs is complicated since the likelihood for the data is intractable.
In paper II, we use sequential Monte Carlo methods in combination with correlated
pseudomarginal MetropolisHastings to develop an efficient inference algorithm.
We will now briefly discuss the technical details of the inference procedure devel
oped in paper II. The joint posterior for the parameter θ = [η, ξ], random effects
ϕ = ϕ1:M and latent data x = (xi1:Ni

)Mi=1 (here x
i
j is the j:th observation, at time

point tij , of the i:th individual, and Ni is the number of observations for individual
i), given observed data y = (yi1:Ni

)Mi=1, is

p(η, ξ, ϕ, x|y) ∝ p(η)p(ξ)p(ϕ|η)p(x|ϕ)p(y|x, ξ), (108)

where,

p(ϕ|η) =
M∏
i=1

p(ϕi|η), (109)

p(x|ϕ) =
M∏
i=1

p(xi1)

Ni∏
j=2

p(xij |xij−1, ϕ
i), (110)

p(y|x, ξ) =
M∏
i=1

Ni∏
j=1

p(yij |xij , ξ). (111)

However we are not interested in obtaining the joint posterior of Equation (108),
rather we want to obtain the the marginal posterior over the parameter θ = [η, ξ]
and random effects ϕ = ϕ1:M . This marginal posterior is given by

p(η, ξ, ϕ|y) ∝ p(η)p(ξ)p(ϕ|η)p(y|ξ, ϕ) (112)

∝ p(η)p(ξ)

M∏
i=1

p(ϕi|η)p(yi|ξ, ϕi). (113)
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In Equation (140), p(yi|ξ, ϕi) is the data likelihood for individual i. The data likeli
hood is obtained by

p(yi|ξ, ϕi) =

∫
p(yi|xi, ξ)p(xi|ϕi)dxi (114)

=

∫ Ni∏
j=1

p(yij |xij , ξ)p(xi1)
Ni∏
j=2

p(xij |xij−1, ϕ
i)dxi1dx

i
2 . . . dx

i
Ni

(115)

However, the integral in Equation (114) is intractable, and in paper II we, there
fore, estimate this integral with sequential Monte Carlo (SMC). The intractable data
likelihood also motivates the use of pseudomarginal MetropolisHastings in paper
II. (The technical details on the general SMC likelihood estimation procedure are
presented in Section 4.1.1. Similarly, the technical details of the pseudomarginal
MetropolisHastings method are discussed in Section 4.3.)

The following Gibbs algorithm is used in paper II to sample from the marginal pos
terior of interest:

1. p(ϕi, zi|η, ξ, y) ∝ p(ϕi|η)p̂zi(yi|ξ, ϕi)g(zi), i = 1 : M ,

2. p(ξ, z|η, ϕ, y) = p(ξ|ϕ, y) ∝ p(ξ)
∏M

i=1 p̂zi(y
i|ξ, ϕi)g(zi),

3. p(η|ξ, ϕ, y) = p(η|ϕ) ∝ p(η)
∏M

i=1 p(ϕ
i|η).

In the Gibbs algorithm above, zi ∼ g(zi) are the underlying pseudorandom num
bers used to compute the SMCbased approximation of the data likelihood pzi(yi|ξ, ϕi).
We notice that the data likelihood must be estimated in both steps 1 and 2 of the
Gibbs algorithm. However, step 2 is particularly problematic since we here have to
control the variance of the joint data likelihood, which is more computational chal
lenging than controlling the variance of each individual data likelihoods. In paper II,
the Gibbs algorithm above is made computationally efficient by leveraging correlated
pseudomarginal methods and a carefully constructed blocking strategy that allows
us to update the underlying pseudorandom numbers z only once.

The inference method of paper II outlined above is flexible since it allows for inference
for nonlinear and nonGaussian SDEMEMs. In paper II we obtain about one or
der of magnitude efficiency improvement by leveraging correlated pseudomarginal
method. The method of paper II has been further developed in Persson et al. [2021]
(i.e., paper A). Persson et al. [2021] considers the task of inference in stochastic dy
namical singlecell models. Persson et al. [2021] also shows how the framework of
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paper II can be extended to other latent processes. Another recent paper on Bayesian
inference for SDEMEMby Botha et al. [2021] was developed independently and con
currently of paper II. Botha et al. [2021] presents several inference methods, including
one that is similar to the Gibbs approach outlined above.

4.5 Delayedacceptance

The delayedacceptance (DA) method [Christen and Fox, 2005] accelerates a MCMC
algorithm by utilizing a cheap surrogate model to quickly scan proposals θ⋆, and
thereby efficiently reject proposals that are not promising (assuming the surrogate
model is sufficiently accurate). The DA method is particular useful in cases where
the likelihood function is computationally expensive to evaluate. DA can for these
cases be used to minimize the number of likelihood evaluations by only evaluating
the likelihood for promising proposals. We will here introduce the DA method in
the context of Bayesian parametric inference, in the case where we have obtained
some observed data set xobs. So, let us again consider the acceptance probability of a
standard MH step

α = 1 ∧ p(xobs|θ⋆)
p(xobs|θ#)

· p(θ
⋆)

p(θ#)
· q(θ

#|θ⋆)
q(θ⋆|θ#)

. (116)

Now, assume that we have access to a computationally cheap surrogate model of the
likelihood p̃(xobs|θ). The DA method now utilizes two acceptance steps, denoted
step 1 and step 2. The acceptance probability of step 1 is given by

α1 = 1 ∧ p̃(xobs|θ⋆)
p̃(xobs|θ#)

· p(θ
⋆)

p(θ#)
· q(θ

#|θ⋆)
q(θ⋆|θ#)

. (117)

This acceptance probability is computed for every new proposal θ⋆, but since the
surrogate model p̃(xobs|θ) is computationally cheap is step 1 of the DA method also
fast to execute. If the proposal θ⋆ survives step 1 (i.e. it is not rejected) we then
compute the acceptance probability of step 2, given by

α2 = 1 ∧ p(xobs|θ⋆)
p(xobs|θ#)

· p̃(x
obs|θ#)

p̃(xobs|θ⋆)
. (118)

Thus, the true computationally challenging likelihood p(xobs|θ) is only evaluated in
step 2, i.e. if the proposal θ⋆ passes the screening of step 1. From the setup with
the two steps we notice that the surrogate posterior model p̃(xobs|θ)p(θ) acts as an
proposal distribution for step 2 of the DAmethod. Finally, the proposal θ⋆ can only be
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accepted after evaluating the true likelihood model. Christen and Fox [2005] show
that the DA method outlined above indeed targets the true posterior. Thus, DA is a
method that, similarly to CPMMH, allows for accelerated exact Bayesian inference.

4.5.1 Accelerateddelayed acceptance

Paper Iv introduces the accelerateddelayed acceptance (ADA) algorithm. ADA fur
ther accelerates the DA method by utilizing relationships of the likelihood ratio of
surrogate model

p̃(xobs|θ⋆)
p̃(xobs|θ#)

, (119)

and the likelihood ratio of the true model

p(xobs|θ⋆)
p(xobs|θ#)

. (120)

The main idea of ADA is to arrange the computations is step 2 of the DA method
to obtain an acceleration. However, step 1 of DA and ADA is the same. At iteration
r of the DA method, the two acceptance probabilities are governed by the follow
ing surrogate and true likelihood values p̃(xobs|θ⋆), p̃(xobs|θr−1), p(xobs|θ⋆), and
p(xobs|θr−1), which can be arranged in the following four mutually exclusive cases:

case 1) p̃(xobs|θ⋆) > p̃(xobs|θr−1) and p(xobs|θ⋆) > p(xobs|θr−1), (121)

case 2) p̃(xobs|θ⋆) < p̃(xobs|θr−1) and p(xobs|θ⋆) < p(xobs|θr−1), (122)

case 3) p̃(xobs|θ⋆) > p̃(xobs|θr−1) and p(xobs|θ⋆) < p(xobs|θr−1), (123)

case 4) p̃(xobs|θ⋆) < p̃(xobs|θr−1) and p(xobs|θ⋆) > p(xobs|θr−1). (124)

Now, if we know which case iteration r belongs to careful arrangement of the step 2
of the DAmethod can lead to an acceleration. Now, as an illustration, let us consider
case 1 and investigate how an acceleration could be obtained for that case:

Case 1) If we have that p̃(xobs|θ⋆) > p̃(xobs|θr−1) and p(xobs|θ⋆) > p(xobs|θr−1),
then it also holds that p̃(xobs|θr−1)

p̃(xobs|θ⋆) < 1 and p(xobs|θr−1)
p(xobs|θ⋆) < 1. Thus, we also have that

p̃(xobs|θr−1)

p̃(xobs|θ⋆)
<

p(xobs|θ⋆)
p(xobs|θr−1)

· p̃(x
obs|θr−1)

p̃(xobs|θ⋆)
. (125)
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From Equation (125) we can conclude that the acceptance region of the second stage
can be split into two parts, where one part is only governed by p̃(xobs|θr−1)

p̃(xobs|θ⋆) . In other

words, in case 1, the acceptance region is [0, p(xobs|θ⋆)
p(xobs|θr−1)

· p̃(x
obs|θr−1)

p̃(xobs|θ⋆) ]. However,
Equation (125) allows us to decompose this region into a subregion that only depends
on p̃(xobs|θr−1)

p̃(xobs|θ⋆) , see the illustration below:

0 1 u
p̃(xobs|θr−1)
p̃(xobs|θ⋆)

p(xobs|θ⋆)
p(xobs|θr−1)

· p̃(x
obs|θr−1)

p̃(xobs|θ⋆)

earlyaccept accept reject

Thus, if a proposal θ⋆ survives step 1 of ADA, then, in step 2 we fist check if we can
earlyaccept, by checking if

u <
p̃(xobs|θr−1)

p̃(xobs|θ⋆)
, u ∼ U(0, 1). (126)

If that is not possible we compute the full acceptance probability given by

1 ∧ p(xobs|θ⋆)
p(xobs|θr−1)

· p̃(x
obs|θr−1)

p̃(xobs|θ⋆)
. (127)

Hence, in case 1 an acceleration can be obtained by earlyaccepting a proposal in stage
2 of ADA only based on Equation (126).

In paper Iv, we analyze the other cases in a similar way. Thus, ADA allows for ac
celeration by carefully arranging the computations of step 2 and only computing
the likelihood ratio of the true model if earlyacceptance (or earlyrejection) is not
possible.

However, for ADA, an important component is to know which case a particular pro
posal belongs to, without computing the true likelihood ratio. In paper Iv two ap
proaches are used to classify proposals. One approach is to compute the relative
frequency of the four different cases during a pilot run and then use these relative
frequencies to select which case to consider for a particular proposal. Another ap
proach is to fit a treebased classification scheme to data generated from a pilot run.
These two approaches and their advantages/disadvantages are discussed in paper Iv.

Another important design choice for ADA is how to construct the surrogate like
lihood model. For paper Iv the surrogate likelihood model is based on a Gaussian
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process model that is inspired by the surrogate model utilized in Drovandi et al.
[2018].

The ADA method does not target the true posterior since a proposal can be early
accepted without considering the true likelihood ratio. However, ADA allows for
accelerated inference since ADA can both reject and accept proposals only based on
the surrogate model. The results of paper Iv show that the ADA method indeed
manages to produce accelerated inference for cases where the likelihood function is
timeconsuming to evaluate. The inference results of ADA are similar to the results
obtained by methods that produce exact Bayesian inference.

4.6 Neural density estimation

The conditional neural density estimation (CNDE) model was introduced in Section
4.1.3. We will here introduce two types of simulationbased inference algorithms
that utilize CNDEs: Section 4.6.1 introduces the sequential neural posterior estimation
SNPEmethod, and Section 4.6.2 introduces the sequential neural likelihood estimation
SNL method. We will also in Section 4.6.3 discuss the sequential neural posterior and
likelihood approximation method of paper III. SNPE and SNL are introduced in full
detail since these methods are functional to develop the novel SNPLA method of
paper III.

4.6.1 Sequential neural posterior estimation

One of the earlier works employing CNDEs for simulationbased inference approach
was Papamakarios and Murray [2016]. They develop a sequential simulationbased
inference method, where the idea is to directly learn the posterior distribution. The
overall method of Papamakarios andMurray [2016] is denoted sequential neural poste
rior estimation SNPE, and the specific method that they introduce is denoted SNPE
A. The overall idea of SNPE is to fit the CNDE model p̃ϕP

(θ|xobs), which di
rectly targets the posterior. The model p̃ϕP

(θ|x) can be fitted with samples di
rectly from prior predictive distribution, however, this approach can be very ineffi
cient and SNPE therefore generates training data via a proposal prior p̂r(θ|xobs) (here
p̂r(θ|xobs) is the proposal prior at iteration r of the SNPE scheme). The proposal
prior p̂r(θ|xobs) is set to sequentially approximate the posterior, and the proposal
prior, thereby, sequentially becomes more informative of the posterior, rendering a
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more efficient sampling scheme. This is obtained by updating the proposal prior as,

p̂r(θ|xobs)←
p(θ)

p̂r−1(θ|xobs)
p̃ϕP

(θ|xobs). (128)

However, the updating step in Equation (128), (sometimes also refereed to as the
correction step), is somewhat involved since the new proposal prior has to be up
dated such that it has the correct normalizing constant. The entire SNPE method
is presented in Algorithm 4. In Papamakarios and Murray [2016] the approximate
posterior p̃ϕP

(θ|x) is modeled with a Mixture Density Network (MDN); thus the
posterior is approximated with Gaussian mixture distribution. This makes it possible
to analytical compute the correction step in Equation (128). An interesting feature
of SNPE is that the posterior inference is not dependent on some approximation
threshold ϵ, which is the case for ABC. However, a drawback of the specific method
of Papamakarios and Murray [2016], i.e., SNPEA, is that SNPEA will only work
well if the MDN indeed is a reasonable approximation of the posterior, which for
posteriors with complex geometries might not be the case.

A paper that directly builds upon Papamakarios and Murray [2016]) is Lueckmann
et al. [2017]. In Lueckmann et al. [2017] they also consider a SNPA approach us
ing MDN’s to model the posterior. Furthermore, Lueckmann et al. [2017] removes
the correction step employed in Papamakarios and Murray [2016] by instead impor
tance weighting the loss function of the posterior model. The importanceweighting
scheme allows for amore flexiblemethod, not restricting the proposal prior p̂r(θ|xobs)
to be a Gaussian mixture. However, the importanceweight scheme can introduce
some numerical problems in the optimization scheme [Papamakarios et al., 2019b].

Another SNPE scheme, denoted automatic posterior transformation (APT), or SNPE
C (according to the taxonomy of Papamakarios et al. [2019b]) is presented in Green
berg et al. [2019]. Greenberg et al. [2019] avoid the correction step of Papamakarios
and Murray [2016] by including the normalizing constant into the loss function via
reparameterization. The main drawback of the ATP method is that the integral that
computes the normalizing constant is intractable in many cases; however, they em
ploy a scheme called atomic proposals that allows them to replace the integral that
computes the normalizing constant of Equation (128) with a sum. The scheme in
Greenberg et al. [2019] is more generic than the other SNPEmethods, and they show
that ATP performs well for several experiments, including the two moons model dis
cussed in Section 3.1.

45



Algorithm 4 SNPE
Input: Untrained posterior model p̃ϕP

(θ|x), number of iterations R, number of training
samples per iteration N .

Output: Trained posterior model p̃ϕP
(θ|x).

1: Set p̂0(θ|xobs)← p(θ), D = {∅}
2: for r = 1 : R do
3: for n = 1 : N do ▷ Sample training data

(θn, xn) ∼ p̃(θ, x) = p(x|θ)p̂r−1(θ|xobs). (129)

4: end for
5: Update training data D = [θ1:N , x1:N ] ∪ D.
6: Update p̃ϕP

(θ|x) by minimizing the following loss

L(ϕP ) = −Ep̃(θ,x)

(
log p̃ϕP

(θ|x)
)
. (130)

7: Update the proposal distribution, i.e. let

p̂r(θ|xobs)← p(θ)

p̂r−1(θ|xobs)
p̃ϕP

(θ|xobs). (131)

8: end for

4.6.2 Sequential neural likelihood estimation

In Papamakarios et al. [2019b] they let the CNDE model p̃ϕL
(x|θ) target the likeli

hood p(x|θ) instead of directly targeting the posterior. The method of Papamakar
ios et al. [2019b] is, therefore, denoted sequential neural likelihood (SNL). They use
a normalizing flow model to parameterize the likelihood model p̃ϕL

(x|θ). Similarly
to SNPE, SNL also uses the idea of a proposal prior p̂r(θ|xobs) that is sequentially
updated to become more informative of the posterior. This is achieved by setting, for
each iteration, the new proposal prior to the current posterior approximation. The
SNL method is presented in Algorithm 5.

A drawback of SNL is that SNL only implicitly learns the posterior, and sampling
from the learned posterior distribution can therefore be computationally expensive.
Instead, SNL learns the likelihood model p̃ϕL

(xobs|θ) so samples from the posterior
distribution can be obtained via MCMC. However, since SNL relies on MCMC
sampling, it can have problems in efficiently learning posterior distributions where
MCMC algorithms typically struggle, for instance, with multimodal posteriors.
This issue with SNL is observed in both Greenberg et al. [2019] and paper III.
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Algorithm 5 SNL
Input: Untrained likelihood model p̃ϕL

(x|θ), number of iterations R, number of training
samples per iteration N .

Output: Trained likelihood model p̃ϕL
(x|θ).

1: Set p̂0(θ|xobs)← p(θ), D = {∅}
2: for r = 1 : R do
3: for n = 1 : N do ▷ Sample training data (via MCMC)

(θn, xn) ∼ p̃(θ, x) = p(x|θ)p̂r−1(θ|xobs). (132)

4: end for
5: Update training data D = [θ1:N , x1:N ] ∪ D.
6: Update p̃ϕL

(x|θ) by minimizing the following loss

L(ϕL) = −Ep̃(θ,x)

(
log p̃ϕL

(x|θ)
)
. (133)

7: Update the proposal distribution, i.e. let

p̂r(θ|xobs) ∝ p̃ϕL
(xobs|θ)p(θ). (134)

8: end for

Lueckmann et al. [2019] introduces another SNL approach denoted active sequential
neural likelihood (ASNL). The idea of ASNL is to model the likelihood using emu
lator network. In Lueckmann et al. [2019] are active learning strategies employed to
generate the new training data for the emulator pϕ(x|θ).

By considering Algorithms 4 and 5 can we conclude that SNL and SNPE are quite
similar methods. Bothmethods utilize a proposal prior p̂r(θ|xobs) that is informed of
the observed data set xobs and set to make the methods efficient by approximating the
posterior distribution. Themain difference is that SNPE directly targets the posterior,
while SNL targets the likelihood and thus only implicitly learns the posterior. Thus
a question that now arise is if it is more advantageous to learn the posterior or the
likelihood. The choice between learning the posterior or the likelihood is discussed
in [Durkan et al., 2018, Lueckmann et al., 2017] and it is suggested that learning
the likelihood might be the preferable task, since learning the posterior introduces
restrictions on how new training data can be generated. The approximated likelihood
can also easily be reused for new prior distributions; finally, generalpurpose CNDE
techniques might also make it easier to learn the likelihood. However, a drawback
of SNL is that once we have learned the approximate likelihood p̃ϕL

(xobs|θ) we still
have to sample from the posterior using MCMC (or using variational inference to
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approximate the posterior), which can constitute a challenging task for complex and
multiimodal posterior distributions [Greenberg et al., 2019].

4.6.3 Sequential neural posterior and likelihood approximation

Wewill now briefly discuss the sequential neural posterior and likelihood approximation
algorithm of paper III. SNPLA is a sequential and nested simulationbased inference
method inspired by both SNPE and SNL.However, SNPLA learns both the posterior
and the likelihood model. Thus SNPLA has two learnable models:

1. Posteriormodel p̃ϕP
(θ|xobs), approximating the posterior distribution p(θ|xobs).

2. Likelihood model p̃ϕL
(x|θ). Since we are considering an implicit statistical

model, we consider the likelihood model p̃ϕL
(x|θ) as approximating the data

generating process p(x|θ).

Similar to SNPE and SNL, SNPLA utilizes a proposal prior that is set to leverage
more information from the posterior of interest. However, SNPLA is a more involved
method since SNPLA learns both the posterior and the likelihood, thus requiring a
more complex construction than SNPE and SNL.The SNPLAmethod is introduced
in full detail in paper III.

The SNPLA algorithm is presented in Algorithm 6. In step 1 of SNPLA, the like
lihood model is learned via the forward KL divergence. Thus, the learning process
for the likelihood model used in SNPLA is quite straightforward and similar to the
SNL method. Training data for the likelihood model is generated via the proposal
distribution p̂r(θ|xobs) which is set to leverage more information from the posterior
model sequentially. The parameter λ governs how quickly we want to leverage in
formation from the posterior model, and we have found it useful to use a quite high
λ ≈ 0.7 − 0.9. The posterior model is trained in step 2 of SNPLA. However, in
SNPLA the learning process for the posterior model is more complex. First, training
data for the posterior model is generated via a simulationonthefly approach from
the current posterior model. This means that each minibatch of size Nmini used in
step 2 is simulated from the most recent version of the posterior model. This proce
dure also utilizes the reverse KL divergence to train the posterior model. Second, the
posterior model is not trained according to its true target distribution; the likelihood
model p̃ϕL

(x|θ) is instead used to approximate the target for the posterior model.
However, several approaches designed to alleviate the complex learning process of
the posterior model are discussed in paper III. Two approaches are: 1) the hotstart
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procedure in line 8 of Algorithm 6, and 2) utilizing a larger batch size Nmini in step
2 of SNPLA. The hotstart procedure is used during the first iteration of SNPLA
to train the posterior model via samples from the prior predictive distribution, such
that the posterior model is then trained according to its true target distribution. The
large batch sizeNmini ≈ 1000 of step 2 smooths the learning process and thus avoids
catastrophic moves in the weight space of the posterior model.

The results of paper III show that SNPLA performs well compared to SNPEC and
SNL. For instance, posterior inference results obtained via SNPLA are at par with
SNPEC and SNL, despite the fact that SNPLA learns to properties instead of one.
The likelihood model learned via SNPLA also performs as well as the likelihood
model learned by SNL. Hence, SNPLA produces posterior inference at par with sim
ilar methods and can therefore be used if the researcher is interested in both learning
the posterior distribution and a proxy of the generative model, i.e. the likelihood.

4.7 Additional methods

Additionalmethods utilized in paper III for comparison peruses are SMCABC [Beau
mont et al., 2009] and Sequential Contrastive Likelihoodfree Inference (SCLFI) [Durkan
et al., 2020]. SCLFI is a ratiobased learning approach that combines the methods of
Greenberg et al. [2019] and Hermans et al. [2020]. Ratiobased approaches are not
considered in this thesis, but these approaches turn the posterior estimation problem
into a problem of estimating likelihood ratios.

Furthermore, simulationbased inference is an active research area, and some other
relatively recent simulationbased methods that are particularly relevant for Bayesian
inference are:

• Indirect inference [Gourieroux et al., 1993] and Method of simulated moments
[McFadden, 1989] are simulationbased inference methods typically used for
applications in economy.

• Synthetic likelihood (SL) [Wood, 2010] approximates the intractable likelihood
with a Gaussian synthetic version learnt from model simulations. Bayesian
synthetic likelihood Price et al. [2018] is a Bayesian version of the SL method.

• Likelihoodfree Inference by Ratio Estimation [Thomas et al., 2020] is a ratio
based method.
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Algorithm 6 SNPLA
Input: Untrained likelihoodmodel p̃ϕL

(x|θ), untrained posterior model p̃ϕP
(θ|x), number

of iterationsR, number of training samples per iterationN , number of training samples
per iteration for the posterior model NP , decay rate λ > 0.

Output: Trained likelihood model p̃ϕL
(x|θ), trained posterior model p̃ϕP

(θ|x).
1: Set D = {∅}.
2: for r = 1 : R do

// Step 1: Update likelihood model with training data sampled from a mixture of the
prior and the current posterior model //

3: for n = 1 : N do
4: Sample

(θn, xn) ∼ p̃(θ, x) = p(x|θ)p̂r(θ|xobs), (135)

where p̂r(θ|xobs) = αp(θ) + (1 − α)p̃ϕP
(θ|xobs) and, for example, α =

exp(−λ · (r − 1)).
5: end for
6: Update training data D = [θ1:N , x1:N ] ∪ D.
7: Update p̃ϕL

(x|θ) by minimizing the following loss

L(ϕL) = −Ep̂(θ,x|xobs)

(
log p̃ϕL

(x|θ)
)
, (136)

∝ Ep̂(θ|xobs)

(
DKL

(
p(x|θ))

∣∣∣∣p̃ϕL
(x|θ)

))
. (137)

8: if r = 1 then
9: Using the prior predictive samples [θ1:N , x1:N ], update the posterior model by

minimizing the following loss

L(ϕP ) ∝ −Ep(θ,x)=p(x|θ)p(θ)
(
log p̃ϕP

(θ|x)
)
. (138)

10: end if
// Step 2: Update the posterior model with training data generated from the current

posterior //
11: for j = 1 : NP /Nmini do
12: For i = 1 : Nmini: Sample θi ∼ p̃ϕP

(θ|xobs)
13: Update posterior model, i.e. obtain a new ϕP by minimizing the loss (reverse

KL divergence):

L(ϕP ) = DKL

(
p̃ϕP

(θ|xobs)
∣∣∣∣p̃ϕL

(xobs|θ)p(θ)
)
. (139)

14: end for
15: end for
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• Bayesian Optimization for LikelihoodFree Inference [Gutmann and Corander,
2016] is simulationbased method that leverges Bayesian optimization.

• Amortized Approximate Likelihood Ratio MCMC [Hermans et al., 2020] is an
amortized ratioestimation method.

• BayesFlow [Radev et al., 2020] is a amortized methods that learns the global
posterior distribution from the prior predictive distribution.

5 Outline of papers and author’s contributions

This section briefly discusses the publication status and the replicability of the papers.
Each paper is then briefly summarised; the summaries also include information re
garding my contributions.

Publication status and replicability Paper I and II have been published in the Pro
ceedings of the 36th International Conference on Machine Learning and Computational
Statistics & Data Analysis respectively. Paper III is currently under review for NeurIPS
2021, and paper Iv is currently in preparation. The code (and most data) used for all
papers are publicly available at https://github.com/SamuelWiqvist/.

5.1 Paper I: Partially exchangeable networks and architectures for learning
summary statistics in approximate Bayesian computation

In the spirit of Jiang et al. [2017], paper I considers the problem of learning summary
statistics for ABC via deep learning. The particular task considered is how to learn
summary statistics for Markovian data efficiently. To achieve that paper I introduces
the partially exchangeable network (PEN) architecture that was introduced in Section
4.1.2. The PEN architecture is invariant to Markovian data, and PEN is, therefore,
particularly useful for learning summary statistics of Markovian data since PEN (in
contrast to an MLP) does not have to learn the Markovian feature of the data. PEN
can be viewed as an extension of DeepSets [Zaheer et al., 2017] that incorporates
the invariant properties for Markovian data, while DeepSets leverages the invariant
properties of i.i.d data.

The main result of paper I is that PEN manages to learn informative summary statis
tics for ABC and is more dataefficient than MLPs. Thus, MLP requires more train
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ing data to achieve the same performance as PEN. PEN is more dataefficient since it
leverages the invariant properties of the Markovian data, and hence it does not need
to learn these invariant properties.

As a curiosity, it can be mentioned that paper I was discussed on Christian Robert’s
blog [Robert, 2019].

Contributions Samuel Wiqvist (SW) implemented all methods and ran all analy
ses. SW also contributed considerably to the writing of the paper.

5.2 Paper II: Efficient inference for stochastic differential equation mixed
effects models using correlated particle pseudomarginal algorithms

Paper II introduces a novel MCMC algorithm for inference in SDEMEMs. The
inference procedure introduced in paper II aims at sampling from the following pos
terior

p(η, ξ, ϕ|y) ∝ p(η)p(ξ)p(ϕ|η)p(y|ξ, ϕ) (140)

∝ p(η)p(ξ)

M∏
i=1

p(ϕi|η)p(yi|ξ, ϕi). (141)

In Equation (141), p(yi|ξ, ϕi) is the data likelihood. However, the inference problem
is complicated by the intractability of the data likelihood. The complexity of the
inference problem and the Gibbs algorithm introduced in paper II was outlined in
Section 4.4. The Gibbs algorithm of paper II is made computationally efficient by
leveraging the correlated pseudomarginal method and a careful blocking strategy
that allows us to update the underlying pseudorandom numbers only once. The
efficient improvement that is obtained from using correlated approaches is data and
model dependent, but we typically observe an improvement of efficiency of one order
of magnitude compared to more standard pseudomarginal methods.

Another recent paper on Bayesian inference for SDEMEM by Botha et al. [2021] was
developed independently and concurrently of paper II. Botha et al. [2021] also consid
ers correlated particle methods for inference in SDEMEMS.The method component
wise pseudomarginal (CWPM) of Botha et al. [2021] is similar to the CPMMH
method of paper II. CWPM is also the method that performs the best in Botha
et al. [2021].
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Themethod of paper II has been further developed in Persson et al. [2021] (i.e., paper
A). Persson et al. [2021] adapt the methodology of paper II for inference in stochastic
dynamical singlecell models. Persson et al. [2021] also show how the computational
challenging step 2 of the Gibbs algorithm of paper II can be avoided by reparame
terizing the model and how the methodology of paper II can be adapted to different
types of latent processes.

Contributions SW contributed to the methodological developments introduced in
the paper. For the OrnsteinUhlenbeck and neural data case studies SW was respon
sible for writing the code, running the experiments, and analyzing the results. SW
also contributed considerably to the writing of the paper.

5.3 Paper III: Sequential neural posterior and likelihood approximation

The sequential neural posterior and likelihood approximation (SNPLA) method of pa
per III was introduced in Section 4.6.3. The main feature of SNPLA is that the al
gorithm learns both the posterior and the likelihood, thus SNPLA has two trainable
models:

1. Posteriormodel p̃ϕP
(θ|xobs), approximating the posterior distribution p(θ|xobs).

2. Likelihood model p̃ϕL
(x|θ). Since we are considering an implicit statistical

model, we consider the likelihood model p̃ϕL
(x|θ) as approximating the data

generating process p(x|θ).

The learning process for the likelihood model p̃ϕL
(x|θ) is straightforward and re

sembles the learning process of the SNL method. However, the learning process for
the posterior model p̃ϕP

(θ|xobs) is more complex, since the posterior model is not
trained according to its true target distribution, the likelihood model p̃ϕL

(x|θ) is
instead used to approximate the target for the posterior model. However, several
approaches designed to alleviate the complex learning process of the posterior model
are discussed in paper III.

The results of paper III show that, when utilizing the same number of model simu
lations, SNPLA produces posterior inference results at par with comparable meth
ods (e.g., SNPEC and SNL). This result is of interest since the learning process of
SNPLA, which is about learning two quantities instead of one, is more complex than
learning processes of the compared methods.
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Paper III also investigates the performance and utility of the likelihood model. The
results of paper III show that the likelihood model of SNPLA performs similarly well
as the likelihood model of SNL. A case study of paper III also shows how the likeli
hood model can be used to rapidly scan for parameters from the prior distribution
that produce data similar to the observed data.

Contributions The original research idea and the algorithm was primarily devel
oped by SW with help from Jes Frellsen (JF). SW wrote all the code and ran all
analyses. The paper was primarily written by SW with contributions from JF and
Umberto Picchini (UP).

5.4 Paper IV: Accelerating delayedacceptance Markov chainMonte Carlo
algorithms

Paper Iv introduces the accelerated delayedacceptance (ADA) algorithm. ADA is an
extension of the delayedacceptance (DA) algorithm [Christen and Fox, 2005] where
relationships between the likelihood ratios of the two DA steps are utilized to con
struct an accelerated algorithm. ADA, similarly to DA, employs a surrogate model
of the likelihood to scan parameters proposals, such that the true likelihood function
is only evaluated for proposals that are likely to be accepted. Paper Iv employs a sur
rogate likelihood model based on Gaussian processes that is inspired by the surrogate
model utilized in Drovandi et al. [2018]. However, unlike DA, ADAwill not produce
exact Bayesian inference, but ADA allows for an accelerated inference procedure.

The main case study of paper Iv considers the problem of modeling protein fold
ing data (reaction coordinate data) via stochastic differential equations (SDEs) (see
Section 3.3 for a technical description SDE model considered in paper Iv). However,
additional analyses (currently not included in the paper Iv) indicate that the proposed
SDEmodel in paper Iv is overparameterized and that the SDE model’s performance
can be improved by considering less flexible SDE model.

The results of paper Iv show that the ADAmethod indeed manages to produce accel
erated inference for cases where the likelihood function is timeconsuming to evalu
ate. The inference results of ADA are similar to the results obtained by methods that
produce exact Bayesian inference.

Contributions SW developed the doublewell potential model, implemented the
methods, and ran all analyses. SW also contributed considerably to the writing of
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the paper.
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Abstract

We present a novel family of deep neural architectures, named partially exchangeable networks (PENs)
that leverage probabilistic symmetries. By design, PENs are invariant to block-switch transformations,
which characterize the partial exchangeability properties of conditionally Markovian processes. Moreover,
we show that any block-switch invariant function has a PEN-like representation. The DeepSets archi-
tecture is a special case of PEN and we can therefore also target fully exchangeable data. We employ
PENs to learn summary statistics in approximate Bayesian computation (ABC). When comparing PENs
to previous deep learning methods for learning summary statistics, our results are highly competitive,
both considering time series and static models. Indeed, PENs provide more reliable posterior samples
even when using less training data.

1 Introduction
We propose a novel neural network architecture to ease the application of approximate Bayesian computation
(ABC), a.k.a. likelihood-free inference. The architecture, called partially exchangeable network (PEN), uses
partial exchangeability in Markovian data, allowing us to perform ABC inference for time series models with
Markovian structure. Empirically, we also show that we can target non-Markovian time series data with
PENs. Since the DeepSets architecture [Zaheer et al., 2017] turns out to be a special case of PEN, we can
also perform ABC inference for static models. Our work is about automatically construct summary statistics
of the data that are informative for model parameters. This is a main challenge in the practical application
of ABC algorithms, since such summaries are often handpicked (i.e. ad-hoc summaries are constructed from
model domain expertise), or these are automatically constructed using a number of approaches as detailed
in 2. Neural networks have been previously used to automatically construct summary statistics for ABC.
Jiang et al. [2017] and Creel [2017] employ standard multilayer perceptron (MLP) networks for learning
the summary statistics. Chan et al. [2018] introduce a network that exploits the exchangeability property
in exchangeable data. Our PEN architecture is a new addition to the tools for automatic construction of
summary statistics, and PEN produces competitive inference results compared to Jiang et al. [2017], which
in turn was shown outperforming the semi-automatic regression method by Fearnhead and Prangle [2012].
Moreover, our PEN architecture is more data efficient and when reducing the training data PEN outperforms
Jiang et al. [2017], the factor of reduction being of order 10 to 102 depending on cases.

Our main contributions are:

• Introducing the partially exchangeable networks (PENs) architecture;

• Using PENs to automatically learn summary statistics for ABC inference. We consider both static
and dynamic models. In particular, our network architecture is specifically designed to learn summary
statistics for dynamic models.

⋆Equal contribution.
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2 Approximate Bayesian computation
Approximate Bayesian computation (ABC) is an increasingly popular inference method for model parameters
θ, in that it only requires the ability to produce artificial data from a stochastic model simulator [Beaumont
et al., 2002, Marin et al., 2012]. A simulator is essentially a computer program, which takes θ, makes internal
calls to a random number generator, and outputs a vector of artificial data. The implication is that ABC
can be used to produce approximate inference when the likelihood function p(y|θ) underlying the simulator
is intractable. As such ABC methods have been applied to a wide range of disciplines [Sisson et al., 2018].
The fundamental idea in ABC is to generate parameter proposals θ⋆ and accept a proposal if the simulated
data y⋆ for that proposal is similar to observed data yobs. Typically this approach is not suitable for high-
dimensional data, and a set of summary statistics of the data is therefore commonly introduced to break the
curse-of-dimensionality. So, instead of comparing y⋆ to yobs, we compare summary statistics of the simulated
data s⋆ = S(y⋆) to those of observed data sobs = S(yobs). Then we accept the proposed θ⋆ if s⋆ is close to
sobs in some metric. Using this scheme, ABC will simulate draws from the following approximate posterior
of θ

pϵABC(θ|sobs) ∝
∫

Kϵ(∆(s⋆, sobs))p(s⋆|θ)p(θ)ds⋆,

where p(θ) is the prior of θ, ∆ is a distance function between observed and simulated summaries (we use
a Mahalanobis distance, see the supplementary material), Kϵ(·) is a kernel, which in all our applications is
the uniform kernel returning 1 if ∆(s⋆, sobs) < ϵ and 0 otherwise, and ϵ > 0 is the so-called ABC-threshold.
A smaller ϵ produces more accurate approximations to the true summaries posterior p(θ|sobs), though this
implies a larger computational effort due to the increasing number of rejected proposals. An additional issue
is that ideally we would like to target p(θ|yobs), not p(θ|sobs), but again unless sufficient statistics are available
(impossible outside the exponential family), and since ϵ > 0, we have to be content with samples from pϵABC.

In this work we do not focus on how to sample from pϵABC(θ|sobs) (see Sisson et al., 2018 for possibilities).
Therefore, we employ the simplest (and also most inefficient) ABC algorithm, the so called “ABC rejection
sampling” [Pritchard et al., 1999]. We will use the “reference table” version of ABC rejection sampling
(e.g. Cornuet et al., 2008), which is as follows:

• Generate Ñ independent proposals θi ∼ p(θ), and corresponding data yi ∼ p(y|θi) from the simulator;

• Compute the summary statistics si = S(yi) for each i = 1, ..., Ñ ;

• Compute the distances ∆(si, sobs) for each i = 1, ..., Ñ ;

• Retain proposals θi corresponding to those ∆(si, sobs) that are smaller than the x-th percentile of all
distances.

