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Introduction 

Living in a material world 

The most important part of my daily morning routine at home is to make coffee. 

The preparation process is almost automatic, in which I take the coffee pot to the 

kitchen sink to get water, and without relying on any visual measuring lines on the 

glass pot, I stop the running tab water when I have precisely enough water to make 

four cups of coffee. The water level estimation is perfect almost every time thanks 

to collections of informative sensory information such as the haptic feedback of the 

increasing weight of the pot, the visual feedback of the rising water level in the pot, 

the duration time of the running water, and the changing pitch coming from the 

decreasing air volume in the pot. More interestingly, the estimation skill relies not 

only on the provided sensory information, but also on my stored knowledge of how 

water and glass behave as material entities in a similar scenario. In other words, 

memories of previous experiences with running water, the knowledge of how the 

weight of the glass pot can be changed with the increasing water level, and the 

understanding of how fragile glass can be when handled. Together, this collection 

of sensory information and memories create a meaningful pattern, that is then 

learned via the repetitive routine of making that same amount of coffee every 

morning. For that reason, a morning routine like this requires a knowledge of 

material properties. 

Material categories and their properties are everywhere and interactions with them 

are unavoidable. For instance, we dress ourselves using textiles that vary in stiffness, 
e.g., cotton, wool, denim, and jersey, and the surface beneath our feet as we move 

around is comprised of materials that vary in roughness and friction, e.g., grass, 

gravel, hardwood, and carpet. Moreover, in scenarios when we cannot interact with 

physical objects directly using our hands, feet, or body, we use tools with certain 

physical properties to interact with them instead. For instance, when taking out a 

hot tray from the oven we normally use silicone oven mitts or dry kitchen towel to 

prevent our skin from burning. Additionally, we approach food using various kinds 

of tools and utensils depending on the physical property of the food and the tools, 

and what we want to do with them (e.g., stir, knead, pour, cut). Food that is different 

in terms of density and stiffness, such as root vegetables and sponge cakes, can both 

be cut using a sharp knife made of stainless steel, however, only the material 

properties of the sponge cake allow cutting using a plastic spoon or knife. We know 
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that the cake can be cut using a breakable plastic utensil because the cake is soft, 

and we know that the utensil might break if we tried the same procedure, using the 

same tool, on a carrot. All because we have the ability to both recognize materials, 

and to learn about their properties and what they afford, consequently we have no 

problem with selecting the right tool for the task. In a broader context, material 

knowledge provides an important survival value. For instance, spoiled food has 

certain surface characteristics that can be easily detected visually before any 

consumption takes place. Fruits turn brown, bread gets covered with fuzzy mold, 

and water with unsafe pathogens in it has brown and cloudy appearance, that signals 

that consumption should be avoided to prevent sickness. As the forgoing examples 

demonstrate, we are constantly interacting with objects that come in different 

shapes, sizes, and colors. More importantly the examples demonstrate that objects 

are made of various materials that have characteristic appearances and intrinsic 

properties, e.g., roughness, glossiness, friction, stiffness, and viscosity, that we rely 

on in our daily activities. Regardless, research on material perception has been a 

small field in comparison to research on object recognition. Fortunately, this has 

changed, as material perception research has been a fast-growing research field over 

the last two decades. 

The scope of the thesis 

This doctoral dissertation examines the role of materials and their characteristics in 

decision-making and productions of motor actions when handling objects. While 

the main research focus is visual perception of material properties, the thesis also 

features tactile perception of materials and stored knowledge of material properties, 

since materials are rarely experienced passively via single sensory modality in the 

real world. That said, the theoretical discussion, both in the introduction chapters of 

the dissertation and in discussion sections of the research papers, assumes multi-

modality when describing the nature of material perception. The dissertation intends 

to achieve the two following aims: 

1. To examine how changes in visual material properties result in changes in 

motor behavior when handling objects. 

2. To theorize about internal models describing the relationship between visual 

and intrinsic material properties.  

Through the repeated experience of observing, lifting, weighing, smelling, listening, 

and walking on different types of materials, we learn about the physical world we 

live in and develop internal models that reflect our material knowledge. These 

models comprise learned associations (long-term priors) between object properties, 

such as object weight and object size (Gordon, et al. 1991; Flanagan and Beltzner, 

2000; Flanagan et al., 2008), and object weight and material type (e.g., Buckingham 
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et al., 2009; Baugh et al.,2012), and are formed to enable predictions as well as 

planning of future actions when encountering novel materials. The models bear a 

resemblance to the internal models of motor movements that predict the outcome of 

motor commands before tactile feedback becomes available, thus generating a 

desired movement in a forward manner (Johansson and Westling, 1988; Gordon, et 

al., 1993; Gordon et al., 1994; Nowak et al., 2007). 

Materials are handled in various ways, in which action requirements are distinctive 

depending on categorization of the material and its properties. Some materials afford 

bouncing and sliding, while others afford folding, and splashing. Oftentimes, we 

instantly recognize the material category and its properties because materials have 

typical visual characteristics that we take advantage of. For example, the material 

category wood is easily recognized by the brown-colored streaks on its surface (i.e., 

growth rings), and subsequently, hardness, a typical material property of wood is 

identified. In comparison, some materials are so visually similar that their distinct 

action requirements, and end-goals of required actions, are hard to recognize 

instantly. For instance, natural yoghurt and face cream are both white colored 

substances with smooth texture that afford to be scooped or smeared, but they differ 

in required end-goals, in which the yoghurt is edible while the face cream is not 

(well, normally not). Without the packaging or labels, the two substances are 

difficult to quickly tell a part visually, but with more experience of using the two 

substances, the material knowledge expands and the task of telling yoghurt and face 

cream apart becomes easier (Adelson, 2001). 

Early on in my research I felt the perception of action requirements had a 

reminiscent of affordance, a term created by Gibson (1966, 1979) to describe 

perceived action possibilities of objects based on shapes and forms. Gibson’s 

ecological approach to visual perception proposes that action is always involved in 

one’s perception, as we are active and explorative perceivers in our perceptual 

world. According to his approach, the structure of the perceiver’s environment is 

meaningful, in which all objects have a range of action possibilities that we instantly 

pick up to know how to interact with those objects. For example, a chair affords to 

be sat on, but depending on the context and the end-goal of our intended action, the 

chair might also afford to be moved or to support weight while standing on it. For 
this reason, and since no strong scientific consensus of how material properties are 

recognized was present in the beginning of my research, I adopted Gibson’s term 

affordance but extended it to perceived action possibilities based on material 

properties, as a way of describing an active perception of action possibilities based 

on materials rather than simply shapes. Nonetheless, Gibson’s ecological approach 

argues against that perception involves learning, which goes against the theme of 

this dissertation. I therefore kept the approach as a reference framework when 

describing how action requirements of materials are visually perceived, rather than 

as a theory-based principles. In recent years, theories of visual perception of 

materials have shifted away from a purely bottom-up processing mechanism that 
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involves no learning, in which the visual system makes inferences based on 

measurable low and mid-level features. Such approach is more suitable for research 

on visual perception from a computer vision perspective. The shift has been towards 

goal-directed and semantic driven high-level vision theories allowing the inclusion 

of cognitive constructions of materials (Fleming, 2017). I therefore include a 

discussion of two additional theoretical and mathematical approaches in the section 

How do we perceive Stuff? that are both suitable for explaining how material 

knowledge is obtained and stored. The first one is Gärdenfors’s (2000) theory of 

conceptual spaces, which is particularly useful for understanding how we make a 

meaning of the stuff in the world as it assumes concept learning and organization 

based on dimensions of qualities. The second approach is Fleming’s (2014, 2017; 

see also Fleming and Storrs, 2019) statistical appearance model, which specifically 

explains how materials are visually perceived and has become the most accepted 

theory of material perception within the research field.  

The visual environment changes constantly as we move around within it. Changes 

in viewpoints and light source positions result in changes in surface appearances, 

and tactile properties are learned when objects are picked up. Consequently, our 

knowledge of material properties improves constantly when materials are viewed 

from various viewpoints and illumination and new associations between visual and 

tactile properties are learned. That said, this doctoral dissertation seeks to approach 

material perception as a continuous cycle between the active perceiver and the real-

world, in which material properties are studied as natural properties that afford to 

be interacted with instead of static images that are passively viewed. For this reason, 

I used real-world items in the experiments (Paper I, II, and IV), with the exception 

of Paper III, which consists of dynamic computer-generated animations to obtain 

high-degree experimental control to study visually inferred hardness. The research 

papers include evidence for internal models that are specifically for material 

categorization and action control. The models conclude associations between visual 

characteristic and intrinsic properties of materials, and allow for anticipating action 

requirements for future handlings, both in humans (Paper I, II, III) and in a 

humanoid robot (Paper IV). Specifically, the papers included in this dissertation 

demonstrate: findings for visually inferred hardness (Paper III); that visual material 

properties are incorporated early in action- and grip force production when lifting 

objects (Paper I and II); and learned associations between visual and physical 

properties of materials in a humanoid robot (Paper IV). 
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Summary of papers 

Paper I: The Visual Perception of Material Properties 

Affects Motor Planning in Prehension: An Analysis of 

Temporal and Spatial Components of Lifting Cups. 

 

Research question 

In this reach-to-grasp study, we examined the participants’ expectations of how 

materials behave, to determine the role of visual material properties in early 

prehension control. Specifically, we were interested in surface gloss and object 

weight, to see how those properties contribute to the process of inferring hardness 

before tactile feedback becomes available. 

Procedure 

The results are based on data collection from fourteen participants, in which motion 

capture technology was used to obtain both temporal and spatial measurements of 

prehension when the participants lifted paper cups that either had original 

appearance or were altered to appear glossy. To vary the object weight, we presented 

half of the paper cups with added weight while the other half of the cups were kept 

empty. In addition, to examine the effect of content visibility on prehension control, 

half of the cups had their content hidden using a thin lid, while the other half had 

their content visible. The expected and perceived material properties were assessed 

using a seven-points semantic differential scale, in which the participants rated the 

cups’ properties in terms of heaviness, glossiness, and hardness, both before and 

after lifting the cups. 

Results and conclusion 

Overall, we found the temporal and spatial components of prehension were not 

exclusively governed by the weight of the cups as previous studies have stated. 

Instead, the results revealed that material appearance and expected hardness have 

significant roles in prehension as well. For the initial object lifts, the prehension was 

guided by how the participants anticipated the functional properties of the cups, 

based on the visual characteristics of the cups and their prior experience with 
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materials having similar visual structure. Whereas, after repeated trials of lifting the 

cups, prehension is characterized by the participants’ perception of the physical 

properties of the cups, as object weight dominates the prehension control of the 

hand. 

 

Paper II: Coffee to go! Examination of grip force 

anticipation when lifting paper cups. 

 

Research question 

This study is a follow-up on the previous reach-to-grasp study (Ingvarsdóttir and 

Balkenius, 2020). Here, we further examined the role of visual material properties 

in prehension by examining the early grip force control in object lifting. In 

particular, we measured the grip force magnitudes applied by each of the five digits 

(fingers) individually, while the participants lifted paper cups that varied in surface 

gloss and object weight. 

Procedure 

This study is based on data collection from sixteen participants. The same 

experimental procedure and stimuli were used as in Paper I, but with the addition of 

grip force collection during the reach-to-grasp task. The force data was collected 

using five touch sensors that were individually attached to each digit of the hand. 

Results and conclusion 

The results support our previous findings and highlights the significance of visual 

material properties in prehension control. We found that early grip force scaling was 

not only guided by the weight of the cups, but also by the surface gloss and whether 

the participants could visually infer the weight of the cups based on their content or 

not, i.e., the presence of another material. Comparisons between the grip force 

magnitudes guided by expected vs. perceived properties suggest that we have 

predetermined expectations of visually inferred hardness that we rely on in grip 

force scaling during initial object lifts. 
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Paper III: Material properties and visual judgment of 

bounce height. 

 

Research question 

In this visual judgment task, we examined how the visual material properties, 

roughness and glossiness and their association with hardness, are incorporated into 

the visual assessment of bounce height. In general, it is believed that learned 

associations based on previous experiences of how materials look and feel help us 

to anticipate the nature of a new material. For instance, it is important for us to 

anticipate the walkability of a surface plane in front of us to prevent us from falling 

over. Here, we asked what visual properties make surface planes bounceable? That 

is, what visual properties are judged to afford high bounce heights as a consequence 

of being associated with hard qualities.  

Procedure 

In two paired-comparison experiments, 60 participants (30 in each experiment) were 

asked to observe a computer-generated ball bouncing on surface planes with either 

smooth or rough characteristics that were presented with either matte or shiny 

finishing. The purpose was to see if the participants paired higher bounce heights 

with surface planes with certain types of visual characteristics. Participants were 

also asked to rate the surface properties of the planes using three semantic-

differential scales: roughness, hardness, and glossiness, to obtain data on perceived 

properties and visually inferred hardness. 

Results and conclusion 

Our results demonstrate context effects in judged bounce height. We found that the 

participants judged physically high bounce heights to be higher than physically low 

bounce heights, however, the judged bounce height was also affected by the visual 

characteristics of the surface planes. The participants judged surface planes with 
rough characteristics to provide higher bounce heights compared to surface planes 

with smooth visual properties. Moreover, in the second experiment we found adding 

shiny properties to the rough and smooth surface planes reduced the previously 

judged difference in bounce height. The participants judged bounce heights on shiny 

surface planes to be high, irrespective of the textured characteristics of the surface 

planes. The results demonstrate that perceived bounce height incorporates not only 

the physical elements of the ball and the bounce, but the visual material properties 

of the plane as well. Here we provide evidence for learned associations between the 

visual material properties, roughness and glossiness, and visually inferred surface 

hardness. 
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Paper IV: Learning material properties from visual and 

proprioceptic features in a humanoid robot 

 

Research question 

In this experiment, we examined the development of material knowledge in a 

humanoid robot, named Epi, to further investigate the role of material properties in 

skilled object manipulations. Here we were especially interested in two physical 

properties that normally are perceived using touch, namely weight and hardness. 

Moreover, we were also interested to see if the robotic system could categorize the 

experimental objects visually, and if multi-modal representations could be 

produced, based on the information provided by the haptic- and the camera systems. 

The experiment was also set out to see if the haptic feedback coming from the servos 

that control the arm and shoulder of the robot could be used to measure weight and 

hardness. Using feedback signals from the servos, rather than signals coming from 

tactile sensors built within the hand, reduces the likelihood of broken fragile parts 

in the robot fingers when lifting heavy objects.  

Procedure 

In two experiments, Epi repeatedly picked up and placed experimental objects that 

varied in type of materials, visual appearance, weight and hardness. For the first 

experiment we tested eight different objects, including three types of weight, to see 

if the robot could measure weight and hardness using feedback signals from the 

servos controlling its arm. In the second experiment, same experimental procedures 

were conducted as in the first experiment, but the number of experimental objects 

was extended to twenty-five objects, and the weight used for the training data for 

the weight learning ranged in 50g steps from 50g to 500g. After training, an 

associative learning mechanism was created to show how the Epi the robot can learn 

the mapping between the two modalities, vision and haptic, and to create multi-

modal representations of the different types of materials that constitute the 

experimental objects. 

Results and conclusion 

Using inputs from the visual and the haptic systems, Epi learned to estimate the 

weight and hardness of the experimental objects using feedback signals provided by 

the servos that control the arm and the shoulder of the robot, and to furthermore map 

those material properties to the visual features of the experimental objects. Like an 

infant who learns about the material properties of objects through active exploring 

using sight and touch, Epi learned to map the weight and hardness of the 

experimental objects to their visual features. In the future, this modelling 

mechanism could be used as a part of an affordance learning system. 
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What is material perception? 

Behavioral and biological evidence 

Material perception is recognition of material categories and their properties, and it 

is a multi-modal process in the sense that real-world materials are perceived via 

sight, touch, hearing, smell, and taste (see discussion on multimodality in material 

perception in Fleming et al., 2015; and Fujisaki et al., 2014). Nevertheless, visual 

characteristics of materials and visual perception of material properties has 

dominated the field of material perception research. The great interest in visual 

material properties does not come as a surprise, considering the technical advances 

in computer graphics and algorithms over the years, which allow for photo-realistic 

graphics of how materials appear as well as how they behave to the untrained eye. 

Similarly, research on material recognition, together with advances of artificial 

intelligence and neural networks, has assisted the development of smarter computer 

vision software (Adelson, 2001; Cui et al., 2018).  

The visual process of material properties has been thoroughly outlined in a primer 

written by Barton L. Anderson (2011), which also includes an exceptional overview 

of the significant conducted early in the field. The following examples briefly 

describe the visual process of materials. To begin with, the light travels and interacts 

with objects in the physical world, the light hits the surface of the objects and 

bounces back off and into our eyes carrying important information about the 

geometrical structure of the physical world. At the same time, the structured light 

entering our eyes tells us also about the materials in our visual environment, as 
objects vary not only in structure but also in surface characteristics that are specific 

for the material that the object is made of. For instance, while a polished metal and 

a sheet of printing paper both have smooth surface characteristics, the light interacts 

differently with the two objects as they are made from different types of materials 

and have different properties as a result of that. For instance, the light hitting the 

metal gets reflected into one direction, creating highlights and shiny appearances, 

whereas the light hitting the paper sheet scatters at various angles when it exits the 

object, creating diffused reflection and matte appearance. The purpose of visual 

material perception is then to encode the retinal images (i.e., proximal stimulus) 

comprised of low-level features, organize the provided visual information into 

representations of the real-world materials (i.e., distal stimulus) and apply semantic 
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meaning to that visual information, to achieve material recognition at a higher 

cognitive level. 

It is remarkable that humans can effortlessly recognize materials based on 

seemingly meaningless surface structures, considering there are similarities in 

visual characteristics across different groups of materials (see figure 1), and 

variations in visual features within a single group of materials (see figure 2). To 

clarify, the two types of vases seen in figure 1 have similar reflection spots, i.e., the 

white highlights on their surfaces, and could therefore be classified into the same 

group of reflective material. 

 

Figure 1. An example of similarities in surface appearance across different types of material categories. 
The two vases have similar visual characteristics in terms of reflectance, despite belonging to separate 
material categories, glass and ceramic. 
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However, despite the similarities in visual features between the two vases, we can 

easily classify them into separate material groups, i.e., a transparent glass and a 

glossy ceramic. Likewise, although the two types of foliage seen in figure 2 have 

distinct visual characteristics, as one leaf has hairy texture whereas the other leaf 

has smooth and glossy surface features, we have no problem classifying them into 

the same material category. That said, there is a lot of visual ambiguity that needs 

to be sorted out in order for materials to be recognized. 

 

Figure 2. An example of variation in visual properties within a single material category. Here we see that 
foliage comes in various forms and texture, in which one leaf has smooth and glossy surface appearance, 
while another leaf has matte surface with hairy texture. Nevertheless, the two leaves are classified as 
belonging to the same material category, despite their difference in visual properties. 
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Despite such visual ambiguity, where similarities in visual appearance is found 

across different types of materials, and variations in visual appearance is found 

within a single type of material, it has been demonstrated that visual recognition of 

materials is a very quick process when tested using high-level material categories 

and real-world images (Sharan, 2009; Sharan, et al., 2009; and Sharan, et al., 2014). 

Sharan (2009) used images of real-world materials and asked participants to 

categorize the images into material categories, and measured their timing of visual 

selection using rapid serial visual presentation paradigm. The results did not only 

demonstrate that material recognition is extremely fast and accurate, but also that 

the participants could even recognize material categories from images that were 

briefly displayed in just 40 milliseconds, irrespective of the visual diversity present 

within each material category. Later, Wiebel, et al., (2013) confirmed that 

categorization of materials is both fast and accurate but argued that it was less 

accurate than categorization of simple objects. However, the remarkable 

performance found in the studies by Sharan (2009) and Sharan, et al. (2014) was 

found to be equally accurate as scene- and object categorization. Moreover, the 

performance could neither be explained by simple categorization of shapes, as no 

overall shapes were present in the image stimuli, nor could the performance be 

explained by low-level visual features such as color or contrasts, as the images were 

manipulated to discard those features. Wolfe and Myers (2010) have also supported 

that the visual system does not rely on pre-attentive attributes when rapidly 

classifying high-level material categories based on material properties, as they 

found that material properties were inefficient to guide selective attention in a visual 

search task. Suggesting that material properties are not pre-attentive features in 

nature, unlike color and line orientation that are processed early in the visual system. 

Although both material properties and shapes are fundamental parts of object’s 

identity, evidence have shown that visual recognition based on material properties, 

on one hand, and shapes on the other hand, are two separate cognitive processes that 

rely on distinct features in the distal world. In other words, material recognition is 

simply not a conventional object recognition. This is unsurprising considering that 

objects from the same object category can be made of completely different 

materials, and the same material can be used to create distinct objects. For instance, 

the object category drinking cup is comprised of cups made of all kinds of materials, 

such as plastic and metal with applied enamel, which are all classified as an object 

to drink liquid out of despite their differences in material properties. Similarly, 

plastic is a very versatile material as it is not only used for creating drinking cups 

but also toys, bicycle helmets, packaging, etc. Let alone, it is also imprinted in our 

language that objects are things that can be counted (e.g., one pillow, two pillows, 

etc.), whereas materials are stuff that cannot be counted in the same way as objects 

are. For instance, the tactile property of a pillow, softness, is not counted in the same 

sense as the pillow itself, unless the softness property would be turned into a noun 

(e.g., one softie, two softies, etc.). Instead, the softness property is measured in terms 

of quantity, using either measurement units such as how much the fabric bends or 
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subjective rating scales (Peirce, 1930; see also Kilinc-Balci, 2011, for overview of 

studies on comfort properties of textiles). Findings by Sawayama and Nishida 

(2018), on intensity gradient information and material perception, confirm that the 

visual system relies on separate image characteristics for visual judgment of 

materials and shapes. According to their findings, glossiness judgment is greatly 

affected by image manipulations in which intensity gradient magnitude information 

were changed (think increased intensity of white patches, or highlights, that are 

indication of a glossier surface), whereas shape estimation was unaffected by them. 

In turn, shape estimation was heavily affected by image manipulations in which 

intensity gradient order information was changed (think white patches that are 

usually positioned on top of the highest points of a surface, indicating the shape of 

the object).  

Many have argued that the visual system relies on low-level visual features when 

categorizing materials, and often those studies emerge from the field of computer 

vision, in which image statistics (e.g., luminance histograms) are required for image 

analysis (e.g., Pont and Koenderink, 2005; Varma and Zisserman, 2009; Sharan, et 

al., 2013). It is difficult, however, to argue that visual material perception is simply 

based on image statistics and estimation of physical parameters like the 

Bidirectional Reflectance Distribution Function (BRDF), which describes the 

reflection characteristics of the surface (for more on image statistics see Nishida, 

2019), as similar appearances can be found for different types of materials as seen 

in Figure 1. The two materials, glass and ceramic, produce similar retinal images 

when the images are cropped to reduce the impact of other object properties like 

shape. Therefore, it would be problematic to just rely on low-level retinal image 

features to accurately categorize those two materials into separate categories. 

Instead, it has been suggested that categorization of materials involves stored 

knowledge and is to some extent a semantic process of visual input. In two 

experiments, Fleming, et al. (2013) asked participants to judge the material 

properties from both images of materials and from verbal names of materials and 

found systematic relations between the judged material properties and the presented 

material categories, in which judged material properties clustered into distinct 

feature spaces (i.e., material categories). Moreover, they found correspondence 

between the two tasks and concluded that the visual judgment of material properties 

and the judgment of memory-based material categories emerged from the same 

stored knowledge of materials. 

In recent years there has been a growing interest in the neural mechanism underlying 

material perception, in which, functional magnetic resonance imaging measures 

(fMRI) have been used for theorizing how materials are perceived and organized in 

the brain. In terms of visual perception, neuroimaging findings suggest that visual 

material recognition is a hierarchical structure, ranging from recognizing simple 

image features in the early visual areas, specifically in the primary and secondary 

visual cortexes, V1 and V2 (Baumgartner and Gegenfurtner, 2016), to classifying 
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material categories in higher order areas in the parahippocampal gyrus (Jacobs, et 

al., 2014), fusiform gyrus and collateral sulcus (Goda, et al., 2014; Hiramatsu, et al., 

2011; Komatsu and Goda, 2018). Furthermore, electroencephalography measures 

(EEG) have been practical for examining the time course of material categorization, 

in which event-related potentials data (ERP) has demonstrated relatively fast neural 

responses (approximately 140 ms after stimuli onset), suggesting an early 

differential visual processing of materials, at least for simple image features 

(Wiebel, et al., 2014). Neuroimaging techniques have also confirmed that material 

perception is cross-modal in nature, where every sensory modality is involved in 

perception of materials. In terms of cross-modal interactions, increased neural 

activity has been found in the visual cortex together with an increased activity in the 

somatosensory cortex during a haptic judgment of surface textures, suggesting 

visual-haptic interactions (Podrebarac, et al., 2014; see also review in Komatsu and 

Goda, 2018). Moreover, cross-modal interaction between vision and hearing have 

been demonstrated as increased activity has been found in the ventral visual cortex 

when listening to sounds of materials, whereas sounds of voice did not elect such 

activity (Arnott et al., 2008). Behavioral studies have supported the cross-modal 

aspect of material perception as well, for instance has surface appearance been 

found to affect the haptic perception of weight, as has been demonstrated with the 

material-weight illusion, which is an illusion that occurs when lifting and comparing 

the weight of two objects with equal mass but difference in material appearance 

(e.g., stone vs. Styrofoam). When the two objects are lifted, the Styrofoam (i.e., the 

lighter-looking object) is judged to be heavier than the stone (i.e., heavier-looking 

object), possibly because expected weight based on previous experience with stones 

and Styrofoams is violated, resulting in an overestimated weight of the lighter 

looking object (Buckhingham et al., 2009). Surface friction (slipperiness) has been 

found to affect visual judgment of surface gloss, in which perceived slippery objects 

are judged glossier (Adams et al., 2016). Materials can also be recognized based on 

their contact sound (Klatzky, et al., 2000), but matching visual appearance of one 

material with a contact sound of another material results in a perception of a third 

material, a perceptual phenomenon resembling the McGurk effect. The effect is a 

multisensory illusion in which incongruent pairing of acoustic speech (ba) with 

visual speech (ga) results in a perception of a third sound (da) (Fujisaki et al., 2014; 

McGurk and MacDonald, 1976). 

