
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-
design

Mahdavi, Mojtaba

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Mahdavi, M. (2021). Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-design.
[Doctoral Thesis (compilation), Department of Electrical and Information Technology]. Dpt. of Electrical and
Information Technology, Lund University, Sweden.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c5b32777-fe23-4eb7-8e52-9b93d5afaf88

Baseband Processing for 5G and Beyond:
Algorithms, VLSI Architectures,

and Co-design

Mojtaba Mahdavi

Doctoral Thesis
Electrical Engineering

Lund, March 2021

Mojtaba Mahdavi
Department of Electrical and Information Technology
Lund University
P.O. Box 118
SE-221 00 LUND
SWEDEN

Series of licentiate and doctoral theses
ISSN 1654-790X; No. 140
ISBN 978-91-7895-960-0 (print)
ISBN 978-91-7895-959-4 (pdf)

© Mojtaba Mahdavi, 2021
Produced using LATEX Documentation System.
Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.
March 2021

No part of this thesis may be reproduced or transmitted in any form or by any
means, electronically or mechanical, including photocopy, recording, or any
information storage and retrieval system, without written permission from
the author.

Abstract
In recent years the number of connected devices and the demand for high
data-rates have been significantly increased. This enormous growth is more
pronounced by the introduction of the Internet of things (IoT) in which sev-
eral devices are interconnected to exchange data for various applications like
smart homes and smart cities. Moreover, new applications such as eHealth,
autonomous vehicles, and connected ambulances set new demands on the re-
liability, latency, and data-rate of wireless communication systems, pushing
forward technology developments. Massive multiple-input multiple-output
(MIMO) is a technology, which is employed in the 5G standard, offering the
benefits to fulfill these requirements. In massive MIMO systems, base sta-
tion (BS) is equipped with a very large number of antennas, serving several
users equipments (UEs) simultaneously in the same time and frequency re-
source. The high spatial multiplexing in massive MIMO systems, improves
the data rate, energy and spectral efficiencies as well as the link reliability
of wireless communication systems. The link reliability can be further im-
proved by employing channel coding technique. Spatially coupled serially
concatenated codes (SC-SCCs) are promising channel coding schemes, which
can meet the high-reliability demands of wireless communication systems be-
yond 5G (B5G). Given the close-to-capacity error correction performance and
the potential to implement a high-throughput decoder, this class of code can
be a good candidate for wireless systems B5G.

In order to achieve the above-mentioned advantages, sophisticated algo-
rithms are required, which impose challenges on the baseband signal pro-
cessing. In case of massive MIMO systems, the processing is much more com-
putationally intensive and the size of required memory to store channel data
is increased significantly compared to conventional MIMO systems, which are
due to the large size of the channel state information (CSI) matrix. In addition
to the high computational complexity, meeting latency requirements is also
crucial. Similarly, the decoding-performance gain of SC-SCCs also do come
at the expense of increased implementation complexity. Moreover, selecting
the proper choice of design parameters, decoding algorithm, and architecture
will be challenging, since spatial coupling provides new degrees of freedom
in code design, and therefore the design space becomes huge.

iii

The focus of this thesis is to perform co-optimization in different design
levels to address the aforementioned challenges/requirements. To this end,
we employ system-level characteristics to develop efficient algorithms and ar-
chitectures for the following functional blocks of digital baseband processing.

First, we present a fast Fourier transform (FFT), an inverse FFT (IFFT),
and corresponding reordering scheme, which can significantly reduce the la-
tency of orthogonal frequency-division multiplexing (OFDM) demodulation
and modulation as well as the size of reordering memory. The correspond-
ing VLSI architectures along with the application specific integrated circuit
(ASIC) implementation results in a 28 nm CMOS technology are introduced.
In case of a 2048-point FFT/IFFT, the proposed design leads to 42% reduction
in the latency and size of reordering memory.

Second, we propose a low-complexity massive MIMO detection scheme.
The key idea is to exploit channel sparsity to reduce the size of CSI matrix and
eventually perform linear detection followed by a non-linear post-processing
in angular domain using the compressed CSI matrix. The VLSI architecture
for a massive MIMO with 128 BS antennas and 16 UEs along with the syn-
thesis results in a 28 nm technology are presented. As a result, the proposed
scheme reduces the complexity and required memory by 35%–73% compared
to traditional detectors while it has better detection performance.

Finally, we perform a comprehensive design space exploration for the SC-
SCCs to investigate the effect of different design parameters on decoding per-
formance, latency, complexity, and hardware cost. Then, we develop differ-
ent decoding algorithms for the SC-SCCs and discuss the associated decoding
performance and complexity. Also, several high-level VLSI architectures along
with the corresponding synthesis results in a 12 nm process are presented, and
various design tradeoffs are provided for these decoding schemes.

iv

To my wife, Marzieh

Contents

Abstract iii

Preface xi

Acknowledgments xv

Acronyms xvii

Mathematical Notations xxi

List of Figures xxiii

List of Tables xxvii

1 Introduction 1
1.1 Scope of the Thesis . 2

1.2 Thesis Outline and Contributions 3

2 Digital Baseband Processing 9
2.1 Wireless Communication Systems 11

2.2 OFDM-Based Multi-User Massive MIMO Systems 19

2.3 Baseband Processing in Massive MIMO Systems 20

3 System, Algorithm, and VLSI Co-Design 25
3.1 Performance Metrics and Design Parameters 25

3.2 Cross-Level Optimization . 28

vii

I FFT/IFFT Processor for Massive MIMO Systems 29

4 FFT/IFFT in Massive MIMO System 33
4.1 Fast Fourier Transform . 33

4.2 Latency Analysis . 36

5 Low-Latency FFT/IFFT 41
5.1 Exploring OFDM Guard Bands 41

5.2 Low-Latency IFFT Scheme . 46

5.3 Latency Comparison . 50

5.4 VLSI Architecture and Implementation Results 52

6 Reordering Scheme 63
6.1 Reordering Mechanism . 64

6.2 VLSI Architecture and Implementation Results 68

II Massive MIMO Detection 73

7 Uplink Processing in Massive MIMO 79
7.1 Uplink System Model . 79

7.2 Antenna-Domain Detection . 80

7.3 Massive MIMO Channel . 81

8 Angular-Domain Massive MIMO Detection 85
8.1 Domain Transformation and Compression 87

8.2 Angular-Domain Linear Detection 88

8.3 Angular-Domain Non-Linear Detection 89

9 Design Evaluation and Tradeoffs 95
9.1 Performance Evaluation . 95

9.2 Analysis of Complexity and Memory Requirement 103

9.3 Design Tradeoffs . 106

10 Hardware Realization of Angular- Domain Massive MIMO
Detection 111
10.1 VLSI Architecture . 111

10.2 Implementation Results . 120

viii

III Spatially Coupled Serially Concatenated Codes 125

11 Turbo-like Codes 129
11.1 Serially Concatenated Code (SCC) 131

11.2 Spatially Coupled Serially Concatenated Code (SC-SCC) . . . 134

11.3 Design Space Exploration . 136

12 Decoding Algorithms 139
12.1 SCC Decoder . 139

12.2 Block-Wise SC-SCC Decoder . 141

12.3 Window-Wise SC-SCC Decoder 146

13 Performance and Complexity Evaluation 151
13.1 Computational Complexity Analysis 151

13.2 Performance Evaluation . 156

14 Decoder Architectures and Implementation Results 169
14.1 VLSI Architectures for Inner and Outer Decoders 169

14.2 Decoder Architectures . 174

14.3 Results and Discussion . 180

15 Fully Pipelined Decoding of SC-SCCs 189
15.1 Fully Pipelined Iteration Unrolled Architecture 190

15.2 Jumping Window Decoding (JWD) 194

15.3 Results and Discussion . 196

Future Works 203

Appendix A Popular Science Summary 207

Bibliography 209

ix

Preface

This thesis summarizes my academic work carried out during five years in
the Digital ASIC group, at the department of Electrical and Information Tech-
nology (EIT), Lund University, Sweden. The main contributions are derived
from the following articles:

1. Mojtaba Mahdavi, Stefan Weithoffer, Matthias Herrmann, Liang Liu,
Ove Edfors, Norbert Wehn, and Michael Lentmaier, "Spatially Coupled
Serially Concatenated Codes: Performance Evaluation and VLSI De-
sign Tradeoffs, "submitted to IEEE Transactions on Circuits and Systems I
(TCAS-I): Regular Papers, August 2021.

Contribution: The research work has been performed by the first au-
thor under the guidance of the remaining authors. The first author
has presented two decoding algorithms along with the corresponding
VLSI architectures for the spatially coupled serially concatenated codes
(SC-SCCs). Also, the author has discussed different tradeoffs between
silicon area, throughput, and latency of these schemes.

2. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "Angular-
Domain Massive MIMO Detection: Algorithm, Implementation, and
Design Tradeoffs," in IEEE Transactions on Circuits and Systems I (TCAS-
I): Regular Papers, vol. 67, no. 6, pp. 1948-1961, January 2020, doi:
10.1109/TCSI.2020.2968408.

Contribution: The first author has performed this research work under
the guidance of the other authors. The first author has proposed an
angular-domain massive MIMO detection scheme, which performs up-
link detection using compressed channel matrix. The analysis of com-
putational complexity and required memory, performance evaluation,
and design tradeoffs have been discussed in detail.

xi

3. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Latency FFT/IFFT Architecture for Massive MIMO Systems Utilizing
OFDM Guard Bands," in IEEE Transactions on Circuits and Systems I
(TCAS-I): Regular Papers, vol. 66, no. 7, pp. 2763-2774, February 2019,
doi: 10.1109/TCSI.2019.2896042.

Contribution: This research work has been performed by the first au-
thor under the guidance of the remaining authors. The first author
has developed a hardware architecture, which utilizes the OFDM guard
bands to reduce the latency of FFT/IFFT in the OFDM-based systems
including massive MIMO systems.

4. Mojtaba Mahdavi, Liang Liu, Ove Edfors, Michael Lentmaier, Norbert
Wehn, and Stefan Weithoffer, "Towards Fully Pipelined Decoding of
Spatially Coupled Serially Concatenated Codes," in 2021 IEEE Interna-
tional Symposium on Topics in Coding (ISTC), Montreal, Canada, August
2021, pp. 1-5.

Contribution: The first author has developed a decoding scheme, which
enables pipelined implementation of SC-SCCs decoder. Also, the au-
thor has evaluated the decoding performance of this scheme in several
latency scenarios with different design parameters.

5. Mojtaba Mahdavi, Muhammad Umar Farooq, Liang Liu, Ove Edfors,
Viktor Öwall, and Michael Lentmaier, "The Effect of Coupling Memory
and Block Length on Spatially Coupled Serially Concatenated Codes,"
in IEEE 93rd Vehicular Technology Conference (VTC), Helsinki, Finland,
December 2020, pp. 1-7, doi: 10.1109/VTC2021-Spring51267.2021.9448689.

Contribution: This research work has been performed by the first au-
thor under the guidance of the remaining authors. The first author has
performed an extensive performance evaluation to investigate the effect
of different design parameters in a wide range on the decoding perfor-
mance of several SC-SCC scenarios.

6. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A VLSI
Implementation of Angular-Domain Massive MIMO Detection," in 2019
IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo,
Japan, May 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702720.

Contribution: The first author has designed and implemented, un-
der guidance of the other authors, an angular-domain linear detection

xii

scheme for massive MIMO systems. In this work a massive MIMO sys-
tem with 128 antennas at the base station, which communicates with 16
user equipments is considered.

7. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Complexity Massive MIMO Detection Scheme Using Angular-Domain
Processing," in 2018 IEEE Global Conference on Signal and Information Pro-
cessing (GlobalSIP), Anaheim, CA, USA, November 2018, pp. 181-185,
doi: 10.1109/GlobalSIP.2018.8646483.

Contribution: The first author under the guidance of the remaining
authors has investigated the massive MIMO channel properties and de-
veloped a compression algorithm to reduce the size of channel matrix.
As a result, computational complexity and required memory are re-
duced significantly compared to the traditional antenna-domain mas-
sive MIMO detectors.

8. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Latency and Area Efficient FFT Processor for Massive MIMO Systems,"
in 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, USA, May 2017, pp.1-4, doi:10.1109/ISCAS.2017.8050692.

Contribution: The first author has designed a hardware architecture to
realize a low-latency FFT/IFFT, which can be used in the OFDM-based
massive MIMO systems.

Furthermore, I have contributed in the following publications, which are
not included in this thesis:

9. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "Angular-
Domain Massive MIMO Detection: Algorithm, Implementation, and
Design Tradeoffs," in 2021 IEEE International Symposium on Circuits and
Systems (ISCAS), Daegu, South Korea, May 2021.

10. Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "Low-
Complexity Massive MIMO Detection Scheme," in 2019 ELLIIT Work-
shop, Karlskrona, Sweden, October 2019.

11. Mojtaba Mahdavi and Mahdi Shabany, "A 13 Gbps, 0.13 µm CMOS,
Multiplication-Free MIMO Detector", in Springer Journal of Signal Pro-

xiii

cessing Systems, vol. 88, no. 3, pp. 273-285, June 2016, doi:10.1007/s11265-
016-1145-2.

12. Mahdi Shabany, Roya Doostnejad, Mojtaba Mahdavi, and Glenn Gu-
lak, "A 38 pJ/b Optimal Soft-MIMO Detector", in IEEE Transactions on
Circuits and Systems II: Express Briefs (TCAS-II), vol. 64, no. 9, pp. 1062-
1066, September 2017, doi:10.1109/TCSII.2016.2641964.

13. Mahdi Shabany, Dimpesh Patel, Mario Milicevic, Mojtaba Mahdavi,
and Glenn Gulak, "A 70 pJ/b Configurable 64-QAM Soft MIMO Detec-
tor", in Integration, the VLSI Journal, vol. 63, pp. 74-86, September 2018,
doi:10.1016/j.vlsi.2018.05.008.

xiv

Acknowledgments

The five-year PhD journey has been a joyful experience and full of adventures.
I believe this would not have been possible without the support, guidance, and
friendship of many people.

I would like to express my sincere gratitude to my supervisors, Associate
Prof. Liang Liu, Prof. Viktor Öwall, and Prof. Ove Edfors. My heartfelt
gratitude to Associate Professor Liang Liu, for his limitless support, encour-
agement, patience in listening to my complaints, and always being around for
discussions. I will never forget your great help and thank you for guiding me
throughout this journey. I am certainly indebted to Prof. Viktor Öwall, for his
kind support, trusting me to be his PhD student, and giving me the chance
to pursue this journey. I am also grateful to Prof. Ove Edfors, for always
providing constructive feedback and his massive help in the field of wireless
communication, even with a very busy schedule. I would like to thank As-
sociate Prof. Michael Lentmaier, for his support, fruitful collaboration, and
helpful meetings during the last two years of my PhD studies. Thanks to all
of you for your support and what we accomplished together.

My gratitude also goes to the head of department, administrative, and tech-
nical staff at EIT department, Prof. Daniel Sjöberg, Associate Prof. Stefan
Höst, Pia Bruhn, Anne Andersson, Elisabeth Nordström, Elisabeth Ohlsson,
Linda Bienen, Erik Göthe, Josef Wajnblom, Bertil Lindvall, Stefan Molund,
and Erik Jonsson, who made my life as a PhD student smooth.

I would like to thank all my past and present colleagues at EIT department.
I would also like to extend my gratitude to my friends and their families in
Sweden, who have created pleasant weekends for me and my family. Special
thanks to Farrokh Ghani Zadegan and Babak Mohammadi for their help since
the beginning of this journey. I would like to express my appreciation to my
friends in Iran and my supervisors in Sharif University of Technology.

xv

I am so grateful to Prof. Norbert Wehn for his great support and hosting
me at the Division of Microelectronic Systems Design in Technical Univer-
sity of Kaiserslautern in Germany. I want to acknowledge the discussions
we had with other colleagues and also the help with administrative matters
given by Martina Jahn. I would also thank Associate prof. Stefan Weithoffer
at electronics department, IMT Atlantique in France, for his supportive and
detailed discussions. During this research visit, I gained valuable experience,
met wonderful people there, and had exciting stay in Kaiserslautern.

I would like to heartily thank my wonderful parents and siblings for their
unconditional love, sacrifices, and support throughout my life. I would not be
here without your love and tireless support. Although I have unfortunately
been physically far away from you, you always have a place in my heart.

I would also like to express my excitement to my cute daughter, Zahra, who
was born at the early stage of my PhD studies. Zahra, you are the reason why
I feel great about the future.

Last but not least, my deepest gratitude to my wife for her endless love, pa-
tience, and selflessness so that I could pursue my PhD studies. Words cannot
express how grateful I am to Marzieh, my better half, who has made our life
full of happiness since eleven years ago. Marzieh, I love you more than I can
ever express.

In memory of my mother-in-law, who passed away in the last year of this journey.

Lund, March 2021

xvi

Acronyms

1G 1st Generation
3G 3th Generation
3GPP 3rd Generation Partnership Project
4G 4th Generation
5G 5th Generation

ACQ Acquisition
ACSU Add-Compare-Select Unit
APP A Posteriori Probability
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv
BER Bit Error Rate
BF Butterfly
BMU Branch Metric Unit
BP Belief Propagation
BPSK Binary Phase Shift Keying
BS Base Station

CC Clock Cycle
CD Cholesky Decomposition
CMOS Complementary Metal Oxide Semiconductor
CP Cyclic Prefix
CSD Canonical Signed Digit
CSEE Column-SE Enumeration
CSI Channel State Information

xvii

DFT Discrete Fourier Transform
DIF Decimation In Frequency
DIT Decimation In Time

ED Euclidean distance
eMBB Enhanced Mobile Broadband

FDD Frequency Division Duplex
FDM Frequency Division Multiplexing
FEC Forward Error Correction
FFT Fast Fourier Transform
FIFO First-In First-Out
FPGA Field Programmable Gate Array
FPMAP Fully Parallel MAP

HDL Hardware Description Language

ICI Inter-Carrier Interference
IFFT Inverse Fast Fourier Transform
i.i.d. Independent and Identically Distributed
IoT Internet of Things
ISI Inter-Symbol Interference
IUI Inter-User Interference

JWD Jumping Window Decoding

LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio
LNA Low Noise Amplifier
Local-SOVA Local Soft-Output Viterbi Algorithm
LOS Line-of-Sight
LTE Long Term Evolution
LTE-A LTE Advanced
LuMaMi Lund University Massive MIMO
LUT Look-Up Table

MAP Maximum a Posteriori
MDC Multipath Delay Commutator
MDF Multipath Delay Feedback
MF Matched Filtering
MIMO Multiple-Input Multiple-Output

xviii

ML Maximum Likelihood
MMSE Minimum Mean Square Error
mMTC Massive Machine Type Communications
MPC Multi-Path Components
MPD Message Passing Detector
MU Multi User
MU-MaMi Multi-User Massive MIMO

NAE Normalized Area Efficiency
NEE Normalized Energy Efficiency
NL Non Linear
NLOS Non-Line-of-Sight
NMT Nordic Mobile Telephone

OFDM Orthogonal Frequency Division Multiplexing

PAP Per Antenna Processing
PCC Parallel Concatenated Code
PE Processing Element
PMAP Parallel MAP
PP Post Processing
PSP Per Subcarrier Processing
PUP Per User Processing

QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
QRD QR Decomposition

R2BF Radix-2 Butterfly
RAM Random Access Memory
RF Radio Frequency
RSC Recursive Systematic Convolutional
RSEE Row-SE Enumeration
RX Receiver

SC Spatial Coupling
SCC Serially Concatenated Code
SC-SCC Spatially Coupled Serially Concatenated Codes
SD Sphere Decoding
SDF Single-path Delay Feedback
SE Schnorr Euchner
SFG Signal Flow Graph

xix

SISO Soft-Input Soft-Output
SMAP Serial MAP
SNR Signal-to-Noise Ratio
SOU Soft-Output Unit
SP Single Port
SQNR Signal-to-Quantization-Noise Ratio
SW Sliding Window

TC Turbo Code
TDD Time Division Duplex
TFM Twiddle Factor Multiplier
TX Transmitter

UE User Equipment
UC Uncoupled
ULA Uniform Linear Array
URC Ultra Reliable Communication
URLLC Ultra-Reliable and Low-Latency Communications
UXMAP Unrolled XMAP

VLSI Very Large Scale Integration

XMAP Piplelined XMAP

ZF Zero Forcing

xx

Mathematical Notations

C Complex field

Re{·} Real part of complex numbers

Im{·} Imaginary part of complex numbers

| · | Absolute value

‖ · ‖2 `2-norm

(·)∗ Complex conjugate

(·)T Matrix/vector transpose

(·)H Matrix/vector conjugate-transpose

(·)−1 Matrix inverse

(·)† Matrix pseudo-inverse

(·)i,j (i, j)th element of a matrix

(̂·) Angular-domain representation of a matrix/vector

(·)′ Compressed matrix/vector

A=
[
am,k

]
Matrix with element am,k in the (m, k)th position

a =
[
am
]

Vector with element am in the mth position

xxi

a(i : j) i-th to j-th element of vector a

dim{.} Matrix dimension

Tr(.) Trace of a square matrix

∝ Proportional

∞ Infinity

≈ Approximately

O Order of computational complexity

xxii

List of Figures

2.1 The estimated world average monthly traffic per subscription
for different applications. 9

2.2 Various applications in 5G with different requirements. 10
2.3 Number of mobile subscriptions and data traffic in different

technologies. 11
2.4 A simplified block diagram of wireless communication systems. 12
2.5 Multi-path wireless propagation channel. 13
2.6 MIMO wireless system. 15
2.7 A multi-user massive MIMO system in uplink and downlink. 17
2.8 A simplified block diagram of baseband processing in OFDM-

based massive MIMO systems. 20
3.1 Design parameters and performance metrics in different ab-

straction levels for the considered designs in this thesis. 27
4.1 Example design of a radix-2 single-input pipelined FFT/IFFT

architecture . 38
4.2 The memory content of example design in Figure 4.1 for two

successive OFDM symbols . 39
5.1 OFDM symbol structure with length of N = 2048 samples. . . 42
5.2 The OFDM symbol of length N = 16. 44

xxiii

5.3 The content of memories in the example design after skipping
the zero samples. 45

5.4 Memory content of the example design for two OFDM symbols
by considering gap between successive symbols. 46

5.5 Memory content of a 16-point IFFT based on the proposed
scheduling scheme and memory structure. 47

5.6 Conditions for memories and butterfly in Stage 1. 48
5.7 Conditions for memories and butterflies in Stage m. 49
5.8 Comparison between the processing flow of single-input pipelined

IFFT in three scenarios. 51
5.9 Proposed VLSI architecture for an N-point FFT/IFFT. 53
5.10 The Radix-2 Butterfly unit (R2BF). 54
5.11 Control circuit for the memories and butterfly of Stage 1. . . . 55
5.12 Control circuit for the memories and butterflies of Stage 2 to

the last stage of FFT/IFFT architecture. 56
5.13 The architecture of Reconfigurable General Multiplier. 57
5.14 The proposed circuit for Constant Multiplier. 57
5.15 The layout of the proposed pipelined FFT/IFFT processor. . . 59
5.16 Design area of different memory realizations in 28 nm technology 61
6.1 The SFG of a radix-2 FFT in DIF and DIT. 64
6.2 Proof of generality of presented reordering scheme. 66
6.3 Step by step operation of developed reordering mechanism. . 67
6.4 VLSI architecture of the reordering mechanism. 69
7.1 Time-frequency blocks in massive MIMO systems. 80
7.2 Measured UE channels in the massive MIMO system. 82
8.1 Processing chain of proposed angular-domain massive MIMO

detection scheme. 86
8.2 Processing flow of the angular-domain massive MIMO detector. 87
8.3 SE enumeration technique in the real-domain constellation. . . 91
8.4 Symbol expansion scheme for the ZF output of k-th UE. 92
9.1 BER Performance of the proposed angular-domain detector

and antenna-domain ZF in LOS and NLOS scenarios. 97
9.2 Distribution of strong UEs in the angular domain for LOS and

NLOS scenarios. 98
9.3 BER Performance comparison in different modulation orders. 101
9.4 Design comparison in terms of computational complexity, size

of required memory, and total cost. 104
9.5 Comparison between the computational complexity of differ-

ent detection schemes. 106
9.6 Total computational complexity of antenna-domain detection

and proposed angular-domain scheme. 107

xxiv

9.7 Performance evaluation for different number of selected UEs
in the post processing. 108

9.8 Performance versus complexity of antenna-domain detection
and proposed angular-domain scheme in LOS and NLOS. . . . 110

10.1 The structure of Beam Selection and Index Mapping blocks. . 112
10.2 Proposed systolic array architecture for the Angular-Domain

Linear-Detection Unit. 113
10.3 The VLSI architecture for General PE. 114
10.4 Developed circuits for the Diagonal PE. 115
10.5 The detailed architecture for Off-Diagonal PE. 115
10.6 Different operational modes of the proposed systolic array. . . 116
10.7 VLSI Architecture for the Angular-Domain Non-Linear Post-

Processing Unit . 117
10.8 The detailed architecture of Mapper and Limiter blocks. 117
10.9 VLSI Architecture for the Dedicated Multiplier and Constant

Multiplier. 119
10.10 The architecture of Branch module. 119
10.11 The structure of Min Finder block. 120
11.1 Block diagram and compact graph representation of PCC. . . . 129
11.2 Block diagram and compact graph representation of SCC. . . . 130
11.3 The structure of RSC encoder. 131
11.4 Structure of SC-SCC encoder with coupling memory m. 133
11.5 Compact graph representation of an infinite chain of SC-SCC. 135
12.1 The processing flow of SCC decoder. 141
12.2 The processing flow of block-wise SC-SCC decoder. 144
12.3 The processing flow of window-wise SC-SCC decoder. 148
13.1 Window decoding approach for two fixed-latency scenarios. . 155
13.2 The effect of coupling memory on the decoding performance. 158
13.3 Two SC-SCC scenarios with the same latency. 159
13.4 BER performance of the SC-SCC scenarios in Table 13.2. 161
13.5 BER Performance comparison between the proposed SC-SCC

and uncoupled SCC. 162
13.6 The effect of window size on the decoding performance. . . . 164
13.7 The latency-performance tradeoff for the SC-SCC scenarios in

Table 13.2. 164
13.8 The effect of number of iterations on the decoding performance. 165
13.9 Performance comparison between block-wise and window-wise

SC-SCC decoders. 167
14.1 PMAP decoder architecture schematic. 171
14.2 XMAP decoder architecture schematic. 172
14.3 The VLSI architecture of SCC decoder. 174
14.4 The VLSI architecture for the block-wise SC-SCC decoder. . . . 175

xxv

14.5 The VLSI architecture for the window-wise SC-SCC decoder. . 177
14.6 Area and decoding latency estimates for the decoders with a

SMAP/PMAP component decoder architecture. 183
14.7 Area and decoding latency estimates for the decoders with an

XMAP component decoder architecture. 184
14.8 Area and throughput estimates for the decoders with a PMAP

component decoder architecture. 185
14.9 Area and throughput estimates for the decoders with an XMAP

component decoder architecture. 186
15.1 High-level architecture of a decoder pipeline for fully pipelined

decoding of SC-SCCs. 192
15.2 Window decoding (WD) scheme for two SC-SCC scenarios with

a fixed structural latency and different block lengths. 193
15.3 Proposed jumping window decoding (JWD) for the SC-SCC. . 195
15.4 BER Performance comparison between the proposed JWD and

WD schemes. 198

xxvi

List of Tables

5.1 System parameters in the massive MIMO framework 42
5.2 Control scheme of memories in Stage 1. 48
5.3 Control scheme of butterfly in Stage 1. 48
5.4 Control scheme of memories in Stage m, m = 2, ..., log2 N . . . 49
5.5 Control scheme of butterfly in Stage m, m = 2, ..., log2 N 49
5.6 Comparison between N-point IFFT schemes with single-input

pipelined architectures . 52
5.7 Four operation modes of the presented design. 58
5.8 Tradeoff between latency and area for 2048-point FFT/IFFT. . 59
5.9 Implementation results of the FFT/IFFT. 60
5.10 Design comparison between FFT/IFFT architectures. 62
6.1 Implementation results of the reordering circuit. 68
9.1 Complexity and memory requirement of antenna-domain de-

tectors and proposed angular-domain scheme. 102
10.1 Design comparison between MU-MaMi detectors. 122
13.1 Computational complexity per decoded bit in Log-MAP BCJR. 154
13.2 Different SC-SCC scenarios with the same latency, constraint

length, and complexity. 157
14.1 Design comparison between VLSI architectures of uncoupled

and coupled SCC decoders. 179

xxvii

14.2 Place and route results for the computational units. 180
14.3 Component decoder parameters for the silicon area and la-

tency estimations. 182
15.1 SC-SCC scenarios with fixed structural latency and complexity. 196
15.2 Place and route results of the MAP computational kernels. . . 199
15.3 Area and throughput estimates of pipelines for different block

lengths and Ieff. 199

xxviii

1
Introduction

This thesis presents an interdisciplinary study of wireless communication and
digital hardware design. More specifically, the study is on co-optimization
of algorithms and hardware implementations of the key components in the
digital baseband processing in wireless communication systems. It is envi-
sioned that by the end of 2026 the number of mobile subscriptions will be
around 8.8 billion and total mobile data traffic is estimated to reach 226 EB
per month [1]. To satisfy such demands, the 5th generation (5G) standard was
designed to boost the overall network capacity while ensuring low-latency
and highly-reliable links [2]. To keep up with the rapid growth in wireless
data traffic and number of subscriptions, and to support emerging applica-
tions, the future networks should deliver higher data rates, lower latency, and
higher link-reliability [3]. Since the available frequency spectrum is limited,
the transmission resources must be utilized as efficiently as possible.

In order to improve spectral efficiency and link reliability, advanced com-
munication schemes are needed for wireless data transmission. Massive mult-
iple-input multiple-output (MIMO) is such a scheme, which can offer very
high spectral and energy efficiency [4] and it is considered as a key technol-
ogy in 5G [5]. In massive MIMO systems, the base station (BS) is equipped
with a large number of antennas, serving several user equipments (UEs) si-
multaneously using the same time and frequency resources. The benefits
of massive MIMO entail a significant increase in signal processing complex-
ity at the BS, where sophisticated signal processing techniques are required.
Due to the large number of BS antennas, most of the computations are per-
formed using large matrices and vectors, which results in challenges to meet
the requirements on latency, data rate, and hardware cost. In order to further
enhance the link reliability and communication performance, channel coding
schemes can be used. Spatially coupled codes are a powerful class of codes,

1

2 Introduction

which can provide a close-to-capacity decoding performance [6]. This type
of channel coding scheme can be used in the upcoming use-cases in wireless
systems beyond 5G (B5G), where a very good error correction performance is
required. However, designing high-performance and hardware-friendly de-
coding algorithms for this type of code is a very challenging task.

Eventually, these complex algorithms have to be realized using very large
scale integration (VLSI) architectures and implemented in hardware. There-
fore, hardware-efficient realization of massive MIMO baseband processor has
become a critical challenge, being at the forefront of research for several years.

The main focus of this thesis is to explore the efficient VLSI realization
of baseband processing of massive MIMO systems. The target subject faces
several challenges in practical implementations, such as requirements of low
latency, high communication performance, and low hardware cost. This the-
sis addresses these challenges by investigating system-level features and per-
forming co-optimization at the algorithm and architecture level. Also, several
design tradeoffs are discussed and presented for key functional blocks of mas-
sive MIMO baseband processing.

1.1. SCOPE OF THE THESIS

Digital baseband processing in wireless communication systems includes sev-
eral components such as digital front end, orthogonal frequency-division mul-
tiplexing (OFDM) modulation/demodulation, channel estimation, MIMO pro-
cessing, interleaving/deinterleaving, error correction scheme, etc. Among
them, this thesis mainly focuses on some of the crucial blocks in a typical
baseband processing chain, i.e., OFDM modulation, OFDM demodulation,
MIMO processing, channel encoding, and channel decoding.

The central part of this thesis mainly addresses the following questions:

• Can co-optimization techniques be leveraged in different design stages
to trade between complexity, latency, hardware cost, and communica-
tion performance in massive MIMO baseband?

• Are there special system-level characteristics, which can be exploited to
reduce the processing latency of OFDM (de)modulation?

• Is it possible to exploit characteristics of massive MIMO propagation
channel to reduce the complexity and lower the hardware cost of mas-
sive MIMO baseband processing, e.g., reducing the size of required
memory?

• How to improve the reliability in communication links between the BS
and UEs by exploiting the spatial coupling? How to efficiently imple-
ment the decoder of such channel coding schemes?

1.2. Thesis Outline and Contributions 3

1.2. THESIS OUTLINE AND CONTRIBUTIONS

This thesis is divided into fifteen chapters as shown in Figure 1.1. The first
three chapters of the thesis give an overview of the research field and present
a general reference information on terms and concepts, which will be used
later in this thesis. Chapter 2 provides an introduction to the field of wire-
less communication systems including propagation channel, different wire-
less transmission technologies, and massive MIMO baseband processing, with
the focus on functional blocks, which are targeted in this thesis. Chapter 3
presents the design methodology and tradeoffs to achieve hardware-efficient
massive MIMO baseband processor. The remaining chapters of this thesis are
organized into three parts, i.e., Part I–III, as follows.

Part I includes three chapters. The latency requirements of OFDM modula-
tion and demodulation in the context of massive MIMO systems are discussed
in Chapter 4. Then, Chapter 5 presents a low-latency fast Fourier transform
(FFT) and inverse FFT (IFFT) along with the VLSI architecture and application
specific integrated circuit (ASIC) implementation results. This is followed by
an efficient reordering scheme for uplink demodulation in OFDM-based sys-
tems in Chapter 6.

Part II starts by introducing the concept of massive MIMO detection and
propagation channel in Chapter 7. Then, the proposed angular-domain mas-
sive MIMO detection algorithm is described in Chapter 8. The complexity and
detection performance of angular-domain massive MIMO detection are ana-
lyzed in Chapter 9, and different design tradeoffs are discussed. Chapter 10
presents the VLSI architecture, which realizes the angular-domain massive
MIMO detection along with corresponding synthesis results.

Part III consists of five chapters. In Chapter 11, turbo-like codes and the
concept of spatial coupling are introduced. The decoding algorithms for un-
coupled and spatially coupled serially concatenated codes (SC-SCCs) are pre-
sented in Chapter 12. Then, in Chapter 13 the decoding performance and
complexity of these schemes are evaluated and several design tradeoffs are
discussed. The VLSI architectures to realize these decoding algorithms are
presented in Chapter 14 and the corresponding latency, throughput, and sili-
con area are analyzed. Moreover, a fully-pipelined decoding scheme for SC-
SCCs along with the estimation of throughput and hardware cost are intro-
duced in Chapter 15.

Finally, the thesis is concluded by a chapter with outlook for future work.
Figure 1.1 shows a general view of the thesis content.

4 Introduction

Chapter 2:

Digital Baseband
Processing

Chapter 3:

Co-Design
Methodology

Chapter 6:

Reordering
Scheme

Chapter 4:

FFT/IFFT in
Massive MIMO

Chapter 8:

Angular-Domain
Massive MIMO

Detection

Chapter 9:

Design Evaluation
and Tradeoffs

Chapter 10:

Implementation
of Ang.-Domain
MaMi Detection

Chapter 13:

Performance and
Complexity
Evaluation

Chapter 1:

Introduction

Chapter 12:

Decoding
Algorithms

Chapter 14:

Decoder
Architectures and
Implementation

Results

Chapter 15:

Fully Pipelined
SC-SCC Decoder

Chapter 5:

Low-Latency
FFT/IFFT

Chapter 7:

 Uplink Processing
in Massive MIMO

Chapter 11:

Turbo-like Codes Part II:
Massive MIMO Detection

Figure 1.1. The outline of this thesis.

PART I: FFT/IFFT PROCESSOR FOR MASSIVE MIMO SYSTEMS
New services and applications require low-latency communication links and
aim for data delivery within a specified delay. In this regard, one area of
design focus for 5G standard is to support time-critical (low-latency) commu-
nications, where the end to end latency is as low as 1 ms [7]. Self-driving
cars, cloud gaming, and factory robots are examples of such applications that
require a low latency [8].

On the other hand, in time division duplexing (TDD) mode, which is con-
sidered as the operation mode of massive MIMO system in this work, the
latency requirement becomes far more challenging. This is due to the sharing
of available time budget between uplink and downlink processing as well as
the link-direction switching time. This time budget depends on how fast the

1.2. Thesis Outline and Contributions 5

channel is changed due to the changes in the propagation environment and
users positions.

Latency analysis in [9] shows that a considerable part of latency in the base-
band of OFDM-based massive MIMO systems is introduced by OFDM modu-
lation and demodulation. This includes the time needed to perform FFT/IFFT
and to reorder the generated output samples. To address the low-latency de-
mand of massive MIMO systems, an FFT/IFFT processor and corresponding
reordering scheme are proposed in this part of the thesis, which reduce the
latency of OFDM-based systems considerably. The main idea is to utilize
the OFDM guard bands to reduce the number of required computations, and
therefore the processing time. To realize this idea, a modified pipelined archi-
tecture with a reorganized memory structure and an efficient data scheduling
mechanism are developed.

The content of Part I is based on following publications:

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Latency FFT/IFFT Architecture for Massive MIMO Systems Utilizing
OFDM Guard Bands," in IEEE Transactions on Circuits and Systems I
(TCAS-I): Regular Papers, vol. 66, no. 7, pp. 2763-2774, February 2019,
doi: 10.1109/TCSI.2019.2896042.

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Latency and Area Efficient FFT Processor for Massive MIMO Systems,"
in 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, USA, May 2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050692.

PART II: MASSIVE MIMO DETECTION
Due to the large number of BS antennas in massive MIMO systems, the com-
putational complexity of uplink detection is increased significantly compared
to the conventional MIMO systems. Moreover, the amount of memory which
is needed to store the channel state information (CSI) becomes orders of mag-
nitude larger than the one in traditional small-scale MIMO systems.

To address these challenges, a new approach to detection in massive MIMO
systems is presented in this part of the thesis. To this end, we have investi-
gated the sparsity of massive MIMO channels using real-measured channel
data. The underlying idea in our scheme is to exploit the sparsity of the
massive MIMO channel in the angular domain to reduce the size of the CSI
matrix by selecting dominant angles of the wireless signal. Then, the detec-
tion is performed in the angular domain using the reduced-size CSI. As a
result, the angular-domain massive MIMO detector outperforms the antenna-
domain schemes in terms of computational complexity and required memory.

6 Introduction

In the proposed scheme, the angular-domain linear detector is followed by a
non-linear post-processing scheme, which is designed to improve the overall
detection performance of massive MIMO detection. The angular-domain mas-
sive MIMO detector is realized using an efficient VLSI architecture, in which
the processing is mainly performed by a reconfigurable systolic array.

The content of Part II is based on the following publications:

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "Angular-
Domain Massive MIMO Detection: Algorithm, Implementation, and
Design Tradeoffs," in IEEE Transactions on Circuits and Systems I (TCAS-
I): Regular Papers, vol. 67, no. 6, pp. 1948-1961, January 2020, doi:
10.1109/TCSI.2020.2968408.

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A VLSI
Implementation of Angular-Domain Massive MIMO Detection," in 2019
IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo,
Japan, May 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702720.

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Complexity Massive MIMO Detection Scheme Using Angular-Domain
Processing," in 2018 IEEE Global Conference on Signal and Information Pro-
cessing (GlobalSIP), Anaheim, CA, USA, November 2018, pp. 181-185,
doi: 10.1109/GlobalSIP.2018.8646483.

PART III: SPATIALLY COUPLED SERIALLY CONCATENATED CODES
Mission-critical applications are an important group of applications in many
recent wireless networks, which have stringent performance and reliability
requirements [10, 11]. Remote surgery, railway/aircraft control systems, and
vehicle to vehicle communication are just a few examples of such applications
[12, 13]. In such cases wireless communications must meet high reliability
requirements since any noticeable error can lead to catastrophic outcomes.
Sometimes the demand on high reliability comes together with low latency
requirements. Several channel coding techniques, such as turbo codes and
low parity check codes (LDPC), have been proposed to improve the reliability
of wireless communication systems [14].

Spatially coupled serially concatenated codes (SC-SCCs) are a class of spa-
tially coupled turbo-like codes, which have a close-to-capacity performance
and low error floor [6]. In this part of the thesis, a comprehensive design
space exploration is performed to reveal different aspects of SC-SCCs. Also,
it is demonstrated how this class of codes can be realized in hardware, which
has not previously been investigated in the literature. To this end, different

1.2. Thesis Outline and Contributions 7

SC-SCC decoding schemes along with the VLSI architectures are presented.
Various design tradeoffs between decoding performance, complexity, latency,
throughput, and hardware cost are discussed.

The content of Part III is based on the following publications:

• Mojtaba Mahdavi, Stefan Weithoffer, Matthias Herrmann, Liang Liu,
Ove Edfors, Norbert Wehn, and Michael Lentmaier, "Spatially Coupled
Serially Concatenated Codes: Performance Evaluation and VLSI De-
sign Tradeoffs, "submitted to IEEE Transactions on Circuits and Systems I
(TCAS-I): Regular Papers, August 2021.

• Mojtaba Mahdavi, Liang Liu, Ove Edfors, Michael Lentmaier, Norbert
Wehn, and Stefan Weithoffer, "Towards Fully Pipelined Decoding of
Spatially Coupled Serially Concatenated Codes," in 2021 IEEE Interna-
tional Symposium on Topics in Coding (ISTC), Montreal, Canada, August
2021, pp. 1-5.

• Mojtaba Mahdavi, Muhammad Umar Farooq, Liang Liu, Ove Edfors,
Viktor Öwall, and Michael Lentmaier, "The Effect of Coupling Memory
and Block Length on Spatially Coupled Serially Concatenated Codes,"
in IEEE 93rd Vehicular Technology Conference (VTC), Helsinki, Finland,
December 2020, pp. 1-7, doi: 10.1109/VTC2021-Spring51267.2021.9448689.

Finally, this thesis concludes with a chapter on outlook and future works.

2
Digital Baseband Processing

Wireless communication has been experiencing significant growth since its
invention, which dramatically has improved the quality of life around the
world and the way that people communicate. In 1981, the first generation (1G)
of cellular phone systems, e.g., Nordic mobile telephone (NMT), provided a
data rate of 1.2 kbps [15]. However, the demand for higher data rate has
been increased remarkably over the past decades, especially since multimedia
streaming became a normal use case for mobile phones. Figure 2.1 represents
the average monthly mobile data traffic per subscription, which is envisioned
to increase 4-fold between 2020 and 2026 [1]. It is shown that in 2020, the

9 GB 35 GB

(a) (b)

Figure 2.1. The estimated world average monthly traffic per subscription for
different types of applications in (a) 2020, (b) 2026.
Source of data/figures: Ericsson Mobility Report [1].

9

10 Digital Baseband Processing

Enhanced Mobile Broadband(eMBB)
10 Gbps

Massive Machine Type
Communications (mMTC)

1 million connections per km

Ultra-Reliable and Low-Latency
Communications (URLLC)

1 ms2

Gbits/s

3D Video

Work & Play in Cloud

Industrial &
Vehicular Automation

Remote Surgery

Self Driving Car

Voice

Smart Buildings &
Sensor Network

Smart Cities

Figure 2.2. Various applications in 5G with different requirements: extreme
data rates and large data volumes in eMBB; low energy consump-
tion, extreme coverage, and low-cost devices in mMTC; high avail-
ability in URLLC.

video traffic accounts for 66% of all mobile data traffic, while this share is
forecast to increase to 82% in 2026.

Moreover, new applications set new demands on data-rate, reliability, and
latency of the wireless services, pushing forward technology developments [3,
16]. Figure 2.2 illustrates the promised applications in 5G, which are catego-
rized into three groups, enhanced mobile broadband (eMBB) applications [3],
massive machine type communications (mMTC) [17], and ultra-reliable and
low-latency communications (URLLC) [18]. Examples of such applications
are eHealth, autonomous vehicles, connected ambulances, smart cities, smart
homes, the Internet of things (IoT), and emergencies [8, 12, 13]. The later one
directly affects mobile traffic; in the first 6 months of the COVID-19 pandemic,
the mobile traffic grew by 20 percent [1]. As illustrated in Figure 2.3, the total
mobile data traffic reached around 51 EB per month at the end of 2020 and it
is projected to reach 226 EB per month in 2026 [1].

In order to support these applications and requirements, the 5G standard
employs massive MIMO as a key technology, which upgrades the previous
wireless standards [2, 5]. It enhances the bounds of access, reliability, per-

2.1. Wireless Communication Systems 11

M
o

b
il

e
su

b
sc

ri
p

ti
o

n
s

b
y

 t
ec

h
n

o
lo

g
y

 (
b

il
li

o
n

)

G
lo

b
a

l
m

o
b

il
e

d
a

ta
 t

ra
ff

ic
 (

E
B

 p
er

 m
o

n
th

)

(a) (b)

Figure 2.3. (a) Number of mobile subscriptions in different technologies, (b)
Global mobile data traffic (EB per month). In 2026, 5G will account
for an estimated 54% of total mobile data.
Source of data/figures: Ericsson Mobility Report [1].

formance, data-rate, and latency limitations. More specifically, a peak data
rate of 10 Gb/s and a latency of 1 ms are promised in 5G standard [3]. As
shown in Figure 2.3(a), the number of 5G subscriptions is 220 million at the
end of 2020, while it is projected to have 3.5 billion 5G subscriptions globally
by the end of 2026. It is expected that 54% of world’s mobile data traffic will
be carried by 5G networks, as depicted in Figure 2.3(b).

This chapter aims to introduce basic concepts and terminologies of wire-
less communication systems, which are used in the rest of this thesis. First,
a general description of wireless communication systems, wireless channel,
and transmission technologies is given. Then, massive MIMO systems and
corresponding propagation channels are discussed. Lastly, an overview of the
massive MIMO baseband processing is presented where the targeted blocks
of this thesis are emphasized.

2.1. WIRELESS COMMUNICATION SYSTEMS

Figure 2.4 illustrates a simplified model of wireless communication systems.
At the transmitter (TX) side, the information bits are encoded and mapped to
the constellation symbols. These symbols are modulated and then converted
to the analog signals to be transmitted over the wireless channel using the
antenna. The analog signals are propagated through the atmosphere in the
form of electromagnetic waves, and they are received by the antenna at the
receiver (RX) side.

The receiver chain performs the inverse transformations on the received

12 Digital Baseband Processing

Symbol
Mapping

ModulationInterleaver

Channel
Estimation

Symbol
Demapping

Deinterleaver Demodulation

Transmitter Chain (TX)

Receiver Chain (RX)

Wireless
Channel

Channel
Encoding

Precoding
Digital

Front End
Analog

Front End

Analog
Front End

Digital
Front End

Detection
Channel

Decoding

Figure 2.4. A simplified block diagram of wireless communication systems.

data and corrects the errors introduced by the propagation channel and TX/RX
chains to extract the transmitted information. To this end, the received signal
goes through the analog front-end and is eventually demodulated. Then, the
received symbols are detected, demapped, and decoded to obtain an estimate
of the transmitted bits. In the detection process, the receiver needs to know
the channel state. This can be done by, for example, sending known pilots
used to estimate the effects of the propagation channel on the transmitted
signal [19, 20].

2.1.1. WIRELESS CHANNEL

A communication channel is a medium in which the information transmission
between the transmitter and receiver occurs. The electromagnetic wave leaves
the transmitter antenna, propagates through the channel, and it is picked up
by the receiver antenna. On the way from transmitter to receiver, the electro-
magnetic signal experiences several different effects. First, the signal power
is reduced due to path loss in free space propagation. Second, the signal
can be reflected, diffracted, and scattered by objects such as buildings, moun-
tains, trees, cars, and rough surfaces, in the environment. This results in
multi-path components (MPC) of the transmitted signal, which arrive at the
receiver through multiple paths, each with a different delay, phase, and atten-
uation [21]. This effect is referred to as multi-path propagation, which leads

2.1. Wireless Communication Systems 13

Reflection

LOS

LOS

NLOS

Shadowing
Scattering

Diffraction

BS

UE
UE

UE
UE

UE

UE

UE

UE

UE

UE

Figure 2.5. Multi-path wireless propagation channel between the base sta-
tion (BS) and several UEs. Different propagation mechanisms and
channel effects are marked.

to the channel being frequency selective [22]. Figure 2.5 shows an example of
multi-path wireless propagation channel, which shows different channel ef-
fects and propagation mechanisms. Typically, MPCs can be classified into two
groups: if there is a direct connection between transmitter and receiver, the
path is called as line-of-sight (LOS) otherwise it is a non-line-of-sight (NLOS)
path, as shown in Figure 2.5.

The third effect is about the changes in the propagation environment due to
the movement of receiver, transmitter, and/or scatterers, which would change
the travel time of the signal and, consequently, the perceived frequency of
the transmitted signal. This effect is known as the Doppler frequency shift
and depends on the relative movement between the transmitter and receiver
as well as movements in the environment itself [22]. Another effect that can
occur in the channel is shadowing of one or more MPCs of the signal due
to obstruction between the transmitter and receiver, caused by the changes in
the propagation environment (see Figure 2.5). All the mentioned propagation
effects vary over time, resulting in a time-varying frequency-selective channel.
The mitigation of such effects at the receiver makes the baseband processing
of wireless communication systems a very challenging task.

14 Digital Baseband Processing

Based upon the received distorted and noisy signals, the receiver estimates
transmitted data with as few errors as possible. However, errors can occur
if the distortion and noise become too strong, which affects the performance
and link reliability. This is usually quantified using the bit error rate (BER),
defined as the number of error bits divided by the total number of transmitted
bits. Theoretically, the Shannon-Hartley theorem [22] states that an arbitrarily
low error rate communication, using an average received signal power of S
through a communication channel subject to additive white Gaussian noise
(AWGN) of power N, can be achieved if the data rate is less than

C = B log2

(
1 +

S
N

)
. (2.1)

In this equation, C is the channel capacity measured in bit per second (bps),
B is the bandwidth measured in Hz, and S/N is the received signal-to-noise
power ratio (SNR).