The retained θi’s form a sample from pϵABC with ϵ given by the selected xth percentile. An advantage of this
approach is that it allows to easily compare the quality of the ABC inference based on several methods for
computing the summaries, under the same computational budget Ñ . Moreover, once the “reference table”
(θi, yi)1≤i≤Ñ has been produced in the first step, we can recycle these simulations to produce new posterior
samples using several methods for computing the summary statistics.

2.1 Learning summary statistics
Event though ABC rejection sampling is highly inefficient due to proposing parameters from the prior p(θ),
this is not a concern for the purpose of our work. In fact, our main focus is learning the summary statistics
S(·). This is perhaps the most serious difficulty affecting the application of ABC methodology to practical
problems. In fact, we require summaries that are informative for θ, as a replacement for the (unattainable)
sufficient statistics. A considerable amount of research has been conducted on how to construct informative
summary statistics (see Blum et al., 2013 and Prangle, 2015 for an overview). However their selection
is still challenging since no state-of-the-art methodology exists that can be applied to arbitrarily complex
problems. Fearnhead and Prangle [2012] consider a regression-based approach where they also show that the
best summary statistic, in terms of the minimal quadratic loss, is the posterior mean. The latter is however
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unknown since p(θ|yobs) itself is unknown. Therefore, they introduce a simulation approach based on a linear
regression model

θij = E(θj |yi) + ξij = b0j + bjh(y
i) + ξij (1)

with ξij some mean-zero noise. Here j = 1, ..., dim(θ) and h(yi) is a vector of (non)-linear transformations of
“data” yi (here yi can be simulated or observed data). Therefore Fearnhead and Prangle [2012] have dim(θ)
models to fit separately, one for each component of vector θ. Of course, these fittings are to be performed
before ABC rejection is executed, so this is a step that anticipates ABC rejection, to provide the latter with
suitable summary statistics. The parameters in each regression (1) are estimated by fitting the model by least
squares to a new set of N simulated data-parameter pairs (θi, yi)1≤i≤N where, same as for ABC rejection,
the θi are generated from p(θ) and the yi are generated from the model simulator conditionally on θi. To
clarify the notation: N is the number of data-parameter pairs used to fit the linear regression model in
(1), while Ñ is the number of parameter-data pair proposals used in ABC rejection sampling. However the
two sets of parameter-data pairs (θi, yi)1≤i≤N and (θi, yi)1≤i≤Ñ are different since these serve two separate
purposes. They are generated in the same way but independently of each other. After fitting (1), estimates
(b̂0j , b̂j) are returned and b̂0j + b̂jh(y) is taken as jth summary statistic, j = 1, ..., dim(θ). We can then take
Sj(y

obs) = b̂0j + b̂jh(y
obs) as jth component of S(yobs), and similarly take Sj(y

⋆) = b̂0j + b̂jh(y
⋆). The

number of summaries is therefore equal to the size of θ.
This approach is further developed in Jiang et al. [2017] where a MLP deep neural network regression

model is employed, and replaces the linear regression model in (1). Hence, Jiang et al. [2017] has the following
regression model

θi = E(θ|yi) + ξi = fβ(y
i) + ξi

where fβ is the MLP parametrized by the weights β. Jiang et al. [2017] estimate β from

min
β

1

N

N∑
i=1

∥fβ(yi)− θi∥22, (2)

where (θi, yi)1≤i≤N are the parameter-data pairs that the network fβ is fitted to.
The deep neuronal network with multiple hidden layers considered in Jiang et al. [2017] offers stronger

representational power to approximate E(θ|y) (and hence learn an informative summary statistic), compared
to using linear regression, if the posterior mean is a highly non-linear function of y. Moreover, experiments in
Jiang et al. [2017] show that indeed their MLP outperforms the linear regression approach in Fearnhead and
Prangle [2012] (at least for their considered experiments), although at the price of a much larger computational
effort. For this reason in our experiments we compare ABC coupled with PENs with the ABC MLP from
Jiang et al. [2017].

In Creel [2017] a deep neural network regression model is used. He also introduces a pre-processing step
such that instead of feeding the network with the data set yobs, the network is fed with a set of statistics
of the data sobs. This means that, unlike in Jiang et al. [2017], in Creel [2017] the statistician must already
know “some kind” of initial summary statistics, used as input, and then the network returns another set of
summary statistics as output, and the latter are used for ABC inference. Our PENs do not require any initial
specification of summary statistics.

3 Partially exchangeable networks
Even though the likelihood function is intractable in the likelihood-free setting, we may still have insights
into properties of the data generating process. To that end, given our data set y ∈ YM with M units, we
will exploit some of the invariance properties of its prior predictive distribution p(y) =

∫
θ
p(y|θ)p(θ)dθ. As

discussed in 2, the regression approach to ABC [Fearnhead and Prangle, 2012] involves to learn the regression
function y 7→ E(θ|y), where E(θ|y) is the posterior mean. Our goal in this section is to leverage the invariances
of the Bayesian model p(y) to design deep neural architectures that are fit for this purpose.
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3.1 Exchangeability and partial exchangeability
The simplest form of model invariance is exchangeability. A model p(y) is said to be exchangeable if, for all
permutations σ in the symmetric group SM , p(y) = p(yσ(1), ..., yσ(M)). For example, if the observations are
independent and identically distributed (i.i.d.) given the parameter, then p(y) is exchangeable. A famous
theorem of de Finetti [1929], which was subsequently generalized in various ways (see e.g. the review of
Diaconis, 1988), remarkably shows that such conditionally i.i.d. models are essentially the only exchangeable
models.

If the model is exchangeable, it is clear that the function y 7→ E(θ|y) is permutation invariant. It is
therefore desirable that a neural network used to approximate this function should also be permutation
invariant. The design of permutation invariant neural architectures has been the subject of numerous works,
dating at least back to Minsky and Papert [1988, Chap. 2] and Shawe-Taylor [1989]. A renewed interest
in such architectures came about recently, notably through the works of Ravanbakhsh et al. [2017], Zaheer
et al. [2017], and Murphy et al. [2019]—a detailed overview of this rich line of work can be found in Bloem-
Reddy and Teh [2019]. Most relevant to our work is the DeepSets architecture of Zaheer et al. [2017] that we
generalize to partial exchangeability, and the approach of Chan et al. [2018], who used permutation invariant
networks for ABC.

However, the models considered in ABC are arising from intractable-likelihoods scenarios, which certainly
are not limited to exchangeable data, quite the opposite, e.g. stochastic differential equations [Picchini, 2014],
state-space models and beyond [Jasra, 2015]. To tackle this limitation, we ask: could we use a weaker
notion of invariance to propose deep architectures suitable for such models? In this paper, we answer this
question for a specific class of non-i.i.d. models: Markov chains. To this end, we make use of the notion of
partial exchangeability studied by Diaconis and Freedman [1980]. This property can be seen as a weakened
version of exchangeability where p(y) is only invariant to a subset of the symmetric group called block-switch
transformations. Informally, for d ∈ N, a d-block-switch transformation interchanges two given disjoint blocks
of y ∈ YM when these two blocks start with the same d symbols and end with the same d symbols.

Definition 1 (Block-switch transformation). For increasing indices b = (i, j, k, l) ∈ {0, . . . ,M}4 such
that j − i ≥ d and l − k ≥ d, the d-block-switch transformation T

(d)
b is defined as follows: if yi:(i+d) =

yk:(k+d) and y(j−d):j = y(l−d):l then

y = y1:i−1 yi:j y(j+1):(k−1) yk:l y(l+1):M (3)

T
(d)
b (y) = y1:i−1 yk:l y(j+1):(k−1) yi:j y(l+1):M . (4)

If yi:(i+d) ̸= yk:(k+d) or y(j−d):j ̸= y(l−d):l then the block-switch transformation leaves y unchanged: T
(d)
b (y) =

y.

Definition 2 (Partial exchangeability). Let A be a metric space. A function F : YM → A is said to
be d-block-switch invariant if F (y) = F (T

(d)
b (y)) for all y ∈ Y and for all d-block-switch transformations

T
(d)
b . Similarly, a model p(y) is d-partially exchangeable if for all d-block-switch transformations T

(d)
b we

have p(y) = p(T
(d)
b (y)).

Note that 0-partial exchangeability reduces to exchangeability and that all permutations are 0-block-
switch transformations.

It is rather easy to see that, if p(y|θ) is a Markov chain of order d, then p(y) is partially exchangeable
(and therefore y 7→ E(θ|y) is d-block-switch invariant). In the limit of infinite data sets, Diaconis and Freed-
man [1980] showed that the converse was also true: any partially exchangeable distribution is conditionally
Markovian. This result, which is an analogue of de Finetti’s theorem for Markov chains, justifies that partial
exchangeability is the right symmetry to invoke when dealing with Markov models.

3.2 From model invariance to network architecture
When dealing with Markovian data, we therefore wish to model a regression function y 7→ E(θ|y) that is
d-block-switch invariant. Next theorem gives a general functional representation of such functions, in the
case where Y is countable.
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Theorem 1. Let F : YM → A be d-block-switch invariant. If Y is countable, then there exist two functions
ϕ : Yd+1 → R and ρ : Yd × R→ A such that

∀y ∈ YM , F (y) = ρ

(
y1:d,

M−d∑
i=1

ϕ
(
yi:(i+d)

))
. (5)

Proof. Let ∼ be the equivalence relation over YM defined by

x ∼ y ⇐⇒ ∃b1, . . . , bk, y = T
(d)
b1
◦ · · · ◦ T (d)

bk
(x).

Let cl : YM → YM/∼ be the projection over the quotient set. According to the properties of the quotient
set, since F is d-block-switch invariant, there exists a unique function g : YM/∼ → A such that F = g ◦ cl.

Since Y is countable, Yd+1 is also countable and there exists an injective function c : Yd+1 → N. Consider
then the function

ν : y 7→

(
y1:d,

M−d∑
i=1

2−c(yi:(i+d))

)
,

which is clearly d-block-switch invariant. There exists a unique function h : YM/∼ → ν(YM ) such that
ν = h ◦ cl.

We will now show that h is a bijection. By construction, h is clearly surjective. Let us now prove its
injectivity. We thus have to show that, for all x, y ∈ YM , ν(x) = ν(y) implies x ∼ y. Let x, y ∈ YM such
that ν(x) = ν(y). We have therefore x1:d = y1:d and

M−d∑
i=1

2−c(xi:(i+d)) =
M−d∑
i=1

2−c(yi:(i+d)).

The uniqueness of finite binary representations then implies that {xi:(i+d)}i≤M−d = {yi:(i+d)}i≤M−d. Accord-
ing to Diaconis and Freedman [1980, Proposition 27], those two conditions imply that x ∼ y, which shows
that h is indeed injective.

Since h is a bijection, ν = h◦cl implies that cl = h−1 ◦ν which leads to F = g◦h−1 ◦ν. Finally, expanding
this gives

∀y ∈ YM , F (y) = g ◦ h−1

(
y1:d,

M−d∑
i=1

2−c(yi:(i+d))

)
,

which is the desired form with ϕ(y) = 2−c(y) and ρ = g ◦ h−1.

When d = 0, the representation reduces to

F (y) = ρ

(
M∑
i=1

ϕ (yi)

)
, (6)

and we exactly recover Theorem 2 from Zaheer et al. [2017]—which also assumes countability of Y—and the
DeepSets representation. While an extension of our theorem to the uncountable case is not straightforward,
we conjecture that a similar result holds even with uncountable Y. A possible way to approach this con-
jecture is to study the very recent and fairly general result of Bloem-Reddy and Teh [2019]. We note that
the experiments on an autoregressive time series model in 4.3, which is a Markovian process, support this
conjecture.

Partially exchangeable networks The result in 1 suggests how to build d-block-switch invariant neural
networks: we replace the functions ρ and ϕ in (5) by feed forward neural networks and denote this construction
a d-partially exchangeable network (PEN-d or PEN of order d). In this construction, we will call ϕ the inner
network, which maps a d-length subsequence yi:i+d into some representation ϕ(yi:i+d), and ρ is the outer
network that maps the first d symbols of the input, and the sum of the representations of all d-length
subsequences of the input, to the output. We note that DeepSets networks are a special case of the PENs
that corresponds to PEN-0.
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3.3 Using partially exchangeable networks for learning summary statistics for
ABC

While PENs can by used for any exchangeable data, in this paper we use it for learning summary statistics
in ABC. In particular, we propose the following regression model for learning the posterior mean

θi = E(θ|yi) + ξi = ρβρ

(
yi1:d,

M−d∑
l=1

ϕβϕ
(yil:l+d)

)
+ ξi.

Here βϕ are the weights for the inner network, and βρ are the weights for the outer network that maps its
arguments into the posterior mean of the unknown parameters, which is the ABC summary we seek. When
using PENs to learn the summary statistics we obtain the weights for the networks using the same criterion
as in (2), except that instead of using the MLP network we use a PEN network for the underlying regression
problem.

When targeting static models we employ a PEN-0, i.e. a DeepSets network, since a static model can be
viewed as a zero-order Markov model. For time series models we use a PEN-d, where d > 0 is the order of
the assumed data generating Markov process.

4 Experiments
We present four experiments: two static models (g-and-k and α-stable distributions), and two time series
models (autoregressive and moving average models). Full specification of the experimental settings is provided
as supplementary material. The code was written in Julia 1.0.0 [Bezanson et al., 2017] and the framework Knet
[Yuret, 2016] was used to build the deep learning models. The code can be found at https://github.com/
SamuelWiqvist/PENs-and-ABC. All experiments are simulation studies and the data used can be generated
from the provided code. We compare approximate posteriors to the true posteriors using the Wasserstein
distance, which we compute via the POT package [Flamary and Courty, 2017]. This distance can be sensitive
to the number of posterior samples used, however, we observed that our results are fairly robust to variations
in the number of samples. In all experiments we used 100 posterior samples to estimate the Wasserstein
distance, except for the AR2 model where we used 500 samples. We also employ two different MLP networks:
“MLP small”, where we use approximately the same number of weights as for the PEN-d network; and “MLP
large”, which has a larger number of weights than PEN-d.

4.1 g-and-k distribution
The g-and-k distribution is defined by its quantile function via four parameters, and not by its probability
density function since the latter is unavailable in closed form. This means that the likelihood function is
“intractable” and as such exact inference is not possible. However, it is very simple to simulate draws from
said distribution (see the supplementary material), which means that g-and-k models are often used to test
ABC algorithms [Prangle, 2017].

The unknown parameters are θ = [A,B, g, k] (for full specification of the g-and-k distribution, see the
supplementary material). The prior distributions are set to p(A) ∼ Γ(2, 1), p(B) ∼ Γ(2, 1), p(g) ∼ Γ(2, 0.5),
and p(k) ∼ Γ(2, 1) (Γ(α, β) is the Gamma distribution with shape parameter α and rate parameter β). We
perform a simulation study with ground-truth parameters A = 3, B = 1, g = 2, k = 0.5 (same ground-truth
parameter values as in Allingham et al., 2009, Picchini and Anderson, 2017, Fearnhead and Prangle, 2012).
Our data set comprises M = 1, 000 realizations from a g-and-k distribution.

We compare five different methods of constructing the summary statistics for ABC: (i) the handpicked
summary statistics in Picchini and Anderson [2017], i.e. S(y) = [P20, P40, P60, P80, skew(y)] (Pi is the ith
percentile and skew(y) is the skewness); (ii) “MLP small”; (iii) “MLP large”; (iv) a MLP network with a
preprocessing step, denoted “MLP pre”, where we feed the network with the empirical distribution function
of the data instead of feeding it with the actual data; and (v) PEN-0 (DeepSets) since the data is i.i.d. the
order of the Markov model is 0).

The probability density function for the g-and-k distribution can be approximated via finite differences,
as implemented in the gk R package [Prangle, 2017]. This allow us to sample from an almost exact posterior
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distribution using standard Markov chain Monte Carlo (MCMC). We evaluate the inference produced using
summaries constructed from the five methods (i–v) by comparing the resulting ABC posteriors to the “almost
exact” posterior (computed using MCMC). ABC inferences are repeated over 100 independent data sets, and
for a different number of training data observations for DNN models. The results are presented in Figure 1
and we can conclude that PEN-0 generates the best results. Furthermore, PEN-0 is also more data efficient
since it performs considerably better than other methods with limited number of training observations. It
seems in fact that PEN-0 requires 10 times less training data than “MLP pre” to achieve the same inference
accuracy. However all methods performed poorly when too few training observations are used. The results
also show that when MLP is fed with the observations it generates poor results, but if we instead use “MLP
pre” and send in the empirical distribution function, in the spirit of Creel [2017], we obtain considerably
better results.

Figure 1: Results for g-and-k distribution: The estimated Wasserstein distances (mean over 100 repetitions)
when comparing the MCMC posterior with ABC posteriors.

4.2 α-stable distribution
The α-stable is a heavy-tailed distribution defined by its characteristic function (see supplementary material).
Its probability density function is intractable and inference is therefore challenging. Bayesian methods for
the parameters can be found in e.g. Peters et al. [2012] and Ong et al. [2018]. Unknown parameters are
θ = [α, β, γ, δ]. We follow Ong et al. [2018] and transform the parameters:

α̃ = log
α− 1.1

2− α
, β̃ = log

β + 1

1− β
, γ̃ = log γ, and δ̃ = δ.

This constraints the original parameters to α ∈ [1.1, 2], β ∈ [−1, 1], and γ > 0. Independent Gaussian priors
and ground-truth parameters are as in Ong et al. [2018]: α̃, β̃, γ̃, δ̃ ∼ N(0, 1); ground-truth values for the
untransformed parameters are: α = 1.5, β = 0.5, γ = 1, and δ = 0. Observations consist of M = 1, 000
samples.

We compare methods for computing summary statistics as we did in 4.1 for the g-and-k distribution.
However, since here the true posterior distribution is unavailable, we evaluate the different methods by com-
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paring the root-mean square error (RMSE) between ground-truth parameter values and the ABC posterior
means, see 1. From 1 we conclude that PEN-0 performs best in terms of RMSE. Similarly to the g-and-k
example we also see that “MLP pre” (see 4.1 for details) performs considerably better than MLP. We now
look at the resulting posteriors. In Figure 2 five posteriors from five independent experiments are presented
(here we have used 5 · 105 training data observations). Inference results when using handpicked summary
statistics are poor and for γ̃ the posterior resembles the prior. Posterior inference is worst for “MLP large”.
Results for “MLP pre” and PEN-0 are similar, at least in the case depicted in Figure 2 where we use 5 · 105
training data observations. However, in terms of RMSE, PEN-0 returns the best results when we reduce the
number of training data observations.

Table 1: Results for α-stable distribution. Root-mean square error (RMSE) when comparing posterior
means to the ground-truth parameters (over 25 repetitions), for different methods of computing the summary
statistics, and different number of training observations (between brackets).

Handpicked MLP (small) MLP (large) MLP pre PEN-0

RMSE (5 · 105) 0.64 0.18 0.15 0.07 0.05
RMSE (105) 0.64 0.19 0.17 0.07 0.06
RMSE (104) 0.64 0.21 0.37 0.07 0.06
RMSE (103) 0.64 0.72 0.62 0.40 0.07

4.3 Autoregressive time series model
An autoregressive time series model of order two (AR(2)) follows:

yl = θ1yl−1 + θ2yl−2 + ξl, ξl ∼ N(0, 1).

The AR(2) model is identifiable if the following are fulfilled: θ2 < 1 + θ1, θ2 < 1 − θ1, θ2 > −1 [Fuller,
1976]. We let the resulting triangle define the uniform prior for the model. The ground-truth parameters for
this simulation study are set to θ = [0.2,−0.13], and the data size is M = 100. AR(2) is a Markov model,
hence and the requirement for PEN-d with d > 0 is fulfilled.

We compare five methods for computing the summaries: (i) handpicked summary statistics, i.e. S(y) =
[γ(y, 1), γ(y, 2), γ(y, 3), γ(y, 4), γ(y, 5)] (γ(y, i) is autocovariance at lag i), which are reasonable summary
statistics since autocovariances are normally employed in parameter estimation for autoregressive models, for
instance when using the Yule–Walker equations; (ii) “MLP small” network; (iii) “MLP large”; (iv) PEN-0
(DeepSets); and (v) PEN-2. Since AR(2) is a time series model it makes sense to use PEN-2, and PEN-0
results are reported only in the interest of comparison. Here we do not consider the “MLP pre” method
used in Section 4.1 and 4.2, since the empirical distribution function does not have any reasonable meaning
for time series data. The likelihood function for AR(2) is known and we can therefore sample from the true
posterior using MCMC.

Results are in Figure 3. PEN-2 outperforms MLP, for example we can see that the precision achieved when
PEN-2 is trained on 103 training observations can be achieved by MLP when trained on 105 observations,
implying an improvement of a 102 factor. Approximate and exact posteriors are in Figure 4 and we conclude
that posteriors for both MLP and PEN-2 are similar to the true posterior when many training observations
are used. However, the approximate posterior for MLP degrades significantly when the number of training
observations is reduced and is very uninformative with 103 and even with 104 observations, while for PEN-2
the quality of the approximate posterior distribution is only marginally reduced.
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Figure 2: Results for α-stable distribution: Approximate marginal ABC posteriors. Results obtained using
5 · 105 training data observations. The green dashed line is the prior distribution. The colored lines show
posteriors from 5 independent experiments. These posteriors are not cherry-picked.
4.4 Moving average time series with observational noise model
We consider a partially observed time series, with latent dynamics given by a moving average MA(2) model
and observations perturbed with Gaussian noise:{

yl = xl + ξyl , ξyl ∼ N(0, σϵ = 0.3),

xl = ξl + θ1ξ
x
l−1 + θ2ξ

x
l−2, ξxl ∼ N(0, 1),

where the ξxl and ξyl are all independent. An MA(2) process without observational noise is identifiable if
θ1 ∈ [−2, 2], θ2 ∈ [−1, 1], and θ2 ± θ1 ≥ −1. Same as in Jiang et al. [2017], we define a uniform prior over
this triangle. We use the same setting as in Jiang et al. [2017] and set the ground-truth parameters for the
simulation study to θ = [0.6, 0.2]. We only observe {yl} and the number of observations is M = 100.

The latent dynamics are not Markovian, hence the Markov property required for PEN of order larger
than 0 is not fulfilled, however, the quasi-Markov structure of the data might still allow us to successfully
use PEN-d with an order d larger than 0. An additional complication is given by the observational noise ξyl ,
further perturbing the dynamics. Once more, we compare five methods for computing the summary statistics:
(i) handpicked summaries S(y) = [γ(y, 1), γ(y, 2)], i.e. we follow Jiang et al. [2017]; (ii) “MLP small”; (iii)
“MLP large”; (iv) PEN-0 (DeepSets); and (v) PEN-10. Same as for the AR(2) example, here PEN-0 results
are reported only in the interest of a comparison with PEN-10, as for a time-series model it is expected from
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Figure 3: Results for AR(2) model: Estimated Wasserstein distances (mean over 100 data sets) when com-
paring the true posterior with ABC posteriors, for varying sizes of training data when using DNN models.

PEN-0 to be suboptimal. Also in this case the likelihood function is available, and we can compute the true
posterior distribution. Once more, we compare the approximate posteriors to the true posterior over 100
different data sets, see Figure Figure 5. We conclude that PEN-10 performs slightly better than MLP when
the training data set is large, and that PEN-10 outperforms MLP when we restrict the size of the training
data. Once more, we notice that PEN-10 implies a factor ≥ 10 in terms of savings on the size of the training
data.

5 Discussion
Simulation experiments show that our partially exchangeable networks (PENs) achieve competitive results
in learning summary statistics for use in ABC algorithms, outperforming the other deep learning methods
that we have considered. Moreover, PENs require much smaller training data to achieve the same inference
accuracy of competitors: in our experiments a reduction factor of order 10 to 102 was observed.

As mentioned in Section 2, in this work we were not focused on the specific ABC algorithm used for
sampling, but only on learning summary statistics for ABC. However, in future work we plan to use our
approach for constructing summary statistics alongside more sophisticated variants of ABC methods, such as
those which combine ABC with Markov chain Monte Carlo [Sisson and Fan, 2011] or sequential techniques
[Beaumont et al., 2009].

Murphy et al. [2019] recently shed light on some limitations of the DeepSets architecture, and proposed to
improve it by replacing the sum fed to the outer network by another pooling techinque called Janossy pooling.
Since the drawbacks they inspect are also likely to affect our architectures, extending Janossy pooling to the
PEN framework might constitute a valuable improvement.

Our experiments show that the performance of the MLP networks using different choices for the number
of weights is quite similar, and that PEN outperforms MLP even when MLP has access to a larger number of
weights compared to PEN. The main insight is that PENs by design incorporate the (partial) exchangeability
property of the data, whereas the MLPs have to learn this property. Exchangeability and partial exchange-
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Figure 4: Results for AR(2) model. The green line indicates the prior distribution, the contour plot is from
the exact posterior and the blue dots are 100 samples from the several ABC posteriors. The number in
parenthesis indicates number of observations in the training data set. These posteriors are not cherry-picked.
ability can in principle be expressed in an MLP, but for small data sets these properties will be difficult to
learn, and we expect that the model will overfit to the training data. One approach to alleviate this problem
for MLPs is to perform data augmentation. However, it is not straightforward to perform data augmentation
for continuous Markovian data, unless we have access to the underlying data generating process. In ABC the
assumption is that we do have access to this process, but data generation may be computational expensive,
and in a more general application we may not have access to the process.

Although we have applied the PEN architecture to the problem of learning summary statistics for ABC,
notice that PEN is a general architecture and could be used for other applications. One example would be
time series classification.

The main limitation for PEN is that it is designed for Markovian data or, when considering the special
case of DeepSets (i.e. PEN-0), for exchangeable data. However, in the MA(2) example we achieve good
inference results even though the MA(2) model is itself non-Markovian and observations are perturbed with
measurement noise.
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Figure 5: Results for MA(2) model: Estimated Wasserstein distances (mean over 100 data sets) when
comparing the true posterior with ABC posteriors.
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1 Approximate Bayesian computation rejection sampling

1.1 Settings for ABC rejection sampling “reference table” algorithm

In section 2 of the main paper we denote with x the ABC threshold. For g-and-k and α-stable models we
consider for x the 0.1th percentile, and for AR(2) and MA(2) the 0.02th percentile of all distances. The
number of proposals for g-and-k and α-stable models is Ñ = 100, 000, and for AR(2) and MA(2) Ñ = 500, 000.

1.2 The ABC distance function

In all our inference attempts we always used ABC rejection sampling and only needed to change the method
used to compute the summary statistics. We employed the Mahalanobis distance

∆(s∗, sobs) =
√

(s∗ − sobs)>A(s∗ − sobs),

where in our case A is the identity matrix, except when using hand-picked summary statistics for the g-and-k
distribution, and in such case A is a diagonal matrix with diagonal elements 1/w2, with w a vector with
entries w = [0.22; 0.19; 0.53; 2.97; 1.90], as in Picchini and Anderson [2017].

2 Regularization

We use early-stopping for all networks. The early-stopping method used is to train the network over N epochs
and then select the set of weights, out of the N sets, that generated the lowest evaluation error.
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3 g-and-k distribution

• The full set of parameters for a g-and distribution is [A,B, g, k, c], However, we follow the common
practice of keeping c fixed to c = 0.8 and assume B > 0 and k ≥ 0 Prangle [2017].

• Here is a procedure to simulate a single draw from the distribution: we first simulate a draw z from a
standard Gaussian distribution, z ∼ N(0, 1), then we plug z into

Q = A+B · (1 + c · tanh(g · z/2)) · z · (1 + z2)k

and obtain a realization Q from a g-and-k distribution.

• The network settings are presented in Table 1, 2, 3, and 4;

• The number of weights for the different networks are presented in Table 5;

• Values outside of the range [−10, 50] are considered to be outliers and these values are replaced (at
random) with values inside the data range. The data cleaning scheme is applied to both the observed
and generated data;

• When computing the empirical distribution function we evaluate this function over 100 equally spaced
points between 0 and 50;

• Number of training observations: 5 · 105, 105, 104, and 103. Evaluation data observations 5 · 103.

Table 1: g-and-k: Network settings for MLP small.
some extra text ;)

Layer Dim. in Dim. out Activation

Input 1000 25 relu
Hidden 1 25 25 relu
Hidden 2 25 12 relu
Output 12 4 linear

Table 2: g-and-k: Network settings for MLP large.
some extra text ;)

Layer Dim. in Dim. out Activation

Input 1000 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 4 linear

Table 3: g-and-k: Network settings MLP pre
Layer Dim. in Dim. out Activation

Input 100 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 4 linear

Table 4: g-and-k: Network settings for PEN-0
φ network

Layer Dim. in Dim. out Activation

Input 1 100 relu
Hidden 1 100 50 relu
Output 50 10 linear

ρ network

Layer Dim. in Dim. out Activation

Input 10 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 4 linear

4 α-stable distribution

• The characteristic function ϕ(x) for the α-stable distribution is given by Ong et al. [2018]
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Table 5: g-and-k: Number of weights for the different networks
Network # weights

MLP small 26039
MLP large 115454
MLP pre 25454
PEN-0 22214

ϕ(x) =

exp
(
iδt− γα|t|α

(
1 + iβ tan πα

2 sgn(t)(|γt|1−α − 1)
))
, α 6= 1,

exp
(
iδt− γ|t|

(
1 + iβ 2

π sgn(t) log(γ|t|)
))
, α = 1,

where sgn is the sign function, i.e.

sgn(t) =


−1 if t < 0,

0 if t = 0,

1 if t > 0.

• The network settings are presented in Table 6, 7, 8, and 9;

• The number of weights for the different networks are presented in Table 10;

• Values outside of the range [−10, 50] are considered to be outliers and these values are replaced (at
random) with values inside the data range. The data cleaning scheme is applied to both the observed
and generated data;

• All data sets are standardized using the “robust scalar” method, i.e. each data point yi is standardized
according to

yi +Q1(y)

Q3(y)−Q1(y)

where Q1 and Q3 are the first and third quantiles respectively;

• When computing the empirical distribution function we evaluate this function over 100 equally spaced
points between -10 and 100;

• The root-mean-squared error (RMSE) is computed as

RMSE =

√√√√ 1

R

R∑
i=1

{(θ̂1i − θ1)2 + (θ̂2i − θ2)2 + (θ̂3i − θ3)2 + (θ̂4i − θ4)2}

where θ = [θ1, θ2, θ3, θ4] are ground-truth parameter values and [θ̂1i , θ̂
2
i , θ̂

3
i , θ̂

4
i ]1≤i≤R are ABC posterior

means. R is the number of independent repetitions of the inference procedure;

• Number of training observations: 5 · 105, 105, 104, and 103. Evaluation data observations 5 · 103.
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Table 6: α-stable: Network settings for MLP small.
some extra text ;)

Layer Dim. in Dim. out Activation

Input 1002 25 relu
Hidden 1 25 25 relu
Hidden 2 25 12 relu
Output 12 4 linear

Table 7: α-stable: Network settings for MLP large.
some extra text ;)

Layer Dim. in Dim. out Activation

Input 1002 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 4 linear

Table 8: α-stable: Network settings MLP pre.
Layer Dim. in Dim. out Activation

Input 100 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 4 linear

Table 9: α-stable: Network settings for PEN-0.
φ network

Layer Dim. in Dim. out Activation

Input 1 100 relu
Hidden 1 100 50 relu
Output 50 20 linear

ρ network

Layer Dim. in Dim. out Activation

Input 22 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 4 linear

Table 10: α-stable: Number of weights for the different networks
Network # weights

MLP small 26089
MLP large 115654
MLP pre 25454
PEN-0 23924

5 Autoregressive time series model

• The network settings are presented in Table 11, 12, 13, and 14;

• The number of weights for the different networks are presented in Table 15;

• Number of training observations: 106, 105, 104, and 103. Evaluation data observations 104.

6 Moving average time series with observational noise model

• The network settings are presented in Table 16, 17, 18, and 19;

• The number of weights for the different networks are presented in Table 20;

• Number of training observations: 106, 105, 104, and 103. Evaluation data observations 5 · 105.
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Table 11: AR(2): Network settings for MLP small.
Layer Dim. in Dim. out Activation

Input 100 55 relu
Hidden 1 55 55 relu
Hidden 2 55 25 relu
Output 25 2 linear

Table 12: AR(2): Network settings for MLP large.
Layer Dim. in Dim. out Activation

Input 100 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 2 linear

Table 13: AR(2): Network settings for PEN-0.
φ network

Layer Dim. in Dim. out Activation

Input 1 100 relu
Hidden 1 100 50 relu
Output 50 10 linear

ρ network

Layer Dim. in Dim. out Activation

Input 10 50 relu
Hidden 1 50 50 relu
Hidden 2 50 20 relu
Output 20 2 linear

Table 14: AR(2): Network settings for PEN-2.
φ network

Layer Dim. in Dim. out Activation

Input 3 100 relu
Hidden 1 100 50 relu
Output 50 10 linear

ρ network

Layer Dim. in Dim. out Activation

Input 12 50 relu
Hidden 1 50 50 relu
Hidden 2 50 20 relu
Output 20 2 linear

Table 15: AR(2): Number of weights for the different networks
Network # weights

MLP small 10087
MLP large 25352
PEN-0 9922
PEN-2 10222

Table 16: MA(2): Network settings for MLP small.
Layer Dim. in Dim. out Activation

Input 100 60 relu
Hidden 1 60 60 relu
Hidden 2 60 25 relu
Output 25 2 linear

Table 17: MA(2): Network settings for MLP large.
Layer Dim. in Dim. out Activation

Input 100 100 relu
Hidden 1 100 100 relu
Hidden 2 100 50 relu
Output 50 2 linear

Table 18: MA(2): Network settings for PEN-0.
ρ network

Layer Dim. in Dim. out Activation

Input 1 100 relu
Hidden 1 100 50 relu
Hidden 2 50 10 relu
φ network

Layer Dim. in Dim. out Activation

Input 10 50 relu
Hidden 1 50 50 relu
Hidden 2 50 20 relu
Output 20 2 linear

Table 19: MA(2): Network settings for PEN-10
ρ network

Layer Dim. in Dim. out Activation

Input 11 100 relu
Hidden 1 100 50 relu
Hidden 2 50 10 relu
φ network

Layer Dim. in Dim. out Activation

Input 20 50 relu
Hidden 1 50 50 relu
Hidden 2 50 20 relu
Output 20 2 linear
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Table 20: MA(2): Number of weights for the different networks
Network # weights

MLP small 11297
MLP large 25352
PEN-0 9922
PEN-10 11422
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Abstract

Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are
able to account for random variability inherent in the underlying time-dynamics, as well as the variability
between experimental units and, optionally, account for measurement error. Fully Bayesian inference for
state-space SDEMEMs is performed, using data at discrete times that may be incomplete and subject to
measurement error. However, the inference problem is complicated by the typical intractability of the ob-
served data likelihood which motivates the use of sampling-based approaches such as Markov chain Monte
Carlo. A Gibbs sampler is proposed to target the marginal posterior of all parameter values of interest.
The algorithm is made computationally efficient through careful use of blocking strategies and correlated
pseudo-marginal Metropolis-Hastings steps within the Gibbs scheme. The resulting methodology is flexible
and is able to deal with a large class of SDEMEMs. The methodology is demonstrated on three case studies,
including tumor growth dynamics and neuronal data. The gains in terms of increased computational effi-
ciency are model and data dependent, but unless bespoke sampling strategies requiring analytical derivations
are possible for a given model, we generally observe an efficiency increase of one order of magnitude when
using correlated particle methods together with our blocked-Gibbs strategy.

Keywords: Bayesian inference; random effects; sequential Monte Carlo; state-space model

1. Introduction

Stochastic differential equations (SDEs) are arguably the most used and studied stochastic dynamic mod-
els. SDEs allow the representation of stochastic time-dynamics, and are ubiquitous in applied research, most
notably in finance [42], systems biology [49], pharmacokinetic/pharmacodynamic modelling [28] and neu-
ronal modelling. SDEs extend the possibilities offered by ordinary differential equations (ODEs), by allowing
random dynamics. As such, they can in principle replace ODEs in practical applications, to offer a richer
mathematical representation for complex phenomena that are intrinsically non-deterministic. However, in
practice switching from ODEs to SDEs is usually far from trivial, due to the absence of closed form solutions
to SDEs (except for the simplest toy problems), implying the need for numerical approximation procedures
[24]. Numerical approximation schemes, while useful for simulation purposes, considerably complicate sta-
tistical inference for model parameters. For reviews of inference strategies for SDE models, see e.g. [19]
(including Bayesian approaches) and [41] (classical approaches). Generally, in the non-Bayesian framework,
the literature for parametric inference approaches for SDEs is vast, however there is no inference procedure
that is applicable to general nonlinear SDEs and that is also easy to implement on a computer. This is
due to the lack of explicit transition densities for most SDE models. The problem is particularly difficult
for measurements that are observed without error, i.e. Markovian observations. On the other hand, the
Bayesian literature offers powerful solutions to the inference problem, when observations arise from state-
space models. In our case, this means that if we assume that observations are observed with error, and that
the latent process is a Markov process, then the literature based on sequential Monte Carlo (particle filters)
is readily available in the form of pseudo-marginal methods [3], and closely related particle MCMC methods
[2], which we introduce in Section 4.

