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Preface

A popular discussion question upon starting at the university within the biological sciences
is how one would define “life”. This is a difficult question to answer and usually resolves in
a good debate. One reason why life is so hard to define, is because it is not a substance, but
a process. Consequently, it is not uncommon to define life based on the characteristics of
life. Examples of such characteristics include the possibility of reproduction, the ability to
maintain homeostasis, to possess metabolism, and many more. Another characteristic of
life that is a little less obvious, but related to homeostasis, is the ability to separate the system
from the surroundings. For example bacteria and human cells separate them self using a cell
membrane constructed from lipids, while viruses separate them self using a protein capsid.
If these barriers are broken, the organisms will die. This is where the concept of solubility
and desolvation becomes essential.

In these dire times with COVID-19 causing havoc around the world, it has once again
become crucial to recognize the importance of good hygiene and methods how to achieve
it. One major effort is the usage of hand sanitizer in addition to the washing of hands
with soap, with the scientific community aiding in achieving such by public outreach, pro-
duction of chemicals, and research for new knowledge. For example, it can be mentioned
the large amounts of hand sanitizer produced at Kemicentrum in Lund, Sweden to aid the
places where it was needed the most.

For a long time, the main aim of this work has been unclear, however, given my stay in
Japan and the following COVID-19 crisis, I realized I wanted to illustrate the importance
of solvation thermodynamics, using model systems involved in the many processes of life.
The main key questions are in particular: 1. How and why cosolvent affects the physical
and chemical equilibrium involving molecular matter. 2. How can we quantify and qualify
the effects total and individual contributions of cosolvent on molecular equilibria. 3. How
and to which degree can we alter molecular matter to obtain desired solvation properties.
To address the first question we investigated various systems at different scales of size rang-
ing from small molecules like caffeine and cobaltabisdicarbollide to proteins like lysozyme,
histatine 5, and a cellulose-binding domain from Cellulomonas fimi. The second question is
mostly related to method development, with the main methods in this work being molec-
ular simulations for the sampling of the configurational space and free energy calculation
methods to access the spontaneity of given reactions.

The underlying framework, to connect molecular simulations to experimental observations,
is that of statistical thermodynamics. Therefore the success of this work relies on the un-
derstanding and simultaneous research and development of statistical thermodynamics and
hence takes its fair share of coverage in this work.

Stefan Herve-Hansen - Reflections on a plane to Finland in 2020.
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Popular summary in English

It is generally known that water and oil cannot be mixed favorably, but that one would
instead create a phase separation characterized by having an upper oil phase and a lower
aqueous phase. As first stated, this observation is well known, while the mechanism of this
phase separation is less well known, unless one is familiar with the interactions that stabilize
an oil phase and an aqueous phase and is familiar with the most basic thermodynamics
necessary to describe whether processes are spontaneous or not. This is the essence of this
work and what is meant by the field of “solvation thermodynamics”; to develop theories
and methods to characterize the forces driving system and molecules of interest toward a
characteristic state due to the surrounding solvent.

In addition to the problem of whether liquids can spontaneously mix or phase separate, the
thermodynamics of solvation also addresses issues such as protein folding, how stereoselec-
tive catalysis for drug synthesis can be achieved, the optimization of the performance of an
electrochemical capacitor, and the aggregation of molecular substances such as proteins im-
portant for diseases such as Parkinson’s and Alzheimer’s disease. In this thesis, we address in
particular the questions: (I) how the addition of salt alters caffeine’s interactions in aqueous
solutions. (II) How the addition of phosphate-containing chemicals leads to the aggrega-
tion of proteins. (III) How the relationship between electrostatic interactions between ions
and their corresponding solubility can be described from a physical and thermodynamic
perspective.

The method chosen to address the above issues is via “computer experiments”, which is
in contrast to the traditional perception of chemists performing experiments in white lab
coats in a laboratory. Using computer simulations, we can follow the positions and veloc-
ities of the individual atoms to create insight into how matter behaves at the atomic level
due to solvation effects, which is otherwise almost unattainable by traditional experimental
methods. Despite the great potentials given our choice of method, there are equally great
challenges. One of the major challenges is to mimic systems studied in the traditional lab-
oratory, which include calibrating molecules’ external interactions with other surrounding
molecules and adjusting the geometry of molecules by calibrating molecules” internal inter-
actions. Another significant challenge is the sorting and use of the enormous amounts of
data that are created in a simulation, that must be used to find the driving forces responsible
for inducing changes in chemical systems.

Using simulations and statistical (solvation) thermodynamics, we show how to consistently
isolate the effect of the individual solvent molecules and their influence on molecules of
interest. Furthermore, we demonstrate how simulations and statistical thermodynamics
can be used to interpret experimental data and thus be included as an essential tool for
understanding how our world works and operates.

vi



Populervidenskablig sammenfatning pa dansk

Det er almen kendt, at vand og olie ikke favorabelt kan mikses. I stedet vil man skabe en
faseseperation kendetegnet ved at have en gvre olie fase og en nedre vandig fase. Som forst
sagt er denne observation almindeligt kendt, mens mekanismen for denne fase-separation er
mindre almen velkendt med mindre man er bekendt med de interaktioner, der stabiliserer
en olie fase og en vandig fase og er bekendt med den mest basale termodynamik, hvilket er
nodvendigt til at beskrive om processer er spontane eller ej. Dette er essessen i dette arbejde,
og hvad menes med feltet “oplosligheds termodynamik”; at udvikle teorier og metoder til at
karakterisere de krefter, der driver systemer og molekyler af interesse mod en karakteristisk
tilstand pa grund af det omgivende solvent.

Foruden problematikken hvorvidt vasker spontant kan mikses eller faseseparere, adresserer
feltet oplesligheds termodynamik ogsd problemstillinger sisom protein foldning, hvorle-
des stereoselektiv katalyse til legemiddelsyntese kan opnas, optimeringen af ydeevnen for
en elektrokemisk kondensator og aggregeringen af molekylere stoffer, sisom proteiner der
kan lede til sygedomme som Parkinsons- og Alzheimers sygdom. I denne tese adresserer vi
serligt sporgsmalene: (I) Hvordan additionen af salt endrer koffeins vekselvirkninger i van-
dige oplesninger. (II) Hvordan additionen af fosfatholdige kemikalier leder til aggregerin-
gen af proteiner. (III) Hvordan forholdet mellem elektrostatiske vekselvirkninger mellem
ioner og deres korresponderende opleslighed kan beskrives fra et fysisk og termodynamisk
perspektiv.

Den valgte metode til at adressere de ovenstiende problemstillinger er via “computereks-
perimenter”, hvilket er i kontrast til den traditionelle forestilling om kemikere, der udferer
eksperimenter i hvide kitler i et laboratorium. Ved at bruge computersimuleringer kan vi
folge de individuelle atomers positioner og hastigheder til at skabe indblik i, hvorledes stof
opferer sig pé et atomistisk niveau pd grund af solvatiseringseffekter, hvilket er ellers ne-
sten uopndeligt ved traditionelle eksperimentelle metoder. P4 trods af de store potentialler
givet vores metodevalg er der ligeliges store udfordringer. En af de vesentlige udfordringer
er at efterligne systemer, der bliver studeret i det traditionelle laboratorium, hvilket blandt
andet involverer at kalibrere molekylers eksterne interaktioner med andre omgivende mo-
lekyler samt justere molekylers geometri ved at kalibrere molekylers interne interaktioner.
En anden vasentlig udfordring er sorteringen og brugen af de enorme mangder af data,
der bliver skabt i en simulering, der skal bruges til at finde drivkrefterne bag forandringer
i kemiske systemer.

Ved brug af simuleringer og statistisk (oplesligheds) termodynamik viser vi, hvordan man
konsekvent kan isolere effekten af de individuelle solventmolekylers indflydelse pa driv-
krafterne i 2ndringen af molekyler, som har interesse. Yderemere demonstrerer vi, hvordan
simuleringer og statistisk termodynamik kan bruges til at fortolke eksperimentelle data og
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dermed indgér som et essentielt varktgj til at forstd hvorledes vores verden virker og ope-
rerer.
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Populirvetenskaplig sammanfattning pa svenska

Det dr allmint kint att vatten och olja inte kan blandas fordelaktigt utan att man istil-
let skulle skapa en fasseparation som kidnnetecknas av att ha en ovre oljefas och en nedre
vattenfas. Som nimnts forst ir denna observation allmint kind, medan mekanismen for
denna fasseparation ir mindre allméint kind sdvida man inte 4r bekant med interaktionerna
som stabiliserar en oljefas och en vattenfas och dr bekant med den mest grundliggande ter-
modynamiken som ir nodvindig for att beskriva processer ir spontana eller inte. Detta dr
kirnan i detta arbete och vad som menas med filtet “loslighetstermodynamik”; att utveckla
teorier och metoder for att karakterisera de krafter som driver systemet och molekyler av
intresse mot ett karakeeristiske tillstind pa grund av det omgivande losningsmedlet.

Férutom problemet med att vitskor spontant kan blandas eller fassepareras, tar [oslighetens
termodynamik ocksa upp frigor som proteinvikning, hur stereoselektiv katalys for likeme-
delssyntes kan uppnis, optimering av prestandan hos en elektrokemisk kondensator och
aggregationen molekylira Zmnen sdsom proteiner, sisom Parkinsons och Alzheimers sjuk-
dom. I denna avhandling behandlar vi sirskilt fragorna: (I) hur tillsatsen av salt férindrar
koffeininteraktioner i vattenldsningar, (II) hur tillsatsen av fosfatinnehallande kemikalier
leder till aggregering av proteiner och (III) hur férhéllandet mellan elektrostatiska interak-
tioner mellan joner och deras motsvarande 16slighet kan beskrivas ur ett fysiskt och termo-
dynamiskt perspektiv.

Metoden som valts for att ta itu med ovanstiende frigor 4r via “datorexperiment”, vilket
star i kontrast till det traditionella begreppet kemister som utfor experiment i vita rockar i
ett laboratorium. Med hjilp av datasimuleringar kan vi f6lja positionerna och hastigheterna
for de enskilda atomerna for att skapa insikt i hur materia beter sig pd atomnivé péa grund
av solvationseffekter, vilket annars 4r nistan ouppndeligt med traditionella experimentel-
la metoder. Trots de stora potentialerna med tanke pa vara metodval finns det lika stora
utmaningar. En av de stérsta utmaningarna ir att efterlikna system som studerats i det tra-
ditionella laboratoriet, som inkluderar kalibrering av molekylers externa interaktioner med
andra omgivande molekyler och justering av molekylernas geometri genom kalibrering av
molekylers interna interaktioner. En annan viktig utmaning 4r sorteringen och anvind-
ningen av de enorma mingder data som skapas i en simulering som maste anvindas for att
hitta drivkrafterna bakom forindringar i kemiska system.

Med hjilp av simuleringar och statistisk (Ioslighet) termodynamik visar vi hur man kon-
sekvent isolerar effekten av de enskilda typer av molekyler som utgdr l6sningsmedlet har
inflytande pa intressanta molekyler. Dessutom demonstrerar vi hur simuleringar och statis-
tisk termodynamik kan anvindas for att tolka experimentdata och dirmed inkluderas som
ett viktigt verktyg for att forstd hur var virld fungerar och fungerar.
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Chapter 1

Theoretical Foundations of Statistical
Thermodynamics

10 steal ideas from one person is plagiarism; to steal from many is research.

— Steven Wright

The field of science is associated with the attempt of achieving certainty for the processes
governing our world, allowing us to explain phenomena while simultaneously predicting
the past and future outcomes of certain events. Consequently, many formulas and theories
have been built and postulated to achieve complete certainty of systems. However, with the
discovery of quantum mechanics, it has been discovered, nature cannot be described solely
by classical mechanics. Rather nature seems to be governed by uncertainty ata fundamental
level leaving us only to predict probability distributions. It is conceivably that the transition
from classical mechanics to quantum mechanics may not be considered a paradigm shift as
it was described by Thomas Kuhn, due to that the two branches of science can be consid-
ered an extension of one another. The transition in terms of our limits to understand and
predict events happening in the world we populate certainly is! While quantum mechanics
applies to the subatomic world and classical mechanics is commonly applied to the macro-
scopic world, the two branches of mechanics are interconnected by statistical mechanics.
As a consequence, in this chapter, we will introduce the fundamental and necessary theo-
ries, concepts, and approximations required to gain sufficient knowledge to approach the
topic of solvation thermodynamics. In particular we will discuss concepts such as ensemble
theory, the ensemble distribution functions and introduce the concepts of entropy and free
energy. While the experienced reader may be familiar with these concepts, the following
text will put emphasis on maintaining a strong connection between mathematics and phys-
ical interpretation. One such example is the concept such as entropy, which can be highly



elusive in terms of detailed understanding even by experienced scientists.

1.1 Introduction & a Word of Caution

At the time of the development of thermodynamics, the microscopic origin of the macro-
scopic thermodynamic observables was unknown. Thus causing the thermodynamic laws
we all know so well today to be regarded as phenomenological laws. Today we take atoms
and atomic theory for granted and can be used to fundamentally explain the microscopic
origin of thermodynamics. However, in the early development of statistical thermodynam-
ics by Ludwig Boltzmann and contemporaries, describing a gas enclosed in a volume as a
huge collection of ultra-small particles in constant motion and constantly colliding with one
another was revolutionary. Due to the huge number of particles a deterministic approach
would be impossible (which is still true today), thus causing Boltzmann in a moment of
genius to instead realize that one could utilize the probability of individual particles to be
traveling at certain speeds and directions to build working theories that match experiments
with great accuracy. Unfortunately, due to the governing paradigm at the time being de-
terminism and the concept of atoms was consider fictitious calculation devices, his theory
was met with intense hostility causing Boltzmann to take his own life in 1906 just one year
after Albert Einstein inevitably proved the existence of atoms. As a consequence and for the
safety of the reader, the topic of statistical thermodynamics is best studied open-minded.

1.2 Equilibrium Ensembles & Averages

For a system in thermodynamic equilibrium, the thermodynamic state (macrostate) of the
system is unchanging over time given the system is not disturbed. If we could imagine a
large system of particles (on the molar scale) enclosed in a volume, the system could be
further subdivided into smaller volumes (nanomolar scale). Any thermodynamic variable
computed for the sub-volumes would yield a distribution of values that together would
form a phase average. However, given the statement that a system does not change thermo-
dynamic state and that particles at non-zero Kelvin are in constant motion, as emphasized
by Boltzmann, it should be sufficient to simply observe the time evolution of a single sub-
volume into the configurations observed that made up the ensemble average. The ensemble
of configurations observed from the time-evolution is called the time average. The ergodic
hypothesis put forth by Boltzmann and Maxwell states: the phase average and time average
are equivalent. Mathematically the average quantity f can at equilibrium be calculated as

.
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where 7 is the duration of the observation and p(p, q) is the probability of observing a
specific microstate with momentum p and position g. This relationship is crucial to provide
a physical interpretation of statistical thermodynamics and its link to experiments.®

1.3 The Ensemble Distribution Function & Liouville’s theorem

In Eq. 1.1 we how saw the average could be expressed via a time average and an ensemble
average. This relationship is resting on the assumption that the probability did not de-
pending on time, and therefore constant throughout the observation. One prerequisite to
obtain that result is Liouville’s theorem, which states that for a given macrostate, the phase
space probability density is constant in time. Mathematically we can write the statement
as

=0, (1.2)
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where H is the Hamiltonian, p; is the momentum, and ¢; is the position of particle i.
Liouville’s theorem was recognized by Josiah Gibbs as perhaps the most fundamental rela-
tionship of statistical thermodynamics with the theorem being equally applicable in equi-
librium and non-equilibrium statistical thermodynamics.4* If we now choose to define an
equilibrium system as one in which the density of states is time-independent, meaning that
the partial derivative of the phase space density with respect to time is zero, the second term

—~\ 9pidq  9qi0pi) )

An important feature obtainable from Eq. 1.3 is, that the phase space probability density

must also yield zero:

depends exclusively on the Hamiltonian and not time explicitly. The challenge is now to
solve Eq. 1.3 for the probability density distribution, p, under different constraints leading
to the probability density distributions for various statistical equilibrium ensembles.

1.4 The Microcanonical Ensemble

The simplest solution to Eq. 1.3 is under the constraint of constant energy, volume, and
number of particles donated the microcanonical (NV E) ensemble. In this ensemble each
possible microstate possess equal probability, thus meaning that the probability density
distribution function is a constant. The microcanonical density distribution function on
the form proposed by Landau & Lifshitz®" is given by

ponvE(P.Q) = w(lE)é E - H.), (.4



where ¢ is the Dirac delta function ensuring the microcanonical density distribution func-
tion can be written as a continuous function, and w(E) is a normalization constant. For
probability density functions the normalization constant should have the property of en-
suring the area under its graph is equal to one:

Def N = . 1 N N .
1= /pNVE(p,d)dequ: w(E)/(S[E_H(p’q_)]dequ’ (L.5)

thus we find the normalization constant to
wlE) = [31E - HE.9) ¢ 7T 16)

The normalization constant w(E) is known as the microcanonical partition function. Look-
ing at the definition of the microcanonical density distribution function and partition func-
tion we notice they have the dimensions of positions and momenta, thus rendering Eq. 1.4
not being a true probability density. This problem strictly arises due to the transforma-
tion of a discrete to a continuous probability density function, as it would be characteristic
for quantum and classical mechanics, respectively. Consequently, to address the problem
of dimensions we seek to find a constant, that can remove the dimensions in the classical
regime, while simultaneously ensuring correct quantum to classical mechanical transition.
The approach in doing so will be via determining the number of states for an ideal gas in
the classical regime in which the Hamiltonian is chosen to only possess kinetic energy, and
in the quantum regime in which we solve the Schrédinger equation. This derivation can
be found in the end of this chapter. The resulting constant can be found to be the Planck
constant to the power of 3N. We will dub this constant the fundamental volume or the
quantum volume, due to this volume being the smallest volume in which a microstate can
be defined as equivalent to Heisenberg’s uncertainty principle. This differential element of
microstates, dI', is then given by

1 dV¥pdNg

dar = AN (1.7)

The appearance of the factor 1/N! in Eq. 1.7 is related to yet another quantum to classical
mechanical issue. While different particles are distinguishable, even when they belong to
the same specie in the classical regime, quantum mechanics reveals particles belonging to
the same species to in fact be completely indistinguishable. The possibility to label particles
yields more possible state in the classical regime over quantum mechanics, hence we correct
for over-counting. There must be N! ways of arranging IV particles, consequently we reduce
the (classical) phase space volume by the factor 1/N!. Returning to the microcanonical
partition function; rewriting Eq. 1.6 in terms of dI" we obtain

w(E) = /F §|E — H(p,q)dr. (1.8)



In the calculation of many thermodynamic properties using the partition function, the
fundamental volume constant is of no importance, due to its disappearance in differences
for thermodynamic properties. However, it does aid in yielding a physical and philosophical
understanding of the partition function: Despite the momenta and position coordinate are
continuous, there are not an infinite amount of microstates in a finite enclosed volume,
unlike there are for example an infinite amount of real numbers between the integers zero
and one. Finally, as we are about to see, it shall also aid us greatly in the understanding of
entropy, which is explicitly related to the partition function.

1.5 Entropy

With the possibility to count the number of states in a system of constant energy, we shall
now attack the concept of entropy, which is the most complicated and mysterious classical
property.’ The complications arise due to the many physical interpretations applicable to
entropy, some of which are related to the study of steam engines and others related to atomic
theory. Our starting point for the discussion of entropy will be the famous Boltzmann
entropy formula

S =kpnw(E)]. (1.9)

Where w(E) is the microcanonical partition function for a system of energy E at constant
volume and number of particles. In older literature w(E) is also commonly donated the
weight of the system, due to the strong connection to probability theory. Because the en-
tropy simply being proportional to the logarithm of the number of available microstates,
the difference in entropy between two macrostates is proportional to the logarithmic ratio
of the number of microstates for the two macrostates. The driving force associated with the
transformation of a microcanonical system from one macrostate into another macrostate is
the entropic force. Since entropy is associated with probability, the entropic force is stochas-
tic. This implies that while the direction of the entropic force is deterministic, the system’s
path towards equilibrium is usually not monotonic unless the system is found in the ther-
modynamic limit.” As such the entropic force is unlike classical forces, not a physical force.
An example of this could be the expansion of a gas whose only interactions are via collisions:
Increasing the volume occupiable by the particles would always lead towards an increase in
entropy, due to more configurational microstates becoming accessible and is, therefore, a
more probable state. In general, the entropy is indicating the direction towards the state of
highest probability and is the most fundamental state function in determining spontaneous
processes as it was discovered by Rudolf Clausius. >

In the previous paragraph, we discussed entropy on the level of changing the system in terms
of thermodynamics variables such as volume, number of particles, or energy. However, it

"At least this is the opinion of the author.
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Figure 1.1: Configurational entropy of a harmonic oscillator (U = 0.5kz?) as a function of A the force constant de-
termining the oscillator strength of the harmonic oscillator and B the temperature given a constant force
constant. For varying force constant, we see the entropy reaches a maximum for the force constant equal
to zero with the entropy matching the entropy of an ideal gas (S « In(V)N), due to the system being
completely uncorrelated. Introduction of attraction & > 0 or repulsion k < 0 causes the entropy to
decrease due to the introduction of correlations. Similarly, increasing the temperature given a constant
force constant for the harmonic oscillator will cause the system to behave more and more as an ideal gas,
due to the thermal energy diminishing the effect of interactions, thus effectively removing correlations
introduced in the system by the harmonic potential. In the calculation of the entropy for a harmonic oscil-
lator complex number appears, however with the imaginary part canceling to zero in the final expression,
leaving only the real part visualized in the plot.

remains questionable how the effect of interactions and in turn how ”physical forces” affect
the system. After all, they do have an impact on how systems transform on an everyday
level. However, it turns out entropy already partly includes the effects of interactions.
Introduction of interactions in a system creates correlations between particles, and these
correlations reduce the number of accessible states. we shall therefore make the following
conjecture: For any given ensemble and choice of thermodynamic variables, the upper limit of
entropy is always the ideal gas. To illustrate this idea, the entropy for a harmonic oscillator
has been visualized as a function of the force constant, which determines the strength of the
interaction with increasing displacement from the rest position, in Fig. 1.1A. As expected
given our conjecture, the entropy is at a finite maximum given the force constant is zero
removing all interactions present in the system thus making the oscillator behaving like
an ideal gas. In contrast, we find that both attraction (k£ being positive) and repulsion (k
being negative) yield lower entropy. From this we see the direct link between disorder and
entropy; a system with interactions imposes correlations that yields higher order, and in
turn lower entropy.

1.6 ‘The Isothermal Ensembles

Up to this point, we have only discussed systems of constant energy, which would be charac-
teristic for isolated systems, that can not exchange energy or matter with the surroundings.



For a system of a constant number of particles, volume, and temperature, which we shall
donate the canonical (NV'T) ensemble, enclosed as a sub-volume of a microcanonical sys-
tem, one may solve for the density distribution function from Liouville’s theorem under
the equilibrium condition (Eq. 1.3) and the constraint of maximum entropy. The resulting
density distribution function is the famous Boltzmann distribution function

e_BH(ﬁvq)

Q(T)

pnvr (P, q) = (r.10)

. . . . . 1 . .
Here j is the thermodynamic  having the identity 8 = ==, and Q(T') is the canonical
partition function having the same properties as the microcanonical partition function of
ensuring correct normalization of the density distribution function

Q(T) = / e PHPD) qr, (1.11)
r

In the previous equation the right-hand side is integrated over the phase space donated I',
and dI is the fundamental volume used to distinguish between microstates in phase space
as it was discussed in chapter 1.4. So far we have dealt with systems of constant volume,
but with either constant energy as characteristic for an isolated system or constant tem-
perature as it is characteristic for a closed system. Let’s instead now look at an isothermal
system with variable volume: the so-called isothermal-isobaric (N PT) ensemble. An obvi-
ous derivation from Liouville’s theorem is no longer simple without explicitly expressing
the volume dependency of the Hamiltonian, such that the equations of motion will al-
low volume fluctuations. However, it is possible to derive under the assumption of the
isothermal-isobaric ensemble being a sub-volume of a microcanonical system. The density
distribution function for the N PT" ensemble is given by

1
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where p is the pressure of the surrounding volume reservoir and A(T, p) is the isothermal-
isobaric partition function:

V=c0
A(T,p) = / / e BHEEV)HPV qy/ dr. (1.13)
I JVv=0

Where the first integral occurs over the phase space and the second integral is taken over
the possible system volumes. From the isothermal-isobaric partition function, we see an
interesting feature that leads us back to the physics of counting states: The canonical en-
semble is a subset of the isothermal-isobaric ensemble, due to the first integral being equal
to the canonical partition function, thus meaning the isothermal-isobaric ensemble can
be thought of as the canonical ensemble with one additional degree of freedom being the



volume. Similarly, one might also say that the microcanonical ensemble is a subset of the
canonical ensemble due to the equivalent integration over various energy levels, with the
probability of the individual energy layers determined by the temperature. However, any
average obtained in any ensemble is the same in the thermodynamic limit (N — 00) as
energy fluctuation in the canonical ensemble, and volume fluctuations in the isothermal-
isobaric ensemble cease to exists rendering all ensembles equivalent to the microcanonical
ensemble.

Returning to the entropy; with the statement of systems in different ensembles being sub-
sets of one another, one can anticipate the entropy for finite systems not found in the
thermodynamic limit, and the different ensembles must possess different entropies. As an
example, if one were to do a simulation in the microcanonical and determine the average
temperature for the system, and now do a simulation in the canonical ensemble using the
determined temperature from the microcanonical ensemble, the entropy in the canonical
could be thought of as a sum of the entropies for the various energy layers, thus causing
Scanonical = Smicrocanonical- Gibbs, however, discovered the ensemble dependency could
be abolished using the mean Boltzmann entropy, in which the entropy is averaged overall
energy levels

S = (S(E) = / P(E)S(E;) = — ks / p(E:) Inlp(E:)] = —kn{Inp(E)]). (1g)

1.7 Focusing on the System: Free Energy

The Danish saying: "Don’t jump over the fence where it is lowest” versus my father: "Only an
idiot jumps over the fence where it is the highest”
— If my father were to invent the concept of free energy.

We established that entropy is the variable in determining the natural direction of sys-
tems in the microcanonical ensemble. With the introduction of the canonical ensemble
and the isothermal-isobaric ensemble we stated these ensembles to be a sub-volume of the
microcanonical ensemble, as a consequence to determine the natural direction of these en-
sembles, we need to do the annoying task of calculating both the change in entropy for the
surroundings as well as the system,

ASiotal = ASsurroundings + ASsystem- (1.15)

Within classical thermodynamics a system at constant volume and temperature can only
do work via the heat process, which is equal to the change in internal energy of the system
AU, which in turn can be related to the entropy of the surroundings ASqurroundings =



—AU/T. We can now rewrite the total entropy as follows
—TASiotal = AUsyste]rn - TASsystem~ (1.16)

We define the auxiliary function, which came to be known as the Helmholtz free energy
AA = AU — TAS. In a similar way for a system of constant pressure and temperature,
we can define the Gibbs free energy AG = AH — T'AS. The gain of these free energy
functions is the possibility to obtain the total entropy of the system and surroundings only
given knowledge about the system, and thus allowing the surroundings to be completely
ignored. Thus, the determination of free energies is an essential concept within statistical
mechanics, as it allows to calculate the spontaneous direction of processes.

