

PROF. DR. PER RUNESON, LUND UNIVERSITY, SWEDEN

Background – Open Source Software

- 1960/70's software into the bargain
- 1980's political movement
- 1990's commercial (Linux)
- 2000's databases (MySQL), Android
- 2010's everywhere

Open purce in mobile devices – 2011

Fig. 1. Worldwide smart-phone Market shares (%) by platform in 2009/2010 (Gartner, 2011)

the future technologies to follow. However, this notion became more complicated, once the future grew out to be a present with huge bundle of innovative technologies, Internet capabilities, communication possibilities, and ease in life. A major step of moving from a product phone to a smart phone, potential for further developments. The current mobile platform market is Microsoft in a major role. An im-

Open source in automotive

User interaction

Why Open Source? Commodity vs openess

Lundell *et al.* Commodification of Industrial Software: A Case for Open Source, *IEEE Software*, 26(04):77-83, 2009. doi: 10.1109/MS.2009.88

Triggers of Openness – why engage?

- Access to skilled workforce
- Faster development speed
- Low license costs and switching costs
- Flexibility in tool usage and adaptations
- Shared cost with the ecosystem
- Governing ecosystem

and efficiency of organizations. We report a case study in software-intensive comp developing embedded devices (e.g., smartphones) followed by a survey in OSS communities such as Gerrit, Git, and Jenkins. The studied branch focuses on develo Android phones. This paper presents contribution strategies and triggers for open-

These strategies include avoid forking OSS tools, empower d

https://doi.org/10.1109/MITP.2019.2893134

Beyond open source software...

@ Flickr

AI/ML impact on Open Source: Open Data

Today: X is an **OSS** component Improved by **programmers** Governed by **manual** decisions **Tomorrow**: X is an (open) **ML** component Improved by **data and learning** Governed by **automated** decisions

Safety Related Traffic Information Ecosystem: Data for Road Safety Live Vehicle, Crowd and Infrastructure Data improving road safety across Europe

Current https://www.dataforroadsafety.eu

https://dx.doi.org/10.1109/MCS.2015.2471046

Data challenges and opportunities

- Costs for data maintenance, quality assurance and annotation is an upcoming challenge
- Data will gradually become commodity for some functionality

Open data ecosystems?

Open Data Ecosystem

How open is open?

Bennett Institute for Public Policy

Emerging open data ecosystems

Initial recommendations for data ecosystems

Value

There must be a business value in the data or the collaboration

Intrinsics

Consider data type, standardize format and establish legal framework

Governance

Define level of openness and platform ownership **Evolution**

Advance business models and tool support

CC BY-SA 2.0 Jocelyn Kinghorn @ Flickr Jocey K

JND

UNIVERSITY

Open Data Ecosystems – an empirical investigation into an emerging industry collaboration concept

Threats and opportunities for automotive

Threats

- Other actors (big five) dominate
- Data costs increase
- Leaking innovation

Is this engineering?

• No – it is business, law, management, policy...

Opportunities

- Take lead for mobility data
- Sharing commodity data costs
- Speeding up innovation

 Yes – it enables data-driven engineering

Summary of open source and data

- Data more influencial for features (Machine learning, autonomy)
- Open source platform collects and aggregates data
- Ecosystem of collaboration