∗Corresponding author
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Our goal is to produce novel Gibbs samplers embedding special types of pseudo-marginal algorithms
allowing for exact Bayesian inference in a specific class of state-space SDE models. In this paper, we
consider “repeated measurement experiments”, modeled via mixed-effects, where the dynamics are Markov
processes expressed via stochastic differential equations. These dynamics are assumed directly unobservable,
i.e. are only observable up to measurement error. The practical goal is to fit observations pertaining to
several “units” (i.e. independent experiments, such as measurements on different subjects) simultaneously,
by formulating a state-space model having parameters randomly varying between the several individuals. The
resulting model is typically referred to as a stochastic differential equation mixed-effects model (SDEMEM).
SDEMEMs are interesting because, in addition to explaining intrinsic stochasticity in the time-dynamics,
they also take into account random variation between experimental units. The latter variation permits
the understanding of between-subjects variability within a population. When considered in a state-space
model, these two types of variability (population variation and intrinsic stochasticity) are separated from
the third source of variation, namely residual variation (measurement error). Thanks to their generality, and
the ability to separate the three levels of variation, SDEMEMs have attracted attention, see e.g. [14] for a
review and [47] for a more recent account. See also section 2 for a discussion on previous literature.

In the present work, we mainly focus on a general, plug-and-play approach for exact Bayesian inference
in SDEMEMs, meaning that analytic calculations are not necessary thanks to the flexibility of the under-
lying sequential Monte Carlo (SMC) algorithms. We also describe a non plug-and-play approach to handle
specific situations. As in [36], our random effects and measurement error can have arbitrary distributions,
provided that the measurement error density can be evaluated point-wise. Unlike [36], we use a Gibbs sam-
pler to target the marginal parameter posterior. Subject specific, common and random effect population
parameters are updated in separate blocks, with pseudo-marginal Metropolis-Hastings (PMMH) steps used
to update the subject specific and common parameters, and Metropolis-Hastings (MH) steps used to update
the random effect population parameters. We believe that, to date, our work results in the most general
plug-and-play approach to inference for state-space SDEMEMs (a similar method has been concurrently
and independently introduced (July 25 2019 on arXiv), in [5]; see the discussion in Section 6). However,
the price to pay for such generality is that the use of pseudo-marginal methods guided by SMC algorithms
is computationally consuming. In order to make pseudo-marginal methods scale better as the number of
observations is increased, we exploit recent advances based on correlated PMMH (CPMMH). We combine
CPMMH with a novel blocking strategy and show that it is possible to reduce considerably the number of
required particles, and hence reduce the computational requirements for exact Bayesian inference. In our
experiments, unless specific models admit bespoke efficient sampling strategies (e.g. Section 5.3 where it
was possible to implement an advanced particle filter), CPMMH based algorithms with our novel blocking
strategy are one order of magnitude more efficient than standard PMMH. Occasionally we even observed a
40-fold increase in efficiency, as in Section 5.1.

The remainder of this paper is organized as follows. Background literature is discussed in Section 2.
Stochastic differential mixed-effects models and the inference task are introduced in Section 3. Our pro-
posed approach to inference is described in Section 4. Applications are considered in Section 5, includ-
ing a simulation study considering an Ornstein-Uhlenbeck SDEMEM, a tumor-growth model and finally
a challenging neuronal data case-study. A discussion is in Section 6. Julia and R codes can be found at
https://github.com/SamuelWiqvist/efficient_SDEMEM.

2. Background literature

Here we rapidly review key papers on inference for SDEMEMs, and refer the reader to https://

umbertopicchini.github.io/sdemem/ for a comprehensive list of publications. Early attempts at inference
for SDEMEMs use methodology borrowed from standard (deterministic) nonlinear mixed-effects literature
such as FOCE (first order conditional estimation) combined with the extended Kalman filter, as in [32].
This approach can only deal with SDEMEMs having a constant diffusion coefficient, see instead [29] for an
extension to state-dependent diffusion coefficients. The resulting inference in [32] is approximate maximum
likelihood estimation, and no uncertainty quantification is given. Moreover, only Gaussian random effects
are allowed and measurement error is also assumed Gaussian. Other maximum likelihood approaches are
in [33] and [34], where a closed-form series expansion for the unknown transition density is found using the
method in [1], however the methodology can only be applied to reducible multivariate diffusions without
measurement error. [13] discuss inference for SDEMEMs in a Bayesian framework. They implement a Gibbs
sampler when the SDE (for each subject) has an explicit solution, and consider Gaussian random effects
and Gaussian measurement error. When no explicit solution exists, they approximate the diffusion process
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using the Euler-Maruyama approximation. The approach of [15] is of particular interest, since it is the first
attempt to employ particle filters for inference in SDEMEMs: they construct an exact maximum likelihood
strategy based on stochastic approximation EM (SAEM), where latent trajectories are “proposed” via par-
ticle Markov chain Monte Carlo. The major problem with using SAEM is the need for sufficient summary
statistics for the “complete likelihood”, which makes the methodology essentially impractical for arbitrarily
complex models. [9] also use SAEM, but they avoid the need for the (usually unavailable) summary statistics
for the complete likelihood, and propose trajectories using the extended Kalman filter instead of particle
MCMC. Unlike in [15], the inference in [9] is approximate and measurement error and random effects are
required to be Gaussian. [39] analyze multivariate diffusions under the conditions that the random effects are
Gaussian distributed and that both fixed parameters and random effects enter linearly in the SDE. [48] work
with the Euler-Maruyama approximation and adopt a data augmentation approach to integrate over the
uncertainty associated with the latent diffusion process, by employing carefully designed bridge constructs
inside a Gibbs sampler. A linear noise approximation (LNA) is also considered. However, the limitations are
that the observation equation has to be a linear combination of the latent states and measurement error has
to be Gaussian. In addition, producing the bridge construct in the data augmentation approach or the LNA-
based likelihood requires some careful analytic derivations. Consequently, neither approach can be regarded
as a plug-and-play method (that is, a method that only requires forward simulation and evaluation of the
measurement error density). In [36], approximate and exact Bayesian approaches for a tumor growth study
were considered: the approximate approach was based on synthetic likelihoods [50, 38], where summary
statistics of the data are used for the inference, while exact inference used pseudo-marginal methodology via
an auxiliary particle filter, which is suited to target measurements observed with a small error. It was found
that using a particle approach to integrate out the random effects was very time consuming. Even though
the data set was small (comprising 5-8 subjects to fit, depending on the experimental group, and around 10
observations per subject), the number of particles required to approximate each individual likelihood was in
the order of thousands. This is very time consuming when the number of “subjects” (denoted M in the rest
of this work) increases.

3. Stochastic differential mixed-effects models

Consider the case where we have M experimental units randomly chosen from a theoretical population.
Our goal is to perform inference based on simultaneously fitting all data from the M units. Now assume
that the experiment we are analyzing consists in observing a stochastically evolving dynamic process, and
that associated with each unit i is a continuous-time d-dimensional Itô process {Xi

t , t ≥ 0} governed by the
SDE

dXi
t = α(Xi

t , κ, φ
i, Di) dt+

√
β(Xi

t , κ, φ
i, Di) dW i

t , Xi
0 = xi0, i = 1, . . . ,M. (1)

Here, α is a d-vector of drift functions, the diffusion coefficient β is a d × d positive definite matrix with a

square root representation
√
β such that

√
β
√
β
T

= β, W i
t is a d-vector of (uncorrelated) standard Brownian

motion processes and Di are unit-specific static or time-dependent deterministic input (e.g. covariates,
forcing functions), see e.g. [29]. The p-vector parameter κ = (κ1, . . . , κp)

T is common to all units whereas
the q-vectors φi = (φi1, . . . , φ

i
q)
T , i = 1, . . . ,M , are unit-specific random effects. In the most general

random effects scenario we let π(φi|η) denote the joint distribution of φi, parameterised by the r-vector
η = (η1, . . . , ηr)

T . The model defined by (1) allows for differences between experimental units through
different realizations of the Brownian motion paths W i

t and the random effects φi, accounting for inherent
stochasticity within a unit, and variation between experimental units respectively.

We assume that each experimental unit {Xi
t , t ≥ 0} cannot be observed exactly, but observations yi =

(yi1, . . . , y
i
n)T are available. Without loss of generality, we assume units are observed at the same integer time

points {1, 2, ..., n}, that is in the following we write n instead of, say, ni for all i. However this is only for
convenience of notation, and we could easily accommodate the possibility of different units i having different
values ni and that, in turn, units are observed at different sets of times. The observations are assumed
conditionally independent (given the latent process) and we link them to the latent process via

Y it = h(Xi
t , S

i, εit), εit|ξ
indep∼ pε(ξ), i = 1, ...,M (2)

where Y it is a do-vector, εt is a random do-vector, do ≤ d, εit is the measurement noise, Si is (as Di) a unit-
specific deterministic input, and h(·) is a possibly nonlinear function of its arguments. In the applications in
Section 5 we have Di = Si = ∅, the empty set, for every i, and hence for simplicity of notation we disregard
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Di and Si in the rest of the paper. However having non-empty sets does not introduce any additional
complication to our methodology. Notice, the possibility to have d0 < d implies that we may have some
coordinate of the {Xi

t} system that is unobserved at some (or all) t. We denote the density linking Y it
and Xi

t by π(yit|xit, ξ). An important special case that arises from our flexible observation model is when

h(Xi
t , ε

i
t) = FTXi

t + εit for a constant matrix F and εit|Σ
indep∼ N(0,Σ), allowing for observation of a linear

combination of components of Xi
t , subject to additive Gaussian noise. Notice that our methodology in

Sections 3.1–4.4 can be applied to an arbitrary h(·), provided this can be evaluated pointwise for any value
of its arguments. For example, in Section 5.2 we have that h(·) is the logarithm of the sum of the components
of a bivariate Xi

t .
We refer to the model constituted by the system (1)-(2) as a SDEMEM. This is a state-space model, due

to the Markov property of the Itô processes {Xi
t , t ≥ 0}, and the assumption of conditional independence of

observations on latent processes. The model is flexible: equation (1) explains the intrinsic stochasticity in
the dynamics (via β) and the variation between-units (via the random effects φi), while (2) explains residual
variation (measurement error, via ξ).

3.1. Bayesian inference

Denote with x = (x1, . . . , xM )T the set of unobserved states collected across allM diffusion processes {Xi
t}

at the same set of integer times {1, 2, ..., n} as for data y = (y1, . . . , yM )T . Then given data y = (y1, . . . , yM )T ,
latent values x, the joint posterior for the common parameters κ, fixed/random effects φ = (φ1, . . . , φM )T ,
hyperparameters η and measurement error parameters ξ is

π(κ, η, ξ, φ, x|y) ∝ π(κ, η, ξ)π(φ|η)π(x|κ, φ)π(y|x, ξ) (3)

where π(κ, η, ξ) is the joint prior density ascribed to κ, η and ξ. These three parameters may be assumed a
priori independent, and then we can write π(κ, η, ξ) = π(κ)π(η)π(ξ), though this needs not be the case and
we can easily assume a priori correlated parameters. In addition we have that

π(φ|η) =
M∏
i=1

π(φi|η), (4)

π(y|x, ξ) =
M∏
i=1

n∏
j=1

π(yij |xij , ξ) (5)

and

π(x|κ, φ) =
M∏
i=1

π(xi1)
n∏
j=2

π(xij |xij−1, κ, φ
i). (6)

Note that π(xij |xij−1, κ, φ
i) will be typically intractable. In this case, we assume that it is possible to

generate draws (up to arbitrary accuracy) from π(xij |xij−1, κ, φ
i) using a suitable numerical approximation.

For example, the Euler-Maruyama approximation of (1) is

∆Xi
t ≡ Xi

t+∆t −Xi
t = α(Xi

t , κ, φ
i) ∆t+

√
β(Xi

t , κ, φ
i) ∆W i

t

and therefore

Xi
t+∆t = Xi

t + α(Xi
t , κ, φ

i) ∆t+
√
β(Xi

t , κ, φ
i) ∆W i

t (7)

where ∆W i
t ∼ N(0, Id∆t) and the time-step ∆t, which need not be the inter-observation time, is chosen by

the practitioner to balance accuracy and efficiency.
In what follows, we assume that interest lies in the marginal posterior for all parameters, given by

π(κ, η, ξ, φ|y) =
∫
π(κ, η, ξ, φ, x|y)dx, where

π(κ, η, ξ, φ|y) ∝ π(κ)π(η)π(ξ)π(φ|η)π(y|κ, ξ, φ) (8)

∝ π(κ)π(η)π(ξ)

M∏
i=1

π(φi|η)π(yi|κ, ξ, φi). (9)

This factorization suggests a Gibbs sampler with separate blocks for each parameter vector that sequentially
takes draws from the full conditionals
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1. π(φ|κ, η, ξ, y) ∝∏M
i=1 π(φi|η)π(yi|κ, ξ, φi),

2. π(κ|η, ξ, φ, y) = π(κ|φ, ξ, y) ∝ π(κ)
∏M
i=1 π(yi|κ, ξ, φi),

3. π(ξ|κ, η, φ, y) = π(ξ|κ, φ, y) ∝ π(ξ)
∏M
i=1 π(yi|κ, ξ, φi),

4. π(η|κ, ξ, φ, y) = π(η|φ) ∝ π(η)
∏M
i=1 π(φi|η).

Of course, in practice, the observed individual data likelihood π(yi|κ, ξ, φi) =
∫
p(yi, xi|κ, ξ, φi)dxi will be

intractable. In what follows, therefore, we consider a Metropolis-within-Gibbs strategy, and in particular
introduce auxiliary variables u to allow pseudo-marginal Metropolis-Hastings updates.

4. A pseudo-marginal approach

Consider again the intractable target in (8) and suppose that we can unbiasedly estimate the intractable
observed data likelihood π(y|κ, ξ, φ) =

∫
p(y, x|κ, ξ, φ)dx. To this end let

π̂u(y|κ, ξ, φ) =
M∏
i=1

π̂ui(yi|κ, ξ, φi)

denote a (non-negative) unbiased estimator of π(y|κ, ξ, φ), where u = (u1, . . . , uM )T is the collection of

auxiliary (vector) variables used to produce the corresponding estimate, with density π(u) =
∏M
i=1 g(ui).

In the context of inference for SDEs, the u may be the collection of pseudo-random standard Gaussian
draws, these being necessary to simulate increments of the Brownian motion paths when implementing a
numerical scheme such as Euler-Maruyama (Section 4.2), or produce draws from transition densities (in
the rare instances when these are known). Notice in fact that the u need not have a specific distribution,
though in stochastic simulation we need access to pseudo-random variates that are often uniform or Gaussian
distributed [11]. When inference methods use particle filters, pseudo-random variates are also employed in
the resampling step, and hence these variates can be included into u.

Now, the pseudo-marginal Metropolis-Hastings (PMMH) scheme targets

π(κ, η, ξ, φ, u|y) ∝ π(κ)π(η)π(ξ)π(φ|η)π̂u(y|κ, ξ, φ)π(u) (10)

for which it is easily checked that∫
π(κ, η, ξ, φ, u|y)du ∝ π(κ)π(η)π(ξ)π(φ|η)

∫
π̂u(y|κ, ξ, φ)π(u)du

∝ π(κ, η, ξ, φ|y).

Hence, marginalising out u gives the marginal parameter posterior in (8). Directly targeting the high
dimensional posterior π(κ, η, ξ, φ, u|y) with PMMH is likely to give very small acceptance rates. The structure
of the SDMEM naturally admits a Gibbs sampling strategy. We outline our novel Gibbs samplers in the
next section.

4.1. Gibbs sampling and blocking strategies

The form of (10) immediately suggests a Gibbs sampler that sequentially takes draws from the full con-
ditionals. However, we can design two types of Gibbs samplers. Our first, novel strategy is denoted “naive
Gibbs”, where the ui are updated with both the subject specific and common parameters.

Naive Gibbs:

1. π(φi, ui|κ, η, ξ, yi) ∝ π(φi|η)π̂ui(yi|κ, ξ, φi)g(ui), i = 1, . . . ,M ,

2. π(κ, u|η, ξ, φ, y, u) = π(κ, u|φ, ξ, y) ∝ π(κ)
∏M
i=1 π̂ui(yi|κ, ξ, φi)g(ui),

3. π(ξ, u|κ, η, φ, y, u) = π(ξ, u|κ, φ, y) ∝ π(ξ)
∏M
i=1 π̂ui(yi|κ, ξ, φi)g(ui),

4. π(η|κ, ξ, φ, y, u) = π(η|φ) ∝ π(η)
∏M
i=1 π(φi|η).

Note that step 1 consists of a set of draws of M conditionally independent random variables since

π(φ, u|κ, η, ξ, y) =
M∏
i=1

π(φi, ui|κ, η, ξ, yi).
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Hence, step 1 gives a sample from π(φ, u|κ, η, ξ, y). Draws from the full conditionals in 1-3 can be obtained by
using Metropolis-Hastings within Gibbs. Taking the [φi, ui] block as an example, we use a proposal density
of the form q(φi∗|φi)g(ui∗) and accept a move from [φi, ui] to [φi∗, ui∗] with probability

min

{
1 ,

π(φi∗|·)
π(φi|·) ×

π̂ui∗(yi|φi∗, ·)
π̂ui(yi|φi, ·) ×

q(φi|φi∗)

q(φi∗|φi)

}
.

Effectively, samples from the full conditionals in 1-3 are obtained via draws from pseudo-marginal MH
kernels.

The above strategy is somewhat naive, since the auxiliary variables u need only be updated once per
Gibbs iteration, instead in steps 1 to 3 of the naive Gibbs procedure vectors ui are simulated anew in each
of the three steps (notice g(ui) appears in each of the first three steps). We therefore propose to update the
blocks [φi, ui], i = 1, . . . ,M in step 1 only, and condition on the most recent value of u in the remaining
steps. We call this second, novel strategy “blocked Gibbs”.

Blocked Gibbs:

1. π(φi, ui|κ, η, ξ, yi) ∝ π(φi|η)π̂ui(yi|κ, ξ, φi)g(ui), i = 1, . . . ,M ,

2. π(κ|η, ξ, φ, y, u) = π(κ|φ, ξ, y, u) ∝ π(κ)
∏M
i=1 π̂ui(yi|κ, ξ, φi),

3. π(ξ|κ, η, φ, y, u) = π(ξ|κ, φ, y, u) ∝ π(ξ)
∏M
i=1 π̂ui(yi|κ, ξ, φi),

4. π(η|κ, ξ, φ, y, u) = π(η|φ) ∝ π(η)
∏M
i=1 π(φi|η).

The aim of blocking in this way is to reduce the variance of the acceptance probability associated with steps
2 and 3, which involve the product of M estimates as opposed to a single estimate in each constituent part
of step 1. Also, notice g(ui) appears only in the first step. The effect of blocking in this way is explored
empirically in Section 5.

4.2. Estimating the likelihood

It remains that we can generate non-negative unbiased estimates π̂u(y|κ, ξ, φ). This can be achieved by
running a sequential Monte Carlo procedure, also known as particle filter. The simplest approach is to use
the bootstrap particle filter [43, 22] (see also [25]) that, for a single experimental unit, recursively draws
from the filtering distribution π(xit|yi1:t, κ, ξ, φ

i) for each t = 1, . . . , n. Here, yi1:t denotes the observations of
experiment i for time-steps 1, . . . , t. Essentially, a sequence of importance sampling and resampling steps are
used to propagate a weighted sample {(xit,k, w(uit,k)), k = 1, . . . , Ni} from the filtering distribution, where
Ni is the number of particles for unit i. Note that we let the weight depend explicitly on the t-th component
of the auxiliary variable ui = (ui1, . . . , u

i
n), associated with experimental unit i. At time t, the particle filter

uses the approximation

π̂(xit|yi1:t, κ, ξ, φ
i) ∝ π(yit|xit, ξ)

Ni∑
k=1

π(xit|xit−1,k, κ, φ
i)w(uit−1,k). (11)

A simple importance sampling/resampling strategy follows, where particles are resampled (with replace-
ment) in proportion to their weights, propagated via xit,k = ft(u

i
t,k) ∼ π(·|xit−1,k, κ, φ

i) and reweighted by

p(yit|xit,k, ξ). Here, ft(·) is a deterministic function of uit,k (as well as the parameters and previous latent state,
suppressed for simplicity) that gives an explicit connection between the particles and auxiliary variables. An
example of ft(·) is to take the Euler-Maruyama approximation

ft(u
i
t,k) = xit−1,k + α(xit−1,k, κ, φ

i) ∆t+
√
β(xit−1,k, κ, φ

i)∆t× uit,k

where uit,k ∼ N(0, Id) and ∆t is a suitably chosen time-step. In practice, unless ∆t is sufficiently small

to allow an accurate Euler-Maruyama approximation, ft(u
i
t,k) will describe recursive application of the

numerical approximation.
Algorithm 1 provides a complete description of the bootstrap particle filter when applied to a single

experimental unit. However notice the addition of a non-standard and optional sorting step 2b’, which
turns useful when implementing a correlated pseudo-marginal approach, as described in Section 4.3. For
the resampling step we follow [10] among others and use systematic resampling (see e.g. [31]), which only
requires simulating a single uniform random variable at each time point. It is straightforward to augment
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Algorithm 1 Bootstrap particle filter for experimental unit i

Input: parameters κ, φi, ξ, auxiliary variables ui, data yi and the number of particles Ni.
Output: estimate π̂ui (yi|κ, ξ, φi) of the observed data likelihood.

1. Initialisation (t = 1).

(a) Sample the prior. Put xi1,k = f1(ui1,k) ∼ π(·), k = 1, . . . , Ni.

(b) Compute the weights. For k = 1, . . . , Ni set

w̃(ui1,k) = π(yi1|xi1,k, ξ), w(ui1,k) =
w̃(ui1,k)∑Ni
j=1 w̃(ui1,j)

.

(c) Update observed data likelihood estimate. Compute π̂ui
1
(yi1|κ, ξ, φi) =

∑Ni
k=1 w̃(ui1,k)/Ni.

2. For times t = 2, 3, . . . , n:

(b’) (optional) Sorting. Use Euclidean sorting on particles {xit−1,1, ..., x
i
t−1,Ni

} if using CPMMH.

(b) Resample. Obtain ancestor indices akt−1, k = 1, . . . , Ni using systematic resampling on the collection of weights

{w(uit−1,1), . . . , w(uit−1,Ni
)}.

(c) Propagate. Put xit,k = ft(uit,k) ∼ π
(
· |xi

t−1,akt−1

, κ, ξ, φi
)
, k = 1, . . . , Ni.

(d) Compute the weights. For k = 1, . . . , Ni set

w̃(uit,k) = π(yit|xit,k, ξ), w(uit,k) =
w̃(uit,k)∑Ni
j=1 w̃(uit,j)

.

(e) Update observed data likelihood estimate. Compute

π̂ui
1:t

(yi1:t|κ, ξ, φi) = π̂ui
1:t−1

(yi1:t−1|κ, ξ, φi)π̂ui
t
(yit|yi1:t−1, κ, ξ, φ

i)

where π̂ui
t
(yit|yi1:t−1, κ, ξ, φ

i) =
∑Ni
k=1 w̃(uit,k)/Ni.

the auxiliary variable ui to include the random variables used in the resampling step. As a by-product of
the particle filter, the observed data likelihood π(yi|κ, ξ, φi) can be estimated via the quantity

π̂ui(yi|κ, ξ, φi) = N−n
i

n∏
t=1

Ni∑
k=1

w̃(uit,k). (12)

Moreover, the corresponding estimator can be shown to be unbiased [8, 37].
The full Gibbs sampler for generating draws from the joint posterior (10) is given by Algorithm 2. For

ease of exposition, we have blocked the updates for κ and ξ, but note that the use of separate updates for
these parameters is straightforward. The precise implementation of step 4 of the Gibbs sampler is likely to be
example specific, and we anticipate that a direct draw of η(j) ∼ π(·|φ(j)) will often be possible. For example
when the components of φ are assumed to be normally distributed and η consists of the corresponding means
and precisions, for which a semi-conjugate prior specification is possible, see Section 5.1.

Executing Algorithm 2 requires n
∑M
i=1Ni draws from the transition density governing the SDE in (1) per

iteration. In scenarios where the transition density is intractable, draws of a suitable numerical approximation
are required. For example, we may use the Euler-Maruyama discretisation with time step ∆t = 1/m, where
m ≥ 1 is chosen to limit the associated discretisation bias (and typically m � 1). In this case, order

mn
∑M
i=1Ni draws of (7) are required. As discussed by [2], the number of particles per experimental unit,

Ni, should be scaled in proportion to the number of data points n. Consequently, the use of PMMH kernels
is likely to be computationally prohibitive in practice. We therefore consider the adaptation of a recently
proposed correlated PMMH method for our problem.

4.3. A correlated pseudo-marginal approach

Consider again the task of sampling the full conditional π(φi, ui|κ, η, ξ, yi) associated with the ith exper-
imental unit. In steps 2(a–c) of Algorithm 2, a (pseudo-marginal) Metropolis-Hastings step is used whereby
the auxiliary variables ui are proposed from the associated pdf g(·) (notice we could introduce a subject-
specific gi(·), but we refrain from doing so in the interest of a lighter notation). As discussed by [10] (see
also [7]), the proposal kernel need not be restricted to the use of g(ui). The correlated PMMH (CPMMH)
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Algorithm 2 Blocked Gibbs sampler
Input: Data y, initial parameter values φ, κ, ξ, η and number of iterations niters.
Output: {φ(j), κ(j), ξ(j), η(j)}niters

j=1 .

1. Initialise φ(0) = (φ1,(0), . . . , φM,(0)), κ(0), ξ(0). Draw ui,(0) ∼ g(·) and run Algorithm 1 for i = 1, . . . ,M with ui,(0),
φi,(0), κ(0), ξ(0) and yi to obtain π̂ui,(0) (yi|κ(0), ξ(0), φi,(0)). Set the iteration counter j = 1.

2. Update subject specific parameters. For i = 1, . . . ,M :

(a) Propose ui∗ ∼ g(·) and φi∗ ∼ q(·|φi,(j−1)).

(b) Compute π̂ui∗ (yi|κ(j−1), ξ(j−1), φi∗) by running Algorithm 1 with ui∗, φi∗, κ(j−1), ξ(j−1) and yi.

(c) With probability

min

{
1 ,

π(φi∗|η)

π(φi,(j−1)|η)
×

π̂ui∗ (yi|κ(j−1), ξ(j−1), φi∗)

π̂ui,(j−1) (yi|κ(j−1), ξ(j−1), φi,(j−1))
×
q(φi,(j−1)|φi∗)

q(φi∗|φi,(j−1))

}
(13)

put φi,(j) = φi∗ and ui,(j) = ui∗. Otherwise, store the current values φi,(j) = φi,(j−1) and ui,(j) = ui,(j−1).

3. Update common parameters.

(a) Propose (κ∗, ξ∗) ∼ q(·|κ(j−1), ξ(j−1)).

(b) Compute π̂u(j) (y|κ∗, ξ∗, φ(j)) =
∏M
i=1 π̂ui,(j) (yi|κ∗, ξ∗, φi,(j)) by running Algorithm 1 for i = 1, . . . ,M with ui,(j),

φi,(j), κ∗, ξ∗ and yi.

(c) With probability

min

{
1 ,

π(κ∗)π(ξ∗)

π(κ(j−1))π(ξ(j−1))
×

π̂u(j) (y|κ∗, ξ∗, φ(j))
π̂u(j) (y|κ(j−1), ξ(j−1), φ(j))

×
q(κ(j−1), ξ(j−1)|κ∗, ξ∗)

q(κ∗, ξ∗|κ(j−1), ξ(j−1))

}
(14)

put (κ(j), ξ(j)) = (κ∗, ξ∗). Otherwise, store the current values (κ(j), ξ(j)) = (κ(j−1), ξ(j−1)).

4. Update random effect population parameters. Draw η(j) ∼ π(·|φ(j)).
5. If j = niters, stop. Otherwise, set j := j + 1 and go to step 2.

scheme generalises the PMMH scheme by generating a new ui∗ from K(ui∗|ui) where K(·|·) satisfies the
detailed balance equation

g(ui)K(ui∗|ui) = g(ui∗)K(ui|ui∗). (15)

It is then straightforward to show that a MH scheme with proposal kernel q(φi∗|φi)K(ui∗|ui) and acceptance
probability (13) satisfies detailed balance with respect to the target π(φi, ui|κ, η, ξ, yi).

We take g(ui) as a standard Gaussian density and K(ui∗|ui) as the kernel associated with a Crank–
Nicolson proposal [10]. Hence

g(ui) = N
(
ui; 0 , Id

)
and K(ui∗|ui) = N

(
ui∗; ρui ,

(
1− ρ2

)
Id
)

where Id is the identity matrix whose dimension d is determined by the number of elements in ui. The
parameter ρ is chosen to be close to 1, to induce strong positive correlation between π̂ui(yi|κ,Σ, φi) and
π̂ui∗(yi|κ,Σ, φi∗), thus reducing the variance of the acceptance probability in (13), which is beneficial because
it reduces the chance of accepting an overestimation of the likelihood function. Taking ρ = 0 gives the special
case that K(ui∗|ui) = g(ui∗), which corresponds to the standard PMMH. Iteration j of step 2 of Algorithm 2
then becomes

2. For i = 1, . . . ,M :

(a) Propose φi∗ ∼ q(·|φi,(j−1)). Draw ω ∼ N(0, Id) and put ui∗ = ρui,(j−1) +
√

1− ρ2ω.

(b) Compute π̂ui∗(yi|κ(j−1), ξ(j−1), φi∗) by running Algorithm 1 with ui∗, φi∗, κ(j−1), ξ(j−1) and yi.

(c) With probability given by (13) put φi,(j) = φi∗ and ui,(j) = ui∗. Otherwise, store the current
values φi,(j) = φi,(j−1) and ui,(j) = ui,(j−1).

Care must be taken here when executing Algorithm 1 in Step 2(b). Upon changing φi and ui, the effect of
the resampling step is likely to prune out different particles, thus breaking the correlation between successive
estimates of observed data likelihood. Sorting the particles before resampling can alleviate this problem
[10]. We follow [6] (see also [20]) by using a simple Euclidean sorting procedure which, for the case of a
1-dimensional latent state (e.g. when dim(Xi

t) = 1 for every t) implies, prior to resampling the particles, to
sort the particles from the smallest to the largest. This is step 2b’ in algorithm 1, denoted “optional” as it
only applies to CPMMH, not PMMH.
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4.4. Tuning the number of particles for likelihood approximation

It remains that we can choose the number of particles Ni to be used to obtain estimates of the observed
data likelihood contributions π̂ui(yi|κ, ξ, φi). Note that we allow a different number of particles per experi-
mental unit to accommodate differing lengths of the yi and potential model misspecification at the level of an
individual unit. In the case of PMMH, a simple strategy is to fix φi, κ and ξ at some central posterior value
(obtained from a pilot run), and choose Ni so that the variance of the log-likelihood (denoted σ2

Ni
) is around

2 [16, 40]. When using a CPMMH kernel, we follow [45, 6] by choosing Ni so that σ2
Ni

= 2.162/(1 − ρ2
l )

where ρl is the estimated correlation between log π̂ui(yi|κ, ξ, φi) and log π̂ui∗(yi|κ, ξ, φi). Hence, an initial
pilot run (with the number of particles set at some conservative value) is required to determine plausible
values of the parameters. This pilot run can also be used to give estimates of var(φi|yi), i = 1, . . . ,M , each
of which can subsequently be used as the innovation variance in a Gaussian random walk proposal for φi.

4.5. Tuning the proposal distributions

The block structure of the Gibbs sampler (Algorithm 2) requires two proposal densities: φi∗ ∼ q(·|φi,(j−1))
and (κ∗, ξ∗) ∼ q(·|κ(j−1), ξ(j−1)) that have to be chosen to achieve an algorithm that efficiently explores the
posterior parameter space.

In Sections 5.1 and 5.3 we employ the generalized Adaptive Metropolis (AM) algorithm [4] to tune the
two proposal distributions. Regarding the generation of proposals φi∗, in the first step of the blocked Gibbs
scheme we tune subject-specific proposal distributions, separately for each φi∗. In addition to these M
proposal distributions we also tune a proposal distribution for (κ∗, ξ∗). Thus, we automatically tune overall
M + 1 proposal distributions via the generalized AM algorithm. Additionally, in Sections 5.1 and 5.3 we
found that the use of different proposal distributions for each φi∗ was beneficial since random effects for the
different subjects varied around very different values.

5. Applications

5.1. Ornstein-Uhlenbeck SDEMEM

We consider the following Ornstein-Uhlenbeck (OU) SDEMEM

{
Y it = Xi

t + εit, εit
indep∼ N(0, σ2

ε ), i = 1, ...,M
dXi

t = θi1(θi2 −Xi
t)dt+ θi3dW

i
t .

(16)

Here θi2 ∈ R is the stationary mean for the {Xi
t} process, θi1 > 0 is a growth rate (expressing how rapidly the

system reacts to perturbations) and θi3 is the diffusion coefficient. The OU process is a standard toy-model
in that it is completely tractable, that is the associated SDE has a known (Gaussian) transition density,
e.g. [19]. This fact, coupled with the assumption that the Y it |Xi

t are conditionally Gaussian and linear in
the latent states, implies that we can apply the Kalman filter to evaluate the likelihood function exactly.
Therefore, exact inference is possible for the OU SDEMEM (both maximum likelihood and Bayesian). For
all units i we simulate n = 200 observations, with constant observational time-step ∆t. In our setup, all
random effects (θi1, θ

i
2, θ

i
3) are assumed strictly positive, and therefore we work with their log-transformed

version and set φi = (log θi1, log θi2, log θi3), where

φij |η
indep∼ N(µj , τ

−1
j ), j = 1, 2, 3

and η = (µ1, µ2, µ3, τ1, τ2, τ3), with τj the precision of φij . The SDEMEM (16) has no parameters κ that are
shared among subjects, and the full set of parameters that we want to infer is (µ1, µ2, µ3, τ1, τ2, τ3, σε).

As already mentioned, we can compute the likelihood π(y|φ, σε) =
M∏
i=1

π(yi|φi, σε) exactly, using a Kalman

filter (see [44] and [14] for a description pertaining SDEMEMs). The filter can then be used in Algorithm
2, that is we avoid using the particle filter (Algorithm 1) and replace it with the Kalman filter in Algorithm
2. Results from Algorithm 2 when using this approach are denoted with “Kalman”. The transition density
for the latent state is known and therefore we do not need to use an Euler-Maruyama discretization when
propagating the states forward in the particle filter. Instead we propagate the particles using the simulation
scheme induced by the exact transition density:

Xi
t+∆t = θi2 + (Xi

t − θi2)e−θ
i
1∆t +

√
θi

2

3

2θi1
(1− e−2θi1∆t)× uit, (17)
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where uit ∼ N(0, 1) independently for all t and all i. Clearly, the uit appearing in (17) are among the variates
that we will correlate, when implementing CPMMH, in addition to the variates produced in the resampling
steps.

We compare “Kalman” to four further methods: “naive PMMH”, where we employ Algorithm 2 with the
naive Gibbs scheme (see Section 4.1), “PMMH”, which is Algorithm 2, “CPMMH-099”, which is Algorithm
2 with a Crank-Nicolson proposal for the ui using a correlation of ρ = 0.99, and “CPMMH-0999” where we
use a correlation of ρ = 0.999. The number of particle used for each method was selected using the methods
described in Section 4.4. All five methods return exact Bayesian inference, and while this is obvious for
“Kalman”, we remind the reader that this holds also for the other four approaches as these are instances of
the pseudo-marginal approach. Therefore, special interest is in efficiency comparisons between the last four
algorithms, “Kalman” being the obvious gold-standard.

We simulated data from the model in (16) with the following settings (data are in Figure 1): M = 40
experimental units, n = 200 observations for each unit using a time step ∆t = 0.05, σε = 0.3, and η =
(µ1, µ2, µ3, τ1, τ2, τ3) = (−0.7, 2.3,−0.9, 4, 10, 4). The prior for the observational noise standard deviation σε
was set to a Gamma distribution Ga(1, 0.4), and the priors for the η parameters were set to

{
µj |τj indep∼ N(µ0j

,M0j
τj), j = 1, 2, 3,

τj
indep∼ Ga(αj , βj),

(18)

where,

(µ01
,M01

, α1, β1) = (0, 1, 2, 1),

(µ02
,M02

, α2, β2) = (1, 1, 2, 0.5),

(µ03
,M03

, α3, β3) = (0, 1, 2, 1).

The priors in (18) are semi-conjugate and we can therefore use a tractable Gibbs step to sample η in step 4
of Algorithm 2. An extended introduction to the semi-conjugate prior, including the tractable posterior can
be found in [30].

Figure 1: Simulated data from the OU-SDEMEM model.

We ran all four methods for 60k iterations, considering the first 10k iterations to be the burn-in period.
We set the starting value for σε at σε0 = 0.2, which is far from its ground truth value. The starting values
for the random effects φij were set to their prior means. The proposal distributions were adaptively tuned
using the generalized AM algorithm and the particle filters were implemented on a single-core computer,
thus no parallelization was utilized. We used the same number of particles Ni ≡ N for all units. Results are
in Table 1 and Figures 2-3. As a reference for the efficiency of the considered samplers, we take the minimum
ESS per minute (mESS/m in Table 1) as measured on PMMH-naive as “base/default” value and set it to
1 in the rightmost column of Table 1. The minimum ESS per minute for the other samplers are relative
to the PMMH-naive value. The mESS value is computed over all parameter chains (including individual
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random effects), i.e. the chains for φ, σε and η. From Table 1 we conclude that CPMMH is about 20 to
40 times more efficient than PMMH in terms of mESS/m, depending on which correlation level we use.
Furthermore, “Kalman” is about 5140 times more efficient than PMMH. However, the latter comparison is
not very interesting since the Kalman filter can be applied only to a very restricted class of models. The
marginal posteriors in Figure 2–3 show that the several methods generate very similar posterior inference,
which is reassuring. We left out the inference results from CPMMH-0999 for reasons of clarity. However
we observed that with N = 50 CPMMH-0999 produces a slightly biased inference for σε, due to failing to
adequately mix over the auxiliary variable u, while inference for the remaining parameters is similar to the
other considered methods. We verified (results not shown) that using N = 100 is enough to repair this
problem. From Figure 2–3 we can conclude that all parameters, with the possible exclusion of τ2, are well
inferred. Regarding τ2, this is the precision for θi2, the latter representing the stationary mean for a OU
model. Clearly, by looking at Figure 1, the occasional outlier in the upper part of the Figure may contribute
to underestimating the true precision of the stationary mean. To check if CPMMH indeed is necessary, we
tried to run PMMH with 100 particles (i.e., the same number of particles as for CPMMH-099). The inference
results produced with PMMH with 100 particles gave considerable mismatch (in terms of posterior output)
for both the η parameters and σε relative to that obtained from CPMMH-099, resulting from the extremely
poor mixing of the chain.