1.8 Connecting the Quantum & Classical Regime of Statistical
Thermodynamics

In order to ensure the proper transition from quantum to classical mechanics, we choose
to count the number of states for an ideal gas. To do so lets first look at a rewriting of the
microcanonical partition function. In Eq. 1.4 we require the energy to be fixed, however, if
we are instead to take the energy to lie within a small accepted range donated [E — A, E],
we can rewrite the microcanonical density distribution function as

. . . AS|E—H(p, .
Jim pRvE(D Q) = lim [ B.9] _ PNV E(D, Q) (1.17)

A—0 AW(E)
As we can see, in the limit of the energy decrement A approaching zero, we recover the
microcanonical density distribution function. Eq. 1.17 will become useful for the upcoming
derivation.

The Quantum Mechanical Scenario

As with almost all of quantum mechanics our starting point will be the Schrédinger equa-
tion .

We choose the gas should be found in a rectangular box with the lengths a1, as, and a3
and periodic boundary conditions so we have the constraint

1/}('1"—)17'%371‘3) = wl(x_i + ai, 3’72,.%'_:9,) = ql}l(x_ia _é + ClQ,l'_é) = 7/)z($_i>$_§>$_é + (13).
(1.19)



The solution to the Schrédinger equation given this situation is

oL (i
Vi(T) = N <hp aﬁ) , (1.20)

where V' is the volume and pj is given by
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The wave functions of the energy eigenstates given N particles is then given as the product
of the individual particle wave functions

n; € Z} . (1.21)

N 1 N i
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Due to the principal quantum numbers, 7, can only take the values of integers, the mo-
menta can be viewed as a lattice in a 3N -dimensional momentum space with a correspond-
ing density of states being

1 1
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From the partition function on the form presented in Eq. 1.17 we need to calculate the

number of lattice points within the range v/2m(E — A) and v2mE. In the limit of a
large box we get 277 /a < 1 rendering the error of assuming continuous probability den-

p= (1.23)

sity small, and thus the number of states can be obtained by multiplying with the volume

w(E) = ViN [V:%N <\/W) — VN ( 2m(E — A))]
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The Classical Mechanical Scenario

The Hamiltonian of an ideal gas containing N particles of identical mass m is given by
merely the kinetic energy
=2

N
HEg =y L 129
=1
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Using the microcanonical partition function on the form presented in Eq. 1.6, we obtain

N o
w(E) = /5 (E - Z Zn) a*Np d3Ng. (1.26)
i=1

In the above expression we need to evaluate the integration over positions and momenta.
For the positions we find the Hamiltonian does not depend on the positions of the particles,
¢, and hence the integration over positions can be found to yield the volume to the power of
N particles. To ease the integration over momenta we rewrite the microcanonical partition
function in terms of spherical coordinates

_uN 3N—1_ M (1.27)
v /dQ/O P V2mE 8

(6 (VemE) — 171) + 6 (—/mE) - |71) | dlpl

Where the last equality uses a Dirac d-function identity for functions.> Due to the integra-
tion from zero to infinity, the second term of the square brackets can never be anything but
zero, and hence vanishes from the expression. Furthermore, recalling the Heaviside step
function (©) to be the derivative of the Dirac J-function we find

w(B) =¥ 2 S ([an [Tyt (VanE - i) ai

dVay (V2mE
= QW;E 3§ (2mE ) VN\/zmT Asn (‘/7)

In the above expression V3 and A3y are the volume and surface area of a 3N -dimensional

(1.28)

sphere with radius v2mE. Substituting the expression for a 3N-dimensional surface area
we obtain

1 1

37N
w(Fk) = @E {V (27rEm)§} : (1.29)

Up til this point we have done the derivation under the assumption of fixed energy E. Al-
lowing the minor energy fluctuations in the range [E' — A, E] and using the corresponding
microcanonical partition function (Eq. 1.17) using the exact same steps as previously we
obtain

wa(E) = Van (x/ﬁ) ~ Van ( 2m(E — A))

S [V (27r)%}N X {(2mE)3 — (2m[E — A])TN:| (x30)
)
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Unifying the Quantum & Classical Mechanical Scenarios

To compare the number of states given the classical methodology and quantum methodol-
ogy we take the ratio of the partition functions determined by the individual methods. The
ratio of the quantum (Eq. 1.24) and classical (Eq. 1.30) microcanonical partition function
is given by

From Eq. 1.31 it is now clear that any other choice than the Planck constant to the power of
the dimensionality times the number of particles IV of the system in the expression for the
fundamental volume (Eq. 1.7) would yield an inconsistency between quantum and classical
mechanics in the number of states for an ideal gas, and hence the entropy and likewise
the free energy would also be off, as these quantities are directly related to the partition
function. This derivation relied in particular on one approximation found in the quantum
mechanical derivation, which is the continuity of energies in the limit of a large box. This
has the implication, that the translational contribution to the molecular partition function
(being the only contribution to a monatomic ideal gas) can be written as the volume of
the system over the Thermal de Broglie wavelength (A = /27h3/m) cubed. Hence we
find classical Maxwell-Boltzmann statistics is a good approximation when A3/V < 1,
otherwise quantum statistics such as Bose-Einstein statistics or Fermi-Dirac statistics has to

be applied.
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Chapter 2

Molecules of Life

When we have broken down living systems to molecules and ... analyzed their behavior, we
may kid ourselves into thinking that we know what life is, forgetting that molecules have no

life at all.
— Albert Szent-Gyérgyi

2.1  Water

In the exploration of our universe for the search of life, water is of great importance due
to it being one of the essential substances required to maintain life as we know it. On
our planet, Earth, water alone constitutes 71 percent of the planet’s surface, thus making
it the most abundant liquid. The impact of water on Earth is remarkable, influencing the
landscape (e.g. the formation of Grand Canyon by water erosion), climates (e.g. the dry
desserts of Sahara to the ever rainy Sweden), and finally the biology of organisms, due to
it being the most abundant solvent. The physical properties of water are remarkable with
water being one of the few substances to expand upon freezing (maximum density in liquid
phase), resulting in water freezing first at the air-water interface and then downwards, thus
enabling life within the deep sea and for all aquatic life not to die every winter. Another
remarkable property of water is its large heat capacity, being in simple terms a measure of
how much energy a material can store without increasing the temperature of the system,
thus enabling water to act as a thermostat in regulating the temperature of Earth. Finally,
the dielectric properties of water are also worth mentioning, possessing a static dielectric
constant of 78.4 at 25 °C having the implication electrostatic interactions between ions on
distances longer than 7.2 A are energetically comparable to the thermal energy. This final
property has the significance that salts can be commonly dissolved in water. Water has
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almost a university solvent action, nearly all chemicals can be dissolved in water to some
extent, even small factions of oil. As such water is truly a highly corrosive chemical, yet
considered physiologically harmless.

Due to the highly interesting properties of water and its abundance, the modeling of water
has been a greater scientific challenge. In particular, it has proved very difficult to construct
a water model which can reproduce thermodynamic experimental properties of bulk water,
such as dielectric constant, critical points of phase transitions, and heat capacities, but also
dynamic properties such as self-diffusion and geometrical properties as found from quan-
tum mechanics. Among the most commonly utilized water models belong the “simple
point charge” (SPC) family and the "transferable intermolecular potential” (TIP) family.
While the SPC family all utilize so-called ”3 points” models, the TIP family is containing
multiple point models ranging between 3 and 5 points to achieve the correct tetrahedron
geometry of water. Comparing the SPC family and the TIP 3 point (TIP3P) model, the
most outstanding is the SPC and extended SPC (SPC/E) ability to reproducing the self-
diffusion of water and other bulk properties of water. On the other hand, TIP3P usually
performs well-reproducing solvation properties, while failing in reproducing bulk proper-
ties. The field of constructing better and better water models are constantly evolving and
hence it is difficult to give a comprehensive and detailed review that also reflects today’s
knowledge.

2.2 Proteins

Proteins are essentially found everywhere in biological systems, being the main workhorse
molecule of life. Examples of the purposes of proteins include enzymes responsible for the
separation and joining of molecules of life, virus capsids and antibodies and their eternal
battle in the bloodstream, photosynthesis, energy production, storage, infrastructure and
structure, and finally the creation of more proteins. A great variety exists due to the 20
fundamental standard proteinogenic amino acids. The amino acids are characterized by
possessing an amino and a carboxyl functional group, constituting the protein backbone,
and a unique side chain for each of the 20 amino acids. The uniqueness of the side chain is
the main contribution to the heterogeneity of proteins, and thus the side chain is usually
used to characterize and categorize the amino acids. The amino acids are most commonly
categorized into the three categories; hydrophobic, polar, and charged, however many other
categorization schemes based on the amino acid’s properties are possible with examples in-
cluding size, polarity, hydropathy, and disorder promoting. Consequently, a small protein
with so amino acids (like insulin) could generate more than 10% sequences, also known
as the primary structure, many of which would have different properties. For proteins to
execute their specific functions, they usually fold into specific three-dimensional structures,
characterized by the formation of highly ordered structural elements such as a-helices and
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B-sheets, known second secondary structure, with the three-dimensional arrangement of
the elements known as the tertiary structure.

The previously mentioned folded state of proteins is usually termed to be the native state,
due to the folded state being mostly populated at native conditions, while the protein in
the unfolded state is termed the denatured state, due to the unfolded state being mostly
populated at denaturing conditions. However this is only one example of the many transi-
tions proteins can undergo, other possible transitions include aggregation, crystallization,
fibrillation, misfolding, and phase separation. All of these states are commonly thermody-
namically stable, with the transition between the states typically being reversible. Caution
however needs to be exercised as some of the transformations are irreversible. If the change
conducted appear longer than on the experimental timescale, as it would, for example, be
characteristic if changes in covalent bonding are introduced to the protein by for example
high-temperature perturbation. Another example that does not involve changes in cova-
lent bonding, could be the formation of a highly entangled and stabilized intermediate state
stabilized by non-covalent bonding thus heavily decelerating the formation of the correctly

folded state.

The mentioned equilibria of proteins can all be perturbed by physicochemical parameters
such as temperature, pressure, pH, ionic strength, and co-solvent but also by amino acid
residue substitutions. While it is hard to predict the exact numeric effect of the perturba-
tion, and sometimes even the qualitative effect, it is possible to illuminate many thermody-
namic properties of the structural stability of well-behaving proteins using simple solvation
thermodynamics and lattice statistics.

2.2.1 Structural Stability Perturbations Illuminated by a Simple Transfer Model

To reduce the complexity of proteins, consider each amino acids a sphere located in a lattice,
connected by stiff bonds. We define the native, folded state as a single conformation,
characterized by a high amount of stabilizing interactions.*3° The entropy contribution
to the folding of the chain, assuming it to be distinguishable and independent, is given
by131

ASigga =Sy —Sp=Rln <QN> = RN Inz, (2.1)

Qb

where we have approximated the canonical partition function of the native state to be
one, equivalent to the structure being completely static, and z is the molecular partition
function. The interactions introduced in the native state, we can model as the difference
in solvation free energy (fixed position solvation process, cf. chapter 3.1) of the individual

amino acids. Rewriting Eq. 2.1 in terms of the free energy we obtain

AGioq = N(g+ RT In z) (2.2)
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where g is free energy of transfer of an amino acid residue into a non-aqueous protein
environment. Given this simple model the energetics of folding are thus governed by the
competition of the solvation of the amino acid residues in the native state of the protein
and the conformational entropy of the denatured state.*>3>'*

The protein stability is well-known to be highly dependent on the presence of denaturing
or stabilizing co-solutes. Among the most common denaturing co-solutes are urea and
guanidine hydrochloride, where as stabilizing co-solutes includes trimethylamine N-oxide
(TMAO) or L-arginine L-glutamate salt. It was first demonstrated by Tanford 3°
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and later
by Green and Pace,” and by Santoro and Bolen,™ the free energy of folding is linearly
dependent on the co-solute concentration for many proteins. Within the simplified transfer
model, as first illustrated by Tanford™" the transfer free energy of the amino acid residues

can be written as
g(c) = go + mqc, (2.3)

where g is the transfer free energy of the residue in pure water, and m; is the residual m-
value. Substituting into the expression for the free energy of folding (Eq. 2.2), we obtain

AGfo1q = N(RT In z + go + mic) (2.4)

Where the m-value is defined as Nm;. From this simple model, it now becomes clear the
m-value should be related to the degree of newly exposed surface area upon folding, which
is also proportional to the number of residues IV in the protein. This was experimentally
found to be true.®® Despite the great number of discoveries experimentally, the strength
of the simple transfer model, the molecular mechanism responsible for the denaturation of
proteins is still a topic up for discussion. In particular, it is still discussed if the perturbation
of the native state is due to an indirect mechanism of action, in which co-solute interact
with water, and thus weakening the interactions between protein and water or the direct
mechanism of action, in which co-solute interact with the protein, protecting or exposing
molecular group sensitive to hydrophobic interactions. Another possibility yet to be ex-
plored is the possibility of the denatured state stabilization, which is difficult to illuminate
by experimental and computational methods.
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Chapter 3

Solvation Thermodynamics

[ am telling you how difficult a  “why” -question is. You have to know what it is that you are
permitted to understand and allowed to be understood and known, and what it is you are not.
You notice... the more I ask “why?’, it gets interesting. That is my point: the deeper it is the
more interesting it gets.

— Richard Feynman in an interview.

With the topic of solvation thermodynamics the terms solubility and solvation are central.
While solubility refers to a quantitative measure of a solute’s preferential occupancy in a
given solvent, solvation refers to the process of inserting the solute molecule into a spe-
cific solvent. Given these definitions, the solubility is very broadly defined to include all
measures yielding insight into the solute’s preference for one phase over another. On the
experimental side, the perhaps most common phase-equilibrium would be the equilibrium
for the solute to be in various states of matter, for example, the formation of a precipitate
from the solution, upon reaching the saturation limit. We could write such equilibrium as

[Solute(aq)]

[Solute(s)] 7 G.1)

Solute(s) = Solute(aq), K =

where K is the solubility equilibrium constant. Another example within the category of
phase-equilibrium is the vapor-liquid equilibrium which addresses the preference of the
solute to form either a liquid or a gas. We can qualitatively understand the equilibrium by
considering any isothermal closed molecular system will be having a Boltzmann distributed
energies among the molecules, thus a specific faction will possess so much kinetic energy
they can escape the otherwise attractive interaction formed in the liquid phase, entering the
gas phase. Consequently, the vapor pressure formed depends on the temperature and the
intermolecular interactions formed in the liquid. Given this knowledge, we can rationalize

17



that water forms stronger intermolecular interactions than ethanol which forms stronger
interactions than acetaldehyde, due to the lower vapor of water compared to ethanol, and
ethanol having a lower vapor pressure compared to acetaldehyde.

Another category of solubility equilibria is solute partitioning between an organic and water
phase, which reveals the contrast in stabilizing interactions, most commonly in terms of
hydrophobic and hydrophilic interactions. The last category, which is perhaps the most
experimentally inconvenient one, is vacuum-solvent the equilibrium. This equilibrium
reports directly the work exerted by the specific composition solvent on the solute.

The different solubility measures previously mentioned are all related to investigating the
interactions between solvent on the solute, with each method reporting something unique
about the properties of the solute. As such, we are now able to specify the focus of the
topic solvation thermodynamics, namely the quantification and qualification of the work
necessary for inserting molecular matter into a given solvent. Consequently, we will in
this chapter discuss the solvation process, which identifies the various challenges associated
with the insertion of solute into a solvent. Additionally, we will establish the statistical
thermodynamics framework necessary to relate macroscopic observables to microscopic
events, and finally introduce computational free energy calculations methods to predict
the solubility of molecular matter.

3.1 The Solvation Process

As previously stated, the term solvation refers to the process of inserting the solute molecule
into a specific solvent. To determine if the solvation of solute is a spontaneous process,
the difference in free energy before and after the insertion must be negative, which can be
decomposed into multiple contributions of enthalpic’ and entropic nature. An example of
the solvation process is illustrated in Fig. 3.1. In this specific example, we see the transfer
of a chloride anion (solute) from vacuum to water (solvent), i.e.the hydration of a chloride
anion. In the specific case where water is the solvent, one commonly uses the term hydra-
tion, which is more specific than solvation. In the first step of Fig. 3.1 we see the creation
of a cavity. The formation of a cavity is both an enthalpic and an entropic unfavourable
process. The enthalpic contribution arises from the breaking of, usually stabilizing, inter-
molecular bonds, which in the case of water would predominantly be hydrogen bonds.
The entropic contribution appears due to the excluded volume, created for the solute, thus
reducing the accessible configurational phase space volume for water. The free energy of
this step is strongly dependent on the size of the solute, with larger solutes requiring more

"We will generalize and use the term enthalpy/enthalpic regardless of the ensemble, this is due to the
enthalpy is defined as AH = AU + A(pV). Therefore, if no pV work is done on or by the system the
enthalpy and internal energy are equivalent, AH = AU.
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Figure 3.1: lllustration of the solvation process in which the solvent (water), is creating a cavity equal to the excluded
volume of the solute (a chloride anion), characterized by breaking intermolecular interactions between
solvent molecules, in this case, hydrogen bonds. In the last step where the solute is finally inserted the
solvent is re-orientating to a preferential configuration corresponding to intermolecular interactions with
low free energy between solvent-solute, solvent-solvent, and solute-solute.
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ordering of solvent by the created cavity followed by a larger number of solvent-solvent
interactions broken. As a result, the choice of solvent is also important and in particular
the strength of solvent-solvent interactions. The second step of Fig. 3.1, is to turn on the
possible interactions to the solute. So far we have already established the hydration is un-
favorable, so to turn the whole process favorable, the solute-solvent interactions must be
highly stabilizing. In the specific case for the hydration of chloride, strong electrostatic
interactions can be formed between the negatively charged anion and the positive partially
charged hydrogen of water yielding an enthalpically favorable contribution to the hydra-
tion of the anion, while the preferential re-orientation of the solvent around the solute,
yielding an entropically unfavorable contribution.

The last stage of the hydration of the chloride anion is to free the anion. So far we have
assumed the particle to be grown into a fixed position in the system, thus an entropic
favourable contribution of mixing is achieved by releasing the particle from its position of
growth, allowing it to diffuse in the system. Finally, there is the possibility for ensemble
effects, which are particularly linked to the re-organization energies. For a constant-pressure
solvation process, an associated relaxation of the system volume can be accompanied with
the solvent re-organization of solvation, which can be up to several k7" different compared
to solvent re-organization associated with a constant-volume solvation process.

From the above, it should now be evident the solvation of molecular matter is no trivial
task, with many contributions driving the process in different directions. However keep-
ing these contributions in mind, we can construct a statistical thermodynamic description
to estimate the various contributions. Thankfully, the frontiers in the field of solvation
thermodynamics have already craved a great deal of the way to mathematically describe the
processes.
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3.2 The Chemical Potential of Solute

As we saw from the solvation process, we are looking at the equilibrium of transferring a
particle into a solvent (N = N + 1), the chemical potential in the canonical ensemble of
an infinitely dilute solute in the thermodynamic limit, is

(o)
Hsolute = anr
aNS Nsolvcnt )VvT N.

solute—0

= A(Nsolventa Nsolute = 17 V7 T) - A(Nsolventa Nsolute = 07 ‘/7 T)7

(.2)

where A is the Helmholtz free energy of the system containing Nolvent solvent and Ngojute
solute particles enclosed in volume V' at temperature 7'. Furthermore, we linearly decom-
pose the chemical potential into an ideal contribution ;!9 and an excess contribution 1%

Hsolute = Mid + Nex' (3-3)

The ideal contribution is the chemical potential of an ideal gas at the stated conditions,
thus all intermolecular interactions are omitted from the system and thus the contribution
arises from the kinetic energy and the possibility to occupy the enclosed volume. The excess
chemical potential is therefore related to the correlation arising from the intermolecular
interactions, which can be expressed through the canonical configurational integrals

Z(Nsolute = 1) :|

Z(Nsolute = O) (3.4)

Bp™ =—In [
Eq. 3.4 is central for the calculation of free energy calculations and will be considered in
much more detail in chapter 3.3. Instead, for now, we will focus on the ideal contribution
to the solvation free energy.

3.2.1 The Chemical Potential of an Ideal Gas

The perhaps ecasiest model particle system is an ideal gas. As it was seen in Eq. 3.3, we
conveniently decompose the chemical potential of solute into the contribution arising from
an ideal gas and an excess term arsing from the intermolecular interactions. Thus here we
will investigate ideal gas contribution to the chemical potential. The starting point will
be the rewriting of Eq. 3.2 to correspond to the chemical potential in the microcanonical
(INVE) ensemble instead of the canonical (NVT') ensemble

0A 0S8
"= (aN)V,T =7 (aw)m =
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the microcanonical chemical potential thus refers to the insertion of a particle such that the
internal energy remains fixed. The entropy of a monatomic ideal gas can be obtained by
inserting the microcanonical partition function for an ideal gas (Eq. 1.30) into the Boltz-
mann entropy formula (Eq. 1.9) and taking the Sterling approximation of the expression.
The final result would be the famous Sackur-Tetrode equation (named after Otto Sackur
and Hugo Tetrode who independently derived it in 1912) #7*1H155

Sy [V (LW”U)] 2 (.6

kpN N \ 3h2N 2’ )
where the fraction Zngm is the inverse fundamental volume per particle vy as previously
discussed in chapter 1.4 and 1.8. It should once more be noted that the Sackur-Tetrode
equation is limited to the classical regime i.e. the volume of the system is greater than
the fundamental volume (V' > Nwg) and thus can be described by Maxwell-Boltzmann

statistics. Assuming the fundamental volume, v, is constant, the difference in entropy
upon a particle increment of one and thus the chemical potential yields

j= —T[S(N +1) — S(N)] = —Tks <ln [ NVUQ] + Z’) 6.)

For the condition where the volume of the system is much greater than the total funda-
mental volume (V' > Nuvg), we find the ideal chemical potential to always be negative,
and thus the corresponding entropy of the system to be positive. The physical understand-
ing of the ever negative chemical potential (positive entropy) of an ideal gas is somewhat
trivial; more microstates with the same energy becomes accessible when more particles can
be placed in the system.

Perhaps the easiest rationalization of this can be achieved by considering the distribution
of particles in the configurational space of a system with constant volume. Imagine a 2x2
ensemble of distinguishable boxes which together constitute the volume of the system as il-
lustrated in figure 3.2A. Each box represents the fundamental volume, meaning all quantum
effects between particles are neglectable beyond this distance and no interactions between
the particles are possible. As we can see from 3.2A, the number of microstates depends
on the number of particles we are allowed to place within the system, with a maximum
of 6 macrostates given 2 particles. At constant energy, the Boltzmann entropy formula
(S = kpIn W) connects the entropy of the system’s macrostate to the weight of the given
macrostate, where the weight of the system is given by the number of microstates accessible.
The number of permutations W given a finite number of particles /V and finite number of
accessible boxes M yields
M!

W(M,N) = NI = N)I° (3.8)
Eq. 3.8 is the well-known binomial coefficient and has the property of being an increasing
function for N < M /2, which in the case of our particle system means the entropy upon
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Figure 3.2: Illustration of the configurational contribution to the entropy upon insertion of ideal particles (chemical
potential) into a system containing an ideal gas. A. Visualization of the weight of N particles in a 2x2
ensemble at constant energy and volume (microcanonical), with the weight given by the binomial coef-
ficient. B. Entropy as a function of the number of particles in a 10x10 ensemble at constant energy and
volume, with the entropy calculated using Boltzmann'’s entropy formula. The insert is the corresponding
weight of the system as a function of the number of particles.

inserting particles is increasing until the volume occupied by the particles exceeds more than
half the system volume. This is illustrated in figure 3.2B in which the maximum entropy
is achieved when the box is half occupied, with the entropy first increasing reaching a
maximum at N = M /2 following a decrease in entropy. This conclusion is equivalent to
the result of Eq. 3.7 and the necessary assumption the quantum volume occupied by the
particles must be much smaller than the system volume, which is true in all practical cases.

The simple model presented above utilizing the binomial coefficient to calculate the ideal
configurational chemical potential and entropy of the system due to quantum volume ex-
clusion, could with interest be expanded to the study of hard-sphere systems, which is also
a "hard” particle exclusion, to estimate the density at which the insertion of particles is no
longer favorable.

3.3 Solvation Free Energy Calculations

To gain insight into the spontaneity of transformations of systems and the maximum
amount of work the system can do on the surroundings, knowledge of the free energy is
essential. Consequently, the development of methods to calculate free energies has drawn a
lot of attention within the field of molecular simulations, with the field dubbed free energy
methods or free energy calculations. The transformation of the system in question can vary
greatly depending on interest and in theory one may conduct any transformation desirable.
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Examples include changing the thermodynamic state of the system by varying the volume,
pressure, or the number of particles.> However, it is also possible to calculate the free en-
ergy of chemical reactions, meaning to change the composition of atoms, the binding of
ligands to host molecules, and the free energy of physical equilibria, meaning the transfor-
mation between thermostatically stable states of matter, with a specific example being the
free energy difference between the folded and unfolded state of a protein. Within the field
of solvation thermodynamics, we are, as earlier stated, interested in the transformation that
involves moving solute from one environment to another. By this broad definition, there
are a great number of specific processes which can be conducted each of which poses differ-
ent challenges. In this chapter, we will thus look at methods aimed to calculate free energy
changes for solutes into different solutions, but also methods directly aimed at determin-
ing the chemical potential, which we previously showed is a fundamental key concept of
solvation thermodynamic.

The fundamental starting point is the utilization of the statistical mechanical expressions
for free energy. In the canonical ensemble, the Helmholtz free energy F for a system of N
distinguishable particles is given by

F(N,V,T) = —kgTInQ = —kgTIn [hSN / e PHP) dﬁdqﬂ} . (.9
I

where I is the accessible phase space containing all the atomic degrees of freedom, namely
the particle positions and momenta. Eq. 3.9 dictates the absolute free energy is given by
the integration of the Boltzmann factor over the whole accessible phase space I, or in other
words the free energy is proportional to the logarithmic canonical partition function. Eq.
3.9 simultaneously also reveals the essential difficulty in calculating the absolute free energy
of a system, due to the free energy being dependent on a 6 N-dimensional integration to be
conducted. Due to the partition function being an ever-positive function and the logarithm
being a monotonically increasing function, the free energy will progressively become lower,
as more and more regions of the phase space are included in the integration. Practically,
this has the implication, that the free energy is a slow converging function for systems
possessing large and complicated phase spaces, rendering it impossible to estimate the free
energy accurately. Instead one estimates the difference in free energy between two states ¢
and j. Using Eq. 3.9 we find the difference in free energy to be

AF,,;j(N,V,T) = F;(N,V,T) — F;(N,V,T) = —kgTIn [Qﬂ}
—BH;(5.4) 4547 (3.10)
Jp, e PP dpdg

= —kpT1 _
B~ Jp, e PHGD dpdg

*Note the temperature was not mentioned as a possible variable for transformation, it will later be explained
why.
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In the previous expression, the Hamiltonians and accessible phase spaces are state-dependent.
A common approximation for many free energy methods is the assumption the two accessi-
ble phase spaces are identical, which can cause difficulties for complicated transformations.
Eq. 3.10 will serve as the central expression for deriving the various methods upon which
free energy calculations rely, due to its direct relationship to the microscopic ensembles,
which can be generated by molecular simulations. Finally, it is now worth noting that a
transformation in temperature, i.e. heating up or cooling down the system, is not possible
as the free energy calculation would no longer be a ratio between partition functions as
shown in Eq. 3.10, but instead the difference between the logarithmic partition functions,
and thus face the same issues discussed for determining free energies using Eq. 3.9.