It can be seen in (2.1) that capacity, and therefore data-rate of a wireless
system can be increased by either using more bandwidth or increasing the
signal power. Due to the logarithmic dependency, the later option provides
only a limited gain. In addition, the transmitted power is faced by practical
limitations and also it has to satisfy the regulatory constraints defined in the
standards. For these reasons, increasing the bandwidth has been the preferred
choice to increase capacity in the cellular standardization process; the band-
width was increased from 200kHz in the 2G standard to 100 MHz in the 4G
standard.

2.1.2. WIRELESS TRANSMISSION TECHNOLOGIES

As shown in (2.1), a straightforward way of increasing the data rate and ca-
pacity is to increase the communication bandwidth; a wide frequency band
allows more data to be transmitted at any time. However, a larger bandwidth
increases the implementation complexity of the system, since the channel be-
comes increasingly frequency selective, and thus affects signals at different
frequency bands differently. Moreover, the spectrum is a regulated and very
expensive resource, meaning that simply scaling the bandwidth is not an eco-
nomic solution. Therefore, finding methods to increase the data rate in a
limited spectrum, i.e., improving the spectral efficiency, becomes critical. This
section describes the key technologies, which are used in the wireless com-
munication systems to mitigate the mentioned issues.

ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)
In order to reduce the frequency selectivity, the frequency division multiplex-
ing (FDM) method can be used [22]. The key idea is to divide the band-
width into several non-overlapping sub-bands (i.e., subcarriers), which carry

2.1. Wireless Communication Systems 15

Transmitter Receiver
Wireless
Channel

1 1

Figure 2.6. A MIMO wireless system with MT transmit antennas and MR re-
ceive antennas.

different signals, corresponding to different parts of the data. In this way,
the frequency response of each sub-band is flattened, thus reducing the com-
plexity of channel equalization. Orthogonal frequency-division multiplexing
(OFDM) is one of the FDM techniques, in which the subcarriers are chosen
to be orthogonal to each other [22]. The orthogonality leads to no inter-
ference among subcarriers under ideal conditions and, consequently it does
not require inter subcarrier guard bands. Therefore, OFDM can improve the
spectral efficiency of the communication systems by parallel transmission us-
ing frequency-overlapping subcarriers. Another advantage of OFDM is that,
OFDM demodulation and modulation can be efficiently implemented using
fast Fourier transform (FFT) and inverse FFT (IFFT) at the receiver and trans-
mitter, respectively [23].

The signals in OFDM systems may experience inter-carrier interference
(ICI), since the orthogonality of the subcarriers may be destroyed by multi-
path propagation and hardware imperfections such as carrier-oscillator mis-
match. The effect of ICI and inter-symbol interference (ISI) can be reduced
a by extending each OFDM symbol with a cyclic prefix (CP) with a length
greater than the channel delay spread [24].

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
The spatial domain provides the possibility to increase the data rate and link
reliability. Multiple-input multiple-output (MIMO) is a technology which ex-
ploits the spatial domain by employing multiple antennas at the transmitter
and receiver [25]. MIMO has been incorporated in many wireless communi-
cation standards such as IEEE 802.11ac, LTE, and LTE Advanced (LTE-A) [26].
In these standards, LTE-A supports the highest number of antennas at the
transmitter and receiver, i.e., up to 8×8. In modern wireless standards such
as 4G and 5G, the MIMO and OFDM technologies are jointly deployed, which
is termed as a MIMO-OFDM system.

16 Digital Baseband Processing

In general, there are three MIMO transmission techniques and each can
offer a specific property [26]. The first one is spatial multiplexing, which
splits and performs transmission of a signal over several antennas to increase
the communication link capacity and the overall data-rate without requiring
additional bandwidth. Second, MIMO can be used for spatial diversity to
transmit the same signal over several beams increasing resilience to fading
and other propagation effects, e.g., when the UE experiences low SNR due to
deep fading. Third, MIMO can offer beam steering and electronically guide
the signal directivity by controlling the propagating phase over multiple an-
tennas. This enables communication with several UEs within the same time
and frequency resources (multi-user MIMO).

Transmission of multiple streams simultaneously through the wireless chan-
nel would result in mixing of the signals at the receiver side. Therefore, ad-
ditional and complicated signal processing is required to separate the data
streams, which is generally called MIMO processing.

Figure 2.6 shows a MIMO system with MR receive antennas and MT trans-
mit antennas (i.e., MR×MT MIMO system). The input-output relation for the
MIMO system can be modeled as

z =
√

pul Hy + n, (2.2)

where z is MR × 1 vector of received signal, H represents the MR × MT
complex-valued channel matrix, and

√
puly is the MT × 1 transmitted vec-

tor across antennas, in which y is normalized and pul controls the transmit
power, and n is an independent and identically distributed (i.i.d.) complex
Gaussian noise vector.

At the receiver side, a MIMO detector is employed to detect the transmitted
information, which typically includes complex operations like matrix inver-
sion, QR-decomposition (QRD), or Cholesky decomposition (CD) [27–33].

DUPLEXING SCHEMES
Cellular systems typically operate in frequency-division duplex (FDD), time-
division duplex (TDD) mode, or a combination of the two. In an FDD system,
the uplink and downlink signals are transmitted at different frequencies while
in a TDD system, different time slots are allocated for uplink and downlink
transmission on the same frequency. Both of these duplexing schemes have
advantages and disadvantages [34]. For example, FDD scheme is favorable
due to its improved coverage and reduced interference, thereby needs fewer
base stations to cover the same area [35]. However, in FDD the downlink
channel state information (CSI) needs to be estimated by the UEs and then
fed back to the BS, since the uplink and downlink are located on different
frequencies. Thus, excessive resources are needed for downlink pilots and

2.1. Wireless Communication Systems 17

BS

1
1

Wireless
Channel

2

M

K

2

3
BS

1
1

Wireless
Channel

2

M

K

2

3

(a) (b)

Figure 2.7. A multi-user massive MIMO (MU-MaMi) system, which works in
the TDD mode. An M-antenna BS serves K single-antenna UEs in
(a) uplink and (b) downlink, which are modeled in (2.3) and (2.4),
respectively.

CSI feedback, which makes the CSI estimation very complex in systems with
a large number of BS antennas.

On the other hand, in the TDD systems the uplink and downlink propa-
gation channels can be considered reciprocal and the need for CSI feedback
can be eliminated [36]. Thus, only orthogonal uplink pilots from the UEs are
needed, making TDD operation the feasible choice. However, calibration of
the transmit and receive RF chains at the BS may be challenging.

MASSIVE MIMO
In 2010, Thomas L. Marzetta from Bell Labs showed in a theoretical analysis
that the spatial domain can be further exploited by increasing the number of
antennas at the BS side [4]. It was analyzed and shown that by scaling up
the number of antennas at the BS without limit, under ideal conditions, the
effects of additive receive noise, small-scale fading, and inter-user interference
disappears. Such technology is today called "massive MIMO" or "large-scale
MIMO" technology. Massive MIMO systems typically operate in a multi-
user scenario, wherein a BS is equipped with a large number of antennas
(tens to hundreds) and serves many single-antenna terminals (10 or more) in
the same time-frequency resource [37]. Figure 2.7 shows a TDD-base multi-
user massive MIMO (MU-MaMi) system, which has M antennas at the BS to
communicate with K single-antenna UEs.

Relevant research has been conducted over the past few years and several
testbeds have been developed as a proof-of-concept, including Lund univer-
sity massive MIMO (LuMaMi) [38], Argos [39], etc. These studies have shown
that massive MIMO gives great improvements over the conventional small-
scale MIMO, which are listed below [4, 37].

18 Digital Baseband Processing

• Improvement in Spectral and Transmit Energy Efficiency: A substan-
tial difference between massive MIMO and conventional MIMO tech-
nology is that massive MIMO exploits the MPCs such that signals add
up constructively at the intended UE to increase its signal strength.
Also, rather than multiplexing the UEs in time or frequency, the UEs
may be efficiently multiplexed in the spatial domain and use the en-
tire time-frequency resource. As a result, massive MIMO improves the
spectral and energy efficiencies.

• Reduction of Inter-User Interference: Due to the large number of BS
antennas in massive MIMO systems, the UE channel vectors become
approximately orthogonal. Thus, by using a proper precoding scheme,
the inter-user interference (IUI) can be reduced significantly, meaning
that the BS can communicate with several UEs simultaneously.

• Simple Precoding and Detection: It was shown in [40] that the linear
precoding and detection schemes can be used in massive MIMO sys-
tems to achieve a close-to-optimal performance.

• Improvement in Link Reliability: The reliability of wireless communi-
cation systems can be limited by fading, wherein the signal strength can
be reduced drastically. Massive MIMO relies on the channel hardening
to combat the fading effects. The large diversity gain of massive MIMO
systems reduces the communication error probability and therefore im-
proves the reliability of the transmission.

• Inexpensive Hardware Components: In massive MIMO systems, the
effects of noise, fading, and hardware imperfections tend to average
out when signals from a large number of BS antennas are combined
together. Therefore, the expensive and high-power amplifiers deployed
in conventional systems may be replaced with many less expensive low-
power amplifiers.

• Power Efficiency: The transmitted power in a massive MIMO system
can be scaled down proportionally to the number of BS antennas with-
out performance loss, compared to a single-input single-output system.
Also, in the massive MIMO systems, the processing efforts are pushed
from the UEs side to the BS. Thus, battery-operated mobile terminals
can have low hardware cost and low power consumption.

2.3. Baseband Processing in Massive MIMO Systems 19

2.2. OFDM-BASED MULTI-USER MASSIVE MIMO SYSTEMS

In this thesis, a MU-MaMi system which works in the TDD mode and employs
OFDM as the modulation scheme is considered. For simplicity, single-antenna
UEs are considered in this work. It is worth to mention that, since the stan-
dardization process of 5G has been ongoing during our research, some of the
assumptions are based on the specifications of the 4G standard.

2.2.1. SYSTEM MODEL

Figure 2.8 shows a simplified model of a MU-MaMi system, which has M
antennas at the BS to serve K single-antenna UEs through L subcarriers. In
massive MIMO systems it is usually assumed that M� K, for achieving good
spatial separation of user signals. The uplink path of the MU-MaMi system
at the `-th subcarrier is modeled as

z` =
√

pul H`y` + n`, (2.3)

where z` = [z1, · · · , zM]T represents the vector of received signals across the
M antennas,

√
puly is the transmitted vector from the K UEs, in which y is nor-

malized and pul controls the transmit power, H` ∈ CM×K is the corresponding
CSI matrix, and n` represents the i.i.d complex Gaussian noise vector.

The downlink signal model of the MU-MaMi system at the `-th subcarrier
can be expressed as

u` =
√

pdl(H`)Tx` + w`, (2.4)

where due to the reciprocity calibration [36, 41] the downlink channel matrix
is (H`)T ∈ CK×M, u` = [u1, · · · , uK]

T is the vector of received signals by
the UEs, pdl is the total transmit power in the downlink (which is constrained
similar to (2.2)), x` = [x1, · · · , xM]T represents the transmit signal vector using
M antennas at the BS, and w` is the i.i.d complex Gaussian noise vector.

2.2.2. MASSIVE MIMO CHANNEL

With the increased number of BS antennas in massive MIMO systems, the CSI
dimension increases drastically, which may further limit the practical imple-
mentation of such systems. This has raised great interest in more efficient
channel training and compression methods [42, 43]. In this regard, we have
analyzed the massive MIMO propagation channel using real measured chan-
nel data, which makes our work close to reality. As a result, the sparsity of the
massive MIMO channel is utilized to reduce the size of CSI matrix. Then, we
have proposed an efficient technique to reduce the complexity and hardware
cost of massive MIMO detection schemes as presented in Part II. In order to
consider different channel conditions in the proposed detection scheme, both
LOS and NLOS scenarios are examined.

20 Digital Baseband Processing

1

K

1

M

Reciprocity
Calibration

OFDM
Mod.

OFDM
Mod.

Analog
TX

Analog
TX

Deinter
leaving
Deinter
leaving

Analog
RX

Analog
RX

1

K

1

K

1

K

1

M

Channel
Estimation

MIMO
Detection

&

Channel
Encoding

Interleav
ing

Symbol
Map.

MIMO
Precoding

OFDM
Demod.

Symbol
Demap.

Resample
Filtering

Digital
Front-end

Channel
Decoding

1

M1

M

2

1

M

per-antenna processing (PAP)per-user processing (PUP) per-subcarrier
processing (PSP)

Figure 2.8. A simplified block diagram of baseband processing in OFDM-
based massive MIMO systems. The highlighted blocks are tar-
geted in this thesis.

2.3. BASEBAND PROCESSING IN MASSIVE MIMO SYSTEMS

In this section, the digital baseband processing is discussed in the context
of massive MIMO systems. Figure 2.8 shows a simplified block diagram of
an OFDM-based massive MIMO system. As shown in this figure, the base-
band processing can be categorized into three groups: (i) per-antenna process-
ing (PAP), (ii) per-user processing (PUP), and (iii) per-subcarrier processing
(PSP). The computational complexity of PAP and PUP operations scale with
the number of BS antennas and UEs, respectively. The computational com-
plexity of PSP operations depends on the number of BS antennas, number of
UEs, and the number of OFDM subcarriers.

The highlighted blocks in Figure 2.8 are selected as the focus of this work.
These blocks constitute a major part of the massive MIMO baseband and
play a key role in determining performance of the entire system. In the next
subsections, all the blocks shown in Figure 2.8 are described briefly. Then,
the highlighted ones will be investigated in detail in Parts I, II, and III of this
thesis.

2.3.1. ANALOG AND DIGITAL FRONT-END CHAIN

The TX/RX analog and digital front-end chains include several modules such
as low noise amplifiers (LNAs), mixers, analog to digital converters, and fil-
ters. These blocks perform several operations such as amplifying, filtering,
predistortion, and down/up conversion of the transmitted/received signals.
The calibration and compensation for hardware imperfections can be done ei-

2.3. Baseband Processing in Massive MIMO Systems 21

ther in the analog chains and/or in the digital front-end. Moreover, one of the
main tasks in the digital front-end block is to perform symbol synchronization
to determine the exact timing of the incoming OFDM symbols [44].

2.3.2. OFDM MODULATION/DEMODULATION

As shown in Figure 2.8, an OFDM modulation/demodulation pair is needed
for each antenna. At the transmitter side, the frequency-domain data are as-
signed to the narrowband subcarriers, and then transformed to time-domain
signals using an IFFT. Thereafter, CP is added to each OFDM symbol to pro-
tect data transmission, and avoid ISI and ICI.

As one can expect, the inverse operations are performed at the receiver side.
Thus, the sampled time-domain digital signals from the uplink are collected
and the CP is removed from each OFDM symbol. Then, OFDM demodulation
is performed using an FFT to transform the received time-domain signals back
into their respective frequency-domain subcarriers.

The processing latency of FFT/IFFT is proportional to the length of OFDM
symbols, which is specified by the number of subcarriers. Due to the large
number of subcarriers in recent OFDM-based systems, the latency of OFDM
(de)modulation becomes considerably large. To address this challenge, a low-
latency FFT/IFFT processor is described in Part I of this thesis [45].

2.3.3. CHANNEL ESTIMATION

Massive MIMO systems usually rely on knowing CSI at the BS to perform
downlink precoding and uplink detection. Thus, the impacts of the propa-
gation channel on the transmitted data (e.g., attenuation and phase rotation)
must be estimated. The channel estimation block performs this task and ob-
tains the CSI through the uplink training using the known signals, i.e., pi-
lots, sent from all UEs to the BS. Due to the channel reciprocity in the TDD
mode, the uplink CSI can be used for downlink precoding after proper cali-
bration [36, 41].

Although transmitting pilots reduces available resources to be used for data
transmission, a certain minimum number of pilots is essential to estimate
frequency selectivity and time variations of the channel. One challenge in the
estimation of massive MIMO channels is pilot contamination, where channel
estimates may contain interference from UEs transmitting data or the same
pilot in nearby cells [46]. This is due to the fact that the number of orthogonal
pilot sequences is limited, and they have to be reused from cell to cell.

The estimated CSI matrix will be used in downlink precoding and uplink
detection.

22 Digital Baseband Processing

2.3.4. DOWNLINK PRECODING

In massive MIMO systems a precoding scheme is used to equalize the chan-
nel effects and separate data streams for each UE, i.e., to minimize IUI, thus
simplifying baseband processing on the battery-operated UEs.

It has been shown that linear precoding can be used in massive MIMO
systems to achieve a near-optimal BER performance in favorable channel con-
ditions [40]. Among them, three commonly-used schemes are: (i) zero forcing
(ZF), which eliminates the IUI, (ii) matched filtering (MF), which maximizes
the received SNR at the UEs, and (iii) minimum mean squared error (MMSE),
which is a compromise scheme that makes a tradeoff between the SNR and
IUI cancellation [47].

In massive MIMO systems, introduced in Section 2.2.1, downlink precoding
at the `-th subcarrier can be expressed as

x` = W `s`, (2.5)

where x` = [x1, · · · , xM]T is the transmit signal vector, which will be transmit-
ted using M antennas at the BS as modeled in (2.4), W ` ∈ CM×K represents
the precoding matrix with appropriate power scaling specified by the chosen
precoding algorithm, and s` ∈ CK×1 is the vector of K symbols to be precoded
and sent to the K UEs.

2.3.5. UPLINK DETECTION

In the uplink of a MU-MaMi system, the BS receives signals, which contain
the superposition of the transmitted signals from all UEs. The massive MIMO
detector uses the previously estimated CSI to separate the data streams cor-
responding to the K UEs. The maximum likelihood (ML) detector achieves
the best sequence detection performance, in terms of selecting the most likely
transmitted symbol sequence. This scheme calculates the distance from the
received vector to all possible vectors of constellation points and finds the
closest one as the estimation of the transmitted vector of symbols. However,
the complexity of this method becomes extremely large with increasing num-
ber of antennas, number of UEs, and modulation order, which makes it is
unfeasible for massive MIMO systems [48].

Several detection algorithms have been presented in the literature, which
can be categorized as linear and non-linear. From the BER performance point
of view, non-linear detectors like the sphere decoder (SD) and K-Best [49]
achieve better BER performance than the linear detectors. However, the com-
putational complexity of such schemes is very high when the number of BS
antennas and UEs grow. Similar to downlink precoding, linear detectors like
ZF, MF, and MMSE can provide near-optimal performance in massive MIMO

2.3. Baseband Processing in Massive MIMO Systems 23

systems in favorable channel conditions where the UE channels are nearly or-
thogonal [40]. However, the large size of CSI matrix presents implementation
challenges concerning computational complexity, processing latency, required
memory, and silicon area. In Part II of this thesis, an efficient massive MIMO
detection scheme is proposed, which provides a framework to trade between
computational complexity and BER performance, while reducing the size of
the required memory.

The detected transmitted signals corresponding to each UE will be sent to
the bit-level processing, which includes symbol demapping, deinterleaving,
and decoding.

2.3.6. SYMBOL MAPPING/DEMAPPING

At the transmitter side, the symbol mapping block receives the encoded bit
stream and maps it to a stream of symbols. This will be done based on the
adopted modulation scheme, e.g., quadrature amplitude modulation (QAM).
Meanwhile, pilots are often added to the symbol stream, which will be used
for synchronization and channel estimation at the receiver.

At the receiver side, the stream of symbols, generated by the massive MIMO
detector, are sent to the symbol demapping block. This block removes the
pilots and demaps data-carrying symbols back to the corresponding binary
bit stream and sends them to the channel decoder block.

2.3.7. INTERLEAVING/DEINTERLEAVING

Interleaving usually improves transmission robustness with respect to the
burst errors. Thus, at the transmitter chain, the encoded bit stream is in-
terleaved to make sure that adjacent bits are not transmitted consecutively in
frequency. Additionally, scrambling can be used to turn the bit stream into a
pseudo-noise sequence to reduce the probability of having long subsequences
of zeros or ones. However, due to the channel hardening effect, the role of
interleaving is less critical in massive MIMO systems.

2.3.8. CHANNEL ENCODING/DECODING

The propagation channel effects can cause uncertainty at the receiver side on
the transmitted data. In digital communication systems, a technique called
channel coding has been developed to improve the reliability of the received
data and make the data more resistant to errors. This can be done by channel
encoding and decoding at the transmitter and receiver, respectively.

Channel encoding can be seen as adding redundancy to the information
sequence in a controlled way at the transmitter side. Then, the encoded se-
quence is transmitted over the noisy channel. At the receiver side, the channel
decoder uses the transmitted redundant bits to detect and correct a limited

24 Digital Baseband Processing

number of errors and to recover the original information sequence without
retransmission.

There are many types of error correction codes. Among them, low-density
parity-check (LDPC) codes [50–52] and turbo codes (TCs) [53, 54] have been
adopted in many communication standards. It has been shown that both
classes of codes can perform close to the Shannon limit, if the length of in-
formation block to be encoded is large enough [55, 56]. However, finding
code schemes for short and moderate length of information block, which can
perform close to capacity, is still a challenge.

In Part III of this thesis a new class of codes, spatially-coupled serially-
concatenated codes (SC-SCCs), along with the corresponding decoding al-
gorithms and hardware architectures are presented. This type of code can
provide promising features like close-to-capacity decoding performance for
different information block lengths.

3
System, Algorithm, and VLSI

Co-Design

3.1. PERFORMANCE METRICS AND DESIGN PARAMETERS

In this thesis, three levels of abstraction are considered: (i) system, (ii) algo-
rithm, and (iii) architecture levels. At each level, there are various metrics,
called performance metrics, which are used to evaluate a design from different
perspectives like BER performance, complexity, latency, etc. Also, there are
several design parameters/choices and system features at each design level, which
are specific to the targeted design and can affect its performance metrics. The
above mentioned design levels are as follows:

• System Level: At this level the requirements on BER performance,
throughput, hardware cost, etc., are specified depending on the tar-
geted application. The optimization impact and improvement of the
performance metrics are higher at this design level compared to the
other levels. This emphasizes the necessity of performing an analysis
for different design parameters to investigate the system-level character-
istics, which directly affects the design of algorithm and corresponding
hardware architecture.

• Algorithm Level: In this design level, different techniques are em-
ployed to make the algorithms more hardware friendly, e.g., the re-
quired BER performance can be achieved with a low complexity. At this
level, the cost of hardware architectures can be examined, i.e., algorithm
mapping, which guides the designer to select the proper algorithm.

An aspect of algorithm mapping is fixed point optimization. Reducing
word-length can lower the memory requirements, shorten the critical
paths of functional blocks, and reduce the overall hardware cost at the
expense of less accuracy.

25

26 System, Algorithm, and VLSI Co-Design

• Architecture Level: The architectural level exploration is performed to
find the efficient hardware realization of each algorithm. Proper choice
of hardware architecture and employing different VLSI techniques can
improve the performance metrics. For example, pipelining and parallel
processing can be used to increase the throughput, while time multi-
plexing and folding may be used to reduce the design area.

Figure 3.1 presents the above-mentioned three levels of abstraction for three
target designs in this thesis, i.e., FFT/IFFT processor (Part I), massive MIMO
detector (Part II), and SC-SCC decoding scheme (Part III). At each level, the
corresponding performance metrics, design parameters/choices, and system-
level features are specified for each design.

The traditional design approach is to optimize an individual block in a
certain design level, e.g., architecture level, to improve the corresponding per-
formance metrics. In this thesis, we propose to extend the optimization across
different design levels, as illustrated with arrows in Figure 3.1 and described
in the next section.

3.1.Perform
ance

M
etrics

and
D

esign
Param

eters
27

Spatial Coupling

Coupling Memory

Block Length

Code Rate

Concatenation Scheme

Constraint Length

Structural Latency

Parameters & Features

Decoding Latency

Decoding Performance

M
et

ri
cs

Channel Sparsity

Subcarriers

Duplexing Scheme

Users

BS Antennas

UE Channel Orthogonality

Parameters & Features

Detection Performance

M
et

ri
cs

OFDM Guard Bands

Used Subcarriers

OFDM Symbol Length

Parameters & Features

Reordering LatencyM
et

ri
cs

CSI Memory

Decoding Algorithm

Sliding Window Size

Word Length

Decoding Iterations

Decoding Window Size

Design Choices

Decoding Complexity

Decoding Performance

Detection Algorithm

Compression Method

Decomposition Scheme

Post Processing Effort

Design Choices

Detection Complexity

Detection Performance

FFT Algorithm

Butterfly Radix

Decimation (DIT/DIF)

Design Choices

Scalability

M
et

ri
cs

M
et

ri
cs

M
et

ri
cs

Decoder Architecture

Parallelism Degree

Sub-decoder Architecture

Design Choices

Decoding Latency

Decoding Performance

Detector Architecture

Word Length

Multiplier Architecture

Design Choices

Detection Performance

Design Choices

M
et

ri
cs

M
et

ri
cs

M
et

ri
cs

FlexibilityMemory Requirement

Processing Latency

FFT Architecture

Word Length

Multiplier Architecture

Memory Organization

Throughput

Design Area

Proc. & Reord. Latency

Design Area & ThroughputA
rc

h
it

ec
tu

re
L

ev
el

A
lg

o
ri

th
m

L
ev

el
S

y
st

em
L

ev
el

Duplexing Scheme

Design Area

Throughput

Pipelining/Parallel Proc.

Complexity

Low Latency FFT/IFFT

Co-Design Co-Design Co-Design

Angular-Domain Massive MIMO Detection High Performance SC-SCC Scheme

Accuracy

Figure 3.1. Design parameters, system features, and performance metrics in
different abstraction levels for the designs in Part I,II, and III.

28 System, Algorithm, and VLSI Co-Design

3.2. CROSS-LEVEL OPTIMIZATION

The performance metrics can be improved by a local optimization in a spe-
cific design level, however, this leads to a limited gain. In this thesis, the
chosen methodology to design the targeted blocks for the baseband process-
ing is to use the information between different design levels and perform
co-optimization. This is illustrated by arrows across the presented design
levels in Figure 3.1. More specifically, we have utilized the system-level char-
acteristics to develop more efficient algorithms and architectures, which ends
up in satisfying the stringent constraints on the latency, BER performance,
and hardware efficiency of baseband processor. Moreover, this strategy can
prevent from the over-design of individual functional blocks.

We have employed this approach to design a low-latency FFT/IFFT proces-
sor for OFDM-based systems in Part I of the thesis. To this end, the OFDM
guard bands have been utilized at the system level to reduce the number of
required computations at the algorithms level, which in turn reduces the la-
tency. Finally an efficient hardware architecture has been developed to realize
this algorithm.

In Part II, the characteristics of massive MIMO channel have been exploited
at the system level to design a low-complexity and high-performance detec-
tion scheme in the algorithm level. This also affects the hardware implementa-
tion at the architecture level such that the size of required memory in massive
MIMO detector is reduced considerably.

In Part III of the thesis, the concept of spatial coupling has been investigated
at the system level to develop a high-performance channel coding scheme. To
this end, a comprehensive design space exploration has been performed for
different design parameters at the system/algorithm-level to find the proper
choices for them. Then, we have employed the result of this exploration at
the algorithm and architecture levels to develop efficient decoding algorithms
and hardware architecture for this class of codes.

In the end, it is worth to mention that the performance metrics can be
improved even more by employing a cross-block optimization. This is a
more global approach, which involves cross optimization of several functional
blocks together with the cross-level optimization. This can be realized by con-
sidering design tradeoffs between different functional blocks, as presented in
the last chapter of this thesis.

Part I
FFT/IFFT Processor for
Massive MIMO Systems

Results and discussion in this part are from the following papers [23], [45]:

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Latency FFT/IFFT Architecture for Massive MIMO Systems Utilizing
OFDM Guard Bands," in IEEE Transactions on Circuits and Systems I
(TCAS-I): Regular Papers, vol. 66, no. 7, pp. 2763-2774, February 2019,
doi: 10.1109/TCSI.2019.2896042.

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Latency and Area Efficient FFT Processor for Massive MIMO Systems,"
in 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, USA, May 2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050692.

Introduction of Part-I

The 5G technologies provide low-latency communications and bring wire-
less connectivity to the demanding applications and services like industrial
controllers and actuators, self-driving cars, cloud gaming, and factory robots
[8]. Among these applications, self-driving cars is an example of how vital
5G’s low latency will be. One of the promising features of 5G standard is
capability of delivering very low-latency services [7].

Massive MIMO and OFDM modulation are two technologies, which are
used together in 5G systems. Having considered the large number of BS an-
tennas in massive MIMO systems and the demand of one (de)modulation
block per antenna, one of the challenging components in OFDM-based mas-
sive MIMO systems is the waveform (de)modulator. Moreover, massive MIMO
systems mostly operate in TDD mode and rely on the channel reciprocity to
avoid high overhead in channel training [57]. As a consequence, the avail-
able time budget should be shared between uplink and downlink processing.
This further limits the latency and therefore low latency processing becomes
crucial in the OFDM-based massive MIMO systems especially in case of high
mobility scenarios.

Having considered the TDD-based massive MIMO system, shown in Fig-
ure 2.8, there is a strict constraint on the time budget for the receiver-transmitter
path since the estimated uplink channel matrix is used to perform downlink
precoding. The total latency, ∆, includes the processing time from receiving
the uplink pilots at the receiver to transmitting the downlink precoded data
at the transmitter. This latency can be expressed as

∆ = ∆e + ∆p + ∆tx
f + ∆rx

f + ∆rx
O + ∆tx

O + ∆φ, (3.1)

where ∆e is the channel estimation delay, ∆p is the precoding delay, ∆tx
f and

31

32 System, Algorithm, and VLSI Co-Design

∆rx
f represent the TX and RX front-end delays, ∆rx

O and ∆tx
O are the OFDM de-

modulation and modulation latencies, and ∆φ is considered as the additional
sources of latency such as data routing and packing/unpacking. The latency
analysis and measurement results show that around 26% of the total latency is
introduced by OFDM demodulation and modulation [9], which highlights the
role of OFDM (de)modulation in the latency of OFDM-based massive MIMO
baseband. The latency corresponding to the OFDM (de)modulation includes
the time needed to accept the input samples, perform (de)modulation, and
reorder the output samples.

The OFDM demodulator and modulator can be efficiently realized using
fast Fourier transform (FFT) and inverse FFT (IFFT) algorithms, respectively.
In order to address the latency requirements of OFDM-based massive MIMO
systems, a low-latency FFT/IFFT processor and corresponding reordering
scheme are proposed in this part of the thesis. The key idea is to exploit
the OFDM guard bands to shorten the time for input buffering and reduce
the number of required computations in the FFT/IFFT and therefore reduce
the processing time. Also, a similar idea is employed to reduce the required
time and memory size for reordering the output samples of FFT. As a result,
the latency of OFDM modulation and demodulation, ∆tx

O and ∆rx
O in (3.1), can

be reduced considerably.
This part of the thesis includes three chapters. The concept of FFT/IFFT,

different FFT algorithms and architectures are described in Chapter 4. In
Chapter 5, a low-latency FFT/IFFT scheme for OFDM-based massive MIMO
systems is presented. Also, the corresponding VLSI architecture and imple-
mentation results in 28 nm CMOS technology are discussed in detail in this
chapter. Finally, a reordering mechanism, its hardware architecture, and im-
plementation results are presented in Chapter 6.

4
FFT/IFFT in Massive MIMO System

This chapter starts by introducing the basic concepts of FFT. Then, different
FFT algorithms and architectures are reviewed briefly. Lastly, the data flow
of FFT/IFFT and corresponding hardware architecture are explained in detail
with an example. This will be used as the design example to clarify different
concepts in the upcoming discussions in Part I.

4.1. FAST FOURIER TRANSFORM

In the PHY layer design of various wireless communication systems, OFDM
is typically used as the modulation scheme. The OFDM modulation can be re-
alized using the discrete Fourier transform (DFT). Various methods have been
presented for efficiently computing the DFT, which are commonly referred to
as FFT algorithms. These algorithms can be implemented in hardware using
different VLSI architectures, which are described briefly in this section.

4.1.1. FFT ALGORITHMS

The FFT algorithms are used to compute the DFT, which converts a time
domain sequence, x(n), into a frequency domain sequence X(k). An N-point

33

34 FFT/IFFT in Massive MIMO System

DFT is formulated as

X0

X1

X2

...

XN−1

︸ ︷︷ ︸

X(k)

T

=

x0

x1

x2

...

xN−1

︸ ︷︷ ︸

x(n)

T

1 1 1 . . . 1

1 W1×1
N W1×2

N . . . W1×(N−1)
N

1 W2×1
N W2×2

N . . . W2×(N−1)
N

...
...

...
. . .

...

1 W(N−1)×1
N W(N−1)×2

N . . . W(N−1)2

N

︸ ︷︷ ︸

W(N)

(4.1)

where x(n) = [xi] and X(k) = [Xi], i = 0, ..., N − 1, are the vectors of input
and output samples, respectively and W(N) ∈ CN×N is the transform matrix,
which contains the twiddle factors, Wnk

N , defined as

Wnk
N = cos(

2πnk
N

)− j sin(
2πnk

N
) n, k = 0, ..., N − 1. (4.2)

In these equations, N, n, and k represent the size of DFT, time index, and
frequency index, respectively.

The computation of the inverse discrete Fourier transform (IDFT) can be
mathematically expressed as

x(n) =
1
N

N−1

∑
k=0

X(k)W−nk
N , n = 0, 1, ..., N − 1. (4.3)

In order to realize IFFT in our scheme, we have rewritten (4.3) as

x(n) =
1
N

(N−1

∑
k=0

X(k)∗Wnk
N

)∗
, n = 0, 1, ..., N − 1 (4.4)

where ()∗ denotes the conjugate operator. In this way, the IFFT can be per-
formed using the same architecture as the FFT by considering minor changes,
as will be described in Section 5.4.

The FFT algorithms are not based on any approximation and they have
the same results as the direct computation of the DFT. A number of FFT al-
gorithms have been presented in the literature including the Cooley-Tukey
algorithm [58], improved FFT algorithms [59, 60], split radix algorithms [61],
prime factor algorithms [62], and Winograd Fourier transform algorithms [63].
The key idea behind these algorithms is to employ divide and conquer ap-
proach to reduce the computational complexity of DFT [64]. In this approach,
an N-point DFT is decomposed recursively into several sub-DFTs until the
sub-DFTs are sufficiently small.

4.1. Fast Fourier Transform 35

The most popular FFT algorithm is the Cooley-Tukey FFT algorithm, which
decomposes an N-point DFT recursively into logr N stages, where r is the
radix order of the FFT 1. Each stage can be considered as an r-point FFT
and it is called butterfly (BF) unit, which has r inputs and r outputs. The
Cooley-Tukey algorithm reduces the computational complexity of an N-point
DFT from O(N2) to O(N ∗ logr N) [59] by using the symmetry and periodic
properties of the twiddle factors,

Wk+N
N = Wk

N ,

Wk+N/2
N = −Wk

N ,
(4.5)

to eliminate the redundant multiplications.
In case of the OFDM-based massive MIMO systems, either uplink demodu-

lation or downlink modulation will have the complexity of O(M ∗N ∗ logr N),
where M is the number of BS antennas. The Cooley-Tukey algorithm provides
a systematic solution with a relatively low computational complexity and thus
it is selected as the focus of this work.

4.1.2. FFT ARCHITECTURES

Several architectures have been reported in the literature to implement the
FFT algorithm, which can be classified into three categories: fully-parallel,
memory-based, and pipelined architectures.

FULLY-PARALLEL ARCHITECTURE
In this architecture, which is also referred to as direct implementation, the
signal flow graph (SFG) of an FFT algorithms is mapped one to one onto the
hardware processing elements (PEs). Thus, this kind of architecture requires
a number of PEs equal to the number of operations, which is not efficient for
most applications especially for large FFT sizes. However, it can be suitable
choice of implementation for small-size FFTs to achieve a high throughput.

MEMORY-BASED ARCHITECTURE
Memory-based architectures, i.e., in-place architectures, consist of one or more
PEs to calculate the butterfly operation and twiddle factor multiplications and
one or more memories to store the results [65–67]. The FFT calculation is done
by fetching input data from the memory, processing it in the PE, and storing
the result in the memory. This process is continued in an iterative manner

1In the classical radix-r FFT algorithms, typically r divides N. However, there is an-
other type of FFT algorithms, called mixed-radix FFT algorithm, which incorporates
different radices.

36 FFT/IFFT in Massive MIMO System

to complete the FFT computations. Memory-based architecture is efficient to
meet low-area requirements for large-size FFTs [68, 69], however, it suffers
from memory access conflicts in case of the high-radix PEs and high-level of
parallelism [70]. This architecture is unable to compute the FFT while data
arrive continuously at the input and thus it is not suitable for many real-time
high-speed applications [71].

PIPELINED ARCHITECTURE
Pipelined architectures, i.e., streaming architectures, include single-path delay
feedback (SDF) architectures [59, 72], multi-path delay feedback (MDF) archi-
tectures [73], and multi-path delay commutator (MDC) architectures [74–76].
The MDF architecture, which consists of several parallel SDF architectures,
and the MDC architecture can achieve high throughput by using multiple data
paths at the expense of hardware cost, while the SDF architecture needs less
memory and has lower hardware complexity [77]. The pipelined architectures
are suitable for real-time applications since they can perform FFT computa-
tions continuously while the next input stream enters into the architecture. In
addition, these architectures have the advantage of high throughput, moder-
ate area, relatively simple control logic, and a regular structure. Due to these
advantages and considering the block diagram shown in Figure 2.8, the SDF
pipelined architecture is selected as the focus of this work, which is described
in the next section 2.

4.2. LATENCY ANALYSIS

In general, the pipelined architectures can achieve lower latency than the other
categories [72]. The contributed latency from FFT and IFFT (∆rx

O and ∆tx
O) can

be divided into two parts: the processing latency of FFT/IFFT, ∆Proc, and the
reordering latency, ∆Reord, which are described below for the SDF architecture,
as an example.

4.2.1. PROCESSING LATENCY

The required time to receive all the input samples and perform the computa-
tions of either FFT or IFFT based on (4.1) or (4.3) is called processing latency,
∆Proc. We have evaluated the latency in terms of number of clock cycles (CC)
to make it independent of the clock frequency and technology.

In an N-point SDF architecture, all the input samples are entered to the
architecture after N CC and the first output sample of the FFT/IFFT can be

2Sometimes the SDF architecture is referred to as single-input pipelined architecture
or single-input architecture.

4.2. Latency Analysis 37

generated after ∆Proc = N + α CC, where α is the number of internal pipeline
stages. These pipeline registers are inserted between two successive FFT/IFFT
stages and inside the twiddle factor multipliers to shrink the critical path and
increase the design throughput. Since, the value of α is more or less the same
in different pipelined architectures with the same FFT/IFFT size [78, 79] and
also it is much less than the total processing latency of FFT/IFFT, we will not
consider α in the rest of discussion.

It is worthwhile to mention that there are several pipelined architectures
like MDF and MDC architectures that receive multiple samples in each clock
cycle and compute the FFT/IFFT in less than N CC [74, 76]. However, in these
cases, the input samples should be buffered before entering the architecture.
Thus, considering the input buffering time in the parallel architectures and
regardless of the additional input-buffer cost, the total processing latency is
still equal to N + α CC.

Similarly, in case of the memory-based architectures [66], the number of
clock cycles that is needed to compute an N-point FFT/IFFT after receiving
the inputs is maybe less than the FFT/IFFT length. But, considering the input
buffering time, the processing latency will be more than the FFT/IFFT length.

The reason behind this fact is that regardless of the VLSI architecture type,
an N-point FFT/IFFT needs all the N input samples in order to calculate
the output samples, as stated in (4.1). This limits the processing latency of
FFT/IFFT, which in turn can be problematic for the latency requirements
of the OFDM-based massive MIMO systems. In Chapter 5, a low-latency
FFT/IFFT processor is proposed for OFDM-based systems, which consider-
ably reduces the processing latency.

4.2.2. REORDERING LATENCY

The order of samples at the input and output of FFT/IFFT are different; one
side is in a natural order and the other side is in a bit-reversed order. Typically,
FFT/IFFT input samples are generated in a natural order. Also, the next
blocks in the baseband processing chain, e.g., MIMO detector in Figure 2.8,
need their inputs in a natural order as well. Thus, a reordering mechanism is
needed to convert the order of a bit-reversed sequence to a natural order. The
required time to perform this operation is called reordering latency, ∆Reord.

Several reordering schemes have been reported in the literature for an N-
point FFT/IFFT [75, 80, 81], in which most of these reorder an OFDM sym-
bol of length N in around N CC. In Chapter 6, a reordering mechanism is
proposed, which can be used in OFDM-based systems including the OFDM-
based massive MIMO systems to reduce the reordering time and the size of
required memory.

38 FFT/IFFT in Massive MIMO System

R2BF

Mem 1
8 Words

R2BF

Mem 2
4 Words

R2BF

Mem 3
2 Words

R2BF

Mem 4
1 Word

 Stage 1
(a)

(b)

Figure 4.1. Example design of a radix-2 single-input pipelined FFT/IFFT ar-
chitecture (SDF) with the length of N = 16 points. (a) Signal flow
graph (SFG) and (b) single-input pipelined architecture.

4.2.3. DESIGN EXAMPLE

As mentioned before, SDF architecture is used in the proposed FFT/IFFT
scheme. In order to present our idea clearly, we consider a 16-point radix-2
IFFT realized using the SDF architecture as a design example. This design
example is extensively used in the rest of the discussion in Part I.

Figure 4.1(a) shows the SFG of the design example and Figure 4.1(b) il-
lustrates the SDF architecture used to realize the 16-point radix-2 FFT/IFFT
algorithm. This architecture includes log2 16 = 4 stages, in which a single
stage of the SFG is realized by a single stage of the architecture. As shown
in Figure 4.1(b), each stage of the architecture contains a radix-2 butterfly
(R2BF), a multiplier to perform multiplication by the twiddle factors shown
in Figure 4.1(b), and a memory. The size of memory of each stage in the SDF
architecture is N/2m words, where N = 16 and m = 1, · · · , log2 N (the total
memory is N − 1 words). To simplify the figure, the control logics of mem-
ories and butterflies and the conjugate operation, which is needed for IFFT
computation, are not shown in Figure 4.1(b).

The SDF architecture has a continuous data stream of one sample per clock

4.2. Latency Analysis 39

X 0 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12 X 13 X 14 X 15 X' 0 X' 1 X' 2 X' 3 X' 4 X' 5 X' 6 X' 7 X' 8 X' 9 X' 10X' 11X' 12

X 0 ○ ○ ○ ○ ○ ○ ○ Y 8 ○ ○ ○ ○ ○ ○ ○ X' 0 ○ ○ ○ ○ ○ ○ ○ Y' 8 ○ ○ ○
X 1 ○ ○ ○ ○ ○ ○ ○ Y 9 ○ ○ ○ ○ ○ ○ ○ X' 1 ○ ○ ○ ○ ○ ○ ○ Y' 9 ○ ○

X 2 ○ ○ ○ ○ ○ ○ ○ Y 10 ○ ○ ○ ○ ○ ○ ○ X' 2 ○ ○ ○ ○ ○ ○ ○ Y' 10 ○
X 3 ○ ○ ○ ○ ○ ○ ○ Y 11 ○ ○ ○ ○ ○ ○ ○ X' 3 ○ ○ ○ ○ ○ ○ ○ Y' 11

X 4 ○ ○ ○ ○ ○ ○ ○ Y 12 ○ ○ ○ ○ ○ ○ ○ X' 4 ○ ○ ○ ○ ○ ○ ○
X 5 ○ ○ ○ ○ ○ ○ ○ Y 13 ○ ○ ○ ○ ○ ○ ○ X' 5 ○ ○ ○ ○ ○ ○

X 6 ○ ○ ○ ○ ○ ○ ○ Y 14 ○ ○ ○ ○ ○ ○ ○ X' 6 ○ ○ ○ ○ ○
X 7 ○ ○ ○ ○ ○ ○ ○ Y 15 ○ ○ ○ ○ ○ ○ ○ X' 7 ○ ○ ○ ○

Y 0 ○ ○ ○ U 4 ○ ○ ○ Y 8 ○ ○ ○ U 12 ○ ○ ○ Y' 0 ○ ○ ○
Y 1 ○ ○ ○ U 5 ○ ○ ○ Y 9 ○ ○ ○ U 13 ○ ○ ○ Y' 1 ○ ○

Y 2 ○ ○ ○ U 6 ○ ○ ○ Y 10 ○ ○ ○ U 14 ○ ○ ○ Y' 2 ○
Y 3 ○ ○ ○ U 7 ○ ○ ○ Y 11 ○ ○ ○ U 15 ○ ○ ○ Y' 3

U 0 ○ V 2 ○ U 4 ○ V 6 ○ U 8 ○ V 10 ○ U 12 ○ V 14 ○
U 1 ○ V 3 ○ U 5 ○ V 7 ○ U 9 ○ V 11 ○ U 13 ○ V 15

V 0 x 8 V 2 x 12 V 4 x 10 V 6 x 14 V 8 x 9 V 10 x 13 V 12 x 11

x 0 x 8 x 4 x 12 x 2 x 10 x 6 x 14 x 1 x 9 x 5 x 13 x 3
Latency = 16 CC

Input Samples:

Memory of Stage 1

Memory of Stage 2

Memory of Stage 3

Memory of Stage 4

Output Samples:

Figure 4.2. The memory content of example design in Figure 4.1(b) for two
successive OFDM symbols, i.e., X0, · · · , X15 and X′0, · · · , X′15. Each
column shows the content of memories in corresponding clock
cycle. Empty circle means that the content of that memory-word
is not changed.

cycle, i.e., in every clock cycle one sample is fed and one sample will be gener-
ated at the output (after the initial latency). The data flow of this architecture
is depicted in Figure 4.2, which demonstrates the IFFT computation 3 of two
successive OFDM symbols, i.e., X0, ..., X15 and X′0, ..., X′15. The input and out-
put samples of IFFT are represented by Xi and xi in Figure 4.1 and 4.2. Also,
the output sequence of Stage 1, 2, and 3 of the SDF architecture are denoted
by Yi, Ui, and Vi, respectively.

In order to start the computations of IFFT, X(n) and X(n + N/2) should be
available in Stage 1. Therefore, the first half of the input samples, i.e., X0 to X7
in this example, have to be stored in the memory of Stage 1, Mem 1, until the
second half of samples arrive (see Figure 4.2). The memory content of each
stage is illustrated over different time instants in Figure 4.2. The highlighted
square means that the memory content of that location is replaced with the
specified value on the figure.

40 FFT/IFFT in Massive MIMO System

Following the data scheduling in Figure 4.2, after N CC latency the IFFT
output samples, xi, are generated one by one in each clock cycle, leading to
the processing latency of ∆Proc = 16 CC. As mentioned, before, the latency
resulted by the internal pipeline stages are not considered in this evaluation.

3In this discussion and also in the next chapter, the focus is on the IFFT computation.
However, similar idea can be applied to the FFT computation.

5
Low-Latency FFT/IFFT

This chapter starts with a discussion about the symbol structure of the OFDM-
based systems including the OFDM-based massive MIMO systems. Then, the
idea of utilizing guard bands to reduce the latency is presented for the IFFT
computation. However, similar idea can be applied to the FFT computation as
well. Finally, an efficient VLSI architecture, which realizes the low-latency
FFT/IFFT scheme and the corresponding implementation results in 28 nm
CMOS technology are described.

5.1. EXPLORING OFDM GUARD BANDS

In an OFDM-based system, the bits to be transmitted are grouped and mapped
onto the constellation points, which are then assigned to the frequency-domain
orthogonal subcarriers. Depending on the system specification, a number of
subcarriers are used for data transmission and the rest are reserved as guard-
band subcarriers, which are called used-subcarriers and guard bands in this
thesis, respectively. These guard bands are used to make reconstruction fil-
tering at receiver and transmitter simpler and making it easier to fulfill out-
of-band requirements [82]. All these subcarriers together make up an OFDM
symbol, which includes N subcarriers (also called samples in this text). In the
following discussion, P and Z represent half number of the used-subcarriers
and half number of the zero guard-bands, respectively, i.e., N = 2P + 2Z.

In this work, the massive MIMO system with the system parameters de-
tailed in Table 5.1 is considered. However, the proposed idea can be em-
ployed in other OFDM-based systems with different number of zero guard
bands, used-subcarriers, and OFDM symbol length (i.e., Z, P, N) to reduce
the latency of FFT/IFFT computation. The structure of OFDM symbol corre-
sponding to the parameters in Table 5.1 is shown in Figure 5.1, in which the

41

42 Low-Latency FFT/IFFT

423 424 600 Samples

N = 2048 Samples

424177 177 423 423

600 Samples

Z-1P

Type I Type I Type I Type IType IIType II

Figure 5.1. OFDM symbol structure with length of N = 2048 samples, which
consists of 2Z = 848 guard band subcarriers, including the DC
component, and 2P = 1200 used-subcarriers (data subcarriers),
which are highlighted in blue.

Table 5.1. System parameters in the massive MIMO framework

Parameter Value
FFT/IFFT size 2048

Number of used-subcarriers 1200
Bandwidth per channel 20 MHz

Sampling rate 30.72 MS/s

2P = 1200 used-subcarriers are highlighted. This OFDM symbol is used as
the input of IFFT in (4.4) and can be expressed as

X(n) = [0, X1, ..., X600, 0, 0, ..., 0,︸ ︷︷ ︸
847

X1448, ..., X2047]. (5.1)

The key idea behind our low-latency scheme is to utilize the OFDM guard
band as zero samples such that the number of required operations and there-
fore the processing latency, ∆Proc, will be reduced considerably.