In summary, CPMMH is able to return reliable inference with a much smaller number of particles than
PMMH, while resulting in a procedure that is about 20 to 40 times more efficient than PMMH (the 40-times
figure is valid if we are ready to accept a small bias in σε). Again, for most models exact inference based on
a closed-form expression for the likelihood function is unavailable, therefore being able to obtain accurate
inference using a computationally cheaper version of PMMH is very appealing.

Notice that while for this simple case study PMMH-naive has the same mESS than PMMH, this is not
the case for the case study in Section 5.2, where using the blocked-Gibbs sampler produces a much larger
mESS value compared to naive-Gibbs.

Algorithm ρ N CPU (m) mESS mESS/m Rel.

Kalman - - 1.23 443.27 357.61 5140.18
PMMH-naive 0 3000 4601.87 229.01 0.05 1.00
PMMH 0 3000 4086.91 232.94 0.06 1.16
CPMMH-099 0.99 100 200.37 234.54 1.17 23.58
CPMMH-0999 0.999 50 110.88 235.63 2.13 41.48

Table 1: OU SDEMEM. Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS), minimum
ESS per minute (mESS/m) and relative minimum ESS per minute (Rel.) as compared to PMMH-naive. All results are based
on 50k iterations of each scheme, and are medians over 5 independent runs of each algorithm on different data sets. We could
only produce 5 runs due to the very high computational cost of PMMH.

5.1.1. Investigating the choice of number of particles

A crucial problem when running methods based on particle filters is the selection of the number of particles
N . In this section we investigate this problem by running CPMMH-099 and CPMMH-0999 with N =
[5, 10, 20, 50, 100] particles using 25 different (simulated) data sets. We also ran the Kalman algorithm using
the 25 different data sets for comparison purposes. In this analysis, we are only interested in investigating
the quality and computational efficiency of the inference. Hence, we initialised all algorithms at the ground
truth parameter values and ran each algorithm for 60k iterations, and discarding the first 10k iterations as
burnin period. We first estimated the Wasserstein distance, between the marginal posteriors for σε and η
from the CPMMH algorithms and the corresponding Kalman-based marginal posteriors. This distance was
computed via the POT package [18] (we do not compute the Wasserstein distance for the marginal posterior
of the random effects φi, since this is not of central interest for us). All Wasserstein distances are based on
the last 5k samples of the corresponding chains. To obtain a performance measure that takes into account
both the quality of the inference and the computational effort, we multiply the Wasserstein distances by the
runtimes (in minutes) of the CPMMH algorithms, and obtain the performance measure Wasserstein distance
× runtime (m); see Figure 4 and 5. Smaller values of this measure are to be preferred as they indicate high
computational efficiency and/or accurate inference. The reason for considering this performance measure is
to take the quality of the inference into account, since for N < 20 we noticed that it is possible to obtain
chains that do not indicate adequate convergence within a reasonable time-frame.
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Figure 2: OU SDEMEM: marginal posterior distributions for σε. Solid line is Kalman, dashed line is PMMH-naive, dotted line
is PMMH, dash-dotted line is CPMMH-099, vertical line is the ground truth.

We can conclude that, on average, results for different correlation levels are similar. However, for σε we
obtain a better performance when using more particles (lower Wasserstein distance × runtime (m) value),
this resulting from inaccurate inference for σε when using too few (N < 50) particles, leading to a large
Wasserstein distance. However, this is not the case for η since Figure 5 shows that the performance is better
with fewer particles, a result that we obtain since the inference for η is good even when using few particles
(though not reported, in our analyses we observed that the Wasserstein distances for η are similar across all
attempted values of N). Thus, if we want to infer the measurement noise parameter σε accurately, in this
case we will have to use N ≥ 50 particles, while the inference for η is satisfactory, even with fewer particles.

Another issue that we analyse is the variability of mESS for the different data sets, based on 50k iterations
of CPMMH. To investigate this we computed the 25th and 75th percentiles of mESS for CPMMH-099 with
N = 100 and CPMMH-0999 with N = 50 based on the inference results on all unknown parameters from
25 simulated data sets. We obtain that the 25th and 75th percentiles of mESS for CPMMH-099 (N = 100)
are [227, 240], and for CPMMH-0999 (N = 50) are [227, 252]. Given that the several mESS are computed on
different datasets, some degree of variation in the measure is expected and we conclude that the observed
mESS variability is fairly small.

5.2. Tumor growth SDEMEM

We consider a stochastic differential mixed effects model that has been used to describe the tumor volume
dynamics in mice receiving a treatment. Here we study a simplified version of the model in [36], and is given
by

dXi
1,t =

(
βi + (γi)2/2

)
Xi

1,tdt+ γiXi
1,tdW

i
1,t

dXi
2,t =

(
−δi + (ψi)2/2

)
Xi

2,tdt+ ψiXi
2,tdW

i
2,t (19)

for experimental units i = 1, . . . ,M . Here, W1,t and W2,t are uncorrelated Brownian motion processes, Xi
1,t

and Xi
2,t are respectively the volume of surviving tumor cells and volume of cells killed by a treatment for

mouse i. Let V it = Xi
1,t +Xi

2,t denote the total tumor volume at time t in mouse i. The observation model
is given by

Y it = log V it + εit, εit
indep∼ N(0, σ2

e). (20)

Let φi = (log βi, log γi, log δi, logψi). We complete the SDEMEM specification via the assumption that

φij |η
indep∼ N(µj , τ

−1
j ), j = 1, . . . , 4 (21)

so that η = (µ1, . . . , µ4, τ1, . . . , τ4).
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Figure 3: OU SDEMEM: marginal posterior distributions for η = (µ1, µ2, µ3, τ1, τ2, τ3). Solid line Kalman, dashed line PMMH-
naive, dotted line PMMH, dash-dotted line CPMMH-099, vertical line ground truth.

We recognise that Xi
1,t and Xi

2,t are geometric Brownian motion processes and (19) can be solved ana-
lytically to give

Xi
1,t|Xi

1,0 = xi1,0 ∼ logN
(
log(xi1,0) + βit , (γi)2t

)
Xi

2,t|Xi
2,0 = xi2,0 ∼ logN

(
log(xi2,0)− δit , (ψi)2t

)
(22)

where logN(·, ·) denotes the log-Normal distribution. Despite the availability of a closed form solution to
the underlying SDE model, the observed data likelihood is intractable, due to the nonlinear form of (20) as
a function of log(Xi

1,t + Xi
2,t). Nevertheless, a tractable approximation can be found, by linearising log V it .

The resulting linear noise approximation (LNA) is derived in Appendix B, and in what follows, we compare
inference under the gold standard PMMH to that obtained under the LNA.

We mimicked the real data application in [36] by generating 21 observations at integer times for M = 10
replicates. We took

η = (log 0.29, log 0.25, log 0.09, log 0.34, 10, 10, 10, 10)

and sampled φij |η using (21). The latent SDE process was then generated using (22) with an initial condition

of xi0 = (75, 75)T (assumed known for all units), and each observation was corrupted according to (20)
with σ2

e = 0.2. The resulting data traces are consistent with the observations on total tumor volume of
those subjects receiving chemo therapy in [36] and can be seen in Figure 6. We adopted semi conjugate,
independent N(−2, 1) and Ga(2, 0.2) priors for the µj and τj respectively. We took log σe ∼ N(0, 1) to
complete the prior specification. Given the use of synthetic data of equal length for each experimental unit,
we pragmatically took the number of particles as Ni = N , i = 1, . . . , 10. Our choice of N was guided by the
tuning advice of Section 4.4. For example, with CPMMH we obtain typical ρL values of around 0.75, when
parameter values are fixed at an estimate of the posterior mean. This gives σ2

N = 10.6 which is achieved
with N = 7 particles. To avoid potentially sticky behaviour of the chain in the posterior tails, we choose
the conservative value N = 10. We compare four approaches: naive PMMH (where the ui are updated with
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Figure 4: OU SDEMEM: Wasserstein distance × runtime (m) performance measure for the marginal posterior of σε, for several
values of N and using ρ = 0.999 (left) and ρ = 0.99 (right). The solid line represents the mean value obtained from the 25
different data sets. The dashed confidence bands represent the 25th and 75th percentiles.

both the subject specific and common parameters), PMMH (where the ui are only updated with the subject
specific parameters – Algorithm 2), CPMMH (Algorithm 2 with a Crank-Nicolson proposal on the ui) and
the LNA based approach. We ran each scheme for 500k iterations. The results are summarised in Table 2
and Figure 7.

Algorithm ρ N CPU (m) mESS mESS/m Rel.

LNA - - 1286 3676 2.858 13
PMMH - naive 0 30 3098 665 0.215 1
PMMH 0 30 2963 2559 0.864 4
CPMMH 0.999 10 957 2311 2.415 11

Table 2: Tumor model. Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS), minimum
ESS per minute (mESS/m) and relative minimum ESS per minute (Rel.) as compared to PMMH-naive. All results are based
on 500k iterations of each scheme.

Figure 7 shows marginal posterior densities of the components of η. We see that inferences for these
parameters are consistent with the true values that generated the data (with similar results obtained for the
other parameters) and that inference via CPMMH is consistent with that from the gold-standard PMMH.
Similar results are obtained for σε (not shown for brevity). At the same time, from Table 2 we note that
CPMMH with ρ = 0.999 is about 11 times more efficient than the naive PMMH and almost 3 times more
efficient than PMMH with additional blocking. Finally, the LNA-based approach provides an accurate
alternative to PMMH, except for τ4. However, everything considered, CPMMH is to be preferred here as its
computational efficiency is comparable to LNA, but unlike the latter, CPMMH provides accurate inference
for all parameters, and unlike LNA the CPMMH approach is plug-and-play.

5.2.1. Use of the Euler-Maruyama approximation

We anticipate that for many applications of interest, an analytic solution of the underlying SDE will
not be available. It is common place to use a numerical approximation in place of an intractable analytic
solution. The simplest such approximation is the Euler-Maruyama (E-M) approximation. In this section, we
investigate the effect of the E-M on the performance of PMMH and CPMMH for the tumor growth model.
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Figure 5: OU SDEMEM: Wasserstein distance × runtime (m) performance measure for the marginal posterior of η, for several
values of N and using ρ = 0.999 (left) and ρ = 0.99 (right). The solid line represents the mean value obtained from the 25
different data sets. The dashed confidence bands represent the 25th and 75th percentiles.

The Euler-Maruyama approximation of (19) is

∆Xi
1,t =

(
βi + (γi)2/2

)
Xi

1,t∆t+ γiXi
1,t∆W

i
1,t

∆Xi
2,t =

(
−δi + (ψi)2/2

)
Xi

2,t∆t+ ψiXi
2,t∆W

i
2,t

where, for example, ∆Xi
1,t = Xi

1,t+∆t −Xi
1,t and ∆W i

1,t ∼ N(0,∆t), with other terms defined similarly. To
allow arbitrary accuracy of E-M, the inter-observation time length ∆t is replaced by a stepsize ∆t = 1/L
for the numerical integration, for integer L ≥ 1. We find that using L = 5 (giving 4 intermediate times
between observation instants) allows sufficient accuracy (compared to the analytic solution) to permit use of
the same tuning choices when re-running PMMH (including the naive scheme) and CPMMH. Our findings
are summarised by Table 3.

Algorithm ρ N CPU (m) mESS mESS/m Rel.

PMMH - naive 0 30 7947 990 0.123 1
PMMH 0 30 7651 2240 0.293 2.4
CPMMH 0.999 10 1893 2172 1.15 9.2

Table 3: Tumor model (Euler-Maruyama). Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS
(mESS), minimum ESS per minute (mESS/m) and relative minimum ESS per minute (Rel.) as compared to PMMH-naive. All
results are based on 500k iterations of each scheme.

Unsurprisingly, inspection of Table 3 reveals that relative performance between the three computing
pseudo-marginal schemes is similar to that obtained when using the analytic solution; CPMMH provides
almost an order of magnitude increase in terms of mESS/m over a naive PMMH approach. We note that use
of the Euler-Maruyama approximation requires computation and storage of an additional 1/∆t innovations
per SDE component, inter-observation interval, particle and subject, thus accounting for the increase in
CPU time compared to when using the analytic solution. Nevertheless, we find that our proposed approach
is able to accommodate an intractable SDE scenario and provides a worthwhile increase in performance over
competing approaches.
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Figure 6: Simulated data from the tumor growth model.

5.2.2. Comparison with ODEMEM

To highlight the potential issues that arise by ignoring inherent stochasticity, we consider inference for
an ordinary differential equation mixed effects model (ODEMEM) of tumor growth. We take the SDEMEM
in (19) and set γi = ψi = 0 to give

dxi1,t = βixi1,tdt,

dxi2,t = −δixi2,tdt (23)

for i = 1, . . . ,M . The observation model and random effects distributions remain unchanged from (20) and
(21) upon omitting log γi and logψi from φi. The ODE system in (23) can be solved to give

xi1,t = xi1,0 exp{βit}, xi1,t = xi1,0 exp{δit}.

The likelihood associated with each experimental unit is then obtained simply as

π(yi|φi, σe) =
21∏
t=1

N
(
yit; log(xi1,t + xi2,t), σ

2
e

)
.

Fitting the ODEMEM to the synthetic data set from Section 5.2 is straightforward, via a Metropolis-
within-Gibbs scheme. Figures 8 and 9 summarise our findings. Unsurprisingly, since the ODEMEM is
unable to account for intrinsic stochasticity, the observation standard deviation is massively over-estimated.
Figure 8 shows little agreement between the marginal posteriors under the ODEMEM and SDEMEM for
this parameter. In terms of model fit, both the observation (Y 1

t ) and latent process (X1
t = log V 1

t ) predictive
distributions for unit 1 are over concentrated for the ODEMEM. Similar results (not shown) are obtained
for the other experimental units. Notably, from Figure 9, around half of the actual simulated Xt values lie
outside of the 95% credible interval under the ODEMEM.

5.3. Neuronal data

Here we consider a much more challenging problem: modelling a large number of observations pertaining
neuronal data. In particular, we are interested in modelling the neuronal membrane potential across inter-
spike intervals (ISIs). The problem of modelling the membrane potential from ISIs measurements using
SDEs has already been considered numerous times, also using SDEMEMs, see [35]. In fact here we analyze
the same data considered in [27] and [35], or actually a subset thereof, due to computational constraints.
The “leaky integrate-and-fire” appears to be one of the most common models, in both artificial neural
network applications and descriptions of biological systems. Deterministic and stochastic implementations
of the model are possible. In the stochastic version, under specific assumptions [26], it coincides with the
Ornstein-Uhlenbeck stochastic process and has been extensively investigated in the neuronal context, for
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instance in [12]. Consider Figure 10 as an illustrative example, reporting values of neuronal membrane
depolarization studied in [23]. Inter-spike-intervals are the observations considered between “firing” times of
the neuron, the latter being represented by the spikes appearing in Figure 10 (notice these are not the data
we analysed. This figure is only used for illustration). Data corresponding to the near-deterministic spikes
are removed, and what is left constitutes data from several ISIs. As in [35], we consider data from different
ISIs as independent. Hence, M is the number of considered ISIs. These are 312 in total, however, because of
computational limitations, we will only analyze a subset of 100 ISIs, hence our results are based on M = 100
and a total of 162,610 observations. A challenge is posed by the fact that some ISIs are much longer than
others (in our case they vary between 600 and 2,500 observations), meaning that longer ISIs could typically
require a larger N to avoid particle depletion, but using the same large N to approximate all M likelihood
terms would be a waste of computational resources. This is why CPMMH comes particularly useful, as it
allows to keep a small N across all units while still avoiding sticky behaviour in the MCMC chains. Data
from the 100 ISIs are plotted on a common time-scale in Figure 11 (after some translation to let each ISI
start approximately at zero value at time zero). These consist of membrane potentials measured every 0.15
msec intracellularly from the auditory system of a guinea pig (for details on data acquisition and processing,
see [51]).

Outside the mixed-effects context, if we denote the neuronal input with ν, and if the neuron is supposed
to operate in a stationary state during some time of interest, then ν would be assumed constant during
this period. [35] generalize by assuming that in addition to ν there is a random component changing from
one ISI to the next, which could be caused by the naturally occurring variations of environment signaling,
by experimental irregularities or by other sources of noise not included in the model. This fact can then
be modeled by assuming that each ISI has its own input νi, and [35] specifically assume that the νi are
iid Gaussian distributed with mean ν. An extension of the model in [35] is the following state-space type
SDEMEM

{
Y it = Xi

t + εit, εit
indep∼ N(0, σ2

ε ), i = 1, ...,M,
dXi

t = (−λiXi
t + νi)dt+ σidW i

t .
(24)

where the diffusion process {Xi
t ; t ≥ 0} models the membrane potential [mV] in the ith ISI, with input

νi [mV/msec]. The spontaneous voltage decay (in the absence of input) for the ith ISI is (λi)−1 [msec],
which means that the stationary mean for {Xi

t} is νi/λi, see e.g. [12] for details. The diffusion coefficients
σi have unit [mV/

√
msec]. Clearly, we assume that we are unable to observe {Xi

t} directly, and instead
can only observe a noisy realization from {Yt; t ≥ 0}. Differences with the SDEMEM in [35] are that: (i)
their observations were assumed unaffected by measurement noise, i.e. observations were directly available
from {Xi

t ; t ≥ 0}, i = 1, ...,M , which is a convenient assumption easing calculations towards obtaining exact
maximum likelihood estimation, but that it is generally possible to argue against; (ii) in [35] the only random
effect was νi, and remaining parameters were fixed-effects, while in the present case we have random effects
λi and σi in addition to νi. Of course here we also need to estimate σε, which was not done in [35] since no
measurement error was assumed.

As in Section 5.1 the random effects are constrained to be positive and we therefore define φi =
(φi1, φ

i
2, φ

i
3) = (log λi, log νi, log σi), where

φij |η
indep∼ N(µj , τ

−1
j ), j = 1, 2, 3,

and η = (µ1, µ2, µ3, τ1, τ2, τ3), with τj the precision of φij . Since we here have a similar setting as in Section
5.1, we employ the same semi-conjugate priors with hyperparameters

(µ01
,M01

, α1, β1) = (log(0.1), 1, 2, 1),

(µ02
,M02

, α2, β2) = (log(1.5), 1, 2, 1),

(µ03
,M03

, α3, β3) = (log(0.5, 1, 2, 1).

The considered data are measured with techniques ensuring high precision, and we assume the following
prior log σε ∼ N(−1, 1). Because of the small measurement noise, we expect that a bootstrap filter will

perform poorly, leading to a very noisy approximation of the likelihood π(y|φ, σε) =
M∏
i=1

π(yi|φi, σε). To

be able to obtain a good approximation of the likelihood, we instead use the bridge particle filter found in
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[21], since, as explained below, the bootstrap filter is statistically inadequate for this experiment (moreover,
it is also computationally inadequate, since it would require a too large number of particles, which was
impossible to handle with the limited memory of our computer). In Appendix A, we derive the bridge filter
for the model in (24), and we also compare the forward propagation of the particles that we obtain using the
bootstrap filter and the bridge filter. In Appendix A.2 we see that the likelihood approximation obtained
from the bootstrap filter is very inaccurate, which is due to its inability to handle measurements with small
observational noise. Consequently, the number of particles required to give likelihood estimates with low
variance is computationally prohibitive. Therefore, for this example, we only report results based on the
bridge filter (which is not a plug-and-play method).

We use the following four algorithms already defined in Section 5.1: Kalman, which obviously here is
the gold-standard method; PMMH, using the bridge filter with N = 1 particle; CPMMH-0999 using the
bridge filter also with 1 particle, and CPMMH-09 using the bridge filter with 1 particle. We find that, due to
propagating particles conditional on the next observation, using a single particle was enough to give likelihood
estimates with low variance. We ran all algorithms for 100k iterations, considering the first 20k iterations as
burn-in. The starting value for σε was set far away from the posterior mean that we obtained from a pilot
run of the Kalman algorithm, and the starting values for the random effects φij were set to their prior means.
For all algorithms, the proposal distributions were tuned adaptively using the generalized AM algorithm as
described in Section 4.5. We ran the algorithms on a single-core computer so no parallelization was utilized.
Posterior marginals in Figures 12-13 show that inference results for all algorithms are very similar, except for
CPMMH-0999, for which posterior samples of σε are inconsistent with the output from the other competing
schemes. We note that the case of N = 1 can be seen to correspond to a joint update of the parameters
and latent process x. Inducing strong positive correlation between successive values of u therefore results
in extremely slow mixing over the latent process and in turn, the parameters. This is particularly evident
for σε, whose update requires calculation of likelihood estimates over all experimental units. Reducing ρ
to 0.9 appears to alleviate this problem. Runtimes and ESS values are in Table 4. As expected, Kalman
is the most efficient algorithm, being 19 times more efficient than PMMH is terms of ESS/min. However,
here PMMH and CPMMH have the same efficiency in terms of ESS/min. Thus, CPMMH does not seem
to produce any efficiency improvement for this case study. This is due to the efficiency of the bridge filter
in guiding state proposals towards the next observation, and therefore allowing us to run PMMH with very
few particles, thus making the potential improvement brought by CPMMH essentially null.

We compare our results with those in [35]. Since we have assumed that the random effects φi =
(φi1, φ

i
2, φ

i
3) = (log λi, log νi, log σi) are Gaussian, then the (λi, νi, σi) are log-Normal distributed with means

(λ, ν, σ) and standard deviations (σλ, σν , σσ) respectively. By plugging the posterior means for (log λi, log νi, log σi)
as returned by “Kalman” into the formulas for the mean and standard deviation of a lognormal distribu-
tion, we obtain that λ = 0.036 (σλ = 0.009) [1/msec], ν = 0.406 (σν = 0.105) [mV/msec], and σ = 0.433,
(σσ = 0.072). In [35] we used a maximum likelihood approach, which is a fast enough procedure for Marko-
vian data (there we did not assume a state-space model) that allowed us to obtain point estimates using all
312 ISIs (instead of 100 ISIs as in this case), but still slow enough to not permit bootstrapped confidence
intervals to be obtained. Therefore, there we reported intervals based on asymptotic normality. There we
had point estimates ν̂ = 0.494 and σ̂ν = 0.072, which are similar to our Bayesian estimation. It makes sense
that the inferences are not very different, as in the end our estimation of σε is very small, meaning that we
could assume nearly Markovian data. However here we have also inferences for random effects λi and σi,
whereas in [35] these were assumed fixed (unknown) effects with maximum likelihood estimates λ̂ = 0.047
[1/msec] (it can be obtained from Table 1 in [35] via 1/0.021 = 47.62 [1/sec]) and σ̂ = 0.427 [mV/

√
msec]

(it can be obtained from Table 1 in [35] by converting 0.0135 [V/
√

sec] into [mV/
√

msec]). We appreciate
how close our posterior means based on 100 ISIs are to the maximum likelihood estimates using 312 ISIs.

Algorithm ρ N CPU (m) mESS mESS/m Rel.

Kalman - - 56 630 11.30 18.9
PMMH - 1 479 287 0.6 1.0
CPMMH-09 0.9 1 655 400 0.61 1.0
CPMMH-0999 0.999 1 653 372 0.57 1.0

Table 4: Neuronal model. Correlation ρ, number of particles N , CPU time (in minutes m), minimum ESS (mESS), minimum
ESS per minute (mESS/m), and relative minimum ESS per minute (Rel.) as compared to PMMH. All results are based on
100k iterations of each scheme.
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6. Discussion

We have constructed an efficient and general inference methodology for the parameters of stochastic
differential equation mixed-effects models (SDEMEMs). While SDEMEMs are a flexible class of models
for “population estimation”, their use has been limited by technical difficulties that make the execution of
inference algorithms (both classic and Bayesian) computationally intensive. Our work proposed strategies
to both (i) produce Bayesian inference for very general SDEMEMs, without the limitations of previous
methods; (ii) alleviate the computational requirements induced by the generality of our methods. The
SDEMEMs we considered are general in the sense that the underlying SDEs can be nonlinear in the states
and in the parameters; the random parameters can have any distribution (not restricted to the Gaussian
family); the observations equation does not have to be a linear combination of the latent states. We produced
a Metropolis-within-Gibbs algorithm (hereafter Gibbs sampler, Algorithm 2) with carefully constructed
blocking strategies, where the technically difficult approximation to the unavailable likelihood function is
efficiently handled via correlated particle filters. The use of correlated particle filters brings in the well-
known benefit of requiring fewer particles compared to the particle marginal Metropolis-Hastings (PMMH)
algorithm. In our experiments, the novel blocked-Gibbs sampler embedding a correlated PMMH (CPMMH)
shows that it is possible to considerably reduce the number of required particles while still obtaining a
value of the effective sample size (ESS) that is comparable to using standard PMMH in the Gibbs sampler.
This means that the Gibbs sampler with embedded CPMMH is computationally efficient and on two out of
three examples of increasing complexity we found that our algorithm is much more efficient than a similar
algorithm using the standard PMMH, sometimes even 40 times more efficient. Some care must be taken
when choosing ρ, which governs the level of correlation between successive likelihood estimates. Taking ρ ≈ 1
can result in the sampler failing to adequately mix over the auxiliary variables. We found that this problem
was exacerbated when using relatively few particles (such as N = 1), but can be overcome by reducing
ρ. The fact that our approach is an instance of the pseudo-marginal methodology of [3] implies that we
produce exact (simulation-based) Bayesian inference for the parameters of our SDEMEMs, regardless the
number of particles used. We mostly focus on producing “plug-and-play” methodology (but see below for
exceptions), meaning that no preliminary analytic calculations should be required to run our methods, and
forward simulation from the SDEs simulator should be enough. Instead, what is necessary to set is the
number of particles N and, when correlated particles filters are used (CPMMH), the correlation parameter
ρ (however this one is easily set within the interval [0.90, 0.999]). Finally, the usual settings for the MCMC
proposal distribution should be decided (covariance matrix of the proposal function q(·)). However, for
the neuronal data example we had to employ a bridge filter, since the observational noise is very low for
this case study, causing the bootstrap filter to perform poorly. The bridge filter is not plug-and-play (as
discussed below), however in this paper we have decided to include a non-plug-and-play method to show how
to analyze complex case studies with existing state-of-art sequential Monte Carlo filters. When considering
a plug-and-play approach, our proposed methodology relies on the use of the bootstrap particle filter, within
which particles are propagated according to the SDE solution or an approximation thereof. We note that in
scenarios where the observations are particularly informative (e.g. the neuronal data case study in Section
5.3), it may be beneficial to propagate particles conditional on the observations, by using a carefully chosen
bridge construct. We refer the reader to [20] for details on the use of such constructs within a CPMMH
scheme for SDEs. However, notice that in order to use the constructs in [20] the conditional distribution of
observations (i.e. (2) in our context) must be Gaussian. This is the underlying assumption that is exploited
in [5] to enable the use of bridge constructs in inference for SDEMEMs. In [5] they also use methods based
on correlated particle filters, in a work which has been proposed independently and concurrently to ours
(July 25 2019 on arXiv). See for example their “component-wise pseudo-marginal” (CWPM) method, which
is similar to the naive Gibbs strategy we also propose, and they found that CWPM was the best strategy
among a battery of explored methods. In order to correlate the particles, [5] advocate the use of the blockwise
pseudo-marginal strategy of [46]: this way, at each iteration of a CPMMH algorithm they randomly pick a
unit in the set {1, ..,M}, and only for that unit they update the corresponding auxiliary variates, whereas
for the remaining M − 1 units they reuse the same auxiliary variates ui as employed in the last accepted
likelihood approximation. This approach implies an estimated correlation between log-likelihoods of around
1 − 1/M , which also implies that the correlation level is completely guided by the number of units. This
means that for a small M (e.g. M = 5 or 10, implying a correlation of 0.80 and 0.90 respectively) a
blockwise pseudo-marginal strategy might not be as effective as it could be. On the other hand, assuming
a very efficient and scalable implementation allowing measurements from M = 10, 000 units, the blockwise
pseudo-marginal approach would produce highly correlated particles, which can sometimes be detrimental
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by not allowing enough variety in the auxiliary variates, and ultimately producing long-term correlations in
the parameter chains, as we have documented in Section 5.3 when using a low number of particles N . We
therefore think it is advantageous to use a method that allows the statistician to decide on the amount of
injected correlation: even though this means having one more parameter to set (ρ in our treatment), we find
this decision to be rather straightforward, as mentioned above.

We hope this work can push forward the use of SDEMEMs in applied research, as even though inference
methods for SDEMEMs have been available from around 2005, the limitation of theoretical or computational
possibilities have implied that only specific SDEMEMs could be efficiently handled, while other SDEMEMs
needed ad-hoc solutions or computationally very intensive algorithms. We believe our work is promising as
a showcase of the possibility to employ very general SDEMEMs for practical applications.
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Figure 7: Marginal posterior distributions for µi and τi, i = 1, . . . , 4. Dotted line shows results from LNA scheme, solid line is
from the CPMMH scheme and dashed line is the PMMH Scheme.
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Figure 8: Marginal posterior distributions for the (logged) subject specific parameters log β1, log δ1, and the observation
standard deviation log σe. Dashed line shows results from ODEMEM, solid line is from SDEMEM.
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Figure 10: An exemplificative plot of depolarization [mV] vs time [sec] (data from [23]).
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Figure 11: Observations from 100 ISIs.
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Figure 12: Neuronal model: marginal posterior distributions for log σε. Solid line is Kalman, dashed line is PMMH, dotted line
is CPMMH-0999, dash-dotted line CPMMH-09.

26

116



−3.7 −3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

µ1

0

2

4

6

8

10

−1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7 −0.6

µ2

0

2

4

6

8

10

12

−1.1 −1.0 −0.9 −0.8 −0.7 −0.6

µ3

0

5

10

15

20

25

10 15 20 25 30 35

τ1

0.000

0.025

0.050

0.075

0.100

0.125

0.150

10 15 20 25 30

τ2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

20 30 40 50 60

τ3

0.00

0.02

0.04

0.06

0.08
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Appendix A. Bridge particle filter

Appendix A.1. Deriving the bridge filter

This section is not strictly pertaining mixed-effects modelling, hence we disregard the subject’s index.
We consider the bridge particle filter proposed in [21], with the exception that there an SDE was numerically
solved using the Euler-Maruyama scheme. Here we provide the bridge particle filter for the special case
where the exact (Gaussian) transition density is available, as considered for case studies in Sections 5.1 and
5.3. Since we do not require numerical discretization, in terms of the notation established in [21] we have
that m = 1 and j = 0. Furthermore, we let ∆obs denote the step-length for the observational times grid.
Thus we have that ∆t = ∆obs and ∆j = 0 = ∆obs.

Here the bridge filter is derived for the example in section 5.3. The analytical transition density for the
Xt process in (5.3) is

Xt+∆t|Xt = xt ∼ N

(
xte

−λ∆t +
ν

λ
(1− e−λ∆t),

σ2

2λ
(1− e−2λ∆t)

)
.

The joint density for Xt+∆t and Yt+∆t, conditional on Xt, is

(
Xt+∆t

Yt+∆t

)
|Xt = xt ∼ N

{(α0

α0

)
,

(
β0 β0

β0 β0 + σ2
ε

)}
where α0 = xte

−λ∆t+ ν
λ (1−e−λ∆t), and β0 = σ2

2λ (1−e−2λ∆t). The conditional distribution used as proposal
distribution in the bridge filter is

π̂(xt+∆t|xt, yt+∆t) = N(xt+∆t;µ,Σ), (A.1)

where µ = α0 + β0(β0 + σ2
ε )−1(yt+∆t − α0), Σ = β0(1− [β0 + σ2

ε ]−1β0).
Equation (A.1) can be used to propagate particles forward, which is a much more efficient approach

than in the bootstrap filter case, where the sampler is miopic to the next observation, while (A.1) is able to
look-ahead towards the next observation yt+∆t. Thus, the bridge filter is similar in structure to Algorithm 1
with the difference that here the particles propagation step consists in sampling from (A.1), and the weights
are given by

w̃t+∆t,k =
π(yt+∆t|xt+∆t,k, σ

2
ε )π(xt+∆t,k|xt,k)

π̂(xt+∆t,k|xt,k, yt+∆t)
, wt+∆t,k =

w̃t+∆t,k∑N
j=1 w̃t+∆t,j

, k = 1, ..., N.

Appendix A.2. Comparing the bootstrap filter and the bridge particle filter

To compare the performance of the bootstrap and the bridge filter, we run both filters with the same
number of particles (500 particles for each subject) using the 100 ISIs neuronal data from Section 5.3. Pa-
rameters are set at the posterior means obtained from the Kalman algorithm. The comparison is interesting
since it illustrates the well known issue of running particle filters when the observational error is small (here
we have that σε ≈ 0.001), and hence it is expected that the bootstrap filter will produce sub-optimal re-
sults. This is due to its inability to “target” the next observation, thus producing very small weights due
to the small σε. In Figure A.14, we compare the forward propagation of the particles for one ISI chosen at
random. It is evident that the bridge filter follows the data more closely. Furthermore, we run each filter
independently for 100 times and compare the averages of the log-likelihood values, the standard deviation
of the 100 log-likelihood estimations, and the runtimes, see Table A.5. We can easily notice the superiority
of the bridge filter returning an averaged log-likelihood value very close to the one provided by the Kalman
filter. In particular, notice how the log-likelihood estimation is very unreliable (due to the small observation
error).

We now compare the inference results for CPMMH when using the bridge filter and the bootstrap filter.
We ran four algorithms: Kalman, PMMH with N = 1 particles using the bridge filter, CPMMH-09 with N
= 1 particles using the bridge filter, CPMMH-099 with N = 100 particles using the bootstrap filter. We ran,
Kalman, PMMH, and CPMMH-09 for 100k iterations, and ran CPMMH-099 for only 35k iterations, as this
case is computationally more intensive. In Figure A.15 we see that when using the bootstrap filter driven
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Figure A.14: Neuronal model: forward propagation of the particles for bootstrap and bridge filter for one ISI (chosen at random;
this ISI contained 1817 data points). Leftmost panel: observed data for that ISI. Central panel: forward propagation of the
particles from the bootstrap filter. Rightmost panel: forward propagation of the particles from the bridge filter.

Table A.5: Comparing 100 log-likelihood estimations for the bootstrap and bridge filter.

Log-likelihood Std. Dev. Runtime (sec)

Kalman 62091 - 0.012
Bootstrap -2594152 119905 21.51
Bridge 62291 0.34 27.50

inference scheme, the σε chain fails to adequately explore regions of high posterior density. We emphasise
that this is due to using too few particles (N = 100). It is clear from Table A.5 that the number of particles
required to match the efficiency of the bridge filter is computationally infeasible. Marginal posteriors for the
remaining parameters (not shown) are however similar for all algorithms. The reason why the population
parameters η appear to be unaffected by these issues, unlike σε, is that step 4 of the Gibbs algorithms in
section 4.1 (both versions, naive and blocked one) does not depend on the approximated likelihood, whereas
step 2 (which samples σε) does depend on it.

Appendix B. Tumor growth – Linear noise approximation

The linear noise approximation (LNA) can be derived in a number of more or less formal ways. We
present a brief informal derivation here and refer the reader to [17] and the references therein for further
details. We remark that the LNA is not a necessary feature of our general plug-and-play methodology
outlined in Section 4 and Algorithm 2.

Appendix B.1. Setup

Consider the tumor growth model in (19), (20) and (21) and a single experimental unit so that the
superscript i can be dropped from the notation. To obtain a tractable observed data likelihood, we construct
the linear noise approximation of log Vt = log(X1,t +X2,t).

Let Zt = (Z1,t, Z2,t, Z3,t)
T = (log Vt, logX1,t, logX2,t)

T . The SDE satisfied by Zt can be found using the
Itô formula, for which we obtain

dZt = α(Zt, φ)dt+
√
β(Zt, φ)dWt

where

α(Zt, φ) =

{β + 0.5γ2
}
eZ2,t−Z1,t +

{
−δ + 0.5τ2

}
eZ3,t−Z1,t − 0.5

{
γ2e2(Z2,t−Z1,t) + ψ2e2(Z3,t−Z1,t)

}
β
−δ
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Figure A.15: Neuronal model: marginal posterior distributions for log σε. Solid line is Kalman, dashed line is PMMH using the
bridge filter, dotted line is CPMMH-09 using the bridge filter, dash-dotted line is CPMMH-099 using the bootstrap filter. The
marginal posteriors for Kalman, PMMH, and CPMMH-09 have been multiplied by a factor 40 for pictorial reasons.

β(Zt, φ) =

γ2e2(Z2,t−Z1,t) + τ2e2(Z3,t−X1,t) γ2e2(Z2,t−Z1,t) ψ2e2(Z3,t−Z1,t)

γ2e2(Z2,t−Z1,t) γ2 0
ψ2e2(Z3,t−Z1,t) 0 ψ2

 .

We apply the linear noise approximation (LNA) by partitioning Zt as Zt = mt+Rt wheremt is a deterministic
process satisfying

dmt

dt
= α(mt, φ) (B.1)

and {Rt, t ≥ 0} is a residual stochastic process satisfying

dRt = {α(Zt, φ)− α(mt, φ)} dt+
√
β(Zt, φ)dWt.