In the upcoming, we will look at how various methods and strategies can be adapted from
Eq. 3.10 to determine the free energy between systems. In particular we will discuss the
three major families of free energy methods namely direct sampling methods, integration
methods and perturbation methods. It is worth mentioning two other large families of free
energy methods that exist, namely biased-equilibrium methods and non-equilibrium methods,
however, these will not be treated in detail here.

3.3.1 'The Direct Sampling Method

The secret of the direct sampling method is almost given by the very name: By simply
counting the number of occurrences of a binary criteria the free energy can be estimated.
This scheme can be derived by multiplying Eq. 3.10 with the union of the two partition
function’s phase space (I';; = I'; UT;)

AF;;(N,V,T) = —kpT'In (%g”) = —kpgTn (?) , (3.11)
i 7

where Q;; is the united partition function of the partition functions (); and @;. Since the
probability is given by the number of samples of a specific event over the total number of
samples, the total number of samples cancels in the expression. This method is however
only useful given that the two states ¢ and j are sampled with a sufficient transition fre-
quency to obtain reliable statistics. This is usually the case when both the thermodynamic
barrier, i.e. the free energy difference between the states, and the kinetic barrier, i.e. the
free energy of activation, is fairly low. The direct sampling method is most commonly
applied with the free energy of structural properties or simple binding equilibria. To dif-
ferentiate the states into the binary count one commonly utilize a reduced measure, such
as distances between specific atoms, angles, root-mean-square deviations (RMSD), cluster
size, or even reduced variables obtained from dimensionality reduction techniques such
as principal component analysis (PCA) or time-lagged independent component analysis
(TICA). This has been applied to determine the pH-dependent rotameric and distance-
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Figure 3.3: Illustration of the partitioning of caffeine between the aqueous phase and organic phase. In this par-
titioning experiment a separation funnel with colored water, occupying the bottom half, and colored
cyclohexane, occupying the upper half, with caffeine occupying the two phases with a specific equilib-
rium. The standard Gibbs free energy for the partition of caffeine has experimentally been found to 12.9

kJ/mol '8 using the relationship AG? . = —RT In(P;/P;) = —RT In (m) The insert

trs [caffine]water
visualizes a possible configuration obtainable from molecular simulations in which caffeine is found at the
water-cyclohexane interface.

dependent structural equilibrium between two titratable residues utilizing first side chain
dihedral angles and atom-atom distances found in paper 14¢ and to quantify the structural
contribution to the free energy of binding of K* to bis(crown ether) as found in paper 111.

The direct sampling free energy method can be generalized to include non-binary states
within the ensemble. Taking the most populated state as dictated by some collective variable
&(7) = &(r1,73, ..., 7N ), as the ground state, Eq. 3.11 can be written as

AF(&) = —kpT'In P(&). (3.12)

Eq. 3.12 is commonly known as the potential of mean force and allows the free energy
calculations along any reaction coordinate defined by the collective variable £, with the free
energy being an ever-positive function, due to the definition of the ground state being the
most populated state.

To illustrate the difficulty of the application of the direct sampling methods to obtain free
energies for solvation thermodynamics, consider a partitioning experiment in which we
wish to desire to know the equilibrium distribution of caffeine in an organic phase of cy-
clohexane and the aqueous phase of water, as visualized in Fig. 3.3. A naive approach to
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calculating the free energy would be the creation of a simulation in which the upper half of
the box is filled with cyclohexane and the bottom half of the box is filled with water, and al-
low periodic boundary conditions at the sides of the box, representing the liquid interface.
With some random initial configuration of caffeine placed in either of the two phases, we
can generate configurations using molecular simulations of caffeine’s diffusion in the sys-
tem, and thus simply calculate the free energy by counting the duration caffeine was in the
cyclohexane phase and the water phase using Eq. 3.11, as it can be distinguished by the
mid-plane of the simulation box. Furthermore one can define the reaction coordinate £
as the positive and negative displacement away from the interface and by histogramming
determine the potential of mean force using Eq. 3.12. One major issue with this methodol-
ogy is the slow diffusion of caffeine across the interface and generally infrequent transition
between the two phases, rendering the need for unrealistic simulation times. Consequently
one commonly utilizes either non-equilibrium methods such as steered dynamics, in which
the caffeine molecule is pulled from one end of the system to another through the interface
by an external force, or by biased-equilibrium sampling in which it is continuously made
energetically unfavorable to occupy the same configurational ensemble of states.

3.3.2 Thermodynamic Integration & The Kirkwood Charging Formula

The thermodynamic integration method utilizes, that the free energy between two states of
a system can be written as an integral of the work required to go the initial state to the final
state as long as the change is done reversibly. Due to the free energy being a state function,
the resulting free energy difference is independent of the path chosen from the initial to the
final state and can be physical or non-physical. The generalized thermodynamic integration
identity can be derived by the construction of a state-dependent Hamiltonian, H (7, 7, \)
where A is an arbitrary coupling-parameter linking the states of the system. Since the
Hamiltonian is a function of A, the free energy and partition function are also functions of
A and we can therefore write the derivative of the free energy with respect to A

dF 1 dQ(N,V, T, \)
o = BRIV, V, TN =S
Jr [0H (5,4, X) JON e PH@D dpdq
= fl‘ e—BHED dpd] (3.13)
~ /OH (9,4, ))
- (5,

In Eq. 3.13 we can see the free energy can be expressed as an ensemble average for a system
with Hamiltonian H (\) which is highly appealing, due to it being a direct observable from
molecular simulations. Taking the initial state to be A = 0 and the end state to be A = 1,
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the difference in free energy is given by integrating Eq. 3.13

1
AF:F()\zl)—F()\:O):/ <8H()\)> dA. (3.14)
0 ox /,

Eq. 3.14 is the generalized expression for thermodynamic integration. The integration is
practically conducted by obtaining a set of ensemble averages from a series of simulations of
different A-values, with the choice of A-values being completely arbitrary, as long as the de-
sired end states can be reached. It was previously stated that the Hamiltonian was supposed
to be a function of A, while the only requirements to the function are it is differentiable
and satisfied the boundary conditions of being state independent at A = 0 and A = 1, the
Hamiltonian is most commonly taken to be a linear function on the form

H()\) = HZ-F)\(HJ —Hl) (3.15)

Here the indices ¢ and j refers to the thermodynamic state of the system before and after
the transformation respectively. The usage of a linear combination of the two Hamiltonian
has mainly two advantages. The first advantage is the calculation of the ensemble average
derivative becomes a trivial task. Inserting Eq. 3.15 into Eq. 3.14 one obtains

1
AF :/ <H] — HZ>)\ dA, (3.16)
0

which can be rapidly obtained as the converged averaged energy from a simulation simu-
lated at any given A-value. The second advantage is the Gibbs-Bogoliubov inequality can
be shown to apply for the linear coupling scheme, thus dictating that the ensemble average
derivative can never increase with increasing A and can thus be utilized to test the validity
of the simulation results. 4°

To calculate the solvation free energy, and thus chemical potential, for a vacuum-to-solution
solvation process we can utilize thermodynamic integration to slowly grow in a solute
molecule using a series of A-values, with the coupling-parameter coupled to the interac-
tions between the solute and the surrounding solvent. Taking the Hamiltonian to be a
linear function of A, as shown in Eq. 3.15, one could write the solvent-solute Hamiltonian

as H(A):)\i\’: i tei [(%)12_<0¢j>6

ros ros
i j=i+l K K

q:q;
)
Tij

+ (3.17)

where the first term is the well-known Lennard-Jones potential and the second term a sim-
plified Coulomb potential. The linearly scaling however is often ill-behaved at A values near
the end states in which the solute particle is in one step going from being completely absent
from the system to now exclude volume creation a singularity (infinite potential) when the
solvent is overlapping with the solute, thus causing large fluctuations in OH (\)/ON. ™13
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Consequently it is today common practice to utilize potentials which smoothens out the
singularity using so-called “softcore potentials”. 2¢15° Similarly it is also important to con-
stantly maintain an exclude volume for particles possessing charge, as oppositely charged
particles would otherwise experience an electrostatic singularity. Besides the issues associ-
ated with the potentials, systematic errors are inevitable, due to the discretization of the
integral, in particular, if OH (\)/O\ varies greatly in some ranges of A it must be sampled
extra rigorously.

The thermodynamic integration identity (Eq. 3.14) was first discovered by John G. Kirk-
wood, however with a different goal in mind; to express the chemical potential of the
components in a liquid solution in terms of molecular pair distribution functions.*® This
culminated in the well known Kirkwood charging formula. To understand the formula,
consider a species-decomposed A-coupled potential energy function

Nsw

U()\) =us+ Z Usw()\a 7!) + U (3.18)
=1

where ug is the potential energy of the solute being a one-body term, wgy, (A, 1) is the
potential energy arising from solute-solvent interactions, and ., is the potential energy
arising from the solvent-solvent interactions, with the last two terms being pair potentials.
By this definition we can via our coupling-parameter A introduce interactions between the
solute and solvent, as it was characteristic for a solvation process. Inserting Eq. 3.18 into
Eq. 3.13 one obtains

op™ _ %wz Qg (A, 7)

O\ ; ()
i=1 A

N

_ / Qw2 D 0~ Fu)OlF = F%) ) o dF.

(3.19)

Here we have utilized only the solute-solvent potential energy g, is varying with the
coupling-parameter A, and changed the order of integration such that the ensemble average
is taken over the summation of d-functions. The ensemble average can be identified as the
equilibrium solute-solvent density distribution function pg,,.# Substituting in the density
distribution function and integrating over A we obtain the Kirkwood charging formula

1 .

> 8 sw )‘7 - = — —

Ap :/ d)\/ Wpsw(rs,rw) dr, dr,. (3.20)
0 —00

While Eq. 3.20 is exact, it can not be applied easily due to the solute-solvent density dis-
tribution function is represented over a high-dimensional set of coordinates of positions.
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Instead one can utilize a projection coordinate such as the radial distribution function uti-
lized in the methods dubbed reference interaction site model (RISM), or energy distribu-
tion functions utilized in the method of energy-representation theory of solvation (covered
in section 3.3.4), such that the high-dimensional expression can be omitted to arrive at
useful expressions.

3.3.3 Free Energy Perturbation & The Widom Particle-Insertion Method

In Eq. 3.13 we saw the free energy could be expressed as a derivative with respect to the
coupling-parameter A and be integrated to yield the difference in free energy. An alternative
approach would be to express the derivative as a difference between A and a finite increment
in the coupling-parameter A + A\

dF(\)  F(A+AX) - F()\) (3.2)
- AX ‘ >
Utilizing the expression for the absolute free energy (Eq. 3.9) we can rewrite Eq. 3.21 to

dF(\) _ _kBTln [ [ e PHBEAAN q5dg] — In [ [ e PHPTN dpdg]

dX AN
[ e~ BHEENAN-HEGN) o~ FH (BTN
[ e PHGTN)

—kgT
= In

N) (3.22)

_ —kpT —BH(F,dA+AN) —H(5,4,N)
AN In <e >>\'

In the second equality, the expression was added with ratio In ( %) , followed by the

factoring of the unperturbed Boltzmann factor. We here see the reasoning behind the names
“free energy perturbation” and “exponential averaging” (being another common name), as
the free energy can be found, from the exponential energy difference between the perturbed
and unperturbed system, averaged over the unperturbed phase space, i.e. an averaging of
Boltzmann factors. The free energy between the individual coupling-parameter increments
can thus be found as the sum of the individual increments between the end states

A=1
AF = —kpT In <e—ﬂH(ﬁ@/\+A>\)—H(@rﬂ)> ' (3.23)
A
A=0
Within the framework of Eq. 3.23 one may arbitrarily choose the number and size of
the increments between the final states, with the possibility to even do a full perturbation
between the final states in a single increment, in which the summation then disappears
from the expression.
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Within the topic of solvation thermodynamics and the determination of chemical poten-
tials, the usage of single increment free energy perturbation is best manifested in the Widom
particle insertion method,™ in which the coupling-parameter is taken to the binary op-
tion of having no solute particles A\ = 0, and one solute particle A\ = 1 with the given
solvent remaining fixed for both conditions. This approach can be utilized on the fly dur-
ing molecular simulation, such that an unperturbed simulation is periodically paused with
the insertion of a trial particle in a random position, and average the Boltzzmann factor
arising from the difference in energy between the perturbed and unperturbed state. >4
The Widom particle insertion method is a very simple, yet useful scheme for the compu-
tation of chemical potentials and has thus undergone continuous development since the
initial publication of the method by Widom, to also include the possibility of obtaining
chemical potentials by a particle deletion, i.e. the reverse process of the Widom method,
and by particle reinsertion, i.e. to place the particles ones more into the system after a dele-
tion, providing various methods to improve the sampling."” However despite its simplicity,
single increment free energy perturbations methods, are known to perform poorly, in par-
ticular, if the perturbation is large, such as the insertion of a particle into a dense fluid,
creating configurations with particle overlap characterized by high energy, thus causing the
explored phase spaces to not overlap, which could be mediated by a staged insertion using
multiple increments. This problem is in particular related to the low probability (a rare
event) of spontaneously creating a cavity suitable for the solute molecule, with the larger
solutes requiring a larger cavity. Another complication is that of molecules that are char-
acterized by multiple internal degrees of freedom, which may be highly correlated with the
solvent composition and coordination, as it is for example seen in proteins, are decoupled.

With free energy perturbation sampling the unperturbed state and estimating energy dif-
ference between the perturbed and unperturbed state, systematic errors are expected to
occur as the forward variation (from o to 1) might not yield the negative backward vari-
ation (from 1 to o) as otherwise dictated due to the free energy being a state function.
Therefore modern free energy perturbation commonly utilizes the averaging of forwarding
and backward calculations as previously mentioned for the Widom methodology. How-
ever, it has been found that itself can also be a source of systematic error. ®® Consequently
modern studies are more commonly applying Bennetts acceptance ratio methods, > which
are characterized by utilizing both the forward and backward variation of A-values, while
simultaneously minimizing the standard error for a given simulation time of the specific

A-values using weighting-functions. 8

3.3.4 Density Functional Theory & Energy-representation Theory of Solvation

In this section, we will present the theory for the computation of the excess chemical po-
tential using the energy-representation theory of solvation developed by the Matubayasi
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group in Osaka, Japan. The method is characterized in defining a new reaction coordinate,
in specific the solute-solvent pair-energy, which combined with the Kirkwood charging
formula and classical density functional theory yields an expression for the calculation of
excess chemical potentials relying only on end-state molecular simulations.

Definitions Within the Energy-representation Theory

1. The Energy Collective Coordinate

Within the theory of energy-representation, we introduce a new collec-
tive variable/coordinate namely the pair interaction energy between a so-
lute molecule and a solvent molecule donated €. This coordinate is taken
to be A-independent and thus must be calculated with the solute-solvent
potential at full coupling corresponding to taking A = 1 (c.f. Eq. 3.18).
Consequently, the pair solute-solvent energy is defined as:

Vs (Ts, Tw) = Usw(A = 1,75, 7). (3.24)

2. The Microscopic Energy Density
The instantaneous, i.e. a single arbitrary particle configuration, pair-

energy distribution function is introduced as

Ny
ﬁiw(e) = Ed(vsw(f;a Tw) — €)
i=0 (3.25)

o0
= / (Vsw (s, Tw) — €) Psw(Ts, Toy) ATs ATy,
—00

3. The Energy-representation’s Energy Equation

Just like the mean excess energy can be expressed given the knowledge
on the pair-energies of the system and the radial distribution function as
it is found from the “energy equation”® the potential energy within the
energy-representation can be similarly written as

U () = / 5 (Vs (P Fon) — €Vt (A Foy o) ATy AP, (3.26)

We choose the A-path to be one in which u$,,, (X, 7's, 7, ) is an equi-energy
surface of gy, (s, Toy) by the restraint: uS,, (N, Ts, ) = AVsw (Ts, T,
thus allowing us to express the A-coupled pair energy as

Usw (A, Ty Toy) = / 0 (Vs (s, Toy) — €)us,, (€) de. (3.27)
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4. The Solute-solvent Ensemble Density Distribution Function In the
Energy Representation

The solute-solvent ensemble density distribution function in the canonical
ensemble (VVT) ensemble is given by:

Pow(As €) = (p(€))x. (3.28)

Using the definition of the microscopic energy density and rewriting the
ensemble averages, we find

fF [ffooo 5(7)511)(7?5; Fw) - e)ﬁsw("?‘s; Fw) dFs dfw
Jr e—BUNTs 7w) A7, dFle

—BUMTs Pw) 32
e BUMNTS ”)drs dr,™,

p;w(A,E) = X

(3.29)
where the first integral over I is the integration over phase space. Con-
ducting a change in the integration order we can rewrite the equation as

Pwlhe) = / §(Vsu (s, Fo) — €) dF, Aoy

Jr [Pow(Ts, Tow)] e BUNTSTw) 47, A (3.30)
fF e BUNTS Tw) A7, df’ul\jfw ‘

The fraction can be identified as the Boltzmann ensemble average of the
instantaneous solute-solvent density distribution, and is thus equal to the
the solute-solvent density distribution pgy, (s, 7y ):

Pfgw()\, 6) - / 5(Usw(FSa Fw) - E)psw(ﬁs, Fw) dr dry,. (3.31)

\.

The starting point to solve the Kirkwood charging formula (Eq. 3.20) will be the rewriting
of the function to depend on the energy collective coordinate and its associated distribution
function. To do so we substitute the partial derivative of Eq. 3.27 and substitute it into the
Kirkwood charging formula:

1 00 o] €
Au—/ d)\/ [/ 5(vsw(Fs,Fw)—e)au(‘;§\(6) de| pow(Fs, Fo) AFs ATy
0 —00 —00

(3.32)
By changing the order of integration and substituting the solute-solvent density distribution
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function in the energy representation (Def. 4), we obtain

Ap = /d)\/ &‘sw [/ 3 (Vs (s Tow) — €) s (s Foo) AT Ay

/d)\/ Ot A s (e de.
(3.33)

Eq. 3.33 is the Kirkwood charging formula within the energy representation formulation,

due to the only dependency of the potential and the ensemble density distribution func-
tion on the solute-solvent pair energy coordinate. The Kirkwood charging formula can be
further solved

o L ous (€)
sw €
Ap = / de/o h P (A, €) dX

1 €
= [ el = oot~ [ PR ] 6
e 0

a)\ S'Ll)

o) 1 o0 € (X
= / Pow(A=1,€)ede — /0 d\ Wugw(e) de,

—0o0

where we have in the first equality changed the order of integration, in the second equality
integrated by parts for the inner integral, and in the third equality reverted the order of
integration while rewriting the expression using definition 1 and 3 i.e. u$, (A = 1,¢) =
vg, = €. We will now donate the second term as a functional of the potential and the

solute-solvent ensemble density distribution function:

* 0psw(Ne) .

1
Flrwndiu@l = [fax [~ 280 e G

To find an expression for the functional of the potential and the solute-solvent ensemble
density distribution function we continue by decomposing the ensemble density distri-
bution function into a direct contribution arising from particle pair interaction, and an
indirect contribution, arising from the correlation of particles intermediate to the pair.%

Pow (N €) = pSu (A =0, G)G—B(UZw(EHwéw(E))’ (3.36)

and similarly we can rewrite the potential to depend on the indirect contribution

€ /)S/LU(A 6) €
g, (€) = —kpT'In <p(>\_06)> W, (€). (3.37)

Using these definitions we can evaluate the functional expression to solve the Kirkwood
charging formula within the energy representation. Inserting the above expression into Eq.
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3.35 we can write the functional as

0 )\
F (M ) (6) / /”sw 9

where we have changed the order of integration. The first integral can be solved analytically
and the functional can thus be found to be equal to

(3.38)

o0

Flpuls st b [ [(pzwu S L6 (A= 0.0) — (A= 1,e)x

€ _ 1 €
In psw()‘ - 176) _B/ 8psw()‘76)w
0

P (A =0,¢) I\ cw(A €)dA | de.

(3-39)
The above expression may be further simplified if we choose the A-dependency of the po-

tential such that the ensemble density distribution is a linear combination of \ end-states:

Pow (A, 6) = )‘pgw<)‘ =1, 6) +m(1 — A)p5, (A = 0,€) (3.40)

thus allowing the partial derivative to be rewritten as

o0

Flpsw(X, €), ugy ()] ZkBT/ |:(p§w()‘ =1,6) = paw(A =0,€)) — plyy (A = 1,)x

€ )\:
1nM—5( WA =1,6) = plu (A =0,6))

1
/ W, (A, e)d)\] de.
0

(3.41)
With the chemical potential being ultimately given by
M= [ phuh = Lede ~ Flpt(h 0. ut ) 6.4

Eq. 3.42 is the fundamental equation for the determination of the chemical potentials
within the energetic representation theory and it should be noted Eq. 3.42 is an exact
expression with no approximations having been made up to this point. Physically Eq. 3.42
also states the chemical potential can be thought of as two contributions: One being the
contribution arising from the interactions between the solute and solvent as the first term
can be identified as the mean pair-energy between the solute and solvent at full coupling
(A = 1), while the second contribution is associated with the energetics of cavity formation
and in turn solvent reorganization due to the functional depending on the pair-energy
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ensemble density distribution for the system being fully uncoupled and fully coupled. The
practical limitation of Eq. 3.42 arises from the A-dependency of the indirect part of the
potential of mean force within the functional. To eliminate this dependency, approximate
functionals can be applied.

Using Percus’s method of functional expansion,?” it can be found that the indirect poten-
tial of mean force A-integral can be solved analytically using the Percus-Yevick (PY) like
and hypernetted-chain (HNC) like approximations.# However it has been recognized in
the case of simple liquids that the PY approximation performs better in the case of short-
range repulsive potentials, while the HNC approximation performs better in the case of
long-range attractive potentials.# Consequently Matubayasi and Nakahara”” choose to
construct a hybrid functional as a combination of the two approximations, in which the
PY-like approximation is utilized in the unfavorable energy-region of solvation (w§,, > 0)
and the HNC-like approximation is utilized in the favorable energy-region of solvation
(w§,, < 0). However the PY-like and HNC-like approximation are related to one another,
and henceforth we shall only discuss the hybrid functional in terms of the HNC-like ap-
proximation. An alternative to the determination of the indirect potential of mean force
by approximate functionals is the direct sampling by molecular simulations like molec-
ular dynamics and Monte Carlo simulations for interactions between solute and solvent
not characterized by Pauli repulsion i.e. outside the solute-core region. Matubayasi conse-
quently proposed to use the HNC-like approximation only when it can not be determined
from molecular simulations.” For the core-region of energies, which are unsampled by
the usage of molecular simulations at A = 1, the probability density distribution must be
much greater at zero coupling (p5,,(A = 1) < pS,, (A = 0)), and hence the dependency
on p,,(A = 1) disappear in the HNC-like approximation for the solute-core region. In-
stead, the core region is calculated in the ensemble where the solute and solvent are fully
decoupled (A = 0), with the simple approach being the insertion of solute molecules in
random orientations, into the ensemble of pure solvent configurations. Skipping the full
derivation of the PY-like and HNC-like functionals and their individual A-integration,
the A-integration over the indirect potential of mean force in the method by Matubayasi,

112

Nakahara, and Sakuraba is given by

1
B/O W, (A, €) dA = a(e)Fy + [1 — a(e)] Fy anc, (3.43)

where the functions I, and F},, pnc are written as functions of the PY-like and NHC-like
expressions for the A-integral

oo B’LUSTW(E)’ 6 when wgw(e) >0 3 44)
v pws,(€) + 1+ —Bwenld " when wgy,(€) <0, ‘

e*ﬁwgw(‘E)—l )
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and

Buwsin ™ (e) e
Bosw 19 when w¢,,(€) > 0

_ ¢, HNC
~n [1 - BugiNO(e)] 4 14 el

HN
Buwse ()

Fyunc =
* when w¢,, (€) < 0,

(3-45)
and the parameter «(€) is responsible for merging the different indirect potential of mean

force functions:
L, when p, (e, A = 1) > pg,, (€, A = 0)

Oz(E)Z € w(€,A=1)—pS,, (e,A=0 2 € €
1= (Ll aled=0)  when pg, (6,4 = 1) < ply (6,1 = 0).
(3.46)

3.3.5 Thermodynamic Cycles

Due to the nature of thermodynamic state functions being path-independent for reversible
processes, it opens the possibility to determine free energies of otherwise complicated pro-
cesses of interest. Within protein chemistry, the majority of thermodynamic cycles usually
rely on the usage of transfer free energies, in which for example a ligand and product are
transferred from the solvent to the binding site of proteins to calculate the free energy of
catalyzing a specific reaction in proteins. Another example could be the transfer of titrat-
able amino acid analogs to the folded state of proteins to determine the pKj, of titratable
residues in proteins which is perturbed by the dehydration and specific interactions found
in proteins as it is visualized in Fig. 3.4. Specific for the determination of pK, values in
proteins we here see it is sufficient to know the pK, of the group in water yielding the
free energy of (de)protonation in water and the difference in solvation free energy of the
protonation state and dehydrated state to obtain the free energy of (de)protonation in the
protein. Examples of thermodynamic cycles used in this work include the presented solva-
tion/(de)protonation cycle previously presented and a diprotic acid cycle, in which an acid
with two states can adapt two energetically different states in the pathway from the fully
protonated state to the fully deprotonated state.
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Figure 3.4: Thermodynamic cycle for the calculation of free energy of (de)protonation (upper horizontal axis), using
solvation free energies (vertical axis) of the protonated (left) and deprotonated state (right). To complete
the cycle knowledge on the free energy of (de)protonation in water is required which can be experimen-
tally obtainable from example wise pK, measurements. The presented cycle is also generally applicable
to studies of ligand binding as protons may be considered the smallest possible ligand.
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Chapter 4

Molecular Simulations

An intelligence which could, atr any moment, comprehend all the forces by which nature is
animated and the respective positions of the beings of which it is composed, and moreover, if
this intelligence were far-reaching enough to subject these data to analysis, it would encompass
in that same formula both the movements of the largest bodies in the universe and those of the
lightest atom.

— Pierre-Simon Laplace, 1749-1827

Simulations offer, like experiments, insight into the nature we are living in, however as
with any experimental method, simulations also come with their advantage and their limi-
tations. For example, within the category of experimental scattering techniques, we address
“the resolution” of the experiment, which is the lowest distance at which we can distinguish
structural features from one another. While the resolution in scattering experiments is an
observable, in molecular simulations it is a choice made by the modeler. In particular,
the levels of theory and coarse-graining of the molecular system on which the simulations
are based reflect the resolution chosen (see Fig. 4.1). For example, upon going from a
quantum mechanical description to a classical mechanical description we abandon the de-
scription of explicit electrons to instead utilize a mean-field description of electron-electron
interactions through potential energy functions. This choice is logical if one is not inter-
ested in accurately describing electronic properties for larger molecules. The next level of
coarse-graining usually either involves a mean-field description of a solvent surrounding a
solute and/or the reduction of structural details in the solute through spheres composing
multiple atoms or in the case of proteins; whole residues. As of consequence, we can de-
sign molecular simulations to match the experimental resolution, however with the cost of
abandoning details below the chosen resolution. As stated in the introduction, statistical
thermodynamics is required to provide the necessary interpretation of molecular phenom-
ena to experimental observations, using molecular simulations we can inverse the process,
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Figure 4.1: Illustrations of the various simulation methods and their characteristic usage in the time- and length-
scale spectrum. At the highest level of resolution, we for example find quantum methods, which are
limited to the studying properties occurring on the femtosecond to picosecond time scale and picome-
ter to nanometer length scale. In contrast, we find all-atomistic molecular dynamics and Monte Carlo,
where explicit electrons and their interactions have been replaced with effective pair-potentials to mimic
electronic interactions, can simulate picosecond to microsecond time scale and on the nanometer to mi-
crometer length-scale. Taking it a step further one may reduce the structural details by coarse-graining
atomistic matter to simulate at even longer time scales and length scales. As such, the choice of resolution
should reflect the properties of interest, like protein folding of fast-folding proteins and the local motion
of proteins, which can be studied on the atomistic scale while larger globular motion and slow protein
folding are best left for coarse-graining. Among the lowest processes are the formation of highly struc-
tured aggregates are studied on the mesoscale level. However, in the author’s opinion, it is in the best of
interest to push the limits of atomistic simulations to study larger and slower properties and fall back to
coarse-graining when beyond our current capabilities.

and derive experimental observations using statistical thermodynamics. This bidirectional
relationship between molecular simulations and experiments can assist to discover the un-
derlying molecular mechanism of molecular processes. However, an inherent difficulty
between molecular simulations and experiments, is the difference in size, time, and condi-
tions at which the experiment was conducted. For example, if one were experimenting on
a glass of water to find the heat capacity over the process of 1 minute, it would be equiva-
lent to the study of approximately 10%* water molecules, using 101° iterations by solving
Newton’s equations of motion, thus rendering it an impossible computational challenge.
As of consequence, simulations are commonly conducted at a much smaller scale, thus cre-
ating elements of uncertainty, in which we rely on experimental verification to confirm the

simulations can be utilized to extract information about the system and its properties.