To this end and in order to profit from the symmetry between zero and non-
zero samples in (5.1) the radix-2 IFFT algorithm is selected. Thus, the com-
putation of an N-point IFFT is performed through log2 N successive stages,
which starts by accepting the input samples, Xi in (5.1), in Stage 1. In radix-2
IFFT algorithm, the butterfly unit of Stage 1 receives a pair of samples (Xj,

5.1. Exploring OFDM Guard Bands 43

Xj+N/2) and performs the following operation:{
Yj = Xj + Xj+N/2

Yj+N/2 = Xj − Xj+N/2
j = 0, 1, ..., N/2− 1 (5.2)

where Yj and Yj+N/2 are the outputs of butterfly in Stage 1. Here, i =
0, ..., N− 1 and j = 0, ..., N/2− 1 refer to the sample index and the pair index,
respectively. We have categorized the input pairs, (Xj, Xj+N/2), into two types:
if one sample in a pair belongs to the zero guard bands then (Xj, Xj+N/2) is
a Type I pair, otherwise it is Type II. Thus, the pair type can be specified as

P < j < P+Z

or
P+Z ≤ j+N/2 < P+2Z

Type I, if

{
Type II, otherwise.

(Xj, Xj+N/2)

According to this classification, an OFDM symbol includes 2Z − 1 pairs of
Type I and P− Z + 1 pairs of Type II.

As long as the non-zero sample of a Type I pair enters the IFFT, there is
no need to wait for arrival of the other sample in the same pair since the result
of (5.2) will be known without butterfly operation. Thus, the corresponding
outputs, i.e., (Yl , Yl+N/2), can be forwarded to Stage 2 faster. As a result,
all Type I pairs can skip the butterfly operation and go directly to Stage 2,
which leads to a considerable reduction of the operation count and processing
latency, ∆Proc.

As mentioned in Section 4.1.2, the SDF architecture is chosen in this work.
However, such architectures cannot harvest the latency reduction directly even
if they have zeros in the input samples; there will be problems in the process-
ing, which are discussed in the next section.

5.1.1. CONFLICTS IN PROCESSING

In this section, the possibility of latency reduction by skipping the zero sam-
ples is investigated. The input of an N-point pipelined IFFT is a sequence of
OFDM symbols, each of which includes 2P non-zero samples. Since the pro-
cessing of zero samples are skipped in Stage 1, the non-zero samples can be
received and processed during 2P CC, which results in generating N non-zero
data. Consequently, the Type I pairs are not present anymore after Stage 1
and therefore the following stages should process N non-zero data. Thus,
each symbol is processed during 2P CC in Stage 1 while it takes N CC in the
other stages. This unbalanced processing time results in conflicts in updating
the memories and performing butterfly operations when the second OFDM

44 Low-Latency FFT/IFFT

N = 16 Samples

X10 X11 X12 X13 X14 X15

Type I Type II Type IIType I Type I Type I

X9X8X7X6X5X4X3X2X1X0

Figure 5.2. The OFDM symbol of length N = 16, which is used as the input
of the design example in Figure 4.1. It includes 2P = 10 used-
subcarriers, which are highlighted and 2Z = 6 zero guard bands.

symbol passes Stage 1.
To clarify the problem of conflicts we investigate the IFFT computation

in our design example (Figure 4.1). The OFDM symbol structure in Fig-
ure 5.2 is considered as the input to this design, which contains 2P = 10
used-subcarriers and 2Z = 6 guard bands. In this figure, the corresponding
Type I and II pairs in radix-2 algorithm are connected together with dotted
and solid arrows, respectively.

The processing flow and the content of memories in all stages for two suc-
cessive OFDM symbols, Xi and X′i are illustrated in Figure 5.3. In Stage 1, the
processing of the first symbol, i.e., Xi, starts by performing (5.2) and a part of
the results is saved in the memory of Stage 1 and the rest is sent to Stage 2.
After that, the same operation is done in Stage 1 for the second symbol, i.e.,
X′i , and the memory of this stage is updated with the results of the second
symbol without conflict. However, after passing the results of the second
symbol from Stage 1 to Stage 2, memory conflicts will occur in Stage 2, since
the results of these two symbols should be written in the same memory loca-
tions simultaneously. These conflicts are depicted with crosses in Figure 5.3,
meaning that the content of memory and consequently the butterfly inputs of
the next stages and the IFFT outputs are not correct. Moreover, such conflicts
will occur in the butterfly unit of Stage 2 when it should process the second
symbol while is still busy with the first one.

In order to prevent these conflicts, the processing time of all stages should
be the same. To this end, large enough gaps are needed to be inserted between
the successive OFDM symbols at the input of IFFT. The minimum duration of
this gap is 2Z− 1 CC 1, which makes the processing time of all stages equal to

1The exact value for the length of the gap is 2Z CC. This is due to the fact that, as
shown in Figure 5.1, the first sample, X0, and also its couple in the pair, XN/2, are
zero. Thus, the butterfly outputs, i.e., Y0 and YN/2, are zero, which means that the

5.2. Low-Latency IFFT Scheme 45

X 0 X 1 X 2 X 3 X 4 X 5 X 11 X 12 X 13 X 14 X 15 X' 0 X' 1 X' 2 X' 3 X' 4 X' 5 X' 11X' 12X' 13X' 14X' 15X'' 0 X'' 1 X'' 2 X'' 3 X'' 4

Y 8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y '' 8 ○ ○ ○
Y 9 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 9 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y '' 9 ○ ○

Y 10 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 10 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y '' 10 ○
X 3 ○ ○ Y 11 ○ ○ ○ ○ ○ ○ ○ X' 3 ○ ○ Y' 11 ○ ○ ○ ○ ○ ○ ○ X '' 3

X 4 ○ ○ Y 12 ○ ○ ○ ○ ○ ○ ○ X' 4 ○ ○ Y' 12 ○ ○ ○ ○ ○ ○ ○
X 5 ○ ○ Y 13 ○ ○ ○ ○ ○ ○ ○ X' 5 ○ ○ Y' 13 ○ ○ ○ ○ ○ ○

Y 14 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 14 ○ ○ ○ ○ ○
Y 15 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 15 ○ ○ ○ ○

Y 0 ○ ○ ○ ○ ○ ○ U 4 ○ ○ ○ Y 8 ○ ○ ○ U 12 ○ ○ U' 4 ○ ○ ○ Y' 8 ○ ○ ○
Y 1 ○ ○ ○ ○ ○ ○ U 5 ○ ○ ○ Y 9 ○ ○ ○ U 13 ○ ○ U' 5 ○ ○ ○ Y' 9 ○ ○

Y 2 ○ ○ ○ ○ ○ ○ U 6 ○ ○ ○ Y 10 ○ ○ ○ U 14 ○ ○ U' 6 ○ ○ ○ Y' 10 ○
Y 3 ○ ○ ○ U 7 ○ ○ ○ Y 11 ○ ○ ○ U 15 ○ ○ U' 7 ○ ○ ○ Y ' 11

U 0 ○ V 2 ○ U 4 ○ V 6 ○ U 8 ○ V 10 ○ U 12 ○ V 14 ○ ○ ○ ○
U 1 ○ V 3 ○ U 5 ○ V 7 ○ U 9 ○ V 11 ○ U 13 ○ V 15 ○ ○ ○

V 0 x 8 V 2 x 12 V 4 x 10 V 6 x 14 V 8 x 9 V 10 x 13 V 12 x 11 V 14 x 15 ○

x 0 x 8 x 4 x 12 x 2 x 10 x 6 x 14 x 1 x 9 x 5 x 13 x 3 x 11 x 7 x 15Latency = 10 CCOutput Samples:

Input Samples:

Memory of Stage 2

Memory of Stage 1

Memory of Stage 3

Memory of Stage 4

Figure 5.3. The content of memories in the example design after skipping the
zero samples. Xi and X′i represent two continuous symbols with
the structure shown in Figure 5.2. Crossed squares represent the
conflicts in the corresponding memory-words while the empty cir-
cles mean no change in memory content.

N CC. Figure 5.4 shows the memory content of the design example with the
same inputs as in Figure 5.3, while the input symbols enter to the IFFT with
a gap in between. Although this scheme eliminates the conflicts, the problem
arises of non-continuous processing; the IFFT cannot receive and process the
input symbols continuously. Moreover, the gap between the symbols results
in additional processing time after the first symbol. This means that the IFFT
outputs will be generated after 2P CC for the first symbol, while the outputs
of second symbol are generated after 2P + N CC, i.e., every N CC with no
latency reduction. This concept is further discussed in Section 5.3.

corresponding memory locations can be initialized with zero. This initialization is
not counted in the processing latency and for this reason in the discussion and also
in Figure 5.3, 5.4, 5.5, and 5.8 the processing latency of ∆Proc = 2P is considered.

46 Low-Latency FFT/IFFT

X 0 X 1 X 2 X 3 X 4 X 5 X 11 X 12 X 13 X 14 X 15 X' 0 X' 1 X' 2 X' 3 X' 4 X' 5 X' 11X' 12X' 13X' 14X' 15

Y 8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Y 9 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 9 ○ ○ ○ ○ ○ ○ ○ ○ ○

Y 10 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 10 ○ ○ ○ ○ ○ ○ ○ ○
X 3 ○ ○ Y 11 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ X' 3 ○ ○ Y' 11 ○ ○ ○ ○

X 4 ○ ○ Y 12 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ X' 4 ○ ○ Y' 12 ○ ○ ○
X 5 ○ ○ Y 13 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ X' 5 ○ ○ Y' 13 ○ ○

Y 14 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 14 ○
Y 15 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y '15

Y 0 ○ ○ ○ ○ ○ ○ U 4 ○ ○ ○ Y 8 ○ ○ ○ U 12 Y' 0 ○ ○ ○ ○ ○ ○ U' 4 ○ ○ ○
Y 1 ○ ○ ○ ○ ○ ○ U 5 ○ ○ ○ Y 9 ○ ○ ○ U 13 Y' 1 ○ ○ ○ ○ ○ ○ U' 5 ○ ○

Y 2 ○ ○ ○ ○ ○ ○ U 6 ○ ○ ○ Y 10 ○ ○ ○ U 14 Y' 2 ○ ○ ○ ○ ○ ○ U' 6 ○
Y 3 ○ ○ ○ U 7 ○ ○ ○ Y 11 ○ ○ ○ U 15 ○ ○ ○ Y' 3 ○ ○ ○ U '7

U 0 ○ V 2 ○ U 4 ○ V 6 ○ U 8 ○ V 10 ○ U 12 ○ V 14 ○ U' 0 ○ V' 2 ○
U 1 ○ V 3 ○ U 5 ○ V 7 ○ U 9 ○ V 11 ○ U 13 ○ V 15 ○ U' 1 ○ V '3

V 0 x 8 V 2 x 12 V 4 x 10 V 6 x 14 V 8 x 9 V 10 x 13 V 12 x 11 V 14 x 15 V' 0 x '8

x 0 x 8 x 4 x 12 x 2 x 10 x 6 x 14 x 1 x 9 x 5 x 13 x 3 x 11 x 7 x 15 x' 0Latency = 10 CCOutput Samples:

Memory of Stage 3

Memory of Stage 4

Memory of Stage 2

Memory of Stage 1

Input Samples:

Figure 5.4. Memory content of the example design for two OFDM symbols
with the structure in Figure 5.2. To prevent from conflicts, enough
gap is inserted between successive symbols.

5.2. LOW-LATENCY IFFT SCHEME

In order to fully benefit from the guard bands in the latency reduction, our
scheme addresses the problems of conflicts and gaps. This is done by using
memory reorganizing and dedicated data control schemes for memories and
butterflies. Figure 5.5 shows the processing flow and memory content of all
stages in the proposed scheme for two successive symbols, i.e., Xi and X′i . The
details of this scheme including the conditions of memories and butterflies are
described in the next paragraphs.

5.2.1. MEMORY ORGANIZATION

We have made two architectural changes to reorganize the memories of an
N-point FFT/IFFT as follows.
(i). Since there is no need to perform the operation in (5.2) for the Type I
pairs in Stage 1, the corresponding results, i.e., Yj, Yj+N/2, should be written

5.2. Low-Latency IFFT Scheme 47

X 0 X 1 X 2 X 3 X 4 X 5 X 11 X 12 X 13 X 14 X 15 X' 0 X' 1 X' 2 X' 3 X' 4 X' 5 X' 11X' 12X' 13X' 14X' 15

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

M1 M1 M1 M2 M2 M2 M3 M4 M4 M4 M4 M1 M1 M1 M2 M2 M2 M3 M4 M4 M4 M4

B1 B1 B1 B1 B1 B1 B2 B3 B3 B4 B4 B1 B1 B1 B1 B1 B1 B2 B3 B3 B4 B4

Y 8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 8 ○ ○ ○ ○ ○ ○ ○ ○ ○
Y 9 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 9 ○ ○ ○ ○ ○ ○ ○ ○

Y 10 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Y' 10 ○ ○ ○ ○ ○ ○ ○
X 3 ○ ○ Y 11 ○ ○ ○ ○ ○ ○ ○ X' 3 ○ ○ Y' 11 ○ ○ ○

Y 0 ○ ○ ○ ○ ○ ○ Y 12 ○ ○ ○ Y' 0 ○ ○ ○ ○ ○ ○ Y '12 ○ ○
Y 1 ○ ○ ○ ○ ○ ○ Y 13 ○ ○ ○ Y' 1 ○ ○ ○ ○ ○ ○ Y '13 ○

Y 2 ○ ○ ○ ○ ○ ○ Y 14 ○ ○ ○ Y' 2 ○ ○ ○ ○ ○ ○ Y '14

Y 3 ○ ○ ○ Y 15 ○ ○ ○ ○ ○ ○ Y' 3 ○ ○ ○

X 4 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ X' 4 ○ ○ ○ ○ ○
X 5 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ X' 5 ○ ○ ○ ○

M1 M1 M2 M2 M1 M1 M2 M2 M1 M1 M2

B1 B1 B1 B1 B2 B2 B2 B2 B1 B1 B1

U 4 ○ ○ ○ U 12 ○ ○ ○ ○ ○ ○ U' 4 ○ ○
U 5 ○ ○ ○ U 13 ○ ○ ○ ○ ○ ○ U' 5 ○

U 0 ○ U 6 ○ U 8 ○ U 14 ○ ○ ○ ○ U' 0 ○ U '6
U 1 ○ U 7 ○ U 9 ○ U 15 ○ ○ ○ ○ U' 1 ○

M1 M2 M1 M2 M1 M2 M1 M2 M1

B1 B1 B2 B2 B1 B1 B2 B2 B1

V 2 ○ V 6 ○ V 10 ○ V 14 ○ ○ ○ ○ V '2

V 0 V 3 V 4 V 7 V 8 V 11 V 12 V 15 ○ ○ ○ V '0

x 0 x 4 x 2 x 6 x 1 x 5 x 3 x 7

x 8 x 12 x 10 x 14 x 9 x 13 x 11 x 15

MemU1

MemD1

Extra Mem

MemU2

MemD2

MemU3

MemD3

Index number:

Mem. Condition:

BF Condition:

Input Samples:

Latency = 10 CCOutput Samples:

St
ag

e
1

St
ag

e
2

St
ag

e
3

Mem. Condition:
BF Condition:

Mem. Condition:
BF Condition:

Figure 5.5. Memory content of a 16-point IFFT based on the proposed
scheduling scheme and memory structure.

48 Low-Latency FFT/IFFT

1 Z-1 P 3N/4-2Z 2P

B2

Sample Index:

Extra Mem

2P-Z+1

BFD1

MemU1

MemD1

BFU1 B4B3B1

M1 M2 M3 M4

i

M
em

o
ry

C

o
n

d
it

io
n

B
u

tt
er

fl
y

C

o
n

d
it

io
n

Figure 5.6. Definition of the conditions for memories and butterfly in Stage 1,
based on the sample index.

Table 5.2. Control scheme of memories in Stage 1.

Condition M1 M2 M3 M4
MemU1 Xin – BFD1 –
MemD1 Xin – BFU1 BFD1
Extra Mem – Xin – –

Table 5.3. Control scheme of butterfly in Stage 1.

Condition B1 B2 B3 B4
BFU1 0 MemU1 Extra Mem 0
BFD1 0 Xin Xin Xin

in the memory simultaneously. One solution is to use dual-port memories,
which increases the hardware cost considerably. We have synthesized dif-
ferent memories in 28 nm CMOS technology and the results confirmed that
area of a dual-port memory is much larger than two single-port memories
with half the size each. In order to avoid this overhead cost in our design,
the memory of each stage except the last one, is divided into two single-port
memories with half size to be able to write/read two samples at the same
time. The upper and lower memories of Stage m, m = 1, ..., log2 N − 1, are
called MemUm and MemDm, respectively.
(ii). In order to eliminate the conflicts in the memories, shown in Figure 5.3,
a small memory called Extra Mem. is added in Stage 1. Then, a number of
Type II pairs are saved in this memory, which are sent to Stage 2 after the
(3N/4− 2Z)-th CC. The size of Extra Mem. is (P + 1− N/4) words, which
constitutes the dominant extra cost of our design compared to the traditional
ones [72, 78]. In case of the massive MIMO system in Table 5.1, the Extra
Mem. has 89 words, which is less than 4% of the total memory of conven-
tional architectures, i.e., N − 1 = 2047 words [72, 78].

5.2. Low-Latency IFFT Scheme 49

1

BFDm

MemUm

MemDm

BFUm

M1 M2

M
em

o
ry

C

o
n

d
it

io
n

B
u

tt
er

fl
y

C

o
n

d
it

io
n

B2B1

M1 M2

Figure 5.7. Definition of the conditions for memories and butterflies in
Stage m, where this pattern is repeated 2m−2 times.

Table 5.4. Control scheme of memories in Stage m, m = 2, ..., log2 N

Condition M1 M2
MemUm BFDm –
MemDm BFUm BFDm

Table 5.5. Control scheme of butterfly in Stage m, m = 2, ..., log2 N

Condition B1 B2
BFUm MemDm−1 MemUm−1
BFDm BFUm−1 MemDm−1

5.2.2. DATA CONTROL SCHEME

In order to manage the reorganized memory structure and prevent the con-
flicts, dedicated control schemes are needed for the butterflies and memories.
The control scheme of Stage 1 is different from the other ones. We have de-
fined several conditions for the memories and butterfly of Stage 1, which are
named as M1−4 and B1−4, respectively and specified based on the position of
Type I and II pairs in the symbol. According to the input-sample index, i,
one condition for memories and one for the butterfly of Stage 1 will be spec-
ified as shown in Figure 5.6. Then, these conditions determine the inputs of
memories and butterfly unit, which are listed in Table 5.2 and 5.3, respectively.

For example, when X1 enters to Stage 1, the conditions for memories and
butterfly will be M1 and B1 as specified in Figure 5.6. Therefore, as Table 5.2
and 5.3 state, the upper and lower memories of Stage 1 get X1 as their input
while Extra Mem. does not get any input, and the upper and lower inputs of
butterfly unit get zero as the input.

The control schemes of Stage 2 to the last one are similar, which are de-
signed to schedule N non-zero data since the zero guard bands are not present

50 Low-Latency FFT/IFFT

after Stage 1. Figure 5.7 determines the conditions for memories and butter-
flies of these stages, M1−2, B1−2. Then, the input of corresponding mem-
ory and butterfly are specified according to Table 5.4 and 5.5, respectively,
where BFUm and BFDm are the upper and lower input/output of butterfly in
Stage m, m = 2, ..., log2 N.

5.3. LATENCY COMPARISON

A comparison between three processing scenarios of a 2048-point IFFT with a
single-input pipelined architecture is illustrated in Figure 5.8. Each subfigure
includes two rows; the first row shows the input symbols which follow the
structure shown in Figure 5.1, and the second one depicts the corresponding
output symbols.

The first scenario, Figure 5.8(a), represents the processing flow of the tradi-
tional single-input pipelined IFFT. This design gets N = 2048 samples includ-
ing zero samples, computes the IFFT, and continuously produces the output
samples after ∆Proc = 2048 CC.

In the second scenario, Figure 5.8(b), same architecture as the first scenario
is employed, but, it skips the zeros and only accepts 2P = 1200 non-zero
samples to reduce the latency. However, as mentioned before, to prevent from
the conflicts, 2Z = 848 CC gap should be inserted between the successive
input symbols.

Eventually, Figure 5.8(c) presents our scheme, where only 2P = 1200 non-
zero samples are accepted and processed with no gap between the input sym-
bols. As a result, the latency of a 2048-point IFFT is reduced to 1200 CC, which
is 42% less than the minimum reported latency for the pipelined architectures
with the same IFFT size where it is N = 2048 CC [79, 83]. As discussed in
Section 5.2.1, this improvement is achieved at the expense of around 4% extra
memory (i.e., 89 words in case of a 2048-point FFT/IFFT processor).

A comparison between several IFFT schemes reported in the literature and
the proposed scheme is performed in Table 5.6. It can be seen that the tradi-
tional N-point pipelined architectures need at least N words memory and
has the processing latency of ∆Proc ≥ N CC. However, the proposed de-
sign achieves the processing latency of ∆Proc = 2P CC at the cost of P + 1−
N/4 more memory-words. It is worth to mention that, the number of used-
subcarriers, 2P, is less than the symbol length, N, which means that in our
design always ∆Proc < N CC. To the best of our knowledge, this design has
the lowest processing latency compared to the other single-input pipelined
architectures reported in the literature.

5.4. VLSI Architecture and Implementation Results 51

Symbol 1 Symbol 2

Symbol 1

2048 Samples 2048 Samples

2048 Samples

Symbol 1 Symbol 2

Symbol 1

1200 Samp.
2048 Samples

848 1200 Samp.

2048 Samples

Symbol 1 Symbol 2 Symbol 3

Symbol 1

1200 Samples 1200 Samples 1200 Samples

 =1200 CC

2×1024 Samp.

Symbol 2 Symbol 3

2×1024 Samp. 2×1024 Samp.

(a)

(b)

(c)

Traditional Scheme

Traditional Scheme
with Skipping zeros

Proposed Scheme

2048

2048 Samples

1200 2048 1200+2048

 =1200 CC

42% Latency Reduction

848 CC

Symbol 2

Symbol 2

4096

(b)1(c)1 (a)1 (c)2 (b)2 (a)2

2400(CC)

Figure 5.8. Comparison between the processing flow of IFFT in three sce-
narios, where single-input pipelined architecture is used: (a) tra-
ditional SDF scheme with continuous input, (b) traditional SDF
scheme with non-continuous input, (c) proposed scheme with con-
tinuous input. In the lower part of the figure, ()i represents the
i-th output symbol of scheme (a), (b), and (c).

52 Low-Latency FFT/IFFT

Table 5.6. Comparison between N-point IFFT schemes with single-input
pipelined architectures

Ref. Algorithm Architecture Memory Size # Input Latency
(Word) Streams (CC)

[84] Radix2 SDC 3N/2 1 3N/2
[85] Radix2 SDF/SDC 3N/2 1 3N/2
[86] Radix2 SDC 3N/2 1 3N/2
[87] Radix2 SDF 4N/3 1 4N/3
[88] Split SDF N 1 N
[89] Radix4 SDF N 1 N
[90] Radix2 SDC 3N/2 1 3N/2

This Radix2 Modified 3N/4 + P 1 2P1

Work Pipelined

1 P is always less than N/2.

5.4. VLSI ARCHITECTURE AND IMPLEMENTATION RESULTS

Figure 5.9 shows the VLSI architecture for an N-point FFT/IFFT processor,
which realizes the proposed idea of latency reduction. This architecture con-
sists of m = log2 N stages, each of which includes a radix-2 butterfly unit, a
twiddle factor multiplier, and memories, which are described in the next para-
graphs in detail. The conjugate and shift blocks are implemented in the first
and last stages to realize the IFFT computation. Furthermore, the multiplex-
ers in Figure 5.9 are used to indicate the inputs of memories and butterflies
following Table 5.2-5.5. As mentioned in Section 4.2.1, the latency resulted by
the pipeline registers is included in α.

5.4.V
LSI

A
rchitecture

and
Im

plem
entation

R
esults

53

1/N1/N1/N1/N

xk+1

B
F

U
_O

u
t

B
F

D
_O

u
tR2BF

BFU_In

BFD_In

Add.

Din
WEn

MemU

Add.

Din
WEn

MemU

MemDMemD

Reg

RegReg

RegReg

B
F

U
_O

u
t

B
F

D
_O

u
tR2BF

BFU_In

BFD_In

MemUMemU

MemDMemD

RegReg

RegReg

RegReg

RegReg

B
F

U
_O

u
t

B
F

D
_O

u
tR2BF

BFU_In

BFD_In

MemUMemU

MemDMemD

RegReg

RegReg

RegReg

RegReg

B
F

U
_O

u
t

B
F

D
_O

u
tR2BF

BFU_In

BFD_In

MemUMemU

MemDMemD

RegReg

RegReg

RegReg

RegReg

Reg

0

0

Extra Mem

B
F

U
_O

u
t

B
F

D
_O

u
tR2BF

BFU_In

BFD_In

T
.F

.M
.

T
.F

.M
.

T
.F

.M
.

T
.F

.M
.

Mode2Xi

Conj.

Stage 1 Stage 2 Stage (m-2) Stage (m-1) Stage m

D
o

u
t

Add.

Din
WEn

D
o

u
t

Add.

Din
WEn

D
o

u
t

Add.

Din
WEn

D
o

u
t

Add.

Din
WEn

D
o

u
t

Add.

Din
WEn

D
o

u
t

Add.

Din
WEn

D
o

u
t

Add.

Din
WEn

D
o

u
t

Mem_Ctrl

BF_Ctrl
C1C0

S1S0

d

1 0

0 1 2 3 MemD1_WEn

Sel
MemU1_WEn

WEn
Ex.Mem_WEn

Din

Add.

D
o

u
t

0
1

0

0
1
2
3

0

MemD_WEn

MemU_WEn

MemD_WEn MemD_WEn

0
1

0
1

0
1

Mem_Ctrl Mem_Ctrl

BF_Ctrl

1
0

1
0

BF_Ctrl BF_Ctrl

MemU_WEn MemU_WEn

1
0

1
0

1
0

1
0

1
0

1
0

xk

Conj. Conj.

Control Unit 1 Control Unit 2

C1,0 d S1,0M
em

D
1_

W
E

n

M
em

U
1_

W
E

n

E
x.

M
em

_W
E

n

Sel M
em

_C
tr

l

B
F

_C
tr

l

M
em

D
_W

E
n

M
em

U
_W

E
n

Control Unit 2

M
em

_C
tr

l

B
F

_C
tr

l

M
em

D
_W

E
n

M
em

U
_W

E
n

Control Unit 2

M
em

_C
tr

l

B
F

_C
tr

l

M
em

D
_W

E
n

M
em

U
_W

E
n

Control Unit 2

M
em

_C
tr

l

B
F

_C
tr

l

M
em

D
_W

E
n

M
em

U
_W

E
n

i i i i i

Figure 5.9. Proposed modified pipelined VLSI architecture for an N-point
FFT/IFFT with m = log2 N stages. The vertical bars in front of
the registers represent the concatenation of two memory words.

54 Low-Latency FFT/IFFT

R
e

{
}

Im
{

}

BFU_Out

BFD_Out

BFU_In

BFD_In

Figure 5.10. The structure of Radix-2 Butterfly unit (R2BF) with complex-
valued inputs and outputs.

5.4.1. RADIX-2 BUTTERFLY

As mentioned in Section 5.1, radix-2 algorithm is chosen to implement the
FFT/IFFT. Thus, each stage of the design comprises of a radix-2 butterfly unit,
R2BF in Figure 5.9, which can be implemented using two complex adders and
subtractors as shown in Figure 5.10. The inputs of butterfly unit in Stage 1
and the butterflies of other stages are determined based on the corresponding
control scheme in Table 5.3 and Table 5.5, respectively.

5.4.2. MEMORY BLOCKS

As discussed in Section 5.2.1, each stage includes the upper and lower mem-
ory of size N

2(m+1) words, where m = 1, 2, ..., log2 N − 1. Also, the ExtraMem
in Stage 1 has P + 1− N/4 words. In this scheme, the read and write opera-
tions are performed in every other clock cycle in an interleaved manner. Thus,
two successive data will be concatenated and written into the memory in one
clock cycle and two concatenated data will be read from the same memory
in the next clock cycle. To this end, two registers are added at the input and
output ports of each memory as shown in Figure 5.9 (this method is called
dual word-length read/write).

5.4.3. CONTROL CIRCUITRY

There are two control units in the FFT/IFFT architecture shown in Figure 5.9.
The first one, Control Unit 1, is specific to the Stage 1 and is realized using
the circuit shown in Figure 5.11. This circuit generates the required control
and enable signals to manage the memories and butterfly of Stage 1 based on
Table 5.2 and 5.3, respectively.
Control Unit 2 is employed in Stage 2 to the last one and it is implemented

5.4. VLSI Architecture and Implementation Results 55

Z-1
P
3N/4-2Z
2P-Z+1
2P

≤

C0

d

Comparator

C1
Sel

MemD1_WEn

S1

S0

MemU1_WEn

Ex.Mem_WEn

S
am

p
le

 I
n

d
ex

 (i
)

Figure 5.11. Control circuit for the memories and butterfly of Stage 1.

using the circuit shown in Figure 5.12. The required control signals for the
memories and butterfly of Stage m, m = 2, · · · , log2 N are produced according
to Table 5.2 and 5.3, respectively. Both circuits utilize Comparators to find
the corresponding conditions for the memories and butterflies, as depicted in
Figure 5.6 and 5.7.

5.4.4. TWIDDLE FACTOR MULTIPLIER (TFM)

Each stage, except the last one, includes a Twiddle Factor Multiplier (TFM) to
realize the multiplication by Wnk

N , where n, k = 0, 1, ..., N − 1. Depending on
the twiddle factors, this block is implemented using one of the following three
modules.

5.4.4.1. RECONFIGURABLE GENERAL MULTIPLIER

The first realization of TFM module is the Reconfigurable General Multiplier,
which is used to perform non-trivial complex multiplications by Wk

N , k =
0, 1, ..., N − 1 in Stage 1 to Stage (m − 3). As illustrated in Figure 5.13, this
circuit includes a memory, a Region Mapper block, and real-domain adders
and multipliers. The memory is used to store the required twiddle factors
corresponding to each stage of FFT/IFFT. Thanks to the symmetric structure
of W in (4.1), we have employed the π/4 symmetry to reduce the number of
twiddle factors to be saved in the memory. Thus, (N/8) × 2−(m−1) twiddle
factors are stored in the memory of Stage m, where m = 1, 2, ..., log2 N − 3.
These twiddle factors are located in region A of the unit circle (see Figure 5.13)

56 Low-Latency FFT/IFFT

≤

Comparator

MemD_WEn

MemU_WEn

Mem_Ctrl

BF_Ctrli
=

1,
 2

, …
, N

/2

Figure 5.12. Control circuit for the memories and butterflies of Stage 2 to the
last stage of FFT/IFFT architecture.

and specified with the corresponding angle, θ, as

Wk
N×2−m−2 = cos(θ)− j sin(θ) (5.3)

where k = 1, 2, ..., N × 2−m−2.
The remaining twiddle factors will be calculated on-demand using the Re-

gion Mapper block in Figure 5.13. This block employs the following properties

Wk+N/4
N = −jWk

N

Wk+N/2
N = −Wk

N k = 0, 1, ..., N/8.

Wk+3N/4
N = jWk

N

(5.4)

to generate the required coefficients by proper mapping from region A to the
corresponding region as detailed in Figure 5.13.

5.4.4.2. CONSTANT MULTIPLIER

This module is used in Stage (m− 2) to calculate the multiplication by WkN/8
N , (k =

0, 1, 2, 3). In case of k = 0, 2 this operation is simplified to trivial multiplication
by 1 and −j while for the other ones, i.e., k = 1, 3, non-trivial multiplications
are needed. Considering the first property in (5.4), to perform the two non-
trivial multiplications of Stage (m− 2) only multiplication by WN/8

N is needed,
which can be formulated as

WN/8
N (a + jb) = (

1√
2
− j√

2
)(a + jb)

=
1√
2
[(a + b) + j(b− a)] = c + jd,

(5.5)

5.4. VLSI Architecture and Implementation Results 57

N

k

ROM

C
A

E
G

Region Mapper

A 𝑪𝒐𝒔 𝜽 − 𝒋𝑺𝒊𝒏(𝜽)

B 𝑺𝒊𝒏 𝜽 − 𝒋𝑪𝒐𝒔(𝜽)

C −𝑺𝒊𝒏 𝜽 − 𝒋𝑪𝒐𝒔(𝜽)

D −𝑪𝒐𝒔 𝜽 − 𝒋𝑺𝒊𝒏(𝜽)

E −𝑪𝒐𝒔 𝜽 + 𝒋𝑺𝒊𝒏(𝜽)

F −𝑺𝒊𝒏 𝜽 + 𝒋𝑪𝒐𝒔(𝜽)

G 𝑺𝒊𝒏 𝜽 + 𝒋𝑪𝒐𝒔(𝜽)

H 𝑪𝒐𝒔 𝜽 + 𝒋𝑺𝒊𝒏(𝜽)

Im{ }

Re{ }

Address
Gen.

a+
jb

Im{ }

Re{ }

Figure 5.13. The architecture of Reconfigurable General Multiplier. The Region
Mapper generates the required twiddle factors in different re-
gions of the unit circle, as shown in this figure.

>> 2

>> 2

>> 4

>> 2

>> 2 >> 4

a+jb

c+jd

b-ja

d-jc

a

b

c

d

k

0

2

1

3

Figure 5.14. The proposed circuit for Constant Multiplier.

where a + jb is the complex input of Constant Multiplier and c + jd is the
result of multiplication by WN/8

N . As a result, the complex multiplication by
WN/8

N can be performed by two real-valued multiplications by the constant
value of 1/

√
2, which can be transformed to the canonical signed digit (CSD)

representation as

1/
√

2 = 2−1 + 2−3 + 2−4 + 2−6 + 2−8. (5.6)

Due to the truncation error, direct implementation of (5.6) leads to a poor
precision. In order to reduce the area and improve the precision, (5.6) can be
reformulated as

1/
√

2 = 1 + (1 + 2−2)(2−6 − 2−2). (5.7)

Figure 5.14 illustrates the proposed circuit to perform all the required trivial
and non-trivial multiplications in Stage (m − 2), where the final output is
specified based on the value of k.

58 Low-Latency FFT/IFFT

Table 5.7. Four operation modes of the presented design.

Mode[1:0] FFT/IFFT Operation Mode
00 FFT Without Guard Bands
01 FFT With Guard Bands
10 IFFT Without Guard Bands
11 IFFT With Guard Bands

5.4.4.3. TRIVIAL ROTATOR

This module is the third realization of TFM block, which is used in Stage (m−
1) to perform trivial multiplications by 1 and −j. Multiplication by −j can be
realized by exchanging the real and imaginary parts of the multiplicand. This
block basically works similarly to the case k = 0, 2 in Figure 5.14.

5.4.5. SUPPORTING APPLICATIONS WITHOUT GUARD BANDS

Although the presented scheme is designed to reduce the latency of FFT/IFFT
in the OFDM-based systems, which include guard bands, it can perform
FFT/IFFT in the other systems without guard bands as well. For this pur-
pose, a 2-bit input signal, i.e., Mode in Figure 5.9, is considered to specify
the desired mode as detailed in Table 5.7. It is worth to mention that the de-
veloped control scheme in Section 5.2.2 can support these modes by setting
the value of P and Z to half of the number of non-zero and zero samples, re-
spectively in Table 5.2-5.5 and Figure 5.6-5.7. As a result, our design achieves
processing latency of ∆Proc = 2P CC in the OFDM-based systems for arbitrary
values of N, P, and Z. However, in the other mode, where all the input sam-
ples are non-zero (i.e., Z = 0) the processing latency would be ∆Proc = N CC,
which is imposed by (4.1).

Moreover, the presented VLSI architecture is fully scalable and can be used
for smaller and larger power-of-two FFT/IFFT lengths. To this end, Stage 1
and the last stage remain fixed and a number of middle stages in Figure 5.9
will be added to or removed from the architecture to realize the required
FFT/IFFT length. The control scheme of memories and butterflies of the mid-
dle stages follow Table 5.4 and Table 5.5, respectively (see Section 5.2.2).

5.4.6. LATENCY AND AREA TRADEOFF

Implementation cost is another design challenge in the OFDM-based massive
MIMO systems, since the number of FFT/IFFT processors grows linearly with
the number of transceiver chains. This considerably increases the design area

5.4. VLSI Architecture and Implementation Results 59

Table 5.8. Tradeoff between latency and area for 2048-point FFT/IFFT.

Latency (# CC)
Single-input FFT/IFFT 1 FFT per Antenna 1 FFT per 2-Antennas

Traditional Pipelined Arch. 2048 4096
This work 1200 2400

Mem1U

Mem1D

Extra
Mem

ROM1

Mem2U

Mem2D

Mem3U

Mem3D

Mem4U

Mem5D

Mem5U

Mem4D

Figure 5.15. The layout of the modified pipelined FFT/IFFT processor with
the length of 2048-point in 28 nm CMOS technology.

especially in OFDM-based massive MIMO systems, which have a large num-
ber of BS antennas. In order to lower the design area, an FFT/IFFT block can
be shared (i.e., time multiplexed) for two antennas, however, the processing
latency will be doubled.

The proposed design provides the possibility to trade between processing
latency and design area. This design can perform FFT/IFFT for two antennas
while the corresponding latency is still comparable to the latency of traditional
schemes before time multiplexing, as highlighted in Table 5.8.

5.4.7. IMPLEMENTATION RESULTS

As a case study, a 2048-point FFT/IFFT has been designed based on the pre-
sented idea and the functionality was verified in MATLAB. According to the
fixed-point simulation results, the word-length of real and imaginary parts of
the signals is set to 12 bits, which is the choice of most FFT/IFFT processors in
the literature [83]. The VLSI architecture in Figure 5.9 has been implemented
in 28 nm CMOS standard cell library. Figure 5.15 and Table 5.9 show the
layout view and implementation results of the FFT/IFFT kernel, respectively.

In the FFT/IFFT processors, memories occupy a considerable part of the

60 Low-Latency FFT/IFFT

Table 5.9. Implementation results of the FFT/IFFT in 28 nm technology.

FFT/IFFT Length 128 – 2048
Die Area (um2) 420× 460

Core Area (um2) 78966

Combinational 14025
Non-combinational 15443
SP1 Memory Blocks

49497
(2136 Words)

Core Power (mW) 15.12

Combinational 1.52
Non-combinational 6.5
SP1 Memory Blocks

7.1
(2136 Words)

1 single port (SP)

chip area. Generally, they can be realized using either registers or random
access memory (RAM). Implementation of memories using registers, is sim-
ple and flexible, but depending on the size of required memory it can result
in a very large area and power consumption compared to the RAM with the
same size. On the other hand, RAM includes additional logics such as address
decoders, which can increase the area overhead. In order to find the proper
choice, we have implemented the memories in 28 nm CMOS technology us-
ing both options. The corresponding design-area numbers for memories with
different sizes are depicted in Figure 5.16. Based on this analysis, the mem-
ories of Stage 1 to Stage 5 are realized using the single-port memories (see
Figure 5.15) and the other ones are implemented using registers. Table 5.9
states that almost half of the total area and power consumption of the design
is consumed by the memories in the first five stages. Also, by considering the
register-based memories of the other stages, the area and power consump-
tion of all memories will be far more than 50% of the total area and power
consumption of this design.

Table 5.10, performs a comparison between the presented FFT/IFFT scheme
and the recently published 2048-point pipelined FFT/IFFT processors. Since
the designs in Table 5.10 are implemented in different technologies, we have
defined the normalized energy per FFT/IFFT operation,

Normalized Energy/FFT =
Power× Exec. Time
V2 × (Tech./28 nm)

, (5.8)

and used it as a measure to have a fair comparison. In this equation, Exec. Time
is the required time to perform an N-point FFT/IFFT, Tech. is the target tech-
nology, and V is supply voltage. Table 5.10 demonstrates that our design

5.4. VLSI Architecture and Implementation Results 61

Figure 5.16. Design area of different memory realizations in 28 nm CMOS
technology using single-port memory and registers.

achieves a much lower normalized energy per FFT than the other ones. More-
over, our scheme attains the processing latency of 1200 CC, which is at least
42% lower than the other reported designs.

62
Low

-Latency
FFT/IFFT

Table 5.10. Design comparison between implementation results of FFT/IFFT architectures.

TCAS-I TCAS-I TCAS-I JSSC TVLSI TVLSI TCAS-I TCAS-I This Work
2018 [78] 2018 [76] 2018 [91] 2012 [92] 2013 [74] 2015 [83] 2017 [72] 2018 [93] 2018

FFT/IFFT Size 4096 1024 1024 2048 2048 2048 2048 2048 2048
Architecture SDF MDC MDC SDF MDC SDF SDF SDF M.P.1

Latency (CC) 4096 (2048)2 1024 (2048)2 265 (2120)2 2048 20482 2056 2187 2048 1200
Latency (us) 7.78 (3.89)2 2.56 (5.12)2 0.83 (6.64)2 102.4 51.2 2 51.4 11.59 4.11 4
Area (mm2) 0.414 3.6 0.212 1.37 3.1 (0.78)2 0.8 1.664 0.36 0.08
Gate Count (kGE) 445 – – 1100 204.7 396 380 181
Norm. En/FFT (nJ) 391.8 (173.1)2 77.2 63.92 232.8 916 (229)2 128.3 295 (109)3 323 (128)3 51
Memory Size (word)4 4095 (2047)2 1534 (3070) 2 1020 (2044)2 2047 10224 4128 2272 2047 2136
Throughput (GS/s) 0.526 0.8 (0.4)2 0.128 (0.03)2 0.02 0.16 (0.04)2 0.04 0.189 0.5 0.6
Power (mW) 78.1(69)2 60.3 17.02 8.55 63.7(16)2 7.2 35.2 48.46 15.1
Fmax (MHz) 526.32 400 320 20 40 40 188.67 500 300
Process (nm) 40 65 55 65 90 90 90 40 28
Design Status Post Layout Chip Synthesis Chip Synthesis Post Layout Synthesis Synthesis Post Layout

1 Modified Pipelined Architecture
2 Approximate value for single-input 2048-point FFT (i.e., one-antenna)
3 Calculated based on the definition in (5.8)
4 Only the required memory for the FFT stages are considered and the reordering memories are excluded.

6
Reordering Scheme

There are two main decomposition schemes for the DFT algorithm 1: decima-
tion in time (DIT) and decimation in frequency (DIF). In DIT scheme, the input
sequence is separated into its even- and odd-indexed samples, which breaks
down an N-point DFT into two N/2-point DFTs. This process is performed
iteratively for the N/2-point DFTs until the whole algorithm is simplified.
Similarly, in the DIF scheme an N-point DFT is decomposed iteratively into
DFTs of half size. But, DIF starts decomposition from the output sequence by
dividing them into even- and odd-indexed frequencies.

Figure 6.1(a) and (b) represent the SFG of a radix-2 FFT algorithm using
DIT and DIF decomposition, respectively. By comparing these graphs, it can
be observed that the DIT and DIF decomposition of the FFT differ in two
points: (i) the location of twiddle factor multiplications are different, (ii) in
DIT the input samples are in bit-reversed order and the output samples are
in natural order while in DIF the input samples are in natural order and
the output samples are in bit-reversed order. This implies that a bit reversal
algorithm is needed to sort the input or output samples of the DIT or DIF
scheme, respectively. The bit reversal algorithm changes the place of samples
in a sequence such that a sample with the binary index of B = bm−1, · · · , b1, b0
moves to the place with binary index of B = b0, b1, · · · , bm−1.

Several designs have been presented in the literature to realize the bit re-
versal algorithms for an N-point FFT/IFFT [75, 81]. The common approach
is to store the set of data in the memory and then read the data in natural
order, which in most cases results in the reordering latency of around N CC
and memory size of N words [95, 96]. Efficient circuits for parallel bit-reversal

1There are several ways to decompose a DFT into sub-DFTs, which can be represented
using binary trees, as discussed in [94].

63

64 Reordering Scheme

(a) Twiddle Factor Multiplication (b)

Figure 6.1. The SFG of an 8-point radix-2 FFT. (a) Decimation-in-time (DIT)
and (b) Decimation-in-frequency (DIF)

algorithm have been introduced in [80, 81], and corresponding latency for
different FFT lengths and levels of parallelism are discussed.

6.1. REORDERING MECHANISM

The OFDM guard bands can also be used to reduce the size of required mem-
ory in the reordering circuit as well as the reordering latency, ∆Reord. This con-
cept is employed in our reordering mechanism, as described in Algorithm 6.1.
This algorithm reorders the output samples of FFT since in this work DIF is
considered as the decomposition scheme, however, it does not depend on the
decomposition scheme and works in the case of DIT as well.

The FFT architecture in Figure 5.9 generates a pair of samples, Xj and
Xj+N/2, in each clock cycle. Therefore, we consider two memories in the
reordering scheme as detailed in Algorithm 6.1. The FFT output samples are
generated in bit-reversed order and follow the structure shown in Figure 5.1.
The reordering process starts by determining the pair type according to the
pair index, j, of incoming samples. Then, one sample in case of Type I
pairs and two samples in case of Type II will be saved in the corresponding
memories as specified in Algorithm 6.1.

The proposed reordering scheme works for any value of P, Z, and the
power-of-two FFT lengths, N. To demonstrate the generality and correctness
of this scheme, it is necessary to prove that Address 1 and Address 2, in Algo-
rithm 6.1, always have valid integer values. These addresses are calculated
based on the value of pair index, j, which has two possible cases as discussed
below and shown in Figure 6.2.
1– Even values of j: According to Algorithm 6.1, two terms should be calcu-
lated in this case: (j/2− 1) and (j + N/2− (2Z− 1)− 1)/2. Since, j is even,
the first term is always an integer number. The second term can be simplified

6.1. Reordering Mechanism 65

Algorithm 6.1: Proposed Reordering Scheme

Reordering (Xj, Xj+N/2)

if j < Z then
if j is Odd then

Address1 = (j− 1)/2
Mem1 [Address1] = Xj

else
Address2 = j/2− 1
Mem2 [Address2] = Xj

end
end
if Z ≤ j < P + 1 then

if j is Odd then
Address1 = (j− 1)/2
Address2 = (j + N/2− (2Z− 1))/2− 1
Mem1 [Address1] = Xj

Mem2 [Address2] = Xj+N/2

else
Address1 = (j + N/2− (2Z− 1)− 1)/2
Address2 = j/2− 1
Mem1 [Address1] = Xj+N/2

Mem2 [Address2] = Xj

end
end
if P + 1 ≤ j < N/2 then

if j is Odd then
Address2 = (j + N/2− (2Z− 1))/2− 1
Mem2 [Address2] = Xj+N/2

else
Address1 = (j + N/2− (2Z− 1)− 1)/2
Mem1 [Address1] = Xj+N/2

end
end

66 Reordering Scheme

⟹ j+
N

2
- 2Z-1 : Even ⟹

j+
N
2 - 2Z-1

2
-1: Integer

⟹ j+
N

2
- 2Z-1 : Odd ⟹

j+
N
2 - 2Z-1 -1

2
: Integer

 Odd

 j+

N

2
: Odd

2Z-1 : Odd

(j-1)/2:Integer

 Even

 j+
N

2
: Even

2Z-1 : Odd

j/2-1: Integer

j

Figure 6.2. Proof of generality of presented reordering scheme.

to (j + N/2− 2Z)/2. Since, in our scheme the FFT/IFFT length is power of
two, N/2 is always an even number. Thus, the numerator, (j + N/2− 2Z), is
an even number, which means that the second term is an integer number.
2– Odd values of j: As stated in Algorithm 6.1, two terms should be calcu-
lated in this case: (j− 1)/2 and (j + N/2− (2Z− 1))/2− 1. Since, j is odd,
j − 1 will be even and thus the first term is an integer number. The second
term can be rewritten as (j + N/2 − (2Z + 1))/2, in which the numerator
includes an even number, N/2, and two odd numbers, j and (2Z + 1). There-
fore, the result of addition/subtraction in the numerator is an even number,
which means that the second item will be an integer number.
As a result, the right-hand-side terms of address calculations in Algorithm 6.1
are integer numbers, which confirms that all the memory addresses are valid,
regardless of the value of j.

To clarify the presented scheme, the reordering procedure is illustrated in
Figure 6.3 for a 16-point FFT. In this figure, the first row shows the FFT out-
puts, which are generated in the bit-reversed order and include 2P = 10 and
2Z = 6 non-zero and guard band samples, respectively. The second and
third rows show the content of two reordering memories during the write
and read sequence. It is worth mentioning that when it comes to the imple-
mentation, there are two options to perform the read sequence: (i) after the
write sequence is finished, (ii) in parallel with the write sequences. Figure 6.3
illustrates the first case where the read sequence starts reading the samples
from the memories in the natural order when the last pair of FFT outputs are
received in the write sequence. In this case, the write and read sequences take
N/2 + P CC in total.

6.1.R
eordering

M
echanism

67

Mem1 Mem2

X12

Mem1 Mem2

X12

Mem1 Mem2

X4

X12

Mem1 Mem2

X2

X4

X12

X14

Mem1 Mem2

X2

X4

X1

X12

X14

Mem1 Mem2

X2

X4

X1

X5

X12

X14

Mem1 Mem2

X2

X4

X13

X1

X3

X5

X12

X14

Mem1 Mem2

X2

X4

X11

X13

X4

X2

X14

X1

X5

X13

X3

X11

X15

X0
X8

X4
X12

X2
X10

X6
X14

X1
X9

X5
X13

X3
X11

X7
X15

FFT
Output:

X3

X5

X12

X14

X4

X11

X13

X15

X5

X12

X14

X11

X13

X15

X12

X14

X13

X15 X14 X15

X1 X2

X3 X4

X5 X11

X12 X13

X14 X15

Write
Sequence

Read
Sequence

Clock

Figure 6.3. The step by step operation of developed reordering mechanism
for the example design, i.e., 16-point FFT. The output symbol in-
cludes 2P = 10 non-zero samples and 2Z = 6 guard bands, which
are highlighted (the structure of output symbol is shown in Fig-
ure 5.2). The read sequence can be started immediately after writ-
ing all the output samples.