By Taylor expanding α and β about the deterministic process mt and retaining the first two terms in the
expansion of α, and the first term in the expansion of β, we obtain an approximate residual stochastic process
{R̃t, t ≥ 0} satisfying

dR̃t = JtR̃tdt+
√
β(mt, φ)dWt

where Jt is the Jacobian matrix with (i, j)th element (Jt)i,j = ∂αi(mt, φ)/∂mj,t. Assuming initial values

m0 = z0 and R̃0 = 0, the approximating distribution of Zt is given by

Zt|Z0 = z0 ≈ N(mt, Ht) (B.2)

where mt satisfies (B.1) and, after several calculations which we omit for brevity, Ht is the solution to

dHt

dt
= HtJ

T
t + β(mt, φ) + JtHt. (B.3)

Appendix B.2. Inference

Note that the observation model in (20) can be written as

Yt = PTZt + εt, εt
indep∼ N(0, σ2

e). (B.4)

where P is a 3×1 ‘observation vector’ with first entry 1 and zeroes elsewhere. The linearity of (B.2) and (B.4)
yields a tractable approximation to the marginal likelihood π(y|φ, σe), which we denote by πLNA(y|φ, σe).
The approximate marginal likelihood πLNA(y|φ, σe) can be factorised as

πLNA(y|φ, σe) = πLNA(y1|φ, σe)
n∏
i=2

πLNA(yi|y1:i−1, φ, σe) (B.5)
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where y1:i−1 = (y1, . . . , yi−1)T . Suppose that Z1 ∼ N(a,C) a priori, for some constants a and C. The
marginal likelihood under the LNA, πLNA(y1:n|φ, σe) := πLNA(y|φ, σe) can be obtained via a forward filter,
which is given in Algorithm 3.

Algorithm 3 Forward filter
Input: Data y, parameter values φ and σe.
Output: Observed data likelihood πLNA(y|φ, σe).

1. Initialisation. Compute

πLNA(y1|φ, σe) = N
(
y1 ; PT a , PTCP + σ2

e

)
where N(· ; a , C) denotes the Gaussian density with mean vector a and variance matrix C. The posterior at time t = 1
is therefore Z1|y1 ∼ N(a1, C1) where

a1 = a+ CP
(
PTCP + σ2

e

)−1 (
y1 − PT a

)
C1 = C − CP

(
PTCP + σ2

e

)−1
PTC .

2. For i = 1, 2, . . . , n− 1,

(a) Prior at i+ 1. Initialise the LNA with mi = ai and Hi = Ci. Integrate the ODEs (B.1) and (B.3) forward to i+ 1
to obtain mi+1 and Hi+1. Hence

Zi+1|y1:i ∼ N(mi+1, Hi+1) .

(b) One step forecast. Using the observation equation, we have that

Yi+1|y1:i ∼ N
(
PTmi+1, P

THi+1P + σ2
e

)
.

Compute

πLNA(y1:i+1|φ, σe) = πLNA(y1:i|φ, σe)πLNA(yi+1|y1:i, φ, σe)

= πLNA(y1:i|φ, σe)N
(
yi+1 ; PTmi+1 , P

THi+1P + σ2
e

)
.

(c) Posterior at i + 1. Combining the distributions in (a) and (b) gives the joint distribution of Zi+1 and Yi+1

(conditional on y1:i and φ) as(
Zi+1

Yi+1

)
∼ N

{(
mi+1

PTmi+1

)
,

(
Hi+1 Hi+1P

PTHi+1 PTHi+1P + σ2
e

)}
and therefore Zi+1|y1:i+1 ∼ N(ai+1, Ci+1) where

ai+1 = mi+1 +Hi+1P
(
PTHi+1P + σ2

e

)−1 (
yi+1 − PTmi+1

)
Ci+1 = Hi+1 −Hi+1P

(
PTHi+1P + σ2

e

)−1
PTHi+1 .

Inference for the SDEMEM defined by (19), (20) and (21) may be performed via a Gibbs sampler that
draws from the following full conditionals

1. πLNA(φ|η, σe, y) ∝∏M
i=1 π(φi|η)πLNA(yi|σe, φi),

2. πLNA(σe|η, φ, y) ∝ π(σe)
∏M
i=1 πLNA(yi|σe, φi),

3. π(η|σe, φ, y) ∝ π(η)
∏M
i=1 π(φi|η).
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Abstract

We introduce the sequential neural posterior and likelihood approximation (SNPLA) algorithm. SNPLA
is a normalizing flows-based algorithm for inference in implicit models, and therefore is a simulation-
based inference method that only requires simulations from a generative model. SNPLA avoids Markov
chain Monte Carlo sampling and correction-steps of the parameter proposal function that are introduced
in similar methods, but that can be numerically unstable or restrictive. By utilizing the reverse KL
divergence, SNPLA manages to learn both the likelihood and the posterior in a sequential manner. Over
four experiments, we show that SNPLA performs competitively when utilizing the same number of model
simulations as used in other methods, even though the inference problem for SNPLA is more complex
due to the joint learning of posterior and likelihood function. Due to utilizing normalizing flows SNPLA
generates posterior draws much faster (4 orders of magnitude) than MCMC-based methods.

1 Introduction

Simulation-based inference (SBI) refers to methods that allow for inference in implicit statistical models,
meaning that the likelihood function is only known implicitly via simulations from a generative model. In this
work we introduce the sequential neural posterior and likelihood approximation (SNPLA), a SBI algorithm
for Bayesian inference that bypasses expensive Markov chain Monte Carlo (MCMC) sampling by efficiently
generating draws from an approximate posterior distribution. Additionally, and unlike other similar SBI
methods, SNPLA learns a computationally cheap approximation of the likelihood function, thus allowing
simulations from this “learned” likelihood to be efficiently performed.

Traditionally, approximate Bayesian computation (ABC) [Beaumont et al., 2002, Marin et al., 2012] is
the most popular methodology for inference in implicit models. Other important methods include: synthetic
likelihoods (SL) [Wood, 2010, Price et al., 2018], Bayesian optimization [Gutmann and Corander, 2016],
classification based methods such as likelihood-free inference by ratio estimation (LFIRE) [Thomas et al.,
2020], and pseudomarginal methods [Andrieu and Roberts, 2009, Andrieu et al., 2010]. More recent methods
are reviewed by Cranmer et al. [2020] and have been benchmarked in Lueckmann et al. [2021]. Also, in recent
years normalizing flows [Kobyzev et al., 2020] have turned especially popular in simulation-based inference
[Papamakarios et al., 2019b, Greenberg et al., 2019, Radev et al., 2020], due to the ease of probabilistic
sampling and density evaluation [Papamakarios et al., 2019a]. Some of the methods that are particularly
relevant for our work are: sequential neural posterior estimation (SNPE) (SNPE-A [Papamakarios and Murray,
2016], SNPE-B [Lueckmann et al., 2017], and SNPE-C [Greenberg et al., 2019]); sequential neural likelihood
estimation (SNL) [Papamakarios et al., 2019b]; sequential neural ratio estimation (SNRE-A [Hermans et al.,
2020], and SNRE-B [Durkan et al., 2020b]); and BayesFlow [Radev et al., 2020].

Our work will focus in particular on SNL and SNPE, since SNPLA is inspired by both. The main
disadvantage of SNPE is the correction step that must be used so that SNPE learns the correct posterior
distribution. SNL avoids this correction step (since SNL learns the likelihood model). However, SNL relies
on MCMC for sampling from the posterior, which is time-consuming and restricts which posteriors can

?Equal contribution.
Contact: samuel.wiqvist@matstat.lu.se; jefr@dtu.dk; picchini@chalmers.se.
Code: https://github.com/SamuelWiqvist/snpla.

1

125



reasonably be learned with success, since MCMC exploration of complex surfaces (e.g. multi-modal targets)
can be challenging. Our main contribution is the proposed SNPLA method which addresses both these
issues. Namely, (i) SNPLA avoids the correction step in SNPE by utilizing the reverse Kullback–Leibler
(KL) divergence, and (ii) SNPLA bypasses the typically expensive MCMC runs by using normalizing flows
to model both an approximate posterior and an approximate likelihood, resulting in efficient sampling from
both. Empirically, we show that SNPLA is on average almost 104 times faster than SNL in producing
posterior samples (Table 1). Additionally, it can be highly valuable to access the normalizing flow-based
likelihood model, learned as a by-product of (ii), since this model approximates the data generating process.
Thus by sampling from the learned likelihood model, one can rapidly generate artificial data from an
approximate generative model. Of course, the latter will be most informative for input parameters that are
similar to those that generated the observed data set xobs. An example of the usefulness of learning the
likelihood model is illustrated in Section 16. Finally, we also show that it is possible to simultaneously
learn summary statistics of the data, altogether with the likelihood model and the posterior model, thus
providing a flexible plug-and-play inference framework. The code for replicating the results can be found
at https://github.com/SamuelWiqvist/snpla.

2 Simulation-based inference for implicit models

The implicit statistical model is given by

θ ∼ p(θ), x ∼ p(x|θ),

where p(x|θ) is the likelihood function associated to generic data x (hence is sometimes denoted “global
likelihood”), and whose functional form we assume unknown. However, we assume the likelihood to be
implicitly encoded via an associated computer simulator that allows us to generate artificial data, conditionally
on an input given by some arbitrary parameter θ and a stream of pseudorandom numbers (and possibly
additional covariates or inputs that we do not explicitly represent in our notation). The parameter prior p(θ)
specifies our a-priori beliefs regarding θ. Implicit models are flexible since they only require us to specify a
simulator and not the functional form of the likelihood.

As motivated in the Introduction, we are going to focus on SNPE and SNL. SNPE directly learns an
approximation p̃φP

(θ|xobs) to the parameter posterior conditionally on observed data xobs, while SNL learns
an approximation p̃φL

(x|θ) of the global likelihood. The models are parameterized with weights φP and φL
respectively. However, the global likelihood model p̃φL

(x|θ) is trained with data influenced by the observed
data set xobs. This means that p̃φL

(x|θ) will be most accurate for values of θ having high density under the
posterior p(θ|xobs).

Both SNPE and SNL are sequential schemes that are made data-efficient by employing a proposal distribu-
tion p̂(θ|xobs) that is sequentially adapted to leverage more information from the most recent approximation
of the posterior. The SNPE and the SNL schemes are outlined in the supplementary material. For SNPE
we have that the proposal distribution is corrected with the factor p(θ)/p̂(θ|xobs). This correction step is
necessary to ensure that the newly constructed parameter proposal is valid, see Papamakarios and Murray
[2016] for details. The correction step can either be done analytically [Papamakarios and Murray, 2016],
numerically [Lueckmann et al., 2017], or via reparameterization [Greenberg et al., 2019]. The correction step
can introduce complexities into SNPE. For example, the closed-form correction of Papamakarios and Murray
[2016] can be numerically unstable (if the proposal prior has higher precision than the estimated conditional
density) and is restricted to Gaussian and uniform proposals, limiting both the robustness and flexibility of
the approach. Regarding the correction in Lueckmann et al. [2017], the introduction of importance weights
greatly increases the variance of parameter updates during learning, which can lead to slow or inaccurate
inference Greenberg et al. [2019]. For SNL this correction is not necessary since SNL learns the likelihood
model p̃φL

(x|θ). On the other hand, SNL uses MCMC to sample θ ∼ p̂(θ|xobs), which is time-consuming.
For instance, our analysis shows (see right sub-table of Table 1) that SNPLA generates posterior samples on
average 12,000 times more rapidly than SNL. Also, MCMC sampling can be unfeasible for some targets with
complex geometries.
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3 Sequential neural posterior and likelihood approximation

Here we detail our proposed method. The main idea of the SNPLA method is to jointly learn both an
approximation p̃φP

(θ|xobs) of the parameter posterior, and an approximation p̃φL
(x|θ) of the likelihood

function. Thus SNPLA has two learnable models:

1. Parameter posterior model p̃φP
(θ|xobs), approximating the parameter posterior distribution p(θ|xobs).

2. Likelihood model p̃φL
(x|θ). Since we are considering an implicit statistical model, we consider the

likelihood model p̃φL
(x|θ) as approximating the data generating process p(x|θ).

Both the posterior model and the likelihood model are parameterized via normalizing flows, with weights
φP and φL respectively. The use of normalizing flows is critical since these can be trained using either the
forward or the reverse KL divergence [Papamakarios et al., 2017]. The relevant properties and notation for
normalizing flows used for SNPLA are presented in the supplementary material.

For SNPLA the likelihood model p̃φL
(x|θ) is learned via training data sampled from a proposal distribution

p̂(θ|xobs). However, the obtained likelihood approximation p̃φL
(x|θ) is also used to train the posterior model

p̃φP
(θ|xobs), so that we jointly learn both the posterior and the likelihood. The SNPLA scheme is outlined in

Algorithm 1.

Algorithm 1: SNPLA

Input: Untrained likelihood model p̃φL
(x|θ), untrained posterior model p̃φP

(θ|x), number of
iterations R, number of training samples per iteration N , number of training samples per
iteration for the posterior model NP , decay rate λ > 0.

Output: Trained likelihood model p̃φL
(x|θ), trained posterior model p̃φP

(θ|x).
1 Set DL = {∅}.
2 for r = 1 : R do

/* Step 1: Update likelihood model with training data sampled from a mixture of

the prior and the current posterior model */

3 Sample for n = 1 : N
(θn, xn) ∼ p(x|θ)p̂r(θ|xobs),

where p̂r(θ|xobs) = αp(θ) + (1− α)p̃φP
(θ|xobs) and, for example, α = exp(−λ · (r − 1)).

4 Update training data DL = [θ1:N , x1:N ] ∪ DL.
5 Update p̃φL

(x|θ) by minimizing the following loss

L(φL) = −Ep̂(θ,x|xobs)

[
log p̃φL

(x|θ)
]
∝ Ep̂(θ|xobs)

[
DKL

(
p(x|θ))

∣∣∣∣p̃φL
(x|θ)

)]
.

if r = 1 then
/* Step 2’: Hot-start for learning the posterior model */

6 Using the prior-predictive samples [θ1:N , x1:N ], update the posterior model by minimizing the
following loss

L(φP ) ∝ −Ep(θ,x)=p(x|θ)p(θ)
[

log p̃φP
(θ|x)

]
.

/* Step 2: Update the posterior model with training data generated from the

current posterior model */

7 for j = 1 : NP /Nmini do
8 For i = 1 : Nmini: Sample θi ∼ p̃φP

(θ|xobs)
9 Update posterior model, i.e. obtain a new φP by minimizing the loss (reverse KL divergence):

L(φP ) = DKL

(
p̃φP

(θ|xobs)
∣∣∣∣p̃φL

(xobs|θ)p(θ)
)
.
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Motivation for the construction Assume that p̃φP
(θ|xobs) and p̃φL

(x|θ) are universal approximators,
and that we run SNPLA for one iteration (i.e. R = 1) without the hot-start procedure. In this optimal case,
after training in step 1, we will have that

Ep̂(θ|xobs)

[
DKL

(
p(x|θ))

∣∣∣∣p̃φL
(x|θ)

)]
= 0 =⇒ p̃φL

(x|θ) = p(x|θ).

Thus we have now fully learnt the global likelihood, since training data is generated from the prior-predictive
distribution at iteration one. Subsequently, after training in step 2, we will have that

DKL

(
p̃φP

(θ|xobs)
∣∣∣∣p̃φL

(xobs|θ)p(θ)
)

= 0 =⇒ p̃φP
(θ|xobs) ∝ p̃φL

(xobs|θ)p(θ)
optimal case

= p(xobs|θ)p(θ)
Thus, in the optimal case, we learn the true global likelihood and the true parameter posterior. Of course,
in practice, we will utilize models with limited capacity, and we will also need to run SNPLA for several
iterations to leverage informative training data for the observed data set xobs that we are considering.

Properties In step 1, the likelihood model p̃φL
(x|θ) is updated with data generated via the proposal

distribution p̂(θ|xobs), where the latter is set to sequentially leverage more information from the posterior
model p̃φP

(θ|xobs). The parameter λ governs how rapidly we want to leverage information from the posterior
model. In practice, we have found it useful to use a rather high λ ≈ 0.7− 0.9, so that the proposal distribution
is quickly adapted. For more information regarding the choice of λ see Section 4.5. N governs the number of
training data points used in this step. However, since we need to run N simulations in step 1 it is advantageous
to keep N conservative, particularly if the model simulator is slow.

In step 2’ the posterior model is updated with samples from the prior-predictive distribution. This step is
included on pragmatic grounds since we found SNPLA to exhibit convergence problems if this step is not
included. Step 2’ acts as a pre-training step of the posterior model p̃φP

(θ|xobs) such that the posterior model
is set to learn its true target in the first iteration of the algorithm.

Finally, in step 2, the posterior model is updated with samples generated from the current version of
the posterior model. These samples are generated via a simulation-on-fly scheme where each mini-batch is
simulated from the most recent version of the posterior model. This means that in step 2 we loop over the
number of mini-bathes NP /Nmini (Nmini being the number of samples in one mini-batch, and NP the total
number of samples), and for each mini-batch we simulate new training data. Thus, each mini-batch used
in step 2 is unique, since it is simulated from the most recent posterior approximation. Since the training
data in step 2 is generated from the flow model, we can take NP to be much larger than N , and typically one
order of magnitude larger.

The posterior model is challenging to learn since it is set to target an approximation of its true target.
Furthermore, the learning of the posterior model can be sensitive to potentially catastrophic moves in the
weight space, since each mini-batch is generated on-the-fly. However, our experience also shows that the
learning of the likelihood model is considerably easier. The learning process of the posterior model has been
made more robust by utilizing several strategies: one component of these strategies is to include the hot-start
approach in step 2’ (something that we already discussed above). We have also found it to be useful to use
a large batch size in step 2 (Nmini ≈ 1000) since a large batch size smooths the training process and thus
avoids potentially catastrophic moves. We have also seen that the convergence problems can be addressed
by carefully selecting and tuning the ADAM optimizer’s learning rate. We have obtained the best results
when using a moderate to large learning rate for the posterior model during the first few iterations, which is
then sequentially decreased. This allows the posterior model to rapidly explore the weights space in the early
iterations and find a reasonable approximation to the posterior. When decreasing the learning rate, we avoid
large catastrophic moves of the posterior model’s weights, while allowing the posterior model to be fine-tuned
when accessing more data.

3.1 Learning the summary statistics

So far, we denoted with p̃(θ|xobs) the posterior model that SNPLA learns. However, we can also condition on
some function S(·) of the data. In that case, we obtain the following model

p̃φP
(θ|SφPS

(xobs)), (1)
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where φPS
denotes weights that are specific to the S(·) function, since in our work we assume S(·) parameterized

with some neural network. We can interpret the function S(·) as mapping the data xobs into a set of summary
statistics of the data S(xobs). It is possible to automatically learn S(·) altogether with the likelihood model
and the posterior model, as we show in section 4.1, thus providing a general and flexible learning framework.
Considering (1) can be particularly useful if xobs is high-dimensional and/or contains some spatial or temporal
structure. Thus we want the network SφPS

(·) to leverage the features of the data xobs and therefore, for
exchangeable data, we could for instance use a DeepSets network Zaheer et al. [2017] (as we do in section 4.1),
and for Markovian time-series data it is possible to use a partially exchangeable network Wiqvist et al. [2019].
The network SφPS

(·) is trained jointly with the posterior model in (1). So, when incorporating trainable
summary statistics, line 6 and 9 of Algorithm 1 is modified so that the posterior model and the summary
statistics network are updated according to the following loss

L(φP , φPS
) = DKL

(
p̃φP

(θ|SφPS
(xobs))

∣∣∣∣p̃φL
(xobs|θ)p(θ)

)
.

Importantly, notice that the summary statistics network SφPS
(·) is not included in the likelihood model

p̃φL
(x|θ). The likelihood model still learns a model of the full data set xobs, and not a model for the set of

summary statistics computed by SφPS
(·). However, for complex data with spatial or temporal structures

p̃φL
(xobs|θ) can be set up so that the these data features are leveraged in the likelihood model. For instance,

specialized flow models for images, audio, and text data have been developed Papamakarios et al. [2019a],
and these can be used in the likelihood model to leverage the data features.

4 Experiments

We consider the following case-studies: a multivariate Gaussian (MV-G) model, the two-moons (TM) model
[Greenberg et al., 2019], the Lotka-Volterra (LV) model, and the Hodgkin-Huxley (HH) model. The full
experimental setting is presented in the supplementary material.

4.1 Proof-of-concept: Multivariate Gaussian

We consider the following conjugate MV Gaussian example from Radev et al. [2020]

µ ∼ N(µ|µµ,Σµ), x ∼ N(x|µ,Σ),

where both Gaussians have dimension two. The covariance Σ is assumed to be known, so the main goal here
is to infer the posterior for the mean p(µ|xobs). The posterior p(µ|xobs) is analytically known and we evaluate
the quality of the inference by computing the KL divergence between the analytical and the approximate
posterior, same as in Radev et al. [2020], for details see the supplementary material.

We consider three versions of the MV Gaussian study: (i) “five observations”, where data xobs consists of
five two-dimensional samples, and the likelihood model p̃φL

(x|θ) is set to directly target these five observations;
(ii) “summary statistics” where data are given by five summary statistics obtained from a two-dimensional
vector of 100 observations, and the likelihood model is set to target the summary statistics of these data; and
finally (iii) “learnable summary statistics”, where we use a small DeepSets network Zaheer et al. [2017] to
automatically learn the summary statistics following the method in Section 3.1 based on five observations.
We ran all methods independently for 10 times (each time with a different set of observed data), using R = 10
iterations with N = 2,500 model simulations for each iteration. For SNPLE we used NP = 40,000 (“five
observations” and “learnable summary statistics”), and NP = 10,000. (“summary statistics”). For SMC-ABC,
however, we utilized up to, in total, N = 106 model simulations.

Posterior inference for the three versions of the MV Gaussian model is in Figures 2(a), 2(b), and 2(c)
(samples from the resulting posteriors are presented as supplementary material). We conclude that all methods,
except SMC-ABC, perform similarly well for “five observations”. For “summary statistics” SNPLA performs
the best, followed by SNPE-C and SNL, while both SMC-ABC and SNRE-B under-perform for the given
numbers of model simulations. For “learnable summary statistics” we have that SNPLA and SNRE-B are
converging slightly worse compared to SNL, SNPE-C.

For “summary statistics” we also check the performance of the likelihood model in SNL and SNPLA by
sampling from the approximate posterior predictive distribution obtained from the learned likelihood models.
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(a) MV-G “summary statistics”
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Figure 1: MV-G and TM: (a) Marginal densities of summaries from the true likelihood model (solid lines)
and simulated summary statistics from the learned likelihood model (histograms), produced conditionally on
parameters θ from the true posterior; (b) Samples from the approximate posterior distributions and the exact
one. Results from one of the ten runs. Results from the first iteration (top), from the third iteration (middle)
and the fifth iteration (bottom).

That is, we sampled summary statistics for 1,000 times from the trained likelihood model p̃φL
(x|θ). These

results are presented in Figure 1(a), and we conclude that SNL and SNPLA perform similarly well. The
samples from the approximate posterior predictive distributions also match well with the samples from the
analytical posterior predictive.

4.2 Complex posterior: Two-moons

The two-moons (TM) example [Greenberg et al., 2019] is a more complex static model. An interesting feature
is that the posterior, in some cases, is crescent-shaped. For a technical description of the model, see the
supplementary material. We ran all methods 10 times (each time with the same observed data set) for R = 10
iterations and using N = 1,000 model simulations for each iteration, and for SNPLA NP = 60,000 samples.
However, for SMC-ABC we instead used R = 5 with N = 2,000. For this experiment we cannot use the KL
divergence to evaluate the performance of the posterior inference, and we therefore evaluate the posterior
accuracy via the Wasserstein distance between the analytical posterior and the approximate posteriors (for
details see the supplementary material).

Inference results are in Figures 2(d) and 1(b). We conclude that SNPE-C performs the best. SNPLA also
performs well, in particular in many cases the distances from SNPLA are smaller than those from SMC-ABC,
however the variability in performance for SNPLA is larger. Indeed while SMC-ABC manages to “visit”
both crescent moons, the extent of the exploration for each moon is quite poor (notice in Figure 1(b) it is
only apparent that SMC-ABC has fewer samples than claimed; actually many of these overlap on top of
each-other). Finally, SNL and SNRE-B perform significantly worse than the other methods. SNL and SNRE-B
presumably do not perform well here since both use an MCMC sampler, which can struggle to efficiently
explore the bimodal target. These results are in line with those in Greenberg et al. [2019]. We also compare
the approximate likelihood models that we learned via SNL and SNPLA. To this end, we simulated data
from the learned likelihood models at parameter values simulated from the true posterior. To investigate the
performance of the likelihood models we compute the estimated Wasserstein distance between samples from
the analytical likelihood and the likelihood models of SNL and SNPLA. The median and quantiles (Q25, Q75)
of the distances follow: SNL: 0.111, (0.103, 0.136), SNPLA: 0.146, (0.121, 0.164). Thus, we again conclude
that the likelihood models from SNL and SNPLA perform similarly.

4.3 Time-series with summary statistics: Lotka-Volterra

Here, we consider the Lotka-Volterra (LV) case study from Papamakarios et al. [2019b]. Observations are
assumed to be a set of 9 summary statistics computed from the 2-dimensional time-series (for details, see
the supplementary material). We ran all methods 10 times (each time with the same observed data set) for
R = 5 iterations each using N = 1,000 model simulations, and for SNPLA NP = 10,000 samples. We followed
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Figure 2: MV Gaussian/Two-moons/Lotka-Volterra/Hodgkin-Huxley: Posterior inference results for “five
observations”, “summary statistics”, “learnable summary statistics”, Two-moons, Lotka-Volterra, and Hodgkin-
Huxley. SMC-ABC results (blue); SNL (red); SNPE-C (green); SNRE-B (cyan); SNPLA (magenta). The
solid lines show the median value over the attempts and the shaded areas show the range for the 25th and
75th percentile.

Papamakarios et al. [2019b] and evaluated the obtained posterior distribution by computing its negative
log-pdf at the ground-truth parameters (for details, see the supplementary material).

Results are in Figure 2(e) (samples from the resulting posterior distributions are presented in the
supplementary material). For a large number of model simulations, SNPE-C, SNRE-B, and SNPLA perform
similarly well. However, for N < 4,000 SNPLA is less precise than SNPE-C and SNRE-B.The true posterior
is not known for this experiment and we therefore evaluate the quality of the posterior by utilizing the
simulation-based calibration (SBC) procedure Talts et al. [2018]. The SBC results for the first parameter are
presented Figure 3(a) (the results for the other parameters are presented in the supplementary material). The
SBC results show that SNPLA and SNL produce posteriors that are not as well calibrated as the ones obtained
from SNPE-C and SNRE-B. The SBC results for SNL are inline with the results presented in Papamakarios
et al. [2019b]. It could be the case that SNPLA produced worse calibrated posterior results due to having a
more complex task to perform.

We also ran posterior predictive simulations (results presented in the supplementary material), that is we
simulated from the true model conditionally on the obtained parameter posterior draws. We conclude that
posterior predictive simulations from SMC-ABC and SNL do not correspond well with the observed data.
However, for SNPE-C, SNPR-B, and SNPLA we observe a more realistic behaviour. The high variability in the
model simulations for all methods is due to the intrinsic stochasticity of the LV model which is characteristic
of the model even when supplying realistic parameter values.

4.4 Neural model: Hodgkin-Huxley model

We now consider the Hodgkin-Huxley (HH) model Hodgkin and Huxley [1952], which is used in neuroscience
to model the dynamics of a neuron’s membrane potential as a function of some stimulus (injected current)
and a set of parameters. Following Lueckmann et al. [2017], Papamakarios et al. [2019b], the likelihood p(x|θ)
is defined on 19 summary statistics computed from simulated voltage time-series. Further details about the
model can be found in the supplementary material. For our simulation-study, we have 10 unknown parameters,
and the observed data was simulated from the model.

We ran SNPE-C, SNL and SNPLA 10 times for R = 12 iterations with N = 2,000 model simulations for
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ḡ N

a)

SNL

−1 0 1 2 3 4 5 6

Bins

0

5

10

15

20

25

SNPE-C

−1 0 1 2 3 4 5 6

Bins

0

5

10

15

20

25

SNPLA

(b) HH

Figure 3: LV and HH: simulation-based calibration for (a) LV (for the first parameter i.e. θ1) and (b) HH (for
the first parameter i.e. log(ḡNa)). Histogram’s counts falling within the grey areas denote good calibration.

each iterations. For SNPLA, we used NP = 10,000 samples for each iteration. For each method, the quality
of the posterior inference was evaluated by computing the corresponding (approximate) negative log-pdf of
the posterior at the ground-truth parameter. We also investigate the quality of the posterior approximation
by utilizing SBC analysis, and running posterior predictive simulations. The posterior predictive simulations
are obtained by sampling parameter values from the resulting posterior approximation, and then running the
HH model simulator at these parameter values.

Posterior inference from using the same number of model simulations is in Figure 2(f). From Figure 2(f)
we note that, in terms of the negative log-pdf of the posterior evaluated at the ground truth parameters
and for the same number of model simulations, SNL and SNPLA performs similarly well, however, SNPLA
converges much faster than SNL in terms of wall-clock time. For instance, obtaining a negative log-pdf value
of −15 takes 69 minutes for SNPLA, while SNL obtains the same accuracy in 726 minutes. The SBC results
for the first parameter in Figure 3(b) however indicate that all methods produce well-calibrated posteriors
(the SBC results for the other parameters are provided in the supplementary material). Samples from the
resulting posterior approximations are presented in the supplementary material, and these show that SNPE-C
and SNPLA perform better than SNL. Also, the approximate marginals overall resemble the inference results
presented in Papamakarios et al. [2019b] and Lueckmann et al. [2017], with the exception of the σ parameter,
which could be due to the somewhat different experimental setting we use. Posterior predictive simulations
(presented in the supplementary material) show that SNPE-C and SNPLA perform the same and, to a greater
extent, resemble the observed data, while SNL is somewhat slightly worse.

To check the quality of the learned likelihood model, we investigate if we can use the latter to rapidly scan
for parameter proposals generating data that are similar to the observed data. This is achieved by sampling
parameter values from the prior and then computing the number of spikes in the associated simulated data
(the number of spikes is one of the summary statistics in the learned likelihood), both when using the true
model and when using the trained likelihood model. We then scan the proposals that have produced 4-8
spikes (i.e. parameters that generated data similar to the observed data). For this analysis, the likelihood
model agrees with the true model in 75% of the times. Scanning 1000 proposals via the true likelihood model
took 4500 sec., while the learned likelihood model utilized 0.2 sec. for the same task, a 2.3× 104 acceleration
in the runtime.

4.5 Hyper-parameter sensitivity analysis

The left sub-table of Table 1 reports the results from an analysis where we run each method for ten times,
each time with randomly selected hyper-parameters, and always using the same data. We conclude that SNL
and SNPLA are the methods that are the most sensitive to the hyper-parameters.

We also ran SNPLA for 10 different λ values (with λ = 0.6, . . . , 0.95), on the same data (results presented
in the supplementary material), for all experiments and keeping all other hyper-parameters fixed. This analysis
shows that the rate of convergence depends on the value of λ. However, SNPLA produced a reasonable
approximation of the posterior for all attempted λ’s.

4.6 Run-time analysis

The run-times for generating 1,000 posterior draws are in the right sub-table of Table 1. We conclude that
SNPLA on average generates posterior samples 12,000 times faster than SNL. Thus, when the number of model
simulations are the same we have that SNPLA will train faster than SNL and SNRE-B In our experiments
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Table 1: Left sub-table: Robust coefficient of variation IQR
median · 0.75 (the closer to zero the better) of the

performance measures. Right sub-table: Median run-time (in sec.) for generating 1,000 samples from the
resulting posterior. MV Gaussian cases: (i) is “five observations”, (ii) is “summary statistics”, and (iii) is
“learnable summary statistics”.

Robust coefficient of variation Runtime (sec.)

Experiment SNL SNPE-C SNPLA SNRE-B SNL SNPE-C SNPLA SNRE-B

MV-G (i) 0.607 0.550 0.689 0.421 290 0.028 0.027 96
MV-G (ii) 766 0.473 0.851 0.926 1,841 0.024 0.042 118
MV-G (iii) 0.649 0.345 0.547 0.421 287 0.027 0.046 88
LV -4.739 -0.192 -0.263 -0.249 2,294 0.083 0.085 166
TM 0.008 0.223 1.108 0.007 303 0.028 0.023 77
HH NA NA NA NA 1,824 0.167 0.197 NA

all methods have access to the same number of model simulations and we have that the training run-time
for SNPLA is on average 5.6 times faster compared to SNL, and 2 times faster compared to SNRE-B (the
training run-times are reported in the supplementary material).

5 Discussion

In four case studies, we have shown that SNPLA produces similar posterior inference as other simulation-based
algorithms when all methods have access to the same number of model simulations. This is a rather interesting
finding since the learning task for SNPLA is more complex compared to the other methods that we compare
with, given that SNPLA is set to learn both the posterior model and the likelihood model. However, the
variability of the inference obtained with SNPLA is somewhat consistently higher, which suggests that SNPLA
would need to access more model simulations to obtain inference results at par with SNL and SNPE-C.
Considering SNPLA’s complex learning task that would, however, not be surprising.

The computational acceleration in posterior sampling brought by using normalizing flows modelling is
staggering. SNPLA (and SNPE-C) generates posterior samples thousands of times more efficiently than SNL
and SNRE-B, since draws from SNPLA and SNPE-C are generated by a forward pass of a normalizing flow
network, while those from SNL and SNRE-B are generated via MCMC. In Section 4.6 we have shown that
this leads to a substantial speed-up in terms of training run-time for SNPLA compared to SNL and SNRE-B.
For the HH model, we have also shown that SNPLA can converge faster than SNL in terms of wall-clock time.

Recently, for simulation-based methods, it has been discussed [Durkan et al., 2018] if it is of advantage
to learn the likelihood or the posterior. With this work we show that this question can be circumvented by
learning both. However, for posterior inference it seems beneficial to use SNPE-C over SNPLA (at least for
the considered examples), but if it is of interest to learn simultaneously the parameters and a cheap model
simulator then SNPLA offers this possibility, unlike other considered methods. An advantage with learning
both is that we obtain an approximation of the distribution that is typically of interest, i.e. the posterior, and
also obtain an approximate model simulator via the learned likelihood model. Since the latter is a normalizing
flow, this opens the possibility for the rapid simulation of artificial data, when the “true simulator” p(x|θ)
cannot be used more than a handful of times due to e.g. computational constraints. For the HH model we
show that the approximate likelihood model can be used for-instance to rapidly scan parameter proposals
from the prior predictive. To achieve this, we do not require any semi-supervised learning (human-intervention
based labelling) unlike in Wrede and Hellander [2019]. In other contexts, we could generate many samples
from the approximate likelihood to estimate tail probabilities for rare events via (otherwise expensive) Monte
Carlo simulations. Of course the uncertainty in the approximate simulator’s output will be larger when
imputed parameters are very different from those learned from the actual data.

Ethics We have presented an algorithm that learns the posterior and likelihood function of an implicit
model. However, implicit models could be used for malicious intents, and our algorithm can also be used for
such applications.
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1 Introduction to the supplementary material

This document primarily presents additional details on the experimental settings and inference results.
However, we also discuss some technicalities on setting up the normalizing flow models.

2 Normalizing flows for simulation-based inference

Here we introduce some basic notions that are necessary in order to follow our method. The normalizing
flow model, introduced in Rezende and Mohamed [15] (see Kobyzev et al. [10], Papamakarios et al. [13] for
reviews), is a probabilistic model that transforms a simple base distribution u ∼ pu(u) into some complex
distribution x ∼ px(x) via the following transformation

x = T (u), u ∼ pu(u).

The function T is parameterized with an invariant neural network such that T−1 exists, and that both T and
T−1 are differentiable, i.e. the function T is diffeomorphic. The probability density function (pdf) for x is
computed via the Jacobian JT of T (or JT−1 of T−1) in the following two equivalent ways:{

p(x) = pu(u)|det JT (u)|−1, u ∼ T−1(x),

p(x) = pu(T−1(x))|det JT−1(x)|.

Due to this structure of the pdf, it is easy to construct complex transformations by composing, say, n
transformations such that T = T1 ◦ T2 ◦ · ◦ Tn where each transformation Ti is diffeomorphic, and where the
Jacobian contribution for each Ti can be computed. Flow models that allow for building these kinds of nested
structures are, for instance, RNVP [3], Neural Spline Flow [4], and Masked Autoregressive Flow [12]. Now,
assume that we have a normalizing flow model p̃x(x;φ) (with weights φ for neural network T ), and that our
target distribution is denoted px(x). We want to train p̃x(x;φ) so that it approximates px(x). Let us also
assume that we can obtain samples from the target px(x), then we can use the forward KL divergence to fit
the flow model by utilizing the following loss function

L(φ) = DKL

[
px(x)

∣∣∣∣p̃x(x;φ)
]
,

= −Epx(x)
[

log p̃x(x;φ)
]

+ const.,

= −Epx(x)
[

log pu(T−1(x; θ)) + log |det JT−1(x;φ)
]

+ const.. (1)

The loss in (1) is typically (and also in our case) evaluated via Monte Carlo.
If we do not have access to samples from the target distribution px(x), but we can evaluate the pdf of

px(x), it is possible to fit p̃x(x;φ) via the reverse KL divergence using the loss

L(φ) = DKL

[
p̃x(x;φ)

∣∣∣∣px(x)
]
,

= Ep̃x(x;φ)
[

log p̃x(x;φ)− log px(x)
]
,

= Epu(u)
[

log pu(u))− log |det JT (u;φ)| − log px(T (u;φ))
]
.