In this chapter, we will focus on the main methods utilized in generating configurations
with Boltzmann distributed probabilities, with the main methods being molecular dynam-
ics including the stochastic Langevin dynamics and Markov chain Monte Carlo simula-
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tions. Despite the methods being highly different in their approach to generating the sta-
tistical ensemble, the result should be the same, however as with everything; they each have
their advantages and disadvantages. Finally, the combination of molecular dynamics and
Monte Carlo simulations will be discussed, with the focus on the possibility to increase the
efficiency of the methods and sampling of more exotic thermodynamic ensembles.

Before moving on, I feel the need to address the quote by Pierre-Simon Laplace, stated at
the start of this chapter. In particular, the quote presented is from his work Philosophical
Essay on Probabilities from 1814. In his work, Laplace was arguing for a deterministic image
of the world based on classical mechanics, with this "intelligence” later having been named
Laplace’s demon, capable of knowing all particles positions and momenta and thus be able
to predict future and past outcomes of systems. However, to my amusement, I like to think
Laplace is very much describing a modern-day molecular dynamics simulation, with the
"intelligence” being the modern computer.

4.1 Molecular Dynamics

The method Molecular Dynamics (MD) generates configurations by solving Newton’s
equations of motion thus propagating the movement of molecules and atoms over time. In
particular, the dynamics are governed by Newton’s second law of motion

dv d%q

F=mi=
Where F is the force, @ is the acceleration, ¥'is the velocity, and ¢'is the position with all the
quantities being vectors, and m being the mass of the object. While the first equality can be
identified as Newton’s second law of motion, the following equalities relate the kinematic
variable acceleration to remaining kinematic variables namely the velocity and position,
thus setting the framework for the kinematic equations, allowing the determination of the
kinematic state at any given time. Except for very simplified, independent systems such as
objects moving at constant acceleration, or moving according to simple energy functions
like independent harmonic oscillators, Eq. 4.1 can not be solved analytically, and must
instead be solved by numeric integration. The choice of numerical integration scheme to
solve Eq. 4.1 is within molecular dynamics terminology called an integrator with the most
common choice being the Verlet integrators which include the Stérmer-Verlet method
also named position Verlet algorithm, and the velocity Verlet algorithm.™® The velocity
Verlet integration scheme is characteristic in utilizing a Taylor expansion around the time
t both forward and backward in time, thus effectively applying the midpoint method. The
position and velocity at the time increment ¢ + At by velocity Verlet integration is given
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Gt + A) = Glt) + 7 (t)AtJr; 7(t) A

a(t) + a(t + At)
2

The three most important features of the velocity Verlet integration scheme, making it

(4.2)
At.

T(t+ At) = (1) +

highly appealing is I) it is self-starting, meaning that once the initial configuration (posi-
tions and velocities/momenta) of the system has been established, any future can be de-
termined without the need to adapt alternate schemes. II) The equations of motion are
time-reversible, thus allowing not only the calculation of future configurations but also
past configurations. III) It is a symplectic integration, meaning the probability density of
phase space is conserved as time progresses as dictated by Liouville’s theorem and is one of
the fundamental properties in the description of statistical mechanics as discussed in the
introduction. #*

To propagate the time in molecular dynamics, we thus need to know the acceleration of
the individual particles, which according to the velocity Verlet integration scheme (Eq. 4.2)
depends on the positions of the particles, with Newton’s second law of motion relating the
net force acting on a particle to the particle’s acceleration. This force is also related to the
variation in potential energy V with respect to the distance to the object exerting the force,

F-ovi--(250.20.248)

(4.3)

Here we have adapted a three-dimensional notation, emphasizing the need to differentiate
with respect to all spacial dimensions. The force evaluation creates a limitation as to which
systems can be studied using molecular dynamics as every energy function employed must
be differentiable. Consequently, potentials such as hard-spheres and square-well potentials
are not compatible with molecular dynamics simulations.

Using Newton’s equations of motion, we can write up how the energy will vary with time,
given the fact that the total energy (the Hamiltonian) can be written as a double sum with
the first involving the individual particles in the system and the second sum being the
kinetic energy, K, and potential energy, V, we can write

N N N
OH 0 0 0
N atZ(/c +V) ;m(/Cﬁv ;(%( 5 +v> (4.4)
Rewriting the first term on the right hand side as % = 21)%, and the second term as:
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% %l %, both using the chain rule of derivatives, the above expression then becomes

N

OH o 8V 8‘]@
B = M Z 9q; Ot Zm"w + Z 8qz

= ZFivi — ZFM = 0.
i=1 i=1

From Eq. 4.5 we can conclude Newton’s equations of motion have zero variation in the

(4.5)

total energy with respect to time and thus the system possesses constant energy as the sam-
pling occurs, revealing molecular dynamics to nativity sampling the microcanonical (VVE)
ensemble. While the total energy in practice does vary, this effect arises from the non-
infinitesimal time increment (At) when using Eq. 4.2, and thus depends on the choice of
At and system being simulated.

Due to MD natively sampling the microcanonical ensemble by solving Newton’s equa-
tions of motion, to sample the canonical ensemble the need for a method of controlling
the energy dissipation between the system and surroundings is required to obtain constant
temperature rather than constant energy. These methods for controlling the temperature
are called #hermostats and are commonly applied in molecular dynamics simulations today,
to mimic experimental conditions. To calculate the temperature in a molecular system,
one commonly utilizes the law of equipartitioning stating that at equilibrium the energy of
a system is equally partitioned to the various microscopic modes of motion and configu-
rations in terms of the thermal energy k" times a constant.’® This has the consequence
that one may calculate the instantaneous temperature for a system at any given time using
configurational or dynamical quantities of the phase space.’'°+' For practical purposes,
the most commonly utilized microscopic mode of motion utilized for the calculation of
temperatures, is the velocities of the particles in the system, which in turn is related to the
average kinetic energy. In particular, one consequence of the equipartition theorem is that
any energy mode that depends quadratic on a phase-space variable possesses %k BT energy
per degree of freedom. Due to molecular dynamics retaining information on the velocities,
we can write the expression

10 - 2 LS 49
T 3Nkp  3Nkp & *

In Eq. 4.6 T(t) is known as the instantaneous kinetic temperature and allows the cal-
culation of the temperature at any point during the molecular dynamics simulation. To
properly sample the canonical ensemble the time-averaged temperature must equal the de-
sired temperature: (T'(t)) = T'. To achieve this, one can modify the equations of motion
to ensure the time-averaged ensemble of instantaneous kinetic temperatures has the correct
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mean. The simplest and most naive approach would be to scale the velocity of all the in-
dividual particles in Eq. 4.2 by the factor \/T'/T'(t) thus achieving constant temperature
after every iteration. However, despite the method providing a trajectory at a constant
temperature, it turns out this approach does not generate the canonical ensemble, due to
complete removal of fluctuations in the instantaneous temperature, but instead samples the
so-called isokinetic ensemble. ' Using the central limit theorem for the total kinetic energy
of a system containing N particles we can derive the variance of the probability distribu-
tion is given by 272 /(3N'), thus revealing any system, not in the thermodynamic limit
(N — o0) will display fluctuations in temperature. To circumvent the strong coupling in
exchange of energy between system and surroundings as it was found for the isokinetic en-
semble Berendsen and coworkers? scaled the velocities in a time-dependent manner, such
that the rate of change in temperature is proportional to the difference in temperature

ar(t) _ 1

T [T —1T(t)]. (4.7)

In Eq. 4.7 7 isa coupling parameter mimicking how strong the system is coupled to the heat
bath, with the extrema for the coupling parameter being 7 = At yielding the equations
of motion for the isokinetic ensemble and 7 = 00 yielding the equations of motion for
the microcanonical ensemble (Eq. 4.2). Morishita revealed the phase-space distribution
using the Berendsen thermostat can be generalized to the so-called Berendsen ensemble,
which in addition to the natural variables of N'V'T" also depends on the choice of 7, and is
an interpolation between the microcanonical ensemble and isokinetic ensemble, with the
canonical ensemble being a subspace of the Berendsen ensemble within the interpolation. 4

Many other thermostats exist, each having its pros and cons, with the main utilized meth-
ods mentioned in Tbl. 4.1. The methods are grouped according to their methodology in
achieving constant temperature. For example, the previously mentioned methods all uti-
lize velocity rescaling in a more or less deterministic form, however, some methods employ
stochastic forces and particle collisions, while finally, the last group of methods employs an
extended Lagrangian methodology in which the system is coupled to artificial particles via
their coordinates and velocities.

To obtain constant pressure one relies on the usage of a barostat, which like thermostats
alters the equations of motion. The pressure at any time ¢ from molecular dynamics simu-
lations is commonly estimated from the viral pressure equation

N N
NET 1 L =
P(t) = VvV v ;0 gﬁj Gij - Fij. (4.8)

"This approach only works for sufficiently small time step to ensure the discontinuities in momentum is
not too great.” To accommodate this problem the Gaussian thermostat is applied which modifies Newton’s
equations of motions to preserve the kinetic energy via Gauss’s principle of least constraint.
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Table 4.1: Thermostats within molecular dynamics grouped according to the thermostat’s method of achieving con-
stant temperature. The references listed are recommended literature on the theory behind the individual
thermostats.

Method Thermostat References
Isokinetic thermostat 35, 36, 147
Velocity Rescaling Berendsen thermostat 9, 84
Canonical velocity rescaling (Bussi thermostat) 17-19
Andersen thermostat 2
Stochastic Forces Langevin thermostat 37, 62
Dissipative particle dynamics 88, 124
Extended Lagrangian Nosé—Ionover thermlostat 48,91
Nosé-Hoover chains 73

In Eq. 4.8 the first term is the contribution arising from ideal particles interacting with
the system boundaries, while the second term accounts for the interactions between par-
ticles with the scalar product between the position vector and force vector known as the
viral. As with thermostats, to achieve successful barostating the ensemble average of the
instantaneous pressure must equal the desired pressure (P(t)) = P with correct fluctu-
ations. Consequently, as with thermostats, simple re-scaling methods of the pressure to
obtain constant pressure after every time step or in a time-dependent manner (equivalent
to Eq. 4.7) as applied in the Berendsen barostat,? is not recommended due to the sam-
pled ensemble not being well defined due to suppression of fluctuations. Another option
is to change the equations of motion by the addition of an additional degree of freedom
as utilized in the Andersen barostat?, thus behaving as if an isotropic piston is acting on
the system. However, while this barostat does sample the correct ensemble, it is restricted
to isotropic pressure regulation. The Parrinello-Rahman barostat?* addressed the support
for anisotropic scaling and like the Andersen barostat samples the correct ensemble, with
the extra property of allowing to change simulation box shape, which can be highly use-
ful in the simulation of solids. One downside of the Parrinello-Rahman barostat is for
the equations of motion to only hold in the thermodynamic limit. Consequently, the
Martyna-Tuckerman-Tobias-Klein barostat7#75 altered the equations of motion to allow
for the correct sampling of finite-sized systems and is to date perhaps the best generally
applicable barostat that preserves dynamic fluctuations in molecular dynamics.™ The last
option is the usage of a Monte Carlo barostat, which can be proven to also sample the
correct ensemble.?? While Monte Carlo barostating is highly efficient and simple to imple-
ment, it comes with the cost that the dynamics are destroyed as the kinetic regime of the
phase space is omitted in Monte Carlo simulations.
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4.2 Langevin Dynamics

From molecular dynamics, we have established that it is hard to maintain the true dynamics
of a system, while simultaneously being able to correctly sample the canonical ensemble.
From Tbl. 4.1 the velocity re-scaling and extended Lagrangian methods were presented as
fully deterministic methods while attempting to sample an ensemble of constant tempera-
ture. In the meantime, the usage of stochastic forces, despite the possibility of disturbing
the dynamics, has proven highly successful to sample the canonical ensemble. The perhaps
most impacting example is that of Langevin dynamics and the science around it which has
been a contributing factor in shaping our current view on the world today.

In 1827 the botanist Robert Brown found that pollen grain particles immersed in water
under a microscope were in constant motion following irregular paths.” Despite this ob-
servation was already done in 1785 by Jan Ingenhousz from observing the behavior of coal
dust on a surface of alcohol, %° this type of motion came to be known as Brownian motion.
Until the 1900s this motion was mostly worked out using random walks, however, in 1905
Albert Einstein? and 1906 Marian Smoluchowski®® showed this irregular motion origi-
nated from the collision between larger particles (pollen grain) and much smaller particles
(water) in a heat bath, thus indefinitely proving the existence of atoms. While these two
findings provided a conceptional leap to understand the origin of the motion, the theory
was limited to a qualitative description of the motion, until the development of stochastic
differential equations that can accurately capture the movement of Brownian particles by
Paul Langevin in 1908, which came to be known as Langevin dynamics. The Langevin

equations of motion are given by>%¢*
dg _ .
A5
i (4.9)
v _ -VW(@) v V2ksT dW '
dt - m m m dt ?

where 7y is named the friction coefficient having the unit of mass times inverse time, and
W is the Wiener process responsible for the stochastic character of the time evolution with
the process drawing random numbers from a specific probability distribution, in this case,
the Gaussian distribution. In other literature, the acceleration component of the Langevin
equation may also be expressed using white noise, 77(t), which is simply the time derivative
of the Wiener process having the unit of square root time over time. The Langevin equa-
tions of motion can be found to be highly equivalent to Newton’s equations of motion,
however with the difference being the addition of the two last terms in the expression for
acceleration. These two terms are the consequence of the fluctuation-dissipation theorem,
in which kinetic energy possessed by solute molecules is converted into thermal energy via
drag forces due to the solvent constituting the second term of Eq. 4.9 being the Stokes’
drag. The third term is a stochastic term arising from the fact the solvent molecules are
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in constant motion thus colliding with the solute molecules, yielding kinetic energy to the
solute molecules. The equations of motion for Langevin dynamics can thus be given the
physical interpretation that particles are immersed in a bath of many small and light par-
ticles interacting via collisions or weaker interactions than those described by the potential
U. This effectively means we can approximate the forces arising from the bulk without the
need to direct simulate them, and exactly this idea should sound appealing to any modeler.
Finally, it is worth noticing the Langevin equations of motion (Eq. 4.9) can like the New-
tonian equations of motion (Eq. 4.2) be found to obey the Markov property, meaning the
future evolution of the system only depends on its current state and not prior history. The
application of this will be discussed further in chapter 4.4.

One of the key advantages of the usage of Langevin dynamics is the possibility to prove the
stationary distribution generated by solving the equations of motion is the canonical dis-
tribution function. This can be derived using the time-dependent probability distribution
function for Langevin dynamics is given by the Fokker-Planck equation. In specific we can
write the configurational part of the Langevin equation as

2kpT
gl

G TV@+ n(t). (4:10)

The corresponding Fokker-Planck equation can be written as

8/)((3(1;, t) _ i%[vv@d@ t)] +

keT 9°p(q,t)

o (4.11)

To find the stationary distribution, we set Eq. 4.11 to zero, furthermore, we can factor out
one of the derivatives with respect to the position to find the expression for the probability
current which must also yield zero when the distribution is stationary, thus leaving the
differential equation

1 ksT 0p(q)
-VV 4+ ———== =0, (4.12)
Loy + 2L
which can be solved to
p(q) x e VD, (4.13)

which is the Boltzmann distribution. Similarly, we can write the kinetic part of the Langevin
equation as

dv 1 L V29kpT
T m <—’YU + Mﬁ(t)) ) (4.14)
m m
with the corresponding Fokker-Planck equation
dp(v,t) 1 0 o kT~ 0p(U,t)
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The stationary distribution is ones more found by setting the time variation of the proba-
bility distribution function and the probability current equal to zero, thus finding

op(v) om . S
57 = kBTp(v) (V) ox e?FBT | (4.16)

which is the well-known Maxwell-Boltzmann distribution.

Having shown that Langevin dynamics yields the Boltzmann distribution, as its stationary
distribution, we now face the issue of integrating the Langevin equations of motion to con-
struct a sampling iteration scheme as it was Newtonian dynamics in Eq. 4.2. Leimkuhler,
Matthews, and contemporaries proposed the Langevin equation could with advantage be
divided into separate parts, in which we decompose the Hamiltonian dynamics into its
velocity and positional component, and the Ornstein-Uhlenbeck component as a separate
term. %79 The Langevin equations on differential form can thus be written as

ql _|v 0
d L_),] = {0] dt + [—VV(q_)m_l] dt + —7/77‘1‘\/@\/— aw dt. (4.17)
A B
(@)

Note in Eq. 4.17 that the friction coeflicient y has now been replaced by the collision rate,
7' (y = m~’), being a frequency and therefore having the units of inverse time, which is a
more common input in molecular dynamics software packages. In Eq. 4.17, the A step can
be recognized as a “drift” step, the B step can be recognized as a “kick” step, and O is a new
step we will term the “fluctuate” step due to its stochastic nature. The individual differential
equations for the three steps may be solved exactly to yield the changes in position and
velocity upon an increment in time step. We may write a single particle’s position in the
position-velocity phase space at time ¢ + At as

((t + At), T(t + Ab))A = (7+ AL, D)

(Gt + AL, 5(t + A1) = (q, g AtVV((j)i@)

(q(t 4+ At), 5(t + At)© = <cj, e VAT 4 \/kBT(l — e*wﬁt)i/\/(o, 1)> ,
vm

(4.18)
where N'(0, 1) is a random number from the normal distribution (Gaussian distribution
with zero mean and variance one). Using these individual steps we can construct families
of numerical integrators based on the sequence of the letters “ABO”. For the method to be
consistent in updating the positions and velocities to the correct time-step upon reaching
the end of the string, we require that if a letter appears k times in the methods string,
the individual updates for the specific operations should use the time step 2. Among
the schemes utilized in this work are the integration schemes [BAOAB], whlch can also
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be named “symmetric Langevin velocity-Verlet” (used with openMM '), and [BBAOA],
which can be named “Langevin leapfrog” (used with Amber3?). In the limit of an infinitely
small time step, the two methods should yield identical trajectories. However, for practical
purposes, the utilization of a finite time step will come with an associated error, with the
error being highly dependent on the choice of integration scheme both in terms of context
and magnitude. In regards to context, the most commonly encountered problem is the issue
of maintaining a constant temperature. As previously explained arbitrary phase space vec-
tor fields may be utilized to relate microscopic details to the instantaneous temperature of
the system. In particular, it has been shown the [BAOAB] scheme yields highly accurate
temperature distributions when utilizing configurational temperatures, while the kinetic
temperature distribution suffers. On the other hand, the [BBAOA] scheme yields highly
accurate temperature distributions when utilizing kinetic temperatures, due to the leapfrog
nature of the scheme, while the configurational temperature distribution is off. 38,62.63 Given
this binary relationship of methods excelling in accuracy in either the configurational or ki-
netic space for the calculation of molecular properties, the most logical choice of Langevin
integration scheme should reflect the desired property to be calculated. In particular for
properties that depend only on the configuration space and free energies are highly recom-
mended the [BAOAB], while kinetic properties like time-correlation functions, can be
better computed using an integrator which balances the errors from both the configura-
tional and kinetic space.

4.3 Markov Chain Monte Carlo Simulations

Up to this point, we have discussed methods that preserve the dynamical information of
the system, thus yielding a trajectory to which at any time, the position and velocity of each
particle contained within the system can be determined, and can be used to calculate en-
semble averages of molecular properties. However, one may address the question: “why use
trajectories to calculate ensemble averages?”. Since our approach to obtaining ensemble av-
erages is the computation of expectation values for variables for a given probability density,
it has nothing to do with dynamics. While for example solving the Langevin equations of
motion will converge to a stationary distribution, namely the Boltzmann distribution, one
should be able to choose any scheme which will converge to the Boltzmann distribution,
regardless of the preservation of dynamical information. Since the Hamiltonian can be de-
composed into kinetic and potential energy independent terms and the canonical partition
function to the kinetic energy is equal to the partition function of an ideal gas at constant
temperature and thus can be solved analytically, one can argue the need for dynamics is
irrelevant. The dimensional removal of the 3N-momenta space is with advantage utilized
Markov Chain Monte Carlo (MCMC) simulations.

Markov Chain Monte Carlo simulations utilize a random weighted walk in the configu-
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rational subspace of phase space. By this description, MCMC can be decomposed such
that the weighting of space is conducted within the theory of Markov chains and the ran-
dom walk/sampling will be conducted by Monte Carlo experiments. A Markov chain is as
described a model in which a finite or infinite number of states obeys the Markov prop-
erty, i.e. the transition between states only depends on the currently acquired state and is
thus independent of any past or future outcome. Instead, the future and past events are
determined by a transition matrix containing within it the probabilities of going from one
microstate to another or itself. Using the probabilities is donated within the range [o,1],
the transition matrix must fulfill the condition

ZTM =1,vj €T, (4.19)
j=1
where T; ; is the transition matrix going from microstate 7 to j, and all possible states 4, j
belongs to the configurational phase space I';. For the majority of Markov Chains, we
necessitate the requirement of detailed balance,* implying the Markov chain to be fully
reversible, meaning the net flow between any two states, whether configurational or micro-
scopic, must yield zero. One may write the detailed balance criterion as

il = 7T (4.20)

Where 7 is the probability density for a given state. The detailed balance requirement is in
many ways equivalent to the concept of systems being in equilibrium, as probability density
functions can be exchanged with populations of chemical species, and the transition matrix
describing the transformation of one chemical species into another can be exchanged for
rate constants and equilibrium constants.

For MCMC simulations the most commonly utilized algorithm to generate configura-
tions with Boltzmann distributed probabilities is the Metropolis algorithm,® in which we
choose the transition matrix should process two stochastic kernels, the first being the ran-
dom choice of selecting a specific particle and Monte Carlo move «(j|7), and the second
being the acceptance of the move acc(j|). The probability of multiple independent events
occurring is given by the product of the individual independent events occurring, hence
the transition matrix is given by

Ti; = a(j]i) acc(jli). (4.21)

Utilizing the above expression in the expression for detailed balance, and utilizing the ratio
between two states of different potential energy is given by the Boltzmann distribution we
find any newly generated configuration should be accepted with probability

acc(j|i) = min (1, e‘ﬁ(vf_vi)) . (4.22)

*The requirement of detailed balance is too strict,”” and one may do Monte Carlo simulations under weaker
balance conditions, however, the maintenance of balance compared to detailed balance is more difficult to
40
access.
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However, Eq. 4.22 merely favors configurations of lower energies. To check if the con-
figuration j can exist in thermal equilibrium with ¢ we generate a random number from
the continuous uniform distribution, ¢(0, 1), and accept if U(0,1) < acc(j|i). The
Metropolis Monte Carlo algorithm can be summarized as:

The Metropolis Monte Carlo Algorithm

* Generate initial configuration with a potential energy V;.

* Until convergence has been obtained:

Generate a trial configuration with a potential energy V;.
If V; <V Accept.

Else if 24(0,1) < exp(—pB[V; — Vi]): Accept.

Else: Reject.

Sample configuration for molecular properties.

¢ Terminate simulation.

Accept: Adapt trial configuration as new initial configuration for future
energy-difference evaluations.

Reject:  Continue with the initial configuration for future energy-
difference evaluations.

\

We have now illustrated two schemes, at which the canonical ensembles can be sampled us-
ing either molecular dynamics or Monte Carlo simulations. While we will in the upcoming
discuss the possibility to draw on the strength of both (chapter. 4.4), an amusing discussion
is usually the performance of molecular dynamics versus Monte Carlo simulations to most
effectively sample the ensemble distribution. One of the advantages of Monte Carlo is it
is inherently faster per iteration than molecular dynamics due to the unnecessity of having
to calculate a force matrix, but only the potential energy, being a scalar value, and by the
same argument is more adaptive in terms of potentials, as continuous and differentiable
potential energy functions are not a requirement. The main disadvantage of Monte Carlo
is particularly related to one point: the generation of trial configurations. For highly corre-
lated systems, as it is for example seen for systems being modeled using steep potentials, the
Monte Carlo method can be subject to a high rejection rate. This is particularly a problem
when many modes of motion are correlated and one attempts to only update one mode by
a Monte Carlo move, thus yielding high energies. Additionally Monte Carlo simulations
are unguided in their search for high probability density in phase space, forced to randomly
search the phase space which can be highly complicated with steep barriers in phase space,
thus causing Monte Carlo simulations to spend a lot of time yielding no new information.
On the other hand, molecular dynamics utilize the forces to guide their movement in phase
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space and are thus often superior to Monte Carlo simulations in their most ”crude form”
with non-optimized parameters.

4.4 Combined Molecular Simulation Schemes

MC simulations and MD simulations are fundamentally different in their approach to gen-
erate the desired thermodynamic ensemble. While molecular dynamics generates a single
long trajectory of the system through phase space, MC typically samples the configurational
space via a nonphysical path. However, inherently in the difference of the methods to gen-
erate the desired thermodynamic ensemble the difficulties associated with the method are
also different. In particular, the sampling of multiple free energy minima separated by en-
ergy barriers hinders the sampling by molecular dynamics, with the rate constant between
the minima being proportional to the exponential magnitude of the energetic barrier as
given from transition state theory and the Arrhenius equation. While MC however can
overcome such problems, it relies on the simulator having an initial knowledge about the
system to be simulated such that MC moves can be designed to effectively sample the con-
figurational space, as it could in otherwise worst consequence yield universal rejection of
the MC moves and thus provide no useful results what so ever. As of consequence, it
would be beneficial to combine the strengths of the two simulation methods; molecular
dynamics’ inherent sampling of the phase space by simply following the forces governing
the molecules and MC’s possibility to be highly adaptive in the jumping between phase
space points. Methods utilizing both MD and MC are commonly referred to as combined
MDMC methods and are much more commonly utilized, than perhaps first anticipated.
The perhaps most common usages include the sampling of exotic ensembles such as the
grand canonical ensemble (1V'T'), the isothermal-isobaric ensemble (N PV), and the semi-
grand isothermal-isobaric ensemble (ApPT), but also enhanced sampling methods such
as replica exchange and adapted MD/MC protocols in which only some particles are moved
by MD and others by MC. However, to understand and appreciate these methods we will
first discuss the fundamental property required to combine MD and MC.