68 Reordering Scheme

Table 6.1. Implementation results of the reordering circuit in 28 nm process.

Area (um2) 14590

Combinational 450
Non-combinational 610
SP Memory Blocks

13530
(1200 words)

In the second case, the read sequence can be started after N/4 + 1 CC since
the first pair of samples are ready to be read in the natural order from the
memories. Thus, in this case, the reordering time is reduced and the write
and read sequences take N/4 + P + 1 CC in total.

As a result, by utilizing the guard bands, in both cases, the read sequence
can be done in P CC instead of N/2 CC. Furthermore, the presented reorder-
ing scheme reduces the size of required memory to 2P words by exploiting
the guard bands in the OFDM-based systems 2.

6.2. VLSI ARCHITECTURE AND IMPLEMENTATION RESULTS

The presented reordering mechanism can be realized using the VLSI architec-
ture shown in Figure 6.4, which includes two P-word single-port memories.
The Comparator and other logics in this figure are employed to find the pair
type and generate the required addresses and write enable signals for the
memories as detailed in Algorithm 6.1. Also, Mod 2 block performs the mod-
ulo operation to specify if the pair index, j, is even or odd.

The reordering circuit, shown in Figure 6.4, has been implemented in 28 nm
CMOS technology and the result is reported in Table 6.1. As expected, most
of the design area is occupied by the reordering memories and the area of
other logics is less than 10% of the total.

2In case of the systems without guard bands, the traditional reordering schemes can
be used [75, 80].

6.2. VLSI Architecture and Implementation Results 69

In
p

u
t

Sa
m

p
le

s
(B

it
 R

ev
er

se
d

)

O
u

tp
u

t
Sa

m
p

le
s

(N
at

u
ra

l
O

rd
er

)

Mem2

Din

Mem1

Din

Add. R/W Add. R/W

D
o

u
t

D
o

u
t

>>1

Mod 2

>>1

N/2-2Z 1

1 1

Z-1
P
N/2-1

≤

Comparator

1

0

1

0

1

0

1

0

1

0

1

0

P
ai

r
In

d
ex

 (
j)

Figure 6.4. VLSI architecture of the reordering mechanism.

Summary of Part-I

This part dealt with the latency requirement of FFT processor in OFDM-
based massive MIMO systems. It was demonstrated that a considerable part
of latency in the baseband processing of OFDM-based massive MIMO sys-
tems is introduced by OFDM (de)modulation. To address the low-latency de-
mand of such systems, an FFT/IFFT processor and corresponding reordering
scheme were proposed in this part of the thesis. As a result, the process-
ing latency and reordering latency of OFDM-based systems will be reduced
considerably. Moreover, the size of the required memory in the reordering
scheme is reduced.

The key idea is to utilize the OFDM guard bands to decrease the number
of required butterfly operations and therefore the processing time. In case of
a 2048-point IFFT, the proposed scheme results in 42% reduction in latency
compared to the recently published pipelined schemes. Also, the size of re-
ordering memory is reduced by 42% for a 2048-point FFT. In order to realize
this scheme, a modified pipelined architecture with a reorganized memory
structure and also an efficient data scheduling mechanism for memories and
butterflies were presented. As a proof of concept, a 2048-point FFT/IFFT
processor was implemented in a 28 nm CMOS technology. Post-layout simu-
lations show that our design achieves a throughput of 0.6 GS/s and 1200 clock
cycles latency, the lowest latency reported to-date for single-input pipelined
FFT/IFFT architectures.

71

Part II
Massive MIMO Detection

Results and discussion in this part are from the following papers [97],
[98], [99], [100]:

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "Angular-
Domain Massive MIMO Detection: Algorithm, Implementation, and
Design Tradeoffs," in IEEE Transactions on Circuits and Systems I (TCAS-
I): Regular Papers, vol. 67, no. 6, pp. 1948-1961, January 2020, doi:
10.1109/TCSI.2020.2968408.

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A VLSI
Implementation of Angular-Domain Massive MIMO Detection," in 2019
IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo,
Japan, May 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702720.

• Mojtaba Mahdavi, Ove Edfors, Viktor Öwall, and Liang Liu, "A Low
Complexity Massive MIMO Detection Scheme Using Angular-Domain
Processing," in 2018 IEEE Global Conference on Signal and Information Pro-
cessing (GlobalSIP), Anaheim, CA, USA, November 2018, pp. 181-185,
doi: 10.1109/GlobalSIP.2018.8646483.

Introduction of Part-II

In massive MIMO systems, the base station (BS) antennas receive the up-
link signals, which are superposition of the transmitted signals by the user
equipments (UEs). Separating of the data stream corresponding to each UE is
a very complex task, which is carried out by massive MIMO detector. Having
considered the large number of BS antennas, M, and number of UEs, K, the
size of channel state information (CSI) matrix, i.e., HM×K , becomes very large
in the multi-user massive MIMO (MU-MaMi) systems. This makes the design
of a practical massive MIMO detector very challenging.

One of the main challenges in massive MIMO detection is the very high
computational complexity. This is due to the fact that detection algorithms
typically involve complex operations like matrix inversion, QR-decomposition
(QRD), or Cholesky decomposition (CD), which should be performed using
a very large CSI matrix. Thus, uplink detection becomes prohibitively com-
plex as the number of BS antennas and UEs in MU-MaMi systems increases.
Several designs have been reported in the literature to reduce the complexity
of detection, e.g., by employing Neumann series expansion, classical iterative
algorithms, etc. [101–104]. It has been shown that linear detection schemes
like zero-forcing (ZF) and minimum mean-square error (MMSE) can achieve
a near-optimal detection performance in massive MIMO systems [40]. These
algorithms can be implemented with relatively reasonable complexity and
hardware cost [105], [106]. But, from detection performance point of view, the
linear detection algorithms are not effective in some cases like highly spatially
correlated channels and closely located UEs [107]. Therefore, non-linear de-
tection schemes like K-best [108], message passing detector (MPD) [101], and
sphere decoding (SD) [109] are still needed to improve the detection perfor-
mance in such cases. However, due to the very high complexity, non-linear

75

76 Reordering Scheme

1

K

1

M

DL
Data

OFDM
Mod.

Analog
TX

UL
Data

Analog
RX

1

K

1

K

1

K

1

M

1

M

1

M

Uplink
Detection

Downlink
Precoding

Channel
Estimation

U
p

li
n

k

Domain Trans.
(M-point FFT)Memory

1

M

D
o

w
n

li
n

k

CompressionDecompress

OFDM
Demod.

Figure 7.0. Three scenarios for MU-MaMi detection, which are illustrated
using different paths between highlighted blocks: antenna-domain with full-
size CSI (dashed-line path), antenna-domain with compressed CSI (double-
line path), and proposed angular-domain scheme (solid-line path).

algorithms are not the preferable choice of implementation in massive MIMO
systems.

Another challenge in massive MIMO detection is the size of required mem-
ories to store the channel data. As mentioned before, time-division duplexing
(TDD) mode is considered in this work, where the channel reciprocity avoids
large overhead for learning the downlink channel at the BS [36, 57]. Therefore,
the uplink CSI matrices corresponding to L subcarriers should be estimated
and saved in the memories to be used in the downlink precoding. Given the
number of subcarriers, BS antennas, and UEs (L, M, and K) in massive MIMO
systems, the size of the required memory becomes very large.

Figure 7.0 illustrates three possible ways of MIMO processing in the mas-
sive MIMO baseband processor, which are shown with three different paths
between the highlighted blocks. The first approach, i.e., dotted-line path in
Figure 7.0, is the traditional antenna-domain processing with the full-size CSI
matrix, which has no reduction in the complexity and required memory.

To reduce the memory size, the idea of channel compression can be em-
ployed to compress the CSI matrices [42, 43, 110, 111]. However, the CSI

6.2. VLSI Architecture and Implementation Results 77

matrix should be decompressed whenever requested by the detection or pre-
coding blocks, which corresponds to the second approach in Figure 7.0, i.e.,
double-line path. As a result, this approach reduces the memory size, but it
suffers from high complexity since the detection is still performed with full-
size (decompressed) CSI matrix.

In this work, we have explored the massive MIMO channel sparsity in the
angular domain using real measured channel data. Based on the analysis of
measurement results, we have developed a practical angular-domain massive
MIMO detector, in which the size of CSI matrix and consequently size of the
required memory are reduced considerably. Moreover, as shown by solid-line
path in Figure 7.0, we propose to perform detection using the compressed
CSI matrix in the angular domain to reduce the computational complexity as
well. This scheme provides the opportunity to trade between computational
complexity, required memory, and detection performance by tuning certain
design parameters (e.g., the size of compressed CSI matrix).

It is worthwhile to mention that, from a hardware perspective, the overall
baseband processing is typically constrained by some limits on the energy
and power consumption requirements, which are strongly affected by com-
putational complexity and size of the above mentioned memories.

This part of the thesis includes four chapters. Chapter 7 presents the mas-
sive MIMO uplink model and the antenna-domain detection. In Chapter 8
the proposed angular-domain massive MIMO detection is described. This is
followed by a detailed discussion about the corresponding performance eval-
uation, complexity analysis, and design tradeoffs in Chapter 9. Finally, in
Chapter 10 the VLSI architecture to realize this scheme and corresponding
synthesis results in 28 nm CMOS technology are presented.

7
Uplink Processing in Massive MIMO

This chapter starts by describing the massive MIMO uplink model. Then,
massive MIMO detection is formulated in the antenna domain. Lastly, the
potential of sparsity utilization in the angular domain is demonstrated using
real measured massive MIMO channels.

7.1. UPLINK SYSTEM MODEL

Figure 7.0 shows a simplified block diagram of the OFDM-based MU mas-
sive MIMO (MU-MaMi) system operating in the TDD mode [41]. It employs
M antennas at the BS to serve K single-antenna UEs. At the UE side, the
information bits are encoded and every Q bits are mapped onto the corre-
sponding symbol in the QAM constellation with the modulation order of 2Q.
These symbols are represented by complex numbers and they are assigned
to frequency-domain subcarriers to create the input sequence of an N-point
IFFT [45]. Here, N is the total number of subcarriers, in which L subcarriers
carry data and the rest are used as guard bands [112]. Eventually, the corre-
sponding time-domain signals for all K UEs are transmitted simultaneously
over the channel.

At the uplink side, each BS antenna receives a combination of the time-
domain signals from all UEs, which enters to the corresponding processing
chain, shown in Figure 7.0. In each chain, after passing the analog prepro-
cessing stage and digital front-end, an N-point FFT performs the OFDM de-
modulation to transform back the time-domain signal into the orthogonal
frequency subcarriers. Then, in each processing chain, the L used-subcarriers,
which carry the data, are extracted to be used in channel estimation and sym-
bol detection blocks.

The received signal on the `-th subcarrier, ` = 1, 2, · · · , L, at time instance t

79

80 Uplink Processing in Massive MIMO

T

B B B

T

L
Frequency

l

t

Figure 7.1. Time-frequency blocks are highlighted in different colors.
Each block includes TB vectors of received signal, i.e.,
z`0,t0 , . . . , z`0+B−1,t0+T−1, which are processed with the same CSI
matrix.

can be modeled as

z`,t =
√

pul H`,ty`,t + n`,t, ` = 1, 2, . . . , L (7.1)

where H`,t ∈ CM×K represents the uplink CSI matrix, y`,t = [y`,t
1 , y`,t

2 . . . , y`,t
K]T

is the vector of transmitted signals by K UEs, pul is the transmit power from
UEs, and n`,t is an independent and identically distributed (i.i.d.) complex
Gaussian noise vector.

Having considered the coherence time and coherence bandwidth of the
channel, we have assumed that the channel is constant in time and frequency
across T successive OFDM symbols, t = t0, t0 + 1, . . . , t0 + T − 1, and over B
consecutive subcarriers, ` = `0, `0 + 1, . . . , `0 + B− 1, respectively. Figure 7.1
shows the time-frequency grid, where t and ` are the indexes of time and
frequency (subcarrier). In this figure, each highlighted block includes TB
received signal vectors, i.e., z`0,t0 , . . . , z`0+B−1,t0+T−1, which will be detected
using the same CSI matrix. In order to simplify the notations, the time index
is discarded in the rest of discussion.

7.2. ANTENNA-DOMAIN DETECTION

In this thesis, the ZF scheme is selected as the detection algorithm just to show
how our approach can significantly reduce the computational complexity and
size of the memory. Here, it is assumed that the BS has the knowledge of the
CSI matrix.

The ZF detector estimates the transmitted signal by the UEs at `-th subcar-
rier, y` ∈ CK×1, as

ỹ` = (H`)† z` = (H`H
H`)−1H`H

z`, (7.2)

7.3. Massive MIMO Channel 81

where (H`)† is the Moore-Penrose pseudoinverse of the CSI matrix at the `-th
subcarrier. By substituting (7.1) into (7.2) the ZF output is

ỹ` =
√

pul y` + m`, (7.3)

where m` ∈ CK×1 is the complex-valued colored noise vector.

7.3. MASSIVE MIMO CHANNEL

7.3.1. MEASURED MASSIVE MIMO CHANNEL

In order to show that our work offers significant benefits in real-life appli-
cations, we did use real massive MIMO channel data, which were measured
outdoors in a semi-urban area [113]. At the BS side, a uniform linear array
(ULA) equipped with M = 128 antenna elements, spaced half a wavelength
apart, was placed on a building roof at the measurement site. On the UE side,
up to K = 16 single-antenna UEs were moved around randomly in different
paths at pedestrian speed, i.e., ≈ 0.5 m/s. The communication between the BS
and UEs is performed through L = 1601 subcarriers. In order to consider dif-
ferent channel conditions, both line-of-sight (LOS) and non-line-of-sight (NLOS)
scenarios were examined. The measurements were performed at a center fre-
quency of 2.6 GHz and a signal bandwidth of 50 MHz with the measurement
setup detailed in [113].

In practice, the imbalanced channel attenuations between different UEs is
removed by utilizing an uplink power control scheme. In order to emulate
this behavior in our design, the raw measured UE channel is normalized as

h`
k =

√√√√√ ML
L
∑
`=1

∥∥h̃`
k

∥∥2
h̃`

k k = 1, 2, · · · , K (7.4)

where M is the number of BS antennas, L is the number of subcarriers, h̃`
k

and h`
k represent the M-dimensional vectors of raw measured channel and

the normalized channel between k-th UE and the BS at the `-th subcarrier,
respectively [113]. This channel normalization equalizes the average energy
over M antenna ports and L subcarriers for the UEs while the variation in
channel attenuation over the antenna elements and subcarriers remain intact.
Throughout the rest of this thesis the normalized CSI matrix,

H`
M×K =

[
h`

1 h`
2 . . . h`

K
]

, (7.5)

is used to perform massive MIMO detection.

82 Uplink Processing in Massive MIMO

UE3 - NLOS UE4 - NLOS
6

5

4

3

2

1

20 40 60 80 100 120

BS-antenna Index

S
u

b
ca

rr
ie

r
In

d
ex

20 40 60 80 100 120

BS-antenna Index

S
u

b
ca

rr
ie

r
In

d
ex

1600
1400
1200
1000
800
600
400
200

12

10

8

6

4

2

20 40 60 80 100 120

Beam Index

S
u

b
ca

rr
ie

r
In

d
ex

20 40 60 80 100 120

Beam Index

S
u

b
ca

rr
ie

r
In

d
ex60

50
40

30
20
10

70
60

50

40
30
20

10

70

UE1 - LOS

20 40 60 80 100 120

BS-antenna Index

S
u

b
ca

rr
ie

r
In

d
ex

UE2 - LOS

20 40 60 80 100 120

BS-antenna Index

S
u

b
ca

rr
ie

r
In

d
ex

3

4

2
1.5
1

0.5

2.5

3.5

4.55

4

3

2

1

20 40 60 80 100 120

Beam Index

S
u

b
ca

rr
ie

r
In

d
ex

20 40 60 80 100 120

Beam Index

S
u

b
ca

rr
ie

r
In

d
ex

60

40

20

100

80

120

60

40

20

80

100

120

140

128-P
o

in
t F

F
T

(a)

(b)

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

(c)

(d)

128-P
o

in
t F

F
T

Figure 7.2. Measured UE channels in the massive MIMO system with 1601
subcarriers and 128 BS antennas. The channel data of four UEs
are depicted in antenna domain ((a) and (c)) and in angular do-
main ((b) and (d)), where a 128-point FFT performs the domain
transformation. In this example, UE1 and UE2 have LOS channel
and UE3 and UE4 have NLOS channel.

7.3. Massive MIMO Channel 83

7.3.2. CHANNEL SPARSITY IN MASSIVE MIMO SYSTEMS

Massive MIMO channels exhibit a sparse multipath structure [114]. Several
papers have explored channel sparsity to reduce training pilot length, shorten
training time in the channel estimation [115, 116], reduce the feedback burden
in FDD-based massive MIMO [117], and perform channel estimation [118].
Also, the channel sparsity is considered to address the pilot contamination in
multi-cell massive MIMO systems [119]. Moreover, the correlation between
channel vectors is exploited in [120] to reduce the dimension of CSI matrix at
transmitter side.

In this work, the channel sparsity is investigated in the context of massive
MIMO detection. In our scheme the massive MIMO channel sparsity is ex-
plored in the angular domain to reduce the size of CSI matrix, which in turn
reduces (i) the size of required memories for storing the CSI matrices and (ii)
the computational complexity of detection as described in Chapter 9.

Let us consider the propagation channel of k-th UE at `-th subcarrier, h`
k ∈

CM×1. In case of a base station with ULA, as stated in [121], the corresponding
angular-domain channel vector can be described as

ĥ`
k = Fh`

k , k = 1, 2, · · · , K (7.6)

where F is M×M unitary matrix, in which the m-th column is

{F}:,m= 1√
M

[
1, e−j 2πm

M , · · · , e−j 2π(M−1)m
M

]T
, m=1,2,··· ,M. (7.7)

In practice, F is realized using an M-point FFT [45] across the BS antennas.
Hence, the angular-domain CSI matrix can be obtained as

Ĥ`
M×K = FM×M H`

M×K . (7.8)

The measurement results and our analysis reveal a strong potential of spar-
sity utilization in the angular domain in the sense that the received power at
the BS is mostly concentrated over a limited number of angles. As an example,
Figure 7.2(a) and (c) show the measured channel date in the antenna domain
for two UEs, which experience LOS and NLOS conditions, respectively. Af-
ter performing (7.6) on the same data, the corresponding angular-domain UE
channels are illustrated in Figure 7.2(b) and (d), respectively. It can be seen
that the power is concentrated in fewer beams in the LOS, Figure 7.2(b), com-
pared to the NLOS scenario in Figure 7.2(d).

Taking the sparsity into consideration, we have examined several selection
criteria to select a number of dominant beams to compress the CSI matrix
in the angular domain. However, the one that results in a better detection

84 Uplink Processing in Massive MIMO

performance and is simple to implement is presented here. The key idea in
this selection criterion is to choose the beams, which include at least K′ strong
UEs. In our scheme, a UE is strong if the UE power in a certain beam is larger
than the average power of the UE across all beams. This means that a UE can
be strong in more than one beam. According to this definition, the position of
strong UEs at `-th subcarrier is specified with ones in a matrix

S`
UE=

[
s`m,k

]
M×K

, s`m,k =

{
1 if |ĥ`m,k|

2 > p `
k

0 otherwise
(7.9)

where p `
k is the average power of k-th UE over all beams at the `-th subcarrier,

which is defined as

P`
=
[

p `
k

]
K×1

, p `
k =

1
M

M

∑
m=1
|ĥ`m,k|

2. (7.10)

Thus, the total number of strong UEs in each beam is equal to the result
of row-wise summation in S`

UE. Next, we define the nulling matrix N` =[
n`m′ ,m

]
M′×M

such that its entries can be obtained as

if (
K
∑

k=1
s`m,k>K′) : n`m′ ,m=1, n`m′ ,m+1:M = n`m′+1:M′ ,m=0

otherwise : n`m′ ,m = 0.
(7.11)

where M′ is the number of beams that include more than K′ strong UEs. The
nulling matrix has a staircase structure with the property that there is a single

‘1’ in each row. Finally, the compressed CSI matrix at the `-th subcarrier, Ĥ ′
`
,

can be generated by selecting M′ beams as

Ĥ ′
`
M′×K = N`

M′×M Ĥ`
M×K , (7.12)

which reduces the size of CSI matrix from M × K to M′ × K. It is worth to
point out that there is no need to perform matrix multiplication to realize
(7.12) as described in Section 10.1.1. In our design, the i-th row of CSI matrix,
Ĥ`, will be included in the compressed CSI matrix if the i-th column of N`

includes a ‘1’, otherwise that row will be discarded (i.e., the column index of
a ‘1’ in N` specifies the row index in Ĥ` to be selected).

8
Angular-Domain Massive MIMO

Detection

The proposed angular-domain massive MIMO detection is realized using
three main units as shown in Figure 8.1: (i) Compression, (ii) Linear Detection,
and (iii) Non-Linear Post Processing. In Figure 8.1, the highlighted operations
are only carried out once per channel realization while the remaining ones
are performed for every received signal vector, z`. In Chapter 9, we will
show that this scheme considerably reduces the computational complexity
and memory size while achieving better BER performance compared to the
antenna-domain linear schemes.

The processing flow of our scheme is illustrated in Figure 8.2, which can
be divided into two phases: Channel Processing and Data Transmission. The
channel processing phase is only performed when an updated CSI matrix is
received, which is generated by channel estimation block. In this phase, the
compressed CSI matrix is produced using the Compression Unit. Then, Unit 2
performs Cholesky decomposition for the compressed CSI and generates the
matrices, which are required in the detection. The data transmission phase is
continuously carried out for every received signal vector to detect the trans-
mitted UEs symbols, y`.

85

86
A

ngular-D
om

ain
M

assive
M

IM
O

D
etection

Match
Filtering

Forward
Substitution

Cholesky
Decomp.

Backward
Substitution

U
E

 S
el

ec
ti

o
n

S
y

m
b

o
l

E
xp

a
n

si
o

n

F
in

al
 D

ec
is

io
n

0

1

0

1

Unit 1: Compression Unit 2: Ang.-Domain Linear Det. Unit 3: Ang.-Domain NL-PP

0

1

Memory1

B
ea

m
 S

el
ec

ti
o

n

0

1

In
d

ex
 M

ap
p

in
g

Memory2

Step II Step IIIStep I

Gram
Computation

M
-P

o
in

t
F

F
T

Figure 8.1. The processing chain of proposed angular-domain massive MIMO
detection scheme. The highlighted operations are performed once
per channel realization. The design parameters (i.e., M′, α, β) trade
between the size of required memory, computational complexity,
and detection performance of the angular-domain detector. (NL-
PP stands for Non-Linear Post-Processing.)

8.2. Angular-Domain Linear Detection 87

U
n

it
 1

U
n

it
 2

U
n

it
 3

Data Transmission Phase

Domain Transf.
Beam Selection
Index Mapping
Memory 1

Gram Comp.
Cholesky Dec.
Memory 2
Matched Filter
Forward Subst.
Backward Subst.

UE Selection
Symb. Expansion

Final Decision

Channel Processing Phase

Figure 8.2. The processing flow of proposed angular-domain massive MIMO
detector in channel processing and data transmission phases. In
the data transmission phase, processing flow of two successive
received signal vectors are illustrated (Due to the space limitation,
the size of rectangles is not scaled properly).

8.1. DOMAIN TRANSFORMATION AND COMPRESSION

As shown in Figure 8.1, the Compression Unit either receives the UE channel
vector, h`

k , in the channel processing phase or it gets the received signal vector,
z`k , in the data transmission phase.

In the channel processing phase, the UE channel vector, h`
k , is transformed

to the angular domain using an M-point FFT. Then, Beam Selection block con-
structs the nulling matrix based on (7.10) and (7.11). Eventually, Index Mapping
picks the dominant beams following (7.12), generates the compressed CSI ma-
trix, and sends it to the first group of memories, Memory 1.

In data transmission phase, Compression Unit performs the domain trans-
fer for the received signal as ẑ`M×1 = FM×Mz`M×1. Then, the angular-domain
received signal is compressed using Index Mapping block as

ẑ′
`
M′×1 = N`

M′×M ẑ`M×1. (8.1)

Since, the nulling matrices are already generated for all the CSI matrices, the
Beam Selection block is bypassed in the transmission phase, as illustrated in
Figure 8.1 and 8.2.

88 Angular-Domain Massive MIMO Detection

8.2. ANGULAR-DOMAIN LINEAR DETECTION

The angular-domain representation of massive MIMO uplink signal can be
obtained by applying (7.6) to the antenna-domain model in (7.1),

ẑ` =
√

pul Ĥ`y` + n̂` , (8.2)

where Ĥ` is defined in (7.8) and n̂` = Fn`. As mentioned before, in this work,
ZF algorithm is chosen as a case study to realize the Linear Detection Unit.
Having considered (8.2), the angular-domain ZF can be formulated as

ỹ` = (Ĥ`)† ẑ` =
((

Ĥ`
)H Ĥ`

)−1(Ĥ`
)H ẑ`. (8.3)

where (Ĥ`)† is the Moore-Penrose pseudoinverse of the angular-domain CSI
matrix at the `-th subcarrier. Since (7.7) is a unitary transform, it just rotates
the space where the computations are performed. Thus, the output of ZF
algorithm in antenna domain and angular domain will be identical if the same
CSI matrix is used [98].

One of the key contributions of our scheme is to target the angular domain
not only to exploit the massive MIMO channel sparsity, but also to perform the
detection using the compressed CSI matrix and compressed received signal
vector as shown with solid-line path in Figure 7.0 1. To this end, the problem
in (8.3) is reformulated as

ỹ`
ZF = ((Ĥ ′

`
)H Ĥ ′

`
)−1(Ĥ ′

`
)H ẑ′

`
, (8.4)

where ỹ`
ZF ∈ CK×1 is the vector of detected symbols. In this model, the Gram

matrix is calculated using the compressed CSI matrix as Ĝ`
K×K = (Ĥ ′

`
)H Ĥ ′

`
.

In order to solve (8.4), Cholesky decomposition (CD) is employed to factorize
the Gram matrix as Ĝ` = L̂`(L̂`)H . The generated matrix, L̂`, is a lower trian-
gular matrix, which will be stored in the second group of memories (Memory 2
in Figure 8.1). Thus, (8.4) can be rewritten as

ỹ`
ZF = (L̂`(L̂`)H)−1y`

MF , (8.5)

where y`
MF ∈ CK×1 is the matched filtering (MF) output,

y`
MF = (Ĥ ′

`
)H ẑ′

`
. (8.6)

1The effect of compression on the detection performance is discussed and evaluated
in Section 9.1.1.

8.3. Angular-Domain Non-Linear Detection 89

Exploiting the lower triangular structure of L̂`, the forward substitution (FS)
followed by backward substitution (BS) can be used to solve (8.4) through the
following successive steps

FS: L̂` y`
FS = y`

MF → BS: (L̂`)H ỹ`
ZF = y`

FS (8.7)

where y`
FS ∈ CK×1 is the output of the FS operation.

It can be mathematically proven that the detected transmit signal in the
angular domain using (8.3) is the same as the one obtained in the antenna
domain using (7.2). For this purpose, we substitute (7.8) into (8.3) and simplify
it as

ỹ` =
((

Ĥ`
)H Ĥ`

)−1(Ĥ`
)H ẑ`

=
(
(FH`)

H
FH`

)−1
(FH`)

H
Fz` (8.8)

=
(
(H`H

FH)FH`
)−1

(H`H
FH)Fz`.

As stated in (7.7) the columns of F are orthonormal,

FH
M×MFM×M = IM , (8.9)

where IM is the M-dimensional identity matrix. Thus, by substituting (8.9)
into (8.8), the transmitted vector of symbols by K UEs is given by

ỹ` = (H`H
H`)−1H`H

z` = (H`)† z`, (8.10)

which is the same as ỹ` obtained in the antenna domain model using (7.2).

8.3. ANGULAR-DOMAIN NON-LINEAR DETECTION

Significant complexity reduction in the angular-domain Linear Detection Unit
opens the door to perform extra processing to improve the detection per-
formance. To this end, we have developed an angular-domain post-processing
(PP) scheme to improve the detection performance by performing simple non-
linear operations. This scheme is realized through three steps, as shown in
Figure 8.1, scheduled in Figure 8.2, and described in the next paragraphs.

In the rest of discussion, the time index, which was defined in Section 7.1, is
added to the notations again. Thus, ỹ`,t

ZF is the t-th (t=1, 2, . . . , T) output vector
of angular-domain Linear Detection Unit at the `-th subcarrier.

90 Angular-Domain Massive MIMO Detection

Step I. UE Selection:
Each output-vector of angular-domain Linear Detection Unit, ỹ`,t

ZF , consists of K
symbols corresponding to K UEs. The performance loss is usually originated
from incorrect symbol detection of a few UEs in ỹ`,t

ZF . In order to improve the
BER performance of our scheme, we select α UEs and perform the non-linear
detection for the subset,

U `,t = {UE`,t
k }, k ∈ {1, 2, . . . , K} (8.11)

where α is a design parameter and will be determined in Section 9.3. As
mentioned in Section 7.1, every TB successive transmitted signal vectors are
processed with the same CSI matrix. Due to the fact that the instantaneous
noise power changes over these vectors (i.e., noise variation over the time and
frequency), the position of incorrectly detected UEs in ỹ`,t

ZF may vary from one
vector to another. To take this issue into account, we create a specific subset
of selected UEs, U `,t, for each of these TB vectors. To this end, the Euclidean
distance (ED) between the ZF output,

ỹ`,t
ZF = [ỹ`,t

1 , ỹ`,t
2 , . . . , ỹ`,t

K]T , (8.12)

and the corresponding vector of hard-output decision,

S`,t
1 = [s`,t

1,1, s`,t
1,2, . . . , s`,t

1,K]
T , (8.13)

is considered as the metric of UE selection. Therefore, U `,t is created for ỹ`,t
ZF

by selecting α UEs, which have the largest ED in

ED`,t =
[

ED`,t
k

]
K×1

, ED`,t
k = | ỹ`,t

k − s`,t
1,k |. (8.14)

The vector of hard-output decision in (8.13) is obtained by mapping the entries
of ỹ`,t

ZF to the nearest constellation symbols. Considering a 2Q-QAM constella-
tion, the real and imaginary parts of s`,t

1,k belong to

Ω = [−2Q/2 + 1,−2Q/2 + 3, . . . ,−1,+1, . . . , 2Q/2 − 1], (8.15)

where Q is the number of transmitted bits per symbol. Thus, the k-th entry in
(8.13) can be calculated using the following slicers

Re{s`,t
1,k}=2

⌊Re{ỹ`,t
k }

2
+ 1
⌋
−1, Im{s`,t

1,k}=2
⌊Im{ỹ`,t

k }
2

+ 1
⌋
−1, (8.16)

where b·c represents the floor operation.

8.3. Angular-Domain Non-Linear Detection 91

0-1-3 1 3
Figure 8.3. SE enumeration technique in the real-domain. In this example, 16-

QAM constellation is considered. The filled circle is the received
sample at uplink.

Step II. Symbol Expansion:
The purpose of this step is to find β closest constellation symbols around the
given hard-output decision symbol, s`,t

1,k , of the selected UEs. The generated
symbols are named as Candidate Symbols and β is a design parameter, which
is determined in Section 9.3. In real-domain constellation, Ω, the Schnorr-
Euchner (SE) technique [49, 122, 123] enumerates the constellation symbols in
the order of their distance from the ZF output, ỹ`,t

k . This can be done by doing
a zigzag movement around the ZF output, ỹ`,t

k , as illustrated in Figure 8.3
for a 16-QAM constellation.

In this work, a two-dimensional symbol expansion scheme is used, which
employs SE technique in the direction of rows and columns, called row-SE
enumeration (RSEE) and column-SE enumeration (CSEE), respectively. As an
example, this scheme is presented in Figure 8.4 to find β = 4 candidate sym-
bols for ỹ`,t

k . The hard-output decision s`,t
1,k is already computed using (8.16)

and shown in Figure 8.4(a). The expansion always starts by performing RSEE
and CSEE for s`,t

1,k to generate the next two candidate symbols, s`,t
2,k and s`,t

3,k ,
which are shown with boldface crosses in Figure 8.4(b). Next, the RSEE and
CSEE will be performed for the candidate symbol, which is not enumerated
yet and has the lowest ED among the others. In this example, s`,t

2,k has lower

ED than s`,t
3,k and therefore it is enumerated in Figure 8.4(c). The dashed cir-

cles in Figure 8.4 are used just for illustration purpose to show the distance
of candidate symbols from the ZF output. It can be seen that, in each step,
all symbols inside the dotted circles are already enumerated, i.e., the squared
crosses in Figure 8.4, and the one on the circle border will be enumerated in
the next step. This process can be continued to enumerate all the constellation
symbols in the order of their ED.

It is worth to mention that the symbol expansion is only performed for
the selected UEs, i.e, U `,t. For the rest of UEs we rely on their hard-output
decision in S`,t

1 . As a result of symbol expansion, each UE in U `,t will have β

candidate symbols and one hard-output symbol, which was calculated in S`,t
1

(in total, β + 1 symbols). Now, we define the detection search space, L`,t, as

92 Angular-Domain Massive MIMO Detection

-1-3 1 3

1

3

-1

-3

(a) (b) (c)

Figure 8.4. Symbol expansion scheme for the ZF output of k-th UE, ỹ`,t
k . In this

example, β=4 and 16-QAM constellation are assumed. Boldface
crosses represent the candidate symbols to be enumerated in the
future steps and squared crosses show the enumerated symbols.

the list of vectors drawn using all possible combinations of recently generated
candidate symbols for α selected UEs and the hard-output decision symbols
of UEs in S`,t

1 . Therefore, the detection search space, L`,t, includes (β + 1)α

vectors,
L`,t =

[
S`,t

1 S`,t
2 . . . S`,t

(β+1)α

]
K×(β+1)α

, (8.17)

where the first column is the vector of hard-output decision in (8.13).
As an example, let us consider the subset of selected UEs, U `,t = {UE1, UE4},

where α =2. To clarify Step II, we expand the symbols corresponding to the
selected UEs by two neighbor symbols, i.e., β = 2. Thus, s`,t

2,1 and s`,t
3,1 are gen-

erated for UE1 and s`,t
2,4 and s`,t

3,4 are produced for UE4. Hence, the resulting
search space is

L`,t =
[
S`,t

1 S`,t
2 . . . S`,t

9

]
= (8.18)

s`,t
1,1 s`,t

1,1 s`,t
1,1 s`,t

2,1 s`,t
2,1 s`,t

2,1 s`,t
3,1 s`,t

3,1 s`,t
3,1

s`,t
1,2 s`,t

1,2 s`,t
1,2 s`,t

1,2 s`,t
1,2 s`,t

1,2 s`,t
1,2 s`,t

1,2 s`,t
1,2

s`,t
1,3 s`,t

1,3 s`,t
1,3 s`,t

1,3 s`,t
1,3 s`,t

1,3 s`,t
1,3 s`,t

1,3 s`,t
1,3

s`,t
1,4 s`,t

2,4 s`,t
3,4 s`,t

1,4 s`,t
2,4 s`,t

3,4 s`,t
1,4 s`,t

2,4 s`,t
3,4

...
...

...
...

...
...

...
...

...

s`,t
1,K s`,t

1,K s`,t
1,K s`,t

1,K s`,t
1,K s`,t

1,K s`,t
1,K s`,t

1,K s`,t
1,K

,

which includes nine possible candidate vectors.

8.3. Angular-Domain Non-Linear Detection 93

Step III. Final Decision:
The detection process will be finished by searching within L`,t and finding the
symbol vector with the smallest ED. This step is done in the angular domain
as

Š`,t
= arg min

S`,t
i ∈ L`,t

∥∥∥∥ ẑ′
`,t − Ĥ ′

`
S`,t

i

∥∥∥∥2
, i=1,...,(β+1)α (8.19)

where Š`,t ∈ CK×1 is the detected symbol vector and S`,t
i is the i-th column

of L`,t. The problem in (8.19) can be solved by computing

ẑ′
`,t − Ĥ ′

`
S`,t

i =

ẑ′1
`,t

ẑ′2
`,t

...

ẑ′
M′

`,t

−

ĥ′1
`

ĥ′2
`

. . . ĥ′k
`

s`,t
i,1

s`,t
i,2
...

s`,t
i,K

 (8.20)

for the symbol vectors S`,t
i ∈ L`,t and then select the one with smallest norm.

To reduce the complexity of post processing, we rearrange the computations
in (8.20) and eliminate the repetitive computations. For this purpose, the
calculations corresponding to the UEs in U `,t are separated from the ones
corresponding to the other UEs. Thus, in case of the example in (8.18) the
calculation of (8.20) can be done as follows

ẑ′1
`,t
− ĥ′`12s`,t

1,2 − ĥ′`13s`,t
1,3 · · · − ĥ′`1Ks`,t

1,K

ẑ′2
`,t
− ĥ′`22s`,t

1,2 − ĥ′`23s`,t
1,3 · · · − ĥ′`2Ks`,t

1,K

ẑ′3
`,t
− ĥ′`32s`,t

1,2 − ĥ′`33s`,t
1,3 · · · − ĥ′`3Ks`,t

1,K

...
...

ẑ′
`,t
M′ − ĥ′`M′2s`,t

1,2 − ĥ′`M′3s`,t
1,3 · · · − ĥ′`M′Ks`,t

1,K

︸ ︷︷ ︸

Part I

−

ĥ′`11s`,t
i,1 + ĥ′`14s`,t

i,4

ĥ′`21s`,t
i,1 + ĥ′`24s`,t

i,4

ĥ′`31s`,t
i,1 + ĥ′`34s`,t

i,4

...

ĥ′`M′1s`,t
i,1 + ĥ′`M′4s`,t

i,4

︸ ︷︷ ︸

Part II

. (8.21)

As a result, having considered a certain search space, the computations in
Part I are performed only once while the ones in Part II are repeated (β + 1)α

times, corresponding to all candidate vectors in L`,t.

9
Design Evaluation and Tradeoffs

This chapter starts by performance evaluation of the developed scheme using
real measured massive MIMO channels. Then, the computational complexity
and size of required memories are analyzed in detail. Lastly, the design trade-
offs between detection performance, computational complexity, and required
memory are provided.

9.1. PERFORMANCE EVALUATION

This section presents performance evaluation of the developed scheme from
different aspects using the real measured massive MIMO channels. First, the
effect of channel compression on the detection performance is presented in
Section 9.1.1. Then, the performance improvement achieved by the non-linear
post-processing scheme is discussed in Section 9.1.2. In Section 9.1.3, the per-
formance of our scheme is compared with the traditional detection algorithms
(ZF, sphere decoder, and K-best). Also, the performance of proposed scheme
is evaluated in different modulation orders in Section 9.1.4. In the end, the
fixed-point simulation result is presented in Section 9.1.5.

In order to consider the effect of different channel conditions, both LOS
and NLOS scenarios are considered in these evaluations. Also, the antenna-
domain ZF, which employs the full-size CSI matrix is used as the reference
of comparison. As a common practice in the MIMO detection schemes, in
this part of the thesis performance comparison is done at the BER of 10−3

without coding. By applying channel coding the BER can be reduced by
orders of magnitude [124, 125]. In Part III of this thesis, an efficient channel
coding scheme along with the corresponding performance evaluation will be
presented in detail.

95

96 Design Evaluation and Tradeoffs

9.1.1. EFFECT OF CHANNEL COMPRESSION ON THE PERFORMANCE

It has been discussed in Section 8.2 that if the full-size CSI matrix is used,
M′ = M, the detection performance of ZF will be the same in both antenna
domain and angular domain. This concept is depicted in Figure 9.1 where
the corresponding BER curves are matched together. Reducing the num-
ber of beams and performing the detection using the compressed CSI ma-

trix (Ĥ ′
`
M′×K) leads to a performance loss. Therefore, the number of selected

beams, M′, and how they are selected become crucial in this scheme.
According to the selection criterion presented in Section 7.3.2, the beams

which include more than K′ strong UEs are selected to be used in the detec-
tion. As stated in (7.11), there is a direct link between K′ and M′. For this
reason, in the rest of discussion we only investigate the effect of M′ on the de-
tection performance. Figure 9.2 shows an example of this method, where K′

is set to 3. As a result, there are M′ = 32 beams in LOS scenario and M′ = 80
beams in NLOS scenario, which satisfy the condition in (7.11). These beams
are highlighted in Figure 9.2 and will be used in the detection.

Number of selected beams, M′, trades between detection performance, com-
putational complexity, and size of the required memory. The more reduction
in the size of CSI matrix, the more performance loss is observed. This concept
is evaluated using measured massive MIMO channel in real propagation en-
vironment and the results are shown with solid lines in Figure 9.1. In NLOS
scenario, Figure 9.1(b), reducing the value of M′ down to 80 and 64 results
in less than 0.6 dB and 0.9 dB performance loss, respectively at the BER of
10−3 compared to the antenna-domain ZF. In LOS scenario, Figure 9.1(a), the
CSI matrix can be compressed more, such that by keeping M′ = M/2 and
M′ = M/4 of the beams the angular-domain linear scheme has less than 0.3
dB and 1.1 dB performance loss, respectively. However, to be able to deal with
both scenarios, the NLOS is considered for the hardware implementation.

In order to emphasize the idea behind the selection criterion, presented in
Section 7.3.2, we perform detection with M′ = 64 randomly selected beams.
As shown in Figure 9.1, the detection performance is much worse than the
case where the same number of beams are selected based on (7.11). More
interestingly, the detection performance of random selection with M′ = 64 is
even worse than our scheme with M′ = 32. Since the energy is concentrated
to few beams, it is quite natural that the random selection is worse than beam
selection in (7.11).

It is worth to mention that the above mentioned performance loss will be
compensated by doing non-linear post-processing (i.e., Unit 3). As a result,
our final design provides better detection performance with less computa-
tional complexity and memory size compared to the antenna-domain ZF as
discussed in the next sections.

9.1. Performance Evaluation 97

M’=128 M’=80 M’=64 M’=32

M =128
 Without Post Processing:
 Antenna Domain ZF Detector:

 With Post Processing:

 Proposed Angular Domain Det.:

Random Selection: M’=64

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
-6

10
-6

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
-6

10
-6

(a) LOS

(b) NLOS

-4

Figure 9.1. BER Performance comparison between the proposed angular-
domain detector with different number of selected beams and
the antenna-domain ZF with full-size CSI in (a) LOS and (b)
NLOS scenarios. The linear detection schemes are specified with
solid lines while the BER curves of corresponding schemes after
performing the non-linear post-processing (NL-PP) are shown with
dashed lines. In the NL-PP unit α = 2 and β = 2 are consid-
ered. Also, in these simulations K = 16 UEs, uncoded data, and
16-QAM constellation are assumed.

98 Design Evaluation and Tradeoffs

(b)

(a)

Figure 9.2. Distribution of strong UEs across 128 beams at the `-th subcarrier
in the angular domain in (a) LOS and (b) NLOS scenarios. The
“mean(PUE)" is the average power of each UE over all beams (K =
16 is considered). The highlighted beams include more than three
strong UEs and these beams will be used in the detection.

9.1. Performance Evaluation 99

9.1.2. PERFORMANCE IMPROVEMENT USING PROPOSED NON-LINEAR
POST-PROCESSING SCHEME

This section presents the performance improvement resulted by the proposed
non-linear post-processing scheme in case of α = 2 and β = 2. The other
values of α and β are investigated in Section 9.3.

Let us consider the LOS scenario where the corresponding results are shown
with the dashed curves in Figure 9.1(a). In case of performing the detection
using M′ = 64 and M′ = 32 beams the non-linear post-processing scheme
improves the detection performance of angular-domain linear scheme by 1.6
dB and 1.4 dB, respectively. More importantly, the proposed scheme can per-
form detection using the compressed CSI matrix with half size (M′ = 64)
and achieve 1 dB better detection performance compared to the traditional
antenna-domain ZF, in which the full-size CSI matrix is used (M = 128).
Also, at a BER of 10−3, the proposed scheme achieves the same detection per-
formance as antenna-domain ZF by doing detection in the angular domain
using only M′ = 32 beams.

In case of NLOS scenario, the detection performance is improved similarly
as shown with dashed curves in Figure 9.1(b). The non-linear post-processing
scheme improves the detection performance of the angular-domain linear de-
tector by 1.3 dB if M′ = 64 beams are used in the detection. Furthermore,
compared to the traditional antenna-domain ZF (M = 128), the proposed
non-linear scheme achieves 0.6 dB and 0.1 dB better BER performance by per-
forming detection using M′ = 80 and M′ = 64 beams, respectively.

Finally, we have applied the proposed post-processing scheme to the ZF,
which employs the full-size CSI matrix. As expected and shown in Figure 9.1,
the detection performance of ZF with non-linear post-processing is better than
the angular-domain detection, which uses compressed CSI matrix. However,
due to the processing with full-size CSI matrix, the complexity and memory
size are increased significantly as discussed in Section 9.2.

9.1.3. PERFORMANCE COMPARISON WITH TRADITIONAL SCHEMES

We have chosen K-best [108], SD [109], and ZF algorithms as three repre-
sentative reference detection algorithms to compare with our scheme. Fig-
ure 9.3 provides a performance comparison between the proposed angular-
domain scheme and traditional algorithms in different constellation orders.
Since, a very large radius is used in SD, this algorithm can achieve ML per-
formance [29]. Also, according to the simulation results, K-best algorithm
archives a very close-to-ML performance. Figure 9.3 shows that the proposed
angular-domain scheme outperforms the ZF detector and achieves a near ML
performance. More specifically, our scheme has around 0.1 dB and 0.7 dB
performance loss at the BER of 10−3 compared to the ML detection, which

100 Design Evaluation and Tradeoffs

are corresponding to performing detection using 128 and 80 beams, respec-
tively (see the curves for 16-QAM in Figure 9.3). Although K-best and SD
can achieve better detection performance than our scheme, the computational
complexity of these algorithms is prohibitively high for massive MIMO sys-
tems as it will be discussed in Section 9.2.

9.1.4. PERFORMANCE EVALUATION IN DIFFERENT CONSTELLATIONS

The angular-domain massive MIMO detection maintains its benefits in differ-
ent modulation orders. In order to demonstrate this, detection performance
of the angular-domain scheme is evaluated in QPSK, 16-QAM, 64-QAM, and
256-QAM. The corresponding BER curves are illustrated in Figure 9.3 where
NLOS scenario with M′ = 80 is considered. In order to perform a compre-
hensive comparison, ZF with and without post-processing, SD, and K-best
algorithms are considered in these evaluations. Figure 9.3 states that by in-
creasing the modulation order, a certain BER is achieved in a higher SNR. It
can be seen that at the BER of 10−3, the performance gap between the pro-
posed scheme and ML detection varies between 0.4 dB to 0.7 dB in different
modulation orders. Moreover, the proposed angular-domain detector outper-
forms the antenna-domain ZF detector in the simulated modulation orders.

9.1.5. FIXED-POINT SIMULATION

In order to realize the angular-domain scheme, presented in Figure 8.1, fixed-
point arithmetic is employed. The word length of signals and parameters
are extracted from the simulations as follows. In Unit 1, we have considered
14 bits and 16 bits for either real or imaginary part the received signal and
channel matrix entries, respectively. In Unit 3 of our design, the input is
truncated to 14 bits while the real and imaginary parts of the constellation
symbols are represented by 3 bits. Figure 9.3 illustrates the BER performance
of the fixed-point scheme in case of 16-QAM, in which the performance loss
resulted by the fixed-point computation is around 0.2 dB compared to that of
floating-point scheme.

9.1.Perform
ance

Evaluation
101

M’=128 M’=80

M =128
 Without Post Processing:

 Antenna Domain ZF Detector:

 With Post Processing:

 Proposed Angular Domain Detector:

Fixed Point:

 Sphere Decoder/ML:

K-best Detector:

256-QAM64-QAM

16-QAM
4-QAM

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

Figure 9.3. BER Performance comparison of proposed angular-domain detec-
tor versus traditional linear and non-linear detectors in different
modulation orders. In the NL-PP unit α=2 and β=2 are assumed.
Also, K = 16, uncoded data, and NLOS scenario are considered.