It is shown in Papamakarios et al. [12] that the forward and the reverse KL divergence are equivalent. The
possibility to fit the flow model p̃x(x;β) via the reverse KL divergence is critical for our method, since SNPLA
uses it to train the posterior model without using a proposal distribution.
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3 Pseudo-code for SNL and SNPE

SNL and SNPE are presented in Algorithms 1 and 2.

Algorithm 1: SNL

Input: Untrained likelihood model p̃φL
(x|θ),

number of iterations R, number of
training samples per iteration N .

Output: Trained likelihood model p̃φL
(x|θ).

1 Set p̂0(θ|xobs)← p(θ), D = {∅}
2 for r = 1 : R do
3 For n = 1 : N sample

(θn, xn) ∼ p̃(θ, x) = p(x|θ)p̂r−1(θ|xobs).

4 Update training data
D = [θ1:N , x1:N ] ∪ D.

5 Update p̃φL
(x|θ) by minimize the

following loss

L(φL) = −Ep̃(θ,x)
(

log p̃φL
(x|θ)

)
.

6 Update the proposal distribution, i.e. let

p̂r(θ|xobs) ∝ p̃φL
(xobs|θ)p(θ).

Algorithm 2: SNPE

Input: Untrained posterior model p̃φP
(θ|x),

number of iterations R, number of
training samples per iteration N .

Output: Trained posterior model p̃φP
(θ|x).

1 Set p̂0(θ|xobs)← p(θ), D = {∅}
2 for r = 1 : R do
3 For n = 1 : N sample

(θn, xn) ∼ p̃(θ, x) = p(x|θ)p̂r−1(θ|xobs).

4 Update training data
D = [θ1:N , x1:N ] ∪ D.

5 Update p̃φP
(θ|x) by minimize the

following loss

L(φP ) = −Ep̃(θ,x)
(

log p̃φP
(θ|x)

)
.

6 Update the proposal distribution, i.e. let

p̂r(θ|xobs)←
p(θ)

p̂r−1(θ|xobs)
p̃φP

(θ|xobs).

4 Computer environment

The code for replicating the experiments can be found at https://github.com/SamuelWiqvist/snpla. All
experiments were implemented in Python 3.7.4, with normalizing flow models built using the nflows

package [5]. The sbi package [16] was used to run SMC-ABC, SNPE-C, SNRE-B, and SNL. We used the
Neuron software [2] to produce all model simulations for the HH model. Full specifications of the computer
environments used are provided in the env local.ylm and env unnamed.txt files. Regarding licenses for the
main already existing assets: Python 3.7.4 is licensed under the PSF License Agreement ; sbi is licensed
under the GNU Affero General Public License v3.0 ; nflows is licensed under the MIT License; and Neuron

is licensed under the GNU GPL. For information regarding licenses of the new assets see the LICENSE file.

5 Experimental setting

For all experiments , except the HH model, we compare the following inference methods: SMC-ABC [1],
SNL [14], SNPE-C [8], SNRE-B [6], and SNPLA. For HH we only compare SNL, SNPE-C and SNPLA.
The experiments are set-up so that all methods have access to the same number of model simulations.
The normalizing flow models used by SNL, SNPE-C, and SNPLA were set to be the same. The masked
autoregressive flow architecture [12] was used to construct the flow models.

6 Performance measures

In this section, we give the definitions of the performance measures used.
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6.1 Kullback–Leibler (KL) divergence

The KL divergence for two continuous distributions P and Q is defined as

DKL

(
P |Q

)
=

∫
p(x) log

(p(x)

q(x)

)
dx,

where p and q are the associated probability density functions (pdf). In some cases, the KL divergence is
analytically known, and in equation (2) below we give the analytical formula for when P and Q are Gaussian.

6.2 Wasserstein distance

The pth Wasserstein distance between two random variables X and Y on the metric space (M,d) is given by

Wp(µ, ν) =
(

inf E[d(X,Y )p]
)1/p

,

where d is the distance function on the associated metric space, µ and ν are the marginal distributions of X
and Y respectively, and the infimum is taken over all joint distributions of the random variables X and Y
with marginals µ and ν. For TM we used the POT: Python Optimal Transport package [7] (utilizing the
default settings) to estimate the 1st Wasserstein distance.

6.3 Negative log-pdf at ground-truth parameter

Assume that we have the posterior approximation p̃φP
(θ|xobs), and that the ground-truth parameter is θ?.

The approximate negative log-pdf of the posterior evaluated at the ground-truth parameter is now given by
log p̃φP

θ?|xobs). In our work we compute the negative log-pdf of ground-truth parameter by first approximating
p̃φP

(θ|xobs) with a Gaussian distribution, which is estimated from the posterior samples. This step is included
to have a consistent approximation of the posterior across models.

7 Incorporating uniform priors in the normalizing flow model for
the posterior

The normalizing flow posterior model p̃φP
(θ|xobs) learns the composite transformation T = T1 ◦ T2 ◦ · ◦ Tn

that maps some base distribution u into the parameter posterior distribution p(θ|xobs). However, if we have a
uniform prior for parameter θ ∼ U(a, b), then we know that the posterior will only have non-zero mass on the
interval [a, b]. This information can be leveraged in the normalizing flow posterior model p̃φP

(θ|xobs) by adding
a scaled and shifted sigmoid function σscale,shift as the last transformation in the chain of transformations
that constitutes T . Thus, in that case we have that T = T1 ◦ T2 ◦ · ◦ Tn ◦ σscale,shift. This way, p̃φP

(θ|xobs)
will have positive mass only on the interval [a, b]. This is used in all cases where we have uniform priors.

8 Multivariate Gaussian (MV Gaussian)

8.1 Model specification

The conjugate MV Gaussian model of dimension 2 is given by
µ ∼ N(µ|µµ,Σµ),

x ∼ N
(
µ,Σ =

[
1.3862 1.4245

1.4245 1.5986

])
.

The hyperparameters µµ and Σµ are set to

µµ =

[
0
0

]
, Σµ

[
5 0
0 5

]
.

Each simulated dataset was generated by first sampling ground-truth parameters for the mean vector µgt from
the corresponding prior distribution. We did this for each of the several versions of the MV Gaussian model.
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8.2 Summary statistics used in the “summary statistics” case-study

We used the following summary statistics for the “summary statistics” case: the two sample means of the
data, the two sample variances and the sample covariance between the two components, i.e. the sufficient
statistics for the model.

8.3 Computing the KL divergence

The KL divergence between the analytical posterior p(µ|x,Σ) and some approximation p?(µ|x) is given by

DKL

(
p(µ|x,Σ

)∣∣∣∣p?(µ|x)
)

= DKL

(
N(µ|m,Σ

)∣∣∣∣p?(µ|m?,Σ?)
)

=
1

2

[
log

det Σ?
−1

det Σ−1
+ Tr(Σ?

−1

Σ)−D + (m−m?)TΣ?
−1

(m−m?)
]
, (2)

where m is the mean and Σ the covariance matrix of the analytical posterior. Additionally, m? and Σ? are
the sample mean and sample covariance matrix based on 1,000 samples from the posterior approximation,
respectively. D is the dimension of x, i.e. D = 2 in our case.

8.4 Posterior inference

Samples from the resulting posterior approximations (for one run) are presented in Figure 1. For the analysis,
see the main paper.

9 Complex posterior: Two-moons (TM)

9.1 Model specification

A full technical description for the TM model can be found in the supplementary material for Greenberg
et al. [8]. We followed the model specification in Greenberg et al. [8], thus we set the observed data to
be xobs = [0, 0]T . However, we used a slightly setting of the model and for our experiment we have that:
r ∼ N(1.0, 0.12), and p = (cos(a) + 1, r sin(a)). Due to this setting we use the following priors for θi:

θi ∼ U(−2, 2), i = 1 : 2.

10 Time-series with summary statistics: Lotka-Volterra (LV)

10.1 Model specification

We considered the Markov-jump process version of the LV model presented in the supplementary material of
Papamakarios et al. [14], including the model specification. The observed data, generated with ground-truth
parameters θgt = [log 0.01, log 0.5, log 1, log 0.01]T , is in Figure 2. For all parameters their prior is uniform on
[−5, 2].

10.2 Summary statistics

We used the same nine summary statistics as in Papamakarios et al. [14], that is:

• Mean and log variance of each time-series.

• Auto-correlations of each time-series at time lags 1 and 2.

• Cross-correlation between the two time-series.
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(b) “Summary statistics”
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(c) “Learnable summary statistics”

Figure 1: MV:Gaussian: Samples from the resulting posterior approximations for “five observations”, “summary
statistics”, and “learnable summary statistics”. Results for one data set.

Before running the inference, a pilot-run procedure was used to make it possible to standardize the summary
statistics so that, after standardization, the several components of each summary had a similar relevance.
That is, in such a pilot run, we generated 1, 000 samples from the prior-predictive distribution: from these
summaries, we then computed their trimmed means and trimmed standard deviations (we trimmed the upper
and lower 1.25% of the distribution) to eliminate the effect of very extreme outliers. Afterwards, we ran each
inference procedure using standardized summaries (both observed and simulated).

10.3 Dealing with bad simulations

Following [14] we used the Gillespie algorithm to simulate trajectories from the Lotka-Volterra model. The
maximum allowed number of steps to advance the Gillespie simulation, for each given trajectory, was set to
10,000. After 10,000 steps we considered as the output of the simulator at θ the partially simulated trajectory
and set to zero the remaining part of the path towards the simulation end-time. Thus, we did not remove
parameter proposals that rendered poor simulations.

10.4 Posterior inference

Samples from the resulting posterior approximations for one of the runs are presented in Figure 3. For the
analysis, see the main paper.
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Figure 2: Lotka-Volterra: Simulated data set.

10.5 Posterior predictive simulation

The posterior predictive simulation are presented in Figure 4. For the analysis, see the main paper.

11 Neural model: Hodgkin-Huxley model (HH)

11.1 Model specification

The HH equations [9] model the dynamics of a neuron’s membrane potential as a function of some stimulus
(injected current) and a set of parameters. In our experiment, we use the same model formulation as in [11, 14].
A full description of the model can be found in the supplementary material for [14]. Our experimental setting
is also similar to [11, 14].

We considered 10 unknown parameters θ = [log(ḡNa), log(ḡK), log(gleak), log(ENa), log(−EK), log(−Eleak),
log(ḡM ), log(τmax), log(Vt), log(σ)]. The ground-truth values are:

ḡNa = 200 (s/cm2),

gleak = 0.1 (s/cm2),

EK = −100 (mV ),

ḡM = 0.07 (s/cm2),

Vt = 60 (mV ),

ḡK = 50 (s/cm2),

ENa = 50 (mV ),

Eleak = −70 (mV ),

τmax = 1000 (mV ),

σ = 1 (uA/cm2).

We followed [14] and let the uniform prior for each unknown parameter θi be

θi ∼ U(θ?i − log(2), θ?i + log(1.5)), (3)

where θ?i is the ground-truth vale for θi. We considered C, κβn1, κβn2 as known, and these were fixed at

C = 1 (uF/cm2), κβn1 = 0.5 (ms−1), κβn2 = 40 (mV ).

We generated “observed data” from the HH model for 200 ms with a time-step of 0.025 ms. We used the
Neuron software [2] to produce all model simulations.

11.2 Summary statistics

The likelihood p(x|θ) was defined on a set of 19 summary statistics that we computed from the voltage
time-series produced by the Neuron simulator. We used the same 18 summary statistics as in [14], and as an
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Figure 3: Lotka-Volterra: Samples from the resulting posterior approximations. The green marker shows the
true parameter value. Results for one data set.

additional summary statistic, we included the number of spikes in the voltage time-series. The number of
spikes in the data set is computed with the same methods as in [11]. Before running the inference, a pilot-run
procedure was used to standardize the summary statistics using a whitening transform. Thus we used a
similar standardization scheme for the summary statistics as in [14].

11.3 Posterior inference

The posterior samples from SNPE-C, SNL, and SNPLA are in Figures 5, 6, and 7 respectively. For the
analysis, see the main paper.

11.4 Posterior predictive simulations

The posterior predictive simulations are presented in Figure 8. For the analysis, see the main paper.
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Figure 4: LV: Posterior predictive simulations. The solid lines show the median value over the attempts and
the shaded areas show the range for the 25th and 75th percentile.

11.5 Prediction of the number of spikes

Figure 9 presents a comparison between the true number of spikes vs. the predicted number of spikes, for the
case where parameters θ are generated from the resulting posterior distribution. We see that the predicted
number of spikes in Figure 9 quite well corresponds to the true number of spikes. Figure 10 shows the same
analysis but for the case where where parameters θ are generated from the prior. However, the trained
likelihood model occasionally predicted a very large number of spikes. Thus, in Figure 10 we have removed
267 (out of 1000) cases where the trained likelihood model predicted the number of spikes to be > 1000.
Unsurprisingly, compared to Figure 9 here we have that the predicted number of spikes matches the true
number of spikes with higher uncertainty.

12 Training run-times

The training run-times are presented in Table 1.

Table 1: Median training run-time (in sec.). MV Gaussian cases: (i) is “five observations”, (ii) is “summary
statistics”, and (iii) is “learnable summary statistics”.

Experiment SNL SNPE-C SNPLA SNRE-B

MV-G (i) 7374 1179 1311 2676
MV-G (ii) 13202 1696 1441 3340
MV-G (iii) 7153 1803 1371 2586
LV 6741 3628 3539 6167
TM 3131 663 556 895
HH 42554 5240 4196 NA

13 Train/validation/test splits

The train/validation/test splits used for the different experiments are presented in Table 2. Regarding
validation data: for SNL, SNPE-C, and SNRE-B, the validation data is set to a fraction valfrac of the training
data. Thus, if we use N samples to train the model, N×val−frac of these samples will be used for validation.
This approach of splitting the training and validation data is also used when training the likelihood model
for SNPLA. However, a somewhat different approach is used when training SNPLA’s posterior model. Due
to the simulation-on-the-fly approach, for SNPLA’s posterior model we instead use Np × valfrac additional
simulations for validation purposes.
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Table 2: Train/validation/test splits for all experiments. R is the number of rounds, N is the number of
model simulations per round, Np the number of total samples from the posterior model used to train SNPLA’s
posterior model, valfrac is the fraction of the training data used for validation, Ntest,post is the number of
posterior samples from the posterior approximation at each round, Ntest,like is the number of sample from the
resulting likelihood model (only applicable to SNL and SNPLA). MV Gaussian cases: (i) is “five observations”,
(ii) is “summary statistics”, and (iii) is “learnable summary statistics”.

Experiment R N Np valfrac Ntest,post Ntest,like

MV-G (i) 10 2,500 40,000 0.1 1,000 NA
MV-G (ii) 10 2,500 10,000 0.1 1,000 1,000
MV-G (iii) 10 2,500 40,000 0.1 1,000 NA
TM 10 1,000 60,000 0.1 1,000 1,000
LV 5 1,000 10,000 0.1 1,000 NA
HH 12 2,000 10,000 0.1 1,000 NA

14 Hyper-parameter settings

The hyper-parameter settings, for all experiments, are in Tables 3-6. Regarding the learn-rate settings: 0.0005
is the default learn-rate used in sbi, and 0.001 is the default in the Adam optimizer found in PyTorch. We
decreased the learn rate for SNPLA’s posterior model using the PyTorch function
torch.optim.lr scheduler.ExponentialLR with multiplicative factor γp, see Table 6 (for details on how
the multiplicative factor γp is used, see the documentation for torch.optim.lr scheduler.ExponentialLR).

Table 3: SNL: Hyper-parameter-setting for the different experiments for SNL. lr is the learn rate. MV Gaussian
cases: (i) is “five observations”, (ii) is “summary statistics”, and (iii) is “learnable summary statistics”.

Experiment lr

MV-G (i) 0.0005
MV-G (ii) 0.0005
MV-G (ii) 0.0005
TM 0.0005
LV 0.0005a

Hodgkin-Huxley 0.0005

aFrom a numerical-stability standpoint we found it for this case to be beneficial to exponentially decrease the learn rate with
a decay rate of 0.98

Table 4: SNPE-C: Hyper-parameter-setting for the different experiments for SNPE-C. lr is the learn rate.
MV Gaussian cases: (i) is “five observations”, (ii) is “summary statistics”, and (iii) is “learnable summary
statistics”.

Experiment lr

MV-G (i) 0.0005
MV-G (ii) 0.0005
MV-G (iii) 0.0005
TM 0.0005
LV 0.0005
HH 0.0005
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Table 5: SNRE-B: Hyper-parameter-setting for the different experiments for SNPE-B. lr is the learn rate.
MV Gaussian cases: (i) is “five observations”, (ii) is “summary statistics”, and (iii) is “learnable summary
statistics”.

Experiment lr

MV-G (i) 0.0005
MV-G (ii) 0.0005
MV-G (iii) 0.0005
TM 0.0005
LV 0.0005
HH NA

Table 6: SNPLA: Hyper-parameter-setting for the different experiments for SNPLA. lrL is the learn rate
for the likelihood model, lrP is the learn rate for the posterior model, γP is the multiplicative factor of
the decrease for the learn rate of the posterior model, and λ is the exponential decrease rate for the prior.
MV Gaussian cases: (i) is “five observations”, (ii) is “summary statistics”, and (iii) is “learnable summary
statistics”.

Experiment lrL lrP γP λ

MV-G (i) 0.001 0.002 0.95 0.7
MV-G (ii) 0.001 0.002 0.95 0.7
MV-G (iii) 0.001 0.002 0.95 0.7
TM 0.001 0.001 0.9 0.7
LV 0.001 0.001 0.9 0.9
HH 0.001 0.001 0.95 0.8

15 Sensitivity analysis: hyper-parameter ranges

The Hyper-parameter-ranges used for the sensitivity analysis are presented in Table 7.

Table 7: Hyper-parameter-ranges: SNL shows the Hyper-parameter-ranges used for MV-G ((i), (ii), (iii)) and
TM, SNL-LV shows the Hyper-parameter-ranges used for LV. SNPE-C, SNPLA, and SNRE-B shows the
Hyper-parameter-ranges used for MV-G (i,ii,iii), TM, and LV

Method lr γlr lrL lrP γP λ

SNL [10−4, 10−2] NA NA NA NA NA
SNL-LV [10−4, 10−2] [0.9, 0.999] NA NA NA NA
SNPE-C [10−4, 10−2] NA NA NA NA NA
SNPLA NA NA [10−4, 10−2] [10−4, 10−2] [0.8, 0.999] [0.65, 0.95]
SNRE-B [10−4, 10−2] NA NA NA NA NA

16 SNPLA for different values of λ

Figure 11 presents the performance measures that we obtain when running SNPLA with different λ values.
We conclude that the difference in performance when changing λ is moderate, and that for all cases we obtain
a resulting performance measure indicating adequate posterior approximation.
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Figure 5: Hodgkin-Huxley: Samples from the posterior approximation for SNPE-C. Results for one data set.
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Figure 6: Hodgkin-Huxley: Samples from the posterior approximation for SNL. Results for one data set.
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Figure 7: Hodgkin-Huxley: Samples from the posterior approximation for SNPLA. Results for one data set.
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Figure 8: HH: Posterior predictive paths. Results for one data set.
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Figure 9: HH: Number of spikes prediction when using parameters from the resulting posterior. Results are
based on a single data set. The solid line represents the line of best fit.

15

151



0 20 40 60 80 100
True (nbr spikes)

0

50

100

150

200

P
re

di
ct

ed
(n

br
sp

ik
es

)

Figure 10: HH: Number of spikes prediction when using parameters generated from the prior. Results are
based on a single data set. The solid line represents the line of best fit.
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Figure 11: Results for different λ values.
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Abstract

Delayed-acceptance Markov chain Monte Carlo (DA-MCMC) samples from a probability dis-
tribution via a two-stages version of the Metropolis-Hastings algorithm, by combining the target
distribution with a “surrogate” (i.e. an approximate and computationally cheaper version) of said
distribution. DA-MCMC accelerates MCMC sampling in complex applications, while still target-
ing the exact distribution. We design a computationally faster, albeit approximate, DA-MCMC
algorithm. We consider parameter inference in a Bayesian setting where a surrogate likelihood
function is introduced in the delayed-acceptance scheme. When the evaluation of the likelihood
function is computationally intensive, our scheme produces a 2-4 times speed-up, compared to
standard DA-MCMC. However, the acceleration is highly problem dependent. Inference results
for the standard delayed-acceptance algorithm and our approximated version are similar, indi-
cating that our algorithm can return reliable Bayesian inference. As a computationally intensive
case study, we introduce a novel stochastic differential equation model for protein folding data.

Keywords: Bayesian inference, Gaussian process, pseudo marginal MCMC, protein folding, stochastic
differential equation
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1 Introduction

We introduce a new strategy to accelerate Markov chain Monte Carlo (MCMC) sampling when the
evaluation of the target distribution is computationally expensive. We build on the “delayed-acceptance”
(DA) strategy developed in Christen and Fox [2005] where a fast, “two-stages” DA-MCMC algorithm
is proposed while still targeting the desired distribution exactly. We produce an approximated and
accelerated delayed-acceptance MCMC algorithm (ADA-MCMC), where in exchange of exactness we
obtain results even more rapidly than the standard DA-MCMC. In a computationally intensive case
study, the run-time for ADA-MCMC is 2–4 times faster than for standard DA-MCMC.

The methodology we consider is general, as our novel method pertains sampling from arbitrary
distributions. However, in the interest of our applications, we will focus on Bayesian inference, and
then suggest how to implement our ideas for general problems. In Bayesian inference we aim at
sampling from the posterior distribution p(θ|y) ∝ p(y |θ)p(θ), where θ are model parameters, y de-
notes data, p(y |θ) is the likelihood function, and p(θ) is the prior distribution of θ. We assume
that the point-wise evaluation of the likelihood p(y |θ) (or an approximation thereof) is computa-
tionally intensive, because the underlying probabilistic model is complex and/or the data y is large.
For those situations, DA-MCMC algorithms turn particularly useful. In the approach originally out-
lined in Christen and Fox [2005] a DA strategy decomposes an MCMC move into two stages. At the
first stage a proposal can either be rejected, according to a “surrogate of the posterior” (one that is
computationally cheap to evaluate and chosen to approximate the desired posterior), or be sent to
the second stage. If the proposal is not rejected at the first stage, at the second stage an acceptance
probability is used that corrects for the discrepancy between the approximate surrogate and the de-
sired posterior, and at this stage the proposal can finally be accepted or rejected. The advantage of
using DA-MCMC is that the computationally expensive posterior only appears in the second stage,
whereas the surrogate posterior in the first stage is cheap to evaluate. Therefore, in the first stage the
surrogate posterior rapidly screens proposals, and rejects those that are unlikely to be accepted at the
second stage, if the surrogate model is reliable. When considering a Bayesian approach, we build a
surrogate of the computationally expensive likelihood function, while we assume the cost of evalu-
ating the prior to be negligible. Therefore the expensive likelihood appears only in the second stage.
Some implementations of the DA approach in Bayesian inference can be found e.g. in Golightly et al.
[2015], Sherlock et al. [2017], and Banterle et al. [2015], and similar approaches based on approximate
Bayesian computation (ABC) can be found in Picchini [2014], Picchini and Forman [2016], and Everitt
and Rowińska [2017].

In this work, the sequence of computations pertaining the second stage of DA-MCMC are ar-
ranged so to find further opportunities to avoid the evaluation of the expensive likelihood. This
leads to our accelerated and approximated ADA-MCMC. The computational benefit of using ADA-
MCMC is that, unlike DA-MCMC, once a parameter proposal reaches the second stage, the expensive
likelihood is not necessarily evaluated, but this comes at the price of introducing an approximation
in the sampling procedure. We test and compare delayed-acceptance algorithms, particle marginal
methods for exact Bayesian inference, and Markov-chain-within-Metropolis on two case studies: The
stochastic Ricker model, and a novel state-space model for protein folding data, with dynamics ex-
pressed via a stochastic differential equation (SDE). Therefore, in this work we contribute with: (i) a
novel, approximate and accelerated delayed-acceptance MCMC algorithm, and (ii) a novel double-
well potential state-space model for protein folding data. For practical applications, we use Gaussian
processes to specify surrogates of the likelihood function, though this is not an essential component
of our approach and other surrogates of the likelihood can be considered. We found that the acceler-
ation produced by ADA-MCMC, compared to DA-MCMC, is dependent on the specific application.
If the exact or approximate likelihood function used in the second stage of the algorithm is not com-
putationally intensive to evaluate, then our method produces negligible benefits. Therefore, the use
of our ADA-MCMC, just as the standard DA-MCMC, is beneficial when each evaluation of the likeli-
hood has a non-negligible impact on the total computational budget. Then, the time savings due to
ADA-MCMC are proportional to the number of MCMC iterations where the evaluation of the likeli-
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hood at the second stage is avoided. In terms of inference quality, we find that ADA-MCMC returns
results that are very close to DA-MCMC, so our approximations do not seem to harm the accuracy of
the resulting inference.

The outline of this paper is as follows: The delayed-acceptance (DA) scheme and our novel accel-
erated DA algorithm are introduced in a general framework in Section 2. The Gaussian process (GP)
surrogate model is introduced in Section 3. The DA-GP-MCMC algorithm and the accelerated version
ADA-GPMCMC are introduced in Section 4. A simulation study for the stochastic Ricker model is in
Section 5.1. The protein folding data and the novel double-well potential stochastic differential equa-
tion model are introduced in Section 5.2. A discussion in Section 6 closes our work. Further supple-
mentary material is available, outlining: particle Markov chain Monte Carlo methods for state-space
models, implementation guidelines for the algorithms, a further simulation study, and diagnostic
analyses. The code used to generate results can be found at https://github.com/SamuelWiqvist/adamcmcpaper
and in the supplementary material.

2 Delayed-acceptance MCMC

We first introduce the delayed-acceptance (DA-MCMC) scheme due to Christen and Fox [2005] in full
generality, then we specialize it for Bayesian inference. Our accelerated delayed-acceptance (ADA-
MCMC) algorithm is introduced in section 2.1. We are interested in sampling from some distribution
p(x) using Metropolis-Hastings [Hastings, 1970]. Metropolis-Hastings proceeds by evaluating ran-
dom moves produced by a Markov kernel from the current value of x to a new x?. The sequence
of accepted moves forms a Markov chain having p(x) as stationary distribution. Now, assume that
the point-wise evaluation of p(x) is computationally expensive. The main idea behind a DA-MCMC
approach is to delay (or avoid as much as possible) the evaluation of the computationally expensive
p(x), by first trying to early-reject the proposal x? using some surrogate (cheap to evaluate) determin-
istic or stochastic model p̃(x). To enable early-rejections while still targeting the distribution p(x), a
two-stages acceptance scheme is introduced in Christen and Fox [2005]. Say that we are at the r th
iteration of the Metropolis-Hastings algorithm, and denote with xr−1 the state of the chain produced
at the previous iteration. At the “first stage” of DA-MCMC we evaluate the acceptance probability
(though at this stage we do not really accept any proposal as explained below)

α1 = min
(
1,

p̃(x?)

p̃(xr−1)
· g (xr−1|x?)

g (x?|xr−1)

)
, (1)

where g (x|y) is the transition kernel used to generate proposals, i.e. at the r th iteration x? ∼ g (x|xr−1).
If the proposal x? “survives” the first stage (i.e. if it is not rejected) it is then promoted to the second
stage where it is accepted with probability α2,

α2 = min
(
1,

p(x?)

p(xr−1)
· p̃(xr−1)

p̃(x?)

)
. (2)

Therefore x? can only be accepted at the second stage, while it can be rejected both at the first and
second stage. A computational speed-up is obtained when x? is early-rejected at the first stage, as
there the expensive p(x?) is not evaluated. Hence, to obtain a significant speed-up it is important
to early-reject “bad” proposals that would likely be rejected at the second stage. The probability
α2 corrects for the approximation introduced in the first stage and the resulting Markov chain has
the correct stationary distribution p(x). This result holds if g is p-irreducible and reversible, and if
g (x|y) > 0 implies p̃(x) > 0. From (2) it is evident how the surrogate model acts as a proposal distribu-
tion. See Franks and Vihola [2017] for a comparison in terms of asymptotic variances of Monte Carlo
estimators provided via importance sampling, pseudo-marginal and delayed-acceptance methods.

In a Bayesian framework we are interested in sampling from the posterior p(θ|y) ∝ p(y |θ)p(θ).
Furthermore, for the cases of interest to us, the log-likelihood function (or an approximation thereof)
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`(θ) := log p(y |θ), is computationally expensive while the prior distribution is assumed cheap to eval-
uate. By introducing a deterministic or stochastic surrogate likelihood L̃(θ) := exp( ˜̀(θ)), DA has first
stage acceptance probability α1, where

α1 = min
(
1,

L̃(θ?)

L̃(θr−1)
· p(θ?)

p(θr−1)
· g (θr−1|θ?)

g (θ?|θr−1)

)
,

with transition kernel g . Similarly, by setting L(θ) := exp(`(θ)), the second stage acceptance probabil-
ity is

α2 = min
(
1,

L(θ?)

L(θr−1)
· L̃(θr−1)

L̃(θ?)

)
.

An extension of the DA-MCMC scheme due to Sherlock et al. [2017] is to generate a proposal θ? from
a different transition kernel g̃ (·|θr−1), and with a small but positive probability βM H ∈ (0,1) allow
the evaluation of the proposal θ? in an ordinary Metropolis-Hastings algorithm, with acceptance
probability denoted αM H ,

αM H = min
(
1,

L(θ?)

L(θr−1)
· p(θ?)

p(θr−1)
· g̃ (θr−1|θ?)

g̃ (θ?|θr−1)

)
. (3)

In this case the proposal can be immediately accepted or rejected as in a regular MCMC. The transi-
tion kernel g should have a somewhat larger variance than g̃ . With probability 1−βM H a proposal is
instead evaluated using the two-stages DA-MCMC algorithm. When considering this “extended ver-
sion” of DA-MCMC (where βM H is introduced) it is preferable to use a small βM H in order not to lose
too much of the acceleration implied by a DA approach. Our experience also indicates that this ex-
tension can be critical to better explore the tails of the posterior distribution, compared to a standard
DA-MCMC that uses βM H = 0. This "mixture" of the two Metropolis-Hastings kernels (i.e. the accep-
tance kernel for the DA scheme, and the acceptance kernel in (3)) produces a valid MCMC algorithm,
since both kernels in the standard cases target the correct posterior [Rosenthal and Roberts, 2007].

2.1 Accelerated delayed-acceptance MCMC

There have been a number of attempts at accelerating the original DA-MCMC of Christen and Fox
[2005]. For example, in a Bayesian framework, Banterle et al. [2015] propose to break down the poste-
rior into the product of d chunks. The Metropolis-Hastings acceptance ratio becomes the product of
d acceptance ratios, each of which can be sequentially evaluated against one of d independent uni-
form variates. The acceleration is given by the possibility to “early-reject” a proposal, as soon as one
of those acceptance ratios leads to a rejection (in the same spirit of Solonen et al., 2012). However,
an acceptance requires instead the scanning of all d components, i.e. the full posterior. Quiroz et al.
[2017] never use the full data set in the second stage of DA and instead construct an approximated
likelihood from subsamples of the data, which is particularly relevant for Big Data problems (see ref-
erences therein and Angelino et al., 2016). Remarkably, Quiroz et al. [2017] prove that even when the
full likelihood is approximated using data subsamples, the resulting chain has the correct stationary
distribution. However, they assume data to be conditionally independent, a strong condition which
does not apply to case studies considered in the present work.

We now introduce the novel, accelerated DA-MCMC algorithm, shortly ADA-MCMC. The main
idea behind ADA-MCMC is that, under some assumptions on how the likelihood function and the
surrogate model relate, it is possible to arrange the computations in the second stage to obtain an
acceleration in the computations. This is implied by the possibility to avoid the evaluation of the
expensive likelihood in the second stage, in some specific circumstances. However, this also implies
that ADA-MCMC is an approximated procedure, since a proposal can sometimes be accepted ac-
cording to the surrogate model. We introduce ADA-MCMC in a Bayesian setting where the surrogate
model pertains the likelihood function. However, the idea can straightforwardly be adapted to the
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case where a surrogate model of a generic distribution p(x) is used, as in Equations (1)-(2). The more
general setting is briefly described later in this section. As previously mentioned, at the r th iteration
the DA algorithm is governed by the values of the likelihood function L(θ?) and L(θr−1), and the val-
ues of the surrogate model L̃(θ?) and L̃(θr−1). These four values can be considered arranged in four
mutually exclusive scenarios:

case 1) L̃(θ?) > L̃(θr−1) and L(θ?) > L(θr−1),

case 2) L̃(θ?) < L̃(θr−1) and L(θ?) < L(θr−1),

case 3) L̃(θ?) > L̃(θr−1) and L(θ?) < L(θr−1),

case 4) L̃(θ?) < L̃(θr−1) and L(θ?) > L(θr−1).

We study each case separately to investigate any opportunity for accelerating the computations in the
second stage of DA-MCMC, under the assumption that the relations between the evaluations of L̃ and
L hold. Afterwards, we suggest ways to determine approximately which of the four possibilities we
should assume to hold, for any new proposal θ?, without evaluating the expensive likelihood L(θ?).

Case 1) Under the assumption that L̃(θ?) > L̃(θr−1) and L(θ?) > L(θr−1) it is clear that L̃(θr−1)
L̃(θ?)

< 1 and
L(θr−1)
L(θ?) < 1. It also holds that

L̃(θr−1)

L̃(θ?)
< L(θ?)

L(θr−1)
· L̃(θr−1)

L̃(θ?)
. (4)

Hence, the acceptance region for the second stage can be split in two parts, where one part is “gov-

erned” by L̃(θr−1)
L̃(θ?)

only. To clarify, at the second stage of the standard DA-MCMC, acceptance of a pro-

posed θ? takes place if u < L(θ?)
L(θr−1) · L̃(θr−1)

L̃(θ?)
where u ∼U (0,1) is uniformly distributed in [0,1], hence, the

acceptance region is
[
0, L(θ?)

L(θr−1) · L̃(θr−1)
L̃(θ?)

]
. However, because of (4) we are allowed to further decompose

the acceptance region, as presented below:

0 1
u

L̃(θr−1)
L̃(θ?)

L(θ?)
L(θr−1) · L̃(θr−1)

L̃(θ?)

early-accept accept reject

Hence, if a proposal θ? has survived the first stage and we assume that we are in case 1, we can first
check whether we can “early-accept” the proposal (i.e. without evaluating the expensive likelihood),
that is, check if

u < L̃(θr−1)

L̃(θ?)
, (5)

and if this is the case θ? is (early)-accepted and stored, and we can move to the next iteration of
ADA-MCMC. If θ? is not early-accepted, we can look into the remaining part of the [0,1] segment to
determine if the proposal can be accepted or rejected. Hence, when early-acceptance is denied, the
expensive likelihood L(θ?) is evaluated and the proposal is accepted and stored if

u < L(θ?)

L(θr−1)
· L̃(θr−1)

L̃(θ?)
, (6)

and rejected otherwise, and we can move to the next iteration of ADA-MCMC. Since the acceptance
region for the second stage is split in two parts (early-acceptance and acceptance), the same random
number u is used in (5) and (6). By splitting the region it is possible to early-accept proposals without
evaluating L(θ?), and thereby obtaining a speed-up.
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Case 2) If this case holds, then L̃(θr−1)
L̃(θ?)

> 1 and L(θ?)
L(θr−1) < 1. Hence, it is not possible to obtain any

early-accept or early-reject opportunity in this case.

Case 3) If this case holds, then L̃(θr−1)
L̃(θ?)

< 1 and L(θ?)
L(θr−1) < 1. Hence, it also holds that

L̃(θr−1)

L̃(θ?)
> L(θ?)

L(θr−1)
· L̃(θr−1)

L̃(θ?)
.

The rejection region is
[ L(θ?)

L(θr−1) · L̃(θr−1)
L̃(θ?)

,1
]

and this can be split in two parts, where one part is only

governed by L̃(θr−1)
L̃(θ?)

, see below:

0 1
u

L(θ?)
L(θr−1) · L̃(θr−1)

L̃(θ?)
L̃(θr−1)
L̃(θ?)

accept reject early-reject

By simulating a u ∼U (0,1), we can first check if the proposal can be early-rejected. This happens if

u > L̃(θr−1)
L̃(θ?)

. If the proposal is not early-rejected, it is accepted if

u < L(θ?)

L(θr−1)
· L̃(θr−1)

L̃(θ?)
,

and rejected otherwise. Hence, in case 3 there is a chance to early-reject θ? without evaluating L(θ?).

Case 4) Under the assumption we have that L̃(θr−1)
L̃(θ?)

> 1 and L(θ?)
L(θr−1) > 1, and we can immediately ac-

cept the proposal without evaluating L(θ?), since L(θ?)
L(θr−1) · L̃(θr−1)

L̃(θ?)
> 1.

Clearly, assuming a specific case to be the “right one”, for proposal θ?, is a decision subject to
probabilistic error. This is why ADA-MCMC is an approximate version of DA-MCMC. Of course, the
crucial problem is to determine which of the four cases to assume to hold for the proposed θ?. One
method is to consider a pre-run of some MCMC algorithm, to estimate the probability p j for each of
the four different cases, where p j is the true but unknown probability that case j holds, j = 1, ...,4.
This is of course a possibly computationally heavy procedure, however, for the specific algorithms we
study in Section 4, such a pre-run is necessary to construct the surrogate model for the log-likelihood,
hence the estimation of the p j comes as a simple by-product of the inference procedure. Then, once

the estimates p̂ j are obtained, for a new θ? one first checks if L̃(θr−1)
L̃(θ?)

< 1 or if L̃(θr−1)
L̃(θ?)

> 1. If L̃(θr−1)
L̃(θ?)

>
1 then we can either be in case 2 or 4. We toss a uniform u and if u < p̂2 case 2 is selected with

probability p̂2 (and otherwise case 4 is selected, since p̂4 = 1− p̂2). Correspondingly, if L̃(θr−1)
L̃(θ?)