In chapter 4.3 we discussed how MC simulations utilize a Markov process which is a stochas-
tic process that satisfied the condition, the system in its current state is independent of
future and past states for the generation of configurational states. While MD simulations
mimic the natural dynamics of molecules, MD is, in fact, a/so a Markov process however
involving both deterministic components, like the gradient of the chosen potential energy
function and drag forces, and stochastic components as it could, for example, be achieved
from thermostating or the thermal noise from a Wiener process’® as found in Langevin dy-
namics. Even in the case of Newtonian dynamics with completely deterministic description

*Which is also memoryless as discussed in section 4.2.
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in the canonical ensemble as it can be achieved via Nose-Hoover (chains) thermostating or
Berendsen thermostating the stochastic probability matrix is simply a d-function,? given
the requirement the equations of motion are integrated to be reversible. Consequently, one
might be tempted to say that everything is Markovian, or at least "effectively Markovian”
as long as the full phase space is treated characteristic for the given method, with molecular
dynamics requiring both treatments of position and momenta to appear Markovian. '

Three classes of approaches in their combination of MD and MC simulations have been
identified®” being: mixed MC/MD characterized by some atoms are moved by MC and oth-
ers by MD, hybrid MC/MD characterized by the unification of the MC and MD algorithm
to generate the system, and finally, sequential MC/MD in which one apply the algorithms
independently but in an alternate, sequential fashion. While the mixed MC/MD scheme
is not so commonly utilized in the molecular simulation of liquids, among others due to
the increased computational cost of mixing ®® and little gain in terms of sampling for dense
systems,® the sequential MC/MD scheme is now commonly utilized methods and hybrid
MC/MD scheme is fast gaining ground in terms of development and availability. For the
hybrid MC/MD scheme one of the latest added methods is the so-called non-equilibrium
candidate Monte Carlo move,® which can be considered a ”meta MC”-move in the sense
this move takes a perturbation kernel and propagation kernel as arguments. The pertur-
bation kernel may be any perturbation that brings the system out of equilibrium and can
include changes in configurational space, number of particles, composition, system di-
mensions, etc. while the propagation kernel is commonly taken to be molecular dynamics,
Langevin dynamics, or Metropolis MC. The main difference from a normal MC move is
thus though a finite process to evaluate if the perturbation generated can be accepted by
using the non-equilibrium work done by the propagation kernel in the acceptance criteria,
rather than the instantaneous energy difference as used in ordinary Metropolis MC simu-
lations. While this move is more expensive per iteration, it has been shown to yield a high
acceptance rate for moves that may otherwise face a high rejection rate by ordinary MC.
An example of such a move includes the configurational sampling of a bi-stable dimer in a
WCA solvent, in which the WCA solvent is effectively preventing the transition between
the two minima, due to the need for first displacing the solvent, which can not be overcome
by ordinary MC and molecular dynamics.®

Among the now commonly applied methods today using sequential MC/MD includes
Monte Carlo barostating of molecular dynamics simulations, in which a molecular dy-
namics simulation is periodically interrupted by attempting a volume move, thus increas-
ing or decrease the simulation box dimensions and molecular coordinates, thus sampling
the isothermal-isobaric ensemble (/N PT') when the molecular dynamics simulation is ac-
companied with a thermostat**. Unfortunately, Monte Carlo barostating does not allow
the sampling of the isoenthalpic-isobaric ensemble (N PH), due to the inherent canoni-
cal distribution of the Metropolis Monte Carlo algorithm, thus effectively preventing the
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scaling of volume at constant energy.

Another common usage of the sequential MC/MD scheme is the discrete constant pH
molecular dynamics (CpHMD) method®#? and highly related discrete constant redox
potential molecular dynamics method. The two methods are highly related, due to the
mathematical similarity between the Henderson-Hasselbalch equation, which is applied to
acid-base reactions, and the Nernst equation, which is applied in electrochemistry. The
main difference between the two is usage of the decimal logarithm in traditional acid-base
chemistry to express the proton activity/concentration and the chemical potential of pro-
tons remaining fixed in oppose to constant redox potential molecular dynamics having the
chemical potential of electrons fixed*”. Thus we will henceforth only discuss CoHMD
and remind the reader interested in redox reactions and molecular dynamics everything is
equally applicable to redox reactions, but slightly modified.

4.4.1 Constant pH Molecular Dynamics

Up to the development of constant pH molecular dynamics (CpHMD), conventional
molecular dynamics was limited to the utilization of fixed protonation states for titratable
acids and bases. This possesses a series of drawbacks, the first being the actual assignment of
protonation states, which requires intrinsic knowledge on the pK, value of the individual
acids and bases. While this problem is majorly simplified for acids and bases in an aqueous
environment, the problem is on the other hand tremendously complicated when the acids
and bases are found in a highly heterogeneous environment, such as in titratable residues
in proteins? or phosphatidic acids lipid bilayers.”® The second drawback is; if the pH is
near or equal to the intrinsic pK, value for the acids or bases, there is no single protonation
state to represent the ensemble of protonation states appropriate at the pH of interest, with
can be further complicated when different conformational states may be characterized by
different pK, values, thus uncoupling the dynamics from the acid-base equilibrium. To
accommodate these drawbacks the CpHMD method is taking advantage of the efficient
conformational sampling by molecular dynamics, while the sampling of Boltzmann dis-
tributed protonation states is done by MC.¢

The breaking of a chemical bond is fundamentally a quantum mechanical phenomenon
thus unable to be accurately described by classical methods. As of consequence, in order
to describe the free energy of protonation we utilize a transfer model of model compounds
from an aqueous solution to the system of interest (see Fig. 3.4). Taking the deprotonated
state as the ground state, the protonation free energy is given by

AGfprotonation = kBTln 1O(pH - pKa,ref) + ACTYele - AC;ele,refy (4~23)

where pH is the acidity of the system, pKj rer is the pK, value of the reference com-
pound in aqueous solution determined by experimental methods, AGje is the difference
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Figure 4.2: lllustration of the discrete constant pH molecular dynamics method with pH replica exchange. Indepen-
dent simulations with different pH are conducted which samples the conformational space by molecular
dynamics using a finite time step At, at periodic time intervals the molecular dynamics sampling is stopped
and a Monte Carlo move is performed which can either be a protonation state swap move or a pH replica
exchange move. The protonation state swap move is mainly to assist in the sampling of protonation space,
while the pH replica exchange move mainly enhances the pH-dependent conformational sampling.

in Hamiltonian between the proposed protonation state and current protonation state,
while AGele ref is a precomputed quantity, ensuring the protonation free energy equals
zero when pH = pK, 1ef for the model compound in water and thus depends on the
choice of force field and solvation model.®* The model compound is usually taken to be
the N-methylated and C-acetylated amino acid residue derivatives, and the value is numer-
ically estimated by free energy methods, with the potential need of minor manual tweaks
to ensure an equal sampling of the deprotonated and protonated state at pH = pK, 1ef.
In the Amber implementation of CpHMD, implicit solvation is being utilized for the pro-
tonation state evaluation, in particular generalized Born solvation® with the possibility of
including implicit Debye-Hiickel based salt.™

The practical aspect of the CpHMD protocol is thus to conduct normal MD simulations
with fixed protonation states accompanied by periodic MC moves attempting to change
the protonation state of random titratable residues. In the Amber implementation, the
structural sampling can be conducted using either implicit or explicit solvent, while the
protonation state sampling is limited to implicit solvent only. The limitation of not being
able to use explicit solvent for the protonation state sampling are mainly due to two issues;
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first is the excluded volume exerted by the proton upon insertion, causing potential particle
overlap with nearby solvent molecules and second is the solvent reorganization energy due
to the creation or removal of electric charge. The naive solution* is simply just to tem-
porarily substitute the explicit solvent with implicit solvent, thus removing all the explicit
solvent from the simulation upon conducting a MC protonation state move and reinserting
the explicit solvent upon continuing the sampling by molecular dynamics. To prevent huge
energies upon a successful protonation state move, the solvent reinsertion is followed by a
solvent relaxation by some finite amount of time, while upon an unsuccessful protonation
state move the solvent is simply reinserted. Finally, to maintain charge neutrality within
the system, due to free protons not being treated explicitly, a random water molecule is
being transformed into an explicit monovalent ion thus neutralizing the charge causing by
the proton insertion/removal.

To capture strongly coupled titration equilibria between protons close in space, multi-site
protonation state moves i.e. the simultaneous change in multiple protonation states can
with great advantage be adapted over subsequent single protonation state moves.™ In the
Amber implementation of CpHMD, residues can engage in multi-site protonation state
moves if the titrating protons are within 2 A of each other with the multi-site move hav-
ing a 0.25 weight compared to a single-site move. The multi-site move allows for proton
transfer between titratable residues involved in hydrogen bonding, with the protein trans-
fer experiencing rejection only from single-site moves, due to the need of first breaking the

hydrogen bond causing a high energy penalty.

In addition to the MC protonation state move, which is one of the main elements of dis-
crete CpHMD, another MC move can with great advantage be utilized in parallel with the
protonation state move, namely pH replica exchange. The conformational sampling was
by Mongan ez al. identified for lysozyme to be the limiting step to achieve convergence of
pK,, values,®* however utilizing pH replica exchange the sampling was improved. ™8 Due
to the ratio of transition probabilities not depending on the Hamiltonian of the system, but
the difference in pH between two systems and the number of titratable protons within the
system, the replica-exchange Monte Carlo is essentially a cheap method to gain enhanced
sampling, as energy and force evaluations are commonly the most time-consuming process
for larger systems. Within the sequential MD/MC scheme the two MC moves should not
be attempted simultaneously, but instead choose a Monte Carlo move at random during
the MC iteration, to keep the replica-exchange Markov chain and protonation state Markov
chain uncoupled.*

*A discussion of the problems and the potential solutions associated with this method can be found in 5.2.
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Chapter s

Summary and Reflections on Thesis

Work

Knowledge is knowing a tomato is a fruit; wisdom is not putting it in a fruit salad.
— Miles Kington

In this chapter, we will overview the main findings and conclusions from the different pa-
pers, in addition to reflections and considerations done post-publication. Additionally, we
will also discuss methods and associated theories for optimizing the solubility of molecular
matter in a desired phase or state.

s.1 Intrinsic & Extrinsic Factors for Improving Solubility

In order to make a successful drug, one mainly faces two challenges:

1. The drug possesses the chemical properties necessary to achieve the desired biological
effect, such as acting as inhibitors for proteins possessing correct molecular geometry
and coordination chemistry, or therapeutic proteins possessing the correct fold to
engage in the regulatory process targeted.

2. The drug needs to be successfully delivered to the key locations required for reg-
ulation while remaining solubility not to become excluded from the body or even
becoming toxic.

While the majority of the research in this work has focused on issue number two, the
change in proteins’ structural stability by changes in the solvent composition has been ex-

57



plored using a very simple, yet highly enlightening, transfer model presented in chapter
2.2.1. To tackle issue number two, we have been exploring the governing principles for
controlling the aggregation of molecular matter, characterized by the preference for so-
lute molecules’ interactions with themself, rather than the surrounding solvent, causing
the solute to become biologically inactive or toxic. Additionally, we have also explored the
governing principles for controlling the partitioning of molecular matter in various liquid
phases. To control these equilibria, there are several exzrinsic and intrinsic factors one can
alter to obtain the desired effects. Among the extrinsic factor at the physicochemical pa-
rameters such as acidity, ionic strength, and solvent composition, i.e. the extrinsic factor
focuses on the solvent. The intrinsic factors instead focus on the properties of the solute,
such as the possession of surface-exposed hydrophilic and hydrophobic functional groups
mainly determining the hydrophobicity of the solute. In the case of proteins, the intrinsic
factors are particularly related to the amino acid residues found on and near the protein
surface and the conformational exchange causing exposure of otherwise buried residues.
For the design of protein formulations, altering the solvent conditions seems to be the
most applied method to achieve solubility, however it may not always be an option, as
some solvent conditions may be either physiologically harmful or incompatible with the
experimental methods required for the study of the given protein. Consequently alter-
ing the intrinsic factors of proteins may be required in assisting to optimize the solubility
of proteins. In specific the usage of site-directed mutagenesis of amino acid residues on
the surface of proteins, whose structure has been solved using high-resolution experimen-
tal methods such as NMR spectroscopy or X-ray crystallography, can with advantage be
applied to substitute poorly hydrated and aggregation-prone residues to well hydrated for
something better. Even though the majority of proteins utilize nearly all the naturally
occurring amino acids to some extent, it has been shown proteins are highly resistant to
mutations given the mutations are semi-conserved i.e. the overall properties of the amino
acid residue did not change. Among the prime examples of this, is the restriction of differ-
ent amino acid residues from 20 to 9 in the 213-residue long protein Escherichia coli orotate
phosphoribosyltransferase while still maintaining catalytic function.’

Based on the previous, the research in this work can roughly be divided up into two cat-
egories, i.e. research that focuses on the intrinsic factors and research that focuses on the
extrinsic factors. In the following, the discussion of the first three papers presented in this
work (papers 1- 111) will resolve mainly around the intrinsic factor: electrostatics. This is
done using two different systems namely the EXG protein family, possessing the unique
trait it can be rendered completely changeless, and a Troger’s base-linked bis-crown either,
possessing the trait it can bind two like-charged potassium cations. Following the discussion
of intrinsic factors and electrostatics, a discussion of the remaining papers (papers 1v-vII)
will be conducted mainly having an emphasis on the extrinsic factor of adding of co-solvent.
This is illustrated in multiple systems including the inorganic molecule cobaltabisdicarbol-
lide, the proteins lysozyme and histatin s, and finally caffeine.
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Figure 5.1: Titration curves of the individual aspartate residues (39D blue, 43D orange, and 61D green) in the pres-
ence of a histidine residue obtained using constant pH molecular dynamics (CpHMD). It is worth noting
that while 43D and 61D exhibit single transition Henderson-Hasselbalch titration behavior, 39D exhibits
double transition behavior. This observation was also observed using NMR spectroscopy on the systems
and motivated the usage of a diprotic acid cycle to investigate the strong linkage between 39D and 66H.

5.2 Charge Interactions in a Highly Charge-depleted Protein

Electrostatic forces are important for protein folding and are favored targets of protein en-
gineering due to the shear strength of the interaction and persistence over distance. The
persistence over distance is also what causes difficulties when attempting to do rational
modifications to proteins, due to the perturbation of a highly complex network of inter-
actions. As of consequence, in paper I we choose to study pairs of titratable residues in
a protein otherwise free of such residues (the EXG protein system#7), to reduce the com-
plexity. Using constant pH molecular dynamics, NMR spectroscopy, and thermodynamic
double mutation cycles we were able to give a detailed view into the thermodynamics and
structure of the interaction formed between histidine-aspartate pairs. ¢ Of the three studied
histidine-aspartate pairs, one, in particular, stood out from the rest; the 39D-66H variant
(Fig. s.1). This pair engaged in salt bridging and was found to have a coupling energy of
15 kJ/mol obtained from a diprotic acid cycle. The partition function used to describe in-
dividual macrostates within the diprotic acid cycle was constructed from the four possible
combinations of protonation states. Choosing the fully deprotonated state as a reference
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Figure 5.2: Simple continuum model constructed from a Coulomb electrostatics term and Born solvation term (see
eq. 5.2) of ions for describing the transfer of ion pairs from water (enp,o = 78.4 at 298 Kelvin) to a
lower dielectric environment ¢,. Typical values for the dielectric constant of proteins (eprot) are 20-30 near
the protein surface at the protein-water interface (blue highlighted area), and 6-7 in buried hydrophobic
pockets (orange highlighted area) .

state the partition function is given by
Z =1+ e—ﬁ(G81 —HH+) + e_B(G(l)O_“H-F) + e_ﬁ(G(l)l_2tuH+)’ (5.1)

where G¥ is the free energy of protonation with the subscript specifying the protonation
state vector and g+ is the chemical potential of protons. By fitting the populations of
the individual state to the simulation data, a full set of thermodynamic data (free energies)
could be extracted including the interaction energy between the residues.

Post-publication reflections include mainly two points. One is the solubility of a salt pair
in a lower dielectric, while the second involves the methodology chosen for the study. In
regards to the first point, globular proteins are known to be in an equilibrium between a
folded and unfolded state. While ion pairs and salt bridges stabilize the folded state, the
solvation of ions in a non-polar environment is an unfavorable process, thus stabilizing the
unfolded state. In specific we can create a primitive continuum model, constructed from
a Coulomb and Born term, which describes the process of transferring ion pairs between
different dielectric environments. For proteins we here look at the transfer of an ion pair
from water (78.4, at 298 Kelvin) to a lower dielectric

2
1 qg —q; 11
AG= ——— "= —t —— . .
4mege, T * Z 8meoTi0 €r (52)
—_———
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i=1 water
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Notable it can be seen given the simple model and the parameters chosen it is an unfa-
vorable process transferring ion pairs from a high dielectric to a low dielectric. However,
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the free energy penalty of the ion pair being on the surface (blue area highlighted) is much
smaller than being buried (orange area highlighted) and thus ion pairs on protein surfaces
can be found in stable proteins. Based on this simple model, it proposes two consequences
of burying titratable residues in proteins; one consequence is the change in the proton tau-
tomerism equilibrium such that one goes from stabilization by salt-bridging to stabilization
by hydrogen bonding. The second consequence is a change in the structural stability of
the protein shifting the equilibrium towards to unfolded state due to better solvation of
the charged residues in the unfolded state or population of a different structural ensemble
characterized by higher dielectric surrounding the newly created ions.

This first mentioned consequence has already been witnessed experimentally by NMR spec-
troscopy, in which a titratable pair was buried deep within the staphylococcus nuclease™®.
In specific it was found the neutral state to be more populated than the zwitterionic state
(60/40) for two strongly coupled titratable residues, which is opposite to what was found
for the Asp-His pair in the EXG protein. The two systems behavior highly identically, with
the titration curves for the titratable residues being highly coupled on a residual resolution,
however with the biggest difference between the systems being the degree of burial. The
second consequence has also been observed within the staphylococcus nuclease.5” In specific
it was shown the propensity for the titratable residues to reorient themself into a more hy-
drophilic environment, was one of the key factors determining whether or not the structural
stability would be affected. For protein engineering, the interplay between dehydration of
charges, Coulomb interactions, and the possibility for protein reorganization is thus aspects
to be considered in the attempt to design novel, stable proteins.

The second post-publication reflection resolves around the methodology. The constant pH
molecular dynamics implementation used had two drawbacks; one being the usage of an
implicit solvation model, in specific generalized Born solvation, to calculate the protona-
tion energies instead of maintaining an explicit solvation model, and the second being the
method potentially incorrectly sampling the Boltzmann distribution. These two drawbacks
are in some sense intertwined and both related to the historic development of the discrete
CpHMD method. In specific protein simulations utilizing generalized Born solvation for
both the sampling of the protonation state space and configurational space was initially uti-
lized due to implicit solvent being computational more feasible than explicit water, how-
ever, attempting to sample the protonation state space using explicit water lead to large
differences in energy causing the rejection of nearly all proposed protonation state changes.
The large energy differences were found to originate from the solvent configuration be-
tween protonation and deprotonated state. As of consequence, a hybrid implicit/explicit
scheme was proposed, in which the protonation state space was sampled using generalized
Born solvation and the configurational space using an explicit solvent. Finally, to address
the problem of solvent configuration, solvent relaxation was conducted subsequent to the
Monte Carlo move if the protonation state change was accepted to avoid large differences
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in energy. However, since the solvent relaxation is not a part of the acceptance criterion,
there is a possibility to accept high energy solvent configurations with a higher probability
than the Boltzmann distribution dictates at the chosen temperature.

A solution to both problems mentioned; the usage of explicit solvation during the pro-
tonation state changes and its avoid high energy solvent configurations, is the utilization
of non-equilibrium thermodynamics. In particular, the system is driven out of equilib-
rium by the protonation state change, and through a finite-time non-equilibrium process a
configuration is generated. The acceptance rule, to determine the correct acceptance ratio
for the non-equilibrium candidate configuration, is related to the non-equilibrium work
rather than the instantaneous energy difference. This approach was first described in de-
tail by Stern'7 with the method later generalized and named “nonequilibrium candidate
Monte Carlo moves” by Chodera and coworkers.®® While no attempts to conduct such
simulations on the EXG system have been done, it would be interesting to conduct such
simulations to see the effect of explicit water coordination in regards to the solvation of salt

bridges.

5.3 Systematic Electrostatic Perturbation of a Charge-depleted Pro-
tein: Correlation between Protein Solubility and Electrostatics

Having done a complete electrostatic characterization of the titratable EXG variants in
paper 1 and having characterized the charged-depleted variant in the past,#” the natural
continuation would be to address the connection between electrostatic interactions on the
solubility of proteins. Utilizing ammonium sulfate precipitation experiments in combina-
tion with all-atom molecular dynamics simulations and free energy we set out to explore the
relationship between protein electrostatics and protein solubility. Interestingly, we found
the solubilities were highly chaotic in terms of behavior, and of the 11 EXG variants only the
3 single-containing aspartate variants could be explained, and with limited satisfaction. In
particular paper 11 illustrates as it was shown in the past increased solubility correlates with
negatively charged surface area,” however under the circumstance the structural stability is
unchanged. While paper 11 is limited in terms of conclusions it instead brings the question
of how to model and predict the effort of protein electrostatics on the protein solubility.
To do a statistical mechanical description of protein solubility and to elude the effect of
electrostatics we defined the difference in solvation free energy as

SC arge:
AAGy = —RTIn (hgd> (53)
Snon—charged

where Scharged is the protein solubility for any charged variant, and Shon—charged is the
protein solubility for the charge-depleted variant, measured by protein precipitation meth-
ods with extrapolation to obtain the solubility in water and buffer. Among the factors
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expected to contribute to AAGg are the one-body contribution and two-body contri-
butions.” The one-body contribution is associated with the protein’s interactions, and in
particular, the solvent-exposed amino acid residues, with the surrounding solvent, in this
case, water/buffer. The two-body contribution is associated with the preference of the pro-
tein to interact with other protein species with the mechanism usually being hydrophobic
interactions combined with the exclusion of water, or electrostatic cross-linking. Both the
one-body and two-body contributions depend on the acid-base properties (pK, values) of
the protein and the structural stability. While the acid-base properties determine the for-
mation of charge in the protein necessary for the electrostatic cross-linking, the importance
of the structural stability is related to the low solubility of the unfolded state, due to the
solvent exposure of the hydrophobic amino acid residues as would otherwise be protected
in the folded state.?> Consequently, are current in the process of investigating the one-body
contributions using all-atom molecular dynamics and energy-representation theory of sol-
vation, while the protein-protein (two-body contribution) can be investigated by coarse-
grained Monte Carlo simulations, allowing to capture the effects of charge-regulation upon
protein-protein interactions. In conclusion, as previously mentioned, the paper is currently
limited in terms of conclusions on how to develop strategies to improve the protein solubil-
ity by altering the intrinsic factors of proteins, however, the paper does illustrate the inher-
ent difficulty and challenges associated with the study of protein solubility. Furthermore, it
also reveals how our empirical approach to protein solubility has room for improvements,
such that the EXG protein set and future protein models can be studied, understood, and
improved in terms of solubility.

s.4 Counter Intuitive Electrostatics upon Metal Ion Coordina-
tion: Effects of the Solvent and Conformational Change

Allosteric regulation, i.e. the cooperativity or anti-cooperativity transmitted between lig-
and binding sites upon binding of ligands, is a central topic within the field of protein
chemistry, due to many proteins regulating their ligand-binding capacity by allosteric reg-
ulation, usually with the mechanism proposed to be large-scale conformational changes.
The best example of allosteric regulation is most likely the protein hemoglobin, responsible
for the binding and transport of oxygen in the bloodstream, which has been proposed to
have allosteric regulation by possessing an open and closed conformation, having differ-
ent affinities for oxygen, however with conformational change as a responsible mechanism
still being an ongoing research question.™ In paper 111 we turned to a much smaller system
namely a Troger’ s base-linked bis-crown ether, which the two crown ether being 18-crown-
6, having an affinity for the coordination of potassium ions. Utilizing isothermal titration
calorimetry, we discovered the sequential binding of potassium cations to the Troger’ s

"These contributions are central to the caffeine solubility discussed in the papers v and vr.
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Figure 5.3: Left: Free energy landscape projected in principal component space, using PCA analysis, of the Troger’ s
base-linked bis-crown ether with zero bound potassium ions. Notably can be found four distinguishable
minima each relating the relative orientation of one of the two crown ethers. It was found 81% of the
variance could be explained using the first two principal components with the motion revealed from the
first two components physically agreeing with the slowest mode of motion, rendering the usage of more
principal components invaluable. Right: Perturbation of the relative probability of the individual minima
in PCA space upon the binding of one and two potassium ions. The radius of the circles represents the
standard error of the mean probability obtained from block analysis.

base-linked bis-crown ether was anti-cooperative AAG > 0 being no real surprised due to
the cation-cation repulsion, however, decomposing the free energy it was discovered to our
surprise that AAH < 0and TAAS < 0. For a small molecule most likely incapable of
engaging in large scale conformational change, allosteric regulation would seem out of the
question, leaving only the regulation by potassium-potassium correlation, however in such
case, one would expect AAH > 0 due to electrostatic repulsion between the two sites.
Consequently, we set out to model the binding potassium to unveil the molecular mecha-
nism associated with the counter-intuitive sign of the thermodynamic state functions.

Using the configurations from the end-state (A = 0: uncoupled K*, A = 1: fully coupled
K*) generated during the free energy calculation, we searched for discrete conformational
states of Troger’s base-linked bis-crown ether. Conducting principal component analysis
on the non-hydrogen pairwise distance matrix obtained from the equilibrium ensemble
we unveiled four discrete conformational states associated with the relative orientation of
the crown-ethers (see Fig. 5.3 /eff) in an extended conformation or skewed conformation,
with the state of both crown-ethers being in the skewed conformation named the collapsed
state. This surprising observation that such a small molecule like the Troger’s base-linked
bis-crown ether possess these conformational states ignited the hypothesis that enthalpic
cooperativity (AAH < 0) of potassium binding could be explained by either the change in
equilibrium population of the individual states and/or the change in internal energy for the
individual conformational states upon binding of potassium. It was found in particular the
collapsed conformational state was the only state yielding a negative contribution to AAH
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and able to overcome remaining positive contributions from the remaining conformational
states. The origin of the negative AAH was found to be related to both the change in
enthalpy and the shift in the relative population of the individual minima upon binding
of potassium. Notably the shift of the rare collapsed conformational state in the fully
potassium depleted state to have near-equal probabilities with the remaining states upon
the binding of a single potassium cation and equal probabilities upon the binding of the
second potassium cation (Fig. 5.3 right).

The method chosen computationally to obtain enthalpies is via the van ’t Hoff method-
ology, in contrast to calculating the enthalpy from the end-states only, thus we resolve to
conduct simulations at multiple temperatures and utilize the inverse temperature and free
energy are linearly related with the enthalpy being related to the proportionality constant
given the assumption the change in heat capacity of the system is unchanging upon the
binding of potassium. An implication of this is the possibility to utilize temperature replica
exchange in parallel with the molecular dynamics sampling to obtain faster converging tra-
jectories and free energy calculations, without added computational cost. However, the
utilization of replica exchange, effectively being a Monte Carlo move, disrupts the dynam-
ics of the simulations. This had the ramification that time-dependent structural analysis
was no longer possible. In specific the usage of time-lagged independent component anal-
ysis (TICA) 499817 over principal component analysis (PCA), which are mainly different
from PCA finding principal coordinates of maximal variance while TICA finds coordi-
nates of maximal auto-correlation at a given lag time, with TICA usually being superior
to identify the slowest mode of motion. 998 This had the consequence that the individual
structural states in TICA space are much more displaced from one another compared to in
the PCA space, making the integration over the reduced space a trivial task to obtain the
probabilities of the structural states. Consequently, it would be interesting to develop and
explore possible schemes in which one can combine enhanced sampling with the powerful
dimensionality reduction method TICA.