102
D

esign
Evaluation

and
Tradeoffs

Table 9.1. Complexity and memory requirement of antenna-domain detectors
and proposed angular-domain scheme

Detection Algorithm Operation
Computational Complexity

Memory (bit)
Real Multiplication # Real Addition N

K-best [126] ? K-best KbK(2K+7)−4K+ 2
3 K3 .KbK(2K+2Kb+5)−4K N/A

Gauss Seidel [102] ? GS (4I†+12)K2 + 12K (4I†+12)K2 + 12K‡ N/A
Triang. App. SEmidefinite Relax. [127]? � TASER I(64K3+74K

3 +40K2+4) I(64K3+74K
3 +40K2+4)‡ N/A

Enhanced Steepest Descent [128] ? ESDBB 12K2 + 10K + 3 12K2 + 6K + 2 N/A
Parallel Chebyshev Iteration [129] ? PCI MK(8I+4)+M(6I+1) MK(8I+4)+2M(6I+1)‡ 37.22 kByte

Optimized Coordinate Descent [106]? OCD I(8MK + 4K) I(8MK + 4K)‡ N/A
Conjugate Gradient Least Square [130]? CGLS (I + 1)(4K2 + 20K) (I + 1)(4K2 + 20K)‡ N/A

Traditional Antenna Domain ZF

Gram 2MK2 (2M− 1)K2

L
B (MK + K(K+1)

2)WH
CD K3 − 2K2 + 5K K3 − 3K2 + 3K
MF 4MK 4MK− 2K
FS 2K(K + 1) 2K(K + 1)
BS 2K(K + 1) 2K(K + 1)

Proposed Angular Domain

Linear ZF

FFT 2M log2 M− 7M+12 3M log2 M− 3M + 4

L
B (M′K + K(K+1)

2)WH

Compression 2MK 2MK
Gram 2M′K2 (2M′ − 1)K2

CD K3 − 2K2 + 5K K3 − 3K2 + 3K
MF 4M′K 4M′K− 2K
FS 2K(K + 1) 2K(K + 1)

Detection Scheme BS 2K(K + 1) 2K(K + 1)

Non Linear

UE Selection 2K 2K
Sorting 0 K

Symbol Expansion 0 β

Detection Decision Part-I 4M′(K− α)×Coeff 4M′(K− α)

Decision Part-II 4M′α(β + 1)α ×Coeff 4M′α(β + 1)α

? Preprocessing complexity is not included, as specified in the corresponding papers. † Number of iterations in all algorithms
N Complexity of an addition is considered as 10% of a multiplication H Number of bits to represent real and imaginary parts of a complex number
‡ As mentioned in the corresponding paper, a complex-valued multiplication is assumed to require four real-valued multiplications. Thus, at least 2

real-valued additions are needed for each complex-valued multiplication. � Scaled to 16-QAM . Number of selected nodes in K-Best

9.2. Analysis of Complexity and Memory Requirement 103

9.2. ANALYSIS OF COMPLEXITY AND MEMORY REQUIREMENT

The computational complexity and required memory of proposed angular-
domain detection scheme, antenna-domain ZF, and recently published antenna-
domain detectors are summarized in Table 9.1. The operations, which are
specified in bold in this table, are performed once per channel realization, i.e.,
once per highlighted time-frequency block in Figure 7.1, while the others are
performed TB times (i.e., the channel is constant in time and frequency across
T successive OFDM symbols and B subcarriers, respectively). In order to
make the complexity analysis more accurate, the equivalent real-valued multi-
plications and additions are considered for the complex-valued computations.
Moreover, the multiplication of ĥ′`× s`,t in (8.21) is considered as a constant
multiplication. The reason is that s`,t always belongs to the set of numbers
defined in (8.15), i.e., Re{s`,t}, Im{s`,t} ∈ Ω. To consider this point, the scal-
ing factor, "Coeff", is defined to scale down the computational complexity of a
generic real-multiplication to a constant real-multiplication. According to our
previous experiences, Coeff = 0.1 is assumed in this analysis.

As stated in Table 9.1 the computations of our scheme depend on M′, for
which M′ ≤ M always holds. However, it includes additional computa-
tional complexity caused by the compression and non-linear post-processing
units. In order to take all these points into account we have defined several
Computational-complexity Functions as follows. The computational complexity
of antenna-domain linear detection can be presented as

OAnt. LD(M, K, L) = (OGram +OCD)× L/B (9.1)

+ (OMF +OFS +OBS)× T × L,

where T and B were defined in Section 7.1 and OX represents the number of
required real multiplications to perform the operation "X". In case of angular-
domain linear detection scheme, which includes Unit 1, 2, the Computational-
complexity Function is

OAng. LD(M′, M, K, L) = (OGram +OCD +OCompression + K · OFFT)×L/B

+ (OMF +OFS +OBS +OFFT)× T × L. (9.2)

Moreover, the additional computational complexity incurred by the proposed
non-linear post-processing, Unit 3, is expressed as

OAng. NLD(M′, K,L, α, β) = (OUE Sel +OSymbol Expansion

+ODecision Part-II × (β + 1)α +ODecision Part-I)× T × L, (9.3)

which highly depends on the value of α and β. Consequently, the total compu-
tational complexity of proposed angular-domain detector equals OAng. LD +

104 Design Evaluation and Tradeoffs

(a)

(b)

(c)

14%

28%

58%

34%
45%

68%

38%
50%

75%

35%
48%

73%
2%

M’=80 M’=128
 Antenna Domain ZF without PP:

 Angular Domain Detector with PP: M’=64M’=32

M=128

Figure 9.4. Design comparison between the proposed angular-domain
scheme and the traditional antenna-domain ZF in terms of (a)
computational complexity, (b) size of required memory, and (c)
total cost. In these evaluations, L = 1601 subcarriers, M = 128 BS
antennas, and T = B = 10 are considered. Also, in post-processing
unit, α = 2 and β = 2 are assumed. The word length of memories
in (b) is W = 32 and γ = 150 is considered in (c).

9.3. Design Tradeoffs 105

OAng. NLD, which is depicted in Figure 9.4(a) for different values of M′. De-
pending on the number of selected beams, our scheme will have 14%–58%
less computational complexity compared to the antenna-domain ZF, which
uses the full-size CSI matrix (see Figure 9.4(a)). In Figure 9.4, it is assumed
that α = 2 and β = 2. The effect of larger α and β on the complexity and BER
performance is discussed in next section.

As mentioned before, each estimated CSI matrix is used for detection of TB
received signal vectors. Therefore, the CSI matrices should be saved in the
memories. The total size of required memories, in terms of bits, is

M(M, K, L) = (MK +
K(K + 1)

2
)×W × L/B, (9.4)

where W is the number of bits to represent a complex number. Thus, the size
of required memory in our scheme is obtained by considering M = M′ in this
function, which is independent of α and β. It can be seen in Figure 9.4(b) that
the memory size is significantly reduced in our scheme. Compared to the tra-
ditional antenna-domain detector, our scheme needs 38%–75% less memory.

Eventually, in order to take both computational complexity and memory
requirement into consideration, we define the Cost Function as

FCOST(M, K, L, M′, α, β) = ODetection + γ×M, (9.5)

where ODetection is either OAnt. LD or OAng. LD +OAng. NLD in case of antenna-
domain and angular-domain schemes, respectively. In this analysis, γ is de-
fined just to estimate M in terms of real multiplications1. The Cost Function
is plotted for different number of UEs in Figure 9.4(c), which demonstrates
that the angular-domain scheme outperforms antenna-domain ZF and attains
35%–73% less cost.

We have performed a comparison between the computational complexity
of the algorithms listed in Table 9.1 and the proposed scheme. As illustrated
in Figure 9.5, the proposed angular-domain detector has lower computational
complexity than the ones in Table 9.1. This is mainly due to the reduction
in the size of CSI matrix and performing detection using the compressed CSI
matrix in angular domain. As shown in Figure 9.4 our scheme can achieve
34%–68% lower computational complexity compared to the antenna-domain
ZF with post-processing.

1In this design, we have estimate the equivalent computational-complexity per bit as
γ =

area per bit
area per real-multiplier ×

OAnt. LD
real multipliers in Ant. LD . According to our standard cell

library in 28 nm CMOS technology and considering the number of multipliers used
in the proposed architecture, γ = 150 is obtained from this estimation (the world
length of 16 bits is considered).

106 Design Evaluation and Tradeoffs

TASER

Antenna-Domain ZF, M =128

Proposed Angular-Domain, M’=128
Proposed Angular-Domain, M’=64

K-best, Kb = 5
K-best, Kb = 10

ESDBB

PCI
GS

CGLS
OCD

Figure 9.5. Comparison between the computational complexity of detection
schemes in Table 9.1. In this comparison, the computational com-
plexity corresponding to one subcarrier for 16 UEs and 128 anten-
nas is considered. In the NL-PP unit α = 2 and β = 2 are assumed.
Also, the preprocessing is included in all designs.

9.3. DESIGN TRADEOFFS

There are several parameters in our scheme that can affect the computational
complexity, size of required memory, detection performance, and hardware
cost. These parameters can be categorized into two groups: system param-
eters and design parameters. The system parameters include the number of
BS antennas, UEs, and subcarriers (i.e., M, K, L), which are not under the
hardware-designer’s control. The number of selected beams, selected UEs for
non-linear post-processing, and candidate symbols (i.e., M′, α, β) are design
parameters. We provide a framework, which trades between computational
complexity, memory size, and detection performance by tuning the design
parameters in different stages of our scheme, as shown in Figure 8.1.

The computational complexity of proposed scheme for different values of
design parameters (i.e., M′, α, β) is plotted in Figure 9.6. There are four groups
of curves in this figure, in each of which the number of candidate symbols,
β, is fixed while α and M′ vary. The group of curves, which corresponds to
β = 0 and is located in the lowest side of the figure, shows computational
complexity of linear detection in antenna domain and angular domain. Since
they do not employ the non-linear post-processing, their computational com-
plexity are constant and independent of α and β.

By doing non-linear post-processing, the computational complexity of de-

9.3. Design Tradeoffs 107

()

Angular Domain Detector:

Antenna Domain ZF:

Without Post Processing:

With Post Processing:

M=128

M’=128 M’=64 M’=32 = 4

 = 3

 = 2

 = 0 10
8

10
8

10
9

10
9

10
10

10
10

10
11

10
11

10
12

10
12

10
13

10
13

10
14

10
14

Figure 9.6. Total computational complexity of antenna-domain detection and
proposed angular-domain scheme for different values of α, β, and
M′. In these evaluations, K = 16, L = 1601, T = 10, and B = 10
are considered.

tection will be increased. It can be seen that the increment in α and β has
stronger effect on the computational complexity than the increment in M′.
Figure 9.6 demonstrates that if α ≤ 3, our scheme has lower computational
complexity than the antenna-domain ZF. By expanding more than three UEs,
the additional computational complexity, incurred by the non-linear post-
processing scheme, is increased considerably. Besides, the gaps between dif-
ferent groups of curves state that increasing the value of β by one, leads to
10-20 times higher complexity. As a result, from computational complexity
point of view, the efficient values of α and β can be chosen from the region
specified with dashed rectangle in Figure 9.6.

It is worth to point out that, for any value of α, β, and M′, the computa-
tional complexity of the presented angular-domain scheme is always less than
the antenna-domain ZF with post-processing (i.e., specified with dashed-line

108 Design Evaluation and Tradeoffs

M’=80 M’=64 M’=32
M=128

 Without Post Processing:
 Antenna Domain ZF Detector:

 With Post Processing:

 Proposed Angular Domain Detector:

10
-4

10
-4

10
-5

10
-5

(a) LOS

(b) NLOS

Figure 9.7. Performance evaluation at SNR=10 dB for different number of se-
lected UEs, α, in the NL-PP, where β=2 is assumed. (a) LOS sce-
nario and (b) NLOS scenario.

curves and pentagram marker in Figure 9.6).
Let us investigate the group of curves corresponding to β = 2, which have

the lowest computational complexity among the ones which include the non-
linear post-processing in Figure 9.6. Now, we want to explore the effect of α
and M′ on the detection performance. Figure 9.7 illustrates that by perform-
ing non-linear post-processing for up to three UEs, i.e., α ≤ 3, the proposed
scheme achieves better detection performance than the antenna-domain ZF
in both LOS and NLOS scenarios. It is noteworthy that the performance
improvement of our scheme is achieved by employing the compressed CSI
matrix (i.e., 64 and 80 beams in LOS and NLOS scenarios, respectively) while
the antenna-domain ZF uses full-size CSI matrix. As depicted in Figure 9.7,
there is no significant performance improvement for α > 3. Thus, the proper

9.3. Design Tradeoffs 109

value of α to improve the detection performance will be inside the dashed
rectangles in Figure 9.7.

Finally, Figure 9.8 draws a conclusion by considering the results in Fig-
ure 9.6 and 9.7. Figure 9.8 states that an efficient complexity-performance
tradeoff can be obtained if the design parameters (α, β, M′) are set inside the
dashed rectangles. As a result, the proposed angular-domain scheme pro-
vides better detection performance, lower computational complexity, and less
memory size in both LOS and NLOS scenarios compared to the traditional
antenna-domain ZF. This can be achieved by considering up to α = 3 UEs and
β = 2 candidate symbols in the non-linear post-processing unit and perform-
ing detection using up to 80 and 64 beams in NLOS and LOS scenarios, respec-
tively. As illustrated in Figure 9.7 and 9.8, if the non-linear post-processing
scheme is applied to the antenna-domain ZF, better detection performance
is achieved at the expense of much higher computational complexity. It is
worth noting that, in Figure 9.6-9.8 the cost of memory is not included. Hav-
ing considered the significant reduction in the size of required memory in
our scheme, as depicted in Figure 9.4, the proposed angular-domain detector
achieves even lower cost.

110 Design Evaluation and Tradeoffs

M’=80 M’=64 M’=32 M’=128

 Antenna Domain ZF without Post Processing:

 With Post Processing:

 Proposed Angular Domain Det.:

(a) LOS

(b) NLOS

 = 0, 1, …, 10

 = 0, 1, …, 10

M =128

Computational

Computational

Figure 9.8. Detection performance versus computational complexity of
antenna-domain detection and proposed angular-domain scheme
at SNR=10 dB for α = 0, 1, . . . , 10 and β = 2. (a) LOS scenario and
(b) NLOS scenario.

10
Hardware Realization of Angular-
Domain Massive MIMO Detection

This chapter presents the VLSI architecture to realize the proposed angular-
domain scheme, which is illustrated in Figure 8.1. The corresponding sub-
blocks as well as synthesis results in 28 nm CMOS technology are described.

10.1. VLSI ARCHITECTURE

As a case study, a VLSI architecture is developed to perform detection for a
massive MIMO system with M = 128 BS antennas and K = 16 UEs in angu-
lar domain. This architecture is capable of doing detection in both LOS and
NLOS scenarios by processing up to M′ = 80 beams. As discussed in Chap-
ter 9, this number of beams leads to a good detection performance in different
channel conditions while reducing the computational complexity and mem-
ory size considerably.

As shown in Figure 8.1, the presented angular-domain massive MIMO de-
tector consists of three major units, which are explained in the following sub-
sections. This design includes two groups of memories, each consists of L/B
memory blocks, corresponding to L/B subcarriers, where L is the number of
subcarriers and B is the number of subcarriers, which are processed with the
same CSI matrix. The first group, Memory 1, is used to save the compressed
CSI matrices and the second one, Memory 2, stores the corresponding lower
triangular matrices, L`, obtained from Cholesky decomposition (CD) in (8.5).
Thus, the size of each memory block in Memory 1 and Memory 2 is M′K and
K(K + 1)/2 words, respectively.

111

112 Hardware Realization of Angular- Domain Massive MIMO Detection

Delay line
(128 D)

>> 7 < >
Comparator

Index of
Selected beams

2
10

9

0

6
1

7

0
1

1

0

1
0

1

1
2

M -1
M

< >
Comparator

K’

Figure 10.1. The structure of Beam Selection and Index Mapping blocks.

10.1.1. COMPRESSION UNIT

The main task of Compression Unit is to perform the domain transformation
and generate the compressed angular-domain CSI matrix and compressed

received signal vector (i.e., Ĥ ′
`

and ẑ′
`
). In order to realize the domain trans-

formation, a 128-point radix-2 FFT is used, which employs the single delay
feedback architecture (SDF) [23]. This FFT architecture receives one entry of
either CSI matrix or received signal vector per clock cycle and processes them
in a pipeline manner.

Next, the angular-domain CSI matrix and received signal vector are com-
pressed using the Beam Selection and Index Mapping operations as shown in
Figure 10.1. This architecture includes three M-word registers, corresponding
to M received beams. From left to right, the first group of registers is used to
save the value of UE power in each beam, the second one stores the number
of strong UEs in each beam, and the third one determines which beam should
be selected. The average power of each UE is calculated based on (7.10) and
then it is compared with the UE power in each beam to see in which beams
this UE is strong. The left Comparator module in Figure 10.1 performs this
task according to (7.9).

After processing all UE channel vectors, the second group of registers in
Figure 10.1 specifies the total number of strong UEs in each beam, which is
equivalent to the row-wise summation in S`

UE. Then, the right Comparator in
Figure 10.1 realizes (7.11) and indicates the row index of the beams, which
should be selected. Thus, the selected beams are corresponding to 1s in the
third register in Figure 10.1. It can be seen that there is no need to perform
multiplication by the nulling matrix, N`, to compress the CSI matrix and real-

10.1. VLSI Architecture 113

G O D

To Memory2

Figure 10.2. Proposed systolic array architecture, which realizes the Angular-
Domain Linear-Detection Unit (specified by dashed line in Fig-
ure 8.1). G: General PE, D: Diagonal PE, O: Off-Diagonal PE.

ize (7.12). Also, the angular-domain received signal vector will be compressed
without such matrix multiplication. Since the row indexes of selected beams
are already known, the operation in (8.1) can be realized by choosing the en-
tries of angular-domain received signal vector, which have the same indexes
as the row indexes of selected beams, i.e., Index Mapping.

An example of beam selection and index mapping is illustrated in Fig-
ure 10.1, where K′ = 3 is assumed. Thus, the beams that include more than
three strong UEs will be selected. The row indexes of selected beams are equal
to the indexes of 1s in the third group of registers.

10.1.2. ANGULAR-DOMAIN LINEAR-DETECTION UNIT

The lower complexity of proposed angular-domain scheme gives us the op-
portunity to schedule the computations in a more efficient way such that the
hardware resources can be reused extensively. A reconfigurable and highly
condensed systolic array has been designed to perform all the required opera-
tions in the Angular-Domain Linear-Detection Unit. The corresponding architec-
ture is illustrated in Figure 10.2, which realizes the angular-domain Cholesky-
based ZF detection for massive MIMO system with M = 128 BS antennas

114 Hardware Realization of Angular- Domain Massive MIMO Detection

C
o

m
p

le
x

A
d

d
er

Complex
Multiplier

0 1 2 3

0 0

0
1

2

3

0

1

2

3

0
1

0
1

0

1

2

3

Mode

Mode

Mode
Mode

0
1

0
1

0

1

2

3

Mode

In1

In2

In1

In2

Out1

Out2

Conj.

Conj.

PE_Val

Figure 10.3. The VLSI architecture for General PE, which is used in the first
three columns of systolic array (i.e., Hexagons in Figure 10.2).

communicating with up to K = 16 UEs. This architecture includes three types
of processing element (PE) for different purposes as described below.

Cholesky decomposition needs the square root and reciprocal functions to
compute the elements of matrix L. Also, forward and backward substitutions
need the term 1√

Lkk
. To this end, we have realized 1√

(.)
and 1

(.) functions using

the Newton-Raphson method in a pipelined manner. By combining these
functions, the required terms in the CD and forward/backward substitution
can be obtained.

GENERAL PE
As shown in Figure 10.2, all PEs in the first three columns of the systolic ar-
ray are from this type. The General PE can be configured in four modes to
perform Gram matrix computation, CD, MF, and forward/backward substi-
tution. These operations are realized using a complex multiplier and adder
along with a simple control circuit as shown in Figure 10.3. The systolic array
has one additional General PE in the second row, which is needed in backward
substitution (see Figure 10.2).

DIAGONAL PE
This type of PE is used in diagonal of the systolic array architecture except
the first three rows. The Diagonal PE has two operational modes to perform
Gram matrix computation and Cholesky decomposition. The corresponding
circuit is depicted in Figure 10.4, which includes two real multipliers and two
real adders.

10.1. VLSI Architecture 115

Re{.}

Im{.}

Mode

0 1
Mode

0 1

In

Out

PE_Val

Figure 10.4. Developed circuits for the Diagonal PE.

1

0

0 1

C
om

p
le

x

A
d

d
er

1
0

1
0

0
10

1

Mode

Mode

0
1

0
1

Out2

O
u
t1

In2

In1
Complex

Multiplier
Conj.

Conj.

P
E

_
V

a
l

Figure 10.5. The detailed architecture for Off-Diagonal PE.

116 Hardware Realization of Angular- Domain Massive MIMO Detection

Mode 1: Gram Computation Mode 2: Cholesky Decomposition Mode 3:
MF

Mode 4:
BS

Mode 4:
FS

(a) (b) (c)

Figure 10.6. Different operational modes of the systolic array. In each mode,
the active PEs are highlighted. Here, the order of subfigures fol-
lows the processing chain in Figure 8.1.

OFF-DIAGONAL PE
The remaining PEs in the systolic array are Off-Diagonal PEs. This type of PE
has two operational modes similar to the Diagonal PE, but its computations
are done in the complex domain using the architecture shown in Figure 10.5.

PROCESSING FLOW
The systolic array receives the compressed angular-domain CSI matrix and
received signal vector and performs the corresponding processing as depicted
in Figure 10.6. First, all the PEs are set to Mode 1 to perform Gram matrix

computation as shown in Figure 10.6(a). In this mode, the elements of Ĥ ′
`

enter to the systolic array and to achieve the correct functionality, k clock
cycles delay is considered in the k-th row of systolic array.

Next, the PEs are set to Mode 2 to perform Cholesky decomposition for the
Gram matrix (Figure 10.6(b)). In this mode, the matrix L̂` is generated and
saved in the Memory 2.

Finally, the General PEs in the first, second, and third column of systolic
array are set to the Mode 3, Mode 4, and Mode 4 to perform matched filtering,
forward substitution, and backward substitution, respectively. The remaining
PEs in the systolic array will be disabled as shown in Figure 10.6(c).

10.1.V
LSI

A
rchitecture

117

Comparator
< >

Dedicated

Multiplier 1

Min
Finder

D
ir
ec
ti
o
n

0

0

1
1

Mapper Limiter

Mapper Limiter R
e

{
}

 I

m
{

}

R
e

{
}

 I

m
{

}

Branch 1

Branch 9

Adder
Tree

Step I. UE Selection Step II. Expansion Step III. Final Decision

Part I Part II

Comparator
< >

Dedicated
Multiplier 14

RSEE

CSEE

Figure 10.7. VLSI Architecture for the Angular-Domain Non-Linear Post-
Processing Unit, which is realized through three steps.

1
1

0

0

7

-7
>>1

Truncation <<1

1

1
s[4]
s[3]

(a) (b)

Figure 10.8. The detailed architecture of (a) Mapper and (b) Limiter blocks.

118 Hardware Realization of Angular- Domain Massive MIMO Detection

10.1.3. ANGULAR-DOMAIN NON-LINEAR POST-PROCESSING UNIT

A VLSI architecture is designed to realize three steps of angular-domain Non-
Linear Post-Processing Unit, which is described in Section 8.3. According to the
analysis in Section 9.3, the value of α = 2 and β = 2 are considered. This
architecture performs three steps of non-linear post-processing scheme as il-
lustrated in Figure 10.7 and described below.

Step I. UE Selection: The Mapper block, shown in Figure 10.8(a), receives
the ZF output of the k-th UE, ỹ`,t

k , and finds the nearest odd integer number
using (8.13). Then, as shown in Figure 10.8(b) the Limiter block generates cor-
responding hard-output decision, s`,t

1,k , by freezing the Mapper output into the
constellation boundaries, i.e., ±(2Q/2− 1) in 2Q-QAM. After finding the hard-
output decision for all UEs, two of them with the largest ED will be selected
for the next step. This can be done by calculation of ED for each UE using
(8.14), followed by two successive comparators in a serial manner as depicted
in Figure 10.7.

Step II. Symbol Expansion: In this step, the selected UEs are expanded such
that β = 2 candidate symbols will be found for each of them by performing
an RSEE and CSEE. As shown in Figure 10.7, the RSEE and CSEE modules
receive the hard-output decision of the selected UE and corresponding direc-
tion of mapping, which are already produced in Step I.

Step III. Final Decision: This part of the architecture realizes (8.19) to find the
estimated vector of transmitted symbols. The main operation in this step is
the multiplication of candidate symbols in L`,t by the CSI matrix entries, i.e.,
ĥ′`m′k × s`,t

i,k . Having considered that Re{s`,t
i,k }, Im{s`,t

i,k } ∈ Ω, a Dedicated Multi-

plier is designed to perform the multiplication of ĥ′`m′k × s`,t
i,k with a low com-

putational complexity and hardware cost. Figure 10.9(a) shows the structure
of Dedicated Multiplier, which includes four Constant Multipliers. The Constant
Multipliers can perform multiplication of any number in Ω with an arbitrary
real-valued number using the circuit in Figure 10.9(b).

The calculation of (8.21) is done in a row-wise manner while the internal
computations related to each row is performed in parallel. The calculations
of a row in (8.21) is divided into two parts: Part I is realized using (K − α)
Dedicated Multipliers, an adder tree, and a subtractor and the calculation of
Part II is performed using (β + 1)2 Branch blocks. In this step, (β + 1)2 EDs
will be generated (9 EDs in this case study) by the Branch blocks as depicted in
Figure 10.10. In the end, the Min Finder block in Figure 10.11 finds the vector

with the lowest ED within the search space, i.e., Š`,t
.

10.2. Implementation Results 119

1 0

1 0 1 0

1 0

1 0

0 << 3<< 2<< 1s[0] Sel1,2

Sel4

Sel3

Sel5

Sel1
Sel2

Sel3Sel4

Sel5s[3]

s[1]

s[2]

(a)

(b)

s

h

Constant
Multiplier

Constant
Multiplier

Constant
Multiplier

Constant
Multiplier

Figure 10.9. VLSI Architecture for the (a) Dedicated Multiplier and (b) Constant
Multiplier, where hi,j represents the entries of CSI matrix and si is
a constellation symbol.

Dedicated
Multiplier

From Part I

Dedicated
Multiplier T

o
 M

in

F
in

d
e

r

Figure 10.10. The architecture of Branch block, which is used in Step III of
NL-PP unit.

120 Hardware Realization of Angular- Domain Massive MIMO Detection

Comparator
From Branch 1
From Branch 2

Comparator
From Branch 3
From Branch 4

Comparator
From Branch 5
From Branch 6

Comparator
From Branch 7
From Branch 8
From Branch 9

Comparator

Comparator C
o

m
p

a
ra

to
r

C
o

m
p

a
ra

to
r

Figure 10.11. The structure of Min Finder block, which is used in Step III of
NL-PP unit.

10.2. IMPLEMENTATION RESULTS

The angular-domain massive MIMO detector is synthesized in 28 nm FD-SOI
CMOS technology. The corresponding results are summarized in Table 10.1
and compared with recently published papers. As stated in Table 10.1, some
of the reported designs in the literature do not include the preprocessing unit,
i.e., Gram matrix computation, while the proposed VLSI architecture realizes
the whole operations required in the massive MIMO detection.

In order to have a fair comparison, we have defined several metrics as fol-
lows. First, the energy efficiency is defined as Throughput

Power , which is evaluated in
terms of Mbps/mW. Moreover, Table 10.1 includes the normalized energy ef-
ficiency (NEE) in 28 nm technology, which is obtained as Normalized Throughput

Normalized Power .
Here, the throughput and power are normalized by the scaling factors of s
and (1/s)(Vdd/V′dd)

2, respectively where s is the ratio of current technology
to the target technology [105]. It should be noted that some designs like [131]
and [11] do not report power consumption of the memory. Also, the designs
in [127, 131, 132] do not include the preprocessing module, which consumes
considerable power and thus affects the energy efficiency of the design.

We have considered the same number of UEs in design comparison since
the number of UEs directly affects the design area. To this end, we have
normalized the reported gate count of the designs in Table 10.1 as

Normalized Gate Count = Gate Count× 16× (17)
K× (K + 1)

. (10.1)

The other comparison metric used in Table 10.1 is the normalized area effi-
ciency (NAE),

NAE =
Normalized Throughput
Normalized Gate Count

, (10.2)

10.2. Implementation Results 121

which includes the design area, throughput, technology, and MIMO config-
uration. Table 10.1 denotes that the proposed design achieves the highest
normalized area efficiency and lowest normalized gate count.

It is worth mentioning that the reported numbers for the area efficiency
in Table 10.1 correspond to the processing core. However, in practice, the
complete massive MIMO baseband processor needs several memory blocks to
store the CSI matrices, as described before. Considering the area consumed by
these memories and due to the fact that memory size is reduced significantly
in our design (see Figure 9.4(b)), the overall area and energy efficiencies of
proposed scheme will be considerably better than the other designs.

122
H

ardw
are

R
ealization

of
A

ngular-
D

om
ain

M
assive

M
IM

O
D

etection

Table 10.1. Design comparison between ASIC implementation results of MU-MaMi detectors

ISSCC 2018 TCAS-I 2019 TCAS-I 2018 TCAS-I 2017 TCAS-I 2016 TSP 2017 TSP 2018 This Work
[132] [131] [105] [127] [11] [129] [108] 2019

Detection Algorithm EPD 1 MPD MMSE TASER 2 IIC 3 PCI 4 K-Best ADD 5

Decomposition Scheme LDL – Jacobi Cholesky – Chebyshev QRD Cholesky
MIMO System (M× K) 128× 16 128× 8 128× 8 128× 8 128× 16 128× 16 16× 16 128× 16
Modulation (QAM) 4 - 256 4 64 4 64 64 64 16
Process (nm) 28 40 65 40 65 65 65 28
Frequency (MHz) 569 500 680 560 600 680 588 560
Throughput (Mbps) 450 - 1800 1000 1020 125 3600 4080 3528 2240
Normalized Throughput 7 450 - 1800 1428 2367 179 8357 9471 8190 2240
Gate Count (kGE) 6 3607 613 1070 448 4300 4390 5681 829
Normalized Gate Count 3607 2316 4042 1692 4300 4390 5681 829
Power (mW) 127 8 77.89 8 650 87.1 1000 8 1660 2513 251
Normalized Power (mW) 7 127 8 67.3 8 280 50.4 431 8 715 752 251
Energy Efficiency(Mbps/mW) 3.5 - 14.1 8 12.8 8 1.57 1.43 3.6 8 2.45 1.4 8.93
NEE (Mbps/mW) 3.5 - 14.1 8 21.1 8 8.4 3.55 19.3 8 13.2 10.8 9 8.93
NAE (Mbps/KG) 0.12 - 0.49 0.61 0.58 0.11 1.94 2.15 1.44 2.71
BER Performance Near ML Near MMSE MMSE Near ML Near MMSE Near MMSE Near ML Near ML
Implementation Status Chip Chip Chip Layout Synthesis Layout Layout Synthesis
Preprocessing Unit Not Included10 Not Included Included Not Included Included Included Included Included

1 Expectation Passing Detection (EPD)
2 Triangular Approximate SEmidefinite Relaxation (TASER)
3 Intra-iterative Interference Cancellation (IIC)
4 Parallel Chebyshev Iteration (PCI)
5 Angular-Domain Detection (ADD)
6 Gate Equivalent
7 Scaled to 28 nm technology following [105]
8 Power consumption of memories is not included.
9 MIMO configuration is 16× 16.
10 Preprocessed data, i.e., Gram matrix and matched filtering, are read from memory rather than doing the corresponding computation.

Summary of Part-II

This part of the thesis dealt with various aspects of uplink detection for
multi-user massive MIMO systems, such as computational complexity, mem-
ory requirement, and detection performance. It was demonstrated that signal
processing complexity and required memory become problematic in massive
MIMO systems as the size of CSI matrix grows significantly with the large
number of BS-antennas and UEs. In order to address these challenges, we
proposed to perform detection in the angular domain, where the channel in-
formation can be presented in a more condensed way. The underlying idea is
to exploit the sparsity of massive MIMO channel in the angular domain and
select the dominant beams to reduce the size of CSI matrix. Then, an angular-
domain linear detector followed by a non-linear post-processing scheme was
proposed to perform detection using the reduced-size CSI matrix.

We evaluated the proposed scheme using measured massive MIMO chan-
nels, which demonstrates that our scheme results in 35%–73% reduction in
the computational complexity and required memory compared to traditional
detectors while it achieves better detection performance. Moreover, we pre-
sented guidelines to trade between detection performance, complexity, and
size of required memory. As a proof of concept, we implemented the angular-
domain detector for a massive MIMO with 128 antennas communicating with
up to 16 UEs. Synthesis result in a 28 nm FD-SOI CMOS technology shows
that our design attains a throughput of 2240 Mbps with an area of 829 k gates.

123

Part III
Spatially Coupled Serially

Concatenated Codes

Results and discussion in this part are from the following papers [133],
[134], [135]:

• Mojtaba Mahdavi, Stefan Weithoffer, Matthias Herrmann, Liang Liu,
Ove Edfors, Norbert Wehn, and Michael Lentmaier, "Spatially Coupled
Serially Concatenated Codes: Performance Evaluation and VLSI De-
sign Tradeoffs, "submitted to IEEE Transactions on Circuits and Systems I
(TCAS-I): Regular Papers, August 2021.

• Mojtaba Mahdavi, Liang Liu, Ove Edfors, Michael Lentmaier, Norbert
Wehn, and Stefan Weithoffer, "Towards Fully Pipelined Decoding of
Spatially Coupled Serially Concatenated Codes," in 2021 IEEE Interna-
tional Symposium on Topics in Coding (ISTC), Montreal, Canada, August
2021, pp. 1-5.

• Mojtaba Mahdavi, Muhammad Umar Farooq, Liang Liu, Ove Edfors,
Viktor Öwall, and Michael Lentmaier, "The Effect of Coupling Memory
and Block Length on Spatially Coupled Serially Concatenated Codes,"
in IEEE 93rd Vehicular Technology Conference (VTC), Helsinki, Finland,
December 2020, pp. 1-7, doi: 10.1109/VTC2021-Spring51267.2021.9448689.

Introduction of Part-III

Wireless links suffer from noise and propagation channel effects such as
interference, fading, etc., which cause errors in data transmission. In recent
wireless networks, there are many applications like remote surgery and au-
tonomous vehicles, which require a very low probability of error since any
noticeable error can result in catastrophic outcomes [8, 12]. In order to im-
prove reliability and BER performance, wireless communication systems em-
ploy a technique called channel coding (also called forward error correction
(FEC)) to ensure that the received data is most likely the same as the trans-
mitted data [22, 26]. This is achieved at the expense of reduced throughput
and increased implementation complexity. Channel coding is a two-step pro-
cess known as channel encoding and channel decoding, which are performed in
transmitter and receiver, respectively.

Channel encoding can be seen as adding redundancy to the information bits
in a controlled way. More specifically, every K information bits are mapped
to N bits of encoded data, which are called code words. Under this definition,
the code rate is determined as R = K

N and the structured redundancy added
in the channel coding is called parity, which has N − K bits [14]. Channel de-
coder uses the parity bits to correct a limited number of errors and eventually
recovers the original information sequence without retransmission. The per-
formance improvement, i.e., coding gain, achieved by channel coding can be
translated directly to a lower requirement on SNR in the link budget, which
in turn leads to increased battery life at UE side [22].

There are two main types of channel codes, namely block codes and convolu-
tional codes [14]. Block codes encode the information sequence in blocks of K
bits and produce blocks of N encoded bits. Turbo codes [136, 137] and low-
density parity-check (LDPC) codes [50, 55] are two important block codes,

127

128 Hardware Realization of Angular- Domain Massive MIMO Detection

which have been adopted in many communication standards. Convolutional
codes encode the data in a stream, without breaking it into blocks. In this
case, the code word bits are determined based on the present information bit
in a stream and a small number of previous information bits.

Beyond 5G (B5G) use-cases are expected to require very low BERs with data
rates in the Tb/s range [138], [139]. Using more sophisticated channel cod-
ing schemes is key to provide more reliable communication and improve the
BER performance of wireless communication systems. Spatially coupled seri-
ally concatenated codes (SC-SCCs) are a new class of channel codes, which can
provide a close-to-capacity performance [6, 140]. This can address the high-
performance requirements of many applications in wireless communication
systems B5G. This type of code is selected as the focus of Part III and different
aspects of SC-SCCs are investigated in detail.

This part of the thesis includes five chapters. In Chapter 11, different types
of turbo-like codes and the concept of spatial coupling (SC) are introduced.
Then, it is described how to create the targeted code (i.e., SC-SCC) by present-
ing its encoding algorithm and architecture. Chapter 12 presents decoding
algorithms for SCCs and SC-SCCs. In Chapter 13 a comprehensive design
space exploration is performed for SC-SCCs by considering a wide range of
design parameters. Then, decoding performance, complexity, and latency of
various SC-SCC schemes are evaluated and compared. Chapter 14 presents
the corresponding hardware architectures to realize the decoders for SCCs
and SC-SCCs, along with the estimation of throughput, latency, and design
area. Finally, a fully-pipelined SC-SCC decoder and the corresponding esti-
mation of hardware cost and throughput are introduced in Chapter 15.

11
Turbo-like Codes

Turbo-like codes are a class of block codes, which consist of two or more convo-
lutional codes connected together using interleavers. Two main categories of
turbo-like codes are parallel concatenated codes (PCCs), which have been used
in the LTE standard [136, 141] and serially concatenated codes (SCCs) [14]. Fig-
ure 11.1 (a) and 11.2(a) illustrate the encoders of PCC and SCC, respectively in
which the main idea is to encode the information sequence with two or more
convolutional encoders.

At time instant t, the input to the PCC and SCC encoders is the information
sequence, ut, which has the block length of K bits. The output sequences of the
PCC and SCC encoders arevPCC

t = (ut, pU
t , pL

t) PCC

vSCC
t = (ut, pO

t , pI
t) SCC

(11.1)

Interleaver (Π)
Lower

Encoder

Upper
Encoder

K

K

Interleaver (Π)

(a) (b)

Figure 11.1. (a) Block diagram of PCC encoder and (b) compact graph repre-
sentation of PCC.

129

130 Turbo-like Codes

In
te

rl
e

av
e

r
(Π

)

Outer
Encoder

Inner
Encoder

K

2K

Interleaver (Π)

(a) (b)

Figure 11.2. (a) Block diagram of SCC encoder and (b) compact graph repre-
sentation of SCC. In these figures, the black bar represents con-
catenation of two sequences.

where pU
t , pL

t , pO
t , and pI

t are the upper, lower, outer, and inner parity se-
quences, respectively. Note that the overall code rate of each ensemble de-
pends on the number of its convolutional encoders and their rates. For exam-
ple, in Figure 11.1(a) the upper and lower convolutional encoders have a code
rate of R = 1/2, which results in a code rate of R = 1/3 for the PCC.

Turbo-like codes can provide a good decoding performance for large block
lengths, K, [142]. However, after a certain SNR the performance of these
schemes does not improve significantly by increasing SNR, and the BER curves
get flat. This phenomenon is called error floor, which is more noticeable for
short and moderate block lengths. Since the decoders of turbo-like codes are
not optimal, there is a gap between their decoding performances and the theo-
retical limits. Therefore, finding channel coding schemes which perform close
to capacity and achieve low BERs especially for short and moderate block
lengths is still a challenging task.

COMPACT GRAPH REPRESENTATION
Turbo-like codes can be presented using compact graphs [140]. Figure 11.1(b)
and Figure 11.2(b) show the compact graph representation of PCCs and SCCs,
where the information and the parity sequences are represented by black cir-
cles and referred to as variable nodes. In these figures, the upper, lower, outer,
and inner code trellises are shown using squares, which are referred to as fac-
tor nodes. The factor nodes are labeled by the corresponding trellis lengths in
Figure 11.1(b) and Figure 11.2(b).

SPATIAL COUPLING
The concept of spatial coupling initially was used for LDPC codes, which
improves the decoding threshold and leads to a threshold saturation phe-

11.1. Serially Concatenated Code (SCC) 131

D D
Information

Bits

Information
Bits

Parity Bits

Figure 11.3. The structure of RSC encoder.

nomenon [143–145]. As a result, the decoding threshold of an iterative belief
propagation (BP) decoder can be improved to that of the optimal maximum-a-
posteriori (MAP) decoder. The concept of spatial coupling has been extended
to turbo-like codes, where it has been proven that threshold saturation also
occurs in this class of codes [6, 146].

It has been demonstrated in [140] that spatial coupling leads to a new
tradeoff between error floor and waterfall performances of turbo-like codes
such that with spatial coupling, SCCs achieve better decoding performance
than PCCs in both waterfall and error floor regions [140]. Having a close-to-
capacity performance and low error floor make the SC-SCCs a very promising
class of codes, which is selected as the focus of this thesis.

11.1. SERIALLY CONCATENATED CODE (SCC)

We have employed the SCC encoder as the fundamental core to construct the
encoder of SC-SCC. Figure 11.2(a) depicts the structure of an SCC component
encoder, which is made up of two recursive systematic convolutional (RSC) en-
coders concatenated in a serial manner using an Interleaver. The left and right
RSC encoders are named as the outer and inner encoders, which have the trel-
lis length of K and 2K, respectively. In this work, we have considered an RSC
encoder with the generator polynomial of (1, 5/7) and the code rate R = 1/2
as a case study. The structure of the RSC encoder is shown in Figure 11.3,
which results in the overall code rate of R = 1/4 for the SCC encoder.

Algorithm 11.1 describes the encoding procedure of SCCs, which corre-
sponds to Figure 11.2. In this algorithm, SI

0 and SO
0 are the initial states of the

inner and outer encoders. The information sequence is divided into blocks of
K bits, i.e., ut, which enter to the outer encoder. The outer encoder generates
the K-bit outer parity sequence, pO

t , for the corresponding block of information
bits. Then, the sequences ut and pO

t will be concatenated and permuted by
the Interleaver to produce the 2K-bit sequence, qO

t = Π(ut, pO
t). This sequence

is sent to the inner encoder to generate the 2K-bit inner parity sequence, pI
t.

132 Turbo-like Codes

Algorithm 11.1: SCC Encoder

[ut, pO
t , pI

t] = SCCEncoder (ut, K)
SO

0 = 0 . Initialization
SI

0 = 0
InO

E (t) = ut
[pO

t , SO] = RSCEncoder(InO
E (t), SO

0) . Outer Encoder
qO

t = Π(ut, pO
t) . Interleaver

InI
E(t) = qO

t
[pI

t, SI] = RSCEncoder (InI
E(t), SI

0) . Inner Encoder

Finally, the SCC encoder output is

vUC
t = (ut, pO

t , pI
t), (11.2)

which is referred as code block and will be transmitted over the channel.
In the rest of the thesis, to distinguish the variables of uncoupled codes, i.e.,

SCCs, from spatially-coupled ones, i.e., SC-SCCs, a subscript or superscript of
UC and SC is added to the corresponding variables whenever needed.

11.1.Serially
C

oncatenated
C

ode
(SC

C
)

133

Outer
Encoder

Inner
Encoder

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

Outer
Encoder

Inner
Encoder

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

Outer
Encoder

Inner
Encoder

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

Figure 11.4. Structure of the SC-SCC encoder with coupling memory of m,
which is built by spatial coupling of m + 1 instances of SCC com-
ponent encoders together. The black bars represent concatenation
of several sequences.

134 Turbo-like Codes

Algorithm 11.2: SC-SCC Encoder

[ut, pO
t , pI

t] = SCSCCEncoder (ut, K, m)

SO
0 = 0 . Initialization

SI
0 = 0

InO
E (t) = ut

[pO
t , SO

t] = RSCEncoder(InO
E (t), SO

t−1) . Outer Encoder
SO

t−1 = SO
t

qO
t = Π1(ut, pO

t) . Interleaver 1
for i = 0 : m do

qO
t,i = qO

t (
2Ki

m+1 : 2K(i+1)
m+1 − 1)1

end
InI

E(t) = Π2(qO
t,0, qO

t−1,1, . . . , qO
t−m,m) . Interleaver 2

[pI
t, SI

t] = RSCEncoder (InI
E(t), SI

t−1) . Inner Encoder
SI

t−1 = SI
t

11.2. SPATIALLY COUPLED SERIALLY CONCATENATED CODE (SC-
SCC)

This section demonstrates how to construct the SC-SCCs by describing the
corresponding encoding procedure. The SC-SCC encoder is built by coupling
m + 1 component encoders, where m is the coupling memory. As shown in
Figure 11.4, each component encoder consists of a demultiplexer, an outer
encoder, and an inner encoder, which are connected together using two in-
terleavers. In order to construct a chain of SC-SCC, the component encoders
should be coupled together following Algorithm 11.2, as described below.

At time instant t, the outer encoder receives a block of K information bits
as its input stream,

InO
E (t) = ut, (11.3)

and produces the outer parity sequence, pO
t . Then, the pair of (ut, pO

t) is
permuted using Interleaver 1 to generate the 2K-bit sequence,

qO
t = Π1(ut, pO

t). (11.4)

This sequence is split into m + 1 portions of equal size, i.e., qO
t,0, qO

t,1, . . . , qO
t,m.

Taking into account that the length of qO
t is 2K bits, the coupling memory

should be chosen such that m+ 1 < 2K and divides 2K. The first subsequence,

1The notation a(i : j) is used to refer to a part of the vector a, from the i-th element
to the j-th element.

11.2. Spatially Coupled Serially Concatenated Code (SC-SCC) 135

W = 4

Interleaver 1

Interleaver 2

Interleaver 1

Interleaver 2

Interleaver 1

Interleaver 2

Interleaver 1

Interleaver 2

Interleaver 1

Interleaver 2

Interleaver 1

Interleaver 2

W = 4

K

2K 2K 2K 2K 2K 2K

K K K K K

Figure 11.5. Compact graph representation of an infinite chain of SC-SCC
with a coupling memory of m = 1. Two decoding windows of
size W = 4 are shown

qO
t,0, is used as a part of the input of the inner encoder at time instant t and

the other ones, qO
t,1, . . . , qO

t,m, will be used as a part of the inputs of the next
inner encoders at time instants t + 1, . . . , t + m, respectively. Thus, at time t
the sequence (qO

t,0, qO
t−1,1, . . . , qO

t−m,m) is produced using the current and the
previous m component encoders. Then, Interleaver 2 permutes this sequence
and generates the input of the inner encoder at time instant t,

InI
E(t) = Π2(qO

t,0, qO
t−1,1, . . . , qO

t−m,m). (11.5)

Eventually, the output of the SC-SCC encoder at time t is vSC
t = (ut, pO

t , pI
t)

where pI
t is the inner parity sequence.

In this thesis, a code rate of R = 1/3 is considered for the SC-SCCs, meaning
that the length of transmitted code blocks is 3K bits. For this reason, the
output of the inner encoder, pI

t, is punctured such that only K bits of the inner
parity sequence are transmitted.

Similar to the uncoupled SCCs, the SC-SCCs can be described by compact
graphs. Figure 11.5 shows the compact graph representation of an SC-SCC
where the coupling memory m = 1 is used. Likewise, the compact graph
representation of an SC-SCC with larger m can be obtained.

136 Turbo-like Codes

11.2.1. CONTINUOUS ENCODING

The traditional way of encoding SC-SCCs is to terminate the encoder after
encoding each information block. This means that the encoder starts and
ends in the zero state. The drawback of terminated encoding is a significant
loss in the code rate for small block lengths, K. In this work, the encoding
is performed continuously without termination after each block to avoid the
rate loss. To this end, after encoding of the information block at time t, the
component-encoder state is passed to the component encoder at time t + 1;
i.e., the starting state of the component encoder at time t + 1 is the last state
of the component encoder at time t. To represent the concept of continuous
encoding, we have added the state variable nodes to the compact graph of SC-
SCCs, which are shown by double circles in Figure 11.5.

11.3. DESIGN SPACE EXPLORATION

Since spatial coupling provides new degrees of freedom in code design in
terms of coupling memory, block length, and size of the decoding window,
the design space becomes huge. In addition to the code design stage, these
parameters affect the design of decoding algorithms and architectures and
eventually the corresponding hardware cost. Thus, there are many more de-
sign choices compared to uncoupled ensembles and the relation between dif-
ferent design parameters is more complicated. Consequently, the tradeoffs
between decoding performance, complexity, latency, throughput, and hard-
ware cost are not straightforward. For this reason, a comprehensive design
space exploration is highly required for this class of codes.

In the literature, SC-SCCs with coupling memory m = 1 have been eval-
uated from a decoding performance point of view [140, 146]. However, the
effect of higher coupling memories and the other design parameters on decod-
ing performance, computational complexity, decoder architecture, and hard-
ware related metrics are missing in the literature.

In this thesis, we have performed an extensive design space exploration for
the SC-SCCs by means of Monte Carlo simulations, complexity analysis, and
hardware-cost estimation based on fully placed and routed building blocks.
This design space exploration is presented in two parts as follows.

First, the effect of different design parameters on decoding performance,
computational complexity, structural latency and constraint length has been
investigated, as presented in detail in Chapter 13. One of the outcomes of the
design space exploration is to give design guidelines to increase the coupling
memory, i.e., m > 1, without increasing structural latency and complexity, as
discussed in Chapter 13.

The second part of the design space exploration is presented in Chapter 14,

11.3. Design Space Exploration 137

which has been performed from the hardware point of view. The effect of
different design parameters on throughput, decoding latency, and design area
has been explored. Moreover, different choices of decoding algorithms and
VLSI architectures have been investigated.

12
Decoding Algorithms

The so-called window decoding approach has been extensively studied for the
convolutional LDPC codes [147]. We have demonstrated that window de-
coding can be employed to efficiently decode the SC-SCCs where the inner
decoder and outer decoder exchange extrinsic information in an iterative mes-
sage passing manner.

This chapter first describes the decoding of uncoupled codes, i.e., SCCs,
which later will be used in our design comparison. Then, the proposed SC-
SCC decoding algorithms, i.e., the block-wise and the window-wise decoding,
are introduced in Section 12.2 and 12.3, respectively. The focus of this chapter
is to explain the decoding algorithms and corresponding processing flows.
The complexity analysis, performance evaluation, hardware architectures to
realize these algorithms, and implementation results are discussed in Chap-
ter 13 and Chapter 14.

12.1. SCC DECODER

The decoder of SCC includes an inner decoder and an outer decoder, which em-
ploy the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to calculate the MAP es-
timate of transmitted information bits. The BCJR algorithm is usually realized
in the logarithmic domain to reduce computational complexity without per-
formance degradation, which is called the log-MAP BCJR. The computations
of log-MAP BCJR are performed using log-likelihood ratio (LLR) values.