Material perception is not unique to humans. Studies on animal cognition suggest 

that some animals have a cognitive mechanism to perceive properties that are not 

necessarily attached to the size or the shape of an object. For instance, Capuchin 

monkeys can identify the functional property, such as rigidity (a material property 

related to hardness), of a tool and select appropriate tool for the task requirement by 

simply observing an experimenter manipulating it (Manrique, et al., 2011). 

Additionally, Capuchin monkeys have also been found to use sequential tools (i.e., 

use a tool to get to another tool to then access the reward) that differed in rigidity 

(Sabbatini, et al., 2013). Furthermore, New Caledonian crows are known to be able 
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to infer object weight based on external forces, i.e., they can infer the weight of light 

and heavy objects based on whether the objects move or remain stationary when 

getting breezed by an electric fan (Jelbert et al., 2019). 

All things considered, we currently know that visual perception of materials is a 

remarkably quick and accurate cognitive process that is distinct to object 

recognition, has strong correlations with the neural mechanism in the cortical areas 

in the ventral visual pathway, is cross-modal, and is not unique to humans. 

Visual material properties 

The four research papers included in this dissertation aim to examine visual material 

properties and our behavioral reactions to them. Overall, the papers comprise of 

assessments of visual perception of glossiness and roughness, and their associations 

with inferred hardness, for the purpose of examining the role of inferred material 

properties in grip planning when handling everyday objects. The three material 

properties, roughness, glossiness, and hardness were of special interest due to 

several reasons as explained in this subsection. 

Firstly, glossiness and roughness are two fundamental visual properties that we 

commonly use, besides color, when describing material appearances. We use 

glossiness (or shininess) when describing the reflective properties of the material, 

in which we position our description somewhere on the range between matte surface 

appearance and shiny surface appearance. Whereas, we use roughness when 

describing textured surface appearance, in which our description is positioned 

between smooth surface appearance and rough surface appearance. Given the 

common usages of these two descriptions when describing subjective experiences 

of materials, it is important that research on material perception includes 

assessments of perceived glossiness and roughness, and the interplay between them. 

Besides, both glossiness and roughness can be easily digitally rendered, using 

today’s computer graphics, which allows for reproduction of specific surface 

characteristics without the cost of losing experimental control. That way, the 

perceptual effects of each individual property can be examined separately at various 

intensities, or jointly with other properties to obtain knowledge of their interacting 

perceptual effects. As a result, many findings on material recognition and 

categorization have been derived from studies on computer vision and texture 

analysis (see review in Adelson, 2001; and Thompson, et al., 2011), in which the 

most studied material properties in visual perception of materials are often 

glossiness (see review in Fleming et al., 2015) and roughness (e.g., Bergmann Tiest, 

2010; Bergmann Tiest and Kappers, 2007).  

Secondly, materials are rarely perceived passively and without being touched, 

which is why I believe it is important to examine material knowledge as it is 
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obtained through continuous interactions between the perceiver and the physical 

world. Research on material knowledge, should therefore include material 

properties that describe not only the visual appearance of materials, but also the 

intrinsic and non-visual qualities of materials. In particular, the intrinsic properties 

are useful to anticipate in order for the perceiver to achieve successful interactions 

with the physical world. Therefore, hardness is included in the papers as a 

fundamental material property to anticipate when interacting with materials, 

because it informs us about the required grip force when handling objects with care. 

In this dissertation, glossiness and roughness are both defined as optical properties 

that describe how light interacts with surfaces, whereas hardness is defined as a 

mechanical property that describes how materials react to applied force (e.g., poking 

soft bread vs. hard apple). Although, glossiness is normally perceived visually, 

whereas roughness and hardness are usually perceived via touch. Evidence show 

that mechanical properties can be visually inferred from glossiness and roughness, 

via learning (see, e.g., Schmid and Doerschner, 2018), which is why the interplay 

between glossiness and roughness as visual properties, and their possible 

involvement in inferred hardness for soft and hard materials, were of special interest 

in this dissertation. 

Glossiness describes the shininess of a surface. In other words, it describes the 

perceived surface reflectance, which is how much light (and specular direction) is 

reflected of a surface. Glossiness has been extensively studied, both within 

computer vision science and human psychophysics (Thompson, et al., 2011). The 

visual distinction between matte and shiny materials are specular highlights that are 

characterized by white colored patches, in which the intensity of perceived 

glossiness is achieved by increasing the size and brightness of the specular 

highlights, consequently expanding the specular coverage of the surface area as a 

result (Beck and Prazdny, 1981). Gloss perception has also been found to be affected 

by additional surface characteristics, such as the sharpness and luminance contrast 

of the highlights, including the location of the highlights on the three-dimensional 

object, as highlights must correspond to the shading profile of the object (Anderson 

and Kim, 2009; Kim, et al., 2011 and 2012; Marlow, et al., 2012; Marlow and 

Anderson, 2013; see review in Chadwick and Kentridge, 2015). Furthermore, in 

recent years psychophysical studies have revealed distinct kinematic information 

for matte and shiny materials (i.e., material-from-motion). These findings have 

shown that light travels differently across surface depending on the specular 

property of the material, creating distinct optical flow, which the visual system 

detects. For instance, a static computer-generated matte object painted with 

highlights corresponding the 3-D shape of that object, is judged equally glossy as 

static shiny object rendered with specular highlights. However, when the objects are 

rotated, the shiny object is instantly judged glossy whereas the matte object is not. 

The rotation results in distinct optical flow for the two types of materials, in which 

the shiny object has light running across the surface, while the matte object has no 

specular flow and appears to have highlights painted on it (Doerschner et al., 2011; 



29 

Hartung and Kersten, 2002; Kam, et al., 2015). In turn, specular flow has been found 

to influence judgment of rotation motion of an object (Doerschner et al., 2013). 

Clearly, reflectance is a complex material property that needs to be studied in a 

broader experimental setting than simple passive viewing of static images, 

considering that perceived glossiness depends on the available information at that 

moment. 

Material recognition based on reflective properties alone, has been challenging to 

explain due to the complex visual structure of specular highlights and their interplay 

with the environment the material is presented in. For instance, glossy materials that 

are highly reflective (e.g., glass vase) have specular highlights that display distorted 

images of the surrounding environment, that are a part of the external environment 

rather than the material itself. As seen in figure 1, the distorted images of windows 

are not painted decorations on the vase itself, but rather a reflection of the living 

room the vase is positioned in. Somehow, we easily recognize these distorted images 

as specular reflectance rather than decorations, both for computer-generated glossy 

surfaces (Nishida and Shinya, 1998), and real-world images (Fleming, et al., 2003) 

as long as the illumination is realistic and not atypical. This suggests we have stored 

knowledge of typical structures of reflectance.  

Others have argued that visual material perception is merely a perception of low-

level image statistics (e.g., Nishida and Shinya, 1998; Sawayama, et al., 2017). For 

instance, the intensity of the reflectance property of a material can be represented 

by a bidirectional reflectance distribution function (BRDF), which is a function that 

is based on the amount of incident light hitting the material surface, and the direction 

of the light reflected from the surface, given that reflectance is directional 

(Nicodemus et al., 1977). Using image statistics as visual cues to particular materials 

is understandably a logical approach to understand visual perception of materials, 

as such an approach offers a measurable connection between the physical world (the 

distal stimuli), the image statistics (proximal stimuli) and material perception (see 

review in Nishida, 2019). Regardless, psychophysical data suggest that some 

assumptions are required together with the image statistics in order to recognize 

material properties, as perceived material properties can have perceptual effects on 

one another. For instance, perceived glossiness is not only influenced by the 
illumination strength, but also by the surface relief (bumpiness), and the three-

dimensional shape of the material (Fleming, et al., 2003; Ho, et al., 2008; Marlow 

et al., 2012; Nishida and Shinya, 1998; Olkkonen and Brainard, 2011; Vangorp, et 

al., 2007; see also Fleming, 2014). Figure 3 demonstrates how adding reflective 

features to rough surfaces can dramatically alter their appearances. 

Although surface gloss is perceived visually it can convey tactile information, such 

as friction (e.g., Paulun et al., 2016). Interestingly, there are studies that have shown 

that surface gloss is associated to more qualities than surface friction. Bennet and 

Porteus (1961) found that people could predict moisture by estimating the number 

of areas on the surface that had high luminance (i.e., white highlights), and Schaller 
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and Park (2011) demonstrated a close interplay between glossiness and the 

functioning of the behavioral immune system (BIS), a concept developed by 

Schaller (2006) to describe the psychological- and behavioral aspect of the 

physiological immune system (PIS). When pathogens, toxins, or allergen, enter the 

body, PIS becomes activate and starts to eliminate the invading stimuli to protect 

the body and prevent sickness. Since PIS is merely reactive, the role of BIS is to 

compensate the immune system by detecting the visual cues of pathogens and other 

uninvited guests before they enter the body, and consequently initiate an avoidance 

behavior. In a recent study, Iwasa et al. (2020), demonstrated a presence of a visual 

perceptual mechanism for detecting moisture within BIS. Iwasa et al. (2020) 

presented images of dough with moisture at various scales to participants in a 

pairwise manner and asked the participants to compare them according to perceived 

moisture as well as to rate them in terms of disgust evoked by them (e.g., how likely 

they were to touch/avoid the dough), in order to assess the BIS response. Their 

findings showed that both moisture magnitude and the number of areas with high 

luminance (i.e., highlights) accurately predicted the visual detection of moisture. 

Moreover, they found that BIS response peaked for images of dough having 

moderate amount of moisture, indicating an association between glossiness and 

moisture. Certainly, moisture is related to friction and is therefore perceived as 

slipperiness, moist surfaces (e.g., wet floors) are usually slippery. Nevertheless, 

glossiness could possibly be associated with other qualities such as hardness. For 

instance, some hard materials have lustre or shiny appearance due to their nature 

(e.g., gold, steel), whereas other have dull appearance (e.g., paperboard, wood) but 

are often coated with varnish or other glossy material to ensure durability.  

Roughness describes the height differences of a surface relief (i.e., bumpiness) that 

provide haptic impressions which can be utilized for surface categorization, both in 

humans (Bergmann Tiest and Kappers, 2007; Bergmann Tiest, 2010), and in 

biologically inspired self-organizing robot systems (Johnsson and Balkenius, 2008 

and 2010). Even though roughness is typically studied within the haptic system (and 

often using sandpapers), its salient visual features have proven to be highly 

informative attributes for visual recognition of materials as well (e.g., Adelson, 

2001; Anderson, 2011; Bergmann Tiest and Kappers, 2007). After all, surface 

roughness (and smoothness) can be found anywhere, from rocky stone terrain to 

polished concrete floor, where their surface characteristics are first perceived 

visually before being touched or walked on, which makes their visual characteristics 

equally important as their haptic impressions. Consequently, the consensus is that 

roughness is an important material property for both the haptic and the visual system 

to perceive, and that the systems are equally good at perceiving roughness 

(Bergmann Tiest and Kappers, 2007). Figure 4 illustrates examples of computer-

generated surfaces that vary in roughness. 
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Figure 3. Examples of identical surface textures, presented with and without reflectance properties to 
demonstrade the qualitative difference the interpay between roughness and glossiness has on material 
appearances. 

 

 

 

Figure 4. Examples of computer-generated surfaces resembling an avocado skin. Here, surface 
roughness is reduced by increasing the noise level of the Voronoi tessellation texture map, creating larger 
tessellation tiles and consequently smoother appearance. 

 

In material perception, roughness and glossiness are considered to operate on the 

same scale to describe surfaces (microscale). Other scales being mesoscale (e.g., 

visible textures and shapes like wood appearance or folded cloth), and megascale 

(e.g., overall object shape) (Koenderink and van Doorn, 1996). As a result, a 

perceptual interplay in judgment of materials has been found between roughness 

and glossiness, in which negative correlations have been found between visually 

judged roughness and glossiness (Fleming et al., 2013). Surfaces with rough texture 

are judged less glossy compared to surfaces with smooth texture, which is perhaps 

unsurprising considering how light interacts with surfaces. In particular, the 
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incidental light reflects differently depending on the surface structure of the 

material. Smooth surfaces tend to reflect the light into one direction not far away 

from the initial entry-location, creating a perfect reflection of the environment (think 

mirrors) or alternatively very bright highlights. In turn, rough surfaces scatter the 

light into many directions, creating diffused reflection and matter appearance (e.g., 

Komatsu and Goda, 2018).  

Hardness, sometimes known as compliance or stiffness, is a physical property 

providing haptic information and is frequently used for describing the elasticity or 

deformability of an object/material, e.g., the glass table is hard whereas the cleaning 

sponge is soft. Therefore, the perception of hardness has been almost exclusively 

studied within the haptic system, in which judged hardness is based on surface 

deformation and force/finger-displacement (Bergmann Tiest and Kappers, 2009; 

Bergmann Tiest, 2010). Nevertheless, we often have clear assumptions of how hard 

or soft materials are before touching them because of an association mechanism that 

we have, which is based on prior experiences with similar materials (Baumgartner 

et al., 2013; Bergmann Tiest, 2010; Paulun et al., 2017). Although perceived 

hardness without tactile feedback is often based on the visual characteristics of the 

material, studies have shown that perceived hardness can be based on auditory 

information as well, in which contact sounds provide information about the 

hardness/softness of the material (Arnott, et al., 2008; Giordano and McAdams, 

2006; Vickers, 1981; and Vickers, 1987).  

Oftentimes, visual perception of hardness is based on shape cues (e.g., folds in 

textiles, visual deformation depth) or how shape changes over time (Fakhoury, et 

al., 2015; Paulun et al., 2017; Schmid and Doerschner, 2018; Schmidt, et al., 2017; 

Zoeller et al., 2019). Interestingly, correlations have been found between perceived 

weight and hardness, in which rated soft materials tend to be rated lighter, and rated 

hard materials tend to be rated heavier, which is perhaps unsurprising considering 

that light objects are often less dense and tend to be softer in the sense they can 

easily deform (think textiles) (Ashby, 2013). Furthermore, certain visual features 

appear to be correlated with increased rated weight and hardness, such as surfaces 

with spiky appearances that tend to be rated both heavier and harder than less spiky 

surfaces (Schmid and Doerschner, 2018; Schmidt, et al., 2020).  

Certainly, there are plenty of other material properties worth mentioning, although 

they were not particularly examined in this doctoral dissertation. Color, for instance, 

has been briefly mentioned in the context of material recognition. Although color 

has been found to facilitate the recognition of materials it is not crucial for 

categorizing materials (Yoonessi and Zaidi, 2010; Zaidi, 2011), thus color was not 

directly manipulated in the research papers presented in this dissertation. In the 

recent years there has been a growing interest in perception and estimation of 

mechanical properties of materials, specifically in the mechanical difference 

between rigid and non-rigid materials. Liquids (non-rigid material) and visual 

estimation of viscosity of liquids has been of special interest, where it has been 
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shown that we are fairly good at estimating viscosity based on how the liquids flow 

(Kawabe, et al., 2015; Van Assen, et al., 2018) and shape cues (Paulun et al., 2015). 

Textiles are also non-rigid materials which are often studied in relations to perceived 

softness/comfortability (e.g., Xiao, et al., 2016). Also, visual perception of complex 

material properties such as transparency and translucency has become increasingly 

popular in the recent years, due to the increased interest in non-rigid materials and 

progress in computer graphics (Fleming, et al., 2011; Motoyoshi, 2010). 
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How do we perceive Stuff? 

It is remarkable that we manage to visually categorize materials into clusters and 

categories such as ceramics, papers, glass, and liquids, considering that there are 

variations in visual characteristics within a single material category, and similarities 

between different types of material categories. For instance, you can easily 

recognize that the paperback dissertation, that you are currently holding in front of 

you, is made from paper. The same goes for the takeaway coffee cup you got at 

Pressbyrån this morning, you assign that disposable cup to the material category 

paper, without any hesitations. More interestingly, although both items, the printed 

copy of this dissertation and the paper cup, are both considered to belong to the same 

material category and therefore categorized as such, they are by no means identical 

in appearance. Rather, their optical images differ in shape, illumination, and wear 

due to external forces. The printed pages in the dissertation are thin and easily folded 

or teared, whereas a greater force is required to make at least a small dent on the 

paper cup, what then to tear it apart. The two items appear qualitatively different 

and afford different actions but are nevertheless judged to be made from the same 

material. Thus, recognizing materials is a complex process when considering that 

members of the same material category can appear differently. Moreover, members 

of different material categories can appear more similar than members that belong 

within the same material category. As figure 5 illustrates beautifully, quesadillas 

may look like the skin of giraffes, and blueberry muffins may look like Chihuahua, 

in a way that can be hard to visually distinguish at a first glance.  
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Figure 5. Quesadilla or giraffe? Muffin or chihuahua? Image courtesy of Karen Zack @teenybiscuit. 

Conventionally, feed-forward models have been used when describing visual 

perception, in which the structured light enters the eyes after it has interacted with 

objects in the external environment which, in turn, creates retinal images of the 

environment comprised of low-level features (e.g., edges, contrasts, color, and 

motion). A detected edge (proximal stimuli) in the retinal image is, however, not 

particularly informative about visual environment as it could correspond to multiple 

different properties in the external environment (distal stimuli). Consequently, the 

visual system begins its analysis by encoding these local image properties and 

transforms them into representations of surfaces and materials. Here is when 

interpretation comes in, which is the never-ending struggle of mid-level vision 

theories, as well as high-level vision theories. It is challenging to explain the 

mechanism of perceptual organization since the mapping between the distal and the 

proximal stimuli is ambiguous (the inverse problem in optics) (see, e.g., Anderson, 

2011; Fleming, 2017). In this section, two practical frameworks that explain the 

organization of materials are introduced. 

Conceptual spaces of materials 

One way to understand how the cognitive system recognizes material categories 

from diverse groups of materials, and how material properties are connected with 

the categories, is to define perceived materials as learned concepts rather than 

estimations of physical parameters. That way, we can utilize category-based 

inference models to explain the organization of perceived stuff. The theory of 

Conceptual Spaces proposed by Gärdenfors (2000) is an explanatory framework 



37 

that uses geometric psychological space to describe the organization of concept 

knowledge and concept learning using quality dimensions and domains. According 

to the framework, our perceptions of real-world objects, such as a drinking glass, 

are represented as concepts that are comprised of quality dimensions, the qualities 

of the objects that either are obtained via the sensory modalities (e.g., weight, color, 

transparency, hardness and glossiness) or are abstract attributes assigned to the 

perceived objects (e.g., fragility, pleasantness and consolation). A domain is a 

cluster of quality dimensions, which represents qualities that are separable from 

other clusters of dimensions representing that same real-world object. Figure 6, a 

reprint from Gärdenfors and Warglien (2012) illustrates the definition of quality 

dimensions and domains using a color spindle. The color spindle describes all 

possible colors perceived by humans using only three quality dimensions that each 

of which contain color qualities that are separable from one another, namely the hue 

(the color itself), the saturation (the intensity of the color), and the brightness 

(ranging from black to white) of colors. Together, these three dimensions, including 

the variation within each dimension, make up the color domain in color perception, 

which is separable from other domains. 

For example, does the domain for roughness comprise of quality dimensions 

representing surface properties (e.g., the height of the surface relief and the 

frequency of the spatial bumpiness), and those dimensions contain values that 

cannot exist as values in the dimensions found within the color domain, or in the 

glossiness domain. Ultimately, a concept of a real-world object is represented as a 

region within the conceptual spaces, using either single or multiple domains that are 

correlated.1  

 
1 Concepts are not necessarily comprised of collections of correlated domains, as real-world objects 

that are simple in nature can also be described using only a single domain. A good example of 
concepts made of a single domain are simple stimuli used for psychophysical experiments 
examining reaction times and choices to infer about the otherwise unobservable computation 
mechanism during a cognitive task. Reaction time studies often require using simple stimuli made 
of a single property such as color, line, or orientation. 
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Figure 6. An example of a color spindle representing the color domain in human color perception, 
comprised of three quality dimensions that are dissimiliar, brightness, intensity, and hue (reprinted from 
Gärdenfors and Warglien, 2012, pg. 490). 

Concepts are represented as convex regions, which are geometrical representations 

of the properties of the quality dimensions and are found in domains. The regions 

are attached together in a form of a Voronoi tessellation that changes its formation 

when new concepts are encountered. Concept learning occurs when the formation 

of regions within the conceptual space is altered. When new concepts are 

constructed, new data points are added to the quality dimensions within the domains, 

altering the convex regions and consequently expanding the size and shapes of the 

tessellation tiles and ultimately expanding the conceptual spaces. Figure 7 is a 

reprint from Gärdenfors (2000) and illustrates an example of a Voronoi tessellation. 

The number of data points within the dimension describes the perceived variation 

of the property of that dimension, and the average of all the data points within the 

same region defines the prototypical reference point of that convex region. The 

prototypical points are constantly changing and shifting to new coordinates when 

new information is learned and consequently new data points are added to the 

quality dimensions, changing the formation of the convex regions. The geometric 

distances (metric) between these prototypical points within the geometric space 

describe the judged similarities between the properties and the concepts. The shorter 
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the distance the more similar they are. That said, the cognitive system only needs to 

rely on the size of the tessellation tiles, that is, the prototypical points and the 

number of points it is based on, when learning a new concept, instead of 

remembering the exact categorization of all data points (Gärdenfors, 2008). The 

theory of Conceptual spaces has inspired research on the mathematical structure of 

category-based inference models (Osta-Vélez and Gärdenfors, 2020), and preceded 

modelling of neural representations of psychological spaces (Balkenius and 

Gärdenfors, 2016), including a mapping of cognitive spaces in the hippocampus 

specifically (Bellmund, et al., 2018). 

 

Figure 7. Illustration of a Voronoi tessellation of convex regions containing prototypical points (from 
Gärdenfors, 2000).  

Mathematical models 

We move around in the physical world learning about its properties, however, the 

sensory information we receive is often too ambiguous, which creates uncertainty 

for the visual system. For instance, a spilled face cream on a dining table might look 

like a spilled yoghurt, as both are white colored with smooth texture and similar 

density. Thankfully, our previous experience with these two substances and the 

provided context the substances are presented in (i.e., the dining table), we are much 

more likely to assume that the stain on the dining table is a spilled yoghurt rather 

than face cream. Lately, mathematical models, in particular Bayesian inference 

models, have been considered promising for explaining the cognitive process behind 
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visual recognition (e.g., Kersten, et al., 2004). Bayesian inference models can 

account for the uncertainty that derives from ambiguous visual information, by 

using probabilities to describe how likely an event A has taken place given certain 

conditions, where the probability of the event A is updated as more information 

becomes available to us. Furthermore, the probability of  event A may be based on 

more than the sensory information provided, since the probability of event A may 

also be based on prior knowledge and previous experience of similar events (Nour 

and Nour, 2015).  

The statistical appearance model proposed by Fleming (2014, 2017; see also 

Fleming and Storrs, 2019) is another promising framework for explaining how 

material perception is achieved. Similar to Gärdenfors’s theory of conceptual 

spaces, this statistical appearance model is a framework that assumes the presence 

of a high-dimensional feature space. However, unlike the theory of conceptual 

spaces, the statistical appearance model involves generative models that are 

specifically designed for encoding and predicting materials. According to Fleming 

(20xx), the perceiver learns the variation of the informative attributes that represent 

materials, and their exemplars, and develops generative models of the typical 

appearances of each material. These are based on learned differences and 

similarities both within and between materials, which allows for material 

recognition to occur. For instance, the typical attributes for a high-gloss material, 

such as a glossy plastic laminate used on interiors, are reflective highlights. The 

informative highlights differ in contrast and size depending on how glossy the 

material is, especially in comparison to matte materials like sanded wood that has 

low-gloss attributes. Rather than estimating the true physical parameters of surface 

properties (e.g., surface reflectance), the statistical appearance model relies on 

feature dimensions in a high-dimensional space and unsupervised learning rules 

when organizing perceived materials. In other words, instead of learning the ground 

truth physical principles of the external environment, in which pre-defined physical 

parameters of material properties are estimated, we learn to encode the systematic 

variations, both within and between materials. Recently Fleming and Storrs (2019) 

successfully implemented the statistical appearance model using deep-learning 

networks and unsupervised learning rules, which is generally a more realistic 

description of how we learn about our surroundings in the real-world, i.e., without 

pre-determined labelled training data. It is much more feasible and less time 

consuming to learn regularities in data, rather than to match instances and stimuli 

with stored sets of pre-labelled data.  
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Material perception and action  

At the kitchen table, the three-year old Ronja bangs her fork made of stainless steel 

on several objects laid out in front of her on the table. Rhythmically banging on each 

item on the table and the table itself, she creates sounds that vary in pitch depending 

on what type of material each object is made of. As an experiment I ask her “is this 

hard or soft?” and point at the kitchen paper roll. Without hesitation Ronja replies “it 

is soft” and starts poking the paper roll with her fork to confirm (and to show me how 

soft it is), next, she moves on to the paper roll holder (made of stainless steel), and 

while hitting it with her fork she yells “and this is not soft, I know it!”, and continues 

to drum on it because it makes far more exiting noise than the paper roll. – a memory 

from everyday life. 

Developmental studies and learning physical properties 

As we grow, our knowledge of the physical properties of the world expands. 