Up to this point, the explanation of the counter intuitive electrostatics and thermody-
namic state functions have been explained by the internal interactions within the Troger’
s base-linked bis-crownether, however from continuum electrostatics another contribution
is possible. The Coulomb potential previously presented as the first term of Eq. 5.2 relates
the reversible work of bringing two charges infinitely far from each other, being the ground
state, to a given certain separation 7. For like-like charges, the change enthalpy is given by

o (AG\ OAG.
8T1<T>_AG++ 57— (54

The Coulomb potential integrates the degrees of freedom from water out represented by

AH, 4 =

the dielectric constant, €,, being a value representative of the liquid’s tendency to orientate
it self to oppose an external electric field, and is thus temperature dependent. Inserting the
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Figure 5.4: Scatter plot of the logarithmic variation in dielectric constant with respect to the logarithmic temperature
in Kelvin and the mean dielectric constant, (¢), over the studied temperature range for a selection of
various simple solvents. The logarithmic variation in dielectric constant with respect to the logarithmic
mean temperature enters into the expression for the enthalpy and entropy decomposition of the free
energy calculated from the Coulomb potential for ions of like charge (see Eq. 5.5 for enthalpy expression).
In particular when the derivative plus one is negative A H will also be negative, while positive values cause
AH to be positive.

first term of Eq. 5.2 and factoring out everything but the dielectric constant, one arrive at

Olne,
AH,p =AG 4 <1 + 6111T> (5-5)

The partial derivative of the logarithmic dielectric constant with respect to the logarithmic
temperature may be evaluated experimentally and is only dependent on the choice of sol-
vent. Specifically for water, the value is found to be -1.36, and thus the continuum model
correctly captures the sign of the state functions equivalently to what was found experi-
mentally. The explanation to this has been provided earlier by Israelachvili,’® proposing
the increase in entropy and decrease in enthalpy shall be understood from the ordering of
the water around the like-charged ions in the attempt to counteract the unfavorable electro-
static interaction. However, in such a case it would be interesting to know which solvents
possess the capacity to counteract electrostatics in such a manner. Eq. 5.5 proposes the sim-
ple answer is simply to monitor liquids dielectric response with respective with temperature.
An a selection of various simple solvents has been visualized in Fig. 5.4.

s.s  Total Description of Intrinsic Amphiphile Aggregation:
Calorimetry Study and Molecular Probing

The aggregation and creation of micelles by amphipathic solute is a well-known process with
perhaps the most well-known example being the formation of soap. The thermodynamic
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driving force of micellization is associated with the hydrophobic effect which is commonly
attributed to being entropic of nature however the molecular aspects of the hydrophobic
effect are not fully understood. Amphipathic solutes are characterized by the molecule hav-
ing a dual-polarity, that is one part of the molecule is hydrophobic with another part being
hydrophilic. Commonly, amphipathic molecules which engage in micellization, are said
to possess a “head and tail” design in which the "head” constitutes the hydrophilic region
while the "tail” constitutes the hydrophobic region. Thus it has been proposed the “head
and tail” structure of amphipathic molecules is a prerequisite for the formation of micelles.
However, it has been experimentally found that cobaltabisdicarbollide (COSAN) anions
possess a high affinity for self-assembly, creating vesicles and micelles, despite the molecu-
lar architecture of COSAN not having a somewhat obvious "head and tail’-design. As of
consequence, the structural and thermodynamic properties of COSAN micellization have
been excessively investigated in the last decade. In particular, it has been found experimen-
tally that COSAN micellization is an enthalpy-driven process,? whereas micellization of
surfactants is commonly associated with being an entropy-driven process.?*

In paper 1v we employed a range of experimental and computational techniques to fully
understand the self-assembly process of COSAN, while also addressing the effect of altering
the solvent conditions by the addition of acetonitrile. Using NMR spectroscopy and all-
atomic molecular dynamics, we uncovered that acetonitrile enhances the aggregation of
COSAN through dipole-dipole interactions and by altering the solvation shell, while not
co-aggregating with COSAN.

While experiments like NMR spectroscopy provides some insight into the molecular-scale
understanding of COSAN aggregation in aqueous solution, the contribution of molecular
simulations is essential to elude the molecular mechanism of this non-classical (enthalpy
driven) hydrophobic effect. Disagreement however arises in regards to the structural prop-
erties of COSAN from molecular simulations, in particular as to what constitutes the hy-
drophobic and hydrophilic regions of COSAN. In specific our model finds boron-bound
hydrogens to be negative, as opposed to partially positively charged carbon-bound hydro-

gens in organic compounds. 136

However in a recent study the exact opposite was observed;
that boron-bound hydrogens are positive and boron atoms negative.”® Thus, one post-
publication reflection is the discrepancy in regards to the parameterization of COSAN for

molecular simulation.

In particular, for the classical atomistic modeling of electrostatic interactions, the majority
of force fields utilize point charges which are associated with the coordinates of individual
atomic nuclei. While the Schrédinger equation provides the quantum mechanical descrip-
tion of molecules as positive nuclei surrounded by a negatively charged electron cloud,
traditional chemistry, and classical simulation methods are still operating with the concept
of atoms joined by chemical bonds with atoms having a net charge to describe the polarity
of the chemical bond. This quantum to classical mechanical approximation of charge dis-
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tributions associated with atomic nuclei is referred to as atomic charges or partial charges.
The idea of effective atomic partial charges in molecules and crystals is very appealing to de-
scribe ionicity or polarity of chemical bonds and molecules and is widely used though-out
different fields of chemistry, however, due to partial charges being a simplification of reality
no true answer exists as to what the partial charges of atoms are and thus multiple schemes
exists to calculate partial charges. The two most common methods for the determination of
partial charges, for atomistic molecular simulation, is population analysis of wave functions
based on basis functions and population analysis based on electrostatic potentials. Both of
these are characterized by utilizing a6 initio calculations in which the choice of level of the-
ory and basis set will influence the result of the calculation. Among the methods relying
on population analysis of wave functions, the choice of basis set and level of theory is most
dramatic for Mulliken population analysis, 85 which does not converge with increasing basis
set, 7> as electronic wave functions far from the nuclei of interest, would still be counted
as belonging to that nucleus instead of other surrounding nuclei.’> However alternative
schemes utilizing population analysis of wave functions have addressed this issue includ-
ing partial charges obtained using the Natural Population Analysis (NPA)'* method. Yet,
despite the NPA method being an excellent choice for analysis of chemical bonds due to
its rigorous quantum mechanical framework, one major shortcoming is the overpredic-
tion of polarity in hydrogen-carbon bonds,’*'#7'44 which is commonly considered to be
of covalent bond character. This problem was addressed by Reed & Weinhold, that the
individual bond dipole moments would potentially not add up to the total dipole moment
due to improper treatment of the distribution of charge related to the different atomic
orbitals and quality of charge related to the polarization of orbitals with all issues arising
from approximating charge distributions with fixed points.’** While some all-atomic force
fields utilize population analysis of wave functions like the CHARMM force field, ® other
force fields utilize population analysis based on the electrostatic potential (ESP) with one
example being the AMBER force field.>® One of the major drawbacks in the utilization of
charges derived from fitting charges to electrostatic potential is the fitting procedure itself.
In particular, it can cause a challenge to find the best fit possible to recreate the electrostatic
potential. As a consequence, it is not uncommon that equivalent atoms, due to symmetry
possess different charges, which has no physical meaning, but an artifact arising from the
fitting of charges.

To show the impact of choice of population analysis, in specific NPA versus ESP derived
charges, a set of partial charges has been determined for the molecule diborane, which is a
much smaller molecule with comparable hydrogen-boron bonding to COSAN (Tbl. s.1).
It is worth noting that while the charge for H,, is very much equivalent for the two popula-
tion analysis methods despite the basis chosen, the main differences for the methods occur
for the boron (B) and single boron-bound hydrogen atoms (H). Just as with COSAN,
we find the charge of boron and single boron-bound hydrogen have been inverted for all
correlation-consistent basis set higher than double zeta, and double and triple zeta Pople ba-
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Table 5.1: Partial charges for the boron and hydrogen atoms in diborane (B2Hg). The geometry was optimized using
B3LYP/6-31G* with the partial charges evaluated using B3LYP and the listed basis set and population analysis
in the table. Equivalent atoms due to symmetry have been averaged with the atomic naming given in the
illustration below the table

B H, H

Basis set NPA ESP NPA ESP NPA ESP
6-31G -0.187 0.0143 0.14 0.121 0.0235 -0.0678
6-311G -0.101 0.0605  0.0954  0.1I04 0.00268  -0.0821
cc-pVDZ -0.0908  -0.0154 0.1 0.146  -0.00472  -0.0651
cc-pVTZ -0.121 0.0515 0.108 0.117 0.0065 -0.0843
cc-pVQZ -0.114 0.0496 0.105 0.117 0.00452  -0.0835
aug-cc-pVDZ  -0.0774  0.0942  0.09I5 0.0966 -0.00703  -0.0954
aug-cc-pVIZ -0.12 0.0521 0.107 0.116 0.00618  -0.0839

aug-cc-pVQZ  -0.116 0.0512 0.106 0.116 0.00493  -0.0836

sis set. As previously stated, due to the concept of partial charges being a fictitious one, both
the sets of atomic charges may be reasonable solely based on the information available from
ab initio quantum mechanical calculations for the modeling of COSAN. Consequently, to
gain insight into the correct charge distribution, experimental insight is required. One op-
tion is to investigate the preferential orientation of a dipole molecular in the presence of
COSAN. From the molecular dynamics simulations using charges obtained from electro-
static potential fitting, it was found acetonitrile is preferentially aligned to COSAN, with
the methyl groups being the main site of interaction with the boron atoms of COSAN,
based on radial distribution function peaks correlating with the B-B atom distance. This
observation was utilized to explain the NMR data, in specific the chemical shifts obtainable
from 'H, BC, and 'H-"N heteronuclear multiple bond correlation NMR, which seemed
to suggest the nitrile group to possess more rotational freedom. This preferential alignment
is most likely attributed to the choice of parameterizing boron as positively charged spheres,
however, it remains unknown if we could obtain almost similar conclusions using a force
field utilizing NPA-derived charges. Two possible hypotheses and questions are essential to
address this question; I) Given the NPA charges, would we find acetonitrile to preferentially
associate itself to the negatively charged boron atoms or the positively charged hydrogen
atoms? 1I) What is the preferential orientation of acetonitrile?

While molecular dynamics in our case has been utilized to explain experimental data and
molecular phenomena, one common and essential requirement is to establish the valid-
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ity of the model utilized in the reproduction of experimental data by the simulation, such
that molecular mechanisms can be derived and interpolation and extrapolation can be con-
ducted with confidence. While no such efforts were rigorously conducted using the ESP-
derived charges for COSAN, the osmotic pressure was reproduced with charges derived
from NPA, thus making the study rest on a more solid foundation. Consequently, it would
be interesting to attempt to reproduce the osmotic pressure given the ESP-derived charges
for COSAN. This effort combined with the previously addressed questions would greatly
assist in constructing a rigorous model for COSAN for future prediction of COSAN’s in-
teraction with molecular matter.

5.6 Statistical Thermodynamic Description of the Molecular Sol-
vation of Caffeine in Salt Solutions

Caffeine is presumably the most consumed psychoactive drug worldwide,? most com-
monly found in coffee, tea, and energy drinks. Despite caffeine typically being charac-

terized as a bitter taste stimulant,°°

the caffeine-containing beverages are paradoxically
considered by many a great joy. Therefore the process of coffee brewing has undergone
tremendous development and experimentation to obtain correct amounts of caffeine by
extraction from solid to the aqueous phase to create the perfect cup of coffee.>34° Con-
sequently, it is desirable to understand the physical and chemical proprieties of caffeine to
optimize and understand processes in which caffeine is involved, including drink brewing
such as coffee and tea, medicine, and other industrial, pharmaceutical, and biological pro-
poses. Caffeine is possessing a chemical structure highly related to the purine nucleobases
of DNA and RNA, the physical properties of caffeine have been exhaustively investigated
by a great variety of methodologies, including experimental, computational, and theoret-
ical methods. In particular, it is known that caffeine is surprisingly soluble in both polar
solvents with a preference for chloroform over water,™ while only sparsely soluble in non-
polar organic solvents, due to caffeine’s molecular structure being highly heterogeneous in
terms of polarity. Additionally, caffeine has also been found to possess a self-association
equilibrium, forming highly ordered oligomers characterized by the face-to-face stacking
of the xanthine motif of caffeine,">"#5>33 highly equivalent to the stacking of the ni-
trogenous bases found in DNA and RNA.™" However the formation of larger aggregates
has also been reported, in which the oligomers are also branched at the methyl groups. 3+
The mentioned equilibria; the partitioning of caffeine in the aqueous phase and organic
phase, and the self-association of caffeine are all subject to modulation by osmolytes, such

as sugars, 67:120,122 5 d salts. 54108120

In paper V we investigated the molecular mechanism underlying the solvation of a caffeine
monomer in water and salt solutions using molecular dynamics and energy-representation
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Figure 5.5: Main concepts of the focus of study in papers v and vi. In particular, paper v focuses on the vertical equi-
librium, in which a single caffeine monomer is transferred from a vacuum to a caffeine-free aqueous solu-
tion containing a finite amount of salt. From the mathematical expression in the upper-right corner, each
species constituting the solvent, i.e. anions, cations, and water each contribute to the chemical potential
of caffeine, which the mechanisms of actions partitioned into the contribution from solvent interactions,
work originating from solvent reorientation, and work from solvent exclusion by caffeine. Finally, upon
transferring caffeine from a vacuum to a non-caffeine-free aqueous solution, the preexisting caffeine
molecules also constitute the solvent, thus yielding the extra contribution of solute self-interaction to the
chemical potential of caffeine. This self-association equilibrium, as visualized by the horizontal equilib-
rium, is the main focus of paper vi.

theory of solvation.”®7% Due to the usage of the energy-representation theory of solvation
framework, the chemical potential of caffeine may be written as

3

3
Mcaﬁeme _ Zﬂgaﬂeme _ Z /pi(&f)EdE _ /fl(8)d8 7 (5.6)
i=1

=1

where p(¢) is the probability density of the given pair-energy ¢ and f is a function of the
pair-energy and is related to the work associated with solvent reorganization and reorien-
tation, covered in more detail in chapter 3.3.4. The summation in Eq. 5.6 is taken over
the number of solvent species in the solvent, which in the case of caffeine in salt solu-
tions constitutes three species; water, anions, and cations. Eq. 5.6 is the foundation for
two decompositions of the chemical potential. One is the decomposition strategies is by
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decomposing the summation over the individual species (specie-decomposition) thus al-
lowing to estimate the effect of the individual solvent species to the chemical potential of
caffeine. Another decomposition strategy is to decompose the integration over the energy
coordinate into multiple terms (energetic-decomposition), thus allowing the estimation of
the contribution to the chemical potential of caffeine from the various energetic regime.
The most obvious energetic divisions would be at the highest pair-energy between caffeine
and solvent observed from a molecular simulation, thus meaning the probability distribu-
tion of pair-energies taken at this value or higher has the probability zero, thus rendering
the first integration term zero from the maximum pair-energy to infinity. Using the out-
lined decomposition strategies it was discovered using monovalent salts from various parts
of the Hofmeister series that anions fundamentally increases the chemical potential of caf-
feine thus increasing the solubility of caffeine in the aqueous solution (i.e. salting-our)
while cations fundamentally decrease the chemical potential thus decreasing the solubil-
ity of caffeine in the aqueous solution (i.e salting-in), with the effect of the ions following
the well-known direct Hofmeister series (Cations: Na* < K* < Cs*; Anions: 1 < Cl™ <
F~). The mechanism of action by the individual species was unveiled using the energetic-
decomposition strategy and structural properties like radial distribution to discover the
mechanism of the cations was found to be associated with the binding of cations to the
polar ketone groups of caffeine, while the anions were found to be associated with the
modulation of water, due to anions stronger electrostatic interactions with the hydrogen of
water, compared to the electrostatic interactions between cations and the oxygen of water.
The effect of anions is in great agreement with previous findings in the literature, that is
the perturbation of water structure by anions, however interestingly the cationic effect is
commonly omitted and/or considered non-existent in experimental studies. By correlating
the variation in the chemical potential with the salt concentration for the various salts with
the contribution to the chemical potential arising from excluded volume and interactions,
it was found both correlations yielded points clustered around the same anion, suggesting
the whole perturbation of the solubility of caffeine by salt is governed by the anion. Due
to the inseparable contribution of anions and cations by experiments this conclusion is in
great agreement with experimental literature and explains the attribution of ion-specific
effects predominantly to anions. 5+

While paper v puts focus on the solubility of caffeine in the view of transferring a caf-
feine monomer from a vacuum to an aqueous solution with salt increasing or decreasing
the preference for the caffeine monomer to remain in the aqueous solution, paper vi1 in-
stead puts focus on another solvation process: the aggregation of caffeine. It was previously
mentioned caffeine forms highly ordered smaller aggregates, characterized by face-to-face
stacking of the caffeine monomers, at the formation of even larger aggregates branching
occurs at the hydrophobic methyl groups of caffeine. While this process has been stud-
ied in the past, we desired to understand how salt can modulate this equilibrium. Using
atomistic molecular dynamics, coarse-grained Metropolis Monte Carlo simulations, and
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vapor pressure osmometry we managed to gain insight into the structural properties of the
liquid; in specific the formation of aggregates and to reproduce thermodynamic experimen-
tal data such that the simulations can be utilized to derive mechanistic insight. By com-
bining the excess chemical potential and its decomposition into one-body and two body
from Monte Carlo simulations, with vapor pressure osmometry we show using Kirkwood-
Buff inversion, the self-association of caffeine is diminishing effect of salt, thus causing the
Setschenow coefficient to become caffeine-concentration dependent, explaining the differ-
ences in Setschenow coefficient observed for experimental methods dealing with caffeine
solubility at dilution or saturation.

s.7 Stabilization and Aggregation of Proteins by Poly Phosphate-
Compounds

It is well known that proteins’ structural stability and aggregation propensity depends
strongly on the solvent and co-solvents such as urea, guanidinium chloride, and ammo-
nium sulfate (see chapter 2.2.1). In the last couple of decades, re-entrant liquid condensa-
tion of proteins has been investigated with various kinds of co-solvents. In particular, it was
found that salts possessing highly charged ions such as the trivalent yttrium ion (Y;*) can
cause the aggregation of the protein human serum albumin (HSA).5%*4%55! The anomalous
phenomenon however is, that despite moderate concentrations of the salt yttrium chloride
(YCI;) caused aggregation, increasing the salt concentration even further caused HSA to
reenter the liquid phase. The mechanism of this phenomenon has been attributed to the
idea proteins in the absence of salt are repealing one another by the charged residues on the
protein surface yielding the double layer, with the attraction at moderate concentrations of
highly charged solvent is governed by a balance of interactions between charged co-solvent
ions and charged residues on the protein surface to essentially cross-link proteins, while
at even higher concentrations of the highly charged co-solvent the protein surface is sat-
urated with ions causing a charge inversion thus causing the proteins ones-more to repel
one another.” The attraction between proteins at moderate concentrations is a mixture
of electrostatic interactions and hydrophobic interactions with the ratio between the two
modulated by the addition of monovalent salt, which has no strong preferential binding
to protein sites and thus only having the role of increasing the electrostatic screening. %95
Given this knowledge it would seem the charge of the co-solvent to be the only parameter
of importance in causing charge inversion, however by Bye and coworkers it was revealed
that only preferential polyvalent salts could cause the reentered condensation of hen egg-
white lysozyme (HEWL).?* Among the salts to have the property of causing reentered
condensation were sodium diphosphate and sodium triphosphate, while the salt sodium
citrate was unable to cause reentered condensation. A possible explanation for the causing
of re-entrant liquid condensation of HEWL, is due to the intrinsic affinity of arginine to
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Figure 5.6: Structural analysis of lysozyme in the presence of pyrophosphate/diphosphate (-4e) and citrate (-3e) of the
protein dynamics obtained from atomistic molecular dynamics simulations. Principal component analysis
utilizing non-hydrogen backbone atom pairwise-distances of lysozyme in the presence of (left) pyrophos-
phate and (middle) citrate with the color map yielding the number of bound anions within 6 Angstrom of
the side-chain functional group of lysine or arginine. (Right) Root mean square deviation of non-hydrogen
backbone atom positions of lysozyme over time, with the reference structure being an equilibrated struc-
ture of lysozyme in the absence of citrate and pyrophosphate.

phosphate, as arginine-rich motifs are commonly found in nucleotide-binding proteins and
kinases. 148149

To investigate whether the importance of a protein surface residues’ affinity to the co-solute
was of importance we utilized the antimicrobial, salivary intrinsically disordered protein
Histatin 5 (Hsts),"" which naively possesses three arginine residues. The utilization of this
protein allows two theories to be explored: (I) whether it is possible to cause re-entrant
liquid condensation of intrinsically discorded proteins and (II) whether strong affinity be-
tween co-solute and protein surface residues are of great importance. It was found it is
indeed possible to cause re-entrant liquid condensation of Hsts, and by arginine-to-lysine
substitutions, it was found Hsts was much more prone to aggregation in the presence of
arginine over lysine. %

Up to the initiation of the project, we had previously already engaged in unpublished re-
search regarding the high affinity for pyrophosphate to arginine amino acid residues. In
particular, we investigated the association and structural response of lysozyme in the pres-
ence of the deprotonated state of pyrophosphate, having the charge -4¢, and citrate, hav-
ing the charge -3e. It was found that citrate and pyrophosphate both were found to as-
sociate themself to the positive residues of lysozyme being arginine, lysine, and histidine,
as somewhat expected. Interestingly, however, we found the association of pyrophosphate
to lysozyme induced a structural perturbation, as it is observable from principal compo-
nent analysis (PCA) based on non-hydrogen protein backbone atom pairwise distances
and root mean square deviations (RMSD) of the protein backbone atoms. In figure 5.6
one can see lysozyme throughout 200 nanoseconds is adapting a configuration, which pos-
sesses different structural characteristics than those found in the crystal structure when in
the presence of pyrophosphate. These events are evident from the two distinguishable "is-
lands” in the PCA space for lysozyme in the presence of pyrophosphate, as well as a slow
transition in structure for approximately 30 nanoseconds when viewing the RMSD as a
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function of time. In contrast, we found that citrate did not induce any discrete confor-
mational change, but the dynamics are mainly associated with fluctuations in the structure
from the crystal structure, due to the finding of a single minimum in PCA space and no
obvious transitions between states from the RMSD versus time. To ensure the transition
in the structure of lysozyme by pyrophosphate was due to binding, and not electrostatic
screening,’ weakened hydration,™” or other bulk effects related to the hydration of salt in
aqueous solution, the number of contacts between pyrophosphate and the cationic residues
of lysozyme was tracked as a function of time. Overlaying the number of contacts between
pyrophosphate and citrate to the cationic residues of lysozyme as found from the various
frames in the trajectories, with the frames in PCA space. It is observed the structural change
is indeed corresponding to the binding of pyrophosphate as the region associated with the
crystal structure and the generated region are characterized by having a lower and higher
number of contacts respectively. Visualizing the trajectory, it was evident that arginine
was the main site of attraction, compared to that of lysine, which could potentially be at-
tributed to arginine possessing a guanidino group in the side chain, providing increased
salt bridging capacity, compare to lysine’s ammonium group. Even though no efforts have
been done to attempt the validity of the force forces utilized, and the transition between
the states may not appear reversible on the timescales studied here and is thus unsuitable
for an equilibrium statistical thermodynamics treatment, we anticipated the findings to be
of great interest and importance, culminating with the hypothesis of strong arginine affin-
ity to pyrophosphate being a substantial contribution to the aggregation and reentering
condensation of Hsts.

5.8 Contextualization and Future of Solvation Thermodynamics

At the start of this chapter, the quote “Knowledge is knowing a tomato is a fruit; wisdom
is not putting in a fruit salad” was presented. While we have in the former discussed the
research in terms of mechanisms, properties, and so on, all of which expand our knowledge,
to achieve wisdom we need to be able to apply our knowledge into context. Therefore, here
we will conduct a contextualization of the theory previously presented (chapter 1-4) and
the research conducted in this work (chapter 5 and papers).

Having a background in experimental protein chemistry before transitioning to theoretical
and computational protein chemistry, yields the possibility of viewing problems from both
the perspective of an experimentalist and theoretician. In particular, the individual disciples
are well aware of their limitations in terms of obtainable knowledge regarding chemical sys-
tems, and hence collaboration is in the majority of cases beneficial to investigate problems.
The majority of experimental groups tend to adapt and investigate properties of proteins
that are considered “well-behaving”, meaning the proteins are expressed in good amounts
in vivo and do not form aggregates or engage in a conformational change in optimal exper-
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imental buffer and salt conditions. Yet an equally interesting field of study is the turning of
”ill-behaved” proteins into “well-behaved” proteins by rational modifications of proteins or
solvent conditions. As an example, with the investigation of polyphosphates’ effect on Hsts
and lysozyme, we can now rationalize the formation of Hsts dimers when solvated in phos-
phate buffers. With the knowledge that phosphate interacts strongly with surface-exposed
arginine residues, one has the option of doing arginine to lysine substitutions if possible,
or alter the choice of the buffer. The methods utilized in this work, namely molecular dy-
namics, Monte Carlo simulations, and energy-representation theory of solvation, yield a
strong toolkit attempting to predict and understand how to turn ”ill-behaving” proteins
into "well-behaving proteins” on an atomic resolution by varying the many intrinsic and
extrinsic factors that exist. Consequently, I urge the experimental protein chemistry com-
munity to not disregard data of ill-behaving proteins, but instead investigate what causes
them to exhibit these properties in collaboration with theoreticians. While the current
trend today is still "negative data” are harder to publish than "positive data”, efforts to
break this cycle is being attempted, and at some point, these studies need to be addressed,
as they can have a major impact on industrially used proteins and design of new novel
proteins. At the same time, computational studies of proteins are usually conducted at
the minimal conditions of co-solute. For example, buffer molecules are usually omitted in
many computational studies, due to the assumption the buffer does not interact with the
protein of interest, however as we saw from lysozyme and COSAN, small concentrations
of additive can cause dramatic changes to equilibria. Therefore, it is also recommended to
consider the design of computational experiments, in the attempt to elude factors of im-
portance for the given equilibrium that is studied. For example, the effect of ionic strength
can be studied at the level of explicitly including electrolyte species, but may also be studied
at the level of the continuum by Debye-Hiickel theory, with the difference between the two
yielding insight into non-electrostatic effects attributed to the specific electrolyte.