The SCC decoding procedure is described in Algorithm 12.1 and an exam-
ple of its processing flow to decode the block at time t is shown in Figure 12.1.
Since the SCC is a kind of block code, the decoding of each code block will
be done independently of the previous and next blocks. As specified in Algo-
rithm 12.1, at time instant t, the SCC decoder receives the channel LLR values

139

140 Decoding Algorithms

Algorithm 12.1: SCC Decoder

ũt = SCCDecoder (Lch(pO
t), Lch(pI

t), Lch(ut), K, I)
for i = 1 : I do

In1I
D(t) = Lch(pI

t)

Lch(qO
t) = Π(Lch(ut), Lch(pO

t)) . Interleaver
In2I

D(t) = Lch(qO
t)

La(qO
t) = Π(Le(ut), Le(pO

t)) . Interleaver
In3I

D(t) = La(qO
t)

[Le(qI
t)] = BCJR (In1I

D(t), In2I
D(t), In3I

D(t))

In1O
D(t) = Lch(pO

t)

In2O
D(t) = Lch(ut)

La(qI
t) = Π−1(Le(qI

t)) . Deinterleaver
In3O

D(t) = La(qI
t)

[Le(pO
t), Le(ut)] =BCJR (In1O

D(t), In2O
D(t), In3O

D(t))
end
ũt = Sign(Lch(ut) + Le(ut) + La(qI

t)(0 : K− 1))

of information sequence, Lch(ut), and the corresponding outer and inner par-
ity sequences, Lch(pO

t) and Lch(pI
t), to perform decoding as follows.

In each iteration, the inner decoder receives three inputs. The first one is
the channel LLR values of the inner parity sequence, In1I

D(t) = Lch(pI
t) and

the second one, In2I
D(t), is generated by permuting the channel LLR values

of the information and outer parity sequences using Interleaver, following Al-
gorithm 12.1. The third input is the a-priori LLRs, La(qO

t), and it is obtained
by permuting the extrinsic LLRs, which were generated by the outer decoder
in the previous iteration,

In3I
D(t) = Π(Le(ut), Le(pO

t)). (12.1)

The inner decoder’s output is the extrinsic LLRs, Le(qI
t), which will be dein-

terleaved and used as the a-priori information, La(qI
t), in the outer decoder.

As detailed in Algorithm 12.1, the other inputs of the outer decoder are the
channel LLR values of information and outer parity sequences, Lch(ut) and
Lch(pO

t). Then, the outer decoder produces the extrinsic LLRs for the infor-
mation and outer parity sequences, Le(ut) and Le(pO

t), and sends them back
to the inner decoder.

The above process is repeated for a certain number of iterations, I, for the
same block (ut), as depicted in the striped rectangles in Figure 12.1. In the

12.2. Block-Wise SC-SCC Decoder 141

K bits

1st Iter.

2nd Iter.

3rd Iter.

4th Iter.

5th Iter.

6th Iter.

7th Iter.

8th Iter.

Decoded
Not yet Decoded

K bits K bits

1st Iter.

Under Processing

Figure 12.1. SCC processing flow to decode the block at time t after eight
iterations.

next step, the hard decision is made using the corresponding channel LLR
values and the outputs of the inner and the outer decoders. Afterwards, the
same process will be carried out to decode the next block, ut+1 (see the last
row in Figure 12.1). In Algorithm 12.1, the term La(qI

t)(0 : K − 1) represents
the first K entries of vector La(qI

t).

12.2. BLOCK-WISE SC-SCC DECODER

The proposed block-wise SC-SCC decoder is formulated in Algorithm 12.2. To
clarify this scheme, the corresponding processing flow is illustrated in Fig-
ure 12.2, where the decoding window is shown by dashed rectangles. We
have defined the window size, W, as the number of code blocks to be pro-
cessed in a decoding window, and Iw as the number of decoding iterations per
window position. Thus, for a certain decoding window, Iw specifies how many
times the whole window is processed. In Figure 12.2, the window moves
from left to right and the decoded blocks are specified by solid rectangles,
while the striped ones are under processing. In this figure W = 4 and Iw = 2
are assumed as an example.

Let us consider the decoding window of size W blocks, which starts at time
instant t and ends at t+W− 1. The leftmost block inside a window is referred
to as the target block, which is the first block in a window to be decoded.
The decoding of all the blocks at time instant t′ = t, t + 1, . . . , t + W − 1, is
performed as follows. At time instant t′, the decoder receives the LLR values

142 Decoding Algorithms

Algorithm 12.2: Block-Wise SC-SCC Decoder

ũt =SCSCCDecoder (Lch(pO
t′), Lch(pI

t′), Lch(ut′), K, m, W, Iw)

for I = 1 : Iw do
for t′ = t : t + W − 1 do

In1I
D(t
′) = Lch(pI

t′)

Lch(qO
t′) = Π1(Lch(ut′), Lch(pO

t′)) . Interleaver 1

for i = 0 : m do
Lch(qO

t′ ,i) = Lch(qO
t′)(

2Ki
m+1 : 2K(i+1)

m+1 − 1)
end
In2I

D(t
′) = Π2(Lch(qO

t′ ,0), Lch(qO
t′−1,1), . . . , Lch(qO

t′−m,m)). Interleaver2

Le(qO
t′) = Π1(Le(ut′), Le(pO

t′)) . Interleaver 1

for j = 0 : m do
Le(qO

t′ ,j) = Le(qO
t′)(

2Kj
m+1 : 2K(j+1)

m+1 − 1)

end
La(qO

t′) = Π2(Le(qO
t′ ,0), Le(qO

t′−1,1), . . . , Le(qO
t′−m,m)) . Interleaver 2

In3I
D(t
′) = La(qO

t′)

[Le(qI
t′)] =BCJR (In1I

D(t
′), In2I

D(t
′), In3I

D(t
′))

In1O
D(t
′) = Lch(pO

t′)

In2O
D(t
′) = Lch(ut′)

Le(q̃I
t′) = Π−1

2 (Le(qI
t′)) . Deinterleaver 2

for l = 0 : m do
Le(q̃I

t′ ,l) = Le(q̃I
t′)(

2Kl
m+1 : 2K(l+1)

m+1 − 1)
end
La(q̃I

t′) = Π−1
1 (Le(q̃I

t′ ,0), Le(q̃I
t′+1,1), . . . , Le(q̃I

t′+m,m)) . Deinterleaver 1

In3O
D(t
′) = La(q̃I

t′)

[Le(pO
t′), Le(ut′)] =BCJR (In1O

D(t
′), In2O

D(t
′), In3O

D(t
′))

end
end
ũt = Sign(Lch(ut) + Le(ut) + La(q̃I

t)(0 : K− 1))

12.2. Block-Wise SC-SCC Decoder 143

of information bits, outer parity, and inner parity sequences, i.e., Lch(ut′),
Lch(pO

t′), and Lch(pI
t′). The decoding is started by the inner decoder, which

receives three inputs as follows. The first one is the channel LLR values of the
inner parity sequence,

In1I
D(t
′) = Lch(pI

t′). (12.2)

To generate the second input, the pair of the channel LLR values of informa-
tion and outer parity bits, (Lch(ut′), Lch(pO

t′)), are permuted using Interleaver 1
as

Lch(q
O
t′) = Π1(Lch(ut′), Lch(pO

t′)). (12.3)

The sequence Lch(qO
t′) is divided into m + 1 parts of equal size, which are

named Lch(qO
t′ ,0), Lch(qO

t′ ,1), . . . , Lch(qO
t′ ,m). The first subsequence, Lch(qO

t′ ,0),
is used in the inner decoder at time instant t′ and the rest, Lch(qO

t′ ,1), . . . ,
Lch(qO

t′ ,m), will be used in the next inner decoders at time t′ + 1, . . . , t′ + m,
respectively. Then, at time instant t′, the corresponding m + 1 subsequences
are concatenated together and permuted using Interleaver 2 to produce the
second input of the inner decoder,

In2I
D(t
′) = Π2(Lch(q

O
t′ ,0), Lch(q

O
t′−1,1), . . . , Lch(q

O
t′−m,m)). (12.4)

The third input of the inner decoder is the a-priori LLR values, La(qO
t′),

which is obtained in a similar way as the second input using the extrinsic LLRs
(see Algorithm 12.2). Thus, the pair of the extrinsic LLRs of information and
outer parity bits, (Le(ut′), Le(pO

t′)), which are generated by the corresponding
outer decoder at time t′, are permuted using Interleaver 1 as

Le(qO
t′) = Π1(Le(ut′), Le(pO

t′)). (12.5)

This sequence is divided into m + 1 parts, and the corresponding subse-
quences with the same indices as the ones in (12.4) are concatenated together
and permuted using Interleaver 2 to create the third input of the inner decoder,

In3I
D(t
′) = La(qO

t′) (12.6)

= Π2(Le(qO
t′ ,0), Le(qO

t′−1,1), . . . , Le(qO
t′−m,m)).

The inner decoder employs the above three inputs and produces the extrinsic
LLRs, Le(qI

t′), and sends them back to the connected outer decoders.
Similarly, the outer decoder at time instant t′ receives three inputs, where

the first one is the channel LLR values of the outer parity sequence,

In1O
D(t
′) = Lch(pO

t′), (12.7)

144 Decoding Algorithms

(a)

1st
 I

te
r.

(b)

2n
d

 It
er

.

(c)

(d)

(e)

(f)

(g)

(h)

1st
 I

te
r.

2n
d

 It
er

.
1st

 I
te

r.
2n

d
 It

er
.

1st
 I

te
r.

2n
d

 It
er

.

K W.K bits

Decoded

Under Processing

Window Position

P
ro

ce
ss

in
g

S
te

p Not yet Decoded

Decoding Window

Figure 12.2. The processing flow of block-wise SC-SCC decoder for W = 4
and Iw = 2. Dashed rectangles specify the ongoing decoding
window, which moves from left to right.

12.3. Window-Wise SC-SCC Decoder 145

and the second one is the channel LLR values of the information bits,

In2O
D(t
′) = Lch(ut′). (12.8)

The third input of the outer decoder is the a-priori LLR values, La(q̃I
t′),

which is produced as follows. First, the extrinsic LLRs generated by the cor-
responding inner decoder, Le(qI

t′), are deinterleaved as

Le(q̃I
t′) = Π−1

2 (Le(qI
t′)). (12.9)

Then, this sequence is divided into m + 1 parts with equal size, where the
first subsequence, Le(q̃I

t′ ,0), is used as a part of the input of the outer decoder
at time t′ and the rest, Le(q̃I

t′ ,1), . . . , Le(q̃I
t′ ,m), are used in the previous outer

decoders at time instants t′ − 1, . . . , t′ − m, respectively. Thus, at time t′ the
corresponding subsequences are (Le(q̃I

t′ ,0), Le(q̃I
t′+1,1), . . . , Le(q̃I

t′+m,m)), which
will be deinterleaved to create the third input of the outer decoder,

In3O
D(t
′) = La(q̃I

t′) (12.10)

= Π−1
1 (Le(q̃I

t′ ,0), Le(q̃I
t′+1,1), . . . , Le(q̃I

t′+m,m)).

The outer decoder uses the above inputs and generates the extrinsic LLRs for
the information and outer parity bits, Le(ut′) and Le(pO

t′), which will be sent
to the connected inner decoders.

So far the first block, ut, in the current window is processed, which corre-
sponds to the first row of Figure 12.2(a). The above process will be carried
out for the remaining blocks inside the same window, i.e., ut+1, . . . , ut+W−1,
to complete the first iteration as shown in the second, third, and fourth rows
in Figure 12.2(a) (in this example W = 4). Then, the same procedure is re-
peated for the current window in the next iteration, which is depicted in
Figure 12.2(b). After Iw iterations1 (in this example Iw = 2), the hard decision
is made to decode the target block, i.e., the leftmost block in the window, as

ũt = Sign(Lch(ut) + Le(ut) + La(q̃I
t)(0 : K− 1)). (12.11)

Afterwards, the window is moved by one block, which starts at time t + 1
and ends at t + W as shown in Figure 12.2(c). The same decoding process
will be performed to decode the new target block, ut+1, in the new window
position through Iw = 2 iterations (see Figure 12.2(c) and (d)). It can be seen in
Figure 12.2(c) that the last W− 1 blocks of the previous window are processed
again in the current one. In the same way, ut+2 and ut+3 will be decoded as
illustrated in Figure 12.2(e)-(f) and Figure 12.2(g)-(h), respectively. Therefore,
all the blocks inside the first window, which is shown in Figure 12.2(a), will
be decoded after W · Iw iterations (after 8 iterations in this example).

1In this work, the number of iterations is considered as the stopping criterion of the
decoder.

146 Decoding Algorithms

12.3. WINDOW-WISE SC-SCC DECODER

The second proposed decoding scheme for SC-SCCs is the window-wise decod-
ing, in which the main difference with the block-wise decoding is that the
BCJR algorithm is executed over the whole window at once. This decoding
scheme is detailed in Algorithm 12.3 and an example of its processing flow is
illustrated in Figure 12.3 for W = 4 and Iw = 2. In this figure, the decoding
window is shown by dashed rectangles and the decoded blocks are specified
by filled rectangles. To explain the window-wise decoder, we consider the
same SC-SCC scenario as the one in Figure 12.2 and Section 12.2; i.e., Iw = 2
and the decoding window starts at time instant t and ends at t + W − 1.

Similar to the block-wise decoder, the inner and outer decoders receive
three inputs, however, they are constructed in a different way. The decoding is
started by the inner decoder, which its first input is the channel LLR values of
the inner parity sequences corresponding to all the blocks inside the window,

In1I
D = [Lch(pI

t), Lch(pI
t+1), . . . , Lch(pI

t+W−1)]. (12.12)

To generate the second input, In2I
D, the same operations as (12.3) and (12.4)

will be done for the channel LLR values of information and outer parity se-
quences at each time instant t′ = t, . . . , t + W − 1 to produce the sequence
tempI

t′ . Then, all these sequences will be concatenated together and used as
In2I

D. As stated in Algorithm 12.3, the third input is the a-priori information,
which is constructed using Le(ut′) and Le(pO

t′). Thus, the a-priori LLRs of
each block at time instants t′ = t, . . . , t + W − 1 are produced according to
(12.5) and (12.6), which are then used to create the third input of the inner
decoder,

In3I
D = [La(qO

t), La(qO
t+1), . . . , La(qO

t+W−1)]. (12.13)

The inner decoder generates the extrinsic LLRs for the information and inner
parity bits, Le(qI), which will be sent to the connected outer decoders.

At the outer decoder side, the first input is generated by concatenating all
the channel LLR values of the outer parity sequences at time instants t′ =
t, . . . , t + W − 1 ,

In1O
D = [Lch(pO

t), Lch(pO
t+1), . . . , Lch(pO

t+W−1)], (12.14)

and the second input is produced similarly using the channel LLR values of
the corresponding information bits,

In2O
D = [Lch(ut), Lch(ut+1), . . . , Lch(ut+W−1)]. (12.15)

In order to generate the third input, the a-priori LLRs corresponding to all
the blocks inside the current window, t′ = t, . . . , t + W − 1, are separately

12.3. Window-Wise SC-SCC Decoder 147

Algorithm 12.3: Window-Wise SC-SCC Decoder

ũt =SCSCCDecoder (Lch(pO
t′), Lch(pI

t′), Lch(ut′), K, m, W, Iw)

for I = 1 : Iw do
for t′ = t : t + W − 1 do

Lch(qO
t′) = Π1(Lch(ut′), Lch(pO

t′)) . Interleaver 1

for i = 0 : m do
Lch(qO

t′ ,i) = Lch(qO
t′)(

2Ki
m+1 : 2K(i+1)

m+1 − 1)
end
tempI

t′ = Π2(Lch(qO
t′ ,0), Lch(qO

t′−1,1), . . . , Lch(qO
t′−m,m)) . Interleaver 2

Le(qO
t′) = Π1(Le(ut′), Le(pO

t′)) . Interleaver 1

for j = 0 : m do
Le(qO

t′ ,j) = Le(qO
t′)(

2Kj
m+1 : 2K(j+1)

m+1 − 1)

end
La(qO

t′) = Π2(Le(qO
t′ ,0), Le(qO

t′−1,1), . . . , Le(qO
t′−m,m)) . Interleaver 2

end
In1I

D = [Lch(pI
t), Lch(pI

t+1), . . . , Lch(pI
t+W−1)]

In2I
D = [tempI

t , tempI
t+1, . . . , tempI

t+W−1]

In3I
D = [La(qO

t), La(qO
t+1), . . . , La(qO

t+W−1)]

[Le(qI)] = BCJR (In1I
D, In2I

D, In3I
D)

for t′ = t : t + W − 1 do
Le(qI

t′) = Le(qI)(2K(t′ − t) : 2K(t′ − t + 1)− 1)
Le(q̃I

t′) = Π−1
2 (Le(qI

t′)) . Deinterleaver 2

for l = 0 : m do
Le(q̃I

t′ ,l) = Le(q̃I
t′)(

2Kl
m+1 : 2K(l+1)

m+1 − 1)
end
La(q̃I

t′) = Π−1
1 (Le(q̃I

t′ ,0), Le(q̃I
t′+1,1), . . . , Le(q̃I

t′+m,m)) . Deinterleaver 1

end
In1O

D = [Lch(pO
t), Lch(pO

t+1), . . . , Lch(pO
t+W−1)]

In2O
D = [Lch(ut), Lch(ut+1), . . . , Lch(ut+W−1)]

In3O
D = [La(q̃I

t), La(q̃I
t+1), . . . , La(q̃I

t+W−1)]

[Le(pO), Le(u)] =BCJR (In1O
D, In2O

D, In3O
D)

for t′ = t : t + W − 1 do
Le(pO

t′) = Le(pO)(K(t′ − t) : K(t′ − t + 1)− 1)
Le(ut′) = Le(u)(K(t′ − t) : K(t′ − t + 1)− 1)

end
end
ũt = Sign(Lch(ut) + Le(ut) + La(q̃I

t)(0 : K− 1))

148 Decoding Algorithms

(a) 1st Iter.

(b) 2nd Iter.

(c)

(d)

(e)

(f)

(g)

(h)

1st Iter.

2nd Iter.

1st Iter.

2nd Iter.

1st Iter.

2nd Iter.

K W.K bits

Window Position

P
ro

ce
ss

in
g

S
te

p

Decoded

Under Processing

Not yet Decoded

Decoding Window

Figure 12.3. The processing flow of window-wise SC-SCC decoder for W = 4
and Iw = 2. Dashed rectangles specify the ongoing decoding
window, which moves from left to right.

calculated using (12.9) and (12.10). Then, these sequences are used to create
the third input of the outer decoder as

In3O
D = [La(q̃I

t), La(q̃I
t+1), . . . , La(q̃I

t+W−1)]. (12.16)

The outer decoder employs these inputs and produces the extrinsic LLRs for
the information and outer parity bits, Le(ut′) and Le(pO

t′), which are sent to
the connected inner decoders.

At this point, the current window is processed once, which corresponds to
Figure 12.3(a). The above process is repeated in the next iteration for the cur-
rent window as depicted in Figure 12.3(b). After Iw iterations (in this example
Iw = 2), the hard decision is made using (12.11) to decode the K leftmost bits
in the window, i.e., the target block ut. Then, the window is moved by the
length of one block, i.e., K bits, which starts at time t + 1 and ends at t + W
as illustrated in Figure 12.3(c). The same decoding process will be performed
to decode the K leftmost bits inside the new window, which corresponds to
the target block ut+1 (see Figure 12.3(c) and (d)). This procedure is continued
to decode ut+2 and ut+3 as shown in Figure 12.3(e)-(f) and Figure 12.3(g)-(h),

12.3. Window-Wise SC-SCC Decoder 149

respectively. Similar to the block-wise decoding scheme, presented in Sec-
tion 12.2, the whole window in Figure 12.3(a) will be decoded after W · Iw
iterations (after 8 iterations in this example).

LATENCY AND CONSTRAINT LENGTH

In this part of the thesis, we define two types of latency: structural latency,
LS, and decoding latency, LD. The structural latency of spatially coupled codes
is a parameter related to the code design [148, 149] and can be obtained as

LS
SC = W · KSC , (bit) (12.17)

where W is the window size (i.e., W blocks per decoding window) and KSC is
the block length in bits. On the other hand, the structural latency of uncoupled
codes, i.e., block codes, is equal to the block length,

LS
UC = KUC , (bit). (12.18)

The second type of latency is decoding latency, which is determined by the
decoding algorithm and corresponding hardware architecture. We have an-
alyzed the decoding latency of different decoder architectures and extracted
the corresponding equations, which are presented in Chapter 14.

Another code-related parameter is constraint length, which specifies the code
strength. The constraint length of spatially coupled codes depends on the
block length, KSC, and the coupling memory, m, and it is defined as

C = KSC · (m + 1). (12.19)

In order to refer to the information block length in the rest of the thesis, for
simplicity, K is used without subscripts of UC and SC. Thus, the correspond-
ing context determines if K is related to the uncoupled or coupled codes.

13
Performance and Complexity

Evaluation

This chapter presents the first part of the design space exploration for the
SC-SCCs, in which we have investigated the effect of block length, coupling
memory, decoding window size, and number of iterations on the decoding
performance, computational complexity, and structural latency. Based on this
exploration, we provide design guidelines to increase the coupling memory
without increasing the latency or complexity (see Section 13.2). This allows a
code designer to flexibly exchange the block length with the coupling memory
to choose the strongest code in a given structural latency.

Section 13.1 presents the computational complexity analysis of SC-SCCs.
Also, it is demonstrated how to fix the computational complexity per bit for
all SC-SCC schemes, regardless of their block length and window size. Sec-
tion 13.2 discusses the effect of different design parameters on the decoding
performance of SC-SCCs. Moreover, it describes how to make a fair com-
parison between different coupled and uncoupled coding scenarios. Lastly,
this chapter ends with the presentation of design tradeoffs between structural
latency, computational complexity, and decoding performance.

13.1. COMPUTATIONAL COMPLEXITY ANALYSIS

This section presents the computational complexity analysis for the SC-SCC
decoder described in Algorithm 12.2. It is worth mentioning that, a similar
analysis can be done for the decoding approach in Algorithm 12.3, which
shows that both decoding schemes have the same complexity per decoded bit.
This is due to the fact that the number of iterations, Iw, as well as the window
length, W · K bits, and consequently the number of operations are the same in
both methods. In the last part of this section, we demonstrate how to adjust
the number of iterations to fix the complexity in various SC-SCC scenarios.

151

152 Performance and Complexity Evaluation

13.1.1. COMPUTATIONAL COMPLEXITY OF BCJR

The computational complexity of the SC-SCC window decoder, described in
Algorithm 12.2, can be analyzed by enumerating the number of required op-
erations to decode an information block of K bits. For this purpose, the com-
putational complexity of BCJR algorithm, which is employed in the outer and
inner decoders is evaluated. In this analysis, the log-MAP BCJR is considered,
which has the same decoding performance as the MAP algorithm but comes
with less complexity and hardware cost.

Let us consider a trellis with 2Em states, where Em is the size of encoder
memory, e.g., Em = 2 for the encoder shown in Figure 11.3. The probability
of state transition from the state at time instant t− 1, i.e., Sr, to the one at time
t, i.e., Ss, is calculated as

Γt(Sr, Ss) = log γt(Sr, Ss) (13.1)

=
1
2

ut · La(ut) +
1
2

Lc · (ut · Lch(ut) + pt · Lch(pt)),

which is referred to as the branch metric. In this equation, Lch(ut) and Lch(pt)
are the received channel LLR values at time instant t corresponding to the
transmitted bit ut and inner/outer parity bit pt, respectively. Also, La(ut)
denotes the a-priori LLR value of ut, and Lc represents the channel reliability
measure.

Having considered a single trellis section, the calculation of forward recur-
sion values, α, can be done as

At(Ss) = log αt(Ss) = log ∑
i

αt−1(Si) · γt(Si, Ss)

= log ∑
i

eAt−1(Si)+Γt(Si ,Ss)

= max
i
∗(At−1(Si) + Γt(Si, Ss)), (13.2)

where i is the number of states, i.e., i = 1, . . . , 2Em . Similarly, the backward
recursion values, β, are obtained as

Bt−1(Sr) = log βt−1(Sr) = log ∑
i

βt(Si) · γt(Sr, Si)

= log ∑
i

eBt(Si)+Γt(Sr ,Si)

= max
i
∗(Bt(Si) + Γt(Sr, Si)). (13.3)

In (13.2) and (13.3), the max∗ operator 1 is used to calculate the logarithm of

1log ∑
i

eai = max
i
∗(ai) = max∗(. . . max∗(max∗(a1, a2), a3), . . . ai)

13.1. Computational Complexity Analysis 153

sum of exponentials using the so-called Jacobian logarithm as follows

max∗(a, b) ∆
= max(a, b) + log(1 + e−|a−b|). (13.4)

In this equation, "max" performs a comparison, and the value of the correct-
ing term, i.e., log(1 + e−|a−b|), is usually obtained from a look-up table (LUT)
2. Then, the state transition metrics are obtained by calculation of joint proba-
bilities as

Mt(Sr, Ss) = log mt(Sr, Ss)

= log(αt−1(Sr) · γt(Sr, Ss) · βt(Ss))

= At−1(Sr) + Γt(Sr, Ss) + Bt(Ss). (13.5)

Finally, the a posteriori probability (APP) for each information bit, ut, is cal-
culated by

L(ut|vt) = max
S−
∗(Mt(Sr, Ss))−max

S+

∗(Mt(Sr, Ss)), (13.6)

where S− and S+ are the sets of state transitions, (Sr, Ss), such that (Sr, Ss) ∈
S− and (Sr, Ss) ∈ S+ are caused by ut = 0 and ut = 1, respectively.

In the context of turbo decoders, the extrinsic information of inner/outer
decoders, Le(ut), is obtained by subtracting the channel LLR values and a
priori information of ut from the corresponding APP value in (13.6). The
extrinsic information of inner/outer decoder will be permuted and used as
the a priori information of outer/inner decoder.

According to the above equations, the computational complexity to calcu-
late A, B, Γ, M, APP values, and extrinsic LLRs is analyzed and shown in
Table 13.1. In this table, the number of required operations (i.e., additions,
subtractions, and comparisons) to decode an information bit in one iteration
are enumerated. Also, the computational complexity due to the normaliza-
tion of A and B values are included in OA and OB (i.e., 2Em − 1 comparisons
and 2Em additions for each of them). Thus, the computational complexity to
decode an information block of K bits in one iteration is

OD = K · (OΓ +OA +OB +OM +OAPP +OLe), (13.7)

where OLe is the computational complexity to calculate the extrinsic informa-
tion, which is exchanged between the inner/outer decoders.

2In practice, just eight values of |a− b| between 0 and 5 are stored in the LUT, which
is accurate enough.

154 Performance and Complexity Evaluation

Table 13.1. Computational complexity per decoded bit in Log-MAP BCJR al-
gorithm for one iteration and one trellis step.

Addition/Subtraction # Comparison

OA 2 · l · 2Em l · 2Em − 1
OB 2 · l · 2Em l · 2Em − 1
OΓ 2 · l · 2Em 0
OM 2 · l · 2Em 0
OAPP 1 l · 2Em − 2
OLe 2 0

13.1.2. FIXED COMPLEXITY

As mentioned in Chapter 12, the processing of a window is finished after Iw
iterations, where Iw is the number of iterations per window position. Then,
the window is moved by one block, i.e., K bits, which implies that the amount
of overlap between two successive windows depends on the block length. To
clarify this concept, Figure 13.1 shows the processing flow of window decod-
ing for two scenarios, which have the same structural latency of 4K bits. In
the first scenario, Figure 13.1(a), the window includes W1 = 4 code blocks
of length K1 = K as shown by dashed rectangles while the second one, Fig-
ure 13.1(b), includes W2 = 8 code blocks of length K2 = K/2. It can be seen
that, in the first scenario the window includes larger blocks and therefore it
moves further and has less overlaps with the next decoding windows. This
concept is illustrated using the striped blocks in both scenarios in Figure 13.1.
As a result, regardless of the block length each block is processed W · Iw times
in both scenarios. Taking the overlaps between successive windows into ac-
count, the total computational complexity of the proposed SC-SCC decoder
to decode a complete window of size W is

OSCSCC = W2 · (3OD) · Iw. (13.8)

Since, the inner decoder has trellis length of size 2K bits, it is twice as complex
as the outer decoder and thus 3OD is included in (13.8). This amount of com-
plexity is spent to decode W · K bits. Therefore, the computational complexity
per decoded bit is

Obit =
W · (3OD) · Iw

K
. (13.9)

According to (13.7) the complexity of outer/inner decoder is proportional
to the block length, K. Thus, the complexity per decoded bit, defined in

13.1. Computational Complexity Analysis 155

(a)

(b)
W2 = 8K/2

K W1 = 4

Figure 13.1. Window decoding approach for two scenarios with fixed-latency.
The block length and window size are (a) K1 = K, W1 = 4 and
(b) K2 = K/2, W2 = 8. Dashed rectangles specify the ongoing
decoding window. The colored blocks, which are located in the
left side of the decoding window are already decoded.

(13.9), will be proportional to W and Iw. Consequently, if the same number of
iterations per window position is used for both cases in Figure 13.1, which is a
common assumption in the literature, the decoding scenario in Figure 13.1(b)
would have higher computational complexity than the one in Figure 13.1(a)
since it has larger W. Therefore, in such cases the comparison between the
corresponding decoding performances is not fair.

In order to address this issue, in this thesis we have defined the effective
number of iterations,

Ieff = W · Iw, (13.10)

which specifies how often the BCJR algorithm is executed to decode a certain
code block, e.g., the striped blocks in Figure 13.1. The goal is to have the same

156 Performance and Complexity Evaluation

effective number of iterations for all scenarios, which according to (13.9) and
(13.10) results in the same computational complexity per bit. Let us assume
Ieff = W1 · Iw1 as the effective number of iterations for the scenario in Fig-
ure 13.1(a), where W1 and Iw1 are the window size and number of iterations
per window position, respectively. In order to have the same computational
complexity per bit in both scenarios in Figure 13.1, the number of iterations
per window position in the second scenario should be set to

Iw2 =
W1 · Iw1

W2
, (13.11)

where W2 is the corresponding window size. As a result, by adjusting the
number of iterations per window position using (13.11) the same effective
number of iterations and consequently the same computational complexity
will be achieved for all the coding scenarios in this study. This gives us the
opportunity to perform a fair comparison between different SC-SCC scenarios
regardless of their block length, window size, and structural latency.

It is worth mentioning that in addition to the computational complexity
there are other implementation issues, which contribute to the hardware cost.
They are mainly related to the decoder architecture and will be discussed in
Chapter 14.

13.2. PERFORMANCE EVALUATION

We have investigated the effect of code-related parameters (e.g., K, m) and
the decoding-related ones (e.g., W, Iw) on the decoding performance of the
SC-SCCs. For this purpose, we have defined five SC-SCC scenarios, which are
listed in Table 13.2 and used them in the simulations. In each scenario, several
combinations of K, W, m, and Iw in a wide range are considered, while the
structural latency LS, constraint length C, and complexity remain fixed. In Ta-
ble 13.2, the coupling memories are chosen based on the guideline presented
in Section 13.2.1 with respect to the corresponding block length and window
size. Both Algorithm 12.2 and Algorithm 12.3 benefit from the spatial cou-
pling. Therefore, to simplify this discussion, we first present the simulation
results of Algorithm 12.3 to demonstrate the effect of the above-mentioned
design parameters on decoding performance in Section 13.2.1-13.2.5. Then, in
Section 13.2.6 we compare the decoding performance of Algorithm 12.2 and
Algorithm 12.3 in different coding scenarios.

In the following simulations, the information sequence is randomly gen-
erated, modulated using the binary phase shift keying (BPSK) scheme, and
then transmitted through the AWGN channel. Also, a set of pseudo-random
interleavers is used to in the component encoders.

13.2. Performance Evaluation 157

Table 13.2. Different SC-SCC scenarios with the same structural latency (LS),
constraint length (C), and computational complexity.

LS‡= 16384
K 4096 2048 1024 512 256 128
W 4 8 16 32 64 128

C†= 8192
m 1 3 7 15 31 63
Iw
∗ 20 10 5 3� 2� 1�

LS = 8192
K 2048 1024 512 256 128 64
W 4 8 16 32 64 128

C = 4096
m 1 3 7 15 31 63
Iw 20 10 5 3� 2� 1�

LS = 4096
K 1024 512 256 128 64 32
W 4 8 16 32 64 128

C = 2048
m 1 3 7 15 31 63
Iw 20 10 5 3� 2� 1�

LS = 2048
K 512 256 128 64 32 -/

W 4 8 16 32 64 -
C = 1024 m 1 3 7 15 31 -

Iw 20 10 5 3� 2� -

LS = 1024
K 256 128 64 32 16 -/

W 4 8 16 32 64 -

C = 512
m 1 3 7 15 31 -
Iw 20 10 5 3� 2� -

‡, †, ∗ Calculated using (12.17), (12.19), and (13.11).
� Rounded to the nearest largest integer. The reason for

choosing Ieff = 80 is to have the same computational com-
plexity, while Iw ≥ 1 for all scenarios.

/ Not available since (12.19) implies that m < 2K.

158 Performance and Complexity Evaluation

 m = 1
 m = 3
 m = 7
 m = 15
 m = 31

 m = 1
 m = 3
 m = 7
 m = 15

 K = 32
W = 32 K = 512

W = 16

(a) (b)

Figure 13.2. The effect of coupling memory, m, on the decoding performance
in two SC-SCC schemes. The structural latency is (a) LS = 1024
and (b) LS = 8192 bits. Ieff = 80 is considered for both cases to
have the same complexity.

13.2.1. EFFECT OF COUPLING MEMORY ON THE PERFORMANCE

One way to improve the decoding performance of SC-SCCs, is to increase
the constraint length, C, by increasing either the block length or size of cou-
pling memory. The first alternative, increasing K, will increase the structural
latency considerably as stated in (12.17), which is not appealing for many ap-
plications while the coupling memory does not change the structural latency
and complexity of the SC-SCCs, as shown in (12.17) and explained in Sec-
tion 13.1.2. We have investigated the effect of coupling memory, m, on the
decoding performance of SC-SCCs. The goal is to find the optimum value
of coupling memory, m, which leads to the best decoding performance for a
fixed window size, W, and block length, K.

This concept has been investigated for all the cases in Table 13.2. As an
example, the corresponding results for {LS = 1024, K = 32, W = 32} and
{LS = 8192, K = 512, W = 16} are depicted in Figure 13.2(a) and (b), respec-
tively. As a result, by increasing the coupling memory up to m = W/2− 1 the

13.2. Performance Evaluation 159

W = 4

W = 8

K=256 bits

K=128 bits

(a)

(b)

Figure 13.3. Two SC-SCC scenarios with the same structural latency. (a) K =
1024 bits, W = 4 and (b) K = 512 bits, W = 8.

waterfall performance will be improved considerably, and the error floor goes
down to lower BERs. More specifically, Figure 13.2(a) shows that at the SNR
of 1.3 dB, the BER can be improved from 3× 10−2 to 3× 10−6 if the coupling
memory is increased from m = 1 to m = 15. A similar effect can be seen in
the higher latencies as well; Figure 13.2(b) shows that at the SNR of 0.5 dB the
BER can be improved from 5× 10−4 to 6× 10−7 if coupling memory m = 7 is
used instead of m = 1.

However, if a coupling memory m > W/2− 1 is used, the decoding perfor-
mance will be degraded, which is illustrated by dashed curves in Figure 13.2.
This is due to the fact that in such a case we cannot see even one constraint
length, C, inside the window as stated in (12.19). Therefore, the performance
of the window decoder cannot fully exploit the code. Thus, for a given K
and W the coupling memory of m = W/2 − 1 leads to the best decoding
performance in such a setup. It is worth to point out that this performance
improvement is achieved without compromising the structural latency and
computational complexity.

13.2.2. USING HIGHER COUPLING MEMORY IN A FIXED LATENCY

From the analysis in [6] it can be seen that the decoding threshold can be
improved by increasing the coupling memory. On the other hand, a window
decoder performs very poorly if the window size, W, is smaller than m + 1
since a part of spatially coupled sequences is not exploited in the window.
Therefore, in order to use a higher coupling memory the window size should
be increased, which in turn increases the structural latency. This option may
not look appealing from a latency and complexity perspective and for this
reason, high-order coupling memory has not been practically used.

To solve this problem, we take another approach and propose to reduce
the block length, K, and increase the number of blocks per window, W, si-
multaneously to relax the limitation of the coupling memory. As a result, a

160 Performance and Complexity Evaluation

higher coupling memory can be used without changing the structural latency.
This concept is illustrated in Figure 13.3, where an SC-SCC scheme with a
structural latency of LS = 1024 bits is considered in two cases. In the first
case (Figure 13.3(a)), four blocks of K = 256 bits per window are used, which
implies that the coupling memory cannot be larger than m = 3. On the other
hand, Figure 13.3(b) shows that the same structural latency can be achieved
by reducing the block length to K = 128 bits and doubling the window size
while the coupling memory can be increased up to m = 7. As a result, in our
approach the block length, K, and coupling memory, m, can be flexibly ex-
changed without changing the structural latency and complexity. This makes
the code design independent of the block length.

So far, it has been demonstrated how to use large coupling memory in a
fixed structural latency. On the other hand, Section 13.2.1 explains that for
a given window size, W, the coupling memory of m = W/2− 1 results in
the best decoding performance. This choice of coupling memory leads to the
constraint length of

C = K · (m + 1) = K ·W/2, (13.12)

which can be achieved by either a small K and large m or a large K and small
m while the structural latency will remain fixed (LS = 2C). For example,
{K = 256, W = 4, m = 1} and {K = 128, W = 8, m = 3} achieve the same
structural latency of LS = 1024 bits and constraint length of C = 512 as
shown in Figure 13.3. Now, the question is that which one can achieve better
decoding performance with fixed complexity?

We have investigated this concept for the five scenarios in Table 13.2 and the
corresponding simulation results are depicted in Figure 13.4(a)-(e). In each
scenario the structural latency, constraint length, and complexity are fixed.
According to the simulation results, for a certain latency and constraint length,
selecting a small block length, K, and large coupling memory, m, can result
in a better decoding performance compared to a large block length and small
coupling memory. As shown in Figure 13.4 the performance improvement
occurs in the waterfall and error floor regions.

As a result, this analysis reveals the flexibility of SC-SCCs such that for
a given structural latency and constraint length, it is possible to make the
block length smaller and use higher coupling memory while the same or even
better decoding performance can be achieved compared to larger K. It is
worth mentioning that, in case of very small block lengths the performance
degrades and the error floor appears at high BERs, which are shown by the
dashed curves in Figure 13.4(a)-(e). This is mainly due to the fact that in
our scheme, independent random interleavers are employed to show how the
decoding performance changes for different block lengths.

13.2.Perform
ance

Evaluation
161

(b) (c) (d) (e)(a)

B
E
R

1.5

 K=256, W=4, m=1
 K=128, W=8, m=3
 K=64, W=16, m=7
 K=32, W=32, m=15

 K=512, W=4, m=1
 K=256, W=8, m=3
 K=128, W=16, m=7
 K=32, W=64, m=31

 K=2048,W=4, m=1
 K=1024,W=8, m=3
 K=512, W=16,m=7
 K=128, W=64,m=31

 K=4096, W=4, m=1
 K=2048, W=8, m=3
 K=1024, W=16,m=7
 K=256, W=64,m=31

 K=1024,W=4, m=1
 K=512, W=8, m=3
 K=256, W=16, m=7
 K=64, W=64, m=31

Figure 13.4. BER performance of the SC-SCC scenarios in Table 13.2, where
the structural latency and constraint length are fixed to (a) LS =
1024, C = 512, (b) LS = 2048, C = 1024, (c) LS = 4096, C = 2048,
(d) LS = 8192, C = 4096, and (e) LS = 16384, C = 8192. In all
scenarios Ieff = 80 is considered to have the same complexity.

162 Performance and Complexity Evaluation

 SCC
 K=1024
 K=2048
 K=4096
 K=8192
 K=16384
 K=32768
 Threshold

 =1024, K=256
 =2048, K=512
 =4096, K=1024
 =8192, K=2048
 =16384,K=4096
 =32768,K=8192
 Threshold

 SC-SCC

Figure 13.5. BER Performance comparison between the proposed SC-SCC and
uncoupled SCC for different block lengths, K, and latencies, LS.
In all cases the code rate is 1/3 and the same complexity is con-
sidered by choosing Ieff = 80.

In case of very small block lengths, the short-length random interleavers
are not efficient and in such cases the interleavers should not be designed
independently3. Note that a small or large block length is relative to the
structural latency; e.g., K = 128 is considered large in case of LS = 1024,
while it is a small block length for LS = 8192.

13.2.3. PERFORMANCE COMPARISON WITH UNCOUPLED CODES

The performance comparison between the SC-SCCs and the uncoupled en-
sembles, SCCs, for different structural latencies, LS, and block lengths, K, is
shown in Figure 13.5. In order to have a fair comparison, the same compu-
tational complexity is considered for all cases regardless of their structural
latency and block length (following the guideline described in Section 13.1.2).
The general message of this comparison is that spatial coupling significantly
improves the decoding performance of the SCC and brings it much closer
to the capacity. However, there are some interesting observations, which are
described below.

3Joint interleaver design for small block lengths, K, is the topic of ongoing research
in our department.

13.2. Performance Evaluation 163

Having considered the same interleaver size, the SC-SCC can achieve around
1 dB better BER performance than the corresponding SCC scheme with the
same block length, K. Also, in case of equal structural latency, the SC-SCCs
still achieve around 0.2 – 0.5 dB better BER performance than the SCCs at the
BER of 10−4. It is worthwhile to point out that, even with a lower structural
latency, the SC-SCC can achieve better BER performance than the SCC. For
example, as depicted in Figure 13.5, the decoding performance of SC-SCC
with LS = 8192 is better than that of SCC with LS = 32768, 16384. This means
that by just increasing the block length and structural latency the SCCs cannot
achieve better decoding performance than the SC-SCCs.

The upper bound of decoding performance is determined by the theoretical
decoding thresholds [6, 150]. To illustrate this concept, the decoding thresh-
olds of SCC and SC-SCC ensembles for the AWGN channel are shown using
vertical lines in Figure 13.5, which have been calculated in [151]. The per-
formance gap between the thresholds demonstrates the better strength of the
SC-SCCs compared to the SCCs and emphasizes the need for SC-SCCs to
reach the close-to-capacity performance.

13.2.4. PERFORMANCE-LATENCY TRADEOFF

In the previous simulation results, a fixed structural latency was considered.
Now, we want to see for a given K and m, how does the decoding performance
change if we make the window size, W, larger? In the other words, what is the
effect of structural latency on the decoding performance if constraint length
and complexity per bit are fixed?

Figure 13.6 shows the result of our investigation, which implies that for a
given constraint length and complexity (i.e., fixed Ieff), making the window
lager (e.g., doubling W) cannot improve the decoding performance consider-
ably and it just increases the structural latency (e.g., twice latency). Thus, if
the targeted application can tolerate the higher latencies, we propose to in-
crease the coupling memory, m, as well since the larger window size enables
us to employ a higher coupling memory. This is due to the limitation on the
coupling memory, i.e., m ≤ W/2− 1, as explained in Section 13.2.1. As a
result, this strategy provides the effective use of a certain structural latency to
achieve better decoding performance.

In order to demonstrate the tradeoff between latency and decoding perfor-
mance, we have plotted the latency and BER performance of the scenarios in
Table 13.2 (see Figure 13.7). In each scenario the structural latency, LS, and
constraint length, C, are fixed and the complexity is the same for all cases. The
x-axis in Figure 13.7 shows the required Eb/N0 to achieve the BER of 10−5.
The markers, which tend to the lower left corner of the figure correspond to
the scenarios with a low structural latency and good decoding performance.

164 Performance and Complexity Evaluation

(a) (b)

W=4, m=1
W=8, m=1
W=8, m=3

W=4, m=1
W=8, m=1
W=8, m=3

K= 2048K= 256

Figure 13.6. Simulation results to investigate the effect of window size, W, on
decoding performance. (a) K = 256 bits and (b) K = 2048 bits. In
all scenarios, the computational complexity is fixed (Ieff = 80).

(

) (K,W) = [(1024,16) (2048,8) (4096,4) (256,64)], = 8192
(K,W) = [(512,16) (1024,8) (2048,4) (128,64)], = 4096
(K,W) = [(256,16) (512,8) (1024,4) (64,64)], = 2048
(K,W) = [(128,16) (256,8) (512,4) (32,64)], = 1024
(K,W) = [(64,16) (128,8) (32,32) (256,4)], = 512

Figure 13.7. The latency-performance tradeoff for the SC-SCC scenarios in Ta-
ble 13.2. The x-axis shows the required Eb/N0 to achieve BER of
10−5. For each scenario, the block length and window size are
listed in the legend, which correspond to the markers from left to
right. The computational complexity is the same for all scenarios
by considering Ieff = 80.

13.2. Performance Evaluation 165

1.5

K = 4096
W = 4
m = 1

K = 1024
W = 4
m = 1

Ieff =4

Ieff =8

Ieff =12

Ieff =20

Ieff =40

Ieff =80

Ieff =4
Ieff =8
Ieff =12

Ieff =20

Ieff =40

Ieff =80

(a) (b)

Figure 13.8. Simulation results to investigate the effect of number of iterations
on the decoding performance (i.e., computational complexity-
performance tradeoff). The structural latency is equal to (a)
LS = 4096 and (b) LS = 16384 bits.

13.2.5. PERFORMANCE-COMPLEXITY TRADEOFF

So far, we have assumed a fixed computational complexity per bit to evaluate
the decoding performance of coupled and uncoupled coding schemes. In
this section, we want to investigate how the decoding performance can be
improved if we spend more complexity? i.e., the effect of number of iterations
on the decoding performance.

We have simulated the SC-SCC schemes in Table 13.2 for different effective
number of iterations, Ieff. As an example, the corresponding decoding perfor-
mances for LS = 4096 and LS = 16384 are shown in Figure 13.8(a) and (b),
respectively. The simulation results show that by spending more complexity
the waterfall performance is improved, and the error floor goes down and it
happens at a much lower BER.

166 Performance and Complexity Evaluation

13.2.6. PERFORMANCE COMPARISON: BLOCK-WISE VS. WINDOW-WISE
DECODING

Both block-wise SC-SCC decoder (Algorithm 12.2) and window-wise SC-SCC
decoder (Algorithm 12.3) benefit form the spatial coupling. As a result, they
achieve better decoding performance than the uncoupled ensembles. More-
over, in both algorithms, the block length and coupling memory can be flex-
ibly exchanged to improve the decoding performance without increasing the
latency and complexity, as illustrated in Figure 13.2.

In order to select the efficient decoding scheme, decoding performance
as well as the hardware-related metrics, which are discussed in Chapter 14,
should be considered together. Thus, it is important to compare the decoding
performance of Algorithm 12.2 and Algorithm 12.3 since, depending on the
block length, window size, and coupling memory the decoding performance
of these two algorithms may be different from each other. This will guide the
designer to select the proper decoder architecture and efficient values for the
design parameters. We have performed this comparison for all the cases in
Table 13.2, and the simulation results are depicted in Figure 13.9. It can be
seen that in case of short block lengths, the gap between the decoding per-
formance of Algorithm 12.2 and Algorithm 12.3 is noticeable. The reason is
that executing the BCJR algorithm for a very short trellis, which is the case
in Algorithm 12.2, leads to a poor decoding performance at the boundaries
between blocks. This is due to the unreliable states at the start and end of each
trellis. Consequently, the bits which are close to the boundaries will have a
weak protection. This issue can be resolved by employing Algorithm 12.3
in which the trellis length becomes large, and therefore the boundary states
are more reliable. As illustrated in Figure 13.9(a) – (e), in case of small block
lengths Algorithm 12.3 achieves better decoding performance. It is worth to
point out that a small or large block length is relative to the structural latency.
For example, K = 128 bits is considered as a large block in case of LS = 1024,
while it is a small block for LS = 8192.

13.2.Perform
ance

Evaluation
167

(b) (c) (d) (e)(a)

B
E

R

Eb/N0 Eb/N0 Eb/N0 Eb/N0 Eb/N0

 K=128, W=8, m=3
 K=64, W=16, m=7

 K=256, W=8, m=3
 K=128, W=16, m=7

 K=512, W=8, m=3
 K=256, W=16, m=7

 K=1024,W=8, m=3
 K=512, W=16,m=7

In All Sub-Figures: Block-Wise SC-SCC Decoder (Algorithm 12.2) Window-Wise SC-SCC Decoder (Algorithm 12.3)

1.5

 K=2048,W=8, m=3
 K=1024,W=16,m=7

Figure 13.9. Performance comparison between block-wise and window-wise
SC-SCC decoders for the scenarios listed in Table 13.2, where the
latency and constraint are fixed to (a) L = 1024, C = 512, (b)
L = 2048, C = 1024, (c) L = 4096, C = 2048, (d) L = 8192, C =
4096, and (e) L = 16384, C = 8192. The same computational
complexity is considered for all scenarios by choosing Ieff = 64.

14
Decoder Architectures and

Implementation Results

In this chapter, we propose three high-level VLSI architectures to realize the
SCC decoder, the block-wise SC-SCC decoder, and the window-wise SC-SCC
decoder, which have been presented in Chapter 12. It is worth noting that in
each of the three proposals, the inner and outer decoders can be implemented
using different architectures. For this reason, we first explain different hard-
ware architectural choices for the inner and outer decoders and investigate
the respective area and latency considerations in Section 14.1. Then, in Sec-
tion 14.2 we demonstrate how to use these kernels to construct the overall de-
coder architectures of the three decoding schemes (i.e., Algorithm 12.1, 12.2,
and 12.3). Also, a comparison at the architecture level is introduced for the
presented designs.

Finally, in Section 14.3 we present the second part of our design space ex-
ploration 1 in which the design area, throughput, and decoding latency of
different decoder architectures are investigated. This chapter ends with a dis-
cussion about the design tradeoffs for the presented decoding schemes.

14.1. VLSI ARCHITECTURES FOR INNER AND OUTER DECODERS

As explained in Chapter 12, for the decoding of inner and outer trellises of SC-
SCCs the BCJR algorithm is used. The state-of-the-art hardware architectures
for BCJR decoding are based on its sub-optimal variant, the max-Log-MAP (in
the following: MAP). In classical turbo decoder implementations (i.e., PCC)
typically the MAP algorithm is implemented as one instance of a parallelized

1The first part our design space exploration was presented in Chapter 13, in which the
effect of different design parameters on the decoding performance and complexity
of SC-SCC schemes have been investigated.