Through repeated encounters of seeing, grasping, and handling objects made of 

various materials, infants and toddlers learn that sharp corners can hurt little fingers 

while round edges are safer. Moreover, they learn that objects made from light 

materials are easier to handle and play with, compared to objects made of heavier 

material. A large part of our scientific understanding of material perception is, 

however, based on findings on adults’ ability to recognize and categorize materials, 

while research on the developmental aspect of material knowledge has only newly 

begun. Yang, et al. (2013a) have shown that the ability to visually perceive and 

represent surface gloss emerges at an early age, and it is sufficiently developed at 

the age of 7 months old. Using a preferential looking task, Yang et al. (2013a) 

demonstrated that infants at the age of 7-8 months old could use specular properties 

to distinguish matte materials from shiny material when observing yellow and gold 

objects, whereas 5-6 months old infants lacked that ability. Consequently, this 

confirms their previous finding that representation of glossiness emerges around the 

age of 7 months old and not earlier (Yang, et al., 2011). Although the ability to 

discriminate colors and lightness has been shown to emerge as early as 4 months 

old (Yang, et al., 2013b), the age of 7 months appears to be the “golden age” of the 

emergence of the ability to discriminate visual attributes, such as telling shapes from 

shadings, (Imura et al., 2008; Tsuruhara, et al., 2009), and motions from shadows 
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(Yonas and Granrud, 2006; Imura et al., 2006). In addition, Paulus and Hauf (2011) 

have demonstrated the developmental progression of material knowledge in 9-, 11-

, and 13- months old children using a preferential reaching task which showed that 

11 months old infants were able to visually recognize previously preferred light 

object over a heavy object, and 13 months old infants were able to generalize that 

association on to a new object made of same material as the previously explored 

object (thus, based on their visual features). Furthermore, accurate visual 

recognition fails often for children under the age of two, especially when 

categorizing instances presented in visually crowded scenes (Farzin, et al., 2010). 

Even though the children are judging instances from known categories, such as 

dogs, they tend to over- and undergeneralize the instances, such as categorizing all 

four-legged furry animals as dogs. Interestingly, the children have developed the 

adult-like ability to infer about variations within a known category based on one 

learned example, already at the age of 2 years old. At that age they rarely put all 

four-legged furry animals into the same animal category, but rather they can infer 

that some four-legged animals are actually cats, even after meeting or seeing only 

one cat (see review in Smith and Slone, 2017). With age the children develop better 

motor skills and become more flexible to move around and explore the physical 

world. As a result of that development, children experience more variations of visual 

images and learn that categories are comprised of several variations of instances. 

That said, children learn about objects (and materials) through self-generated visual 

experiences. 

In a recent study, Balas (2017) studied the progression of material knowledge and 

examined material categorization as a function of age and type of material, to 

demonstrate how material categorization at a higher level than discrimination of 

visual attributes develops during childhood. In his study, he compared the ability to 

categorize and discriminate materials between adults and five-to-ten years old 

children. An age range typically considered the developmental years for learning 

visual features for categorization (e.g., Pascalis et al., 2011). Balas (2017) found 

that the ability to use visual summary statistics to discriminate materials was already 

well developed at a young age, as young children showed adult-like abilities to 

encode materials based on summary statistics alone. However, it was much more 

challenging for the young children to assign labels to the material categories based 

on those visual summary statistics, which suggests that material perception develops 

slowly throughout the middle childhood. Later, using the same age-range as before, 

Balas et al. (2020) showed that the visual processing of materials shifted from 

relying on local visual information to relying on global visual features, and that shift 

occurred slowly during the middle childhood. 
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Figure 8. Epi, a humanoid robot, preparing to lift various objects.  

 

In terms of material recognition and motor control, several developmental studies 

have demonstrated that the control of the temporal span between peak velocity in 

reaching and the end of the reaching behavior (i.e., adjustment time) is an adaptive 

mechanism, which arises early in the perceptual motor development and is learned 

through repeated experience (Berthier et al., 1999; Berthier and Keen, 2005; Karl 

and Whishaw, 2013; Newman, Atkinson, and Braddick, 2001; Pryde et al., 1998; 

Rocha et al., 2013). Studies have shown that infants initially lack the detailed motor 

control in reaching, therefore instead the infant reaches in a ballistic manner without 

any deceleration period to prepare the grip. Later, around the age of 5-6 months, the 

deceleration phase develops when infants start to be able to slow down the hand 

when reaching for objects and they continue to improve with age. Through repeated 

experiences of interacting with objects in various shapes and sizes, we learn the 

association between object properties and how to successfully interact with the 

objects. Furthermore, and in a similar way to children learning that a large object is 

usually heavier than a smaller one, we learn that objects made from different 
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materials require different handling and that we need to scale our reach and grasp 

accordingly to achieve successful interaction. Moreover, we need to estimate the 

required force to lift objects that are made of materials that are durable (e.g., a golf 

ball) vs. other objects are made of a more fragile material and therefore require a 

careful approach to be handled without damage (e.g., an uncooked egg).  

An alternative approach is to examine material perception using epigenetic robotics 

(see paper IV). Epi (see figure 8) is a humanoid robot controlled by a cognitive 

infrastructure, Ikaros, that uses system-level brain modelling for implementing and 

experimenting cognitive theories (Balkenius, et al., 2010). Epi’s “eyes”, i.e., the 

cameras, detect the object’s visual appearance and send the information to sensory 

modules that perform a low-level visual processing on the visual input, which 

produce vectors of visual features that are then forwarded to an association module. 

Furthermore, Epi has two arms that move five degrees of freedom each, making it 

possible for the robot to manipulate objects in its hands, and the servos controlling 

the arms and the shoulders produce feedback signals that are read by the robotic 

system. The haptic feedback signals can then be mapped to the previously detected 

visual features of objects using associative learning modules. After repeated 

interactions with the objects, i.e., lifting, weighing, squeezing, Epi learns to 

associate the visual properties to the non-visual haptic features, producing multi-

modal representation of the objects. Ultimately, Epi will be able to accurately plan 

the required hand movements to handle the objects before touching the objects. 

Epi’s cognitive infrastructure is ideal for studying the developmental mechanism 

underlying the learning of a new skill, such as sorting materials, in which the robot 

learns to associate visual features of real-world objects to haptic object properties, 

such as weight and hardness. 

We as active perceivers 

We are active perceivers moving around within the physical world, interacting with 

objects made of different types of materials that vary in visual and mechanical 

characteristics. In many scenarios, the materials even undergo changes in visual 

characteristics due to external influences that need to be recognized and accounted 

for when moving around in order to prevent erroneous decisions or motor actions. 

As pedestrians we walk on flat and stable concrete surfaces with certain frictional 

properties that are easily influenced by external forces, like rainy weather. The 

frictional property of the concrete surface changes dramatically in the winter months 

when the sidewalk turns icy and slippery due to significant decrease in temperature. 

Thankfully, the changes in surface friction, due to the weather, are accompanied by 

changes in surface appearance, in which the dry and matte concrete surface is 

replaced by a sparkling and reflective surface. The “new” visual surface appearance 
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is then utilized to infer the changes in frictional properties, and consequently motor 

strategies are reconfigured in order to reduce the risk of falling on the slippery 

sidewalk.  

In this doctoral dissertation I set out to examine material perception as a perception-

action cycle, in which predictions about the physical world are made based on past 

experiences with similar scenes, and actions are taken based on those predictions. 

The fundamental characteristics of the perception-action cycle is the continuous 

feedback loop between the perception and the action, which allows predictions 

being updated when a mismatch is present between the predictions and the perceived 

outcome. This results in constant expansion of material knowledge. To achieve this, 

I examined motor actions while participants interacted with everyday life objects 

made of various materials (Paper I, II, IV). I also examined changes in material 

perception while participants observed animations of interacting materials to 

address context effects in visual perception of materials (Paper III). Clearly, visual 

material properties have a complex but informative role in material perception. Our 

knowledge of materials, i.e., how they look and behave, and how objects should be 

handled based on the stuff they are made of, is constantly being updated throughout 

the childhood years, and continues to develop into our adult years as we learn from 

experience (Fleming and Storrs, 2019). This makes research on material recognition 

and its daily purpose even more interesting.  

Our knowledge of materials is constantly expanding as we develop from novices to 

experts in recognizing and distinguishing materials. A small child that learns to 

handle their toys that are made from different materials, to a textile designer that is 

an expert in recognizing and analyzing significant elements in textiles. All materials 

have typical visual appearances and functional roles (e.g., slippery, bounceable, 

deformable) that we have learned to recognize and utilize for guiding our motor 

actions, as the features (or perceived affordance) determine how we should interact 

with them. Material properties are multidimensional as they are perceived by all 

senses (e.g., Castiello, et al (2010) on contact sound and grasping), although visual 

properties have attained most attention in the research field. Oftentimes, the 

functional properties of materials evoke responses that are affective, in which 

feelings are associated with certain types of materials (e.g., the baby’s plush toy is 

not only soft and fluffy, but it also provides a baby with a feeling of warmth and 

security, another example, the favorite t-shirt that often is associated with luck, 

happiness and comfort). In a broader perspective, material knowledge is much more 

than recognition of material properties. It serves a fundamental survival role, such 

as detecting contaminated drinking water and spoiled food based on visual 

information, in which a brown and cloudy water could be an indication that unsafe 

pathogens are present in the water, and spoiled food is indicated by changes in color 

and surface texture (e.g, fuzzy mold). Material knowledge is also comprised of 

attributes that are far more subjective in nature than material properties such as 
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glossiness and roughness. For instance, the Japanese concept Shitsukan (質感, 

translation: the sense of quality) describes material perception as not only perception 

of material properties, but it also describes the physical state of materials (e.g., soft, 

battered, used or new), including the subjective impression of the materials (e.g., 

comfortable, cozy) (see review in Komatsu and Goda, 2018). Research on material 

perception is still young, but has grown exponentially in the recent years, as it is an 

important research topic for understanding how we go about our daily lives. 
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The Visual Perception of Material
Properties Affects Motor Planning in
Prehension: An Analysis of Temporal
and Spatial Components of Lifting
Cups
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Lund University Cognitive Science, Lund University, Lund, Sweden

The current study examined the role of visually perceived material properties in motor
planning, where we analyzed the temporal and spatial components of motor movements
during a seated reaching task. We recorded hand movements of 14 participants in
three dimensions while they lifted and transported paper cups that differed in weight
and glossiness. Kinematic- and spatial analysis revealed speed-accuracy trade-offs
to depend on visual material properties of the objects, in which participants reached
slower and grabbed closer to the center of mass for stimuli that required to be handled
with greater precision. We found grasp-preparation during the first encounters with
the cups was not only governed by the anticipated weight of the cups, but also by
their visual material properties, namely glossiness. After a series of object lifting, the
execution of reaching, the grip position, and the transportation of the cups from one
location to another were preeminently guided by the object weight. We also found the
planning phase in reaching to be guided by the expectation of hardness and surface
gloss. The findings promote the role of general knowledge of material properties in
reach-to-grasp movements, in which visual material properties are incorporated in the
spatio-temporal components.

Keywords: motor planning, material properties, motion capture, center of mass, expectations

INTRODUCTION

Previous research on material perception has largely focused on passive viewing of either real-world
images or digitally produced images of material properties and classes, in which it has been found
that we are relatively fast at recognizing and categorizing materials based on visual appearance alone
(Sharan et al., 2009, 2014; Fleming et al., 2013; Fleming, 2014). However, as we move around in our
environment actively exploring, we rarely perceive materials in static and passive scenes (Gibson,
1979). Nevertheless, despite the growing interest in material perception as an active process, less
is known about how the visual appearance of material properties are incorporated into motor
planning. Especially when conducting a seemingly effortless everyday task using familiar object,
such as reaching for a cup of coffee in the morning.
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One of many challenges in research on visual material
perception is to understand how material properties that are
intrinsic to an object, and usually perceived through touch, are
visually estimated and anticipated. Before lifting an object, we
anticipate the required kinematics and force to lift the object
using the provided visual information and memory of previous
sensorimotor experience of interacting with similar objects.
Such anticipation is interesting considering that some material
properties are almost exclusively perceived haptically (e.g., weight
and hardness) or visually (e.g., color and glossiness) while other
properties, such as size and shape, are readily accessible via both
sensory systems (Johansson, 1996; Woods and Newell, 2004).
Despite the complexity of the provided sensory information we
seem to anticipate them effortlessly.

A growing number of studies (Gordon et al., 1991a,b;
Johansson, 1996; Flanagan and Beltzner, 2000; Mon-Williams
and Murray, 2000; Flanagan et al., 2006, 2008; Cole, 2008;
Buckingham et al., 2009, 2016; Baugh et al., 2012) have shown
that we are fairly good at anticipating appropriate application
of grip-force when reaching for objects, as we are equipped
with internal models that allow the grasping to be planned and
adjusted accordingly to avoid slippage. These models are long-
term priors formed through time with repeated experience of
objects having certain visual appearances, weight, and density.
Such as a size-weight association, that proposes that larger objects
are normally heavier than smaller objects, and a material-density
association, that proposes that objects made of materials with
high density are heavier than objects with low density.

Due to its tender age as a research field, material perception
has been largely studied using passive viewing of images of
material properties and classes. Such approach disregards the
impact of materials in a real-world setting. In the present study,
we therefore examined the role of visual material properties in
motor planning when handling familiar objects. In particular,
we examined how changes in material surface appearance,
and object weight, resulted in changes in motor movements.
A seated reaching task was conducted, in which thin-walled
paper cups, that varied in weight and glossiness, were grabbed
and transported. We used a motion capture technology to
accurately record the movement speed and movement position
in three dimensions to achieve both temporal and spatial data
for our analysis.

The role of object weight has been well-established in reach-
to-grasp studies, whereas less is known about how such tactile
information is anticipated based on the visual characteristics of
the material category. Although few studies have addressed the
noteworthy role of perceived surface texture and surface friction
in prehension (Fikes et al., 1994; Flatters et al., 2012; Paulun et al.,
2016), the investigation of the role of visual material properties
in prehension is remarkably little, especially when using familiar
objects. Conceptually, surface gloss is perceived visually but it can
convey tactile information, such as friction. Adams et al. (2016)
demonstrated such cross-modal relationship between surface
gloss and perceived friction. Using discrimination paradigm,
they presented computer-generated objects to their participants,
either visually on a screen or haptically using a Phantom force
feedback device, and found that slipperiness had a positive

relationship with objects with shiny surfaces. Additionally, longer
approaching times have been reported when reaching for slippery
objects compared to objects with high friction (e.g., Fikes et al.,
1994; Paulun et al., 2016).

On that note, it would be interesting to see if cross-modal
relationships can be found for other material properties. In
particular if hardness can be anticipated using the object’s
surface gloss, given that some objects with glossy appearances
happen to be made of hard materials (e.g., plastic mobile cases,
cutlery, and laminated paper). Although, Adams et al. (2016)
found no correlation between perceived glossiness and physical
compliance, and no relationship between physical surface gloss
and perceived compliance. It would be interesting to examine
if this is the case for real objects made of materials that are
familiar to the observer, instead of phantom objects. Considering
that both material category and context have plausible roles in
anticipating the direction of the relationship between surface
gloss and hardness. For instance, melted butter has glossy
appearance and soft quality, whereas a glossy snooker ball has
hard qualities. In the current study, we wanted to examine
if glossiness could convey information about the hardness of
the object when interacting with real objects. We used familiar
objects made of similar materials, except some of them were
altered with layers of varnish to create a glossy appearance and
that way a different material appearance. Besides our interest in
the role of surface gloss and object weight in prehension, we were
also interested in the subjective impression of hardness based
on the visual appearance of the objects alone as an additional
measurement, to provide new and exciting data about material
perception in motor control.

The kinematics of prehension are comprised of reaching and
grasping. In reaching the hand is guided to the targeted location,
whereas in grasping the observer prepares the grip by opening
and closing the hand according to the targeted object’s properties
(Jeannerod, 1981, 1984). Given that prehension is planned with
the purpose of the action in mind (Grafton, 2010; Flatters et al.,
2012; Schubotz et al., 2014), we anticipated changes in both the
temporal- and spatial components of reaching and grasping due
to changes in material appearance of cups, in which we expected
the participants to trade speed for precision when interacting
with cups that required cautious manipulation due to their
disposition (Fitts, 1954; Battaglia and Schrater, 2007; Petrenel
et al., 2017). Besides recording maximum velocity (peak velocity)
in reaching and transportation movements, we were especially
interested in the adjustment time period in reaching, that is the
deceleration period between the peak velocity of the reach and
the moment of object contact. For the reason that such temporal
phase reflects movement planning based on the object’s identity
rather than its location alone (Pryde et al., 1998; Egmose and
Køppe, 2018; the term adjustment time is originally used by
Rocha et al., 2013). We were also interested in the size of the
maximum grip aperture (MGA) during reaching, and how early
the MGA appeared for the different types of material properties
when reaching for the cups. Moreover, we examined if the same
material properties examined for the temporal data, influenced
the spatial components of prehension, in particular the selection
of grip position during the object contact. Grasping thin-walled
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deformable objects like paper cups requires a careful movement
by the hand and appropriate grip position, where one needs to
anticipate not only the weight of the cup but also its local stiffness
points and its COM. Such anticipation is important, because
applying too much grip force when grabbing a cup will dent it
and cause a spillage of its content, while applying too little grip
force will result in rotation and failing to hold the cup. Moreover,
pouring a liquid into the cup alters its COM, and increases
its density, which consequently creates a harder substance. We
therefore expect grip preparation and anticipated hardness to be
reflected in both the collected temporal- and the spatial data.

To summarize, we performed a seated reaching task to
examine the contribution of weight of a material and surface
gloss in reaching, grasping, and transporting paper cups. We
were especially interested in the spatio-temporal data of the first
encounters with the objects during the experiment, as they reflect
expectations based visual properties and general knowledge of
materials, rather than the direct tactile information. Specifically,
we were interested in knowing if the motor movements and
selection of grip position involved visual perception of hardness.
That is, if a relationship exists between perceived glossiness
and anticipated hardness. If the spatio-temporal components of
the hand movements are affected by the plausible relationship
between surface gloss and rated hardness, it would indicate
a strategy, in which an association between what a material
looks like and what it feels like, is anticipated in order to
facilitate prehension. On the other hand, if no such relationship
is found, it would indicate that the two material properties are
processed independently.

MATERIALS AND METHODS

Participants
Twenty right-handed participants (seven females) with average
age of 28 ± 6 years were recruited on Lund University campus
to participate in the study. All participants gave their consent to
participate in the study. Due to technical error when collecting
the data, few of the participants had missing data in several trials
because the cameras could not detect the reflective markers due
to their small size and proximity to one another. Six participants
were therefore removed from the analysis, and instead we report
an analysis for 14 right-handed participants (five females) with
the average age of 29 ± 8 years. Considering the smaller sample
size than originally planned, a posteriori sensitivity power analysis
was conducted to determine the minimum detectible effect size
for our sample size in terms of Cohen’s f, using the power analysis
software G∗Power 3 (Faul et al., 2007). The power analysis for our
sample size (N = 14) allowed us to identify a medium effect size
of 0.27 Cohen’s f, with 80% power, and alpha of 0.05.

Stimuli
The experimental stimuli were eight drinking cups made of white
paper lined with wax. The cups were presented either in their
original appearances, matte (N = 4) or were altered to have
shiny appearances (N = 4), by first applying two layers of glossy
varnish using a soft foam roller to achieve smooth texture, then

a permanent clear lacquer spray with high-gloss finish. Examples
of the stimuli are seen in Figure 1. Source Four R© jrTM ellipsoidal
reflector spotlight with 575W high performance lamp with 50◦
beam angle (Electronic Theater Controls, Inc.) was positioned on
the left of the participant, casting the light diagonally to make
the shiny appearance of the stimuli more apparent (see Figure 2).
The distance between the spotlight and the stimulus when located
on position A was 140 and 180 cm when on position B. The
stimuli had the shape of a conical frustum and had the capacity
for 35 cl, and measured 114 mm in height and 57 mm outer
diameter at the bottom of the cup and 87 mm at the top, and
weighed 11 g. Each appearance, matte and shiny, had two empty
cups and two cups with added weight (liquid), in which one of
each had a lid on, a white printing paper, to hide the content

FIGURE 1 | Examples of the experimental stimuli: matte stimulus with hidden
content (left), shiny stimulus with hidden content (center), and matte
stimulus with visible content (right).

FIGURE 2 | The experimental setup in the motion capture studio. The cups
were kept hidden behind a divider and presented by the experimenter one at
a time to the participant on location A. Then the participant reached for the
cup on location A and transported it to location B. The horizontal distance
between locations A and B is 40 cm, and the vertical distance between
location A and the start position is 40 cm. The spotlight is positioned on the
left of the participant with a distance of 140 cm from location A, casting light
diagonally.
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of the cup. The added weight was a liquid at room temperature,
and weighed together with the cup 252 g. With emphasis on our
test exemplar, and according to Alt et al. (2015) model of grasp
planning for deformable objects, there are three possible surface
areas that afford secure object contact when lifting deformable
cups, namely the base and the top due to their attached supportive
rings, and the cup’s COM. Holding the cups close to the COM
is desirable as it prevents object rotation, and ensures a surface
space above it during an upward lifting for repositioning the hand
in case the cup starts to slide downward due to its weight. We
asked our participants to grab the cups as they would normally do
when reaching for a cup, that is to position their grip somewhere
on the surface between the base and the top of the cup, using
their whole hand.

Motion Capture System
The Qualisys motion capture system (Qualisys AB, Gothenburg,
Sweden) operated with eight high-speed infrared cameras (Oqus
5 + series) was used to capture the motion data in three
dimensions. The infrared cameras together with Qualisys track
manager (QTM), a tracking software, recorded and located the
position of each reflective marker in a three-dimensional space
and in real-time. The motion capture system was also operated
with one video camera (Oqus 210c), which was used for post-
processing. The infrared cameras recorded at the sampling rate
of 100 Hz. Five spherical markers made of reflective polystyrene
(7 mm in diameter) were attached on the fingernails of each
finger, and three markers were attached on the top of each
experimental stimulus (N = 8). Marker positions were tracked in
three dimensions, and coordinate values X (front–back), Y (left–
right), Z (up–down), were exported into MATLAB 8.1.0.604 and
R (R2013a) for further evaluation. The motion capture system
was calibrated for each participant using a Wand calibration
system, which consists of two calibration objects. A stationary
L-shaped reference object (200 mm × 350 mm at size), which
indicated the orientation and origin of the coordinate system
(X-, Y-, and Z-axes), and a T-shaped wand (600 mm distance
between the two reflective markers on the horizontal line), which
was moved through the volume defining the experimental space.
Calibration with average tracking residuals per camera below
0.4 mm was considered suitable for the experiment.

Design and Procedures
Each participant was given chance to get familiar with the
experimental task, in which they went through one hypothetical
trial of reaching and transporting an object from location A
to location B. Next, each participant went through five blocks
of test trials, where each block comprised of eight trials, in
which each stimulus was presented once, a total of 40 trials per
subject. All trials were randomized and counterbalanced across
participants. The eight stimuli were four matte and four shiny
cups, in which half of them contained liquid and the other half
contained nothing. Then, half of the cups from each surface
appearance were presented with a lid on to hide their content,
and the other half with visible content (no lid). A seven-points
semantic differential scale was used to collect subjective ratings
of the stimuli in the study, where the participants verbally rated

the visual appearance of the eight stimuli using the three bipolar
dimensions; heaviness, hardness, and glossiness, both before and
after interacting with the stimuli. The scales were as follow.
Heaviness: if you were to lift the object how heavy would it feel?
Low values represent light (light as a feather) and high values
represent heavy (heavy as a book), ranging from (1) Very light, (2)
Light, (3) Somewhat light, (4) Neutral, (5) Somewhat heavy, (6)
Heavy, (7) Very heavy. Hardness: if you were to touch the object,
would you be able to change the shape of the object using your
hand? Low values represent soft (easily with a small force) and
high values represent hard (difficult with a small force), ranging
from (1) Very soft, (2) Soft, (3) Somewhat soft, (4) Neutral, (5)
Somewhat hard, (6) Hard, (7) Very hard. Glossiness: how shiny is
the object? Low values represent matte (matte as a writing paper)
and high values represent shiny (shiny as a mobile phone screen),
ranging from (1) Very matte, (2) Matte, (3) Somewhat matte,
(4) Neutral, (5) Somewhat shiny, (6) Shiny, (7) Very shiny. The
feather used as a reference was a rook feather that weighed less
than a gram that are usually found around the university campus,
and the book weighed 406 g (height 210 mm, length 150 mm,
and width 13 mm).

The total runtime was approximately 45 min, and the
procedures were the following. The participant sat in front of a
table with his/her eyes closed, left hand rested under the table and
right hand rested on a marked start/end position on the table. The
participant was told to always keep their hand on that position at
the beginning and at the end of each trial. Each experimental trial
started after the experimenter placed a new stimulus on location
A, taken from a pool of stimuli hidden behind a cardboard,
and signaled the participant to open the eyes and start. During
the experiment, the stimuli were placed on thin soft coasters to
avoid any loud sound feedback when contacting the experimental
table, which could give away the weight of the cup. Then, the
participant reached for the stimulus on location A and moved it
to location B on the right, then released the hand and returned the
hand back to start/end position. The participants were allowed to
approach the cups using the whole hand (all fingers), to reach
for the cups and transport them as quickly and accurately they
could, and were asked to position the grip somewhere between
the base and the top of the cup during the object lifting. Before
the first block of trials, the participants were asked to verbally
rate the experimental stimuli and again in the final block after
they transported them. When the participant had completed the
experiment, he/she was debriefed and thanked.

Data Analysis
The data was analyzed using the statistical software R (R Core
Team, 2018) and MATLAB 8.1.0.604 using the MoCap Toolbox
(Burger and Toiviainen, 2013). Linear mixed effect models
(LMMs) were fitted for the spatio-temporal data using the lme4
package in R (Bates et al., 2015). All models were assigned a
random intercept for each participant to account for individual
differences. Deviations from normality were determined by visual
inspection using Q–Q probability plots. The results were analyzed
in the following manner.