To address the future of the topic solvation thermodynamics, it is worth first looking at the
field’s previous accomplishments. The first breakthrough, which has also been a continuous
theme in this work, is the solvation of electrolytes in water, which is mainly credited first
to the work by Peter Debye and Erich Hiickel with their development of Debye-Hiickel
theory, and later on, detailedly explored by Arrhenius and van ’t Hoff. Due to the suc-
cess of working out why salts dissolve in water, the field temporarily succumbs due to its
success. The field has now once more reemerged, however, this time facing the challenge
of explaining the hydrophobic effect, which has been recognized as the main driving force
in the folding of proteins™’, and the concept of hydrophobicity itself. Among the people
standing up to the challenge was David Chandler? who described the main driving forces
of hydrophobic self-assembly** but also developed a new theory of hydrophobicity based
on the hydration of small and large solutes.*" Given these success stories of the field, it is
expected the field of solvation thermodynamics will continue to flourish. Especially the
field should now enter an era rich in the development and application of methods to ex-
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plore, understand, and promote new systems beneficial to the industry for the stabilization
of new (protein) drugs, chemical processes, and so on. Another aspect, which is a stereo-
typical opinion of protein chemists,” is to address the “specialty” of specific proteins. In
particular, many proteins are presented as unique and possessing properties that make them
stand out, and thus unable to be compared to other protein systems. As such it would be
interesting to study multiple proteins to obtain non-system-specific properties, while si-
multaneously also attempt to address system-specific properties which may be shared with
or transferred to other systems. In light of the previous statement, the PIPPI Ph.D. consor-
tium is most definitely a step in the right direction, with the investigation of multiple pro-
teins under varying physiological parameters such as pH, buffer, ionic strength, co-solute,
and so on. However to assist in gaining insight into the protein-protein interactions and
protein-excipient interactions and their biophysical consequence computational methods
can be of great aid. While interactions between proteins and excipients have been studied
at A = 1, it could be interesting to add the free energies of solvation to the knowledge
pool by the energy-representation theory of solvation. This statement is based on the re-
sults shown in Paper v, that more significant contributions may be present in the solvation
free energy than the ones one can find from simply conducting simulations at A = 1. In
conclusion: the future of solvation thermodynamics does indeed look promising, with still
many unanswered questions to be answered and many processes which can be optimized
for the better of humankind.

*Including myself.

77






Chapter 6

References

(1]

S. Akanuma, T. Kigawa, and S. Yokoyama. Combinatorial mutagenesis to restrict
amino acid usage in an enzyme to a reduced set. Proceedings of the National Academy
of Sciences, 99(21):13549-13553, October 2002. doi: 10.1073/pnas.222243999. URL
https://doi.org/10.1073/pnas.222243999.

Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or
temperature. Zhe Journal of Chemical Physics, 72(4):2384—2393, February 1980. doi:
10.1063/1.439486. URL https://doi.org/10.1063/1.439486.

Hans C. Andersen, Arup K. Chakraborty, and John D. Weeks. David chandler. 15
october 1944—18 april 2017. Biographical Memoirs of Fellows of the Royal Society, 68:
87-102, March 2020. doi: 10.1098/rsbm.2019.0046. URL https://doi.org/10.
1098/rsbm.2019.0046.

[4] Johan Aqvist, Petra Wennerstrdm, Martin Nervall, Sinisa Bjelic, and Bjern O.

Brandsdal. Molecular dynamics simulations of water and biomolecules with a monte
carlo constant pressure algorithm. Chemical Physics Letters, 384(4-6):288—294, Jan-
uary 2004. doi: 10.1016/j.cplett.2003.12.039. URL https://doi.org/10.1016/
j.cplett.2003.12.039.

Sujit Basak, R. Paul Nobrega, Davide Tavella, Laura M. Deveau, Nobuyasu Koga, Rie
Tatsumi-Koga, David Baker, Francesca Massi, and C. Robert Matthews. Networks of
electrostatic and hydrophobic interactions modulate the complex folding free energy
surface of a designed S« protein. Proceedings of the National Academy of Sciences, 116
(14):6806—6811, March 2019. doi: 10.1073/pnas.1818744116. URL https://doi.

org/10.1073/pnas.1818744116.

79



(6]

[x1]

(13]

Donald Bashford and David A. Case. Generalized born models of macromolec-
ular solvation effects. Annual Review of Physical Chemistry, s1(1):129-152, Octo-
ber 2000. doi: 10.1146/annurev.physchem.sr.1.129. URL https://doi.org/10.
1146/annurev.physchem.51.1.129.

Arieh Ben-Naim. Is entropy associated with time’s arrow?, 2017.

Charles H Bennett. Efficient estimation of free energy differences from monte carlo
data. Journal of Computational Physics, 22(2):245-268, October 1976. doi: 10.1016/
0021-9991(76)90078-4.  URL https://doi.org/10.1016/0021-9991(76)
90078-4.

H. J. C. Berendsen, J. B M. Postma, W. E van Gunsteren, A. DiNola, and J. R.
Haak. Molecular dynamics with coupling to an external bath. 7he Journal of Chemical
Physics, 81(8):3684—3690, October 1984. doi: 10.1063/1.448118. URL https://doi.
org/10.1063/1.448118.

P. Beroza, D. R. Fredkin, M. Y. Okamura, and G. Feher. Protonation of interacting
residues in a protein by a monte carlo method: application to lysozyme and the pho-
tosynthetic reaction center of rhodobacter sphaeroides. Proceedings of the National
Academy of Sciences, 88(13):5804—5808, July 1991. doi: 10.1073/pnas.88.13.5804. URL
https://doi.org/10.1073/pnas.88.13.5804.

Thomas C. Beutler, Alan E. Mark, René C. van Schaik, Paul R. Gerber, and Wil-
fred E van Gunsteren. Avoiding singularities and numerical instabilities in free en-
ergy calculations based on molecular simulations. Chemical Physics Letters, 222(6):
529—539, June 1994. doi: 10.1016/0009-2614(94)00397-1. URL https://doi.org/
10.1016/0009-2614(94)00397-1.

Georgios C. Boulougouris. Calculation of the chemical potential beyond the first-
order free-energy perturbation: From deletion to reinsertiont. Journal of Chemical
& Engineering Data, 55(10):4140—4146, October 2010. doi: 10.1021/jerooorsv. URL
https://doi.org/10.1021/je100015v.

Efrem Braun, Seyed Mohamad Moosavi, and Berend Smit. Anomalous effects of
velocity rescaling algorithms: The flying ice cube effect revisited. Journal of Chem-
ical Theory and Computation, 14(10):5262—5272, August 2018. doi: 10.1021/acs.jctc.
8boo446. URL https://doi.org/10.1021/acs. jctc.8b00446.

Efrem Braun, Justin Gilmer, Heather B. Mayes, David L. Mobley, Jacob 1. Mon-
roe, Samarjeet Prasad, and Daniel M. Zuckerman. Best practices for foundations
in molecular simulations [article vi.0]. Living Journal of Computational Molecular
Science, 1(1), 2019. doi: 10.33011/livecoms.1.1.5957. URL https://doi.org/10.
33011/1ivecoms.1.1.5957.

8o



[15]

[16]

(18]

[19]

Robert Brown. XXVII. a brief account of microscopical observations made in the
months of june, july and august 1827, on the particles contained in the pollen of
plants; and on the general existence of active molecules in organic and inorganic
bodies. 7he Philosophical Magazine, 4(21):161-173, September 1828. doi: 10.1080/
14786442808674769. URL https://doi .org/10.1080/14786442808674769.

Roland Biirgi, Peter A. Kollman, and Wilfred F. van Gunsteren. Simulating proteins
at constant pH: An approach combining molecular dynamics and monte carlo simu-
lation. Proteins: Structure, Function, and Bioinformatics, 47(4):469—480, April 2002.
doi: 10.1002/prot.10046. URL https://doi.org/10.1002/prot.10046.

Giovanni Bussi and Michele Parrinello. Stochastic thermostats: comparison of lo-
cal and global schemes. Computer Physics Communications, 179(1-3):26-29, July
2008. doi: 10.1016/j.cpc.2008.01.006. URLhttps://doi.org/10.1016/j.cpc.
2008.01.006.

Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling
through velocity rescaling.  7he Journal of Chemical Physics, 126(1):014101, January
2007. doi: 10.1063/1.2408420. URL https://doi.org/10.1063/1.2408420.

Giovanni Bussi, Tatyana Zykova-Timan, and Michele Parrinello. Isothermal-isobaric
molecular dynamics using stochastic velocity rescaling.  7he Journal of Chemical
Physics, 130(7):074101, February 2009. doi: 10.1063/1.3073889. URL https:
//doi.org/10.1063/1.3073889.

[20] Jordan W. Bye and Robin A. Curtis. Controlling phase separation of lysozyme with

[23]

[24]

polyvalent anions. 7he Journal of Physical Chemistry B, 123(3):593—605, December
2018. doi: 10.1021/acs.jpcb.8b1o868. URL https://doi.org/10.1021/acs.
jpcb. 8b10868.

David Chandler. Hydrophobicity: Two faces of water. Nazure, 417(6888):491—491,
May 2002. doi: 10.1038/417491a. URL https://doi.org/10.1038/417491a.

David Chandler. Interfaces and the driving force of hydrophobic assembly. Nazure,
437(7059):640—647, September 2005. doi: 10.1038/natureo4162. URL https://
doi.org/10.1038/nature04162.

Kim-Hung Chow and David M. Ferguson. Isothermal-isobaric molecular dynamics
simulations with monte carlo volume sampling. Computer Physics Communications,
91(1-3):283—289, September 1995. doi: 10.1016/0010-4655(95)00059-0. URL https:
//doi.org/10.1016/0010-4655(95)00059-0.

R. Clausius. Ueber eine verinderte form des zweiten hauptsatzes der mechanischen
wirmetheorie. Annalen der Physik und Chemie, 169(12):481—506, 1854. doi: 10.1002/
andp.18541691202. URL https://doi.org/10.1002/andp.18541691202.

81



[25]

[26]

[27]

(28]

(30]

(31]

[32]

Nancy Cordoba, Laura Pataquiva, Coralia Osorio, Fabian Leonardo Moreno
Moreno, and Ruth Yolanda Ruiz. Effect of grinding, extraction time and type of
coffee on the physicochemical and flavour characteristics of cold brew coffee. Sci-
entific Reports, 9(1), June 2019. doi: 10.1038/s41598-019-44886-w. URL https:
//doi.org/10.1038/s41598-019-44886-w.

Wendy D. Cornell, Piotr Cieplak, Christopher I. Bayly, Ian R. Gould, Kenneth M.
Merz, David M. Ferguson, David C. Spellmeyer, Thomas Fox, James W. Caldwell,
and Peter A. Kollman. A second generation force field for the simulation of proteins,
nucleic acids, and organic molecules. Journal of the American Chemical Society, 117
(19):5179—5197, May 1995. doi: 10.1021/jacor24a002. URL https://doi.org/10.
1021/3ja00124a002.

Vinicius Wilian D. Cruzeiro, Marcos S. Amaral, and Adrian E. Roitberg. Redox
potential replica exchange molecular dynamics at constant pH in AMBER: Imple-
mentation and validation. 7he Journal of Chemical Physics, 149(7):072338, August
2018. doi: 10.1063/1.5027379. URL https://doi.org/10.1063/1.5027379.

Christoph Dellago, Peter G. Bolhuis, and David Chandler. Efficient transition
path sampling: Application to lennard-jones cluster rearrangements. 7he Journal
of Chemical Physics, 108(22):9236—9245, June 1998. doi: 10.1063/1.476378. URL
https://doi.org/10.1063/1.476378.

K. A. Dill and J. L. MacCallum. The protein-folding problem, so years on. Science,
338(6110):1042-1046, November 2012. doi: 10.1126/science.1219021. URL https:
//doi.org/10.1126/science.1219021.

Ken A. Dill, Sarina Bromberg, Kaizhi Yue, Hue Sun Chan, Klaus M. Ftebig,
David P. Yee, and Paul D. Thomas. Principles of protein folding - a perspective
from simple exact models. Protein Science, 4(4):561-602, December 1995. doi:
10.1002/pro.s560040401. URL https://doi.org/10.1002/pro.5560040401.

Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
monte carlo.  Physics Letters B, 195(2):216—222, September 1987. doi: r10.1016/
0370-2693(87)91197-x.  URL https://doi.org/10.1016/0370-2693(87)
91197-x.

Peter Eastman, John Chodera, and Josh Fass. Discretizations of langevin integrator -
issue nr. 2532 - openmm/openmm, 2020. URL https://github.com/openmm/
openmm/issues/2532.

(33] A. Einstein. Uber die von der molekularkinetischen theorie der wirme geforderte

bewegung von in ruhenden fliissigkeiten suspendierten teilchen. Annalen der Physik,

82



322(8):549—560, 1905. doi: 10.1002/andp.19053220806. URL https://doi.org/
10.1002/andp. 19053220806

D. Fennell Evans and Hikan Wennerstrom. 7he colloidal domain: where physics,
chemistry, biology, and technology meet. Advances in interfacial engineering series.
Wiley-VCH, New York, 2nd ed edition, 1999. ISBN 9780471242475.

D. J. Evans. Computer “experiment” for nonlinear thermodynamics of couette flow.
The Journal of Chemical Physics, 78(6):3297—3302, March 1983. doi: 10.1063/1.445195.
URL https://doi.org/10.1063/1.445195.

Denis J. Evans, William G. Hoover, Bruce H. Failor, Bill Moran, and Anthony J. C.
Ladd. Nonequilibrium molecular dynamics via gauss’s principle of least constraint.
Physical Review A, 28(2):1016-1021, August 1983. doi: 10.1103/physreva.28.1016. URL
https://doi.org/10.1103/physreva.28.1016.

Oded Farago. Langevin thermostat for robust configurational and kinetic sam-
pling. Physica A: Statistical Mechanics and its Applications, 534:122210, November 2019.
doi: 10.1016/j.physa.2019.122210. URL https://doi.org/10.1016/j.physa.
2019.122210.

Josh Fass, David Sivak, Gavin Crooks, Kyle Beauchamp, Benedict Leimkuhler, and
John Chodera. Quantifying configuration-sampling error in langevin simulations of
complex molecular systems. Entropy, 20(5):318, April 2018. doi: 10.3390/€20050318.
URL https://doi.org/10.3390/e20050318.

Roberto Fernandez-Alvarez, Vladimir Dordovi¢, Mariusz Uchman, and Pavel
Mat¢jicek. Amphiphiles without head-and-tail design: Nanostructures based on
the self-assembly of anionic boron cluster compounds. Langmuir, 34(12):3541-3554,
November 2017. doi: 10.1021/acs.langmuir.7bo3306. URLhttps://doi.org/10.
1021/acs.langmuir.7b03306.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algo-
rithms to Applications, volume 1 of Computational Science Series. Academic Press, San
Diego, second edition, 2002.

Andrey 1. Frolov. Theory of solutions in energy representation in npt-ensemble:
Derivation details, 2015.

Josiah Willard Gibbs. Elementary Principles in Statistical Mechanics. Cambridge Uni-
versity Press, 1902. doi: 10.1017/cb09780511686948. URL https://doi.org/10.
1017/cbo9780511686948.

Raymond F. Greene and C. Nick Pace. Urea and guanidine hydrochloride denat-
uration of ribonuclease, lysozyme, a-chymotrypsin, and b-lactoglobulin. Journal of

83



(47]

(49]

[s0]

[51]

Biological Chemistry, 249(17):5388—5393, September 1974. doi: 10.1016/50021-9258(20)
79739-5. URL https://doi.org/10.1016/s0021-9258(20)79739-5.

Walter Grimus. 10oth anniversary of the sackur-tetrode equation. Annalen der Physik,
525(3):A32—A35, March 2013. doi: 10.1002/andp.201300720. URL https://doi.
org/10.1002/andp.201300720.

Jean-Pierre Hansen and Ian R. McDonald. 7heory of simple liquids: with applications
of soft matter. Elsevier/AD, fourth edition edition, 2013. ISBN 9780123870322.

Stefan Herve-Hansen, Casper Hojgaard, Kristoffer Enge Johansson, Yong Wang,
Khadija Wahni, David Young, Joris Messens, Kaare Teilum, Kresten Lindorff-Larsen,
and Jakob Rahr Winther. Charge interactions in a highly charge-depleted protein.
Journal of the American Chemical Society, February 2021. doi: 10.1021/jacs.oc10789.
URL https://doi.org/10.1021/jacs.0c10789.

Casper Hojgaard, Christian Kofoed, Roall Espersen, Kiristoffer Enge Johansson,
Mara Villa, Martin Willemoés, Kresten Lindorff-Larsen, Kaare Teilum, and Jakob R.
Winther. A soluble, folded protein without charged amino acid residues. Bio-
chemistry, 55(28):3949—3956, July 2016. doi: 10.1021/acs.biochem.6boo269. URL
https://doi.org/10.1021/acs.biochem.6b00269.

William G. Hoover. Canonical dynamics: Equilibrium phase-space distributions.
Physical Review A, 31(3):1695-1697, March 198s. doi: 10.1103/physreva.31.1695. URL
https://doi.org/10.1103/physreva.31.1695.

Aapo Hyvirinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
John Wiley & Sons, Inc., May 2001. doi: 10.1002/0471221317. URL https://doi.
org/10.1002/0471221317.

Jacob Israelachvili. Intermolecular and surface forces. Academic Press, Burlington, MA,
2011. ISBN 9780123919274.

Satoru G. Itoh, Ana Damjanovi¢, and Bernard R. Brooks. pH replica-exchange
method based on discrete protonation states. Proteins: Structure, Function, and
Bioinformatics, 79(12):3420—3436, October 2011. doi: 10.1002/prot.23176. URL
https://doi.org/10.1002/prot.23176.

Frank Jensen. Introduction to computational chemistry. John Wiley & Sons, Chich-
ester, England Hoboken, NJ, 2007. ISBN o0-470-01187-4.

Owen G. Jepps, Gary Ayton, and Denis J. Evans. Microscopic expressions for the
thermodynamic temperature. Physical Review E, 62(4):4757—4763, October 2000.
doi: 10.1103/physreve.62.4757. URL https://doi.org/10.1103/physreve.
62.4757.

84



(54]

[55]

(60]

[61]

Nicolas O. Johnson, Taylor P. Light, Gina MacDonald, and Yanjie Zhang. Anion—
caffeine interactions studied by 13¢ and th NMR and ATR-FTIR spectroscopy. 7he
Journal of Physical Chemistry B, 121(7):1649-1659, February 2017. doi: 10.1021/acs.
jpcb.6br2iso. URL https://doi.org/10.1021/acs. jpcb.6b12150.

Elena Jordan, Felix Roosen-Runge, Sara Leibfarth, Fajun Zhang, Michael Sztucki,
Andreas Hildebrandt, Oliver Kohlbacher, and Frank Schreiber. Competing salt ef-
fects on phase behavior of protein solutions: Tailoring of protein interaction by the
binding of multivalent ions and charge screening. 7he Journal of Physical Chem-
istry B, 118(38):11365-11374, September 2014. doi: 10.1021/jp5058622. URL https:
//doi.org/10.1021/jp5058622.

John G. Kirkwood. Statistical mechanics of fluid mixtures. 7he Journal of Chemical
Physics, 3(5):300-313, May 1935. doi: 10.1063/1.1749657. URL https://doi.org/
10.1063/1.1749657.

Christos M. Kougentakis, Lauren Skerritt, Ananya Majumdar, Jamie L. Schlessman,
and Bertrand Garcfa-Moreno E. The properties of buried ion pairs are governed by
the propensity of proteins to reorganize. bioRxiv, February 2020. doi: 10.1101/2020.
02.03.932012. URL https://doi.org/10.1101/2020.02.03.932012.

Georg Krainer, Timothy J. Welsh, Jerelle A. Joseph, Jorge R. Espinosa, Sina
Wittmann, Ella de Csilléry, Akshay Sridhar, Zenon Toprakcioglu, Giedre Gudiskyte,
Magdalena A. Czekalska, William E. Arter, Jordina Guillén-Boixet, Titus M.
Franzmann, Seema Qamar, Peter St George-Hyslop, Anthony A. Hyman, Rosana
Collepardo-Guevara, Simon Alberti, and Tuomas P. J. Knowles. Reentrant liquid
condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions.
Nature Communications, 12(1), February 2021. doi: 10.1038/541467-021-21181-9. URL
https://doi.org/10.1038/s41467-021-21181-9.

Ryan M. Kramer, Varad R. Shende, Nicole Motl, C. Nick Pace, and J. Martin Scholtz.
Toward a molecular understanding of protein solubility: Increased negative surface
charge correlates with increased solubility. Biophysical Journal, 102(8):1907-1915, April
2012. doi: 10.1016/j.bpj.2012.01.060. URL https://doi.org/10.1016/j.bpj.
2012.01.060.

Laura J. LaBerge and John C. Tully. A rigorous procedure for combining molecular
dynamics and monte carlo simulation algorithms. Chemical Physics, 260(1-2):183-191,
October 2000. doi: 10.1016/50301-0104(00)00246-9. URL https://doi.org/
10.1016/s0301-0104(00)00246-9.

Lev Davidovi¢ Landau and Evgeny Mikhailovich Lifshitz. Szatistical physics. 1: by E.
M. Lifshitz and L. P. Pitaevskii. Number 5 in Course of theoretical physics / L. D.

8s



[62]

[68]

[69]

Landau and E. M. Lifshitz. Elsevier Butterworth Heinemann, Amsterdam Heidel-
berg, 3. ed., repr edition, 2011. ISBN 9780750633727.

Ben Leimkuhler and Charles Matthews. Molecular Dynamics. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-16375-8. URL https://doi.org/10.
1007/978-3-319-16375-8.

Benedict Leimkuhler and Charles Matthews. Robust and efficient configurational
molecular sampling via langevin dynamics. 7he Journal of Chemical Physics, 138(17):
174102, May 2013. doi: 10.1063/1.4802990. URL https://doi.org/10.1063/1.
4802990.

Don S. Lemons and Anthony Gythiel. Paul langevin’s 1908 paper “on the theory of
brownian motion” [“sur la théorie du mouvement brownien, ” c. r. acad. sci. (paris)
146, 530—533 (1908)]. American Journal of Physics, 65(11):1079—1081, November 1997.
doi: 10.1119/1.18725. URL https://doi.org/10.1119/1.18725.

Samuel Lenton, Stefan Herve-Hansen, Anton M. Popov, Mark D. Tully, Mikael
Lund, and Marie Skepd. Impact of arginine—phosphate interactions on the reen-
trant condensation of disordered proteins. Biomacromolecules, 22(4):1532—-1544, March
2021. doi: 10.1021/acs.biomac.ocor76s. URL https://doi.org/10.1021/acs.
biomac.0c01765.

Lin Li, Chuan Li, Zhe Zhang, and Emil Alexov. On the dielectric “constant” of pro-
teins: Smooth dielectric function for macromolecular modeling and its implementa-
tion in DelPhi. Journal of Chemical Theory and Computation, 9(4):2126—2136, March
2013. doi: 10.1021/ct400065j. URL https://doi.org/10.1021/ct400065j].

Terence H. Lilley, Helen Linsdell, and Alfredo Maestre. Association of caffeine in
water and in aqueous solutions of sucrose. Journal of the Chemical Society, Faraday
Transactions, 88(19):2865, 1992. doi: 10.1039/ft9928802865. URL https://doi.
org/10.1039/£t9928802865.

Nandou Lu, Jayant K. Singh, and David A. Kofke. Appropriate methods to combine
forward and reverse free-energy perturbation averages. 7he Journal of Chemical Physics,
118(7):2977—2984, February 2003. doi: 10.1063/1.1537241. URLhttps://doi.org/
10.1063/1.1537241.

A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, ]J. D. Evanseck, M. ].
Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kucz-
era, E T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom,
W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watan-
abe, J. Wiérkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical po-
tential for molecular modeling and dynamics studies of proteinst. 7he Journal of

86



[71]

(74]

Physical Chemistry B, 102(18):3586—3616, April 1998. doi: 10.1021/jp973084f. URL
https://doi.org/10.1021/jp973084f.

David C. Malaspina, Clara Vinas, Francesc Teixidor, and Jordi Faraudo. Atomistic
simulations of COSAN: Amphiphiles without a head-and-tail design display “head
and tail” surfactant behavior. Angewandte Chemie International Edition, 59(8):3088—
3092, February 2020. doi: 10.1002/anie.201913257. URL https://doi.org/10.
1002/anie.201913257.

Vasilios I. Manousiouthakis and Michael W. Deem. Strict detailed balance is un-
necessary in monte carlo simulation. 7he Journal of Chemical Physics, 110(6):2753—
2756, February 1999. doi: 10.1063/1.477973. URL https://doi.org/10.1063/
1.477973.

E Martin and H. Zipse. Charge distribution in the water molecule?a comparison of
methods. Journal of Compurational Chemistry, 26(1):97-105, 2004. doi: 10.1002/jcc.
20157. URL https://doi.org/10.1002/jcc.20157.

Glenn J. Martyna, Michael L. Klein, and Mark Tuckerman. Nosé-hoover chains:
The canonical ensemble via continuous dynamics. 7he Journal of Chemical Physics,
97(4):2635—2643, August 1992. doi: 10.1063/1.463940. URL https://doi.org/
10.1063/1.463940

Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein. Constant pressure molec-
ular dynamics algorithms. 7he Journal of Chemical Physics, 101(5):4177—4189, Septem-
ber 1994. doi: 10.1063/1.467468. URL https://doi.org/10.1063/1.467468.

Glenn J. Martyna, Mark E. Tuckerman, Douglas ]. Tobias, and Michael L. Klein.
Explicit reversible integrators for extended systems dynamics. Molecular Physics, 87
(5):1117-1157, April 1996. doi: 10.1080/00268979600100761. URL https://doi.
org/10.1080/00268979600100761

Nobuyuki Matubayasi and Masaru Nakahara. Theory of solutions in the energetic
representation. i. formulation. 7he Journal of Chemical Physics, 113(15):6070—6081,
October 2000. doi: 10.1063/1.1309013. URL https://doi.org/10.1063/1.
1309013.

Nobuyuki Matubayasi and Masaru Nakahara. Theory of solutions in the energy
representation. II. functional for the chemical potential. 7he Journal of Chemical
Physics, 117(8):3605—3616, August 2002. doi: 10.1063/1.1495850. URL https://
doi.org/10.1063/1.1495850.

Nobuyuki Matubayasi and Masaru Nakahara. Theory of solutions in the energy
representation. III. treatment of the molecular flexibility. 7he Journal of Chemical

87



(79]

(80]

(81]

(82]

(86]

Physics, 119(18):9686—9702, November 2003. doi: 10.1063/1.1613938. URL https:
//doi.org/10.1063/1.1613938.

Simone Melchionna. Design of quasisymplectic propagators for langevin dynamics.
The Journal of Chemical Physics, 127(4):044108, July 2007. doi: 10.1063/1.2753496.
URL https://doi.org/10.1063/1.2753496.

Frédéric Mestdagh, Arne Glabasnia, and Peter Giuliano. The brew—extracting
for excellence. In 7he Craft and Science of Coffee, pages 355—380. Elsevier, 2017.
doi: 10.1016/b978-0-12-803520-7.00015-3. URL https://doi.org/10.1016/
b978-0-12-803520-7.00015-3.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087-1092, June 1953. doi: 10.1063/1.1699114.
URL https://doi.org/10.1063/1.1699114.

John Mongan, David A. Case, and J. Andrew McCammon. Constant pH molecular
dynamics in generalized born implicit solvent. Journal of Computational Chemistry,
25(16):2038—2048, December 2004. doi: 10.1002/jcc.20139. URL https://doi.
org/10.1002/jcc.20139.

Calvin C. Moore. Ergodic theorem, ergodic theory, and statistical mechanics. Pro-
ceedings of the National Academy of Sciences, 112(7):1907-1911, February 2015. doi: 10.
1073/pnas.1421798112. URL https://doi.org/10.1073/pnas.1421798112.

Tetsuya Morishita. Fluctuation formulas in molecular-dynamics simulations with the
weak coupling heat bath. 7he Journal of Chemical Physics, 113(8):2976—2982, August
2000. doi: 10.1063/1.1287333. URL https://doi.org/10.1063/1.1287333.