< 1 then
we can be either in case 1 or 3. We toss a uniform u ∼U (0,1), and if u < p̂1 case 1 is selected (otherwise
case 3 is selected, since p̂3 = 1− p̂1). Another approach is to model the probabilities as a function of
θ. Hence, we are then interested in computing the probabilities p̂1(θ), p̂2(θ),p̂3(θ), and p̂4(θ). For this
task, we can for instance use logistic regression, or some other classification algorithm. The problem
of the selection of cases 1–4 is discussed in detail in Section 4.1.

We stated early that ADA can also be used in a non-Bayesian setting, where we target a generic
distribution p(x) for some x ∈X . In that case we need to introduce a corresponding surrogate model
p̃(x). The r th iteration of ADA will then be governed by the four values p̃(x?), p̃(xr−1), p(x?), and
p(xr−1), where x? is a proposed value x∗ ∈ X . These can be arranged into four cases, similarly to
what previously described: case 1) p̃(x?) > p̃(xr−1) and p(x?) > p(xr−1), 2) p̃(x?) < p̃(xr−1) and p(x?)
< p(xr−1), 3) p̃(x?) > p̃(xr−1) and p(x?) < p(xr−1), and 4) p̃(x?) < p̃(xr−1) and p(x?) > p(xr−1). There-
fore, by adapting the methodology, possibilities for early-rejection and early-acceptance of a proposal
x? can straightforwardly be obtained regardless of whether we pursue a Bayesian analysis or not.
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3 Modeling the log-likelihood function using Gaussian processes

We have outlined our methodology without reference to a specific choice for the surrogate likelihood.
A possibility is to use Gaussian process regression to obtain a surrogate log-likelihood log L̃. Gaussian
processes (GPs) is a class of statistical models that can be used to describe the uncertainty about an
unknown function. In our case, the unknown function is the log-likelihood `(θ) = log p(y |θ). A GP has
the property that the joint distribution for the values of the unknown function, at a finite collection
of points, has a multivariate normal distribution. As such, each Gaussian process is fully specified by
a mean function m, and a covariance function k [Rasmussen and Williams, 2006]. We introduce a GP
regression model, similar to the one used in Drovandi et al. [2018], as a computationally cheap proxy
to the unknown log-likelihood `(θ). Our GP model uses covariates that are powers and interactions of
the d parameters of interest θ = (θ1, ...,θd ) (see the supplementary material). The GP model assumes

`(θ) ∼GP (mβ(θ),kφ(θ,θ′)),

where η= [φ,β] are the auxiliary parameters for the mean and covariance function respectively. Since
η is in general unknown, this must be estimated by fitting the GP model to some “training data”. In our
case, training data is obtained by running a a number of preliminary MCMC iterations, and collect all
generated parameter proposals and corresponding log-likelihood values. The GP regression consid-
ers the log-likelihood values as “responses” and the proposed parameters are used to construct the
covariates. Once η̂ is available, then for any new θ? we obtain a proxy to the unknown log-likelihood
that is computationally much faster to evaluate than `(θ?). The training data we fit the GP model to
is denoted D, and how this data is collected is explained in Section 4. Using the same assumptions for
the Gaussian process model as in Drovandi et al. [2018], we have that the predictive distribution for
the GP model is available in closed form. Therefore, for given D and η̂ we can easily produce a draw
from said distribution, which is Gaussian, and given by

`(θ?)|D, η̂∼N ( ¯̀(θ?),Var(`(θ?))). (7)

See the supplementary material for the definitions of ¯̀(θ) and Var(`(θ)). It is computationally very
rapid to produce draws from (7) at any new θ?, which is why we use GP prediction as a surrogate of
the log-likelihood within DA algorithms. The derivation of (7), and more details pertaining the GP
model are found in the supplementary material.

4 Delayed-acceptance Gaussian process Markov chain Monte Carlo

We now make use of the fitted GP model discussed in Section 3 as a surrogate of the log-likelihood
function, within DA-MCMC and ADA-MCMC. By sampling a GP log-likelihood `GP (θ?) := `(θ?)|D, η̂
from (7) for some θ?, we denote with L̂GP (θ?) = exp(`GP (θ?)) the GP prediction of the corresponding
likelihood function. In addition to be computationally intensive to evaluate, the true likelihood L(θ)
might also be unavailable in closed form. However, it is often possible to obtain Monte Carlo approx-
imations returning non-negative unbiased estimates of L. We denote with L̂u(θ) such unbiased esti-
mate. For our case studies, L̂u(θ) is obtained via sequential Monte Carlo (SMC, also known as particle
filter, see Kantas et al., 2015 and Schön et al., 2018 for reviews). A simple example of SMC algorithm
(the bootstrap filter) and its use within particle-marginal methods [Andrieu and Roberts, 2009] for
inference in state-space models are presented in the supplementary materials. Two types of pseudo-
marginal methods, particle MCMC (PMCMC) and Markov-chain-within-Metropolis (MCWM), are
there described. In the supplementary material we give a brief technical presentation of PMCMC
and MCWM.

Notice that MCMC algorithms based on GP-surrogates have already been considered, e.g. in
Meeds and Welling [2014] and Drovandi et al. [2018]. Meeds and Welling [2014] assume that the la-
tent process has a Gaussian distribution with unknown moments, and these moments are estimated
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via simulations using “synthetic likelihoods”. There, the discrepancy between the simulated (Gaus-
sian) latent states and observed data is evaluated using a Gaussian ABC kernel, where ABC stands
for “approximate Bayesian computation”, see Marin et al. [2012] for a review. This computationally
expensive setting is fitted to “training data”, then used in place of the (unknown) likelihood into a
pseudo-marginal MCMC algorithm. The work in Drovandi et al. [2018] builds up on the ideas found
in Meeds and Welling [2014], with the difference that the former does not use synthetic likelihoods nor
ABC to produce training data. Instead they use the MCWM algorithm to collect many log-likelihood
evaluations at all proposed parameter values, then fit a GP regression model on these training data.
Finally, they use the fitted GP regression in a pseudo-marginal algorithm, without ever resorting to
expensive likelihood calculations. As opposed to Drovandi et al. [2018], we make use of both a surro-
gate of the likelihood and (with low frequency) of the expensive likelihood approximated via a particle
filter. We call DA-GP-MCMC a delayed acceptance MCMC algorithm using predictions from GP re-
gression as a surrogate of the likelihood function. Similarly, we later introduce our accelerated version
ADA-GP-MCMC.

The DA-GP-MCMC procedure is detailed in Algorithm 1. Using the notation in Section 2, we now
have that the first stage acceptance probability for DA-GP-MCMC is

α1 = min
(
1,

L̂GP (θ?)

L̂GP (θr−1)
· p(θ?)

p(θr−1)
· g (θr−1|θ?)

g (θ?|θr−1)

)
.

The second stage acceptance probability is

α2 = min
(
1,

L̂u(θ?)

L̂u(θr−1)
· L̂GP (θr−1)

L̂GP (θ?)

)
.

As mentioned in Section 2, for our applications we found it beneficial to use the extended DA-MCMC
introduced in Sherlock et al. [2017]. However, this is in general not a requirement for using DA-
MCMC. The DA-GP-MCMC algorithm is preceded by the following two steps, required to collect train-
ing data and fit the GP regression to these data:

1. Collect training data using MCWM: A MCWM algorithm is run to approximately target p(θ|y),
where a bootstrap particle filter using N particles is employed to obtain L̂u(θ), until the chain has
reached apparent stationarity. When using MCWM we do not target the exact posterior for a finite
number of particles N , however, this is not a concern to us. In fact, we use MCWM as in Drovandi
et al. [2018], namely to “harvest” a large number of (approximate) log-likelihood function evaluations,
in order to learn the dependence between loglikelihoods and corresponding parameters. Indeed, in
this phase we store as training data D all the proposed parameters θ? (regardless of whether these
are accepted or rejected from MCWM) and their corresponding log-likelihoods `u(θ?). Hence, all
parameter proposals and corresponding log-likelihoods from MCWM (excluding some sufficiently
long burnin period) are stored as training data D = {θ∗i ,`∗i

u }, (where here the superscript i ranges
from 1 to the number of iterations post-burnin). We also collect the generated Markov chain θi and
their corresponding log-likelihood estimations in D̃ = {θi ,`i

u}. Basically the difference between D

and D̃ is that parameters θi in the latter are the standard output of a Metropolis-Hastings procedure,
i.e. D̃ may contain “repeated parameters” (when rejections occur). Instead D contains all simulated
proposals. We motivate the use for set D̃ in Section 4.1.

2. Fit the GP model: The Gaussian process model is fitted to the training data D using the method
described in Section 3.
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Algorithm 1 DA-GP-MCMC algorithm

Input: Number of iterations R, a GP model fitted to the training data, a starting value θ0 and corresponding L̂u (θ0).
Output: The chain θ1:R .
1: for r = 1, ...,R do
2: Propose θ? ∼ g ( ·|θr−1). . Run two stages DA scheme
3: Sample from (7) to predict independently `GP (θ?) and `GP (θr−1). Define L̂GP (θ?) := exp(`GP (θ?)) and L̂GP (θr−1) :=

exp(`GP (θr−1)).

4: Compute α1 = min
(
1,

L̂GP (θ?)
L̂GP (θr−1)

· g (θr−1|θ?)
g (θ?|θr−1)

· p(θ?)
p(θr−1)

)
.

5: Draw u ∼U (0,1).
6: if u >α1 then . Early-reject
7: Set θr = θr−1.
8: else
9: Compute L̂u (θ?). . Second stage update scheme

10: Compute α2 = min(1, L̂u (θ?)
L̂u (θr−1)

· L̂GP (θr−1)
L̂GP (θ?)

).

11: Draw u ∼U (0,1).
12: if u ≤α2 then . Accept proposal
13: Set θr = θ?.
14: else
15: Set θr = θr−1. . Reject proposal
16: end if
17: end if
18: end for

4.1 Accelerated delayed-acceptance Gaussian process MCMC

Our accelerated delayed-acceptance Gaussian process MCMC algorithm (ADA-GP-MCMC) is described
in Algorithm 2. Same as for DA-GP-MCMC, also ADA-GP-MCMC is preceded by two phases (collec-
tion of training data and GP regression). After fitting the GP model, the training data is also used to
produce a “selection method” for the four cases introduced in Section 2.1. As already mentioned in
Section 2.1, we can either select which case to use independently of the current proposal θ?, or make
the selection of cases a function of θ?. We introduce three selection methods, where the first one
selects which case to assume independently of θ?, while the other two depend on the proposal.

Biased coin: In the most naive approach, selecting a case between 1 and 3, or between 2 and 4
can be viewed as the result of tossing a biased coin. Hence, we just compute the relative frequency
of occurrence for cases 1, 2, 3 and 4 (see Section 2.1) as observed in the training data. These are
obtained as follows: using the fitted GP model we predict log-likelihoods `GP (θ) ≡ `(θ)|D, η̂ using (7)
for all collected θ ∈ Θ (Θ denotes the matrix of the θ proposals that belong to the training data D).
Then we obtain corresponding L̂GP := exp(`GP (θ)), for all θ ∈ Θ. Now, since all the corresponding
L̂u(θ) are already available as training data, it is possible to compute said relative frequencies p̂ j of
occurrence for each case j ( j = 1, ..,4). At iteration r of the ADA-GP-MCMC algorithm, for proposal
θ?, and supposing we have survived the first stage, then if L̂GP (θ?) > L̂GP (θr−1) we draw from the
Bernoulli(p̂1) distribution and go for case 1 if the draw equals one, and go for case 3 otherwise. If
instead L̂GP (θ?) < L̂GP (θr−1) we draw from Bernoulli(p̂2) and go for case 2 if the draw equals one, and
go for case 4 otherwise.

State-dependent selection: The biased coin model does not take into account the specific value of
the current proposal θ?, that is, the same p̂ j are applied to all proposals during a run of ADA-GP-
MCMC. We could instead estimate p̂ j (θ) using logistic regression or a decision tree model. When
using logistic regression, we have two regression models to estimate, one for cases 1 and 3, and one
for cases 2 and 4. By combining the training data D, and the accepted proposals stored in D̃, we have
access to both the particle filter evaluations corresponding to all generated proposals, and to the ones
for the accepted proposals. Using D and D̃ we can now classify which case each proposal should
belong to. This is done by computing GP predictions, independently for both sets of parameters
stored in D and D̃. Note, after computing the GP predictions we have (i) particle filter predictions
and GP predictions for all proposals in D, i.e. L̂u(θ?) and L̂GP (θ?), and (ii) particle filter predictions
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and GP predictions for all accepted proposals in D̃, hence, L̂u(θr−1) and L̂GP (θr−1). We can now loop
over the proposals in the training data and assign labels for which of the four cases each proposal
belongs to. As an example, after labelling is performed, all proposals in the training data that are
classified to belong to case 1 or 3 are denoted θ?1,3, and an associated indicator vector y1,3, having
1 for proposals belonging to case 1 and 0 for proposals belonging to case 3, is created. We now fit
a logistic regression model on {θ?1,3, y1,3}, where the θ?1,3 take the role of “covariates” and the y1,3 are
binary “responses”. We denote with p̂1(θ) the resulting fitted probability of selecting case 1 (so that
p̂3(θ) = 1− p̂1(θ)). In a similar way, after labelling is performed, all proposals in the training data that
are classified to belong to case 2 or 4 are denoted θ?2,4, with associated indicator vector y2,4. We fit a
logistic regression model on {θ?2,4, y2,4} to obtain p̂2(θ) (and p̂4(θ) = 1− p̂2(θ)).

All the above is preliminary to starting ADA-GP-MCMC. Then we proceed as described for the
biased coin case, with minimal notation adjustment. Namely for a new proposal θ?, if L̂GP (θ?) >
L̂GP (θr−1) we decide between case 1 and 3 by drawing from Bernoulli(p̂1(θ?)). If instead L̂GP (θ?) <
L̂GP (θr−1) we draw from Bernoulli(p̂2(θ?)) to decide between case 2 and 4. Alternatively, in place of
a logistic regression model we can use decision trees, but still employ the same ideas as for logistic
regression. Decision trees can perform better at modeling non-linear dependencies in the data. Im-
portantly, a decision tree does not produce an estimation of the probabilities for each case (hence, we
do not obtain a direct estimation of p̂ j (θ)), instead a classification decision is computed, which will
directly select which case to assume for the given proposal θ?. We obtained the best results with the
decision tree model. We have found beneficial to include, as a covariate in the decision tree model,
the ratio between the GP-based log-likelihood estimates at the current proposal and the previous
log-likelihood estimate.

In conclusion, we have introduced three selection methods. In Algorithm 2 the selection methods
are denoted s13(·) (for selection between case 1 and 3) and s24(·) (for selecting between case 2 and 4),
to highlight the fact that different selection methods are available. In the supplementary material we
describe how to test the fit of the GP model and the performance of the selection method.

Algorithm 2 ADA-GP-MCMC algorithm
Input: Number of iterations R, a GP model fitted to the training data, model s13() to select between case 1 and 3, model s24() to select

between case 2 and 4, a starting value θ0 and corresponding L̂u (θ0).
1: for r = 1, ...,R do
2: Propose θ? ∼ g ( ·|θr−1). . Run A-DA scheme
3: Sample from the predictive distribution of the GP model to obtain independently `GP (θ?) and `GP (θr−1). Define L̂GP (θ?) :=

exp(`GP (θ?)) and L̂GP (θr−1) := exp(`GP (θr−1)).

4: Compute α1 = min
(
1,

L̂GP (θ?)
L̂GP (θr−1)

· g (θr−1|θ?)
g (θ?|θr−1)

· p(θ?)
p(θr−1)

)
.

5: Draw u ∼U (0,1).
6: if u <α1 then . Run second stage of the A-DA scheme
7: if L̂GP (θ?) > L̂GP (θr−1) then
8: Select case 1 or 3 according to the model s13(θ?).
9: Run the accelerated delayed-acceptance scheme for the selected case.
10: else
11: Select case 2 or 4 according to the model s24(θ?).
12: Run the accelerated delayed-acceptance scheme for the selected case.
13: end if
14: else . Early-reject
15: Set θr = θr−1.
16: end if
17: end for

5 Case studies

In Section 5.1 we consider the Ricker model, which has been used numerous times as a toy model to
compare inference methods (e.g. Fearnhead and Prangle [2012], Fasiolo et al. [2016] to name a few).
In Section 5.2 we consider a novel double-well potential stochastic differential equation (DW-SDE)
model for protein folding data, which is a considerably more complex case study. An additional simu-
lation study for the DW-SDE model, diagnostics and further methodological sections are presented in
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the supplementary material. The code can be found at https://github.com/SamuelWiqvist/adamcmcpaper.

5.1 Ricker Model

The Ricker model is used in ecology to describe how the size of a population varies in time and follows{
yt+1 ∼P (φxt+1),

xt+1 = r xt e−xt+εt , εt
i .i .d .∼ N (0,σ2),

(8)

where P (λ) is the Poisson distribution with mean λ. The {xt } process is a latent (i.e. unobserv-
able) Markov process and realizations from the observable process {yt } are conditionally independent
given the latent states, since the εt are assumed independent. Even though the model is fairly sim-
ple its dynamics are highly non-linear and close to chaotic for some choice of the parameter values
[Wood, 2010]. The likelihood function is also both analytically and numerically intractable, if evalu-
ated at parameters very incompatible with the observed data, see Fasiolo et al. [2016] for a review of
inference methods applied to the Ricker model.

We are interested in θ = [logr, logφ, logσ], and we use PMCMC, MCWM, DA-GP-MCMC, and
ADA-GP-MCMC for this task. That is, MCWM is not only used to provide the training data for fitting a
GP regression, but also to provide inference results, in the interest of comparison between methods.
PMCMC is used to provide exact Bayesian inference. A data set containing T = 50 observations, gen-
erated from the model with ground-truth parameters θtr ue = [3.80,2.30,−1.20] at integer sampling
times t ∈ [1,2, ...,T ], and the starting value x0 for the latent state was deterministically set to x0 = 7
and considered as a known constant throughout.

Results obtained with PMCMC and MCWM are produced using in total 52,000 iterations (includ-
ing a burnin period of 2,000 iterations), and N = 1,000 particles (the standard deviation of the log-
likelihood obtained from the particle filter is about 0.5). The proposal distribution was adaptively
tuned using the generalized AM algorithm (Andrieu and Thoms, 2008, Mueller, 2010), which is set to
target an acceptance rate of 40%. For DA-GP-MCMC algorithm, we used the last 2,000 iterations of
a previous MCWM run to obtain training data. Prior to fitting the GP model we removed the 10% of
the cases having the lowest log-likelihood values from the training data, as these cases badly affected
the GP predictions. After fitting the GP model, we use the “extended” version of the DA algorithm
discussed in section 2 and set βM H = 0.15 (that is a 15% probability to skip the delayed-acceptance
step and execute a regular Metropolis-Hastings step), N = 1,000, and ran DA-GP-MCMC for further
50,000 iterations. The Gaussian kernels for the Metropolis random walks, g and g̃ , were kept fixed
during the entire run of the DA-GP-MCMC algorithm: specifically, g̃ used the covariance matrix Σ
returned by the final iteration of the MCWM algorithm that was used to collect training data, and g
was set to a kernel having slightly larger terms in the covariance, i.e. we used a covariance a2Σ with
a > 1. An important modification of DA-GP-MCMC as described in Algorithm 1, is that in our case
studies the value L̂u(θr−1) at the denominator of α2 is “refreshed”. Hence, we employ a MCWM up-
dating procedure in the second stage. This is to obtain a reasonable high acceptance rate and to avoid
problems with stickiness. The same modification was used for ADA-GP-MCMC. At the second-stage
of the r -th iteration of ADA-GP-MCMC, a decision tree model was used to select a case from the four
ones discussed in sections 2.1 and 4.1.

Wide uniform priors were employed for all unknown parameters; p(logr ) ∼ U (0,10), p(logφ) ∼
U (0,4) and p(logσ) ∼U (−10,1). The starting values were also deliberately set far away from the true
parameter values: logr0 = 1.10, logφ0 = 1.10, and logσ0 = 2.30. Results are presented in Table 1 and
Figure 1. We can conclude that all parameters are well inferred. The results for the different algo-
rithms are also similar. The parameter with the highest estimation uncertainty is σ, which is in not
surprising since σ is the parameter that governs the noise in the model, and this is often the hardest
parameter to estimate from discretely observed measurements. Notice that results produced by ADA-
GP-MCMC are essentially identical to those from DA-GP-MCMC. We find this very encouraging since
the most relevant way to judge inference results from the accelerated ADA procedure is to compare
those to the standard DA algorithm rather than, say, PMCMC.
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Figure 1: Marginal posteriors for the Ricker model: PMCMC (blue solid line), MCWM (blue dashed line), DA-GP-MCMC
(red solid line), and ADA-GP-MCMC (red dashed line). Priors distributions are denoted with green lines (these look “cut” as
we zoom on the bulk of the posterior), and the true parameter values are marked with black vertical lines.

Table 1: Ricker model: Posterior means (2.5th and 97.5th quantiles) for PMCMC, MCWM, DA-GP-MCMC, and ADA-GP-
MCMC.

True value PMCMC MCWM DA-GP-MCMC ADA-GP-MCMC

logr 3.80 3.75 [3.53, 4.00] 3.75 [3.51, 4.05] 3.74 [3.54, 3.96] 3.73 [3.54, 3.97]
logφ 2.30 2.29 [2.21, 2.36] 2.29 [2.20, 2.37] 2.29 [2.23, 2.36] 2.29 [2.22, 2.36]
logσ -1.58 -1.47 [-2.13, -0.85] -1.46 [-2.3, -0.75] -1.5 [-2.12, -0.95] -1.51 [-2.16, -0.92]

Properties of the algorithms are presented in Table 2. Before discussing these results, we empha-
size that the benefits of our accelerated procedure are to be considered when the case study has a like-
lihood that is computationally very challenging, and this is not the case for the present example, see
instead Section 5.2. The ADA-GP-MCMC algorithm is the fastest algorithm, though only marginally
faster than DA-GP-MCMC (4.2 times faster than MCWM and 1.09 times faster than DA-GP-MCMC),
while MCWM is the slowest one. Not surprisingly, PMCMC is almost twice as fast as MCWM, and this
is because PMCMC only requires one evaluation of the particle filter per iteration, while the MCWM
requires two evaluations. The four algorithms are, however, essentially equally efficient, as from the
min ESS/sec values.

The estimated probabilities p̂ j for the four different cases characterizing ADA-GP-MCMC (recall
that p̂3 = 1− p̂1 and p̂4 = 1− p̂2), and the percentage for each case to hold, i.e. the probability that the
selected case indeed is the correct one, are presented in Table 3. We notice that the probability for
the different cases vary considerably, and also that the percentages that the assumption holds vary
for the different cases. We also notice that the performance of the selection algorithm is much better
for case 2 than for case 4: this is due to the unbalance of the two classes, meaning that in our training
data case 2 occurs more frequently than case 4, and therefore it is more difficult to estimate the latter
case accurately.

5.2 Double-well potential stochastic differential equation model for protein folding data

We now consider a computationally intensive case study concerning statistical inference for protein
folding data. The challenges for this case study are: (a) the sample size is large, data being a long
time-series (about 2.5×104 observations), (b) the non-linear dynamics, and (c) the presence of local
perturbations. “Protein folding” is the last and crucial step in the transformation of genetic informa-
tion, encoded in DNA, into a functional protein molecule. Studying the time-dynamics of real protein
folding dynamics results in a very high dimensional problem, which is difficult to analyze using ex-
act Bayesian methodology. Therefore, for reasons of simplification and tractability, the dynamics of a
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Table 2: Ricker model: Efficiency of PMCMC, MCWM, DA-GP-MCMC, and ADA-GP-MCMC. Timings for (A)DA-GP-
MCMC do not include the training data collection and the fitting of the GP model.

Seconds per
1000 iter.

Acceptance
rate (%)

min ESS/sec
Skip DA run

MH update (%)
Early-

rejections (%)

PMCMC 20.26 40.21 2.53 NA NA
MCWM 39.83 39.70 1.26 NA NA
DA-GP-MCMC 10.32 7.66 1.99 14.75 81.05
ADA-GP-MCMC 9.46 7.89 1.75 15.02 80.49

Table 3: Ricker model: Estimated probabilities for the different cases and percentage of times the assumption for the
different cases in the ADA-GP-MCMC algorithm holds.

Case 1 Case 2 Case 3 Case 4

Est. probab. (p̂1,p̂2,p̂3,p̂4) 0.59 0.91 0.41 0.09
Perc. assum. holds (%) 73.51 88.24 39.80 21.21

protein are often modelled as diffusions along a single “reaction coordinate”, that is one-dimensional
diffusion models are considered to model a projection of the actual dynamics in high-dimensional
space (Best and Hummer, 2011).

The (reaction coordinate) data is in Figure 2. We notice that data have a marginal bimodal struc-
ture, with irregular change-points where the mean of the data shifts, and a local noisy structure. A
class of models shown to be suitable for statistical modeling of protein folding (at least when these
data result into a low-dimensional projection of the original data) is given by stochastic differential
equations (SDEs), see Forman and Sørensen [2014] and Picchini and Forman [2016]. Monte Carlo in-
ference methods are very computationally intensive for these models (in Picchini and Forman, 2016
data sub-sampling and special approximate Bayesian computation methods were used to acceler-
ate the inference problem). We now introduce a novel double-well potential stochastic differential
equation (DWP-SDE) model for protein folding data. This model is faster to simulate than the one
proposed in Forman and Sørensen [2014] and Picchini and Forman [2016]. The DWP-SDE model is

0 5000 10000 15000 20000 25000

5

10

15

20

25

30

35

40

(a)

5 10 15 20 25 30 35 400

250

500

750

1000

1250

1500

1750

(b)

Figure 2: Data time course (left) and its marginal distribution (right).

defined as 
zt = xt + yt ,

d xt =−∇V (xt )d t +σdW x
t ,

d yt =−κyt d t +
√

2κγ2 dW y
t .

(9)

Here {zt } is the observable process, consisting in the sum of the solutions to the double-well poten-
tial SDE process {xt } and process {yt }, the latter being unobservable and representing autocorrelated
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error. Here ∇V (·) is the gradient of the double-well potential function V (·) with respect to xt , further
specified by six parameters introduced in (10). Finally W X

t and W Y
t are independent standard Wiener

processes, that is their increments dW X
t and dW Y

t are independent, Gaussian distributed with zero
mean and variance d t . We consider the following double-well potential function

V (x) = 1

2

∣∣∣1

2
|x − c|p1 −d + g x

∣∣∣p2 + 1

2
Ax2, (10)

which is based on the potential described in equation 1 in Fang et al. [2017]. The formulation in
(10) is fairly general, in the sense that many different potentials can be specified by varying its pa-
rameters. The parameters in (10) have the following interpretation: c specifies the location for the
potential (i.e. where the potential is centered); d determines the spread of the potential; A is an
asymmetry parameter; g compresses the two modes of the long term (stationary) density of process
{X t }; parameters p1 and p2 control the shape of the two modes (if the parameters p1 and p2 are set
to low values the long term probability distribution becomes more flat with less distinct modes); σ
governs the noise in the latent {X t } process. The error-model Yt is an Ornstein-Uhlenbeck process
specified by two parameters: κ is the autocorrelation level, and γ is the noise intensity. In princi-
ple, inference should be conducted for [logκ, logγ, log A, logc, logd , log g , log p1, log p2, logσ]. How-
ever, the model parameters A and g are “stiff”, i.e. small changes in their values result in consider-
able changes in the output, and are therefore hard to estimate. Estimating all the parameters of the
DWP-SDE model is also a complex task since a larger data set seems needed to capture the station-
ary distribution of the data. We will therefore consider the easier task of estimating the parameters
θ = [logκ, logγ, logc, logd , log p1, log p2, logσ]. The remaining parameters, A and g , will be fixed to
arbitrary values, as discussed later.

Simulating the yt process in (9) is easy since the transition density for the Ornstein-Uhlenbeck
process process is known. We have that

yt+∆t |yt = x ∼N (xe−κ∆t ,γ2(1−e−2κ∆t )),

where ∆t > 0. The transition density for the xt process is not analytically known, and we use the
Euler-Maruyama scheme to propagate the xt process, that is we use

xt+δt |xt = x ≈ x −∇V (x)δt +σεt ,

where εt ∼N (0,δ2
t ), and δt > 0 is the stepsize for the Euler-Maruyama numerical integration scheme

(typically δt ¿∆t ).
Let us now consider the likelihood function for the zt process in (9), for a set of discrete observa-

tions z = [z1, . . . , zT ] that we assume observed at integer sampling times t ∈ [1,2, ...,T ]. Corresponding
(unobservable) values for the X t process at the same sampling times are [x1, . . . , xT ]. In addition, we
denote with x the set x = [x0, x1, ..., xT ], which includes an arbitrary value x0 from which simulations
of the latent system are started. The likelihood function can be written as

L(θ) = p(z|θ) = p(z1|θ)
T∏

t=2
p(zt |z1, . . . , zt−1,θ),

=
∫

p(z1, . . . , zT |x0, . . . xT ,θ)p(x0, . . . , xT |θ)d x0 · · ·xT ,

=
∫

p(z1, . . . , zT |x0, . . . xT ,θ)p(x0)
T∏

t=1
p(xt |xt−1,θ)d x0 · · ·xT .

The last product in the integrand is due to the Markov property of X t . Also, we have introduced a den-
sity p(x0), and if x0 is deterministically fixed (as in our experiments) this density can be discarded. We
cannot compute the likelihood function analytically (as the integral is typically intractable), but we
can use sequential Monte Carlo (for example, the bootstrap filter in supplementary material) to com-
pute an unbiased approximation p̂(z|θ), which allows us to use PMCMC or MCWM for the inference.
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Furthermore, the Zt process is a transformation of the measurement noise that follows an Ornstein-
Uhlenbeck process, and the density for p(z1, . . . , zT |x0, . . . xT ,θ) is known [Picchini and Forman, 2016].
We have that

p(z1, . . . , zT |x0, . . . xT ,θ) = 1

γ
·φ

( z1 −x1

γ

)
·

T∏
t=2

1

γ
p

1−e−2κ∆t
·φ

( zt −xt −e−κ∆t (zt−1 −xt−1)

γ
p

1−e−2κ∆t

)
,

where ∆t = ti − ti−1, and φ(·) denotes the density function for the standard Gaussian distribution.
We now explain how an unbiased approximation to p(z|θ) is computed. To facilitate this expla-

nation we introduce the following notation: let x1:N
t−1 denote the set of N particles we have at time t −1

before resampling is performed (see the bootstrap filter algorithm in the supplementary material).
Let x̃1:N

t−1 denote the resampled particles that are used to propagate the latent system forward to time
t (using Euler-Maruyama). We approximate p(z|θ) unbiasedly with p̂(z|θ) as

p̂(z|θ) = p̂(z1|θ)
T∏

t=2
p̂(zt |z1, . . . , zt−1,θ) = p̂(z1|θ)

{ T∏
t=2

1

N

N∑
n=1

wn
t

}
,

where the weights wn
t are

wn
t = 1

γ
p

1−e−2κ∆t
·φ

( zt −xn
t −e−κ∆t (zt−1 − x̃n

t−1)

γ
p

1−e−2κ∆t

)
, t ≥ 2

and

p̂(z1|θ) = 1

N

N∑
n=1

wn
1 , with wn

1 = 1

γ
·φ

( z1 − x̃n
1

γ

)
.

5.2.1 Inference for protein folding data

We now consider the data in Figure 2. We fixed A and g to A =−0.0025 and g = 0 as these parameters
are difficult to identify, as already mentioned. Ideally, we should estimate A and g , however, the data
that we have access to seem to be not informative enough to infer all parameters simultaneously. We
set Gaussian priors as follows (notice these are not really motivated by biophysical considerations, we
just set priors to be weakly informative): p(logκ) ∼N (−0.7,0.82), p(logγ) ∼N (−0.7,0.82), p(logc) ∼
N (3.34,0.1732), p(logd) ∼N (2.3,0.42), p(log p1) ∼N (0,0.52), p(log p2) ∼N (0,0.52), and p(logσ) ∼
N (0.69,0.52). The starting parameter values were set to exp(θ0) = [0.5,2,20,15,1.5,1.5,2.5].

We use MCWM, DA-GP-MCMC, and ADA-GP-MCMC to estimate the unknown parameters. For
each iteration of MCWM we compute 4 unbiased approximations of the likelihood function, one for
each core of our computer, using N = 250 particles for each of the 4 likelihoods. Taking the sample
average of these likelihoods produces another unbiased estimate of the likelihood, but with a smaller
variance than the individual ones (this is obviously true and also studied in detail in Drovandi, 2014).
However, given the length of the time-series, the obtained approximated likelihood is still fairly vari-
able, and should we use PMCMC this would produce sticky chains. Therefore MCWM comes to our
help for this example, as “refreshing” the denominator of the acceptance ratio helps escaping from
sticky points, occurring when the likelihood approximation is overestimated.

We used the following settings with MCWM: 20,000 iterations in total and a burnin of 10,000 it-
erations. The proposal distribution used the generalized AM algorithm, set to target an acceptance
rate of 15%. The training part for DA-GP-MCMC and ADA-GP-MCMC was the output of an MCWM
algorithm with the settings specified above. We fit a GP model to the output from the first 5,000
iterations of MCWM obtained after burnin. In a similar manner as for the Ricker model the two tran-
sition kernels g and g̃ were based on the covariance matrices returned by the final iteration of the
MCWM algorithm. A decision tree model, similar to the one used for the Ricker model, was used for
the selection problem. Then we ran DA-GP-MCMC and ADA-GP-MCMC for 10,000 iterations, using
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βM H = 0.15. Same as with the Ricker model, a MCWM-style updating scheme was used in the second
stage of both DA and ADA algorithms.

Marginal posteriors are in Figure 4, and inference results are in Table 4 and, same as for the Ricker
model, we conclude that all three algorithms generate similar posterior inference. Algorithmic prop-
erties are in Table 5, and we conclude that in this case we obtain a higher speed-up compared to
the Ricker model. Results are commented in detail in section 5.3. The estimated probabilities for
the selection of the four different cases are in Table 6, and we observe that case 4 is the least likely
case. Similarly as for the Ricker model, and due to the same reasons, the performance of the selection
algorithm is much better for case 2 than for case 4.

To further illustrate inference results, we randomly pick posterior draws from the high-density
region of the posterior distribution, and conditionally to these we run forward simulations using the
model in (9). In Figure 3 we show three such forward simulations obtained from parameters sam-
pled via MCMW and ADA-GP-MCMC. These look similar, which is not surprising since the posterior
distribution that we obtain for the two methods also are similar. The number of regime switches ap-
pears underestimated compared to data. The forward simulations also show that we over-estimate
the probability mass in the folded regime. This is likely due to not having estimated A and g from
data. The values set for these two parameters are likely suboptimal, and (conditionally to those) the
resulting inference for the remaining parameters is probably biased. We believe we require a longer
dataset to be able to fit correctly all parameters, including A and g .

Table 4: DWP-SDE model: Posterior means (2.5th and 97.5th quantiles) for MCWM, DA-GP-MCMC, and ADA-GP-MCMC.

MCWM DA-GP-MCMC ADA-GP-MCMC

logκ 0.73 [0.42,1.19] 0.74 [0.45,1.12] 0.76 [0.42,1.29]
logγ 0.53 [0.45,0.59] 0.52 [0.44,0.6] 0.52 [0.44,0.59]
logc 3.09 [3.08,3.11] 3.1 [3.08,3.1] 3.1 [3.08,3.11]
logd 3.36 [2.94,3.84] 3.32 [2.89,3.89] 3.32 [2.91,3.81]
log p1 0.46 [0.35,0.57] 0.45 [0.34,0.58] 0.45 [0.34,0.56]
log p2 -0.08 [-0.26, 0.09] -0.07 [-0.26,0.08] -0.08 [-0.25,0.07]
logσ 0.68 [0.56,0.8] 0.68 [0.57,0.78] 0.69 [0.57,0.82]

Table 5: DWP-SDE model: Efficiency of MCWM, DA-GP-MCMC, and ADA-GP-MCMC. Timings for (A)DA-GP-MCMC do
not include the training data collection and the fitting of the GP model.

Minutes per
1000 iter.

Acceptance
rate (%)

min ESS/min
Second stage

direct (%)
Early-

rejections (%)

MCWM 75.88 18.5 0.39 NA NA
DA-GP-MCMC 24.81 3.96 0.69 15.27 68.95
ADA-GP-MCMC 15.37 3.34 0.94 14.52 69.21

Table 6: DWP-SDE model: Estimated probabilities for the different cases and percentage of times the assumption for the
different cases in the ADA-GP-MCMC algorithm holds.

Case 1 Case 2 Case 3 Case 4

Est. prob. 0.22 0.91 0.78 0.09
Perc. assum. holds (%) 43.14 87.67 65.92 25.38

5.3 Analysis of ADA-GP-MCMC

In the following we simplify the notation and refer to ADA-GP-MCMC and DA-GP-MCMC as ADA
and DA. To analyze the runtime speed-up produced by ADA we execute multiple runs of both DA and
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Figure 3: Trajectories in blue are forward simulated from the DWP-SDE using draws from MCWM (a) and ADA-GP-MCMC
(c). Black trajectories are data. Corresponding marginal distributions from MCWM (b) and ADA-GP-MCMC (d).

ADA. We focus on four metrics measured over 1,000 MCMC iterations: runtimes for DA and ADA;
the speed-up attained by ADA, expressed as how much faster ADA is in comparison with DA; the
number of particle filter evaluations in the second stage for DA and ADA (notice, in the DA case this
corresponds exactly to the number of times the second stage is reached); the reduction in the number
of particle filter evaluations for ADA compared to DA. Since we are interested in analyzing the speed-
up potential of ADA and not necessarily the inference results we set βM H = 0, hence, we never skip
the ADA/DA part of the algorithms.