First, the motion capture recordings were coded for the eight
stimuli and for each finger using the Qualisys software. For
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current study we were only interested in the position of the grip
center on the stimuli rather than the spread of the hand when
grasping the cups, thus we only included the recordings for three
fingers, thumb, index- and middle finger for our analysis. Then,
the Euclidean norms were used to calculate the magnitudes of
velocities for the two selected motor sequences, reaching and
transporting, using the MoCap Toolbox in Matlab. This was
done to create one informative vector based on the length of
the three-dimensional velocity vector, instead of working with
three vectors, one for each direction (X, Y, Z). Afterward, the data
was exported to R for further statistical analysis. The relevant
motor sequences, reaching and transporting, were then visually
identified and coded while the remaining ones were discarded.
An onset of a reaching movement was determined when the
participant moved the hand at the velocity speed above 30 mm/s
over a minimum of 10 successive samples, from the starting
position to reach for the stimulus in location A, and the grip
(object contact) was determined when the velocity speed returned
to below 30 mm/s over a minimum of 10 successive samples.
The transportation movement consisted of lifting the stimulus
from location A and transporting it to location B, using the
same onset and offset time thresholds as used for the reaching
movements. Adjustment time in reaching was measured as the
duration of the temporal span between the peak velocity in
reaching and the end of the reaching sequence, measured in
milliseconds and peak velocity was defined as the maximum
speed measured in velocity (mm/s) for each of the motor
sequences: reaching and transporting. The temporal variables,
adjustment time in reaching, peak velocity in reaching, and peak
velocity in transporting, were analyzed using repeated measures
ANOVAs and linear mixed model regression analysis (LMM).

Second, a spatial analysis was performed to examine the
effect of material properties on the MGA and the selection of
grip position. The COM of the cups was calculated for the
two different weights, empty- and filled cups, by calculating
the geometric centroid for a conical frustum (formula 1) and
COM that included the object weight (formula 2), as seen in the
following formulas.

COM =
h

(
R2

1 + 2R1R2 + 3R2
2
)

4
(
R2

1 + R1R2 + R2
2
) (1)

COMweight =
LwCOM + CwCOM

Lw + Cw
(2)

In formula 1, the centroid for the geometric shape of the cups
and the liquid along the z-axis is calculated separately, in which h
stands for respective vertical height of either the cup or the liquid
in mm. R1 represents the initial radius in mm for the smaller
surface area at the base of the cup and the liquid, whereas R2
represents the final radius in mm for the larger surface area at
the top of the cup and the liquid. In formula 2, weight of the cup
and the liquid are incorporated to get the COM for empty and
filled cups, based on both the geometric shape and the weight
of the cups and the liquid. Here COM represents the geometric
centroid for the cups and the liquid respectively, Lw stands for the
weight of the liquid in grams, and Cw for the weight of the cups in
grams. An empty cup had its COM, measured along the vertical

axis from the initial radius at the base of the cup to the final radius
at the top, at 65 mm, whereas a cup with liquid had its COM
at 46 mm. Next, we calculated the maximum distance (mm)
between the thumb and the index finger during the reaching
movement before the object contact to get the MGA, in which
we were interested in both the size of the MGA for the different
types of material properties and its timing. After, we examined the
position coordinates of the grip during the object contact. First,
the vertical position of the grip center (z-dimension) based on
the average position coordinates of the thumb, the index finger,
and the middle finger was found. Second, the degree of grip
deviation from the COM, measured as the grip center’s vertical
distance from each object’s COM in mm, in which positive values
represented position coordinates above the COM and negative
values represented position coordinates below the COM. The size
and the position of MGA were analyzed using repeated measures
ANOVA, whereas the selection of grip position, and data from
the first block of trials, were analyzed using linear mixed effects
regression models.

Finally, the relationship between the object properties (surface
and content) and the rated properties, heaviness, hardness, and
glossiness, both as pre-reaching ratings and post-transportation
ratings, were examined using cumulative link mixed models
(CLMMs) using the ordinal package in R (Christensen, 2018).
Separate regression models were then conducted to examine
the spatio-temporal data from the first block of trials, to see if
the expected properties based on the pre-reaching ratings were
reflected in the motor movements of the hand, or in the selection
of grip position.

RESULTS

We expected distinct temporal- and spatial patterns in motor
movements, MGA, and grip position for the different types of
cups due to learned associations between material appearance
and intrinsic properties. Furthermore, we wanted to explore if
the motor movements, MGA, as well as the position of the hand
on the cups, were guided by the expected properties, especially
visually perceived glossiness and hardness.

The First Impression of the Material
Properties
We were interested to know in what way the object properties
influenced the subjective ratings, specifically before the first
interaction with the cups. Thus, a cumulative link mixed
regression analysis (CLMM) was conducted to examine the
relationship between the object properties (surface appearance
and content) and the rated properties (heaviness, hardness, and
glossiness) based on the pre-reaching ratings. The expected
properties represented as rated heaviness, hardness, and
glossiness were computed by averaging over the seven items of
the scale for each of the stimuli, separately for the pre-reaching
ratings and the post-transportation ratings. The mean ratings of
the scales for the eight stimuli are shown in Figure 3.

The CLMM analysis revealed statistically significant relations
between the physical- and the rated properties. We found rated
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FIGURE 3 | Mean rated heaviness, hardness, and glossiness for the eight stimuli. (Left) Ratings collected before reaching for the stimuli. (Right) Ratings collected
after transporting the stimuli. Error bars are 95% confidence intervals. The two graphs suggest that the pre-reaching ratings are based on expectations whereas the
post-transportation ratings are based on sensorimotor information. The figure also suggests strong categorical impressions of the properties, heaviness, and
glossiness (bimodal values) whereas the impression of hardness is less defined.

heaviness to be largely affected by the content of the cups, that
is whether the cups contained liquid or not, b = 1.98, SE = 0.12,
χ2(1) = 299.94, p < 0.001. According to the pre-reaching ratings,
the participants rated the filled cups to be heavier (M = 5.14,
SD = 1.08) than the empty cups when the content was visible
to them (M = 1.89, SD = 1.03), whereas rated heaviness was
similar for the two object weights when the content of the cup was
hidden using a lid (filled: M = 3.11, SD = 1.13; empty: M = 3.36,
SD = 1.28). We also found the surface appearance, that is whether
the cups had matte or varnished appearance, influenced the rated
heaviness, b = 0.36, SE = 0.11, χ2(1) = 11.22, p < 0.001, in which
the shiny cups (M = 3.61, SD = 2.02) got rated heavier than
matte cups (M = 3.42, SD = 1.89), both when the content was
visible and hidden (shiny: M = 3.36, SD = 0.99; matte: M = 3.10,
SD = 1.40). Intriguingly, we found rated hardness to be influenced
by both the object weight and the surface appearance, in which
filled cups got rated harder (M = 3.50, SD = 1.26) than empty cups
when the content of the cups was visible (M = 2.46, SD = 0.84),
b = 1.41, SE = 0.14, χ2(1) = 115.86, p < 0.001, whereas when
the content was hidden the filled and empty cups were rated
similar in terms of hardness (filled: M = 2.96, SD = 1.17; empty:
M = 3.04, SD = 1.00). Looking into the role of surface appearance

in rated hardness we found when the content was visible, the
participants rated the shiny cups (M = 3.14, SD = 1.15) to be
harder than the matte cups (M = 2.82, SD = 1.22), b = 0.63,
SE = 0.13, χ2(1) = 24.78, p < 0.001. Whereas, the participants
rated the two types of appearances to be similar in hardness
when content was hidden (shiny: M = 3.04, SD = 1.04; matte:
M = 2.96, SD = 1.14). For rated glossiness we found surface
appearance largely influenced the impression of surface gloss,
b = 6.89, SE = 0.28, χ2(1) = 1421.9, p < 0.001, in which shiny
cups got rated shinier than matte cups, both when the content was
visible (shiny: M = 4.54, SD = 1.45; matte: M = 1.64, SD = 0.62),
and when the content was hidden (shiny: M = 4.25, SD = 1.24;
matte: M = 1.61, SD = 0.74). No significant effect of object weight
(i.e., content) was found on rated glossiness, b = 0.13, SE = 0.11,
χ2(1) = 0.23, p = n.s.

Velocity Speed and Adjustment Time in
Reaching
Overall, the three experimental conditions, (1) the content of
the cups (Content: Empty vs. Filled), (2) the appearance of the
surface (Surface: Matte vs. Shiny), and (3) the visibility of the
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content (Feedback: Visible vs. Hidden) had no effect on the
peak velocity (mm/s) in reaching. A repeated measures within-
subjects ANOVA revealed no significant effect for content,
surface appearance, or feedback on peak velocity in reaching,
over the five blocks of trials: content (Empty: M = 1039.89,
SD = 267.26, Filled: M = 1011.67, SD = 236.26), F(1,13) = 2.30,
p = 0.15.; surface appearance (Matte: M = 1022.33, SD = 268.59,
Shiny: M = 1029.22, SD = 235.54), F(1,13) = 0.52, p = 0.49.;
and feedback (Visible: M = 1018.38, SD = 249.12, Hidden:
M = 1033.17, SD = 255.89), F(1,13) = 0.61, p = 0.45. All two-
way and three-way interactions were non-significant as well (all
ps = n.s.).

Looking into the planning phase when the participants
approached the cups, a repeated measures within-subjects
ANOVA with content, surface appearance, and feedback as
predictive variables and adjustment time (ms) in reaching as the
dependent variable, revealed significant effect for content on the
adjustment time over all five blocks of trials, F(1,13) = 71.76,
p < 0.001, η2G = 0.10. Overall the participants had longer
adjustment times when reaching for filled cups (M = 1024 ms,
SD = 212 ms), compared to empty cups (M = 881 ms,
SD = 139 ms). No other main effect or interaction effects
were found for the five blocks of trials together (all ps = n.s.).
A Kruskal–Wallis test revealed the adjustment time distributions
to be significantly non-identical across the five blocks of trials,
χ2(4) = 14.54, p < 0.001, which opted for a further examination
of the adjustment times, block by block.

Comparison of Adjustment Times in
Reaching
To examine the role of expectations of material properties in
reaching, we conducted a linear mixed model regression analysis
on the adjustment times for each of the five blocks of trials,
with particular interest in the first and the last block of trials for
comparison purposes. Each model consisted of three predictive
variables as fixed factors, which were the object weight (content),
surface appearance, and the visibility of the content (feedback),
and a random intercept for each participant. The LMM analysis
for the first block of trials revealed significant effect of content,
in which adjustment time increased when reaching for filled
cups (M = 1192.32, SD = 421.50 ms) compared to empty cups
(M = 939.46 ms, SD = 299.88 ms), b = 252.86, SE = 52.08,
χ2(1) = 23.68, p< 0.001. The analysis also showed the adjustment
time to significantly increase when the participants reached
for the cups with the matte appearance (M = 1120.54 ms,
SD = 415.02 ms), compared to when the participants reached
for the cups with the applied varnish (M = 1011.25 ms,
SD = 349.03 ms), b = 109.29, SE = 52.08, χ2(1) = 4.40, p < 0.05.
The visibility of the content had, however, no effect on the
deceleration phase in reaching, as no significant main effect was
found for the variable feedback on adjustment time for the first
block of trials, b = 70.71, SE = 52.08, χ2(1) = 1.84, p = n.s.

For comparison purposes, we conducted a LMM analysis for
the last block of trials (block 5), which revealed both content and
surface appearance to have significant effect on the adjustment
time in reaching, although the effect of surface appearance on

the adjustment time in the last block of trials was much smaller
compared to the adjustment time in the first block of trials.
The adjustment time increased when reaching for the filled cups
(M = 1006.79 ms, SD = 287.53 ms), compared to the empty
cups (M = 850.36 ms, SD = 237.95 ms), b = 156.43, SE = 38.75,
χ2(1) = 16.30, p < 0.001, and increased when reaching for the
cups with the matte appearance (M = 967.14 ms, SD = 273.17 ms),
compared to cups with the varnished appearance (M = 890.00 ms,
SD = 272.21 ms), b = 77.14, SE = 38.75, χ2(1) = 3.96, p < 0.05.

For the remaining blocks (2, 3, and 4), the LMM regression
analysis revealed no significant effect of surface appearance
(matte vs. shiny) or feedback (visible vs. hidden content) on
the adjustment times in reaching (all ps = n.s.). Only the
content of the cups, that is the object weight, influenced the
adjustment time for those blocks of trials. For the second block
of trials, the filled cups had significantly longer adjustment times
(M = 1015.71 ms, SD = 291.67 ms) compared to empty cups
(M = 895.36 ms, SD = 252.63 ms), b = 120.36, SE = 32.66,
χ2(1) = 13.58, p < 0.001. Similarly, filled cups had longer
adjustment times (M = 922.50 ms, SD = 243.22 ms) compared to
empty cups (M = 824.69 ms, SD = 235.12), b = 92.86, SE = 21.84,
χ2(1) = 18.08, p < 0.001 in the third block of trials. As well as
in the fourth block of trials, in which filled cups (M = 982.86 ms,
SD = 270.54 ms) had longer adjustment time compared to empty
cups (M = 892.50 ms, SD = 256.81), b = 90.36, SE = 28.46,
χ2(1) = 10.08, p < 0.001. The results are illustrated in Figure 4.

In order to examine if the varnished surface appearance had
enhanced role in motor planning when the participants could
not estimate the weight of the cups based on their content (cups
with lids). We further analyzed the reaching movement for cups
with hidden content only. Using LMM regression analysis on
adjustment times when reaching for cups with lids on, we found
no difference in adjustment times for the two types of surface
appearances (matte vs. shiny). Both when examining all blocks
of trials together (Matte: M = 955.64 ms, SD = 180.06 ms; Shiny:
M = 936.86 ms, SD = 188.06 ms), b = −18.79, SE = 33.18,
χ2(1) = 0.32, p = n.s., and when examining only the first block
of trials (Matte: M = 1161.07 ms, SD = 447.88 ms; Shiny:
M = 1041.43 ms, SD = 388.30ms), b = −22.21, SE = 31.84,
χ2(1) = 0.49, p = n.s. In fact, we found no significant effect of
visibility (feedback: visible vs. hidden) on the adjustment times
in reaching, neither for all blocks of trials together, b = −13.00,
SE = 22.96, χ2(1) = 0.32, p = n.s., nor for the first block of trials,
b = 70.71, SE = 59.05, χ2(1) = 1.43, p = n.s.

Grip Aperture and Grip Position
Before we examined the selection of grip position for the different
types of material properties, we looked into the grip preparation
moment in reaching, in which we examined the size of the MGA
and the timing of it. First, we measured the MGA before object
contact, defined as the maximum metric distance (mm) between
the thumb and the index finger, for each stimulus per participant.
Using repeated measures ANOVA, we found no significant effect
of content, surface appearance, or feedback, on the size of the
MGA when analyzing all blocks of trials (all ps = n.s.). Moreover,
LMM regression analysis for the first block of trials revealed
no significant effect of the three predictive variables on MGA
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FIGURE 4 | Average adjustment times (ms) in reaching for each block of trials (N = 5) based on the cups content and surface appearance (material). Both variables,
the weight of the cups and the surface gloss, had significant effect on the adjustment times during the first block of trials, and the last block of trials. The participants
adopted longer adjustment times when reaching for cups with either matte appearance, or were filled with liquid (heavier). No significant effect was found for the
feedback condition, indicating no difference in adjustment times when reaching for cups with or without lid.

FIGURE 5 | Average duration times in reaching (ms) for the different types of cups presented with respective average timing of the maximum grip aperture (MGA).
The figure demonstrates MGA to occur earlier in time when reaching for cups with filled content (M = 61.67% after movement start) compared to empty and
consequently lighter cups (M = 66.78% after movement start). This effect was present when the timing of MGA was examined in relation to the reaching duration
times, but was absent when the timing of MGA was examined as the absolute time from movement start.

size either (all ps = n.s.). Overall, the average size of MGA
was 119.61 mm (SD = 12.98 mm). Next, we looked into the
timing of the MGA as measured from the movement start to the
moment the aperture reached its maximum value. Using repeated
measures ANOVA on all blocks of trials, we found the absolute
timing of the MGA was not guided by the object properties or
their visibility. Furthermore, LMM regression analysis on the
first block of trials revealed no significant effect for the same
variables on the absolute timing of MGA (all ps = n.s.). On the
average, the MGA for the different types of cups was at 945.86 ms
(SD = 296.09 ms) after the movement start.

We found, however, variations in the time point of MGA
in proportion to the duration time of reaching per condition.
As seen in Figure 5, the duration times of reaching differs for
the different types of cups depending on their properties, with
average duration time ranging from 1401.14 ms (SD = 528.67 ms)
to 1646.43 ms (SD = 699.55 ms). The figure also shows that the

timing of MGA varies in proportion to the different presented
duration times. Further examination using a repeated measures
ANOVA revealed significant effect of object weight (content:
filled vs. empty) on the time position of MGA in relations to
the reaching duration time for the different types of cups. The
MGA occurred earlier in time when reaching for filled cups
(M = 61.67%, SD = 6.32%) compared to empty cups (M = 66.78%,
SD = 7.53%), F(1,103) = 14.57, p < 0.001. A similar ANOVA
analysis on the first block of trials revealed object weight had
a significant effect on the timing of MGA, as we found MGA
occurred earlier when the participants reached for filled cups
(M = 58.14%, SD = 9.07%) compared to empty cups (M = 65.86%,
SD = 10.52%), F(1,103) = 16.71, p < 0.001. No other main effects
or interactions were found significant (all ps = n.s.).

The selection of grip position was examined using the vertical
spatial position of the grip center of the hand, calculated as
the average horizontal distance between the thumb, index-, and
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middle finger, using LMM. We were both interested in the grip
position measured as the distance from the base of the cup in mm,
and if the position deviated from the cups’ center of the mass.
When examining all blocks of trials together, the comparison
of a full model to a nested model, revealed that the removal
of content (empty, filled), χ2(2) = 66.58, p < 0.001, as main
effect significantly reduced the model fit, whereas the removal of
surface (matte, shiny) did not significantly affect the model fit,
χ2(2) = 0.19, p = n.s. Further regression analysis on the selection
of grip position using a model with only content as fixed effect
revealed grip position to be guided by the content of the cups, in
which filled cups were grasped lower than empty cups, b =−4.11,
SE = 0.49, χ2(1) = 70.73, p< 0.001. Although the cups were on the
average grasped at their respective COM, a further examination
on the direction of grip deviations from the two types of COM,
revealed an upward grip deviation for the empty cups, whereas
we found a downward deviation for the filled cups with heavy
properties, b = −13.90, SE = 0.68, χ2(2) = 516.5, p < 0.001.
Moreover, a LMM analysis on the selection of grip position for the
first block of trials, using a model with only content as the fixed
effect, revealed grip position to be affected by the content of the
cups, in which filled cups were grasped significantly lower than
empty cups, b =−2.26, SE = 0.81, χ2(1) = 7.72, p< 0.01. Figure 6
shows the relationship between the grip position and the COM
of the cups, in which we found an upward grip deviation from
COM for empty cups and downward deviation for filled cups,
b =−16.57, SE = 1.10, χ2(2) = 160.11, p < 0.001.

Comparison of Transportation Velocities
Overall, a repeated measures ANOVA revealed the participants
adopted slower transportation speed when reaching for filled
cups (M = 657.46 mm/s, SD = 112.68 mm/s), compared to empty
cups (M = 834.01 mm/s, SD = 171.62 mm/s), F(1,13) = 73.77,
p < 0.001, η2G = 0.36. No other main effect or interaction effects
were found based on the overall performance (all ps = n.s.).
A Kruskal–Wallis test revealed transportation peak velocity
distributions to be significantly non-identical across the five
blocks of trials, χ2(4) = 16.31, p < 0.001, which called for
further examination.

Figure 7 shows the comparison between the five blocks of
trials for the velocity measurements in transportation, in which
an LMM regression analysis revealed a dominant effect of object
weight (content) on the transportation speed when moving the
cups. For the first block of trials, the transportation speed (peak
velocity) was significantly slower for filled cups (M = 600.48 ms,
SD = 108.65 ms) compared to empty cups (M = 798.52 ms,
SD = 191.55 ms), b = −198.03, SE = 18.30, χ2(1) = 117.00,
p < 0.01. As well as for block 2 (Filled: M = 686.18 ms,
SD = 111.36 ms; Empty: M = 845.79 ms, SD = 686.18 ms),
b = −159.61, SE = 18.67, χ2(1) = 73.12, p < 0.01. For block 3
(Filled: M = 663.76 ms, SD = 102.77 ms; Empty: M = 853.93 ms,
SD = 187.68 ms), b = −190.16, SE = 15.73, χ2(1) = 146.10,
p < 0.01. For block 4 (Filled: M = 694.92 ms, SD = 99.44 ms;
Empty: M = 854.77 ms, SD = 143.87 ms), b =−159.85, SE = 12.19,
χ2(1) = 172.00, p < 0.01. For block 5 (Filled: M = 641.95 ms,
SD = 117.86 ms; Empty: M = 817.06 ms, SD = 154.19 ms),
b =−175.11, SE = 16.91, χ2(1) = 107.23, p < 0.01. No significant

effect was found for surface appearance (material) or for the
visibility of the content (feedback), all ps = n.s.

Expected Material Properties in
Prehension and Transportation
Figure 8 reveals the relationship between the rated properties
and the spatio-temporal data. A LMM regression analysis on
the effect of pre-reaching ratings on adjustment times for the
first block of trials, revealed reaching to be significantly affected
by the expectation of glossiness and hardness. We found rated
glossiness, b = −144.58, SE = 60.51, χ2(1) = 4.23, p < 0.05, and
the interaction between rated hardness and glossiness, b = 39.43,
SE = 19.36, χ2(1) = 4.14, p < 0.05, to influence the adjustment
time, whereas rated heaviness was found to have no effect on the
adjustment time in reaching for the first block of trials, b = 105.68,
SE = 55.93, χ2(1) = 3.48, p = 0.06. The figure shows longer
planning phase, characterized by the longer adjustment times
in reaching for cups with hard properties, which got longer the
shinier the cups got rated. In comparison, the planning phase in
reaching was shorter for cups with rated soft properties, and it
got shorter the shinier the cups got rated. Indicating a distinct
categorical perception for the two types of relationship directions.
Moreover, when examining the relationship between the pre-
reaching ratings and the selection of grip position, in which we
found grip position to be affected by the rated glossiness, b = 2.36,
SE = 0.83, χ2(1) = 7.77, p < 0.01, and by the interaction between
glossiness and hardness, b = −0.58, SE = 0.27, χ2(1) = 4.59,
p < 0.05, indicating that the spatio-temporal components of
reaching and grasping are to some extend based on the visual
impression of the material properties.

When examining the peak velocity for transporting the cups,
no effect was found for the rated glossiness and hardness,
neither when examining the pre-reaching ratings nor the post-
transportation ratings (all ps = n.s.). A significant effect,
however, was found for perceived heaviness based on the post-
transportation ratings collected after the last block of trials,
χ2(1) = 14.49, p < 0.001. The results suggest that the expected
properties as based on the material appearance of the cups has
a role in guiding reaching and grasping for the first encounters,
but after the object lifting and during the transportation of the
cup, the sensorimotor information based on the object weight
becomes known, and consequently next physical interactions
with similar objects are characterized by that updated knowledge.

DISCUSSION

Visual perception of material properties has largely been studied
via passive viewing of either static or dynamic images of
materials (e.g., Sharan et al., 2014). Consequently, less is known
about the function of material perception in real environments
when interacting with objects made of familiar materials. Here,
we examined the role of visual perception of surface gloss
and object weight in reach-to-grasp planning when handling
familiar objects. Furthermore, we were interested to know if
the visual perception of hardness was reflected in the spatio-
temporal measurements of prehension. We therefore additionally
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FIGURE 6 | Grip deviations from the center of mass (COM) in mm as a function of manipulated properties, for the first block of trials (left), and across all blocks of
trials (right). The COM is measured from the base of the cups and is positioned at 65 mm for empty cups, and 46 mm for filled cups and is represented respectively
as a zero on the y-scale. The error bars are standard errors. Significant difference was found between empty and filled cups. Surface is shown for comparison
purposes.

FIGURE 7 | Peak velocity (mm/s) and standard errors when transporting the cups from location A to location B. The graphs show that the filled cups are moved
significantly slower than empty cups (all ps < 0.001), whereas no significant effect was found for surface appearance or visibility of the content on peak velocity in
transporting.

examined if perceived hardness had a positive relationship with
surface gloss, and if such relationship was incorporated in the
handling of the objects.

According to the dual visuomotor channel theory in motor
planning (Jeannerod, 1981, 1984), prehension is comprised of
two movement components, reaching and grasping, encoded
by two distinct visuomotor pathways that project from the
visual cortex to the motor cortex. Due to the anatomical
distinction, the two components are controlled separately, in
which reaching is solely guided by the extrinsic properties
such as the distance between the hand and the targeted object
or the object’s orientation, whereas grasping is based on the
object’s intrinsic properties such as its size. However, later studies
have revealed that both intrinsic and extrinsic properties of
objects can influence the motor control in reaching, thereby

expanding the role of intrinsic properties in prehension (e.g.,
Paulignan et al., 1991a,b).