R. S. Mulliken.  Electronic population analysis on LCAO-MO molecular wave
functions. i. 7he Journal of Chemical Physics, 23(10):1833—-1840, October 1955. doi:
10.1063/1.1740588. URL https://doi.org/10.1063/1.1740588.

Jeffrey K. Myers, C. Nick Pace, and J. Martin Scholtz. Denaturantmvalues and heat
capacity changes: Relation to changes in accessible surface areas of protein unfolding.
Protein Science, 4(10):2138—2148, October 1995. doi: 10.1002/pro.s560041020. URL
https://doi.org/10.1002/pro.5560041020.

Erik C. Neyts and Annemie Bogaerts. Combining molecular dynamics with monte
carlo simulations: implementations and applications. 7heoretical Chemistry Accounts,
132(2), December 2012. doi: 10.1007/s00214-012-1320-x. URL https://doi.org/
10.1007/s00214-012-1320-x.

88



[88]

(89]

[90]

[o1]

P Nikunen, M Karttunen, and I Vattulainen. How would you integrate the equa-
tions of motion in dissipative particle dynamics simulations? Computer Physics Com-
munications, 153(3):407—423, July 2003. doi: 10.1016/s0010-4655(03)00202-9. URL
https://doi.org/10.1016/s0010-4655(03)00202-9.

J. P Nilmeier, G. E. Crooks, D. D. L. Minh, and J. D. Chodera. Nonequilibrium
candidate monte carlo is an efficient tool for equilibrium simulation. Proceedings of
the National Academy of Sciences, 108(45):E1009—E1018, October 2011. doi: 10.1073/
pnas.1106094108. URL https://doi.org/10.1073/pnas.1106094108.

Frank Noe. Time-lagged independent component analysis (tica), 2021. URL http:
//docs.markovmodel .org/lecture_tica.html.

Shuichi Nosé. A unified formulation of the constant temperature molecular dynamics
methods. 7he Journal of Chemical Physics, 81(1):511—s19, July 1984. doi: 10.1063/1.
447334. URL https://doi.org/10.1063/1.447334.

C. Nick Pace, Saul Trevifio, Erode Prabhakaran, and J. Martin Scholtz. Protein struc-
ture, stability and solubility in water and other solvents. Philosophical Transactions of
the Royal Society of London. Series B: Biological Sciences, 359(1448):1225-1235, August
2004. doi: 10.1098/rstb.2004.1500. URL https://doi.org/10.1098/rstb.
2004.1500.

C. Nick Pace, Gerald R. Grimsley, and J. Martin Scholtz. Protein ionizable groups:
pK values and their contribution to protein stability and solubility. Journal of Biolog-
ical Chemistry, 284(20):13285-13289, May 2009. doi: 10.1074/jbc.r8ooo80200. URL
https://doi.org/10.1074/jbc.r800080200.

M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: A new
molecular dynamics method. Journal of Applied Physics, 52(12):7182—7190, December
1981. doi: 10.1063/1.328693. URL https://doi.org/10.1063/1.328693.

Coralie Pasquier, Mario Vazdar, Jan Forsman, Pavel Jungwirth, and Mikael Lund.
Anomalous protein—protein interactions in multivalent salt solution. 7he Journal of
Physical Chemistry B, 121(14):3000-3006, March 2017. doi: 10.1021/acs.jpcb.7bo1osr.
URL https://doi.org/10.1021/acs.jpcb.7b01051.

Philip Pearle, Brian Collett, Kenneth Bart, David Bilderback, Dara Newman, and
Scott Samuels. What brown saw and you can too. American Journal of Physics, 78
(12):1278-1289, December 2010. doi: 10.1119/1.3475685. URL https://doi.org/
10.1119/1.3475685.

J. K. Percus. Approximation methods in classical statistical mechanics. Physical Review
Lerters, 8(11):462—463, June 1962. doi: 10.1103/physrevlett.8.462. URL https://
doi.org/10.1103/physrevlett.8.462.

89



[98] Guillermo Pérez-Herndndez, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and
Frank Noé. Identification of slow molecular order parameters for markov model
construction. 7he Journal of Chemical Physics, 139(1):015102, July 2013. doi: 10.1063/
1.4811489. URL https://doi.org/10.1063/1.4811489.

[99] Stefano Ponte. The ‘latte revolution’ regulation, markets and consumption in the
global coffee chain. World Development, 30(7):1099-1122, July 2002. doi: 10.1016/
$0305-750x(02)00032-3. URL https://doi.org/10.1016/s0305-750x(02)
00032-3.

[100] Rachel L. Poole and Michael G. Tordoff. The taste of caffeine. Journal of Caffeine
Research, 7(2):39—s2, June 2017. doi: 10.1089/jcr.2016.0030. URL https://doi.
org/10.1089/jcr.2016.0030.

[o1] Sumant Puri and Mira Edgerton. How does it kill?: Understanding the candidacidal
mechanism of salivary histatin 5. Eukaryotic Cell, 13(8):958—964, June 2014. doi:
10.1128/ec.00095-14. URL https://doi.org/10.1128/ec.00095-14.

[102] Alan E. Reed and Frank Weinhold. Some remarks on the ¢~h bond dipole mo-
ment.  The Journal of Chemical Physics, 84(4):2428—2430, February 1986. doi:
10.1063/1.450359. URL https://doi.org/10.1063/1.450359.

[103] Alan E. Reed, Robert B. Weinstock, and Frank Weinhold. Natural population anal-
ysis. The Journal of Chemical Physics, 83(2):735—746, July 1985. doi: 10.1063/1.449486.
URL https://doi.org/10.1063/1.449486.

[104] G. Rickayzen and D. M. Heyes. A configurational temperature for molecules with
hard-core or discontinuous interactions. 7he Journal of Chemical Physics, 127(14):
144512, October 2007. doi: 10.1063/1.2793069. URL https://doi.org/10.
1063/1.2793069.

[105] Andrea Rizzi, John Chodera, Levi Naden, Kyle Beauchamp, Patrick Grinaway, Josh
Fass, Alex Wade, Bas Rustenburg, Gregory A. Ross, Andreas Krimer, Hannah Bruce
Macdonald, Dominicrufa, Andy Simmonett, David W.H. Swenson, Hbo402, and
Ana Silveira. choderalab/openmmtools: 0.20.0 - periodic nonequilibrium integrator,
2020. URL https://zenodo.org/record/596622.

[106] A. C. Robinson, C. A. Castaneda, J. L. Schlessman, and B. Garcia-Moreno E.
Structural and thermodynamic consequences of burial of an artificial ion pair in
the hydrophobic interior of a protein. Proceedings of the National Academy of Sci-
ences, 111(32):11685-11690, July 2014. doi: 10.1073/pnas.1402900111. URL https:
//doi.org/10.1073/pnas.1402900111.

90



[107] J. Roche, J. A. Caro, D. R. Norberto, P. Barthe, C. Roumestand, J. L. Schlessman,
A. E. Garcia, B. Garcia-Moreno E., and C. A. Royer. Cavities determine the pressure
unfolding of proteins. Proceedings of the National Academy of Sciences, 109(18):6945—
6950, April 2012. doi: 10.1073/pnas.1200915109. URL https://doi.org/10.
1073/pnas.1200915109.

[108] Bradley A. Rogers, Tye S. Thompson, and Yanjie Zhang. Hofmeister anion ef-
fects on thermodynamics of caffeine partitioning between aqueous and cyclohexane
phases. 7he Journal of Physical Chemistry B, 120(49):12596-12603, December 2016.
doi: 10.1021/acs.jpcb.6bo7760. URL https://doi.org/10.1021/acs. jpcb.
6b07760.

[109] Hans Henrik Rugh. Dynamical approach to temperature. Physical Review Letters, 78
(5):772—774, February 1997. doi: 10.1103/physrevlett.78.772. URL https://doi.
org/10.1103/physrevlett.78.772.

[tr0] O. Sackur. Die bedeutung des elementaren wirkungsquantums fiir die gastheorie und
die berechnung der chemischen konstanten. Festschrift W. Nernst zu seinem 2sjihrigen
Doktorjubilium gewidmet von seinen Schiilern, pages 405—423, 1913.

[r1] O. Sackur. Die universelle bedeutung des sog. elementaren wirkungsquantums. An-
nalen der Physik, 345(1):67—86, 1913. doi: 10.1002/andp.19133450103. URL https:
//doi.org/10.1002/andp. 19133450103

[112] Shun Sakuraba and Nobuyuki Matubayasi. Ermod: Fast and versatile computation
software for solvation free energy with approximate theory of solutions. Journal of
Computational Chemistry, 35(21):1592-1608, June 2014. doi: 10.1002/jcc.23651. URL
https://doi.org/10.1002/jcc.23651.

[113] Rangana Sanjeewa and Samantha Weerasinghe. Development of a molecular me-
chanics force field for caffeine to investigate the interactions of caffeine in different
solvent media. Journal of Molecular Structure: THEOCHEM, 944(1-3):116-123, March
2010. doi: 10.1016/j.theochem.2009.12.027. URL https://doi.org/10.1016/
j-theochem.2009.12.027.

[114] Rangana Sanjeewa and Samantha Weerasinghe. Study of aggregate formation of
caffeine in water by molecular dynamics simulation. Computational and Theoretical
Chemistry, 966(1-3):140-148, June 2011. doi: 10.1016/j.comptc.2011.02.027. URL
https://doi.org/10.1016/j.comptc.2011.02.027.

[115] Marcelo M. Santoro and D. W. Bolen. Unfolding free energy changes deter-
mined by the linear extrapolation method. 1. unfolding of phenylmethanesulfonyl
a-chymotrypsin using different denaturants. Biochemistry, 27(21):8063-8068, Oc-
tober 1988.  doi: 10.1021/bic0O4212014. URL https://doi.org/10.1021/
bi00421a014.

91



[116] Hugo A. E Santos, Diogo Vila-Vigosa, Vitor H. Teixeira, Anténio M. Baptista, and
Miguel Machuqueiro. Constant-pH MD simulations of DMPA/DMPC lipid bi-
layers. Journal of Chemical Theory and Computation, 11(12):5973—5979, November
2015.  doi: 10.1021/acs.jctc.sboogs6.  URL https://doi.org/10.1021/acs.
jctc.5b00956.

—

[117] Christian R. Schwantes and Vijay S. Pande. Improvements in markov state model
construction reveal many non-native interactions in the folding of NTL9g. Jjournal
of Chemical Theory and Computation, 9(4):2000—2009, March 2013. doi: 10.1021/

ct300878a. URL https://doi.org/10.1021/ct300878a.

[118] Anvar Shalmashi and Fereshteh Golmohammad. Solubility of caffeine in water, ethyl
acetate, ethanol, carbon tetrachloride, methanol, chloroform, dichloromethane, and
acetone between 298 and 323 k. Latin American applied research, 40(3), July 2010.

—_

Naoya Shibayama. Allosteric transitions in hemoglobin revisited. Biochimica et Bio-
physica Acta (BBA) - General Subjects, 1864(2):129335, February 2020. doi: 10.1016/
j.bbagen.2019.03.021. URL https://doi.org/10.1016/j.bbagen.2019.03.
021.

[119

[120] Seishi Shimizu. Caffeine dimerization: effects of sugar, salts, and water structure.
Food & Function, 6(10):3228-3235, 2015. doi: 10.1039/c5fooo61od. URL https:
//doi.org/10.1039/c5f000610d.

[121] Michael R. Shirts and Vijay S. Pande. Comparison of efficiency and bias of free
energies computed by exponential averaging, the bennett acceptance ratio, and ther-
modynamic integration. 7he Journal of Chemical Physics, 122(14):144107, April 2005s.
doi: 10.1063/1.1873592. URL https://doi.org/10.1063/1.1873592.

[122] Ilan Shumilin, Christoph Allolio, and Daniel Harries. How sugars modify caf-
feine self-association and solubility: Resolving a mechanism of selective hydrotropy.
Journal of the American Chemical Society, 141(45):18056-18063, October 2019. doi:
10.1021/jacs.9bo7056. URL https://doi.org/10.1021/jacs.9b07056.

[123] Thomas Simonson. Free energy of particle insertion. Molecular Physics, 80(2):441—
447, October 1993. doi: 10.1080/00268979300102371. URL https://doi.org/
10.1080/00268979300102371.

[124] Thomas Soddemann, Burkhard Diinweg, and Kurt Kremer. Dissipative particle dy-
namics: A useful thermostat for equilibrium and nonequilibrium molecular dynam-
ics simulations. Physical Review E, 68(4), October 2003. doi: 10.1103/physreve.68.
046702. URLhttps://doi.org/10.1103/physreve.68.046702.

92



[125]

[126]

[127]

[128]

[129]

[130]

[131]

(132]

(133]

Jayashree Srinivasan, Megan W. Trevathan, Paul Beroza, and David A. Case. Appli-
cation of a pairwise generalized born model to proteins and nucleic acids: inclusion
of salt effects.  Theoretical Chemistry Accounts: Theory, Computation, and Modeling
(Theoretica Chimica Acta), 101(6):426—434, May 1999. doi: 10.1007/5002140050460.
URL https://doi.org/10.1007/5002140050460

Thomas Steinbrecher, InSuk Joung, and David A. Case. Soft-core potentials in ther-
modynamic integration: Comparing one- and two-step transformations. Jjournal
of Computational Chemistry, 32(15):3253—3263, August 2011. doi: 10.1002/jcc.21909.
URL https://doi.org/10.1002/jcc.21909.

Harry A. Stern. Molecular simulation with variable protonation states at constant
pH. The Journal of Chemical Physics, 126(16):164112, April 2007. doi: 10.1063/1.
2731781. URL https://doi.org/10.1063/1.2731781.

Jason M. Swails and Adrian E. Roitberg. Enhancing conformation and protonation
state sampling of hen egg white lysozyme using pH replica exchange molecular dy-
namics. Journal of Chemical Theory and Computation, 8(11):4393—4404, September
2012. doi: 10.1021/ct300512h. URL https://doi.org/10.1021/ct300512h.

William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson. A
computer simulation method for the calculation of equilibrium constants for the
formation of physical clusters of molecules: Application to small water clusters. 7he
Journal of Chemical Physics, 76(1):637—649, January 1982. doi: 10.1063/1.442716. URL
https://doi.org/10.1063/1.442716

Charles Tanford. Isothermal unfolding of globular proteins in aqueous urea solu-
tions. Journal of the American Chemical Society, 86(10):2050—2059, May 1964. doi:
10.1021/jac1064a028. URL https://doi.org/10.1021/ja01064a028.

Charles Tanford. Protein denaturation. In Advances in Protein Chemistry, pages 1-95.
Elsevier, 1970. doi: 10.1016/50065-3233(08)60241-7. URL https://doi.org/10.
1016/s0065-3233(08)60241-7.

L. Tavagnacco, J. W. Brady, E Bruni, S. Callear, M. A. Ricci, M. L. Saboungi, and
A. Cesaro. Hydration of caffeine at high temperature by neutron scattering and sim-
ulation studies. 7he Journal of Physical Chemistry B, 119(42):13294-13301, October
2015. doi: 10.1021/acs.jpcb.sbog2o4. URL https://doi.org/10.1021/acs.
jpcb.5b09204.

Letizia Tavagnacco, Udo Schnupf, Philip E. Mason, Marie-Louise Saboungi, Attilio
Cesaro, and John W. Brady. Molecular dynamics simulation studies of caffeine ag-
gregation in aqueous solution. 7he Journal of Physical Chemistry B, 115(37):10957—
10966, September 2011. doi: 10.1021/jp2021352. URL https://doi.org/10.
1021/§p2021352.

93



[134] Letizia Tavagnacco, Yuri Gerelli, Attilio Cesaro, and John W. Brady. Stacking and
branching in self-aggregation of caffeine in aqueous solution: From the supramolec-
ular to atomic scale clustering. 7he Journal of Physical Chemistry B, 120(37):9987—
9996, September 2016. doi: 10.1021/acs.jpcb.6bo698o. URL https://doi.org/
10.1021/acs. jpcb.6b06980.

[135] H. Tetrode. Berichtigung zu meiner arbeit: Die chemische konstante der gase
und das elementare wirkungsquantum. — Annalen der Physik, 344(11):255-256,
912. doi: 10.1002/andp.19123441112. URL https://doi.org/10.1002/andp.
19123441112.

[136] Mariusz Uchman, Alexei I. Abrikosov, Martin Lepsik, Mikael Lund, and Pavel
Mat¢jicek. Nonclassical hydrophobic effect in micellization: Molecular arrangement
of non-amphiphilic structures. Advanced Theory and Simulations, 1(1):1700002, De-
cember 2017. doi: 10.1002/adts.201700002. URL https://doi.org/10.1002/
adts.201700002.

[137] K. E. Van Holde, W. Curtis Johnson, and Pui Shing Ho. Principles of physical bio-
chemistry. Pearson/Prentice Hall, Upper Saddle River, N.]J, 2nd ed edition, 2006.
ISBN 978-0-13-046427-9. OCLC: ocms§7434229.

[138] Loup Verlet. Computer "experiments” on classical fluids. i. thermodynamical prop-
erties of lennard-jones molecules. Physical Review, 159(1):98-103, July 1967. doi:
10.1103/physrev.159.98. URL https://doi.org/10.1103/physrev.159.98.

[139] M. von Smoluchowski. Zur kinetischen theorie der brownschen molekularbewegung
und der suspensionen. Annalen der Physik, 326(14):756—780, 1906. doi: 10.1002/andp.
19063261405. URL https://doi.org/10.1002/andp.19063261405.

[140] Xiuju Wang, Joshua William, Yucheng Fu, and Loong-Tak Lim. Effects of capsule
parameters on coffee extraction in single-serve brewer. Food Research International,
89:797—805, November 2016. doi: 10.1016/j.foodres.2016.09.031. URL https://
doi.org/10.1016/j.foodres.2016.09.031.

[141] James D. Watson and Francis H. C. Crick. Molecular structure of nucleic acids: A
structure for deoxyribose nucleic acid. Nature, 171(4356):737—738, April 1953. doi:
10.1038/17173720. URL https://doi.org/10.1038/171737a0.

[142] Kenneth B. Wiberg and Paul R. Rablen. Atomic charges. 7he Journal of Organic
Chemistry, 83(24):15463-15469, November 2018. doi: 10.1021/acs.joc.8bo2740. URL
https://doi.org/10.1021/acs. joc.8b02740.

[143] Kenneth B. Wiberg and John ]. Wendoloski. The electrical nature of c?h bonds and
its relationship to infrared intensities. Journal of Computational Chemistry, 2(1):53—

94



57, 1981. doi: 10.1002/jcc.540020110. URL https://doi.org/10.1002/jcc.
540020110.

[144] Kenneth B. Wiberg and John J. Wendoloski. Charge redistribution in the molec-

(145]

ular vibrations of acetylene, ethylene, ethane, methane, silane and the ammonium
ion. signs of the m-h bond moments. 7he Journal of Physical Chemistry, 88(3):586—
593, February 1984. doi: 10.1021/j150647a051. URL https://doi.org/10.1021/
j150647a051.

Benjamin Widom. Some topics in the theory of fluids. 7he Journal of Chemical
Physics, 39(11):2808—2812, December 1963. doi: 10.1063/1.1734110. URL https:
//doi.org/10.1063/1.1734110.

[146] Marcell Wolf, Felix Roosen-Runge, Fajun Zhang, Roland Roth, Maximilian W.A.

Skoda, Robert M.]. Jacobs, Michael Sztucki, and Frank Schreiber. Effective interac-
tions in protein—salt solutions approaching liquid-liquid phase separation. Jjournal
of Molecular Liquids, 200:20—27, December 2014. doi: 10.1016/j.molliq.2014.08.006.
URL https://doi.org/10.1016/j.molliq.2014.08.006.

[147] L.V. Woodcock. Isothermal molecular dynamics calculations for liquid salts. Chem-

(148]

ical Physics Letters, 10(3):257—261, August 1971. doi: 10.1016/0009-2614(71)80281-6.
URL https://doi.org/10.1016/0009-2614(71)80281-6.

Amina S. Woods and Sergi Ferré. Amazing stability of the arginine-phosphate elec-
trostatic interaction. Journal of Proteome Research, 4(4):1397-1402, August 200s. doi:
10.1021/prosoo77s. URL https://doi.org/10.1021/pr050077s.

[149] Tahir I. Yusufaly, Yun Li, Gautam Singh, and Wilma K. Olson. Arginine-phosphate

[150]

[151]

salt bridges between histones and DNA: Intermolecular actuators that control nucle-
osome architecture. 7he Journal of Chemical Physics, 141(16):165102, October 2014.
doi: 10.1063/1.4897978. URL https://doi.org/10.1063/1.4897978.

M. Zacharias, T. P. Straatsma, and J. A. McCammon. Separation-shifted scaling,
a new scaling method for lennard-jones interactions in thermodynamic integration.
The Journal of Chemical Physics, 100(12):9025-9031, June 1994. doi: 10.1063/1.466707.
URL https://doi.org/10.1063/1.466707.

Fajun Zhang, Sophie Weggler, Michael ]. Ziller, Luca Ianeselli, Benjamin S. Heck,
Andreas Hildebrandt, Oliver Kohlbacher, Maximilian W. A. Skoda, Robert M. J.
Jacobs, and Frank Schreiber. Universality of protein reentrant condensation in
solution induced by multivalent metal ions. Proteins: Structure, Function, and
Bioinformatics, 78(16):3450-3457, September 2010. doi: 10.1002/prot.22852. URL
https://doi.org/10.1002/prot.22852.

95



[152] Guy Ziv and Gilad Haran. Protein folding, protein collapse, and tanford’s transfer
model: Lessons from single-molecule FRET. Journal of the American Chemical Society,
131(8):2942—2947, March 2009. doi: 10.1021/ja808305u. URL https://doi.org/
10.1021/ja808305u.

[153] Daniel Zuckerman. Everything is markovian; nothing is markovian, Jul 2015. URL
http://statisticalbiophysicsblog.org/?p=76.

96



Scientific publications

Author contributions

Paper 1: Charge Interactions in a Highly Charge-depleted Protein

I participated in conceiving the initial idea and project, and participated in designing the
research. I performed and analyzed the simulations, participated in the analysis of NMR-
spectroscopy and stability data, and was main responsible for writing the manuscript.

Paper 1m: Systematic Electrostatic Perturbation of a Charge-depleted Protein:
Correlation between Protein Solubility and Electrostatics

I participated in conceiving the initial idea and project, and participated in designing the

research. I performed and analyzed the simulations, I analyzed the solubility data, and
wrote the manuscript.

Paper n1: Counter Intuitive Electrostatics upon Metal Ion Coordination to a
Receptor with Two Homotopic Binding Site

I participated in designing the research and participated in analyzing the data with main
responsibility for the structural analysis.

Paper 1v: Total Description of Intrinsic Amphiphile Aggregation: Calorimetry
Study and Molecular Probing

I performed and analyzed the molecular dynamics simulations and participated in writing
the manuscript.

97



Paper v: Anion-Cation Contrast of Caffeine Solvation in Salt Solutions

I designed the research, performed and analyzed the molecular dynamics simulations for
structural properties and free energetics and was main responsible writing the paper.

Paper vi: A Surface Area Description of Salting-in and Salting-out of Caffeine

I participated in designing the research, I performed the Monte Carlo simulations and
analyzed the results, and participated in writing the paper.

Paper vir: Impact of Arginine—Phosphate Interactions on the Reentrant Conden-
sation of Disordered Proteins

I participated in designing the research and participated in analyzing the experimental and
computational data.

98




 
 
    
   HistoryItem_V1
   AddNumbers
        
     Range: all pages
     Font: AGaramondPro-Regular 11.0 point
     Origin: bottom centre
     Offset: horizontal 0.00 points, vertical 31.18 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
      

        
     D:20210906110051
      

        
     1
     0
     
     BC
     
     1
     1
     1
     0
     1
     117
     AGaramondPro-Regular
     1
     0
     0
     1891
     452
     0
     1
     R0
     11.0000
            
                
         Both
         6
         AllDoc
         92
              

       CurrentAVDoc
          

     0.0000
     31.1811
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     0
     200
     199
     233e1a92-09f2-43b7-b19f-088d4a72b850
     200
      

   1
  

    
   HistoryItem_V1
   StepAndRepeat
        
     Create a new document
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins and crop marks: none
     Sheet size: 6.654 x 9.409 inches / 169.0 x 239.0 mm
     Sheet orientation: tall
     Layout: rows 1 down, columns 1 across
     Align: centre
      

        
     D:20210906110345
      

        
     0.0000
     8.5039
     14.1732
     0
     Corners
     0.2999
     ToFit
     0
     0
     1
     1
     0.9000
     0
     0 
     1
     0.0000
     1
            
       D:20210906110332
       677.4803
       G5
       Blank
       479.0551
          

     Tall
     1595
     710
     0.0000
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     0
     0 
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

   1
  

    
   HistoryItem_V1
   DelPageNumbers
        
     Range: all pages
      

        
     D:20210907142923
      

        
     1
     1627
     861
            
                
         AllDoc
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     2
     200
     199
     200
      

   1
  

    
   HistoryItem_V1
   DelPageNumbers
        
     Range: all pages
      

        
     D:20210907142936
      

        
     1
     1627
     861
            
                
         AllDoc
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     2
     200
     199
     200
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 222.98, 25.12 Width 33.16 Height 18.33 points
     Origin: bottom left
     Colour: Default (white)
      

        
     D:20210907143013
      

        
     1
     0
     BL
     2646
     354
            
                
         Both
         3
         AllDoc
         50
              

       CurrentAVDoc
          

     222.9813 25.1178 33.1635 18.3273 
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     2
     200
     199
     90308ef2-c117-4f80-adcb-d2a1ae20f637
     200
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: From page 116 to page 316
     Font: AGaramondPro-Regular 11.0 point
     Origin: bottom centre
     Offset: horizontal 0.00 points, vertical 31.18 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
      

        
     D:20210907143134
      

        
     1
     0
     
     BC
     
     1
     1
     1
     0
     1
     99
     AGaramondPro-Regular
     1
     0
     0
     1891
     452
     0
     1
     R0
     11.0000
            
                
         Both
         116
         SubDoc
         316
              

       CurrentAVDoc
          

     0.0000
     31.1811
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     115
     316
     315
     226522f1-503f-4b86-aeec-25a493c1d38c
     201
      

   1
  

    
   HistoryItem_V1
   DelPageNumbers
        
     Range: current page
      

        
     D:20210907143203
      

        
     1
     1627
     861
            
                
         CurrentPage
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     115
     316
     115
     1
      

   1
  

    
   HistoryItem_V1
   DelPageNumbers
        
     Range: all pages
      

        
     D:20210907143220
      

        
     1
     1627
     861
            
                
         AllDoc
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     115
     316
     315
     316
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: From page 117 to page 316
     Font: AGaramondPro-Regular 11.0 point
     Origin: bottom centre
     Offset: horizontal 0.00 points, vertical 31.18 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
      

        
     D:20210907143236
      

        
     1
     0
     
     BC
     
     1
     1
     1
     0
     1
     99
     AGaramondPro-Regular
     1
     0
     0
     1891
     452
    
     0
     1
     R0
     11.0000
            
                
         Both
         117
         SubDoc
         316
              

       CurrentAVDoc
          

     0.0000
     31.1811
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0k
     Quite Imposing Plus 4
     1
      

        
     116
     316
     315
     9c11d2a9-eba7-4ebb-b8fe-25782cabdcb0
     200
      

   1
  

 HistoryList_V1
 qi2base