169

170 Decoder Architectures and Implementation Results

decoder architecture, which processes the upper and lower code trellises (i.e.,
the inner and outer code trellises for the SCC case) alternatively [136] 2.

The state-of-the-art decoder hardware architectures achieve a high through-
put by employing either spatial parallelism or functional parallelism techniques.
Spatial parallelism is predominant in the parallel MAP (PMAP) [141, 153–155]
and fully parallel MAP (FPMAP) [156] architectures. The other type of paral-
lelization, functional parallelism, is dominant in the pipelined MAP (XMAP)
[136, 157, 158] and fully pipelined iteration unrolled MAP (UXMAP) [142, 159–
161] architectures. In the remainder of this section, we will briefly review
these hardware architectures and their respective design-area and decoding-
latency considerations.

14.1.1. PMAP ARCHITECTURE

In PMAP architectures, a block of K information bits, is split into P smaller
sub-blocks with the length of K/P bits. In case of the FPMAP, the size of sub-
blocks is one bit. Then, the sub-blocks, i.e., sub-trellises, are decoded either by
parallel sub-decoder cores (i.e., in PMAP) or by parallel processing elements
(i.e., in FPMAP). Note that the FPMAP is based on a reformulation of the
MAP algorithm [137], which is explicitly tailored to PCCs and processes both
component codes of the PCC in parallel. Therefore, we do not consider it here
and will focus on the PMAP architecture.

The PMAP architecture is shown in Figure 14.1, which features P parallel
sub-decoder cores. Each sub-decoder core is made up of two add-compare-select
units (ACSUs) realizing the forward and backward recursions of the MAP
algorithm based on (13.2) and (13.3), a branch metric unit (BMU) computing the
branch metrics following (13.1), one soft-output unit (SOU), which calculates
the extrinsic information using (13.6), and first-in-first-out (FIFO) buffers to
store the forward and branch metrics (see Figure 14.1). Note, that sometimes a
second BMU is used to perform a recomputation of the branch metrics to avoid
storing the branch metrics in the FIFO buffers and the same can be done for
the forward recursion metrics [141]. However, in general, the MAP algorithm
is highly compute-dominated [162] and a recomputation is only necessary for
very large sub-trellis lengths, since more metrics need to be stored in the FIFO.
In the following, we therefore do not consider the metric recomputation.

As mentioned above, the PMAP architecture consists of P sub-decoders,
which work in parallel to decode a block of K bits. Each sub-decoder addi-
tionally core splits the sub-blocks further into smaller portions of size LSW
bits and uses a sliding window (SW) decoding technique [141]. This approach
enables a parallel processing of the forward and backward recursions inside

2Note that, even though the references mentioned in the following were presented in
the context of PCCs, they are applicable to the decoding of SCCs [152].

14.1. VLSI Architectures for Inner and Outer Decoders 171

BMU

F
IF
O

SOU
α

β
ACSU

ACSU

Figure 14.1. PMAP decoder architecture schematic.

each sub-decoder core 3.
Splitting into sub-blocks leads to a reduction in decoding performance due

to metrics information loss at the initial step of sub-trellises. Thus, the state
metrics at the sub-block and sliding window borders need to be estimated
to mitigate a decoding performance loss. To this end, the acquisition (ACQ)
technique [136, 155] can be used, which performs a warm-up phase for the
state metric calculations by doing additional recursion calculations of length
LACQ. In this way, the decoding of sub-trellises will be started at the correct
states. However, with smaller sub-blocks, i.e., small sliding window sizes
LSW, and at higher code rates, the length of the necessary ACQ calculation
is increased. This in turn limits the throughput gain through parallelization
because of the added ACQ latency [163]. Let us now move on to evaluate the
design area and decoding latency of PMAP architecture.

The design area occupied by the computational units of the PMAP archi-
tecture is given by

APMAP=

{
P ·
(
2 ·AA + AΓ + AΛ) LACQ < LSW

P ·
(
3 ·AA + AΓ + AΛ) LACQ > LSW

(14.1)

where LACQ is the acquisition length, AA, AΓ, and AΛ represent the area of
the ACSU, BMU, and SOU, respectively.

The decoding latency of the PMAP decoder, LD
PMAP, consisting of P sub-

decoder cores to decode a code block with information block length of K bits
can be calculated as

LD
PMAP =

K
P · l + LSISO. (14.2)

3In this part of the thesis, W refers to the size of decoding window in the SC-SCC
decoders while SW refers to the sliding window approach, which is employed in the
inner/outer decoders (i.e., LSW is the size of sliding window).

172 Decoder Architectures and Implementation Results

Figure 14.2. XMAP decoder architecture schematic.

The LD
PMAP is given by the number of clock cycles needed to decode a block

of size K bits. The overall number of clock cycles is mainly determined by the
number of clock cycles needed to process the sub-blocks of size K/P and can
be improved by employing a higher radix order, r = 2l , in the processing [164].
The individual sub-decoder cores then process l trellis steps per clock cycle
with a latency of LSISO, which can be expressed as

LSISO = (LSW + LACQ)/l + LP , (14.3)

where LP is the additional latency due to the pipelined extrinsic computation.

An especial case of PMAP architecture is the serial MAP (SMAP) architec-
ture, where P = 1 and the MAP algorithm processes the blocks serially.

14.1.2. XMAP ARCHITECTURE

In this type of architecture, the main idea is to split the code trellis into sliding
windows and process multiple of them concurrently in a pipeline. For that,
the operations of the MAP algorithm for decoding the sliding windows are
"unrolled" onto an XMAP decoder pipeline, which is illustrated in Figure 14.2.
Similar to the PMAP architecture, the same border initialization technique,
ACQ, has to be used for XMAP decoders [157].

The XMAP decoder pipeline is comprised of an acquisition pipeline of
length LACQ/l followed by a decoding pipeline of length LSW/l that real-
izes the state metric recursions and the extrinsic computation. The acquisition
pipeline consists of 2 · LACQ instances of ACSUs and LSW instances of BMUs,

14.2. Decoder Architectures 173

while the decoding pipeline requires 2 · LSW instances of ACSUs and LSW in-
stances of SOUs. The decoder pipeline is completed by FIFO registers for
forwarding the computed state metrics and branch metrics to the SOUs.

Note, that for a fixed sliding window size (LSW) and radix order of r =
2l , the amount of computational units (i.e., BMU, ACSU, SOU) is divided
by l, since each computational unit processes l trellis steps per clock cycle.
Therefore, the total area for the computational units of the XMAP decoder
architecture is

AXMAP =
LACQ · 2 · AA

l
+

(2 · AA + AΓ + AΛ) · LSW

l
. (14.4)

The decoding latency of XMAP decoder, i.e., LD
XMAP, with a radix-order r = 2l

to decode a block of size K is given by

LD
XMAP =

K
LSW

+ LPipe , (14.5)

where LPipe is defined as

LPipe =
LSW + LACQ

l
+ LP. (14.6)

14.1.3. UXMAP ARCHITECTURE

This decoder architecture extends the idea of XMAP architecture by unrolling
the decoding iterative loop onto a single monolithic decoder pipeline with
pipeline stages for each decoder run in the iterative loop. Thus, in the UXMAP
architecture, complete blocks are processed in parallel while traversing through
the decoder pipeline. The decoder pipeline consists of several iteration stages
that correspond to the unrolling of the iterative loop. The iteration pipelines
themselves contain a number of pipelined X-windows similar to the XMAP
architecture [160]. Assuming a completely filled pipeline, this architecture al-
lows a very high throughput, and in recent works the feasibility of a 400 Gb/s
turbo decoder was demonstrated [161].

The very high throughput and the fully pipelined decoder architecture fit
well with a streaming oriented processing of the decoding. However, the
window decoding of the SC-SCCs considered in this work requires an infor-
mation exchange between the spatially coupled blocks after each iteration.
This means a necessary restructuring of the decoding algorithm as well as the
UXMAP decoder pipeline are needed. This topic is investigated separately in
Chapter 15.

174 Decoder Architectures and Implementation Results

Inner
Decoder

In
te

rl
ea

v
er

In
te

rl
ea

v
er

D
ei

n
te

rl
ea

v
er

Outer
Decoder

Hard
Decision

Figure 14.3. The VLSI architecture of SCC decoder, corresponding to Algo-
rithm 12.1.

14.2. DECODER ARCHITECTURES

This section presents VLSI architectures to realize the SCC decoder, the block-
wise SC-SCC decoder, and the window-wise SC-SCC decoder, which have
been presented in Section 12.1, 12.2, and 12.3, respectively. Then, a design
comparison between these schemes is performed at the architecture level. The
inner and outer decoders are implemented for all three designs with the same
hardware that acts alternatingly as inner and outer decoder. However, for
more clarity with respect to the interleaving and de-interleaving, the inner
and outer decoders are drawn separately in Figure 14.3, 14.4, and 14.5.

14.2.1. SCC DECODER ARCHITECTURE

Figure 14.3 illustrates the high-level VLSI architecture for the decoder of un-
coupled SCC. This architecture, which is named as Design 1 in the rest of the
chapter, works as described in Algorithm 12.1 and its processing flow is de-
picted in Figure 12.1. The SCC decoder architecture includes the inner and
outer decoders connected using Interleaver 1 and Deinterleaver 1. The input to
this design is a code block with KUC information bits, which will be processed
using the inner and outer decoders with the trellis length of 2KUC and KUC,
respectively. Thus, the length of (De)Interleaver 1 in this design is equal to
2KUC. The other specifications of Design 1 are listed in Table 14.1.

14.2. Decoder Architectures 175

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2
Inner

Decoder

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

D
ei

n
te

rl
ea

v
er

2

D
ei

n
te

rl
ea

v
er

1

Hard
Decision

Outer
Decoder

Figure 14.4. The VLSI architecture to realize the block-wise decoding ap-
proach for the SC-SCC decoder, which is detailed in Algo-
rithm 12.2. In the notations, t′ refers to the blocks at time instants
t′ = t, · · · , t + W − 1, which are used to decode the target block,
ut, as described in Algorithm 12.2.

14.2.2. BLOCK-WISE SC-SCC DECODER ARCHITECTURE

The proposed high-level VLSI architecture to realize the block-wise decoding
for SC-SCCs is shown in Figure 14.4, which will be referred to as Design 2 in
the next sections. The decoding scheme is described in Algorithm 12.2 and
the corresponding decoding flow is depicted in Figure 12.2. In this design,
the single component decoder, shown in Figure 14.4, is used to decode the
whole window in a serial manner. The architectural specifications of Design 2
are detailed in Table 14.1.

14.2.3. WINDOW-WISE SC-SCC DECODER ARCHITECTURE

We have proposed the high-level VLSI architecture shown in Figure 14.5 to
realize the window-wise SC-SCC decoder, which is detailed in Algorithm 12.3
and its decoding flow is shown in Figure 12.3. In the following, this scheme
is referred to as Design 3, which includes the inner and outer decoders and
two sets of (de)interleavers, i.e., (De)Interleaver 1 and (De)Interleaver 2. In this

176 Decoder Architectures and Implementation Results

design, the BCJR algorithm can run over the whole window once per iteration,
which leads to the trellis length of 2K ·W and K ·W for the inner and outer
decoders, respectively. Table 14.1 lists the remaining architectural features of
Design 3.

14.2.D
ecoder

A
rchitectures

177

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

Hard
Decision

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

In
te

rl
ea

v
er

 1

In
te

rl
ea

v
er

 2

In
n

er
 D

ec
o

d
er

D
ei

n
te

rl
ea

v
er

2

D
ei

n
te

rl
ea

v
er

1

O
u

te
r

D
ec

o
d

er

D
ei

n
te

rl
ea

v
er

2

D
ei

n
te

rl
ea

v
er

1

From Next Window
To Previous WindowTo Next Window
From Previous Window

Figure 14.5. The VLSI architecture to realize the window-wise SC-SCC de-
coder, which is detailed in Algorithm 12.3.

178 Decoder Architectures and Implementation Results

14.2.4. DESIGN COMPARISON

The architectural features of Design 1, Design 2, and Design 3 are listed in
Table 14.1. We have considered the same structural latency in all designs. To
this end, the block length of Design 1 is set to KUC = W · K, where W and
K are the window size and block length of SC-SCCs, used in Design 2 and
Design 3. Moreover, the computational complexity is fixed for all designs by
employing the same effective number of iterations, Ieff. Thus, the number of
iterations in Design 1 is equal to I = Ieff while in Design 2 and Design 3 the
number of iterations per window position is Iw = Ieff/W.

As mentioned before, different VLSI architectures can be used to implement
the inner and outer decoders. However, for the considerations in this chap-
ter, one MAP hardware instance serves as both the inner and outer decoders
alternatingly, following Algorithm 12.1–12.3.

As a key advantage of SC-SCC scheme, the decoding performance of De-
sign 2 and Design 3 is not limited to the block length. Despite the uncoupled
SCC, i.e., Design 1, these designs can achieve the same or even better perfor-
mance for small block lengths compared to the larger ones. This concept has
been demonstrated in Figure 13.4 in Chapter 13.

In all designs in Table 14.1, there is a possibility to trade between the de-
coding performance and throughput by employing the PMAP architecture for
the inner and outer decoders. In general, the larger inner/outer trellis length
results in a better decoding performance at the cost of larger decoding latency
and consequently lower throughput.

As specified in Table 14.1, the best decoding performance can be achieved
in Design 3 if the trellis length of W · K and 2W · K are chosen for the outer
and inner decoders, respectively. However, as mentioned in the last column
of Table 14.1, the inner and outer decoders of Design 3 can be implemented
using the PMAP architecture with shorter trellis length, called sub-trellis length
in Table 14.1. It is worth to mention that the sub-trellis length can be an
arbitrary value and it is not necessarily equal to the block length. In this
case, depending on the degree of parallelism (P), the decoding performance
of Design 3 in the last column of Table 14.1 can be better than that of Design 2.

14.2.D
ecoder

A
rchitectures

179

Table 14.1. Design comparison of VLSI architectures for uncoupled and coupled SCC decoders.

Design 1� Design 2 Design 3

Decoding Algorithm Algorithm 12.1 Algorithm 12.2 Algorithm 12.3 Algorithm 12.3
Code Type SCC SC-SCC SC-SCC SC-SCC
Structural Latency KUC W · K W · K W · K
Decoding Performance† Fourth Third First Second
Inner, Outer Trellis Length 2KUC, KUC 2K, K 2W · K, W · K 2W · K, W · K
Inner, Outer Sub-Trellis Length 2KUC/P , KUC/P 2K/P , K/P 2W · K, W · K 2W · K/P , W · K/P
Internal Processing Serial Serial Serial Serial
Subdecoders per Inner/outer Trellis 1, . . . ,P 1, . . . ,P 1 1, . . . ,P
Decoding Iterations I = Ieff Iw = Ieff/W Iw = Ieff/W Iw = Ieff/W
Inner/Outer Decoder Architecture‡ SMAP, PMAP, XMAP SMAP, PMAP, XMAP SMAP, XMAP PMAP
Main Benefit High Throughput Low Area High Performance Low Latency
Limited on Block Size . Yes No No No
Performance Loss for Small Block Size Yes No No No
Performance Depends on Block Size Yes No No No

† In this ranking, the same computational complexity and structural latency are considered.
‡ To improve the decoding performance, acquisition is applied to PMAP and XMAP architectures.
. Possibility of decoding of large block lengths.
� In case of uncoupled codes, the block length of KUC = W · K is considered to have a fair comparison with the SC-SCC, where in

this table K is the block length of the SC-SCC (see (12.17) and (12.18)).

180 Decoder Architectures and Implementation Results

Table 14.2. Place and route results for the computational units.
BMU ACSU SOU

Area [µm2] † 572 784 2550
Frequency [MHz] 1000

Vdd [V] 0.72

† The results correspond to the worst
case corner of the 12 nm technology at
Vdd = 0.72 V.

14.3. RESULTS AND DISCUSSION

The high-level VLSI architectures for the SC-SCC window decoders, presented
in the previous section, extend the design space of the uncoupled decoders
and consequently the design choices at the component decoder level. Some
of the design choices such as inner/outer decoder architecture, parallelism
degree P , radix-order r = 2l [164], sliding window length on component
decoder level LSW, and sub-trellis length have a considerable impact on the
figures of merit like core area and decoding latency.

Therefore, this section aims at providing guidelines for a down selection of
design parameters. Based on the area and decoding latency considerations
from Section 14.1 and according to the place and route results for the compu-
tational units for 12 nm Fin-FET technology (see Table 14.2), we will exemplify
this with a comparison of three reference architectures (i.e., Design 1, Design 2,
and Design 3). In these reference architectures, we consider three cases of SC-
SCC design parameters with the same structural latency and computational
complexity, which are explained in the next subsection (i.e., Case 1, Case 2,
and Case 3). The goal is to highlight tradeoffs and the interplay between code
design choices for the proposed spatially coupled schemes and their decoding
down to the component decoder level.

14.3.1. REFERENCE DESIGNS AND CODE DESIGN PARAMETERS

The decoder architectures described in Section 14.2 serve as a framework for
our comparison:

• Design 1: Algorithm 12.1, trellis length W · K

• Design 2: Algorithm 12.2, trellis length K

• Design 3: Algorithm 12.3, trellis length W · K,

which are presented in Table 14.1. Additionally, we fix a set of code design
parameters (i.e., Case 1, Case 2, and Case 3) to evaluate the design area and

14.3. Results and Discussion 181

decoding latency of Design 1, Design 2, and Design 3 with the given component
decoder parametrizations:

• Case 1: K = 1024, W = 4, Iw = 16, m = 1, 3

• Case 2: K = 512, W = 8, Iw = 8, m = 1, 3, 7

• Case 3: K = 128, W = 32, Iw = 2, m = 1, 3, 7, 15, 31.

In these cases, different coupling memory depths, m, are considered and the
ones, which according to the guideline presented in Section 13.2.1 lead to
the best decoding performance in the given structural latency are specified
in bold. Note that, in order to have a fair comparison, we specify the de-
sign parameters such that all three cases result in the same structural latency
(LS = 4096) and computational complexity. Also, the decoding performance on
the code level of these schemes are evaluated and presented in Section 13.2
(see Figure 13.4–13.8).

14.3.2. MODEL ASSUMPTIONS

As mentioned before, in each component decoder the inner and outer de-
coders can work in serial or parallel. To simplify this study, we consider the
serial processing in all of the evaluations for both SCC and SC-SCC; i.e., one
decoder hardware instance alternately acting as the inner and outer decoders.

The component decoder architecture parameters used in the comparison
are listed in Table 14.3 and are aligned with the three code design cases. In
this table, the I/O latency of LI/O clock cycles is to consider the intermediate
delays of extrinsic memories. It is worth mentioning that, such parameters
highly depend on the detailed hardware architecture and their exact values
can be determined at the final implementation stage.

Since the parallelism in the XMAP architecture comes from the pipelining
of the sliding window decoding, the sub-decoder parallelism P was fixed to
P = 1 while it varies for the PMAP architecture between P = 1 (i.e., SMAP)
and P = 128. For the cases with smaller K, the sub-decoder parallelism for
the PMAP was reduced to keep the size of the sub-blocks, K/P , processed by
each sub-decoder larger than the smallest sliding window size, i.e., K/P > 16.
Sub-blocks smaller than 16 would lead to a significantly degraded decoding
performance, due to the lack of accurate state metric values at the sub-block
borders [136]. Since this effect also appears for the XMAP, the architectures
with acquisition calculations of length 8 and 16 were considered for the cases
with smaller sliding window/sub-block sizes.

The different decoder architectures will exhibit a different decoding perfor-
mance, since the specific choice of P , LSW, and LACQ will affect the decoding
performance of the component decoder. Therefore, the values listed in Table

182 Decoder Architectures and Implementation Results

Table 14.3. Component decoder parameters for the silicon area and decoding
latency estimations.
P LSW LACQ LP LI/O l

1, 2, 4, 8, 16, 32, 64, 128 16, 32, 64, 128 0, 8, 16 4 4 2

14.3 reflect typical parameter sets for the code rate R = 1/3 and block lengths
of K = 128, K = 512, and K = 1024.

For the component decoder parameter sets, we model the area as follows.
Since the BCJR algorithm is compute-dominated, the area estimation can
be performed on the basis of the total area occupied by the computational
units [162]. The computational units were fully synthesized, and then placed
and routed in a 12 nm FinFET technology for a target clock frequency of
1000 MHz (see Table 14.2) to provide a thorough basis for the area estimation.
The quantization for the computational units was based on a decoder input
quantization of 7 bits and the radix-order was fixed to r = 4 (i.e., l = 2) since it
gives the best latency/area tradeoff for max-Log-MAP based decoders [142].
Note that the resulting area estimates in the following discussions do not in-
clude area for the decoder memories, since they are highly dependent on the
available memory cuts, which would lead to a distortion of the comparison.
Moreover, it is assumed, that conflict-free interleavers [165–167] can be found
for the SC-SCCs to avoid the memory access conflicts for the highly parallel
component decoders.

14.3.3. DECODING LATENCY AND AREA

We estimate the area and decoding latency for a total of 66 different compo-
nent decoder configurations (28× XMAP + 38× PMAP) used in decoders fol-
lowing Designs 1–3 and considering the code design Cases 1–3. In Figure 14.6
and Figure 14.7, the area and decoding latency (LD) are given in mm2 and the
number of clock cycles, respectively. The decoding latency can be obtained as

LD = (Number of Iterations)(LD
Inner + LD

Outer) + LEx, (14.7)

where LD
Inner and LD

Outer are the decoding latency of the inner and outer de-
coders to process the inner and outer trellises, respectively. Depending on the
architecture of the inner and outer decoders, LD

Inner and LD
Outer will be mod-

eled from (14.2) and (14.5). In these equations, the value of K should be set
to the inner/outer trellis length of Designs 1–3, which are mentioned in Ta-
ble 14.1. Also, the "Number of Iterations" in (14.7) is equal to Ieff for Design 1
and Design 2 while it is Iw in case of Design 3. Moreover, LEx is considered
in (14.7) to include the additional latencies such as the I/O latency, and it is

14.3. Results and Discussion 183

A
re

a
E

st
im

at
io

n
 (

 m
m

)

Decoding Latency (clock cycles)

2

0.

0.

0.

0.

0.

Case 1

Case 2

Case 3

Design 1

Design 2

Design 3

0.

Figure 14.6. Area and decoding latency estimates for the decoders with a
SMAP/PMAP component decoder architecture.

equal to W.LI/O for Design 2 and LI/O for Design 1 and Design 3.
For both SC-SCC designs (Design 2 and Design 3), an increase in window

size, W, leads to a smaller block length, K, since a fixed structural latency, LS,
is assumed (see (12.17)). Consequently, the designs adapted to the code design
Case 3 exhibit the lowest decoding latency in Figure 14.6, since after each pass
through the decoding window, K bits are fully decoded. Another general
conclusion from Figure 14.6 is that Design 3 outperforms Design 2 in terms
of decoding latency. The reason for this is two-fold. First, the processing of
W ·K bits allows for a higher level of parallelism, P . For example, for Design 2
and Case 3, a parallelization of P = 8 already leads to a reduced sub-block
size of K/P = 128/8 = 16, for which an acquisition needs to be employed.
Second, Design 3 allows a parallelization of up to P = 128 without reducing
the sub-block size below W · K/P = 4096/64 = 64. Note, however, that the
parallel decoding of the W sub-trellises of the decoding window, will lead to
a loss in error correcting performance in comparison to the serial decoding of
the individual blocks of size K as is done in Design 2.

To achieve the best error correcting performance among the presented de-
coder architectures, a serial decoding, i.e., P = 1 (SMAP) is suggested (see
section 13.2 and Table 14.1). The negative effect on the decoding latency is
again mitigated through increasing W.

Having considered a certain design in Figure 14.6, the decoding latency can

184 Decoder Architectures and Implementation Results
A

re
a

E
st

im
at

io
n

 (
 m

m

)
2

Decoding Latency (clock cycles)

×
0.

0.25

0.2

0.3

0.15

0.1

0.05

Case 1

Case 2

Case 3

Design 1

Design 2

Design 3

Figure 14.7. Area and decoding latency estimates for the decoders with an
XMAP component decoder architecture.

be reduced by increasing the level of parallelism for all the code design cases
(i.e., Cases 1–3) at the expense of larger design area.

For the decoders with XMAP as component decoder architecture, we ob-
tain similar results (see Figure 14.7). Here, the decoding latency is smaller for
Design 3 when comparing it to Design 2 and Design 1. In contrast to the PMAP
case, increasing the parallelism on component decoder level leads to a no-
ticeable latency-penalty for Design 2, since for large sliding window sizes, the
number of sliding windows becomes smaller in comparison with the XMAP
pipeline length. Thus, the pipeline cannot be fully utilized and the pipeline
latency can no longer be largely hidden.

It is worth to point out that in Figure 14.6 and Figure 14.7, the reference
Design 1, indicated by a dashed black line, has a larger decoding latency in
terms of clock cycles than Design 2 and Design 3 for all the code design cases
(i.e., Cases 1–3). This is because a decoder following Design 1 will output the
decoded bits after W · Iw iterations (i.e., 64 iterations in this example), whereas
a decoder following either Design 2 or Design 3 will output the decoded bits
after Iw iterations.

14.3. Results and Discussion 185

A
re

a
E

st
im

at
io

n
 (

 m
m

)

2

Throughput (b/s)

0.

0.

0.

0.

0.

0.

Case 1

Case 2

Case 3

Design 1

Design 2

Design 3

Figure 14.8. Area and throughput estimates for the decoders with a PMAP
component decoder architecture.

14.3.4. THROUGHPUT AND AREA

The throughput T in terms of decoded bits per second for the compared
designs can be obtained from the decoding latencies in clock cycles for a given
clock frequency f as

T =
K
LD’ · f , (14.8)

where the value of K is specified in a similar way as explained for (14.7),
and LD’ is the required latency to fully decode the corresponding trellis. We
assume a clock frequency f = 1000 MHz as it was used for the synthesis
of the computational units. The resulting throughput estimates are plotted
against the area consumption of the compared decoders, i.e., Designs 1–3, in
Figure 14.8 and Figure 14.9.

The serial processing of the decoding window in decoders with Design 2
results in a reduced throughput compared to Design 1 and Design 3, which
process the decoding window in parallel. Notably, the throughput difference
between the PMAP based decoders with Design 2 is only a few Mb/s for the
different code design cases when comparing at similar levels of parallelism
(see Figure 14.8).

The throughput estimations for the decoders with XMAP based compo-
nent decoders are illustrated in Figure 14.9. The above-mentioned latency

186 Decoder Architectures and Implementation Results

Throughput (b/s)

A
re

a
E

st
im

at
io

n
 (

 m
m

)

2

0.

0.25

0.2

0.3

0.15

0.1

0.05

Case 1

Case 2

Case 3

Design 1

Design 2

Design 3

Figure 14.9. Area and throughput estimates for the decoders with an XMAP
component decoder architecture.

penalty is translated into a reduced throughput for Design 2 decoders with
large sliding window sizes, which is more pronounced for the code design
Case 3. Moreover, increasing W (i.e., from Case 1 to Case 3) yields a through-
put penalty for Design 2 decoders in the order of up to 50− 60 Mb/s.

14.3.5. DESIGN TRADEOFFS

From the decoding latency, area and throughput models, several design trade-
offs can be identified.

First, in case of an XMAP component decoder architecture, the decoding
window size W must be jointly chosen with the sliding window size LSW
within the component decoder. The number of sliding windows in the XMAP
NSW = K/LSW should be larger than the pipeline length of the XMAP to avoid
low pipeline utilization and a degradation in decoding latency and through-
put. To mitigate this, the combination of spatial and functional parallelism
(i.e., the multiple parallel XMAP cores) was used in [160].

Second, in the case of PMAP component decoders and Design 2, increasing
the decoding window size W does not significantly impact the throughput.
Thus, the tradeoff can be based on error correcting performance considera-
tions. Seen in connection with the lower latency of the code design cases
with higher W, this result highlights the viability of SC-SCCs for streaming

14.3. Results and Discussion 187

applications with moderate throughput requirements but high demands on
decoding performance (see also Section 13.2).
Overall, the choice between Design 2 and Design 3 becomes a tradeoff between
error correcting performance and throughput, since the structural latency for
a fixed code design case and component decoder architecture is similar.

Lastly, it should also be mentioned that the throughput for decoders with
Design 1 reported in Figure 14.8 and 14.9 does not account for early stopping.
Since the decoding complexity was chosen as a fixed point for comparison,
the number of decoding iterations could be reduced for all decoders with
Design 1, thereby increasing the throughput. However, as discussed in Section
13.2, the error correcting performance of the SC-SCC decoders outperform the
uncoupled decoders at the same computational complexity.

15
Fully Pipelined Decoding of

SC-SCCs

Support for extreme data rates in wireless communication systems beyond 5G
(B5G) is essential for many new use-cases and services, such as data kiosks,
high capacity wireless backhauls, and wireless virtual and augmented real-
ity [138], [139]. These demanding throughput requirements directly translate
to the digital baseband signal processing where channel coding largely con-
tributes to the computational complexity, overall latency/throughput limita-
tions, and is subject to major restrictions in terms of silicon area [162]. In order
to achieve Tbps throughputs with FEC schemes, highly parallel and deeply
pipelined decoder hardware architectures are required.

Although fully pipelined turbo decoders (i.e., the traditional PCC) are ex-
pected to achieve Tbps for medium block sizes and low number of iterations,
they suffer from error floor as well as a large silicon area for block sizes above
100 bits [160, 161].

Spatially coupled schemes, which enable us to construct a larger code of
almost arbitrary length from a much smaller code, may offer a way around
this block size limitation. From a code design perspective, it has been shown
that spatial coupling improves the decoding threshold and consequently the
BER performance [143, 144], as discussed in Chapter 13. From a hardware
design perspective, the decoding of spatially coupled codes can be done us-
ing the window decoding algorithms 1, which were presented in Chapter 12
(i.e., Algorithm 12.2 and 12.3). These algorithms allow the decoder to be con-
structed from a set of traditional decoders working on the block size of the
smaller code, which are then chained together and coupled accordingly. This
streaming-like decoding has the potential to combine good error correction

1In the following text, the presented SC-SCC window decoding algorithms in Chap-
ter 12, i.e., Algorithm 12.2 and 12.3, are referred to as WD schemes.

189

190 Fully Pipelined Decoding of SC-SCCs

performance with high throughput and lends itself to a pipelined hardware
architecture.

However, limitations for fully pipelined implementation with the highest
throughput, such as maximum block size and maximum number of iterations
which already exist for the uncoupled case, also exist for the coupled case. On
the other hand, employing classical window decoding for spatially coupled
turbo-like codes either imposes a minimum block size or a large number of
iterations per decoding window. Both may render an implementation ineffec-
tive and constrain the degree to which the architecture of an SC-SCC decoder
can be parallelized.

In this chapter we present jumping window decoding (JWD), an algorithmic
modification to the scheduling of decoding for SC-SCCs. This scheme enables,
for the first time, fully pipelined implementation of SC-SCCs decoder. Also,
it provides flexibility in terms of block length and number of iterations and
makes them independent of each other. We discuss a conceptual hardware
architecture and provide corresponding implementation estimates in 12 nm
technology node based on a characterization of the computational units.

The remainder of this chapter is structured as follows. Section 15.1 presents
the fully pipelined decoder hardware architecture and discusses about its ap-
plicability to the SC-SCC window decoders (i.e., Algorithm 12.2 and 12.3),
which were presented in Chapter 12. The proposed JWD approach is intro-
duced in Section 15.2. Then, Section 15.3 presents performance evaluation
for hardware friendly code design and decoding schedule parameters, as well
as 12 nm implementation estimates for a fully pipelined decoder hardware
architecture with JWD scheduling.

15.1. FULLY PIPELINED ITERATION UNROLLED ARCHITECTURE

Achieving more than 100 Gbps has been demonstrated for PCC decoders in a
fully pipelined iteration unrolled XMAP decoder architecture (UXMAP) [160, 161].
In this architecture the decoding of the PCC is unrolled onto a pipeline with
several half-iteration (HI) stages corresponding to the iterative processing. The
HI stages themselves are pipelined implementations of the MAP algorithm.
Thus, assuming a completely filled pipeline, this results in one decoded block
per clock cycle at the output of the decoder. In [160], the HI stages were
implemented not as monolithic pipelines, but as P parallel pipelines, each of
them processes sub-blocks of K/P bits for K = 128. Also, in [161] the optimal
sizes of K/P for K ≤ 512 bits are investigated.

In contrast to [160, 161], a UXMAP decoder architecture for SC-SCCs re-
quires two different types of HI stage since the inner and outer trellis lengths
are different. One HI stage for the inner decoder, which processes 2K bits, and

15.1. Fully Pipelined Iteration Unrolled Architecture 191

one for the outer decoder, processing K bits. Consequently, for a given block
length, K, the area complexity of an SCC-UXMAP decoder can be expected
to be at least 1.5× that of a PCC-UXMAP, which further constrains the max-
imum block length and the number of decoding iterations. Due the unequal
trellis lengths, the inner decoder iteration stages should be implemented with
different degrees of parallelism (i.e., via [160]) for full pipeline utilization.

Moreover, in order to realize the spatial coupling in the hardware architec-
ture, the feedback connections need to be introduced between the HI stages,
as shown in Figure 15.1 where a coupling memory of m = 1 is assumed. For
simplicity, there is no distinction made in Figure 15.1 between connections for
extrinsic information, parity bits, and channel LLR values. Having considered
the effective number of iterations,

Ieff = W · Iw, (15.1)

the number of required HI stages in the decoder architecture, nHI, is 2Ieff =
W · Iw, provided m ≤ Ieff = W · Iw. Thus, Ieff blocks of an SC-SCC encoded
data stream are present in the decoder pipeline with nHI HI stages. In order
to fully utilize the decoder pipeline, while preserving the spatial coupling, the
number of independently coupled streams entered to the decoder should be
equal to the pipeline depth of the HI stages.

192
Fully

Pipelined
D

ecoding
of

SC
-SC

C
s

Π1

to be decoded already decoded

Π1 Π1 Π1 Π1 Π1 Π1 Π1Π2Π2 Π2 Π2 Π2 Π2Π2 Π2
-1 -1 -1 -1 -1 -1 -1 -1

W =8K K

(a)

(b)

Figure 15.1. (a) High-level architecture of a decoder pipeline for fully
pipelined decoding of SC-SCCs with alternating HI pipelines
functioning as the inner and outer decoders, which are connected
through the interleavers, Π, and deinterleavers, Π−1. In this ex-
ample, nHI = 8, Ieff = 4 are assumed. (b) A chain of SC-SCC; the
code blocks, which are under processing in the decoder pipeline
(i.e., the upper subfigure) are color coded.

15.1. Fully Pipelined Iteration Unrolled Architecture 193

Iterative

(a)

(b)

W =4

K/2

K

K/2
W =8

Figure 15.2. Window decoding (WD) scheme for two SC-SCC scenarios with
a fixed structural latency and different block lengths. (a) {W =
4, K,LS = 4K} and (b) {W ′ = 8, K′ = K/2,LS = 4K}.

15.1.1. CHALLENGES FOR FULLY PIPELINED WINDOW DECODING

We have demonstrated in Chapter 13 how to use higher coupling memories
without increasing the complexity and latency. To this end, given a certain
coupling memory, m, the decoding window size should be chosen as W =
2(m + 1), which as we have shown in Chapter 13, results in the best possible
decoding performance in the corresponding structural latency of

LS = K ·W = K · 2(m + 1), (bits). (15.2)

This provides the opportunity to trade between coupling memory and block
length in a fixed structural latency without sacrificing the code strength. Thus,
a given structural latency can be obtained by either large or small block
lengths. Figure 15.2(a) and (b) depict this concept for two scenarios with
{W = 4, K} and {W ′ = 8, K′ = K/2}, respectively, which both have the same
structural latency of LS = 4K bits and their optimal coupling memories are
specified by (15.2).

Having considered the window decoding approach, there is W − 1 blocks
overlap between successive windows. Thus, the larger window size, e.g.,
the case in Figure 15.2(b), results in a larger computational complexity if the
same Iw is used for both cases in Figure 15.2. As described in Chapter 13,
in order to fix the computational complexity in different SC-SCC scenarios,
the same Ieff should be employed. This can be achieved by either small W
and large Iw or large W and small Iw as imposed by (15.1). This results in

194 Fully Pipelined Decoding of SC-SCCs

some challenges for the window decoding of SC-SCCs with respect to the
fully pipelined implementation as follows.

The window decoding of SC-SCCs in a fully pipelined decoder architec-
ture is even more limited in terms of block length, K, and effective number of
iterations, Ieff, than in the PCC case. In case of large window sizes, W, con-
straining Ieff results in a very low number of iterations within each decoding
window, Iw, following from (15.1). This leads to a poor error correcting per-
formance. In order to avoid this, larger Iw and consequently larger Ieff should
be used, which in turn increases the computational complexity. On the other
hand, constraining the decoder to smaller window sizes, which would allow
for larger Iw, would need larger blocks to benefit from a larger overlap be-
tween successive windows and to keep structural latency unchanged based
on (15.2). However, the larger block lengths increase the silicon area signifi-
cantly, as will be discussed in Section 15.3.2. Also, small window sizes prevent
from employing higher coupling memories, as stated in (15.2).

15.2. JUMPING WINDOW DECODING (JWD)

To overcome the above-mentioned challenges, we propose jumping window de-
coding (JWD), a schedule that enables a fixed Ieff without sacrificing Iw or
requiring large block length. The key idea of JWD is to move the decod-
ing window such that the same number of iterations per window position is
used for any SC-SCC scenario, regardless of its window size, block length,
and structural latency. This scheme demonstrates that employing small block
lengths in a certain structural latency does not imply that the decoding win-
dow has to be moved by small steps, which according to (15.1) results in a
large Ieff.

We consider the WD scheme for the SC-SCCs with the smallest coupling
memory, i.e., m = 1, as the reference design in which the decoding window
is moved by one block. According to (15.2) for a given structural latency this
coupling memory corresponds to the smallest window size, i.e., Wref = 4,
and the biggest block length and thus the largest step size for shifting the
decoding window (see Figure 15.2(a)). The JWD scheme makes it possible to
use the same number of iterations per window position, IJWD, for an SC-SCC
with arbitrary window size and block length, where

IJWD =
Ieff

Wref
. (15.3)

Accordingly, after IJWD iterations, the decoding window is moved by

∆ =
W

Wref
× K (bits). (15.4)

15.3. Results and Discussion 195

Iterative

W =8
K/2K/2

Figure 15.3. Proposed jumping window decoding (JWD) for the SC-SCC pre-
sented in Figure 15.2(b) with {W = 8, K′ = K/2}.

Therefore, in case of equal structural latencies in the JWD the decoding win-
dow is moved by the same step size, ∆. Here, the step size is not necessarily
equal to one block and can be flexible while in the WD algorithms in Chap-
ter 12 ((i.e., Algorithm 12.2 and 12.3)), it is moved by one block, i.e, ∆ = K bits.
The processing flow of JWD is depicted in Figure 15.3, where the same SC-
SCC scenario as the one in Figure 15.2(b) is considered. In Section 15.3.2, we
will show a reduced Ieff without loss in error correcting performance, which
reduces the silicon area of a pipelined decoder architecture.

In order to clarify the concept of JWD, we present three groups of SC-
SCCs in Table 15.1, which are corresponding to the structural latency of LS =
1024, 2048, 4096 bits. Each group includes several combinations of window
size, W, and block length, K. In this analysis, Ieff = 16, 12, and 8 are consid-
ered to fix the computational complexity. It can be seen that the number of
iterations per window position in the traditional WD scheme (Iw) calculated
from (15.1), is very low for small block lengths. Also, Iw should be rounded to
the nearest integer, which results in unequal computational complexity. More-
over, in many cases like the ones with K = 32 and 64 bits the WD scheme be-
comes impractical since Iw < 1, which means the computational complexity
budget should be increased. By employing JWD, the number of iterations per
window will be independent of block length and window size, and therefore
the same number of iterations per window, IJWD, is used for all the scenar-
ios in Table 15.1. In this table, Iw, IJWD, and ∆ are calculated according to
(15.1), (15.3), and (15.4), respectively by assuming Wref = 4 as the reference.
However, other decoding window sizes can alternatively be considered as the
reference window size.

196 Fully Pipelined Decoding of SC-SCCs

Table 15.1. SC-SCC scenarios with fixed structural latency and complexity.

Ieff 16, 12, 8 16, 12, 8 16, 12, 8 16, 12, 8

K (bits) 256 128 64 32

L
S
=

10
24 W 4 8 16 32

m 1 3 7 15
Iw 4, 3, 2 2, 1.5, 1 1, 0.75, 0.5 0.5, 0, 0

IJWD 4, 3, 2 4, 3, 2 4, 3, 2 4, 3, 2
∆ (bits) 256 256 256 256

K (bits) 256 128 64 32

L
S
=

20
48 W 8 16 32 64

m 3 7 15 31
Iw 2, 1.5, 1 1, 0.75, 0.5 0.5, 0, 0 0, 0, 0

IJWD 4, 3, 2 4, 3, 2 4, 3, 2 4, 3, 2
∆ (bits) 512 512 512 512

K (bits) 256 128 64 32

L
S
=

40
96 W 16 32 64 128

m 7 15 31 63
Iw 1, 0.75, 0.5 0.5, 0, 0 0, 0, 0 0, 0, 0

IJWD 4, 3, 2 4, 3, 2 4, 3, 2 4, 3, 2
∆ (bits) 1024 1024 1024 1024

15.3. RESULTS AND DISCUSSION

This section presents the decoding-performance evaluation and the area com-
plexity of the JWD scheme.

15.3.1. PERFORMANCE EVALUATION

We have evaluated the decoding performance of JWD in the SC-SCC scenar-
ios presented in Table 15.1. In each scenario, we use a coupling memory of
m = W/2 − 1, which leads to the best decoding performance for a given
{K, W} (see Chapter 13). Figure 15.4(a) illustrates the BER performance of
JWD and WD schemes for the SC-SCC scenarios in the first column of Ta-
ble 15.1. In case of LS = 1024, the BER curves of WD and JWD are exactly the
same since W = Wref and thus ∆ = K bits for both cases. Also, Figure 15.4(a)
shows that JWD improves the decoding performance by 0.5-0.9 dB and lowers
the error floor, e.g., from 10−3 to lower than 10−6 in LS = 4096. However, it is
worth to point out that the performance improvement is not the only advan-
tage of using JWD. As discussed in Section 15.1.1, employing WD schemes for
small block lengths is not possible if Ieff < W, i.e., low to moderate computa-
tional complexity budget. In such cases, even the lowest number of iterations,

15.3. Results and Discussion 197

i.e., Iw = 1, leads to a large Ieff = W, which increases the computational
complexity significantly. This prevents from efficient hardware implementa-
tion and achieving high throughput. On the other hand, the proposed JWD
scheme makes it possible to perform decoding for very small block lengths
with a lower Ieff, i.e., lower complexity, while the decoding performance is
equal to or better than the traditional WD approach.

Figure 15.4(b) shows the BER performance of the JWD scheme and the un-
coupled codes, SCCs, for different structural latencies. Also, the decoding
threshold, which is the theoretical limit on the decoding performance [140],
is shown by vertical lines for both codes. It can be seen that in all cases the
JWD scheme outperforms the SCCs by around 0.2-0.8 dB. Note, that in order
to have a fair comparison the same computational complexity is considered
by employing Ieff = 16 for both coupled and uncoupled codes. Also, the same
latency is considered by adjusting K in the SCC equal to LS in the SC-SCC,
following (12.17) and (12.18).

We have investigated the effect of Ieff on the decoding performance of JWD
for the scenarios presented in Table 15.1. Figure 15.4(c), (d), and (e) depict the
BER curves for LS = 1024, 2048, and 4096 bits, respectively. It can be seen that
the performance gap between Ieff = 8 and Ieff = 12 is larger than the that of
between Ieff = 12 and Ieff = 16. Moreover, as expected, the BER performance
is improved by increasing the structural latency. It is worth to mention that the
reason behind the performance gap between different block lengths at a given
structural latency is the poor decoding performance of short interleavers. This
gap could be smaller if the interleavers are designed jointly.

The effective number of iterations, Ieff, trades between decoding perfor-
mance and silicon area, i.e., the number of pipeline stages in Figure 15.1.
Therefore, depending on the application, the most efficient value of Ieff is
determined by considering an area-performance tradeoff.

15.3.2. AREA COMPLEXITY ESTIMATIONS

In order to perform the above-mentioned tradeoff and demonstrate the effect
of JWD, we give hardware estimations for fully pipelined SC-SCCs. It is well
established, that the area of fully pipelined implementations for the MAP is
dominated by the computational units of the MAP [159–161]; the BMU, ASCU
and SOU largely specify the design area of the inner and outer HI stages as

Ainner
HI =(2 · K/ log2 r) ·

(
ABMU + 2 · AACSU + ASOUI

)
+ AFIFO,

Aouter
HI =(K/ log2 r) ·

(
ABMU + 2 · AACSU + ASOUO

)
+ AFIFO (15.5)

where the outer decoder stages use SOUs, which generate extrinsic informa-
tion on parity bits as well (i.e., SOUO) and the inner decoder stages use SOUs,
which only generate extrinsic for the information bits (i.e., SOUI).

198
Fully

Pipelined
D

ecoding
of

SC
-SC

C
s

1.5

B
E

R

(b) (c) (d) (e)

 K=1024
 K=2048
 K=4096

 =1024
 =2048
 =4096

SC-SCC

SCC

 K=256,W=4
 K=128,W=8
 K=64,W=16
 K=32,W=32

Eb/N0 (dB) Eb/N0 (dB) Eb/N0 (dB) Eb/N0 (dB)

 Ieff = 8
 Ieff =12
 Ieff =16

 =1024 =2048 =4096

 K=256,W=8
 K=128,W=16
 K=64, W=32
 K=32, W=64

 Ieff = 8
 Ieff =12
 Ieff =16

 K=256,W=16
 K=128,W=32
 K=64, W=64
 K=32,W=128

 Ieff = 8
 Ieff =12
 Ieff =16

T
h

re
sh

o
ld

(S
C

C
)

T
h

re
sh

o
ld

(S
C

-S
C

C
)

(a)

Eb/N0 (dB)

 =1024,K=256, W=4
 =2048,K=256, W=8
 =4096,K=256,W=16

 JWD, Ieff =16
 WD, Ieff =16

Figure 15.4. (a) BER Performance comparison between the proposed JWD and
WD schemes. (b) Performance comparison between SC-SCCs
(with JWD) and uncoupled SCCs.
Performance evaluation of JWD for different values of Ieff, W,
and K in the structural latency of (c) LS = 1024, (d) LS = 2048,
and (e) LS = 4096.

15.3. Results and Discussion 199

Table 15.2. Place and route results of the MAP computational kernels.
BMU ACSU SOUI SOUO

Technology 12 nm FINFET
Frequency (MHz) 1000

Vdd (V) 0.72
Temperature (°C) 125

Area (µm2) 572 784 2025 2550

Table 15.3. Area and throughput estimates of pipelines for different block
lengths and Ieff.

Block Length (K) 256 128 64 32

Ieff Area (mm2)‡

16 26.66 13.33 6.66 3.33
12 20.00 10.00 5.00 2.50
8 13.33 6.66 3.33 1.66

Throughput† (Gbps) 204.8 102.4 51.2 25.6
‡ Area estimated based on Table 15.2 and (15.5).
† Throughput = K/Frequency

Table 15.2 presents placed and route results for radix-4 (r = 4) compu-
tational units of a UXMAP decoder architecture in 12 nm technology for a
target frequency of 1000 MHz. The overall area estimate for the selected cod-
ing scenarios is given in Table 15.3, which are calculated from (15.5) and by
considering the total number of HI stages as nHI = 2 · Ieff. Note that, for this
qualitative estimate, AFIFO is not taken into account. However, together with
the error correcting performance results for JWD these qualitative estimates
indicate that the area consumption for a fully pipelined SC-SCC decoder can
be drastically reduced by reducing the effective number of iterations, Ieff, and
block length, K, without significant decoding-performance loss.

Summary of Part-III

In this part of the thesis, we investigated the SC-SCCs, which belong to
the spatially coupled turbo-like codes. To this end, we carried out a com-
prehensive design space exploration, revealing different aspects of SC-SCCs
and discussing various design tradeoffs. In particular, we investigated the ef-
fect of coupling memory, block length, decoding window size, and number
of iterations on the decoding performance, computational complexity, latency,
throughput, and hardware cost of the SC-SCCs. As a result of this exploration,
we proposed design guidelines to make the code design independent of the
block length.

We demonstrated that the coupling memory and block length can be ex-
changed flexibly without changing the structural latency and complexity of
decoding and without performance loss. As a result, a particular code strength
and decoding performance can be achieved by either a very small block length
or a large one, while the complexity and structural latency are fixed. More-
over, our results show that using higher coupling memory with smaller blocks
can even improve the decoding performance without increasing the structural
latency and complexity. We observed that for all considered coding scenarios
the decoding performance of SC-SCCs is better than the uncoupled ensembles
for a fixed structural latency and complexity.

We presented several decoding algorithms for the spatially coupled and un-
coupled SCCs. Thanks to the algorithm-architecture co-design methodology,
we developed a decoding scheme for the SC-SCCs, which can provide both
good decoding-performance and high throughput.

Finally, we investigated the hardware realization of the presented decoding
schemes, which is missing in the literature. For this purpose, we proposed
different VLSI architectures as well as different implementation choices for
these architectures. Then, the corresponding throughput, decoding latency,
and silicon area were evaluated.

201

Future Works

In light of the achieved results throughout this thesis, we list the remain-
ing research topics for the baseband processing of wireless communication
systems as follows.