In our study, we found adjustment times in reaching were
influenced by not only the object weight but also by the
properties that described the materials the cups were made
of, that is whether the cups had varnished appearance or
not. In comparison, we found peak velocity in reaching to
be unaffected by those same properties. This suggests that the
beginning of reaching movements is for guiding the hand to
the targeted location, whereas the deceleration period between
the peak velocity and the object contact is for grasp preparation
and therefore guided by the precision requirements based on
the object properties. A meta-analysis based on 39 reach-
to-grasp studies supports in fact such a division. Overall,
Egmose and Køppe (2018) found extrinsic properties, such
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FIGURE 8 | (left) For the first block of trials, the estimated adjustment time based on LMM analysis for the interaction between the properties glossiness and
hardness as based on the pre-reaching ratings. The figure shows cups assigned hard properties to have longer adjustment time than cups assigned soft properties,
and that distinction to increase the shinier the cups got rated. (right) Estimated grip position based on LMM analysis for the same rated properties. The figure shows
grip position on rated soft cups to move upwards in vertical direction the shinier they got rated, and move downwards for rated hard cups the shinier they got rated.

as the distance between the hand and the object, commonly
guided the acceleration phase at the start of the reach,
whereas the deceleration phase at the end of the movement
was usually a preparation period for the grasp and therefore
either guided by the object properties or by the abstract end-
state goal, such as grasp-to-lift versus grasp-to-throw goals.
Recent neurophysiological and neuroimaging studies support
such earlier involvement of object properties in reaching as well
(Grafton, 2010; Touvet et al., 2014; Turella and Lingnau, 2014;
Milner, 2017; Freud et al., 2018).

Spatio-Temporal Evidence for Object
Weight and Surface Gloss
We found the different object properties led to changes in
reaching and grasping. The temporal components of reaching
were initially guided by the material properties based on the
visual appearance of the object and the object weight, while the
timing of the MGA, and the selection of grip position were guided
by the weight of the object alone.

Overall, we found object weight had a significant influence
on adjustment time in reaching, both during the first block of
trials, and across all blocks of trials, in which our participants took
longer time to reach for heavier cups compared to lighter cups.
Moreover, we found stimulus weight and rated heaviness based
on the post-transportation ratings, influence the peak velocity
during the transportation phase, in which filled cups (i.e., heavier)
were moved significantly slower than empty (i.e., lighter) cups.
In this respect, our results are in line with previous findings
demonstrating longer planning phase of movements for objects
made of heavy materials (e.g., brass) (Weir et al., 1991; Fleming
et al., 2002; Paulun et al., 2014, 2016). The filled cups were heavier
than the empty cups because they comprised of an additional
material, water, which is heavier than the paper cups alone. The
longer adjustment times when reaching for filled cups could
therefore be explained by how the object weight was manipulated.
Certainly, the precision requirement is greater for the filled cups,

since their weight was created by pouring fluid in them. As
a consequence, the participants had to anticipate the material
properties of the water based on their knowledge of liquids, to
prevent spillage when handling the cups. Interestingly, securing
the opening of the cups with lids did not affect the adjustment
time in reaching, even though such changes reduced the risk of
spilling. Moreover, we found no overall effect of whether the cups
had a lid on or not on the temporal components of reaching,
which highlights the role of object weight in prehension, although
other properties of water might contribute as well. Nonetheless,
we found reaching movements are guided by the expected
precision requirements, in which objects that require greater
precision to be handled without errors are approached slower due
to their disposition (Fitts, 1954).

The results also revealed a role of surface appearance in
prehension. For the first block of trials, we found adjustment time
was significantly shorter for cups with applied varnish, indicating
a shorter grasp preparation time needed for such material
appearance, compared to the longer planning phase, which we
found for cups with matte appearance. Similarly, the regression
analysis on the temporal data using the pre-reaching ratings as
fixed effects revealed shorter adjustment time the shinier the
cups got rated. We found, however, surface appearance to have
no effect on the velocity speed when transporting the cups.
Interestingly, the kinematic analysis revealed significant effect of
object weight on adjustment time for all of the five blocks of
trials individually. Whereas we only found significant effect of
surface appearance (matte vs. shiny) on adjustment time for the
first and the last block of trials, blocks 1 and 5, and not for the
central blocks of trials, blocks 2, 3, and 4. It is likely that the
participants were more aware of the object properties in the first
and the last block of trials, compared to the central blocks due
to the experimental task bound in them. In experimental blocks
1 and 5 the participants were asked to rate the cups using the
provided scales for heaviness, hardness, and glossiness, whereas
the central blocks of trials were conducted without any rating
sessions. In block 1 the participants first rated the cups before
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reaching for them and relocating them, while in block 5 the
participants knew they were going to rate the cups after they had
relocated them. In other words, the instruction to form subjective
impressions of the cups’ properties might have enhanced the
changes in the kinematic data.

The results demonstrate that object weight does not have a
monopoly when it comes to planning and executing reaching
movements. Instead visuomotor planning of reaching involves,
to some extent, the expectations of material properties based on
the surface appearance of the cup, in our case the glossiness of
the cups. Then, after repeated object lifting the motor mechanism
is updated by the provided sensorimotor information and the
subsequent motor movements are adapted according to the
object weight provided by the haptic feedback. Stimulus weight
was found to have a prevailing effect on reaching movement after
repeated trials, and continued to have an effect after the object
contact by either reducing or increasing the transportation speed,
depending on the object weight.

Further examination on the grip preparation before object
contact, revealed MGA in reaching was not affected by the object
properties, weight or surface gloss, as we found no significant
effects on MGA size for the different types of cups. Instead, we
found the duration times in reaching varied for the different
types of properties and further examination revealed object
weight (content: filled vs. empty) had a significant effect on the
timing of the MGA in relations to the duration times for the
different types of cups. The participants reached MGA earlier
when reaching for filled cups compared to the empty cups,
indicating a longer planning phase required after the MGA for
those properties. Surprisingly, this effect on the MGA timing
was not found when examining the absolute timing of MGA
as measured as milliseconds from the movement start, which
suggest the object properties have a role in motor planning after
the MGA is reached. Similar findings for aperture in reaching
have been reported before by Paulun et al. (2016), who found no
effect on the size of MGA in reaching for their tested materials
(Styrofoam, Wood, Brass, Slippery Brass), and no effect on its
timing, measured as the duration time between the onset of
reaching and MGA value. Instead, they found the timing of MGA
varied in relations to the duration times, in which MGA occurred
earlier when approaching objects made of Brass or Brass with
slippery properties, compared to Styrofoam.

When examining the spatial components of the selection of
grip position during the object contact, we found no effect of
surface gloss. Instead, our results showed a clear effect of object
weight, in which the participants positioned their grip at the cup’s
COM, rather than simply positioning the grip at the mere center
of the cups. Supporting previous findings on the role of perceived
mass in prehension (Weir et al., 1991; Brouwer et al., 2006;
Eastough and Edwards, 2007; see Smeets and Brenner, 1999 for a
review). While the results indicated no influence of surface gloss
on the position of the grip during the object contact, it indicated
that the participants coordinated their grip position according
to the object’s perceived material class. The participants grabbed
the cups at their assigned COM, based on the inferred weight,
in which they anticipated the liquid filled cups to have lower
COM than the empty cups, and positioned their grip accordingly.

Interestingly, one would not have expected any grip deviations for
liquid filled cups, as the cups are heavy and require precision in
grip position to ensure stableness and prevent torque. Regardless,
we found the participants positioned their grip center either at the
axis of the cups’ COM, or they positioned it below the absolute
COM when reaching for the filled cups. A similar effect found
by Weir et al. (1991) and Paulun et al. (2016) when reaching for
heavy objects. Our introspection suggests that the downward grip
deviation from the COM is a strategy to secure a space above the
grip in case the cups were heavier than expected and started to
slip downward. That way the participants had space to reposition
the grip if needed.

Rated Hardness and Glossiness
Hardness has been extensively studied in haptic perception (e.g.,
Han and Choi, 2010; Baumgartner et al., 2013), however in
the context of visual material perception, little is known about
hardness anticipation based on visual features when grasping
objects made of materials that vary in compliance. In our study
we hypothesized that the expected hardness of the cups would be
reflected in the spatio-temporal measurements when reaching for
the cups. Moreover, we hypothesized that rated hardness would
have a positive relationship with the surface appearance of the
cups, that is whether the cups had applied varnish or not, which
would as well be reflected in the collected data.

In our study it is likely that the hardness ratings represented
the expected density of the cups, as the ratings appeared to be
influenced by the presence of the liquid in the cups. The filled
cups were perceived harder (less deformable) compared to the
empty cups, likely due to the liquidized content of the cups.
Filling the cups with liquid creates a force against the inside walls
of the cups, and results in perceived harder quality compared
to cups without content. In terms of surface gloss, we found
our participants rated the cups with the applied varnish to have
harder quality compared to the ratings assigned to the matte cups.
Moreover, CLMM analysis revealed significant relations between
not only rated hardness and the content of the cups, but also
between rated hardness and the surface gloss, which favors our
assumption that there is a positive relationship between glossiness
and hardness. When investigating the relationship between rated
properties and the temporal data, we found adjustment time in
reaching to be affected by the interaction between the expected
glossiness and hardness, based on the pre-reaching data, however,
the role of glossiness depended on how soft or hard the cups
got rated. The participants reached slower for cups with rated
hard qualities, compared to cups with rated soft qualities, and
that distinction became larger the shinier the cups got rated. In
other words, the planning phase in reaching was long for cups
with rated hard properties and got longer the shinier the surface
got rated, whereas the planning phase was shorter for cups with
rated soft properties, and got shorter the shinier the surface got
rated, suggesting a distinct categorical perception for hard and
soft surfaces with shiny appearance.

Looking into the spatial data, we did not find surface
appearance as an object property to have any effect on the
selection of grip position. Regardless, we found cups with rated
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shiny and hard properties to be grabbed lower than cups with
rated shiny and soft properties. We argue that cups with rated
hard properties are expected to be denser, and due to the prior
knowledge that dense materials tend to be heavy and that glossy
surfaces are often slippery, the participants approach those cups
with more caution. In comparison, cups with rated shiny and
soft properties are expected to be lighter and with lower expected
torque, which allows the participant to approach the cups with
less precision and higher speed.

It is probable that we rely on stored associations based on
material appearances to estimate hardness before interacting with
an object. Associations that are based on previous experiences
of interacting with objects with similar appearances and certain
qualities, that are constantly being updated after every object
contact. Fleming (2017) among others have noted that the
estimation of hardness of objects before touching them is an
indistinct task, as any visual information other than the shape
deformation itself are ambiguous. As he cleverly clarifies with an
example of an object with wooden appearance that is estimated
to have hard qualities, but then when that same object is
deformed when touched, it is perceived to have soft qualities
despite the appearance usually associated with hardness. Clearly,
the shape alteration of the object is a much stronger cue for
hardness than the visual surface texture of the object, but some
textured information led us to think that the object had hard
quality to begin with.

For future research it would be interesting to examine
expected hardness based on material appearance in relations to
grasp force anticipation. The current consensus is that grasp
force increases with object weight (Zatsiorsky and Latash, 2008;
Marneweck et al., 2016), but less is known to what extend we
rely on visual material appearances during force regulations
when reaching for objects made of materials that require distinct
approach due to their disposition. For instance, what optical
characteristics segregate perceived soft objects from perceived
hard objects, and do we rely on those characteristics to anticipate
the required force to successfully lift the objects? Future research
will hopefully clarify these questions.

We propose that the motor control of reaching involves a
mechanism that has stored associations between visual material
properties and their intrinsic properties, similar to what we have
for size and weight (e.g., Baugh et al., 2012). A mechanism
that is constantly being updated when new information becomes
available when exploring the physical world. Developmental
studies on motor control have demonstrated, in fact such
adaptation in reaching movements. They have shown that the
control of adjustment time in reaching is an adaptive mechanism,

which arises early in the perceptual motor development and
is updated through repeated experiences of objects in various
shapes and with various weights (Pryde et al., 1998; Berthier
et al., 1999; Newman et al., 2001; Berthier and Keen, 2005;
Rocha et al., 2013).

In sum, we found the temporal characteristics of the hand
movements during a reaching task to be influenced by not only
the weight of the cups but also by their glossy appearance and
expected hardness, extending previous findings on the role of
material perception in prehension. Here, we demonstrated that
the deceleration period of reaching is a grasp-preparation period
guided by both the expectation of the object’s weight and its
glossy surface appearance. Moreover, we demonstrated that the
selection of grip position before object lifting is guided by the
expected material properties, in which the cups were held at
their respective COM.
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Title: Coffee to go! Examination of grip force anticipation when lifting paper cups.  

 
Abstract:  

Grip force scaling in object lifting has been extensively studied in controlled experiments using simple objects and 

the precision grip. To obtain a resemblance to the real-world function, we examined grip force scaling for the 

whole hand when handling objects that varied in material properties. Here, we examined the anticipatory fingertip 

force control when lifting paper cups that varied in glossiness, content weight and content visibility. The force 

data was collected using flexible force sensors attached directly to the fingertips of the participants, which allowed 

us to obtain force profiles based on the individual digits, as opposed to the single force profile normally obtained 

using the precision grip. Moreover, it allowed us to use experimental objects and motor movements, that mimic 

the ones that we use in our daily lives. Overall, we found functional differences in grip force control during the 

five-digit hold, in which peak grip force was not only guided by the weight of the cups, but also by their glossy 

surface appearance and the visibility of their content. We conclude that surface gloss has a significant role in grip 

force scaling where distinct functional strategy is applied for expected- and perceived properties and individual 

digits 

 

 

Introduction:  

 

Grip force anticipation in object lifting is often examined using the precision grip, in which the 

participants are instructed to lift either a grip-device (i.e., grasp-lift manipulandum) with force 

sensors attached to the device’s handle, or the object itself, using only the thumb and the index 

fingers. This method provides precise measurements and highly controlled experiments, but it 

also creates grasping force with confined grip dynamics that does not necessarily represent 

everyday life grasping behavior, which is considerably more versatile in nature (see e.g., 

Bullock, Zhent, Rosa, Guertler, and Dollar, 2013; Cutkosky, 1989; Napier, 1956; and Sperling 

and Jacobson-Sollerman, 1977).  

 

An alternative approach to collect force data on adaptable grasping behavior is to allow five-

digit grasp and use sensors that are either attached directly to the experimental objects, or to the 

fingertips of the participants. This opens up the opportunity to examine grip force control and 

grip force adaptation using a broader range of objects that vary not only in weight but also in 

texture, friction, shape, and density. In a recent study, Bergmann Tiest and Kappers (2019), 

examined the importance of visual and haptic information about materials on early grip force 

application, in which they attached force sensors directly on the experimental stimuli, and found 

that grip force correlated highly with the real-time sensation of the surface friction (texture). In 

their experiment they used steel blocks covered with various materials, such as textile, 

sandpaper, and plastic films with either a wood-like or a metallic appearance, and placed the 

force sensors between the block and the covering material. Although, this approach allowed for 

direct interactions with the different types of surface texture while carefully measuring the grip 

force when lifting the objects, the density remained approximately equal as the insides were the 

same, creating mismatch between what is seen and what is covertly present. 

 

In the current study, we used flexible force sensors attached directly to the fingertips rather than 

the object itself to achieve natural grasping behavior for the given experimental objects. We 

used devices that are readily accessible to measure the grip force of the whole hand when 

interacting with everyday life objects, namely paper cups. In a previous study (Ingvarsdóttir 

and Balkenius, 2020), a kinematic analysis of grasp preparation using the same experimental 

stimuli as used for the current study, revealed that grasp preparation was not only guided by the 
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object mass, but also by the visually inferred hardness and the glossy surface appearance of the 

cups. More interestingly, the results suggested distinct temporal grasping behavior for the 

different combinations of expected hardness and perceived glossiness. The participants needed 

a longer grasp preparation time for lifting the cups they expected to be hard, compared to the 

cups they expected to be soft. Moreover, adding surface gloss to the expected hard cups 

increased the grasp preparation time significantly, and continued to increase the shinier the 

expected hard cups were rated. In contrast, the grasp preparation time decreased substantially 

when surface gloss was added to the cups expected to be soft, and continued to decrease the 

shinier the soft cups got rated. The results show that surface gloss has a different role in grasp 

control for objects with expected hard and expected soft properties. Here, we continue our 

previous investigation of grasp control and visually inferred material properties, and examine 

the grip force scaling occurring after object contact is made.   

 

Grip force control in object lifting is largely guided by the mass of the object and the reactive 

haptic feedback, in which heavy objects require greater grip force to be securely lifted compared 

to light objects (e.g., Zatsiorsky and Latash, 2008; Marneweck et al., 2016). In addition, studies 

have shown that the anticipated object weight is involved in the early stages of grasping, that is 

in the grip force profiles occurring between the object contact and before the true mass and 

weight becomes known when the object is lifted (e.g., Gordon et al., 1993; Flanagan et al. 1995; 

Flanagan and Wing 1997; Buckingham et al.2009; Hermsdörfer et al., 2011). Considering that 

grip force is applied before direct information about the mass has become available to the 

person, it is too early for haptic information to be involved in the force control. Thus, an early 

grip force rate, that is, the first few milliseconds after the initial object contact, could also reflect 

grip force control as based on visual object properties and prior knowledge rather than tactile 

feedback alone. The anticipation of a required grip force to successfully lift an object, is 

generally believed to be reflected in the measurement of the increment of the grip force rate 

that occurs after the initial object contact has been made, and before the object is lifted from 

the table (Johansson and Westling, 1988, Gordon et al., 1993, Gordon et al., 1994; Li et al. 

2009; Nowak et al. 2007b). To measure the role of expected object weight in early grip force 

scaling, a peak grip force rate (peak GFR) is computed. Peak GFR is the first peak of the grip 

force rate occurring between the initial object contact and the moment of the object lift. The 

force increment represented by the GFR represents the expected object weight, in which the 

rule is the larger the object weight, the quicker the grip force rate (Johansson and Westling, 

1988).  

 

What about object properties other than object weight that can be visually inferred, like surface 

gloss and hardness? Here, we examined grip force and anticipatory grip force control before 

object lifting when participants lifted paper cups that varied in visual material properties and 

weight. The following three questions were addressed: First, does five-digits grip force scaling 

account for material-based predictions? We investigated whether having a liquid in the cups, 

a material with a higher mass than paper, would lead to changes in force control. Adding liquid 

does not only change the visual composition of the experimental object, but also its weight and 

density. Filled cups are heavier and denser than empty cups. Moreover, we examined if changes 

in the visual appearance of the cups themselves lead to changes in force control, by applying a 

glossy varnish on otherwise matte material. Changing the appearance of the material opens up 

a different interpretation of the material properties and what they afford, such as hardness and 

friction. In addition, we also put lids on top of few of the cups, to determine whether the 

visibility of the mass distribution of the cups had any contrasting effect on grip force scaling 

for the different types of surface appearances and object weights. 
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Second, do predictions based on anticipated vs. perceived material properties result in distinct 

grip force scaling? We examined the object lifts in the first block of trials, to see in what way 

knowledge of material properties based on visual information controls grip force. Then, we 

compared those trials with the object lifts in the last block of trials, which are force scaling 

based on recent experience and sensorimotor information. We also examined the grip force 

scaling based on the subjective ratings of the material properties, and grip force magnitudes at 

two different timepoints after object contact. 

 

Third, do individual digits have different grip force profiles due to changes in material 

properties? We examined the individual fingertip forces to see if their grip force profiles varied 

depending on the different types of material properties, that is, if some digits were guided by 

object weight while others were guided by surface characteristics.  

 

2. Material and Methods 

 

2.1. Participants 

Twenty right-handed participants (eight females) with the average age of 29 ± 6 years, were 

recruited on Lund University campus to participate in the study. Four participants were 

removed from the analysis due to technical error in the data collection, in which force signals 

were missing for all five fingers on more than one trial. Instead, we report an analysis for 16 

participants (6 females), with the average age of 28 ± 6 years old. A sensitivity power analysis 

conducted using the power analysis software G∗Power 3 (Faul et al., 2007), for our sample size 

of 16 participants revealed a minimum detectable effect size of .28 Cohen’s F, given a power 

of 80% and .05 alpha. Allowing us to detect a medium effect size given our sample size. The 

study was conducted according to the Declaration of Helsinki (1964) and all participants gave 

their written consent prior to the study.  

 

2.2. Stimuli  

The stimuli were 8 drinking cups made of paper with the capacity for 35 cl of liquid, and 

measured 114 mm in height, 57 mm outer diameter at the base of the cup, and 87 mm at the 

top. The cups were manipulated in terms of surface appearance (matte vs. shiny), content weight 

(light vs. heavy), and visibility of the content to the observer (visible vs. hidden). That said, 4 

cups were presented in their original matte appearance, whereas the appearance of the 

remaining 4 cups was altered using an application of high-gloss varnish to create a shiny 

surface. Within each group of surface appearance, 2 cups were empty and thus light weight (11 

g) and the other 2 cups were heavier (252 g) as they contained water. To examine the effect of 

the visibility of the content when reaching for the cups, half of the cups (N=4) had their content 

hidden with a lid, in which a thin paper was attached to the top of the cups, whereas the other 

half had no lid and thus a visible content. The amount of water poured into the cups was easily 

visible to the observer when the cups had no lid. The following list clarifies the 8 types of 

stimuli. 1) matte and empty cup without lid, 2) matte and empty cup with lid, 3) matte and filled 

cup without lid, 4) matte and filled cup with lid, 5) shiny and empty cup without lid, 6) shiny 

and empty cup with lid, 7) shiny and filled cup without lid, and 8) shiny and filled cup with lid. 

Examples of stimuli are seen in figure 1. 

 

A Source Four® jrTM ellipsoidal reflector spotlight with 575W high performance lamp and 50° 

beam angle (Electronic Theater Controls, Inc) was positioned on the left of the participant with 

a distance of 140 cm from location A, casting a light diagonally to enhance the surface 

appearance of the stimuli.   
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Figure 1. Examples of the experimental stimuli. (top left) a cup with shiny appearance, (bottom left) a cup with 

shiny appearance and hidden content, (top right) a cup with matte appearance (bottom right) a cup with matte 

appearance and hidden content. The filled cups had liquid up to 80% of the height of the cups, which was easily 

visible to the participants. 

 

 

 
Figure 2: An illustration of a hand with attached force sensors. 
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2.4. Force Sensors 

The force data was collected using five touch sensors. The sensors are 0.5" circular force 

sensitive resistors (Interlink Electronics) that are thin and flexible. The sensors were calibrated 

using a digital force gauge. We used 40 measurements to estimate the following calibration 

curve where x is the measurement from the sensor and y is the force in Newton: y = 0.0604x – 

9.9276, R2 = 0.91. Each finger had a sensor attached to its fingertip using double-sided adhesive 

tape, and the cables included with the force sensors were loosely attached to the fingers and the 

arm using surgical tape and Velcro bands to prevent the cables to get in the way during the 

experimental task. A Phidget InterfaceKit 8/8/8 board attached to the cables included with the 

force sensors read the pressure applied on the sensors and a script run on a HP Probook 4310s, 

with Intel ® core TM2 Duo CPU T6670 2.20 GHz recorded the force data.  

 

2.4. Motion Capture System 

We used motion capture to collect information on the timepoints of events, where each cup had 

3 reflective markers, 7 mm in diameter, attached to its top surface using double-sided adhesive, 

and one reflective marker (7 mm) was attached to each fingernail individually (N=5) using 

same technique. The Qualisys motion capture system (Qualisys AB, Gothenburg, Sweden) 

operated with the tracking software Qualisys track manager (QTM) and 8 high-speed infrared 

cameras (Oqus 5+ series) recorded the position of the reflective markers at the sampling rate of 

100 Hz. The markers positions were then exported into MATLAB 8.1.0.604 and R (R2013a) 

for further evaluation. Although we recorded the movement of all five fingers, we were mainly 

interested in the kinematic data for behavioral event segregation for the current study. We 

therefore, only report motion capture data for the index finger as the data from the remaining 

fingers are irrelevant for the analysis in the current paper.  

Calibration was done for each participant using a stationary L-shaped reference object (200 mm 

x 350 mm at size) placed on the experimental desk, and a T-shaped wand (600 mm) that was 

moved through the volume to define the experimental area. A suitable calibration for the study 

had tracking residuals per camera below 0.4 mm on the average.   

The participants were asked to clap their hands three times to create visible pattern in both the 

motion capture data and the force sensor data for the two measures to be synchronized. 

 

2.5. Rating Scales 

A 7-points semantic differential scale was used to collect the subjective experience of the cups. 

The participants rated the 8 types of cups on two occasions during the study, once before 

interacting with the cups in the first block of trials, and once after lifting the cups in the last 

block of trials. Three rating scales were used for rating the cups; heaviness, glossiness, and 

hardness. The rating scales were the following. Heaviness: if you were to lift the object how 

heavy would it feel? Low values represent light and high values represent heavy, ranging from 

(1) Very light, (2) Light, (3) Somewhat light, (4) Neutral, (5) Somewhat heavy, (6) Heavy, (7) 

Very heavy. Glossiness: how shiny is the object? Low values represent matte and high values 

represent shiny, ranging from (1) Very matte, (2) Matte, (3) Somewhat matte, (4) Neutral, (5) 

Somewhat shiny, (6) Shiny, (7) Very shiny. Hardness: if you were to touch the object, would 

you be able to change the shape of the object using your hand? Low values represent soft (easily 

with a small force) and high values represent hard (difficult with a small force), ranging from 

(1) Very soft, (2) Soft, (3) Somewhat soft, (4) Neutral, (5) Somewhat hard, (6) Hard, (7) Very 

hard. 
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2.6. Design and Procedures  

Figure 3 illustrates the experimental set up. The participant sat in front of the experimental table 

with the left hand resting under the table and the right hand resting on the start position area in 

front of them on the table. The participant was instructed to rest the right hand on that position 

before starting each trial and again after its completion. Before the start of each trial, the 

experimenter took a cup from a collection of cups hidden behind a dividing wall and placed it 

on location A on the experimental table. During this process the participants were asked to close 

their eyes to prevent them from inferring the object’s properties based on the experimenter’s 

interaction with the object.  
 

Next, the participant was signaled to open the eyes and start the trial. On each trial, the 

participant visually inspected the cup on location A before lifting the cup using a pinch grip. 

Then, transported the cup at a comfortable pace to location B, released the grip, and moved 

their hand back to the starting position. The distance between location A and B, and the distance 

between the start position and location A were 40 cm, respectively. Both locations A and B, and 

the storage area behind the dividing wall had thin coasters to prevent any sound feedback that 

could hint the weight of the cup when the cups contacting the experimental table. 