Furthermore, we run our analyses independently on 100 simulated datasets (see the supplemen-
tary material) using 1200 particles equally distributed across 4 cores. Results are in Figure 5. We
conclude that ADA is about 2 to 4 times as fast as DA. The number of particle filter evaluations for
ADA is reduced by a factor of about 3.

Regarding ADA, it is interesting to study how often each of the four possible cases illustrated in
Section 2.1 are selected, and how likely it is that we run a particle filter conditionally on the selected
case. Table 7 reports our findings for the Ricker model and DWP-SDE. We notice that proposals are not
equally likely to be sent to each of the four cases, and that case 4 is the least likely case for a proposal
to be sent to. It is perhaps surprising to observe the marked difference in the percentages of proposals
sent to case 3 and case 4, as both cases correspond to likelihood ratios (ratio of GP likelihoods and
ratio of particle filter likelihoods) that disagree in sign at the evaluated proposal. Furthermore, we
can also conclude that the probability of running the particle filter varies for the different cases. Not
surprisingly, given how the cases are defined, the probability for case 2 is 1 and is 0 for case 4. We also
note that the probability of running the particle filter in case 3 is much lower compared to case 1: this
means that whenever case 1 is selected for proposal θ? it turns that the event u < L̃(θr−1)/L̃(θ?) is less

likely than the event having the opposite inequality. If instead case 3 is selected, event u > L̃(θr−1)
L̃(θ?)

is
less likely than the event having the opposite inequality.
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Figure 4: Marginal posteriors for the DWP-SDE model: MCWM (blue solid line), DA-GP-MCMC (red solid line), and ADA-
GP-MCMC (red dashed line). Priors are denoted with green lines (these look “cut” as we zoom on the bulk of the posterior).

Table 7: Percentage of proposals sent to the different cases (mean over 100 iterations of the ADA-MCMC algorithm),
and probability of running the particle filter given the specific selected case (mean over 100 iterations of the ADA-MCMC
algorithm).

Percentage of proposals
in each case (%)

Prob. of running particle
filter in each case

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

Ricker model 62.59 12.61 21.31 3.59 0.82 1 0.40 0

DWP-SDE
protein folding data.

18.80 6.82 73.28 1.09 0.98 1 0.024 0

6 Summary

We have provided ways to speed up MCMC sampling by introducing a novel, approximate version
of the so-called “delayed-acceptance” MCMC introduced in Christen and Fox [2005]. More specifi-
cally, our ADA-MCMC algorithm can be used to accelerate MCMC sampling for Bayesian inference
by exploiting possibilities to avoid the evaluation of a computationally expensive likelihood function.
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Figure 5: Speed-up analysis for the DWP model across 100 independent simulations, each for 1000 iterations, using the
simulated data set. Subfigures: a) Run-times (sec) for DA (left boxplot) and ADA (right boxplot); b) Speed-up of ADA relative
to DA; c) Number of particle filter evaluations in the second stage of DA (left) and ADA (right); d) Reduction in number of
particle filter evaluations in the second stage for ADA compared to DA.

While the standard DA-MCMC only accepts proposals by evaluating the likelihood function associ-
ated to the exact posterior, instead ADA-MCMC in some specific cases can accept proposals even
without the evaluation of the likelihood. Clearly, this is particularly relevant in statistical experiments
where the likelihood function is not analytically available and is expensive to approximate. This is
typical when unbiased approximations of the likelihood are used in pseudo-marginal algorithms for
exact Bayesian inference [Andrieu and Roberts, 2009]. Another situation where ADA-MCMC comes
useful is when the likelihood function turns expensive due to the size of the data.

Both DA-MCMC and ADA-MCMC depend on the construction of surrogates of the likelihood
function. Unfortunately, producing a useful (i.e. informative) surrogate of the likelihood has its own
cost. In fact, the construction of the surrogate model is typically the result of a “learning” procedure,
where the output of a preliminary MCMC run (obtained using the expensive likelihood) is used to
understand the relationship between simulated parameters and simulated data (e.g. using neuronal-
networks as in Papamakarios et al., 2018), or between simulated log-likelihoods and parameter pro-
posals (as in Drovandi et al., 2018).

ADA-MCMC samples from an approximate posterior distribution, while the original DA-MCMC
algorithm is an exact algorithm. However, our case studies suggest that the approximative posterior
inference returned by ADA-MCMC is close to the one obtained with DA-MCMC and Markov-chain-
within-Metropolis (MCWM). This result is possibly connected with the quality of the surrogate model.
If a poor surrogate model was used, the inference obtained using ADA-MCMC could be biased com-
pared to DA-MCMC. The reason for this is that, in some cases, ADA-MCMC allows us to accept a
proposal merely based on the surrogate model.
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ADA-MCMC only generates an acceleration in the computations if the evaluation of the likelihood
is time-consuming. If this evaluation is relatively fast, ADA-MCMC does not bring any significant
gain compared to DA-MCMC (and in this case, any delayed-acceptance procedure should not be
considered in the first place). An example of the latter case is shown with the Ricker model case
study. However, for the DWP-SDE model, each likelihood evaluation using a particle filter requires
about 2-10 seconds, depending on how many particles we use, and the benefits of using our novel
approach are clear. Also, for this specific application, the expensive particle filter is invoked 2 to 5
times less often for ADA-MCMC than for DA-MCMC.

ADA-MCMC is not limited to the Bayesian setting and can be used to sample from a generic dis-
tribution, as mentioned in Section 2.1. Furthermore, when considering the inference problem in a
Bayesian setting, ADA-MCMC can straightforwardly be paired with some other surrogate model than
the Gaussian process regression model we employ. Hence, ADA-MCMC is a general algorithm for
Monte Carlo sampling that can be exploited in multiple ways, other than the ones we have illustrated.

SUPPLEMENTARY MATERIAL

Further methodological tools: Details on PMCMC, MCWM, the bootstrap filter, GP regression, di-
agnostics, further simulation studies and setup for the implementations. (PDF file).

Julia code: the Julia code used to run the experiments is available at:
https://github.com/SamuelWiqvist/adamcmcpaper.
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1 Technical details for the GP model

Following Drovandi et al. [2018], the unknown log-likelihood function is assumed to be quadratic in
θ. A quadratic mean function m for the GP model is therefore specified as

mβ(θ) =β0+
d∑

i=1
βiθi +

d∑
j≥i=1

βi jθiθ j =
[
1 θ1 θ2 . . . θdθd

]
. (1)

In (1) β is a vector of unknown regression coefficients β= [β1,β2, . . . ,βdd ]>. We also assume that the
log-likelihood function is fairly smooth, and we use an automatic relevance determination squared
exponential covariance function (ardSE), defined as

kφ(θ,θ′) =σk exp(−1/2(θ−θ′)>P−1(θ−θ′))+σ1(θ = θ′),
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where P is a diagonal matrix, with diagonal entries [l 2
1 , ..., l 2

dd ]. The parameters of the covariance

function are φ = [
σ σk l1 . . . ldd

]
, where σ is the “nugget”, σk the output standard deviation,

and the li ’s the length scales for each dimension. The full set of parameters for the GP model is
therefore η= [

φ β
]
.

We first pre-estimate β alone using linear regression, to ease the joint optimization problem de-
scribed in a moment. When pre-estimating β we remove a small number of cases having very low
likelihood values. These are considered as outliers and are removed in order to ease the optimization
problem. Once this first estimate of β is available, the GP model is fitted to D using maximum likeli-
hood, i.e. both parameters in η= [

φ β
]

are jointly estimated (a starting value for β is provided by its
pre-estimated value) by minimizing the GP negative log-likelihood g (η) with respect to η, where

g (η) =− log p(`(θ)|η) =
(`(θ)−mβ(θ))>Kφ(Θ,Θ)−1(`(θ)−mβ(θ))+ log(detKφ(Θ,Θ))+ c.

(2)

We used det(A) to denote the determinant of the matrix A, while c is a constant not affecting the
optimization. Here Θ denotes the matrix of the θ proposals that belong to the training data D. The
matrix Kφ(Θ,Θ) is the covariance matrix for all the proposals in the matrix Θ. The gradient for the
negative log-likelihood (2) is analytically known, and we have that

∂g

∂β
=−2mβ(θ)>Kφ(Θ,Θ)−1(`(θ)−mβ(θ)β),

and

∂g

∂φi
=−(`(θ)−mβ(θ)β)>Kφ(Θ,Θ)−1 ∂Kφ(Θ,Θ)

∂φi
Kφ(Θ,Θ)−1(`(θ)−mβ(θ)β)+

tr(Kφ(Θ,Θ)−1 ∂Kφ(Θ,Θ)

∂φi
),

where tr(A) denotes the trace of the matrix A. We can now use a gradient-based optimization algo-
rithm (and in practice we use the conjugate gradient algorithm) to fit the GP model to the training
data D, and we obtain η̂= [

φ̂ β̂
]

by minimizing (2).
It is simple, and computationally cheap, to generate predictions from the fitted GP model since

the predictive distribution is known in closed-form [Rasmussen and Williams, 2006]. This predictive
distribution is just the posterior distribution of `(θ) given the training data D and conditionally to η̂.
That is, for a newly proposed parameter θ?

`(θ?)|D, η̂∼N ( ¯̀(θ?),Var(`(θ?))), (3)

where

¯̀(θ?) = mβ̂(θ?)+Kφ̂(θ?,Θ)Kφ̂(Θ,Θ)−1(`(Θ)−mβ̂(Θ)), (4)

and

Var(`(θ?)) = Kφ̂(θ?,θ?)−Kφ̂(θ?,Θ)Kφ̂(Θ,Θ)−1Kφ̂(Θ,θ?). (5)

Notice that the (expensive) matrix inversion Kφ̂(Θ,Θ)−1 in (4)–(5) should only be produced once, since
it does not depend on the proposed θ?.

The predictive distributions allows for three different types of predictions:

1. Mean prediction: The log-likelihood function at a certain θ? is deterministically predicted from
its mean value at θ?, that is ¯̀(θ?).

2. Noisy prediction: Predicting the log-likelihood by sampling from the predictive distribution (3)
and including the “nugget” σ in Kφ(θ?,θ?). Hence, Kφ(θ?,θ?) is computed as Kφ(θ?,θ?) =
σk +σ.
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3. Noise-free prediction: Sample from (3) where the “nugget” σ is not included, thereby obtaining
a non-noisy prediction. The term Kφ(θ?,θ?) is therefore computed as Kφ(θ?,θ?) =σk .

Same as in Drovandi et al. [2018], we are interested in modeling `(θ), and not a noisy estimate of it,
and we will therefore use noise-free predictions. In conclusion, in our delayed-acceptance algorithms
we will generate proxies to the unknown `(θ) by sampling from the GP predictive (3) using a noise-
free approach.

2 Particle marginal methods for state-space models

The challenge of approximating the likelihood function for complex models with “intractable likeli-
hoods” has generated a large body of literature in the past fifteen years, most notably approximate
Bayesian computation (ABC, see the reviews Sisson and Fan, 2011 and Karabatsos and Leisen, 2017)
and pseudo-marginal (particle) MCMC algorithms (Beaumont, 2003, Andrieu and Roberts, 2009, An-
drieu et al., 2010). Pseudo-marginal algorithms in particular have found an immediate success in
inference for state-space models using sequential Monte Carlo (or particle filters); reviews are Jacob
[2015] and Kantas et al. [2015].

Pseudo-marginal algorithms build on the interplay between Markov chain Monte Carlo (MCMC),
importance sampling and sequential Monte Carlo (SMC, or particle filters) algorithms. The crucial
result is that when the likelihood p(y |θ) is not available analytically but obtaining a non-negative
unbiased estimator p̂(y |θ) is possible, then a Metropolis-Hastings algorithm using p̂(y |θ) instead of
p(y |θ) will generate a Markov chain having p(θ|y) as stationary distribution. This means that it is
possible to target the exact posterior even when we deal with an (unbiased) approximation to the
likelihood function, rather than the exact likelihood. Andrieu and Roberts [2009] discuss the prob-
lem by estimating unbiasedly the unavailable likelihood using N draws from an importance sampler,
and the remarkable result is once more that exact Bayesian sampling from p(θ|y) is possible for any
finite value of N . Andrieu et al. [2010] frame their particle MCMC (PMCMC) approach for a large
class of statistical models, including state-space models (SSM, Cappé et al., 2005). For SSM an unbi-
ased estimator p̂(y |θ) is given by particle filters using N particles (here and in the following we write
p̂(y |θ) ≡ p̂N (y |θ) since the resulting inference for θ is theoretically unaffected by the value of N ).
In Andrieu et al. [2010] the PMCMC algorithms PMMH (particle marginal Metropolis-Hastings) and
PG (particle Gibbs) target the posterior p(θ, x1:T |y1:T ) exactly, where y1:T is the sequence of measure-
ments from process {yt } in (6) collected at T discrete times which, to simplify the notation, we assume
to be the integers {1,2, ...,T }. With x1:T we denote the corresponding latent (unobservable) dynam-
ics, see (6). We employ the following notation for sequences of variables z1:T ≡ {z1, ..., zT }. There-
fore PMMH and PG solve simultaneously the parameter inference and the state filtering problem. In
the next sections we clarify how these pseudo-marginal methods (PMM) and the delayed-acceptance
(DA) framework interact, while emphasizing once more that in order to run a DA algorithm, including
our accelerated DA method, the PMM framework is not necessary, nor is our methodology specific
for dynamic models such as SSM but can be applied also to “static” models.

A SSM can be written as{
yt ∼ p(yt |xt ;θy )

xt ∼ p(xt |xs ,θx ), x0 ∼ p(x0), t0 ≤ s < t ,
(6)

where x0 ≡ xt0 is a random initial state with initial distribution p(x0), observations yt ∈Rdy depend on
a finite dimensional unknown parameter θy , and observations are conditionally independent given
the latent state {xt }t≥t0 , with xt ∈ Rdx , and dx ,dy ≥ 1. Here {xt } is a continuous Markov process
equipped with a transition density p(xt |xs , ·) for s < t and depending on another finite dimensional
unknown parameter θx . Therefore we have that θ = (θx ,θy ) is the parameter object of our inference.
In this work we consider posterior inference for θ, hence our ideal target is p(θ|y1:T ), however, in-
stead of calling the algorithms “pseudo-marginal”, we call them PMCMC, since we use particle filters
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to approximate the likelihood function. But recall that we are not interested in the filtering problem
for x1:T .

Despite the existence of these powerful and flexible algorithms, computing an (unbiased) estima-
tor of the likelihood function can be computationally time-consuming for complex models. Compu-
tationally cheap surrogate models have therefore been used to accelerate instances of the PMCMC
algorithm. As an example, in Drovandi et al. [2018] a surrogate model based on Gaussian processes
(GP) is used to replace the time-consuming sequential Monte Carlo estimation of the likelihood func-
tion. After an initial, computationally expensive “training phase”, a GP regression model is fitted to the
output of the training phase (consisting of proposed parameter values and log-likelihoods estimated
via particle filters), and the estimated GP is then used as a (cheap) surrogate of the log-likelihood
function, allowing for considerable computational acceleration in the MCMC sampling.

Another approach is to not entirely replace the sequential Monte Carlo estimation of the like-
lihood function, but only compute these estimations for parameter proposals that are not “early-
rejected” by the surrogate model. This is a delayed-acceptance (DA) approach, used for example in
Golightly et al. [2015] and Sherlock et al. [2017]. As already mentioned, DA-MCMC has two impor-
tant properties: the ergodicity of the chain is preserved, and the resulting Markov chain targets the
true posterior distribution of θ. In Golightly et al. [2015] the surrogate model is based on Langevin
diffusion approximations and linear noise approximations. In Sherlock et al. [2017] the surrogate es-
timation of the likelihood function is computed using previous estimations via a search-tree. Hence,
quite different surrogate models can be employed and still resulting in an valid DA-MCMC for exact
Bayesian inference.

2.1 Particle Markov chain Monte Carlo

The likelihood function for the SSM (6) can be written as

p(y1:T |θ) = p(y1|θ)
T∏

t=2
p(yt |y1:t−1;θ)

where

p(yt |y1:t−1;θ) =
∫

p(yt |xt ;θ)p(xt |y1:t−1;θ)d xt

and the latter integral can be efficiently approximated by drawing N “particles” xn
t ∼ p(xt |y1:t−1; ·)

then taking the sample average
∑N

n=1 p(yt |xn
t ; ·)/N , and similarly to approximate p(y1|·). This can be

accomplished using sequential Monte Carlo methods, such as the bootstrap particle filter [Gordon
et al., 1993] given in Algorithm 1. The bootstrap filter returns a non-negative unbiased estimator of
the likelihood function L̂PF ≡ p̂(y1:T |θ), where the expectation of L̂PF is taken with respect to the
law underlying the generation of the random variates necessary for the implementation of Algorithm
1. For successful implementations, the number of particles N should be tuned so that the standard
deviation of the estimated log-likelihood log L̂PF does not exceed the value 2 at any given θ, to assure
good performance of the PMCMC [Pitt et al., 2012], and avoid problems of sticky chains [Sherlock
et al., 2015].

The particle Markov chain Monte Carlo algorithm (PMCMC) in Algorithm 2 uses L̂PF in an oth-
erwise standard Metropolis-Hastings algorithm, to sample from the parameter posterior p(θ|y1:T )
exactly, for any value of N (Beaumont, 2003, Andrieu and Roberts, 2009), even though N does have
an impact on the mixing properties of the algorithm, as discussed below. An algorithm closely related
to PMCMC is Monte Carlo within Metropolis (MCWM), given in Algorithm 3 and due to Beaumont
[2003] (but see Medina-Aguayo et al., 2016 for theoretical properties). The only difference between
MCWM and PMCMC is that in MCWM the likelihood value at the denominator of the acceptance
probability is re-estimated anew as L̂PF (θr−1). That is, at each iteration of MCWM the estimated like-
lihood at the denominator of α in step 5 of Algorithm 3 is “refreshed”. Notice in particular the double
estimations of the likelihood in steps 3–4. Hence, each iteration of the MCWM algorithm requires two
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Algorithm 1 Bootstrap particle filter

Input: Data y1:T , number of particles N , and model parameters θ.
Output: The likelihood estimation L̂PF (θ).

1: Initialize particles x̃n
0 ∼ p(x0).

2: for t = 1, . . . ,T do
3: if t = 1 then
4: For n = 1, . . . , N , propagate particles, xn

1 ∼ p( ·|x̃n
0 ).

5: For n = 1, . . . , N , evaluate importance weights, wn
1 = p(y1|xn

1 ).

6: Estimate p̂(y1|θ) =
∑N

n=1 wn
1

N .

7: For n = 1, . . . , N , normalize importance weights, w̃n
1 = wn

1∑N
n=1 wn

1
.

8: else
9: Re-sample N times with replacement from (x1

t−1, ..., xN
t−1) with associated probabilities

(w̃1
t−1, ..., w̃ N

t−1) to obtain a new sample (x̃1
t−1, ..., x̃N

t−1).
10: For n = 1, . . . , N , propagate particles, xn

t ∼ p( ·|x̃n
t−1).

11: For n = 1, . . . , N , evaluate importance weights, wn
t = p(yt |xn

t ).

12: Estimate p̂(yt |y1:t−1;θ) =
∑N

n=1 wn
t

N .

13: For n = 1, . . . , N , normalize importance weights, w̃n
t = wn

t∑N
n=1 wn

t
.

14: end if
15: end for
16: Estimated likelihood L̂PF := p̂(y |θ) = p̂(y1|θ)

∏T
t=2 p̂(yt |y1:t−1;θ).

estimations of the likelihood function, which is a drawback if the estimation is computationally in-
tensive. The mathematical properties of the MCWM algorithm are less well understood than for PM-
CMC. The main advantage is, however, that MCWM in many cases generates a chain that mixes bet-
ter than PMCMC, even when the estimation of the likelihood function is imprecise [Medina-Aguayo
et al., 2016]. With MCWM one often avoids problems of stickiness in the simulated Markov chain, a
problem that the PMCMC algorithm can suffer from, in particular if the number of particles used in
the particle filter is low [Sherlock et al., 2015]. In fact, this causes the estimated likelihoods to have
high variability, allowing for the acceptance of the occasional over-estimated p̂(y1:T |θ) to end-up at
the denominator of α in Algorithm 2, hence reducing the chance for newer proposals to be accepted.
By “refreshing” the denominator at each iteration, MCWM alleviates this pathology. However, while
PMCMC targets the true posterior p(θ|y1:T ), this does not hold for MCWM. However, Medina-Aguayo
et al. [2016] gives mild conditions on the particle weights such that the stationary distribution tar-
geted by MCWM algorithm will converge to the true posterior distribution as N → ∞. Simulation
results show that, for finite N , the marginal posteriors obtained from MCWM are often wider than
the true marginals implied by the PMCMC algorithm, and MCWM therefore generates a conservative
estimation of the posterior distribution [Drovandi et al., 2018].

3 Implementation details

Unless else stated, all calculations were carried out on the LUNARC cluster available at Lund Uni-
versity (Sweden), where each node has access to two Intel Xeon E5-2650 v3 (2.3 Ghz, 10-core) CPUs,
http://www.lunarc.lu.se. The algorithms are implemented with Julia 0.5.2 [Bezanson et al., 2017], and
the code is available at https://github.com/SamuelWiqvist/adamcmcpaper.

For the considered case studies, the parameters in θ are all positive, and for convenience we con-
duct inference on their natural logarithms. The prior distributions will also be set on the log-scale.
The weights wn

t in the particle filter can sometimes take very large and small values, and for numer-
ical stability these are computed on the log-scale. We also make use of standard methods such as
subtracting the largest log-weight at time t from the log-weights at time t , prior to exponentiate them
[Cappé et al., 2007]. Regarding the computation of the sum of the weights, required to compute the
denominator of the normalized weights w̃n

t , the so-called log-sum-exp trick turns useful [Murphy,
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Algorithm 2 PMCMC algorithm

Input: Number of iterations R, starting parameters θ0, and corresponding L̂PF (θ0).
Output: The chain θ1:R .

1: for r = 1, . . . ,R do
2: Propose θ? ∼ g ( ·|θr−1).
3: Run Algorithm 1 to estimate L̂PF (θ?).

4: Compute α= min(1, L̂PF (θ?)
L̂r−1

PF (θr−1)
· p(θ?)

p(θr−1)
· g (θr−1|θ?)

g (θ?|θr−1)
).

5: Draw u ∼U (0,1).
6: if u ≤α then
7: Set θr = θ?.
8: else
9: Set θr = θr−1.

10: end if
11: end for

Algorithm 3 MCWM algorithm

Input: Number of iterations R, starting parameters θ0.
Output: The chain θ1:R .

1: for r = 1, . . . ,R do
2: Propose θ? ∼ g ( ·|θr−1).
3: Run Algorithm 1 to estimate L̂PF (θ?).
4: Run Algorithm 1 to estimate L̂PF (θr−1).

5: Compute α= min(1, L̂PF (θ?)
L̂PF (θr−1)

· p(θ?)
p(θr−1)

· g (θr−1|θ?)
g (θ?|θr−1)

).

6: Draw u ∼U (0,1).
7: if u ≤α then
8: Set θr = θ?.
9: else

10: Set θr = θr−1.
11: end if
12: end for

2012]. In Algorithm 1 particles are resampled using the stratified resampling algorithm [Kitagawa,
1996]. The execution of the bootstrap filter for the Ricker model is relatively cheap, since the model
is fairly simple and the data set used is small (it only contains T = 50 observations). We can, there-
fore, easily compute exact Bayesian inference by using the PMCMC algorithm, since it is possible to
run the particle filter with sufficiently many particles, so that the standard deviation of the estimated
log-likelihood is less than 2.

The DWP-SDE model is a more complex case study, and the particle filter is time-consuming since
the data set contains 25,000 observations. On a standard desktop computer it can therefore be com-
putational unfeasible to run the PMCMC algorithm. We assign N ≈ 200−1200 particles to separate
cores of the LUNARC cluster (possibly over multiple nodes), and run independent particle filters in
parallel (this can also be replicated on a multiprocessor desktop by running several independent es-
timations of the likelihood). A simple method, exploiting multiple particle filters running in parallel
on multiple cores (or multiple CPUs), is in Drovandi [2014], and consists of averaging out likelihood
approximations obtained at different cores. Since the likelihood approximations are computed on
the log-scale we have to compute the average of the exponential of the log-likelihood approximation,
and then take the logarithm of this average. This scheme allows us to obtain an unbiased approxima-
tion of the likelihood function with lower variance, compared to the approximation obtained from
a single particle filter. The negative log-likelihood function g in (2) is minimized using the function
optimize, found in the Julia package Optim.jl. In particular, we used a conjugate-gradient algo-
rithm. As a measure of efficiency of the different Markov chains produced by the different algorithms,
we compute the minimal ESS/(time unit), where ESS is the effective sample size. That is, the ESS for
each parameter’s chain is obtained via the R-package mcmcse, then the minimum ESS value across
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all chains is found, and this value is then divided by the run-time. Hence, min ESS/(time unit) tells
us how many independent samples the algorithm is generating per time-unit, when we consider the
least efficient chain.

4 Diagnostics for the GP model and selection methods

For diagnostic purposes of the predictive accuracy of the fitted models (GP and selection methods
s13() and s24()), we can split the training data, to obtain testing data. Basically, what we have denoted
as D and D̃, can be partitioned as D = [D1,D2] and D̃ = [D̃1,D̃2]. Then D1 (and D̃1) can be used to
fit the GP model, while D2 (and D̃2) is the “test data”, which is not used to fit the GP model, nor to
fit the selection methods. Instead the test data is merely used used to evaluate the performance of
the GP model and the selection methods, as typically done with predictive models. In this case by
considering data that is not used to fit the GP model.

To test the fit of the GP model, we predict likelihood values from the GP for each proposal in the
test data in D2, and compare the GP predictions to the corresponding particle filter predictions that
are stored in D2.

Testing the performance of the selection methods is a slightly more involved process. For each
proposal in the test data D2 we compute corresponding GP predictions, and we also compute a new
set of particle filter predictions. We then use the GP predictions and check if proposal r belongs to
case 1 and 3, or case 2 and 4. Assume that proposal θ?,r belongs to case 1 and 3. Then run the
selection method s1,3(θ?,r ) for proposal r , and check which case proposal r belongs to. After having
determined which case proposal r belongs to, according to the selection method, we check if the
same case is selected using the new particle filter predictions, where we use the definition of the four
cases (see Section 2.1 in the paper) to determine which case we should select, according to the new
particle filter predictions. Using this method we can calculate how likely it is that the new particle
filter predictions and the selection method are consistent.

5 DWP-SDE model: Simulation study

Here we simulate data from model DWP-SDE model, and then produce Bayesian inference for the pa-
rameters. Simulated data of length T = 25,000 are produced using ground-truth parameters θtrue set
to exp(θtrue) = [0.3,0.9,0.01,28.5,4,0.03,1.5,1.8,1.9]. Similarly to the paper, we consider parameters A
and g as known and fixed to A = 0.01 and g = 0.03. The other parameters are treated as unknown. The
simulated data are reported in Figure 2. The parameters were set to produce data resembling data set
1 in Figure 1 which is an additional protein folding dataset.

(a) Data.
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(b) Marginal distribution of the data.

Figure 1: Additional protein folding dataset.
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(a) Simulated data. (b) Marginal distribution of the simulated data.

Figure 2: Data generated from the DWP-SDE model.

Table 1: Posterior means (2.5th and 97.5th quantiles) for MCWM, DA-GP-MCMC, and ADA-GP-
MCMC.

True value MCWM DA-GP-MCMC ADA-GP-MCMC

logκ -1.2 -1.2 [-1.43,-0.97] -1.21 [-1.43,-0.99] -1.21 [-1.44,-0.95]
logγ -0.11 -0.11 [-0.25,0.02] -0.1 [-0.24,0.01] -0.11 [-0.25,0.03]
logc 3.35 3.35 [3.34,3.36] 3.35 [3.34,3.36] 3.35 [3.34,3.36]
logd 1.39 1.44 [1.17,1.81] 1.41 [1.18,1.69] 1.43 [1.16,1.85]
log p1 0.41 0.43 [0.29,0.63] 0.42 [0.29,0.57] 0.43 [0.28,0.65]
log p2 0.59 0.51 [0.1, 0.82] 0.54 [0.18,0.88] 0.52 [0.02,0.92]
logσ 0.64 0.65 [0.48,0.81] 0.64 [0.49,0.77] 0.65 [0.48,0.79]

We set Gaussian priors: p(logκ) ∼N (−0.7,0.52), p(logγ) ∼N (−0.7,0.52), p(logc) ∼N (3.34,0.1732),
p(logd) ∼ N (1.15,0.22), p(log p1) ∼ N (0.69,0.52), p(log p2) ∼ N (0,0.52), and p(logσ) ∼ N (0,0.52).
The starting parameter values were set far from the ground truth, as exp(θ0) = [2,2,30,10,2,2,2]. The
algorithm settings for MCWM, DA-GP-MCMC, and ADA-GP-MCMC are the same as in Section 5.2.1
in the paper.

Notice, before fitting the GP model, we removed the 1% of the observations having the lowest log-
likelihood from the training data, in order to obtain a more robust prediction. Marginal posteriors
from the two methods are in Figure 3. These results are very similar, given the diffuse priors (also, see
the posterior quantile intervals in Table 1). All parameters are well inferred and we manage to capture
the true parameter values. From Table 2 we see that the speed-up for ADA-GP-MCMC is larger in
this case, compared to the Ricker model, since ADA-GP-MCMC is 4.6 times faster than MCWM, and
1.5 times faster than DA-GP-MCMC. The algorithm efficiency measure min ESS/minute in Table 2
indicates that ADA-GP-MCMC is somewhat more efficient than both MCWM and DA-GP-MCMC. In
Table 3 we present the estimated probabilities for the four different cases, and we can conclude that

Table 2: Algorithm properties for the the MCWM, DA-GP-MCMC, and ADA-GP-MCMC algorithm.

Minutes per
1000 iter.

Acceptance
rate (%)

min ESS/min
Second stage

direct (%)
Early-

rejections (%)

MCWM 60.29 19.84 0.57 NA NA
DA-GP-MCMC 20.67 3.80 0.67 15.01 67.03
ADA-GP-MCMC 13.39 4.02 1.04 15.10 67.01
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Table 3: Estimated probabilities for the different cases and percentage of times the assumption for
the different cases in the ADA-GP-MCMC algorithm holds.

Case 1 Case 2 Case 3 Case 4

Est. prob. (p̂1,p̂2,p̂3,p̂4) 0.22 0.90 0.78 0.09
Perc. assum. holds 38.05 84.40 69.17 27.90

case 4 is the least likely case. We also notice that the performance of the selection algorithm is much
better for case 2 than for case 4: this is due to the unbalance of the two classes, meaning that in our
training data case 2 occurrs more frequently than case 4, and therefore it is more difficult to estimate
the latter case accurately.

(a) logκ. (b) logγ. (c) logc.

(d) logd . (e) log p1. (f) log p2.

(g) logσ.

Figure 3: Marginal posteriors based on simulated data: MCWM (blue solid line), DA-GP-MCMC (red
solid line), and ADA-GP-MCMC (red dashed line). Priors are denoted with green lines (these look
“cut” as we zoom on the bulk of the posterior).

We now sample parameters from the high-density region of the posterior distribution and run
forward simulations of the DWP-SDE model, similarly to the main paper. In Figure 4 we present three
forward simulations, conditionally to parameters from MCMW and ADA-GP-MCMC. The forward
simulations in Figure 4 resemble the simulated data better than the forward simulations in the main
paper resemble the real data. This seems to point to the fact that the arbitrarily chosen values for A
and g in the real-data case study are suboptimal, and (conditionally to those) the inference for the
other parameters is probably biased.
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(a) (b)

(c) (d)

Figure 4: Trajectories obtained by forward simulating the DWP-SDE model based on parameter estimations from MCWM
and ADA-GP-MCMC (samples from the high density region of the posterior distribution picked at random). Corresponding
marginal distributions. Forward simulations are in blue; real data are in black. Subfigures: a) trajectories from MCWM,
b) marginal distributions from MCWM, c) trajectories from ADA-GP-MCMC, and d) marginal distributions from ADA-GP-
MCMC.

6 Pseudo-code for algorithms

Algorithm 4 DA-GP-MCMC algorithm

Input: Number of iterations R, probability to run standard MH update βM H , a GP model fitted to the training data, a starting value θ0 and
corresponding L̂u (θ0).

Output: The chain θ1:R .
1: for r = 1, ...,R do
2: Draw u ∼U (0,1).
3: if u ≤βM H then . Skip DA-part
4: Propose θ? ∼ g̃ ( ·|θr−1).
5: Run a single iteration of PMCMC or MCWM for proposal θ?.
6: else
7: Propose θ? ∼ g ( ·|θr−1). . Run two stages DA scheme
8: Sample from (3) to predict independently `GP (θ?) and `GP (θr−1). Define L̂GP (θ?) := exp(`GP (θ?)) and L̂GP (θr−1) :=

exp(`GP (θr−1)).

9: Compute α1 = min
(
1,

L̂GP (θ?)
L̂GP (θr−1)

· g (θr−1|θ?)
g (θ?|θr−1)

· p(θ?)
p(θr−1)

)
.

10: Draw u ∼U (0,1).
11: if u >α1 then . Early-reject
12: Set θr = θr−1.
13: else
14: Estimate the likelihood L̂u (θ?). . Second stage update scheme

15: Compute α2 = min(1, L̂u (θ?)
L̂u (θr−1)

· L̂GP (θr−1)
L̂GP (θ?)

).

16: Draw u ∼U (0,1).
17: if u ≤α2 then . Accept proposal
18: Set θr = θ?.
19: else
20: Set θr = θr−1. . Reject proposal
21: end if
22: end if
23: end if
24: end for
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Algorithm 5 ADA-GP-MCMC algorithm
Input: Number of iterations R, probability to run standard MH update βM H , a GP model fitted to the training data, model s13() to select

between case 1 and 3, model s24() to select between case 2 and 4, a starting value θ0 and corresponding L̂u (θ0).
1: for r = 1, ...,R do
2: Draw u ∼U (0,1).
3: if u ≤βM H then . Skip DA-part
4: Propose θ? ∼ g̃ ( ·|θr−1).
5: Run a single iteration of PMCMC or MCWM for proposal θ?.
6: else
7: Propose θ? ∼ g ( ·|θr−1). . Run A-DA scheme
8: Sample from the predictive distribution of the GP model to predict independently `GP (θ?) and `GP (θr−1). Define L̂GP (θ?) :=

exp(`GP (θ?)) and L̂GP (θr−1) := exp(`GP (θr−1)).

9: Compute α1 = min
(
1,

L̂GP (θ?)
L̂GP (θr−1)

· g (θr−1|θ?)
g (θ?|θr−1)

· p(θ?)
p(θr−1)

)
.

10: Draw u ∼U (0,1).
11: if u <α1 then . Run second stage of the A-DA scheme
12: if L̂GP (θ?) > L̂GP (θr−1) then
13: Select case 1 or 3 according to the model s13(θ?).
14: Run the accelerated delayed-acceptance scheme for the selected case.
15: else
16: Select case 2 or 4 according to the model s24(θ?).
17: Run the accelerated delayed-acceptance scheme for the selected case.
18: end if
19: else . Early-reject
20: Set θr = θr−1.
21: end if
22: end if
23: end for

7 MCMC trace plots and diagnostics plots for the GP model

Here we show some material pertaining our simulation and data analysis studies. We first report ma-
terial pertaining the first application (stochastic Ricker model), then the second application (mod-
elling of protein folding data).

Quantities denoted as “residuals” are computed as:

ri = `PF (θ?,i )−`GP (θ?,i ), i = 1, . . . , Ntest

where Ntest is the number of observations in the test data D2.

Ricker model

Here follow trace plots for MCMC chains obtained under different methods.

(a) PMCMC. (b) MCMC. (c) ADA-GP-MCMC. (d) ADA-GP-MCMC.
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Fit of the GP model.

Figure 6: Log-likelihood estimations; particle filter (blue), Gaussian process model (red).

Residual plots.

(a) Residuals vs. logr . (b) Residuals vs. logφ.

(c) Residuals vs. logσ. (d) Residuals vs. ˆ̀PF .

Figure 7: Residual plots.
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Histogram and normal probability plot of the residuals.

(a) Histogram. (b) Normal probability plot.

DWP-SDE model for simulated data

Here follow trace plots for MCMC chains obtained under different methods.

(a) MCWM. (b) DA-GP-MCMC. (c) ADA-GP-MCMC.

Fit of the GP model.

Figure 10: Log-likelihood estimations; particle filter (blue), Gaussian process model (red).
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Residual plots.

(a) Residuals vs. logκ. (b) Residuals vs. logγ.

(c) Residuals vs. logc. (d) Residuals vs. logd .

(e) Residuals vs. log p1. (f ) Residuals vs. log p2.

(g) Residuals vs. logσ. (h) Residuals vs. ˆ̀PF .
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Histogram and normal plot of residuals.

(a) Histogram. (b) Normal plot.

DWP-SDE model for protein folding data

Here follow trace plots for MCMC chains obtained under different methods.

(a) MCWM. (b) DA-GP-MCMC. (c) ADA-GP-MCMC.

Fit of the GP model.

Figure 14: Log-likelihood estimations; particle filter (blue), Gaussian process model (red).
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Residual plots.

(a) Residuals vs. logκ. (b) Residuals vs. logγ.

(c) Residuals vs. logc. (d) Residuals vs. logd .

(e) Residuals vs. log p1. (f ) Residuals vs. log p2.

(g) Residuals vs. logσ. (h) Residuals vs. ˆ̀PF .
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Histogram and normal plot of residuals.

(a) Histogram. (b) Normal plot.
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