FFT/IFFT PROCESSOR

• The number of used-subcarriers in an OFDM-based system depends on
the overall transmission bandwidth. Consequently, different FFT sizes
are needed for different system bandwidth. The length of input stream
in the proposed FFT/IFFT processor is 2048 samples. However, it is
possible to add a simple control logic to the presented VLSI architec-
ture to disable a number of intermediate FFT stages. In this way, a
variable-length FFT/IFFT can be developed, which can process FFTs of
128, 256, 512, and 1024 points. As discussed in Part 1, the proposed con-
trol scheme for the memories and butterfly units can support different
FFT sizes.

• In MIMO-OFDM systems, multiple spatial streams are used, which
means that FFT processing of multiple data streams is required. In
general, multiple FFT processors can be used to handle multiple data
streams. Another approach is to employ parallel FFT architectures like
MDF architecture. It is worth to investigate the possibility of applying
the proposed idea of OFDM-guard band utilization to this kind of FFT
architecture to reduce the latency of FFT/IFFT.

203

204 Future Works

MASSIVE MIMO DETECTION

• The proposed angular-domain massive MIMO detector can process dif-
ferent number of selected beams, which is specified according to the
channel condition. However, the number of selected UEs to be used in
the post processing scheme is fixed in our design, which is obtained
from a complexity-performance tradeoff. The concept of channel-aware
adaptive signal processing can be applied throughout the whole design
to make it adaptive with respect to the channel condition; e.g., depend-
ing on the channel condition the non-linear post-processing scheme can
be bypassed.

• In this context, another interesting topic to explore is the investigation
of the extension of the proposed massive MIMO detection scheme to
the soft-output version.

SC-SCC SCHEME

• As presented in Chapter 13, in case of small block lengths the decoding
performance of SC-SCC scheme degrades since the short-length inter-
leavers are not efficient. Investigation of a joint interleaver design for
small block lengths and employ them in the proposed VLSI architec-
tures for SC-SCCs will be an interesting research topic. This can im-
prove the decoding performance of such cases.

• The VLSI implementation of a complete SC-SCC decoder is a challeng-
ing task, which is still an open problem in the literature.

CROSS-BLOCK OPTIMIZATION

• In order to further improve the performance metrics, it is possible to
perform optimization across different functional blocks in the baseband
processing chain. As an example, the detection and decoding schemes
can be designed jointly to achieve better results. Moreover, given lim-
ited hardware resources, the designer can decide how to spend the com-
putational units and adjust the processing effort among different mod-
ules, e.g., between linear and non-linear processing in detection block,
between detector and decoder, etc.

Also, the cross-block optimization can be employed for an efficient se-
lection of the word lengths of successive blocks in the baseband pro-
cessing chain. More specifically, the word length of a certain block can
be traded for the BER performance of the next block in the processing
chain.

Appendices

205

AAppendix
Popular Science Summary

Wireless communication has become an indispensable part of people’s lives
over the entire world. Societies are getting closer to what is called a network
society, in which almost all humans and machines, called user equipments,
are connected to each other through extensive communication networks. The
number of connected user equipments in such a network grows significantly
over the years; for example, the number of mobile subscriptions is currently
around 8 billion. Sending and receiving lots of information using mobile
phone, laptop, etc. has become our daily routine, which has led to the gener-
ation of significant data traffic volumes. On the other hand, new application
areas and use cases like smart cities, smart homes, connected ambulances, the
Internet of things (IoT), autonomous vehicles, and drones are emerging. Some
applications like video streaming rely upon fast data transmission (i.e., high
data-rate) and low communication delay (i.e., low latency). Also, many of
them like autonomous vehicles have extreme requirements on the reliability
of communication since the failure in such cases can result in severe conse-
quences. In order to fulfill these requirements and support the high number
of connected devices, new technologies are needed.

One of these technologies, which is incorporated in the recently released 5th
generation (5G) standard is massive multiple-input multiple-output (MIMO).
Massive MIMO technology promises a high data rate as well as increased en-
ergy efficiency by employing a large number of antennas (100 or even more)
at the base station. Since the base station receives data streams from several
user equipments simultaneously, sophisticated computations are necessary to
identify what is sent from the user equipments, which is referred to as detec-
tion, and what should be sent back to them. Moreover, when it comes to hard-
ware implementation of massive MIMO systems there are several practical
concerns like the hardware cost, communication delay (latency), and power

207

208 Future Works

consumption, which mainly stem from the large number of antennas at the
base station. In order to address these challenges and achieve the targeted
design goal, the proper design methodology should be chosen.

Reliability of the received data is another key characteristic of wireless net-
works. In communication systems often the data are distorted along the noisy
channel, which is a physical medium that connects the sender to the receiver.
Thus, sometimes the receiver may not be able to recover the original data,
which are sent by the corresponding sender. In order to mitigate the noise
effect and create a reliable communication link a technique called channel
coding has been used. In this technique, some redundant data are added to
the sender’s data in a controlled way to protect the data from possible er-
rors. There are numerous classes of codes, which have different capability in
detecting and correcting the errors in the data transmission.

Eventually, these sophisticated algorithms and processing have to be real-
ized using hardware architectures. However, there are numerous design chal-
lenges when it comes to hardware implementation, which circuit designers
have to deal with. Examples of these practical concerns are processing speed,
reliability, hardware cost, and power consumption.

The focus of this dissertation has been on the investigation of hardware-
efficient realization of several key components, which are commonly used in
many wireless communication systems. To this end, we have analyzed vari-
ous design tradeoffs in the algorithm and architecture levels for the targeted
components. Also, cross-level optimizations have been explored to reduce the
computational complexity, hardware cost, and communication latency, and to
improve the communication performance and link reliability.

Bibliography

[1] Ericsson, “Ericsson Mobility Report,” "[Online]", Available:
https://www.ericsson.com/en/mobility-report, November 2020.

[2] J. G. Andrews et al., “What Will 5G Be?” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[3] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Inter-
net of Things (IoT) for Next-Generation Smart Systems: A Review of
Current Challenges, Future Trends and Prospects for Emerging 5G-IoT
Scenarios,” IEEE Access, vol. 8, pp. 23 022–23 040, 2020.

[4] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Transactions on Wireless Com-
munications, vol. 9, no. 11, pp. 3590–3600, 2010.

[5] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for Next Generation Wireless Systems,” IEEE Comm. Magazine,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[6] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially Coupled
Turbo-Like Codes,” IEEE Transactions on Information Theory, vol. 63,
no. 10, pp. 6199–6215, Oct 2017.

[7] J. García-Morales, M. C. Lucas-Estañ, and J. Gozalvez, “Latency-
Sensitive 5G RAN Slicing for Industry 4.0,” IEEE Access, vol. 7, pp.
143 139–143 159, 2019.

209

210 Bibliography

[8] H. Ma, S. Li, E. Zhang, Z. Lv, J. Hu, and X. Wei, “Cooperative Au-
tonomous Driving Oriented MEC-Aided 5G-V2X: Prototype System De-
sign, Field Tests and AI-Based Optimization Tools,” IEEE Access, vol. 8,
pp. 54 288–54 302, 2020.

[9] J. Vieira et al., “A Flexible 100-antenna Testbed for Massive MIMO,” in
IEEE Globecom Workshops (GC Wkshps), Dec. 2014, pp. 287–293.

[10] N. A. Mohammed, A. M. Mansoor, and R. B. Ahmad, “Mission-Critical
Machine-Type Communication: An Overview and Perspectives To-
wards 5G,” IEEE Access, vol. 7, pp. 127 198–127 216, 2019.

[11] J. Chen, Z. Zhang, H. Lu, J. Hu, and G. E. Sobelman, “An Intra-Iterative
Interference Cancellation Detector for Large-Scale MIMO Communica-
tions Based on Convex Optimization,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 63, no. 11, pp. 2062–2072, Nov. 2016.

[12] A. Acemoglu, J. Krieglstein, D. G. Caldwell, F. Mora, L. Guastini, M. Tri-
marchi, A. Vinciguerra, A. L. C. Carobbio, J. Hysenbelli, M. Delsanto,
O. Barboni, S. Baggioni, G. Peretti, and L. S. Mattos, “5G Robotic
Telesurgery: Remote Transoral Laser Microsurgeries on a Cadaver,”
IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 4, pp. 511–
518, 2020.

[13] D. Wang and T. Sun, “Leveraging 5G TSN in V2X Communication for
Cloud Vehicle,” in 2020 IEEE International Conference on Edge Computing
(EDGE), 2020, pp. 106–110.

[14] S. J. Johnson, Iterative Error Correction: Turbo, Low-Density Parity-Check
and Repeat-Accumulate Codes. Cambridge University Press, 2009.

[15] A. M. Nordsveen, “Mobiltelefonens Historie i Norge (in Norwegian),”
Norsk Telemuseum, November 2005.

[16] S. Henry, A. Alsohaily, and E. S. Sousa, “5G is Real: Evaluating the
Compliance of the 3GPP 5G New Radio System With the ITU IMT-2020
Requirements,” IEEE Access, vol. 8, pp. 42 828–42 840, 2020.

[17] S. R. Pokhrel, J. Ding, J. Park, O. S. Park, and J. Choi, “Towards Enabling
Critical mMTC: A Review of URLLC within mMTC,” IEEE Access, vol. 8,
pp. 131 796–131 813, 2020.

211

[18] A. S. Yogapratama and M. Suryanegara, “Dealing with the Latency
Problem to Support 5G-URLLC: A Strategic View in the Case of an
Indonesian Operator,” in 2020 2nd International Conference on Broadband
Communications, Wireless Sensors and Powering (BCWSP), 2020, pp. 96–
100.

[19] Meng-Han Hsieh and Che-Ho Wei, “Channel Estimation for OFDM Sys-
tems Based on Comb-type Pilot Arrangement in Frequency Selective
Fading Channels,” IEEE Transactions on Consumer Electronics, vol. 44,
no. 1, pp. 217–225, 1998.

[20] M. Simko, D. Wu, C. Mehlfuehrer, J. Eilert, and D. Liu, “Implementa-
tion Aspects of Channel Estimation for 3GPP LTE Terminals,” in 17th
European Wireless 2011 - Sustainable Wireless Technologies, 2011, pp. 1–5.

[21] N. Costa and S. Haykin, Multiple-Input Multiple-Output Channel Models:
Theory and Practice. John Wiley & Sons, 2010, vol. 65.

[22] A. F. Molisch, Wireless Communications. John Wiley & Sons, 2012,
vol. 34.

[23] M. Mahdavi, O. Edfors, V. Öwall, and L. Liu, “A Low Latency and
Area Efficient FFT Processor for Massive MIMO Systems,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2017, pp.
1–4.

[24] A. Peled and A. Ruiz, “Frequency Domain Data Transmission using
Reduced Computational Complexity Algorithms,” in ICASSP ’80. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 5,
1980, pp. 964–967.

[25] R. N. A. Paulraj and D. Gore, Introduction to Space-Time Wireless Commu-
nications. Cambridge University Press, 2003.

[26] S. P. E. Dahlman and J. Sköld, 4G: LTE/LTE-Advanced for Mobile Broad-
band. Elsevier/Academic Press, 2011.

[27] M. Mahdavi and M. Shabany, “Novel MIMO Detection Algorithm for
High-Order Constellations in the Complex Domain,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems (TVLSI), vol. 21, no. 5, pp.
834–847, May 2013.

212 Bibliography

[28] S. Aubert, J. Tournois, and F. Nouvel, “On the Implementation of
MIMO-OFDM Schemes using Perturbation of the QR Decomposition:
Application to 3GPP LTE-a Systems,” in 2011 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 3236–
3239.

[29] M. Shabany, R. Doostnejad, M. Mahdavi, and P. G. Gulak, “A 38 pJ/b
Optimal Soft-MIMO Detector,” IEEE Transactions on Circuits and Systems
II: Express Briefs (TCAS-II), vol. 64, no. 9, pp. 1062–1066, Sept. 2017.

[30] P. Chiu, L. Huang, L. Chai, and Y. Huang, “Interpolation-Based QR De-
composition and Channel Estimation Processor for MIMO-OFDM Sys-
tem,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58,
no. 5, pp. 1129–1141, 2011.

[31] M. Shabany, D. Patel, M. Milicevic, M. Mahdavi, and P. G.
Gulak, “A 70 pJ/b Configurable 64-QAM Soft MIMO Detector,”
Integration, vol. 63, pp. 74–86, Sept. 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167926017307058

[32] Peng Liu, Yan Du, Pengcheng Zhu, and Wei Zhang, “A New Efficient
MIMO Detection Algorithm Based on Cholesky Decomposition,” in The
6th International Conference on Advanced Communication Technology, 2004.,
vol. 1, 2004, pp. 264–268.

[33] K. Neshatpour, M. Mahdavi, and M. Shabany, “A Low-complexity
High-throughput ASIC for the SC-FDMA MIMO Detectors,” in 2012
IEEE International Symposium on Circuits and Systems (ISCAS), May 2012,
pp. 3065–3068.

[34] P. W. C. Chan, E. S. Lo, R. R. Wang, E. K. S. Au, V. K. N. Lau, R. S.
Cheng, W. H. Mow, R. D. Murch, and K. B. Letaief, “The Evolution
Path of 4G Networks: FDD or TDD?” IEEE Communications Magazine,
vol. 44, no. 12, pp. 42–50, 2006.

[35] H. Haas, M. Stephen, and G. Povey, “Capacity-coverage Analysis of
TDD and FDD Mode in UMTS at 1920 MHz,” Communications, IEE Pro-
ceedings, vol. 149, pp. 51 – 57, 03 2002.

[36] X. Jiang, A. Decurninge, K. Gopala, F. Kaltenberger, M. Guillaud,
D. Slock, and L. Deneire, “A Framework for Over-the-Air Reciprocity
Calibration for TDD Massive MIMO Systems,” IEEE Transactions on
Wireless Communications, vol. 17, no. 9, pp. 5975–5990, Sep. 2018.

http://www.sciencedirect.com/science/article/pii/S0167926017307058
http://www.sciencedirect.com/science/article/pii/S0167926017307058

213

[37] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten
Myths and One Critical Question,” IEEE Communications Magazine,
vol. 54, no. 2, pp. 114–123, 2016.

[38] S. Malkowsky, J. Vieira, L. Liu, P. Harris, K. Nieman, N. Kundargi,
I. C. Wong, F. Tufvesson, V. Öwall, and O. Edfors, “The World’s First
Real-Time Testbed for Massive MIMO: Design, Implementation, and
Validation,” IEEE Access, vol. 5, pp. 9073–9088, 2017.

[39] C. Shepard, H. Yu, N. An, L. E. Li, T. Marzetta, R. Yang, and L. Zhong,
“Argos: Practical Many-antenna Base Stations,” in Proceedings of the
18th Annual International Conference on Mobile Computing and networking-
Mobicom 12, ACM Press, 2012.

[40] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Linear Pre-Coding Per-
formance in Measured Very-Large MIMO Channels,” in 2011 IEEE Ve-
hicular Technology Conference (VTC Fall), Sept. 2011, pp. 1–5.

[41] X. Jiang and F. Kaltenberger, “Channel Reciprocity Calibration in TDD
Hybrid Beamforming Massive MIMO Systems,” IEEE Journal of Selected
Topics in Signal Processing, vol. 12, no. 3, pp. 422–431, June 2018.

[42] P. H. Kuo, H. T. Kung, and P. A. Ting, “Compressive Sensing Based
Channel Feedback Protocols for Spatially-Correlated Massive Antenna
Arrays,” in 2012 IEEE Wireless Communications and Networking Conference
(WCNC), April 2012, pp. 492–497.

[43] Y. G. Lim and C. B. Chae, “Compressed Channel Feedback for Corre-
lated Massive MIMO Systems,” in 2014 IEEE International Conference on
Communications Workshops (ICC), June 2014, pp. 360–364.

[44] A. Rachini, A. Beydoun, F. Nouvel, and B. Beydoun, “Timing Synchroni-
sation Method for MIMO-OFDM System using Orthogonal Preamble,”
in 2012 19th International Conference on Telecommunications (ICT), 2012,
pp. 1–5.

[45] M. Mahdavi, O. Edfors, V. Öwall, and L. Liu, “A Low Latency
FFT/IFFT Architecture for Massive MIMO Systems Utilizing OFDM
Guard Bands,” IEEE Transactions on Circuits and Systems I: Regular Pa-
pers (TCAS-I), vol. 66, no. 7, pp. 2763–2774, July 2019.

[46] A. Khansefid and H. Minn, “On Channel Estimation for Massive MIMO
With Pilot Contamination,” IEEE Communications Letters, vol. 19, no. 9,
pp. 1660–1663, 2015.

214 Bibliography

[47] J. Flordelis, X. Gao, G. Dahman, F. Rusek, O. Edfors, and F. Tufves-
son, “Spatial Separation of Closely-spaced Users in Measured Massive
Multi-user MIMO Channels,” in 2015 IEEE International Conference on
Communications (ICC), 2015, pp. 1441–1446.

[48] M. O. Damen, H. E. Gamal, and G. Caire, “On Maximum-likelihood
Detection and the Search for the Closest Lattice Point,” IEEE Transactions
on Information Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[49] M. Mahdavi and M. Shabany, “Ultra high-throughput Architectures for
Hard-output MIMO Detectors in the Complex Domain,” in 2011 IEEE
54th International Midwest Symposium on Circuits and Systems (MWSCAS),
Aug. 2011, pp. 1–4.

[50] C. Tarver, M. Tonnemacher, H. Chen, J. Zhang, and J. R. Cavallaro,
“GPU-Based, LDPC Decoding for 5G and Beyond,” IEEE Open Journal
of Circuits and Systems, vol. 2, pp. 278–290, 2021.

[51] H. Cui, F. Ghaffari, K. Le, D. Declercq, J. Lin, and Z. Wang, “Design
of High-Performance and Area-Efficient Decoder for 5G LDPC Codes,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 2,
pp. 879–891, 2021.

[52] M. Weiner, M. Blagojevic, S. Skotnikov, A. Burg, P. Flatresse, and
B. Nikolic, “A Scalable 1.5-to-6Gb/s 6.2-to-38.1mW LDPC Decoder for
60GHz Wireless Networks in 28nm UTBB FDSOI,” in 2014 IEEE Inter-
national Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014, pp. 464–465.

[53] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2
3GPP-LTE Turbo Decoder ASIC in 0.13µm CMOS,” in 2010 IEEE Inter-
national Solid-State Circuits Conference - (ISSCC), 2010, pp. 274–275.

[54] A. Ardakani, M. Mahdavi, and M. Shabany, “An Efficient VLSI Architec-
ture of QPP Interleaver/Deinterleaver for LTE Turbo Coding,” in 2013
IEEE International Symposium on Circuits and Systems (ISCAS), May 2013,
pp. 797–800.

[55] F. A. Newagy, Y. A. Fahmy, and M. M. S. El-Soudani, “Designing Near
Shannon Limit LDPC Codes using Particle Swarm Optimization Algo-
rithm,” in 2007 IEEE International Conference on Telecommunications and
Malaysia International Conference on Communications, 2007, pp. 119–123.

[56] M. Sabbaghian, Y. Kwak, B. Smida, and V. Tarokh, “Near Shannon Limit
and Low Peak to Average Power Ratio Turbo Block Coded OFDM,”
IEEE Transactions on Communications, vol. 59, no. 8, pp. 2042–2045, 2011.

215

[57] J. Vieira, F. Rusek, O. Edfors, S. Malkowsky, L. Liu, and F. Tufvesson,
“Reciprocity Calibration for Massive MIMO: Proposal, Modeling, and
Validation,” IEEE Transactions on Wireless Communications, vol. 16, no. 5,
pp. 3042–3056, May 2017.

[58] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calcu-
lation of Complex Fourier Series,” Math. Comput., vol. 19, pp. 297–301,
1965.

[59] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, “Pipelined
Radix-2k Feedforward FFT Architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 23–32, Jan. 2013.

[60] A. Cortes, I. Velez, and J. F. Sevillano, “Radix rk FFTs: Matricial Rep-
resentation and SDC/SDF Pipeline Implementation,” IEEE Transactions
on Signal Processing, vol. 57, no. 7, pp. 2824–2839, 2009.

[61] D. Takahashi, “An Extended Split-radix FFT Algorithm,” IEEE Signal
Processing Letters, vol. 8, no. 5, pp. 145–147, 2001.

[62] C. Burrus, “A New Prime Factor FFT Algorithm,” in ICASSP ’81. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 6,
1981, pp. 335–338.

[63] H. Silverman, “An Introduction to Programming the Winograd Fourier
Transform Algorithm (WFTA),” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 25, no. 2, pp. 152–165, 1977.

[64] M. Heideman, D. Johnson, and C. Burrus, “Gauss and the History of the
Fast Fourier Transform,” IEEE ASSP Magazine, vol. 1, no. 4, pp. 14–21,
1984.

[65] B. K. Mohanty and P. K. Meher, “Area-Delay-Energy Efficient VLSI Ar-
chitecture for Scalable In-Place Computation of FFT on Real Data,” IEEE
Transactions on Circuits and Systems I: Regular Papers, pp. 1–9, 2018.

[66] H. Luo, Y. Liu, and M. Shieh, “Efficient Memory-Addressing Algo-
rithms for FFT Processor Design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 10, pp. 2162–2172, Oct. 2015.

[67] S. Liu and D. Liu, “A High-Flexible Low-Latency Memory-Based FFT
Processor for 4G, WLAN, and Future 5G,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1–13, 2018.

[68] M. Garrido et al., “A 4096-Point Radix-4 Memory-Based FFT Using DSP
Slices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 1, pp. 375–379, Jan. 2017.

216 Bibliography

[69] Sang-Chul Moon and In-Cheol Park, “Area-efficient Memory-based Ar-
chitecture for FFT Processing,” in Proceedings of the 2003 International
Symposium on Circuits and Systems, 2003. ISCAS ’03., vol. 5, 2003, pp.
V–V.

[70] Q. Xing, Z. Ma, and Y. Xu, “A Novel Conflict-Free Parallel Memory
Access Scheme for FFT Processors,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 64, no. 11, pp. 1347–1351, Nov. 2017.

[71] K. Xia, B. Wu, T. Xiong, and T. Ye, “A Memory-Based FFT Processor De-
sign With Generalized Efficient Conflict-Free Address Schemes,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 6,
pp. 1919–1929, June 2017.

[72] X. Shih, Y. Liu, and H. Chou, “48-Mode Reconfigurable Design of SDF
FFT Hardware Architecture Using Radix-32 and Radix-23 Design Ap-
proaches,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 6, pp. 1456–1467, June 2017.

[73] J. Wang, C. Xiong, K. Zhang, and J. Wei, “A Mixed-Decimation MDF
Architecture for Radix-2kParallel FFT,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 67–78, Jan. 2016.

[74] K. Yang, S. Tsai, and G. C. H. Chuang, “MDC FFT/IFFT Processor With
Variable Length for MIMO-OFDM Systems,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 720–731, April
2013.

[75] S. Chen, S. Huang, M. Garrido, and S. Jou, “Continuous-flow Paral-
lel Bit-Reversal Circuit for MDF and MDC FFT Architectures,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 10, pp.
2869–2877, Oct. 2014.

[76] N. L. Ba and T. T. Kim, “An Area Efficient 1024-Point Low Power Radix-
22 FFT Processor With Feed-Forward Multiple Delay Commutators,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10,
pp. 3291–3299, Oct. 2018.

[77] A. X. Glittas, M. Sellathurai, and G. Lakshminarayanan, “A Normal
I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for
MIMO,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 6, pp. 2402–2406, June 2016.

217

[78] X. Shih, H. Chou, and Y. Liu, “Design and Implementation of
Flexible and Reconfigurable SDF-Based FFT Chip Architecture With
Changeable-Radix Processing Elements,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 11, pp. 3942–3955, Nov. 2018.

[79] T. Lenart and V. Öwall, “Architectures for Dynamic Data Scaling in
2/4/8K Pipeline FFT Cores,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 11, pp. 1286–1290, Nov. 2006.

[80] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum Circuits for Bit Re-
versal,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58,
no. 10, pp. 657–661, Oct. 2011.

[81] W. Li, F. Yu, and Z. Ma, “Efficient Circuit for Parallel Bit Reversal,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 4, pp.
381–385, April 2016.

[82] U. Kumar, C. Ibars, A. Bhorkar, and H. Jung, “A Waveform for 5G:
Guard Interval DFT-s-OFDM,” in 2015 IEEE Globecom Workshops (GC
Wkshps), Dec. 2015, pp. 1–6.

[83] C. Yu and M. H. Yen, “Area-Efficient 128- to 2048-Point Pipeline FFT
Processor for LTE and Mobile WiMAX Systems,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 23, no. 9, pp. 1793–1800, Sep. 2015.

[84] Y.-N. Chang, “Design of an 8192-point Sequential I/O FFT Chip,” in
Proceedings of the World Congress on Engineering and Computer Scienc
(WCECS), Oct. 2012.

[85] Z. Wang, X. Liu, B. He, and F. Yu, “A Combined SDC-SDF Architecture
for Normal I/O Pipelined Radix-2 FFT,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 973–977, May 2015.

[86] X. Liu, F. Yu, and Z. Wang, “A pipelined Architecture for Normal I/O
order FFT,” Journal of Zhejiang University - Science C, vol. 12, no. 1, pp.
76–82, Jan. 2011.

[87] L. Y. K. Zhang, H. Liu, J. Huang, and S. Huang, “An Efficient Locally
Pipelined FFT Processor,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 53, no. 7, pp. 585–589, July 2006.

[88] W.-C. Yeh and C.-W. Jen, “High-speed and Low-power Split-radix FFT,”
IEEE Transactions on Signal Processing, vol. 51, no. 3, pp. 864–874, March
2003.

218 Bibliography

[89] M. A. Sanchez, M. Garrido, M. Lopez-Vallejo, and J. Grajal, “Imple-
menting FFT-based Digital Channelized Receivers on FPGA Platforms,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 4, pp.
1567–1585, Oct. 2008.

[90] Y. Chang, “An Efficient VLSI Architecture for Normal I/O Order
Pipeline FFT Design,” IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, vol. 55, no. 12, pp. 1234–1238, Dec. 2008.

[91] M. Garrido, S. Huang, and S. Chen, “Feedforward FFT Hardware Ar-
chitectures Based on Rotator Allocation,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 2, pp. 581–592, Feb. 2018.

[92] C. H. Yang, T. H. Yu, and D. Markovic, “Power and Area Minimization
of Reconfigurable FFT Processors: A 3GPP-LTE Example,” IEEE J. Solid-
State Circuits, vol. 47, no. 3, pp. 757–768, Mar. 2012.

[93] X. Shih, H. Chou, and Y. Liu, “VLSI Design and Implementation of
Reconfigurable 46-Mode Combined-Radix-Based FFT Hardware Archi-
tecture for 3GPP-LTE Applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 1, pp. 118–129, Jan. 2018.

[94] F. Qureshi and O. Gustafsson, “Generation of All Radix-2 Fast Fourier
Transform Algorithms Using Binary Trees,” in 2011 20th European Con-
ference on Circuit Theory and Design (ECCTD), 2011, pp. 677–680.

[95] D. Sundararajan, M. Omair Ahmad, and M. N. S. Swamy, “A Fast
FFT Bit-reversal Algorithm,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 41, no. 10, pp. 701–703, 1994.

[96] J. M. Rius and R. De Porrata-Doria, “New FFT Bit-reversal Algorithm,”
IEEE Transactions on Signal Processing, vol. 43, no. 4, pp. 991–994, 1995.

[97] M. Mahdavi, O. Edfors, V.Öwall, and L. Liu, “Angular-Domain Mas-
sive MIMO Detection: Algorithm, Implementation, and Design Trade-
offs,” IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I),
vol. 67, no. 6, pp. 1948–1961, June 2020.

[98] M. Mahdavi, O.Edfors, V.Öwall, and L. Liu, “A Low Complexity Mas-
sive MIMO Detection Scheme Using Angular-Domain Processing,” in
2018 IEEE Global Conference on Signal and Information Processing (Global-
SIP), Nov. 2018, pp. 181–185.

[99] M. Mahdavi, O. Edfors, V. Öwall, and L. Liu, “A VLSI Implementation
of Angular-Domain Massive MIMO Detection,” in 2019 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), May 2019, pp. 1–5.

219

[100] M. Mahdavi, O. Edfors, V.Öwall, and L. Liu, “Angular-Domain Massive
MIMO Detection: Algorithm, Implementation, and Design Tradeoffs,”
in 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
May 2021, pp. 1–5.

[101] S. Wu, L. Kuang, Z. Ni, J. Lu, D. Huang, and Q. Guo, “Low-Complexity
Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems
Using Approximate Message Passing,” IEEE Journal of Selected Topics
in Signal Processing, vol. 8, no. 5, pp. 902–915, Oct. 2014.

[102] C. Zhang, Z. Wu, C. Studer, Z. Zhang, and X. You, “Efficient Soft-Output
Gauss-Seidel Data Detector for Massive MIMO Systems,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, pp. 1–12, 2018.

[103] X. Gao, L. Dai, Y. Hu, Y. Zhang, and Z. Wang, “Low-Complexity Signal
Detection for Large-Scale MIMO in Optical Wireless Communications,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 9, pp. 1903–
1912, Sep. 2015.

[104] X. Gao, L. Dai, Y. Ma, and Z. Wang, “Low-complexity Near-optimal Sig-
nal Detection for Uplink Large-scale MIMO Systems,” Electronics Letters,
vol. 50, no. 18, pp. 1326–1328, August 2014.

[105] G. Peng, L. Liu, S. Zhou, S. Yin, and S. Wei, “A 1.58 Gbps/W 0.40
Gbps/mm2 ASIC Implementation of MMSE Detection for 128× 8 64-
QAM Massive MIMO in 65 nm CMOS,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 5, pp. 1717–1730, May 2018.

[106] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “High-Throughput Data
Detection for Massive MU-MIMO-OFDM Using Coordinate Descent,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12,
pp. 2357–2367, Dec. 2016.

[107] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, “Scaling Up MIMO: Opportunities and Challenges
with Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1,
pp. 40–60, Jan. 2013.

[108] G. Peng, L. Liu, S. Zhou, Y. Xue, S. Yin, and S. Wei, “Algorithm and
Architecture of a Low-Complexity and High-Parallelism Preprocessing-
Based K-Best Detector for Large-Scale MIMO Systems,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 7, pp. 1860–1875, April 2018.

220 Bibliography

[109] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI Implementation of MIMO Detection using the
Sphere Decoding Algorithm,” IEEE Journal of Solid-State Circuits, vol. 40,
no. 7, pp. 1566–1577, July 2005.

[110] Y. Han, W. Shin, and J. Lee, “Projection Based Feedback Compression
for FDD Massive MIMO Systems,” in 2014 IEEE Globecom Workshops (GC
Wkshps), Dec. 2014, pp. 364–369.

[111] W. Ji, C. Ren, and L. Qiu, “Common Sparsity and Cluster Structure
Based Channel Estimation for Downlink Massive MIMO-OFDM Sys-
tems,” IEEE Signal Processing Letters, vol. 26, no. 1, pp. 59–63, Jan. 2019.

[112] 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; NR; Physical Channels and Modulation
(Release 15), July 2018. [Online]. Available: http://www.3gpp.org/ftp/
/Specs/archive/38_series/38.211/

[113] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Massive MIMO Perfor-
mance Evaluation Based on Measured Propagation Data,” IEEE Trans-
actions on Wireless Communications, vol. 14, no. 7, pp. 3899–3911, July
2015.

[114] A. F. Molisch, “Ultrawideband Propagation Channels-theory, Measure-
ment, and Modeling,” IEEE Transactions on Vehicular Technology, vol. 54,
no. 5, pp. 1528–1545, Sept. 2005.

[115] Y. Wang, A. Liu, X. Xia, and K. Xu, “Exploiting the Clustered Spar-
sity for Channel Estimation in Hybrid Analog-Digital Massive MIMO
Systems,” IEEE Access, vol. 7, pp. 4989–5000, 2019.

[116] A. Liu et al., “Downlink Channel Estimation in Multiuser Massive
MIMO With Hidden Markovian Sparsity,” IEEE Transactions on Signal
Processing, vol. 66, no. 18, pp. 4796–4810, Sep. 2018.

[117] Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially Common Sparsity
Based Adaptive Channel Estimation and Feedback for FDD Massive
MIMO,” IEEE Transactions on Signal Processing, vol. 63, no. 23, pp. 6169–
6183, Dec. 2015.

[118] S. H. Mirfarshbafan, A. Gallyas-Sanhueza, R. Ghods, and C. Studer,
“Beamspace Channel Estimation for Massive MIMO mmWave Systems:
Algorithm and VLSI Design,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 12, pp. 5482–5495, 2020.

http://www.3gpp.org/ftp//Specs/archive/38_series/38.211/
http://www.3gpp.org/ftp//Specs/archive/38_series/38.211/

221

[119] A. Liu, F. Zhu, and V. K. N. Lau, “Closed-Loop Autonomous Pilot and
Compressive CSIT Feedback Resource Adaptation in Multi-User FDD
Massive MIMO Systems,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 173–183, Jan. 2017.

[120] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint Spatial Division and
Multiplexing—The Large-Scale Array Regime,” IEEE Transactions on In-
formation Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.

[121] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. New
York, NY, USA: Cambridge University Press, 2005.

[122] M. Mahdavi, M. Shabany, and B. Vosoughi Vahdat, “A Modified Com-
plex K-best Scheme for High-speed Hard-output MIMO Detectors,” in
2010 53rd IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), Aug 2010, pp. 845–848.

[123] M. Mahdavi and M. Shabany, “A 13 Gbps, 0.13 µm CMOS,
Multiplication-Free MIMO Detector,” Journal of Signal Processing
Systems, vol. 88, no. 3, pp. 273–285, June 2016. [Online]. Available:
https://doi.org/10.1007/s11265-016-1145-2

[124] K. Wang, H. Shen, W. Wu, and Z. Ding, “Joint Detection and Decoding
in LDPC-Based Space-Time Coded MIMO-OFDM Systems via Linear
Programming,” IEEE Transactions on Signal Processing, vol. 63, no. 13,
pp. 3411–3424, July 2015.

[125] Y. Li, L. Wang, and Z. Ding, “An Integrated Linear Programming Re-
ceiver for LDPC Coded MIMO-OFDM Signals,” IEEE Transactions on
Communications, vol. 61, no. 7, pp. 2816–2827, July 2013.

[126] M. Huang and P. Tsai, “Toward Multi-Gigabit Wireless: Design of High-
Throughput MIMO Detectors With Hardware-Efficient Architecture,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 2,
pp. 613–624, Feb. 2014.

[127] O. Castaneda, T. Goldstein, and C. Studer, “Data Detection in Large
Multi-Antenna Wireless Systems via Approximate Semidefinite Relax-
ation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63,
no. 12, pp. 2334–2346, Dec. 2016.

[128] X. Tan, J. Jin, K. Sun, Y. Xu, M. Li, Y. Zhang, Z. Zhang, X. You, and
C. Zhang, “Enhanced Linear Iterative Detector for Massive Multiuser
MIMO Uplink,” IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, pp. 1–13, 2019.

https://doi.org/10.1007/s11265-016-1145-2

222 Bibliography

[129] G. Peng, L. Liu, P. Zhang, S. Yin, and S. Wei, “Low-Computing-Load,
High-Parallelism Detection Method Based on Chebyshev Iteration for
Massive MIMO Systems With VLSI Architecture,” IEEE Transactions on
Signal Processing, vol. 65, no. 14, pp. 3775–3788, July 2017.

[130] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “VLSI Design of Large-
scale Soft-output MIMO Detection using Conjugate Gradients,” in 2015
IEEE International Symposium on Circuits and Systems (ISCAS), May 2015,
pp. 1498–1501.

[131] Y. Chen, W. Sun, C. Cheng, T. Tsai, Y. Ueng, and C. Yang, “An Inte-
grated Message-Passing Detector and Decoder for Polar-Coded Massive
MU-MIMO Systems,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 66, no. 3, pp. 1205–1218, March 2019.

[132] W. Tang, H. Prabhu, L. Liu, V. Öwall, and Z. Zhang, “A 1.8 Gb/s 70.6
pJ/b 128x16 Link-adaptive Near-optimal Massive MIMO Detector in
28 nm UTBB-FDSOI,” in 2018 IEEE International Solid - State Circuits
Conference - (ISSCC), Feb. 2018, pp. 224–226.

[133] M. Mahdavi, S. Weithoffer, M. Herrmann, L. Liu, O. Edfors, N. Wehn,
and M. Lentmaier, “Spatially Coupled Serially Concatenated Codes:
Performance Evaluation and VLSI Design Tradeoffs,” submitted to IEEE
Transactions on Circuits and Systems I: Regular Papers (TCAS-I), August
2021.

[134] M. Mahdavi, L. Liu, O. Edfors, M. Lentmaier, N. Wehn, and S. Weithof-
fer, “Towards Fully Pipelined Decoding of Spatially Coupled Serially
Concatenated Codes,” in 2021 IEEE International Symposium on Topics in
Coding (ISTC), August 2021, pp. 1–5.

[135] M. Mahdavi, M. Farooq, L. Liu, O. Edfors, V. Öwall, and M. Lentmaier,
“The Effect of Coupling Memory and Block Length on Spatially Cou-
pled Serially Concatenated Codes,” in 2021 IEEE 93rd Vehicular Technol-
ogy Conference (VTC2021-Spring), April 2021, pp. 1–7.

[136] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
Turbo Code Decoder,” in 2010 Design, Automation Test in Europe Confer-
ence Exhibition (DATE 2010), 2010, pp. 1420–1425.

[137] R. G. Maunder, “A Fully-Parallel Turbo Decoding Algorithm,” IEEE
Transactions on Communications, vol. 63, no. 8, pp. 2762–2775, 2015.

[138] EPIC Project, “Enabling Practical Wireless Tb/s Communications with
Next Generation Channel Coding (EPIC),” 2020, https://epic-h2020.
eu/.

https://epic-h2020.eu/
https://epic-h2020.eu/

223

[139] X. You, C. Wang, J. Huang et al., “Towards 6G wireless communication
networks: vision, enabling technologies, and new paradigm shifts,” Sci-
ence China Information Sciences, vol. 64, no. 1, 2021.

[140] S. Moloudi, M. Lentmaier, and A.Graell i Amat, “Spatially Coupled
Turbo-Like Codes: A New Trade-Off Between Waterfall and Error
Floor,” IEEE Transactions on Comm., vol. 67, no. 5, pp. 3114–3123, May
2019.

[141] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s Turbo Code
Decoder for LTE Advanced Base Station Applications,” in 2012 7th In-
ternational Symposium on Turbo Codes and Iterative Information Processing
(ISTC), 2012, pp. 21–25.

[142] S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou, “25
Years of Turbo Codes: From Mb/s to Beyond 100 Gb/s,” in 2018 IEEE
10th International Symposium on Turbo Codes Iterative Information Process-
ing (ISTC), 2018, pp. 1–6.

[143] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “It-
erative Decoding Threshold Analysis for LDPC Convolutional Codes,”
IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 5274–5289,
Oct 2010.

[144] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold Saturation
via Spatial Coupling: Why Convolutional LDPC Ensembles Perform
So Well over the BEC,” IEEE Transactions on Information Theory, vol. 57,
no. 2, pp. 803–834, Feb 2011.

[145] S. Kumar, A. J. Young, N. Macris, and H. D. Pfister, “Threshold Satura-
tion for Spatially Coupled LDPC and LDGM Codes on BMS Channels,”
IEEE Transactions on Information Theory, vol. 60, no. 12, pp. 7389–7415,
Dec 2014.

[146] S. Moloudi, M. Lentmaier, and A.Graell i Amat, “Spatially coupled
turbo codes,” in 2014 8th International Symposium on Turbo Codes and
Iterative Information Processing (ISTC), Aug 2014, pp. 82–86.

[147] N. U. Hassan, M. Schlüter, and G. P. Fettweis, “Fully Parallel Window
Decoder Architecture for Spatially-coupled LDPC Codes,” in 2016 IEEE
International Conference on Communications (ICC), 2016, pp. 1–6.

[148] C. Rachinger, J. B. Huber, and R. R. Müller, “Comparison of Convolu-
tional and Block Codes for Low Structural Delay,” IEEE Transactions on
Communications, vol. 63, no. 12, pp. 4629–4638, 2015.

224 Bibliography

[149] C. Rachinger, R. Müller, and J. B. Huber, “Low Latency-constrained
High Rate Coding: LDPC Codes vs. Convolutional Codes,” in 2014 8th
International Symposium on Turbo Codes and Iterative Information Processing
(ISTC), 2014, pp. 218–222.

[150] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Threshold Saturation
for Spatially Coupled Turbo-like Codes over the Binary Erasure Chan-
nel,” in 2015 IEEE Information Theory Workshop - Fall (ITW), Oct 2015, pp.
138–142.

[151] M. U. Farooq, S. Moloudi, and M. Lentmaier, “Thresholds of Braided
Convolutional Codes on the AWGN Channel,” in 2018 IEEE Interna-
tional Symposium on Information Theory (ISIT), 2018, pp. 1375–1379.

[152] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative Decoding of Con-
catenated Convolutional Codes: Implementation Issues,” Proceedings of
the IEEE, vol. 95, no. 6, pp. 1201–1227, June 2007.

[153] R. Shrestha and R. P. Paily, “High-Throughput Turbo Decoder With Par-
allel Architecture for LTE Wireless Communication Standards,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp.
2699–2710, 2014.

[154] Y. Sun and J. Cavallaro, “Efficient Hardware Implementation of a
Highly-Parallel 3GPP LTE/LTE-Advance Turbo Decoder,” Integration
VLSI Journal, vol. 44, no. 4, pp. 305–315, 2010.

[155] C. Roth, S. Belfanti, C. Benkeser, and Q. Huang, “Efficient Parallel
Turbo-Decoding for High-Throughput Wireless Systems,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 61, no. 6, pp. 1824–
1835, 2014.

[156] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo, “VLSI Implementation of Fully Parallel LTE Turbo Decoders,”
IEEE Access, vol. 4, pp. 323–346, 2016.

[157] S. Weithoffer, F. Pohl, and N. Wehn, “On the Applicability of Trellis
Compression to Turbo-Code Decoder Hardware Architectures,” in 2016
9th International Symposium on Turbo Codes and Iterative Information Pro-
cessing (ISTC), 2016, pp. 61–65.

[158] G. Wang, H. Shen, Y. Sun, J. R. Cavallaro, A. Vosoughi, and Y. Guo,
“Parallel Interleaver Design for a High throughput HSPA+/LTE Multi-
Standard Turbo Decoder,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 5, pp. 1376–1389, 2014.

225

[159] S. Weithoffer, M. Herrmann, C. Kestel, and N. Wehn, “Advanced Wire-
less Digital Baseband Signal Processing Beyond 100 Gbit/s,” in 2017
IEEE International Workshop on Signal Processing Systems (SiPS), 2017, pp.
1–6.

[160] S. Weithoffer, O. Griebel, R. Klaimi, C. A. Nour, and N. Wehn, “Ad-
vanced Hardware Architectures for Turbo Code Decoding Beyond 100
Gb/s,” in 2020 IEEE Wireless Communications and Networking Conference
(WCNC), 2020, pp. 1–6.

[161] S. Weithoffer, R. Klaimi, C. A. Nour, N. Wehn, and C. Douillard, “Fully
Pipelined Iteration Unrolled Decoders the Road to TB/S Turbo Decod-
ing,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 5115–5119.

[162] C. Kestel, M. Herrmann, and N. Wehn, “When Channel Coding Hits
the Implementation Wall,” in 2018 IEEE 10th International Symposium on
Turbo Codes Iterative Information Processing (ISTC), 2018, pp. 1–6.

[163] S. Weithoffer, K. Kraft, and N. Wehn, “Bit-level Pipelining for Highly
Parallel Turbo-code Decoders: A Critical Assessment,” in 2017 IEEE
AFRICON, 2017, pp. 121–126.

[164] G. Fettweis and H. Meyr, “Parallel Viterbi Algorithm Implementation:
Breaking the ACS-bottleneck,” IEEE Transactions on Communications,
vol. 37, no. 8, pp. 785–790, Aug 1989.

[165] A. H. Sani, P. Coussy, and C. Chavet, “A First Step Toward On-Chip
Memory Mapping for Parallel Turbo and LDPC Decoders: A Polyno-
mial Time Mapping Algorithm,” IEEE Transactions on Signal Processing,
vol. 61, no. 16, pp. 4127–4140, 2013.

[166] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “ARP
and QPP Interleavers for LTE Turbo Coding,” in 2008 IEEE Wireless Com-
munications and Networking Conference, 2008, pp. 1032–1037.

[167] G. Wang, A. Vosoughi, H. Shen, J. R. Cavallaro, and Y. Guo, “Parallel
interleaver architecture with new scheduling scheme for high through-
put configurable turbo decoder,” in 2013 IEEE International Symposium
on Circuits and Systems (ISCAS), 2013, pp. 1340–1343.

	Abstract
	Contents
	Preface
	Acknowledgments
	Acronyms
	Mathematical Notations
	List of Figures
	List of Tables
	Introduction
	Scope of the Thesis
	Thesis Outline and Contributions
	Part I: FFT/IFFT Processor for Massive MIMO Systems
	Part II: Massive MIMO Detection
	Part III: Spatially Coupled Serially Concatenated Codes

	Digital Baseband Processing
	Wireless Communication Systems
	Wireless Channel
	Wireless Transmission Technologies
	Orthogonal Frequency Division Multiplexing (OFDM)
	Multiple-Input Multiple-Output (MIMO)
	Duplexing Schemes
	Massive MIMO

	OFDM-Based Multi-User Massive MIMO Systems
	System Model
	Massive MIMO Channel

	Baseband Processing in Massive MIMO Systems
	Analog and Digital Front-End Chain
	OFDM Modulation/Demodulation
	Channel Estimation
	Downlink Precoding
	Uplink Detection
	Symbol Mapping/Demapping
	Interleaving/Deinterleaving
	Channel Encoding/Decoding

	System, Algorithm, and VLSI Co-Design
	Performance Metrics and Design Parameters
	Cross-Level Optimization

	FFT/IFFT Processor for Massive MIMO Systems
	FFT/IFFT in Massive MIMO System
	Fast Fourier Transform
	FFT Algorithms
	FFT Architectures
	Fully-Parallel Architecture
	Memory-based Architecture
	Pipelined Architecture

	Latency Analysis
	Processing Latency
	Reordering Latency
	Design Example

	Low-Latency FFT/IFFT
	Exploring OFDM Guard Bands
	Conflicts in Processing

	Low-Latency IFFT Scheme
	Memory Organization
	Data Control Scheme

	Latency Comparison
	VLSI Architecture and Implementation Results
	Radix-2 Butterfly
	Memory Blocks
	Control Circuitry
	Twiddle Factor Multiplier (TFM)
	Reconfigurable General Multiplier
	Constant Multiplier
	Trivial Rotator

	Supporting Applications without Guard Bands
	Latency and Area Tradeoff
	Implementation Results

	Reordering Scheme
	Reordering Mechanism
	VLSI Architecture and Implementation Results

	Massive MIMO Detection
	Uplink Processing in Massive MIMO
	Uplink System Model
	Antenna-Domain Detection
	Massive MIMO Channel
	Measured Massive MIMO Channel
	Channel Sparsity in Massive MIMO Systems

	Angular-Domain Massive MIMO Detection
	Domain Transformation and Compression
	Angular-Domain Linear Detection
	Angular-Domain Non-Linear Detection

	Design Evaluation and Tradeoffs
	Performance Evaluation
	Effect of Channel Compression on the Performance
	Performance Improvement using Proposed Non-Linear Post-Processing Scheme
	Performance Comparison with Traditional Schemes
	Performance Evaluation in Different Constellations
	Fixed-Point Simulation

	Analysis of Complexity and Memory Requirement
	Design Tradeoffs

	Hardware Realization of Angular- Domain Massive MIMO Detection
	VLSI Architecture
	Compression Unit
	Angular-Domain Linear-Detection Unit
	General PE
	Diagonal PE
	Off-Diagonal PE
	Processing Flow

	Angular-Domain Non-Linear Post-Processing Unit

	Implementation Results

	Spatially Coupled Serially Concatenated Codes
	Turbo-like Codes
	Compact Graph Representation
	Spatial Coupling
	Serially Concatenated Code (SCC)
	Spatially Coupled Serially Concatenated Code (SC-SCC)
	Continuous Encoding

	Design Space Exploration

	Decoding Algorithms
	SCC Decoder
	Block-Wise SC-SCC Decoder
	Window-Wise SC-SCC Decoder
	Latency and Constraint Length

	Performance and Complexity Evaluation
	Computational Complexity Analysis
	Computational Complexity of BCJR
	Fixed Complexity

	Performance Evaluation
	Effect of Coupling Memory on the Performance
	Using Higher Coupling Memory in a Fixed Latency
	Performance Comparison with Uncoupled Codes
	Performance-Latency Tradeoff
	Performance-Complexity Tradeoff
	Performance Comparison: Block-Wise VS. Window-Wise Decoding

	Decoder Architectures and Implementation Results
	VLSI Architectures for Inner and Outer Decoders
	PMAP Architecture
	XMAP Architecture
	UXMAP Architecture

	Decoder Architectures
	SCC Decoder Architecture
	Block-Wise SC-SCC Decoder Architecture
	Window-Wise SC-SCC Decoder Architecture
	Design Comparison

	Results and Discussion
	Reference Designs and Code Design Parameters
	Model Assumptions
	Decoding Latency and Area
	Throughput and Area
	Design Tradeoffs

	Fully Pipelined Decoding of SC-SCCs
	Fully Pipelined Iteration Unrolled Architecture
	Challenges for Fully Pipelined Window Decoding

	Jumping Window Decoding (JWD)
	Results and Discussion
	Performance Evaluation
	Area Complexity Estimations

	Future Works
	FFT/IFFT Processor
	Massive MIMO Detection
	SC-SCC Scheme
	Cross-Block Optimization

	Appendix Popular Science Summary
	Bibliography