 

Each participant went through 40 trials in 5 blocks in which each type of cup was presented 

total 5 times, once in each block of trials. The total runtime was approximately 45 minutes. All 

trials were randomized and counterbalanced across participants. In the first block of trials the 

participant was instructed to verbally rate the cup in front of them before reaching for it, using 

the three types of rating scales (i.e., heaviness, hardness, and glossiness) to get the pre-reaching 

ratings of the cups. In the final block of trials (block nr 5) the participant was instructed to rate 

the cup again, but after the last transportation movement, in order to achieve post-transportation 

ratings. No subjective ratings were collected for the three blocks of trials in between. After 

completion of the experimental task the participant was debriefed and thanked.  

 

 

 

 

 

 
 

 

Figure 3. A schematic drawing of the experimental setup. In the motion capture studio, the participant sat in front 

of a desk with eyes closed while the experimenter placed the cups on location A one at a time. On the start of each 

trial, the participant opened the eyes, and moved its right hand from the start position to reach for the cup on 

location A, lifted the cup and transported it to location B before releasing the grip to move the hand back to the 

start position. The cups were illuminated using a spotlight positioned on the left side of the participant. Cups not 

used in the trial were hidden from view by a dividing wall.  
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2.6. Data processing and statistical analysis 

The motion capture system recordings were coded for the index finger and the 8 experimental 

stimuli to segregate the behavioral events, that is, reaching, object contact, and object lifting, 

using the Qualisys software. The velocity units were obtained in MATLAB 8.1.0.604 using the 

MoCap Toolbox (Burger and Toiviainen, 2013), in which the three-dimensional motion capture 

data was transformed into Euclidean norms to get one informative vector instead of three (X, 

Y, Z directions) to compute the velocity magnitudes.  

 

Event segregation was obtained using kinematic- and grip force thresholds. In addition, a 

graphical display of the grip force profiles as a function of time within each trial was utilized 

for confirming the detection of the behavioral events. In terms of motion, the onset of reaching 

was determined when the participant moved the hand from the starting position at a velocity 

speed above 30 mm/s, and the onset of object contact when the velocity speed returned under 

30 mm/s, and finally the onset of object lifting when the velocity speed exceeded above 30 

mm/s again. In terms of grip force application, the moment of object contact was determined 

when the first finger to touch the cup had a force application over 0.1 N and remained above 

that value.  

 

The results were analyzed in the following manner, using the statistical software R (R Core 

Team, 2018). For each participant and trial, we first computed the grip force for the pinch grip 

by averaging the force profiles for the five digits on the right hand. That way, we obtained a 

single measurement for the overall grip force. Next, we computed the grip force for the 

individual digits by averaging the force measurements of the thumb together with one 

individual digit at a time, creating 4 different pairs of grip force profiles: The thumb and the 

index finger, the thumb and the middle finger, the thumb and the ring finger, and the thumb and 

the little finger. 

 

The following variables were obtained and analyzed for the two sets of grip force averages, the 

pinch grip using all five digits and the pairs of individual digit force. First, we found the 

maximum grip force value occurring after the object contact, peak grip force (peak GF). Next, 

we found the grip force rate as a function of time relative to the movement onset, and computed 

the peak values (peak GFR) occurring after the object contact and before object lift-off. Other 

variables of interest were peak GF at two timepoints after object contact to investigate the 

development of peak GF. First, we examined the peak GF occurring very soon after the object 

contact had been made, at maximum 10ms after the object contact. That timepoint could 

indicate what the participants anticipated before they corrected their grip force in order to 

achieve successful lifting. Given that the time point 10 ms after object contact is considered too 

early for any haptic information to be registered, but still has GF data based on the cup’s 

properties, it is possible that the grip force magnitudes will reflect what the participants are 

expecting. (see e.g., Bergmann Tiest and Kappers, 2019). Second, we examined the peak GF 

occurring at maximum of 50 ms after the object contact for comparison purposes. 

 

Analysis of variance was performed using repeated measures ANOVA to examine the effect of 

object weight, surface gloss, content feedback on grip force control, and effect sizes were 

reported as generalized eta squared (η2
G). The three rating scales were analyzed using the 

following approach. To reduce individual rating bias, the ratings were normalized for each 

participant by subtracting the overall mean for each rating scale from each individual rating 

within the same rating scale, using the Bbmisc package in R (Bischl, et al., 2017). Regression 

analysis were performed using Linear mixed effect models (LMMs) using the lme4 package in 



 

8 

R (Bates et al., 2015) where all models had random intercept for each participant, and deviations 

from normality examined via Q-Q probability plots.  

 

 

3. Results 
 

 

3.1. Does five-digits grip force scaling account for material-based predictions? 

The force measurements for the five digits were averaged for each participant and trial to obtain 

the average force representing the pinch grip. Next, a three-way repeated measures ANOVA 

was performed to examine the overall effect of object weight (empty vs. filled), surface 

appearance (matte vs. shiny), and content visibility (visible vs. hidden) on peak grip force (peak 

GF) and peak grip force rate (peak GFR), respectively.  

 

Figure 4a illustrates the results for peak GF and shows that the participants did not only apply 

more grip force when lifting filled and consequently heavy cups, but they also applied more 

grip force when lifting cups with shiny properties or when the content of the cups could not be 

inferred visually prior to the object lifting. Peak GF was significantly higher when lifting filled 

cups (24.01 ± 3.82 N) compared to empty cups (22.12 ± 5.07 N), F(1, 15) = 6.03, p < 0.05, η2
G 

= 0.05, and significantly higher when lifting cups with shiny appearance (23.85 ± 4.61 N) 

compared to matte appearance (22.28 ± 4.43 N), F(1, 15) = 5.85, p < 0.05, η2
G = 0.03.  

Cups with hidden content had also larger peak GF (23.79 ± 4.37 N) compared to cups with 

visible content (22.33 ± 4.68 N), F(1, 15) = 5.57, p < 0.05, η2
G = 0.02, indicating that the 

participants applied more grip force when they were unsure about the weight of the cups. No 

significant two-way or three-way interactions were found, all ps = n.s. 

 

Using repeated measures ANOVA analogous to the analysis performed on the overall data, 

we separated the two visibility conditions, and further examined the peak GF. For cups with 

only visible content, we found both object weight and surface appearance had significant 

effect on peak GF, where filled cups had higher peak GF (23.47 ± 4.29 N) compared to empty 

cups (21.19 ± 4.84 N), F(1, 15) = 5.97, p < 0.05, η2
G = 0.06, and shiny cups had higher peak 

GF (23.28 ± 5.10 N) compared to matte cups (21.37 ± 4.07 N), F(1, 15) = 5.47, p < 0.05, η2
G 

= 0.05.  This was not the case when the content of the cups was hidden to the participants, as 

no significant difference in peak GF was found between the two levels of object weight 

(Empty: 21.0 ± 0.96 N; Filled: 22.2 ± 0.65 N), F(1, 15) = 2, p = n.s. or the two levels of 

surface appearance (Matte: 21.4 ± 0.86 N; Shiny: 21.5 ± 0.80 N), F(1, 15) = 0.09, p = n.s. 

when the content was hidden, confirming that the participants applied similar grip force for 

the different types of cups when the content was hidden.  
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Figure 4. a) Average peak grip force, b) average peak grip force rate, and c) grip force at average peak grip 

force rate, for the different types of cups, surface appearance (matte vs. shiny), object weight (empty vs. filled), 

and content visibility (visible vs. hidden). 

 

 

 

The anticipatory control of grip force is shown in Figure 4b. We found peak GFR varied for the 

different types of object weight and content visibility, in which we found significant interaction 

effect on peak GFR between the weight of the cups and the visibility of the content, F(1, 15) = 

6.92, p < 0.05, η2
G = 0.01, where filled cups had higher peak GFR compared to empty cups, but 

that difference in peak GFR was larger when the content was visible (filled: 34.70 ± 7.73; 

empty: 30.40 ± 7.40) compared to hidden (filled: 35.80 ± 7.80; empty: 34.90 ± 9.06). 

Furthermore, a separate analysis on peak GFR for cups with either visible or hidden content, 

revealed significant difference between the two object weights when the participants could see 

the content of the cups, F(1, 15) = 6.22, p < 0.05, η2
G = 0.08, whereas no significant difference 
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in peak GFR between the two object weights were found when the participants could not see 

the content of the cups, F(1, 15) = 0.4, p = n.s. Overall, peak GFR was significantly higher 

when lifting cups with hidden content (35.35  8.40 N/s) compared to cups with visible content 

(32.52  7.81 N/s), F(1, 15) = 6.42, p < 0.05, η2
G = 0.03.  

To highlight the difference in grip force magnitudes based on anticipation (i.e., peak GFR) and 

perceived feedback (i.e., peak GF), we examined the grip force magnitudes applied at the 

moment of peak GFR. Figure 4c shows both object weight and content visibility to have 

significant effect on the grip force magnitude at the moment of maximum GFR, in which greater 

GF was found for filled cups (21.65 ± 3.92) compared to empty cups (19.41 ± 5.11), F(1, 15) 

= 7.00, p < 0.05, η2
G = 0.06, and cups with hidden content (21.44 ± 4.67 ) compared to visible 

content (19.62 ± 4.53) F(1, 15) = 7.57, p < 0.05, η2
G = 0.04. A separate analysis for the two 

types of content visibility revealed a significant difference in GF at peak GFR between filled 

and empty cups when the content was visible, F(1, 15) = 8.10, p < 0.05, η2
G = 0.11, whereas 

the difference was non-significant when the content was hidden, F(1, 15) = 2.29, p = n.s. 

 

3.2. Do predictions based on anticipated vs. perceived material properties result in distinct 

grip force scaling? 

Figure 5 shows the grip force profiles obtained from the first and the last (5th) block of trials to 

demonstrate the development of grip force control over the course of the study. In particular, 

figure 5a illustrates the difference in peak GF between the two blocks of trials, where repeated 

measures ANOVA on the first block of trials revealed significant main effect of object weight 

on peak GF, F(1, 15) = 14.02, p < 0.05, η2
G = 0.08, and an interaction effect between the object 

weight and the surface appearance of the cups on peak GF, F(1, 15) = 5.01, p < 0.05, η2
G = 

0.02. The participants applied larger grip force when lifting the filled cups (19.80 ± 5.06 N) 

compared to empty cups (16.72 ± 6.13 N), and treated the two types of surface appearances 

similarly when lifting the filled cups (matte: 19.71 ± 4.71 N; shiny: 19.88 ± 5.47 N), whereas 

larger difference in peak GF was found for matte and shiny cups when the cups were empty 

(matte: 15.05 ± 6.31 N; shiny: 18.38 ± 5.56 N). There was also an interaction effect between 

the content visibility and the surface appearance of the cups on peak GF, F(1, 15) = 5.44, p < 

0.05, η2
G = 0.04. When the participants could not visually infer the content of the cups, they 

applied similar grip force when lifting either matte (19.11 ± 5.39 N) or shiny cups (18.83 ± 4.65 

N), whereas shiny cups were lifted with greater peak GF (19.45 ± 6.34 N) compared to matte 

cups (15.65 ± 6.15 N) when the participants could see the content of the cups. In comparison, 

only object weight was found to have significant difference between its levels in terms of peak 

GF for the last block of trials, in which participants applied higher peak GF when lifting filled 

cups (20.02 ± 4.93 N) compared to light cups (17.49 ± 7.26 N), F(1, 15) = 14.02, p < 0.05, η2
G 

= 0.08.  

 

We also examined the grip force development for the first milliseconds after the object contact 

to see how the participants adjusted their grip force according to the tactile feedback. 

We therefore examined the changes in grip force magnitudes occurring at two time points 

within the first block of trials, in particular the peak GF within the first 10 ms after object 

contact as it demonstrates force control based on visually inferred properties, and peak GF 

within the first 50 ms after object contact when the tactile sensation of the cups had become 

available to the participants and could therefore be learned. Repeated measures ANOVA 

analysis on the peak GF occurring within the first 10 ms after the object contact revealed 

interaction effect between the object weight and the surface appearance, F(1, 15) = 4.95, p < 

0.05, η2
G = 0.01, in which the participants applied more grip force when preparing to lift empty 
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cups with shiny surface appearance (5.42 ± 5.02 N) compared to matte appearance (3.89 ± 4.28 

N), but applied similar grip force for the two types of surface appearances when the cups were 

filled (matte: 4.31 ± 5.29 N; shiny: 4.17 ± 5.46 N). Further examination on the  

peak GF occurring within the first 50 ms after object contact showed surface appearance to 

have a dominant effect on the grip force application, as it was the only object property to have 

significant effect on peak GF. The participants applied more grip force when preparing to lift 

cups with shiny surface appearance (11.00 ± 4.95 N) compared to matte appearance (9.54 ± 

4.75 N), F(1, 15) = 4.95, p < 0.05, η2
G = 0.01, irrespective of their content or visibility of it. In 

comparison, for the last block of trials we found the participants had developed a strategy in 

which all cups were grabbed similarly in terms of grip force for the first 10 ms and 50 ms after 

object contact, as no significant difference in peak GF between the levels of different types of 

object properties were found for the two time points respectively (all ps = ns.).  

 

 

 

 
 
 

Figure 5. a) The average peak grip force, b) the average peak grip force within the first 10 milliseconds after the 

object contact, and c) the average peak grip force within the first 50 milliseconds after the object contact, for the 

three experimental properties (object weight, surface appearance, and content visibility) as obtained from the first 

(1) and the last (5) block of trials.  
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The distinct force profiles found for the object lifts obtained in the first and the last block of 

trials called for further examination, we therefore examined the correspondence between the 

physical properties of the cups, and how the participant experienced the three targeted object 

properties, heaviness, glossiness, and hardness, using the pre-reaching ratings from the first 

block of trials as a measure of expected properties, and the post-lifting ratings from the last 

block of trials as a measure of perceived properties, respectively. First, A LMM regression 

analysis based on the pre-reaching ratings revealed a significant correspondence between 

expected heaviness and object weight (b = 3.12, SE = 0.31, χ2(1) = 90.19, p < 0.001), and 

content visibility (b = 1.37, SE = 0.31, χ2(1) = 5.99, p < 0.05), specifically the interaction 

between the object weight and content visibility, b = -3.56, SE = 0.31, χ2(1) = 126.77, p < 0.001. 

In terms of surface appearance, we found expected glossiness to correspond with surface gloss, 

b = 2.87, SE = 0.31, χ2(1) = 342.85, p < 0.001, which suggests a strong categorical distinction 

for the two types of surface appearances. Finally, for expected hardness we found significant 

correspondence with the object weight, b = 1.12, SE = 0.25, χ2(1) = 9.30, p < 0.01, especially 

as an interaction term with content visibility, b = -1.37, SE = 0.35, χ2(1) = 20.94, p < 0.001. 

Second, a LMM analysis based on the post-lifting ratings, demonstrated a correspondence 

between perceived heaviness and object weight, b = 3.69, SE = 0.24, χ2(1) = 984.18, p < 0.001, 

as well as correspondence between perceived glossiness and surface gloss, b = 2.88, SE = 0.31, 

χ2(1) = 213.15, p < 0.001, whereas perceived hardness corresponded largely with object weight, 

b = 1.25, SE = 0.25, χ2(1) = 143.51, p < 0.001. Figure 6 illustrates the average scores 

(normalized) of the three rating scales, heaviness, glossiness, and hardness, that were collected 

at two timepoints in the study, a) pre-reaching ratings collected in the first block of trials before 

the participants made object contact, and b) post-lifting ratings that were collected in the last 

block of trials after the participants had repeated experience of lifting the cups.  

 

 

 

 
 

 

Figure 6. Rated heaviness, glossiness, and hardness as collected in block 1 before interacting with the cups (pre-

reaching ratings) and in block 5 after several trials of interacting with the cups (post-lifting ratings). The figure 

shows normalized and averages and individual observations for each rating scale for the different types of cups. 

Error bars are standard deviations. Overall, the figure reveals clear categorical distinction for two of the scales, 

heaviness and glossiness, but less distinction is seen for the hardness scale. 
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Next, a linear mixed-model regression analysis was conducted separately for each of the three 

rating scales, heaviness, glossiness, and hardness, to examine the relationship between the rated 

material properties and the grip force magnitudes for the two types of content visibility, i.e., 

cups with visible or hidden content. We found significant main effects for all of the three rated 

properties, that is rated heaviness, b = 0.76, SE = 0.24, χ2(1) = 7.18, p < 0.01; rated glossiness, 

b = 0.65, SE = 0.27, χ2(1) = 4.48, p < 0.05; and rated hardness, b = 2.06, SE = 0.47, χ2(1) = 

13.04, p < 0.001 on peak GF, and an interaction effect between rated hardness and content 

visibility on peak GF, b = -1.80, SE = 0.69, χ2(1) = 6.63, p < 0.05. This opted for further 

examination, and thus we examined the expected- and perceived properties separately. The 

analysis on the pre-reaching ratings obtained in the first block of trials revealed significant 

correspondence between the peak GF and the expected hardness, b = 1.51, SE = 0.58, χ2(1) = 

6.84, p < 0.01, but not with expected heaviness, b = 0.57, SE = 0.30, χ2(1) = 3.61, p = .06. or 

expected glossiness, b = 0.42, SE = 0.26, χ2(1) = 2.53, p = n.s. Conversely, regression analysis 

on the post-lifting ratings obtained in the last block of trials revealed significant correspondence 

between peak GF and the perceived heaviness, b = 0.46, SE = 0.22, χ2(1) = 4.26, p < 0.05, 

including the perceived hardness, b = 1.14, SE = 0.44, χ2(1) = 6.74, p < 0.01 respectively, 

whereas perceived glossiness had no significant relations with peak GF in the last block of 

trials, b = 0.42, SE = 0.27, χ2(1) = 2.32, p = n.s. The grip force magnitudes (peak GF) as a 

function of rated properties are illustrated in figure 7.  

 

 

 
 
Figure 7. Peak grip force (peak GF) as a function of expected- and perceived properties as based on the three 

rating scales and grouped by content visibility, i.e., whether the content of the cups was visible or hidden. The 

figure shows individual ratings per visibility condition and separate regression lines for pre-reaching ratings 

(expected properties) and post-lifting ratings (perceived properties). The figure shows grip force magnitudes to 

increase the heavier, glossier, or harder the cups got rated when the participants could see the content of the cups, 

but to remain similar for the different rating scores when the content was hidden. 
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3.3 Do individual digits have different grip force profiles due to changes in material 
properties?  

 
We extended the analysis on the five-digits pinch grip and computed the force profiles for 

individual pairs of digits to examine how the participants distributed the force across the digits. 

New grip force variables were computed to obtain accurate force magnitudes for the digits, in 

which the forces applied by each digit on the right side of the cups were individually averaged 

with the force applied by the thumb on the left side of the cup. This resulted in four different 

pairs of grip force variables: the average grip force between the thumb and the index finger 

(index); the thumb and the middle finger (middle); the thumb and the ring finger (ring); and the 

thumb and the little finger (little). Finally, for each participant and trial, we computed the peak 

GF for each pair of digits. Overall, a linear mixed-model regression analysis on the peak GF 

revealed various grip force magnitudes for the different pairs of digits, χ2(3) = 268, p < 0.001; 

index: b = 0.65, SE = 0.18, middle: b = 5.69, SE = 0.66, ring: b = 6.42, SE = 0.65, little: b = 

10.59, SE = 0.64, which called for further examination. We therefore, analyzed the digits 

separately for the first and the last block of trials to further examine the involvement of visual- 

and perceived properties in grip force control.  

 

For the first block of trials, we found larger range in peak GF between the different pairs of 

digits, especially between the digits closes to the base of the cups (range: 14.36 N – 27.38 N), 

in comparison to the last block of trials where the grip force magnitudes for the different pairs 

of digits were more clumped together (range: 16.46 N – 25.35 N). Moreover, for the first block 

of trials, we found the digits closest to the base of the cups carried most of the load when lifting 

the cups as those digits had the largest force magnitudes, especially the little finger, which had 

the largest difference in peak GF when lifting empty (M = 20.8 N) and filled cups (M = 25.0 N, 

∆ = 4.2 N). In terms of surface appearance, the digit with the largest difference in force 

magnitudes when lifting cups with either matte (M = 15.5 N) or shiny appearance (M = 20.5 N, 

∆ = 5 N) was the ring finger, which also had the largest difference in force magnitudes when 

lifting cups with either visible (M = 15.8 N) or hidden content (M = 20.3 N; ∆ = 4.5 N). For the 

last block of trials, the index finger had a dominant role in grip force application, as it had the 

largest difference in peak GF for the two object weights (Empty: M = 7.30 N, Filled: M = 12.9 

N, ∆ = 5.6 N), and for the two types of content visibility (Visible: M = 10.8 N, Hidden: M = 

9.35 N, ∆ = 1.45 N), whereas the ring finger had the largest difference in peak GF between 

matte and shiny cups (Matte: M = 16.0 N, Shiny: M = 20.0 N, ∆ = 5 N). A Kruskal-Wallis test 

on peak GF confirmed that the grip force magnitudes were significantly different for the 

different pairs of digits, both for the peak GF obtained from the first block of trials, χ2(3) = 

21.21, p < 0.001, and from the last block of trials, χ2(3) = 23.85, p < 0.001. Overall, the middle 

digit (f0f2) had the smallest variation in peak GF, or standard deviation of 1.65 N, which made 

it the least affected digit by the object properties.  
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Figure 8. Peak GF for each of the four grasp pairs; thumb and the index finger (index), thumb and the middle 

finger (middle), thumb and the ring finger (ring), thumb and the little finger (little), both for the first block of trials 

(a) and the last block of trials (b). The digits positioned closest to the base of the cups had the largest grip force 

magnitudes and were mostly guided by the weight of the cups and their surface appearance. 

 

 

4. Discussion 

 

Skilled object manipulation requires accurate grip force scaling, which is guided by predictions 

that are based on learned associations between e.g., weight and material (Buckingham et al. 

2009; Gordon et al. 1993), or weight and size (Gordon et al. 1991). These findings are primarily 

based on grip force data collected using the precision grip for experimental control. Here, in a 

grip-lift task, we examined grip force scaling in a real-world scenario resembling a daily 

activity, in which participants lifted paper cups using a five-digit hold, to further explore the 

role of material properties in grip force scaling. We asked participants to lift and transport paper 

cups that varied in surface appearance (matte vs. varnished surface), weight (empty vs. filled 

cups) and content visibility (visible vs. hidden content) while measuring their five-digit grip 

force using light and flexible force sensors attached directly to the fingertips. In this study we 

sought to answer the following three questions. First, does five-digits grip force scaling account 

for material-based predictions? Second, do predictions based on anticipated vs. perceived 

material properties result in distinct grip force scaling? Third, do individual digits have different 

grip force profiles due to changes in material properties? 

 

Overall, we found five-digits grip force scaling when lifting objects using the whole hand to be 

guided by predictions that are based on material properties. The participants did not only scale 

their grip force according to the object weight, in which they applied more force (peak GF) 

when lifting the filled and heavier cups compared to the empty cups, but the participants did 

also apply greater grip force when lifting cups with glossy varnish as opposed to cups with 

matte appearance. Thus, the five-digits grip force scaling certainly accounts for object 

properties other than weight, specifically surface properties that are at first hand perceived via 

sight. Oddly, we did not find any effect of surface appearance on peak grip force rate (peak 
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GFR), which normally is considered to be a measurement that reflects the anticipatory control 

of the grip force scaling (Johansson and Westling, 1988). Instead, we found object weight and 

content visibility to have considerable effect on the rate of grip force magnitudes, where filled 

cups had quicker GFR, specifically when the content was visible to the participants, whereas 

cups with hidden content had similar peak GFR for filled and empty cups.  

 

We further examined the grip force magnitudes occurring within the timespan between the 

onset of object contact and the point of maximum grip force rate (GF at peak GFR), and found 

similar results as we did for peak GFR alone. Evidently, grip force scaling was different 

depending on whether the participants could visually infer the weight of the cups based on their 

content prior to lifting them or not, i.e., whether the content was visible or hidden. The overall 

results for peak grip force when lifting cups with hidden content revealed similar grip force 

magnitudes across the different types of cups. Moreover, the grip force magnitudes were 

generally larger in comparison to the grip force magnitudes applied when lifting cups with 

visible content, which indicates a possible “better safe than sorry” strategy, where high grip 

force is applied to the object when in doubt of its weight to prevent torque (see e.g., Gorniak, 

Zatsiorsky, and Latash, 2009). 

 

When examining the role of anticipated- and perceived properties in grip force scaling, we 

found grip force predictions based on anticipated properties resulted in different grip force 

scaling compared to predictions based on perceived properties. In general, when lifting objects, 

people rely on internal representations to ensure stable grasp, where previous object 

manipulation are stored and then retrieved for planning a future manipulation (Johansson and 

Westling, 1988, Gordon et al., 1993, Gordon et al., 1994; Li et al. 2009; Nowak et al. 2007b). 

People anticipate the required grip force for lifting the targeted object, in which the grip force 

scaling is at first based on the expected object weight or expected frictional properties based on 

visual cues (e.g., size and material appearance) and prior experience, then once the object has 

been touched and manipulated, the internal representations are updated according to the 

provided sensorimotor feedback (Johansson and Westling, 1984; van Polanen and Davare, 

2015). Our participants scaled their grip force differently depending on whether the anticipated 

grip force requirements were based on expected or perceived properties, as the comparison 

between the grip force magnitudes obtained from the first block of trials and the grip force 

magnitudes obtained from the last block of trials revealed. We found object weight and surface 

appearance both affected the scaling of the grip force during the first object lifts, whereas the 

grip force scaling occurring in the last block of trials was dominated by object weight alone. 

That said, visual information about material properties, specifically surface gloss, has a 

significant role in early grip force scaling, but is quickly replaced by the learned tactile 

information when the participants have experienced the true weight of the cups by interacting 

with them. Similar effect has previously been demonstrated when lifting symmetric objects 

using only two digits by Crajé, Santello, and Gordon (2013), in which they showed people used 

visual density cues for plastic and brass, to scale their grip force on initial lifts. 

 

To further examine the anticipatory feed-forward control of grip force scaling and the role of 

visual material properties before tactile information becomes available, we examined the five-

digits grip force magnitudes at two timepoints during the initial object lifts. Namely, the peak 

grip force occurring within the first 10 milliseconds after the object contact, as well as within 

the first 50 milliseconds after the object contact. For the first 10 milliseconds after the object 

contact, we found both object weight and surface appearance had significant effect on peak grip 

force. Empty cups with shiny surface had larger grip force magnitudes compared to empty cups 

with matte appearance, whereas the two surface appearances had similar grip force magnitudes 
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when the cups were filled. Interestingly, when examining the peak grip force occurring within 

the first 50 milliseconds after object contact, we found surface appearance had a dominant effect 

on scaling the grip force, in which larger grip force magnitudes were found for cups with shiny 

appearance compared to matte. For comparison purposes we examined the grip force 

magnitudes occurring within the same timepoints, however, in the last block of trials, and found 

no significant difference between the different types of cups. Suggesting, the different object 

properties had equal role in scaling the grip force for the first milliseconds after object contact, 

at least after the true physical weight of the cups had been learned. We also collected the 

subjective experience of the cups’ object properties and examined those ratings in relations to 

the grip force measurements.  

 

Based on the properties-ratings, collected before lifting the cups, we found both expected 

heaviness and expected hardness corresponded well with object weight and content visibility, 

while expected glossiness corresponded well with surface gloss alone. However, we only found 

expected hardness to have significant correspondence with the grip force magnitudes in the first 

block of trials. In comparison, the ratings collected in the last block of trials after the participants 

had repeatedly manipulated the cups, revealed both perceived heaviness and perceived hardness 

corresponded well with object weight, while perceived glossiness corresponded well with 

surface gloss. Interestingly, both perceived heaviness and perceived hardness were found to 

have significant correspondence with the grip force magnitudes in the last block of trials. It is 

possible that during the initial object lifts, the participants scaled their grip force according to 

the visual cue for hardness based on their knowledge of material density, while later object lifts 

are sensory driven and therefore controlled by the learned object weight and surface hardness. 

Another possibility is that the participants have difficulty distinguishing between hardness and 

density, and thus the hardness ratings might actually represent rated density. Further 

experimentation will be required to test this. However, in our previous study using similar 

experimental stimuli, we found similar tendency to assign filled cups with harder qualities 

compared to empty cups, and concluded that the hardness ratings apply correctly, given that 

filled cups are less deformable as the liquid creates a force against the insides of the cups 

(Ingvarsdóttir and Balkenius, 2020). Moreover, and similarly to the results in current study, we 

found hardness ratings did not only apply to the amount of liquid in the cups, because a 

difference in hardness ratings was found between matte and shiny cups that were empty, in 

which empty shiny cups were considered to have harder quality compared to empty matte cup, 

making it less likely that the hardness ratings were primarily based on the liquid’s density. 

 

Here we have shown that surface gloss has a role in early grip force scaling before object lifting. 

Previously, we showed that surface gloss affected the temporal component of reaching during 

initial lifting of similar cups as used in the current study, while later lifts and spatial grip position 

on the cups are predominantly controlled by the weight of the cups. In Ingvarsdóttir and 

Balkenius (2020), we found the adjustment time, i.e., the deceleration time in reaching before 

object contact, was affected differently by the two surface appearances, depending on whether 

the cups had previously been rated to have hard or soft qualities. Shiny cups assigned with hard 

surface properties tended to have longer adjustment time in reaching, compared to shiny cups 

with assigned soft properties that had quicker adjustment time in reaching, whereas matte cups 

required similar adjustment time, irrespective of their hardness assignment.  

 

We were also curious to see if the object properties caused distinct force profiles for each 

individual digit pair. Our analysis showed the distribution of peak grip force across the digits 

varied depending on whether the cups were filled or empty, had shiny or matte surface, and 

whether their content was visible or hidden. Overall, we found the digits closest to the base of 
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the cups carried most of the load as they had the largest grip force magnitudes. Interestingly, 

however, we also found the grip force magnitudes spread differently across the different digits 

for the first block of trials and for the last block of trials. The range in grip force was larger 

during the first object lifts, whereas the grip force magnitudes of the digits that had significant 

roles in the last block of trials were more clumped together. Each digit had a distinct pattern of 

grip force control that was different for the first- and the last object lifts. For the first block of 

trials, we found the grip force magnitudes applied by the little finger corresponded best with 

the weight of the cups, while the ring finger corresponded best with the surface appearance and 

the content visibility. Comparatively, the grip force magnitudes applied in the last block of 

trials, revealed a larger role for the index finger, which had a great correspondence with the 

object weight and the content visibility, as well as a continuing role of the ring finger, which 

corresponded greatly with the surface appearance of the cups. A plausible explanation for the 

distinct grip force pattern per digit could be that each digit has a different role in manipulating 

the cups, especially for the first encounters, in which anticipated grip force requirements are 

based on expectations. It is likely that the participants apply most of the grip force to the lower 

part of the cups, using the digits closest to the base of the cups, to secure a space above the 

vertical grip force axis for repositioning the grip in case the cups are heavier or more slippery 

than expected and could thus slide down. While in the last block of trials, when the participants 

have learned the true weight and frictional properties of the cups, the grip force is distributed 

further up spatially, i.e., the index finger has a larger role in supporting the cups while lifting 

them. All in all, the digit that was least affected by the object properties, was the middle digit, 

which indicates its role is mostly to support the hold, irrespective of object properties. 

Anticipatory control based on visual information is important for skillful manipulations of 

objects, and in communications, such as successful handovers, i.e., when one person, or even a 

humanoid robot, hands an object over to another person or robot (see e.g., Controzzi, et al., 

2018). Studies on material properties and their roles in early grip force planning when handling 

objects using the whole hand are therefore logical future step, specifically if the goal is to 

resemble real-world scenarios. A detailed examination of individual digits and early grip force 

planning when handling objects made of various materials would therefore be a worthwhile 

future study. 

 

In sum, early grip force scaling when lifting paper cups using five-digits hold, is not only guided 

by the object weight but also by the surface appearance of the cups, specifically the surface 

gloss. We also found our participants scaled their grip force differently depending on whether 

their anticipated grip force requirements were based on expected or perceived properties, and 

that individual digits had distinct grip force profiles that depended on the object properties of 

the cups. 
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Abstract 

An extensive research has been done on perception of bouncing objects, yet little is known about how 

material properties are incorporated into the visual assessment of bounce height, in particular the 

material properties of the surface plane affording the bounces. The bounce height of a bouncing ball is 

controlled by the physical elements of the ball, but also by the nature of the surface plane it bounces 

on, such as whether it has hard or soft qualities. The appearance of the ground could therefore 

potentially affect the judgment of bounce height by either reducing or enhancing the perceived height 

of the bounce, depending on the learned association between the visual- and the intrinsic properties of 

the surface plane. To investigate the influence of material properties on visual judgments of bounce 

height, we asked participants to compare the bounce heights of two successive presentations of 

animated balls bouncing on either roughly or smoothly textured planes. In a second study we examined 

the estimation of the same bounce heights, when specular highlights were added to the surface planes, 

to further examine the role of its visual appearance in perceived bounce height. We found the 

participants judged the bounce heights differently depending on the visual characteristics of the surface 

planes, where rough surface planes increased the estimated bounce heights, compared to smooth 

surface planes. This effect of rough surface planes was also found in Experiment 2 for the shiny surface 

planes, however the judged bounce height differed less between the two textures, rough and smooth. 

The current study proposes that the visual assessment of bounce height incorporates more than simply 

the physical elements of the ball and the bounce, as our results demonstrates that different surface 

appearances can cause changes in judged intrinsic properties, and consequently perceived bounce 

height. We propose that perceived bounce height incorporates learned associations between what 

materials look like and what materials behave like. 

Introduction  

One of many challenges in research on material perception is to understand how visual characteristics 

of surfaces are used to judge intrinsic physical properties that are normally perceived by other means 

than sight. In a daily activity such as lifting an object, we need to visually infer intrinsic properties that 

are normally perceived haptically. For instance, prior to lifting an object, we anticipate its weight before 

receiving the sensorimotor feedback provided by the object contact. This anticipation is based on the 

object’s visual appearance, and our previous experience of interacting with similar objects in similar 

scenes (Johansson and Westling, 1988). In that way, we can prepare the required grip force for lifting 

the object without slippage.   
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Weight anticipation has been extensively studied in object lifting, in particular in relations to object 

size, where studies on size-weight illusions during object comparison demonstrate how judgment of 

intrinsic properties are affected by the visual appearance of the object such as its size. The perceptual 

illusion occurs when people judge a smaller object to be heavier than a larger object. even when the 

two objects have identical mass. The illusion continues to persist perceptually while the motor 

movement of the hand (i.e., the grip) is adjusted according to the actual mass of the objects (e.g., 

Flanagan and Beltzner, 2000). Another example of judgment of intrinsic object properties based on 

extrinsic properties, are material-weight illusions. The illusions demonstrate that the assessment of 

weight, is highly influenced by the visual characteristics of the material from which the object is made. 

An object made from a light material (e.g., Styrofoam) is judged to be heavier than an object made 

from a heavy material (e.g., stone), despite them being altered to have equal mass and size. Similar to 

the size-weight illusion, the material-weight illusion is independent of the forces applied when lifting 

the objects (Buckingham, Cant and Goodale, 2009; Charpentier, 1891; Ellis & Lederman, 1999; 

Harshfield & DeHardt, 1970; Seashore, 1899; Wolfe, 1898).  

Intrinsic properties of materials are often expressed visually. For instance, spilled milk has different 

visual characteristics than spilled yoghurt due to their differences in viscosity (Adelson, 2001; van 

Assen, Barla, and Fleming, 2018), and thickness and stiffness of fabrics can be inferred based on how 

they move and fold (Xiao, Bi, Jia, Wei, and Adelson, 2016). When judging hardness of compliant and 

hard materials, people normally rely on tactile information such as surface deformation, vibrations, and 

force/finger-displacement ratio, as hardness is more readily encoded by haptics (Bergmann Tiest & 

Kappers, 2009; Bergmann Tiest, 2010). However, due to learned associations between material 

appearances and their intrinsic properties, people are able to judge the hardness based on only the visual 

features of the material (e.g., Fleming, Wiebel, & Gegenfurtner, 2013). Indicating that perceived 

hardness is not bound to the tactile sensory modality alone (see Baumgartner, Wiebel and 

Gegenfurtner, 2013 for a study on correspondence between visual and haptic perceptual spaces of 

materials, and for studies on associations between auditory information and perceived hardness see 

Arnott, et al., 2008; Giordano & McAdams, 2006; Vickers, 1981; and Vickers, 1987). On the basis of 

these studies, the conjecture is that people will incorporate a generic knowledge about materials and 

their visual properties when estimating the intrinsic properties of an object.  

When a ball hits a surface plane and bounces back into the air, its bounce height is affected by the 

physical elements of the ball, its mass and elasticity, as well as environmental variables such as the 

friction of the surface plane and the aerodynamic drag. For instance, a ball bouncing on a hardwood 

floor that has hard qualities affords higher bounce height than a ball bouncing on a carpet floor, because 

the hard floor absorbs less kinetic energy than the softer floor. To investigate the effect of generic 

knowledge of material properties on the perception of bounce height, we simulated a spherical object 

with familiar appearance bouncing on surface planes with various material properties. In two 

experiments using paired-comparison task, we asked participants to visually judge bounce heights 

presented together with either smooth or rough surface plane, with and without specular highlights. 

The goal was to examine if alterations of the visual properties of the surface plane would give rise to 

changes in perception of bounce height, where we theorized that our participants would judge the 

bounce heights on visually different surface planes differently due to learned associations.  

Although roughness is typically defined as a tactile property, its salient appearance is informative 

enough to be visually assessed as a distinctive feature for various materials (e.g., Adelson, 2001; 

Anderson, 2011; and Bergmann Tiest & Kappers, 2007). On the other hand, visual glossiness is a 

complex material property to assess due to various environmental factors, such as the position of the 

light source and the observer’s viewing position to name few. The light source position controls the 
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amount of light reflected of the surface, and high-gloss surfaces contain images of its surrounding 

environment in its reflection, that are easily changed when the viewer position is changed. 

Consequently, visual assessment of glossiness appears to be based on surface highlights rather than 

involving estimation of specular reflectance parameter of a surface. Specular highlights in form of 

white patches that are visually qualitatively different (e.g., size, brightness) for various surface 

characteristics and level of glossiness (Marlow, Kim and Anderson 2012; Beck & Prazdny, 1981; 

Marlow & Anderson, 2013). 

In summary, we argue that hardness of a surface plane can be visually assessed when observing a 

familiar object bouncing on that surface due to prior experiences with similar scenes and materials. 

Moreover, we argue that perceived bounce height incorporates expectations of ‘bounce affordance ’

that vary with the visual appearance of the materials. We expected rough surface planes to be assigned 

high bounce heights, based on the assumption that materials with rough characteristics (e.g., stone and 

wood) are often perceived as having a hard quality (see e.g., Fleming, et al., 2013 for more material 

classes with distinctive typical qualities). Moreover, we expected the addition of specular highlights to 

the rough surface texture would either enhance or diminish the previous found effect (if any), 

depending on whether the shiny surface planes are expected to have hard or soft quality. 

 

Experiment 1: Roughness 

The visual assessment of bounce height was examined using paired comparison. In particular, we 

investigated the effect of the material properties roughness and smoothness on the perception of bounce 

height.  

Methods (Experiment 1) 

Participants 

Thirty right-handed participants (19 females and 11 males) recruited on Lund University campus 

(Mean age = 26 years, SD = 4 years) took part in the study. Participants gave their consent to participate 

in the experiment. All participants reported normal or corrected-to-normal vision. 

Apparatus 

An Apple Mac OS X 10.8.5 (Intel HD Graphics 4000 512 MB) running MATLAB (The MathWorks 

Inc., 2013) and Psychophysics Toolbox 3 (Brainard, 1997) controlled the experiment. Stimuli were 

presented on a Samsung Wide Screen LCD Monitor with the aspect ratio 16:10 (1920 x 1200 

resolution) and a 75 Hz refresh rate. All participants were tested individually in a quiet darkened room 

seated at a viewing distance of 70 cm form the screen of the LCD monitor. Participants responded 

using two response keys, F (left) and K (right), on a standard QUERTY keyboard. Background 

illumination of the LCD monitor was held constant at 0.1 cd/m2.  

Stimuli 

The stimuli were 10 animations of a ball bouncing once on a plane having either a smooth or a rough 

surface appearance. The stimuli were rendered and animated using two distinct software products; a) 

the computer graphics software Blender to create the visual appearance of the ball and the surface 

planes (Blender Foundation, 2013), and b) the game engine Unity 3D to create the geometrical shape 



4 

Running head: MATERIAL PROPERTIES AND PERCEIVED BOUNCE HEIGHT 

of the ball and the plane, including the animation of the five different bounce heights (Unity 

Technologies, 2013). The ball’s appearance was created using a material downloaded from the Blender 

Open Material Repository (Engel, 2007). We selected a material resembling the appearance of a 

basketball, an orange rubber-like surface with black ribs, because Swedish students typically have 

knowledge of balls with such appearance and bounce properties.   

The surface planes, on which the ball bounced, were created in Blender as well. A burned orange 

colored base with matte appearance was assigned to the surface plane. The matte appearance was 

created using a Lambertian diffuse shader, with the brightness intensity kept at the default level (0.8). 

Such shader is typically used for simulating materials that have a low level of specular reflection, as 

the shader imitates a light being isotropically scattered in all directions. The result is a balanced 

appearance throughout the surface plane, which prevents that reflection spots appear when a light hits 

the surface plane. Preventing reflection spots to appear on the surface was important for current study, 

as they would have indicated a surface plane made of an intermediately reflective material, which was 

not the goal for Experiment 1. We created the surface planes using properties commonly seen in ground 

surfaces and floor covering with hard qualities, like concrete flooring, laminate, linoleum, and marble, 

etc. The rough appearance of the surface plane was obtained in Blender, with a Voronoi texture map 

with irregularly shaped cells with noise size of 0.1. A procedural texture map proved to be suitable for 

simulating objects with a rough appearance such as hammered metal or rocky mountain terrains 

(Worley, 2003). The smooth uniform appearance was obtained by not applying any procedural texture 

map to the surface plane. When the visual appearances of the ball and the surface planes were ready, 

they were baked (rendered) as textures in Blender and then imported into Unity to be assigned to the 

two geometrical meshes, for the ball and the surface plane. Examples of the two surface planes, with 

smooth texture and rough texture, and the ball’s appearance, are seen in Figure 1.  

 

Figure 1.  a) The visual appearance of the two rendered surface planes, smooth (left) and rough (right), b) the visual 
appearance of the bouncing ball.  

 

The movement of the ball bouncing on the surface plane was simulated using Unity 3D’s built-in 

physics engine PhysX® (NVIDIA Corporation, 2013). The ball’s bounce height was systematically 

varied in 5 steps from 31 mm to 43 mm vertical height as measured from the base of the plane (2° 31'- 

3° 31' visual angle), while the surface appearance of the ball was held constant. Each animation started 

when the ball was on the surface plane rather than in mid-air. This was done to prevent the participants 
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from making predictions of the coming bounce height before the ball bounced on the surface plane. 

The bounce animations were created using the Unity’s physics engine, by adding a Rigidbody 

component to the surface planes and assigning a physics material to it. The five bounce heights were 

achieved by changing the bounciness settings of the physics material in an increment of five steps 

(0.900, 0.925, 0.950, 0.975, 1). The bounciness was set using Unity’s arbitrary physics units where 0 

represents no bounce at all and 1 is the maximum possible bounce of that object. All other physics 

variables such as gravity, mass, angular drag, and the colliding object’s friction were held constant 

across all the animated stimuli. The bounce settings were the same for the rough and smooth surface 

textures. 

A directional light was used in Unity to simulate environmental illumination such as sunlight. The light 

source was positioned above the plane and slightly to the side to make the bumps on the plane cast 

shadows. An aim was to ensure that the participants had sufficient visual information about the surface 

texture to be able to make judgments about its roughness. Both the surface plane and the ball were 

made to cast and receive shadows, although studies have shown that moving cast shadows can 

influence the perceived trajectory of an object by inducing its apparent motion (Kersten et al., 1996; 

Kersten, Mamassian, & Knill, 1997; Mamassian, Knill, & Kersten, 1998). More importantly, cast 

shadows are known to be important for localizing objects in three-dimensional scenes, and without 

them, objects appear to float above the ground rather than being in contact with it (Imura et al., 2006; 

Sugano, Kato & Tachibana, 2003; and Yonas & Granrud, 2006). This being the case, we determined it 

was important to have cast shadows visible during the bounce impact when the ball touched the surface 

planes, in order for our participants to perceived the full impact of the ball bouncing on the surface 

plane. 

A custom JavaScript was used to record and export each stimulus animation rendered in Unity, into 

QuickTime movie format for stimulus presentation. The dimensions of the stimuli were 13.5 cm x 10.2 

cm (11° x 8° 20' visual angle) and the duration of each animation was roughly 1 sec.  

Design 

Each participant completed two tasks; a paired-comparison task followed by a rating task. In the 
paired comparison task the participants observed 10 animations of a ball bouncing on either a 
rough or smooth surface plane with 5 different bounce heights each. The animations were 
organized into a total of 18 different combinations of pairs, using a diamond shaped pairing 
combination. This design has been proved to be efficient in avoiding problems of collinearity 
when studying discrimination of paired stimuli (Hellström, 1979, 2003; Patching, Englund & 
Hellström, 2012). The two types of presentation orders consisted of 9 pairing combinations each. 
In one arrangement, the first stimulus contained a smooth surface plane while the second 
stimulus contained a rough surface plane. In another arrangement, the first stimulus contained 
the rough surface plane and second stimulus contained the smooth surface plane. The 
participants completed 4 blocks of test trials preceded by one block of practice trials. Each test-
block comprised of 18 combinations of stimulus pairs (9 for each presentation order) where each 
stimulus pair was presented 4 times in each block, resulting in total of 288 trials per participant. 
All trials, including the practice trials were randomized. The diamond shaped factorial 
combination for one presentation order is illustrated in Figure 2. The two graphs demonstrate 
the average bounce height, and the intra-pair difference in bounce height, for each combination 
of stimulus pairs. The average bounce heights were 34 mm, 37 mm, and 40 mm, and were 
calculated by adding the bounce height of the first presented stimulus (e.g., 37 mm) to the second 
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presented stimulus (e.g., 31 mm), divided by two. The intra-pair differences in bounce height 
were ±6 mm, and 0 mm, and were calculated by subtracting the bounce height of the first 
presented stimulus (e.g., 37 mm) from the bounce height of the second presented stimulus (e.g., 
43 mm).   

 

 

Figure 2. Diamond shaped pairing combinations, demonstrating the 9 different combinations of stimulus pairs for 
each presentation order; rough surface plane presented first vs. smooth surface plane presented second, and vice 
versa. (a) A combination demonstrating the average bounce height for each stimulus pair, ranging from lower left 
to upper right, 34 mm, 37 mm, and 40 mm. (b) A combination demonstrating the intra-pair difference for each 
stimulus pair, ranging from lower right to upper left, -6 mm, 0 mm, and 6 mm.  

 

The response assignment was counterbalanced over participants. 15 participants were instructed to use 

the index finger of their left hand to press the left key when they judged the first stimulus of each 

stimulus pair to have higher bounce height than the second stimulus, and the index finger of their right 

hand to press the right key when they judged the second stimulus to have higher bounce height than 

the first stimulus. The other 15 participants were instructed to use a reversed order of key presses – the 

index finger of their left hand to press the left key if they judged the second stimulus to have higher 

bounce than the first stimulus, and the index finger of their right hand to press the right key if they 

judged the first stimulus to have higher bounce than the second stimulus. 

The idea underlying the rating task was to examine if participants perceived the intended appearance 

of the various surface planes. Participants rated the surface property of the planes of the same 10 

animations as shown in the paired-comparison task. The presentation order of the animations was 

randomized, and participants were requested to rate the surface property of the planes shown in each 

animation using a 5-points semantic-differential scale with the following three bipolar dimensions:  

- Roughness: high values represent rough, and low values represent smooth.  

- Glossiness: high values represent shiny, and low values represent matte. 

- Hardness: high values represent hard, and low values represent soft. 
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Procedure 

Following written instructions, participants first completed the paired-comparison task. Each trial 

comprised of a pair of animated balls bouncing on a plane, one bounce on a rough plane, and one 

bounce on a smooth plane. The task was to compare the bounce heights of the two bounces in each 

stimulus pair, and to indicate which one of them was higher by pressing one of the response keys. All 

participants were instructed to respond as quickly and accurately as possible.1 On each trial, a fixation 

cross was presented for 500 ms, followed by the first stimulus for duration of approximately 1000 ms. 

The inter-stimulus interval duration was 500 ms. The second stimulus was then presented for a duration 

of 1000 ms. The inter-trial interval duration was 3000 ms. Participants could respond following the 

completion of the second stimulus. After completing the paired-comparison task, the participants rated 

the appearance of the plane of the same 10 animations, one at a time, using the three rating scales 

provided. On average participants took 60 minutes to complete the experimental session. The 

experimental layout is seen in figure 3. 

 

Figure 3. The experimental layout for the paired-comparison task. On each trial, the participants were presented 
sequentially with pairs of bounce heights presented with either smooth or rough surface plane. The task was to 
judge, which of the stimulus, the first presented bounce height or the second, contained a higher bounce height. 
After completing the paired comparison task, the participants judged the material properties, roughness, glossiness, 
and hardness, of the surface plane from the 10 animations using a 5-points semantic-differential scale.  

 

 

1 Response time was measured but since the data showed a similar pattern of results as logit P, and to avoid obfuscating 

the analysis and obscuring the main findings of the study, these data are not reported in this paper.  
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Data analysis 

The analysis was conducted in three parts. First, the binary responses obtained in the paired-comparison 

task were analyzed following procedures described by Patching et al. (2012), in which the overall effect 

of surface appearance on judgments of bounce height was presented in terms of log odds of the 

proportion, P, of choosing the first stimulus to have higher bounce height compared to the second 

stimulus: logit P = loge [P/(1 - P)]. The choices were analyzed using General Linear Mixed Effects 

Model (GLMM) with a binomial distribution and a logistic link, which allowed us to examine judged 

bounce height as a binary response, while taking into account the repeated measures of each participant. 

Model evaluation was based on Akaike Information Criterion (AIC), where a full regression model 

was compared to nested models using likelihood ratio tests. A model with the lowest complexity, 

deviance, and AIC score, was judged to be the most suitable model to describe the data, and was 

therefore selected for further regression analysis.  

Second, the metric effect of judged bounce height was calculated using the following procedures. For 

each stimulus presentation order [rough surface plane first and smooth surface plane second, vs. smooth 

surface plane first and rough surface plane second] we obtained the predicted probabilities for each 

bounce height by conducting a GLMM analysis on the log odds of choosing the first stimulus to have 

higher bounce height, using the intra-pair difference between the stimuli (-6 mm, 0 mm, +6 mm) as the 

main fixed effect, with random intercept and slope for the effect of intra-pair difference. Next, we 

regressed the predicted probabilities on the five stimuli bounce heights (ranging from 31mm to 43mm) 

to find the estimated metric effect for their judged bounce height. 

Finally, we analyzed how the participants rated the surface planes using the three rating scales, 

roughness, hardness, and glossiness, by averaging the ratings scores and calculating the standard errors 

for each stimulus. For the purpose of assessing how much the participants agreed on the appearance of 

the surface planes, we examined the correlation between the rating scores among the participants, in 

other words the inter-rater reliability of the subjective ratings. We averaged the subjective ratings in 

order to have one rating score per surface texture (rough vs. smooth) and participant. Then we 

calculated the intra-class correlation coefficients for each rated property: roughness, hardness, and 

glossiness, and ran an additional F-tests. Following Shrout and Fleiss (1979), a poor reliability was 

considered anything less than 0.5 ICC, a moderate reliability were values between 0.5 and 0.75 ICC, a 

good reliability were values between 0.75 and 0.9 ICC, and everything above 0.9 ICC stood for 

excellent reliability (Provoost, et al., 2019).  

All analyses were conducted in the R environment (R Core Team, 2013), using the lme4 package (Bates 

et al., 2015) for the mixed modeling, and the psych package (Revelle, 2018) for the inter-rater 

reliability. 

Results and Discussion (Experiment 1) 

The binary choices from the paired comparison task were modeled as the log odds of choosing the first 

bounce height to be higher than the second bounce height using General Linear Mixed Effects Model 

(GLMM) with a binomial distribution and a logistic link. Five models with different variations of fixed 

effects (dummy coded) were evaluated. All models had by-participant intercepts and random slopes 

for the fixed effects of interest. The results from the model evaluation are shown in Table 1. A model 

with the lowest AIC score was chosen for further analysis, which was a model with surface texture 

[first bounce height on a smooth surface vs. first bounce height on a rough surface] and average bounce 

height [34 mm, 37 mm, 40 mm] entered as fixed main effects (AIC = 11819), and with by-participant 



9 

Running head: MATERIAL PROPERTIES AND PERCEIVED BOUNCE HEIGHT 

intercept and random slope for surface texture and bounce height, as random effects. As can be seen in 

Table 1, the inclusion of response assignment [left key for the first bounce height and right key for the 

second bounce height, vs. the reversed order] as an effect in model 1 reduced the model fit and was 

therefore left out of the final model (model 2). Moreover, having an interaction between surface texture 

and average bounce height, as seen in model 5, did not improve the model fit either, and was therefore 

excluded from the final model as well.  

 

Table 1. The log likelihood, deviance, degrees of freedom, and Akaike Information Criterion scores (AIC) for each 

evaluated model of judged bounce height.  

 

Note. Regression model number 2, which included surface texture and average bounce height as fixed main effects, 

was the best fitted model for our analysis. 

 

A graphical presentation of the effect of surface texture over average bounce height, revealed the 

magnitude and direction of log odds of judging the first bounce height to be higher than the second, 

varied with changes in both appearance of the surface planes and bounce height. Figure 4a, shows the 

log odds (logit P) to go from negative to positive with increased bounce height. Indicating that 

physically higher bounce heights were judged to be higher than physically lower bounce heights. 

Moreover, both presentation orders were found to have negative log odds, in which the log odds for 

the presentation order, smooth surface first and rough surface second, are larger than the reversed 

presentation order, rough surface first and smooth surface second, indicating an underestimation of the 

first presented stimulus and a preference for choosing rough surface planes for higher bounce heights. 

Using GLMM analysis on the final model (model 2) revealed both surface texture and average bounce 

height had significant effects on the judgment of bounce height. The probability of choosing the first 

bounce height to be higher than the second, were significantly larger when the bounce was presented 

on a rough surface plane (b = 0.13, SE = 0.05, Z = 2.76, p < 0.01), and increased with increasing bounce 

height, in which the higher average bounce height (40 mm) was found significantly different than the 

remaining average bounce heights, when keeping the 34 mm bounce height as the reference level (b = 

0.11, SE = 0.06, Z = 1.99, p < 0.05). The predicted probabilities for choosing the first stimulus to have 

higher bounce height were larger for bounce heights presented with rough surface planes (34mm = 

46%, 37 = 45%, 40 = 47%), compared to bounce heights presented with smooth surface planes (34mm 

= 40%, 37 = 42%, 40 = 45%). Figure 4b shows the estimated coefficients for model 2.  
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Figure 4.  a) The Logit P (log odds) of judging the first presented bounce height to be higher than the second, over average 

bounce height for the two presentation orders [smooth surface first and rough surface second vs. rough surface first and 

smooth surface second]. The graph includes individual observations displayed using jittering to prevent overplotting. b) 

The estimated coefficients for the fixed effects surface texture and average bounce height, ordered from the largest (top) 

to the smallest (bottom). The log odds of judging the first bounce height to be higher than the second, significantly increased, 

both when the bounce was presented on rough surface texture, and when the physical bounce height was higher in mm. 

 

The overall estimated metric effect on judged bounce height based on the predicted probabilities (y) of 

judgement of physical bounce height of the first presented stimulus (x) for the two surface textures was 

on average 1 mm higher for rough surface planes (y = -2.07 + 0.07x, estimated metric: 31mm, 33mm, 

36mm, 39mm, 42mm, M=36.2mm), compared to smooth surface planes (y = -2.02 + 0.07x, estimated 
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metric: 30mm, 32mm, 35mm, 38mm, 41mm, M=35.2mm). Although the participants estimated bounce 

heights on rough surface planes to be higher in mm compared to the bounce heights on smooth surface 

planes, the estimated metric effect for the judged bounce height was lower for the both surface textures 

compared to the actual bounce heights (31mm, 34mm, 37mm, 40mm, 43mm) by 1mm for rough 

surface planes and 2mm for smooth surface planes. 

For the subjective ratings given by the participants, we found a reasonable correspondence between 

the intended and the rated surface appearances. On the average, the rough surface plane was rated 

rougher (M = 3.87, SD = 0.61) than the smooth surface plane (M = 1.63, SD = 0.73), and although both 

surface planes were rated matte, the rough plane got rated less shiny (M = 2.33, SD = 0.62) than the 

smooth plane (M = 2.77, SD = 1.08). Moreover, both surface planes were rated to have hard qualities, 

and the hardness ratings increased with increasing bounce height (see figure 5). Interestingly, smooth 

surface plane was rated with harder property (M = 3.68, SD = 0.69) than the rough surface plane (M = 

3.26, SD = 0.65).  

 

 

 
Figure 5. The mean rating scores and standard errors of the rating scales (a) roughness, (b) glossiness, and c) hardness, 

for the five bounce heights presented with either rough or smooth surface plane. Graph c) demonstrates an increment in 

rated hardness that follows the increasing bounce height. 

 

 

The inter-rater reliability analysis on the subjective ratings for the two types of surface planes, revealed 

an excellent consistency among the participants for rated roughness, in which the ICC was 0.98 with 

95% confidence interval ranging from 0.90 to 1, (F(1,29) = 61, p < 0.001, representing an excellent 

reliability for rated roughness. An excellent consistency was also found for rated hardness, with ICC 

of 0.91, and 95% confidence interval ranging from 0.60 to 1, (F(1,29) = 18, p < 0.001. Suggesting that 

the hardness estimation is based on distinctive surface appearance of the planes, rather than then the 

bounce alone. To test this we examined the average bounce height as a single factor influencing the 

hardness ratings and found no significant consistency between the participants for rated hardness, ICC 

= 0.24, with 95% confidence interval ranging from 0.11 to 0.65, (F(1,29) = 1.39, p = n.s. Finally, no 

significant inter-rater reliability was found for rated glossiness, indicating a low consistency among 

the participants for rated glossiness, ICC = - 0.01 with 95% confidence interval ranging from - 0.09 to 

0.07, (F(1,29) = 0.71, p = n.s. 
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Experiment 2: Glossiness 

Experiment 1 revealed the material properties roughness and smoothness influenced the perception of 

bounce height, where participants paired higher bounce heights with rough surfaces. In Experiment 2, 

we examined the perception of bounce height using surface planes with specular highlights. The aim 

was to see if the specular properties diminished or enhanced previously found effect for rough surfaces. 

Methods (Experiment 2) 

Participants 

Thirty right-handed participants (17 females and 13 males) recruited on Lund University campus 

(Mean age = 25 years, SD = 3 years) took part in the study. Participants gave their consent to participate 

in the experiment. All participants reported normal or corrected-to-normal vision. 

Stimuli, Design, and Procedure 

The experimental setup for experiment 2 was identical to that described for Experiment 1 apart from 

the changes in the visual appearance of the surface planes. Instead of the matte appearance, specular 

properties were added to the surface planes, on which the ball bounced. The specular highlights were 

created using the same procedures as for the surface planes as used in Experiment 1, except here the 

Lambertian diffuse shader was replaced with a Blinn specular shader.  This is a physically based 

specular model that creates bright highlights for shiny appearances to simulate materials such as glass, 

water and plastics. The Blinn shader was set to have white specular color at the intensity of 0.5 and 

hardness set to 1. The goal was to not imitate the characteristics of any specific material category, but 

rather to simulate an intermediate glossiness, which simulates a typical floor appearance (see Figure 

6a) and add it to the pre-existing surface textures (smooth and rough) (see Figure 6b). For physical 

comparison, a spectral analysis was conducted on the four rendered images used for the surface planes 

(see Figure 6c). The experimental procedures and data analysis were otherwise the same as in 

Experiment 1.  
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Figure 6. a) The visual appearance of the surface planes with added specular highlights, smooth (left) and rough (right). b) 

The matte surface planes used in Experiment 1, smooth (left) and rough (right) textures. c) A spectral graph for the four 

types of surface planes used in experiment 1 and 2 computed using radial transform Fourier analysis. The x-axis shows the 

radius measured as pixels, and the y-axis shows the normalized integrated fast Fourier transformation (FFT) intensity. The 

graph demonstrates the intensity difference between the four images, especially between the matte and shiny surface planes.  

 

Results and Discussion (Experiment 2) 

Similar to experiment 1 a model comparison based on the AIC weights, revealed that response 

assignment and the interaction term between surface texture and average bounce height, reduced the 

fit of the models. They were therefore not included in the final model (see table 2). Based on the Akaike 

Information Criterion score and the Deviance score, the most suitable model for our analysis, was a 

model with surface texture and average bounce height entered as dummy coded fixed effects, and with 

by-participant intercept and random slope for surface texture and bounce height as random effects 

(model 2 in table 2).  

 

Table 2. The Akaike Information Criterion scores (AIC) for models on judged bounce height presented with shiny surfaces.  

 

Note. The table shows the log likelihood, deviance, degrees of freedom, and AIC scores, for each evaluated 

model of judged bounce height. Regression model number 2, which included surface texture and average bounce 

height as fixed effects, was the best fitted model for our analysis. 
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A graphical presentation of the effect of surface texture over average bounce height, revealed the 

magnitude and direction of log odds of judging the first bounce height to be higher than the second 

varied with changes in both appearance of the surface planes and bounce height. Figure 7a, shows the 

magnitudes and the direction of the log odds (logit P) to go from negative to positive with increased 

bounce height, indicating that the first bounce height is judged to be higher when it was physically 

higher than the second bounce heights. Moreover, the log odds for the presentation order, smooth 

surface first and rough surface second, have negative values that are larger than the reversed 

presentation order [rough surface plane first and smooth surface plane second], which indicates a 

preference for rough surface planes when choosing higher bounce heights.  

The effect of the surface appearance of the planes on the judgment of bounce height was assessed in 

terms of log odds of choosing the first stimulus to have higher bounce height than the second stimulus. 

The binomial GLMM analysis showed the coefficients for the log odds to be larger for bounce heights 

presented with rough textured surface plane (b = 0.16, SE = 0.04, p < 0.001), compared to smooth 

surface plane. Interestingly, average bounce heights, using the 34 mm bounce height as the reference 

level, were found to have non-significant effect on the log odds (for 37 mm, b = 0.00, SE = 0.06, p = 

n.s.; for 40 mm, b = 0.08, SE = 0.06, p = n.s.). The predicted probabilities for choosing the first stimulus 

to have higher bounce height were the following (rough first and smooth second: 34mm = 50%, 37 = 

48%, 40 = 51%), compared to bounce heights presented with smooth surface planes (smooth first and 

rough second: 34mm = 45%, 37 = 46%, 40 = 47%). Moreover, in order to create a contrast between 

the average mid-height (37 mm) and the average highest bounce height (40 mm), we changed the 

reference level of the average bounce height from 34 mm to 40 mm. Such changes did not result in 

significant difference between the estimated coefficients, as both contrasts were found non-significant 

(for 34 mm bounce height, b = -0.08, SE = 0.06, p = n.s.; and for 37 mm bounce height, b = - 0.08, SE 

= 0.06, p = n.s). The estimated coefficients for the initial model are represented in Figure 7b. 

Based on the predicted probabilities (y) of judgement of physical bounce height of the first presented 

stimulus (x), the overall estimated metric effect on judged bounce height for rough surface planes (y = 

-2.18 + 0.07x) was 0.6 mm higher (estimated metric: 32mm, 35mm, 38mm, 41mm, 44mm, M= 38mm), 

compared to the estimated metrics for smooth surface planes (y = -2.16 + 0.07x, estimated metric: 

32mm, 34mm, 37mm, 40mm, 44mm, M= 37.4mm). Overall, judged bounce height on rough surface 

planes was estimated to be 1mm higher than the actual stimulus bounce height (stimulus bounce height: 

31mm, 34mm, 37mm, 40mm, 43mm, M=37mm), whereas judged bounce height on smooth surface 

planes was estimated to be 0.4mm higher than the actual bounce height. 
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Figure 7. a) The effect of surface texture over average bounce height in terms of log odds (logit P) of judging the first 

bounce height to be higher than the second bounce height. b) The estimated coefficients for the fixed effects surface texture 

and average bounce height for specular surface planes, ordered from the largest (top) to the lowest. The log odds of judging 

the first bounce height to be higher significantly increased when the bounce was presented together with rough surface 

plane. Unlike the results from Experiment 1, average bounce height was found non-significant.  
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For the subjective ratings given by the participants, we found a reasonable correspondence between 

the surface appearances and the ratings. The participants rated the rough surface texture to be rougher 

(M = 3.92, SD = 0.85) and less shiny (M = 3.14, SD = 0.99) than the smooth surface texture (Roughness: 

M = 1.81, SD = 0.91; Glossiness: M = 3.45, SD = 1.08). Both surface textures were, however, rated 

shiny on the average. For the hardness ratings we found the two surface textures to be rated very 

similar, where both surface textures were rated to have hard quality (rough surface texture: M = 3.26, 

SD = 0.65; smooth surface texture M = 3.26, SD = 0.65). Moreover, we found the hardness ratings of 

the surface planes to be influenced by the absolute bounce height, as the hardness ratings followed the 

increasing bounce height (see figure 8). 

 

 

 
 

Figure 8. The mean rating scores and standard errors of the rating scales a) roughness, b) glossiness, and c) hardness for 

the 10 surface planes with added specular highlights and either rough surface texture or no texture (smooth appearance). A 

correspondence between the surface texture and rated roughness (a) is seen, including an increment in rated hardness in 

line with increasing bounce height (c). Less distinction is found between the two types of surface planes and rated glossiness 

(b) as well as rated hardness (c). 

 

 

We found excellent inter-rater reliability among the participants for rated roughness with the average 

ICC of 0.98 with 95% confidence interval ranging from 0.88 to 1 ICC, (F(1,29) = 43, p < 0.001. A 

good reliability was found for rated glossiness, 0.88 ICC with 95% confidence interval ranging from 

0.37 to 1 ICC, (F(1,29) = 8.4, p < 0.001, but no significant reliability was found for rated hardness, -

0.02 ICC with 95% confidence interval ranging from -0.1 to 0.07 ICC, (F(1,29) = 0.05, p = n.s. Keeping 

the bounce height as the single predictive variable in the analysis did not improve the inter-rater 

reliability for rated hardness, ICC = -0.01, with 95% confidence interval ranging from -0.07 to 0.04 

ICC, (F(1,29) = 0.49, p = n.s.  
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General Discussions 

While moving around as active perceivers we learn about the physical properties of the world and how 

to interact with them. We learn that a ball will bounce higher on a cement ground compared to a 

carpeted floor, and we create associations between the typical appearances of those grounds and their 

intrinsic properties such as hardness quality. A knowledge we rely on when estimating the intrinsic 

properties of new materials. In the current study we examined how changes in the visual appearance 

of a surface plane resulted in systematic changes in judged bounce height of an object. It was theorized 

that participants would judge bounce height differently depending on the surface features of the plane 

on which the ball bounced, due to generic knowledge of materials obtained from earlier encounters 

with similarly looking surfaces.  

In experiment 1 we tested matte surface planes with rough and smooth textures. The best fitted model 

to describe our data from the paired-comparison task, was a model with surface texture and average 

bounce height as fixed effects. A GLMM analysis revealed judgment of bounce height to be 

significantly affected by the two fixed effects, in which we found increased probability of perceiving 

a higher bounce when it was presented on rough surface planes compared to bounces presented on 

smooth surface planes. This suggests that the participants were more likely to perceive a higher bounce 

height on a rough surface plane. The estimated metrics of judged bounce height support this, although 

the participants judged bounce heights on both surface textures to be lower than the actual stimulus 

bounce height. 

In terms of the subjective ratings, a correspondence was found between the intended appearance of the 

surface planes and rated roughness and glossiness. Interestingly, a high consistency between the 

different participant ratings was found for rated hardness, suggesting that the rated hardness of the 

visual appearance of the matte surface planes is somewhat objective. Based on the results from the 

paired-comparison task, it was expected that the participants would rate the rough surface plane to have 

harder quality than the smooth surface plane. Since, the participants chose higher bounce heights with 

rough surface planes more frequently than they chose the smooth surface planes. However, in contrast 

to what was expected, the participants rated the smooth surface planes to have harder quality than the 

rough surface planes. One possible explanation for such difference, could lie in the context of the two 

tasks and what was expected of the participants. In the paired comparison task, the participants were 

expected to focus on the bounce height without any explicit instructions to pay attention to the 

characteristics of the surface plane, whereas in the rating task, the participants were asked to observe 

the surface plane and rate it. Regardless, both surface planes were rated with hard qualities on the 

average, suggesting the planes were perceived to have the intrinsic properties required to afford the 

ball to bounce on it.  

In experiment 2 we tested the same surface planes as in Experiment 1, but with the addition of specular 

highlights. This was done to examine whether the effect found for surface texture in Experiment 1 was 

either enhanced or decreased if specular properties were added to the surface planes, creating a 

qualitatively different material. Using similar method as used in Experiment 1 to analyze the data, we 

found that the participants estimated the bounce height to be higher on the rough surface texture. 

Nevertheless, the log odds as a function of average bounce height varied much less in comparison to 

the results obtained in Experiment 1. Moreover, the GLMM analysis revealed that only surface texture 

had a significant effect on the judgment of bounce height, where the average bounce height was found 

to be non-significant. Indicating that each average bounce height level (34mm, 37mm, 40mm) was 

judged equally likely to have higher bounce height. Furthermore, removing average bounce height as 

a fixed effect from the final model improved the model fit in terms of AIC score. Although the 
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participants favored rough surface plane when choosing higher bounce height in the paired-comparison 

task. It appears that the participants disagreed on how soft or hard the surface planes were, as the inter-

rater reliability for rated hardness was found non-significant for specular surface planes. This suggests 

that hardness assessment is a very subjective property when judging surfaces with specular appearance. 

Regardless, on the average the participants judged the shiny surfaces to have hard qualities. Moreover, 

the estimated metrics of judged bounce height revealed participants to overestimate bounce heights 

presented on specular surfaces, especially bounce heights presented with rough surface planes. In both 

experiments, the participants judged bounce heights on rough surface planes to be higher in mm 

compared to bounce heights on smooth surface planes. However, the participants underestimated the 

bounce heights presented with matte surfaces, whereas bounce heights presented with shiny surface 

planes were overestimated, that is estimated to be higher than the actual bounce heights. Suggesting a 

relationship between surface glossiness and perceived bounce height, where shiny surfaces ‘afford’ 

higher bounce heights compared to matte surfaces.  

Overall, the results demonstrate an involvement of learned associations between the distinctive 

appearances of materials and their functional qualities in assessment of bounce height. In both 

experiments, the participants assigned a hard quality to all of the surface planes, suggesting a 

relationship between the physical appearance of the surfaces and their intrinsic properties. A similar 

relationship has been demonstrated before by Vrins, Wit and van Lie (2009), who showed that the 

generic knowledge of physical properties of materials can influence whether a participant sees an object 

as a whole or not when partially occluded. Using an amodal completion task, Vrins et al., found that 

when participants were presented briefly with a round object with the appearance of either soft or hard 

material (e.g., a cucumber slice or a metal disc), and partially attached to a block with the appearance 

of either soft or hard material (e.g., a butter or a brick), participants reported a completed circular slice 

only if the slice was penetrated into a soft block (butter) as opposed to a hard block (brick). Indicating 

that the perceived completion was shaped by the knowledge that both the metallic disc and the 

cucumber slice would remain whole if pushed into a soft butter, but not if pushed into a brick. Similar 

to cognitive stereotypes, where judgments are based on the notion that similarly looking things are 

likely to yield similar behavior (Buckingham et al., 2009; Macrae, Milne & Bodenhausen, 1994), we 

anticipate the intrinsic characteristics of a material from its signature visual characteristics, based on a 

pool of previously experienced similar examples.  

In both experiments, the hardness ratings followed the increment of the bounce height in a step-like 

manner, where surface planes with higher bounce heights got rated harder than the surface planes with 

physically lower bounce heights. Regardless, based on the performance in the paired comparison task, 

we would have expected surface planes with rough texture to be rated with harder quality than surface 

planes with smooth texture. On the contrary, for matte surface planes the average subjective rating for 

hardness was larger for smooth surfaces compared to rough surface planes, whereas the surface planes 

with specular appearance were rated similar despite their difference in roughness. Moreover, we found 

a high consistency between the different participants ratings for the two matte surface textures, rough 

and smooth, which indicates that hardness is somewhat an objective material property. At least when 

it comes to matte surfaces, as low consistency was found for the shiny surfaces. A high consistency 

between participants in rated hardness has been reported before by Fleming, et al. (2013), who also 

found negative correlations between rated roughness and glossiness, similar to our findings, when 

judging images of various material classes. Like in our study, their participants rated rough surfaces 

with less glossiness. Such negative correlation between roughness and glossiness is sensible given that 

when a light hits a rough surface it reflects in many directions, creating a diffused (matter) reflection.  
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There are few items and challenges to consider for a follow-up analysis. In the current study, we 

simulated surfaces using textures and appearances commonly used for simulating floor covering and 

ground surfaces, in particular the material properties roughness and glossiness. An interesting follow 

up would be to include other common attributes such as elasticity, slipperiness, and compliance. 

Especially slipperiness, since surface friction has been reported to influence glossiness perception, in 

which surfaces with low friction are perceived to be shinier (Adams, Kerrigan, & Graf, 2016). 

Moreover, it would be interesting to look into well-defined material categories of surfaces (e.g., grass, 

sand, concrete, wood, carpet, and steel), to see if similar effect on bounce perception is achieved using 

higher-level categories of materials. In our experiments we kept the bounce physics (e.g., gravity, mass, 

angular drag, and friction) constant for all of the four surface planes tested, besides the bounciness 

settings, which was varied in five steps in order to achieve the five bounce heights for our stimuli. 

Changing the physics settings in future experiments would be an interesting addition to our work, as it 

could tell us more about perceived kinematics of a bounce, and how such variables are affected by the 

context the bounce is presented in.  

In summary, we found that visually different surface planes induced different perception of bounce 

height. We have shown that the hardness of a material can be visually assessed when observing a 

familiar object bouncing on it. Moreover, we have shown that the perceived bounce height is different 

depending on the distinctive characteristics of the surface plane. Overall, rough surface planes were 

chosen more frequently compared to smooth surface planes when choosing higher bounce heights. In 

the second experiment we found that the addition of specular highlights enhanced this effect, but 

resulted in smaller difference between the two surface textures, rough and smooth, as well as lower 

consistency between the participants in perceived hardness. We conclude that the visual assessment of 

bounce height is not only based on the physical properties of the bounce itself, but it also incorporates 

generic knowledge of what materials look like and what they afford. 
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Abstract

We show how a humanoid robot can learn to estimate the weight and hardness of
objects during manipulation and to use these features to categorize the objects. The
robot uses ‘proprioceptive’ feedback from servos controlling the harm to measure both
hardness and weight without using any sensors within the actual hand. The different
objects are categorized in a self-organizing feature map using the combination of weight
and hardness.

In addition to the proprioceptive sense, the robot uses a visual system to identify the
the visual characteristics of objects as well as their identity. The visual processing of
the objects consists of foreground segmentation, followed by color and texture analysis to
produce a visual feature vector for each object. The proprioceptive and visual processing
combine to produce multi-modal representations of the objects. This can be used to
associate between the modalities and may also be used to reduce the amount of energy
used when lifting lighter objects.

Our experiments with the robot show that the method can learn object properties
from visual and manual exploration. The proposed method is one component in a system
that learns object affordances.

1 Introduction

Already from a young age we learn about the physical properties of the world we live in and
to incorporate that knowledge into our actions to perform daily tasks, such as reaching for a
soft toy or a hard building block to play with. These motor actions appear effortless, but are
nevertheless remarkable, considering the great diversity of physical properties that needs to be
recognized in order to pick up the toys and handle them without mistakes. Moreover, toys and
other objects are made from all kinds of materials (e.g. plastic, metals, fibers etc.) all of which
have their own typical characteristics, both visual and physical, that influence how we interact
with them.

Many physical properties that typically describe the characteristics of materials, such as
roughness, weight and hardness, are normally perceived directly using touch. We actively
explore the surface of objects to know how rough or smooth the objects are, and we weigh the
objects using our hands to estimate their weight, and we test how compliant or hard the objects
are by applying force to their surface (Bergmann Tiest, 2010; Lederman, 1974; Lederman and
Klatzky, 1987; Okamoto et al., 2013). Usually before objects are touched to be interacted
with, we visually explore the objects to locate them in space. We also use the provided visual
information to estimate the size and the shape of the objects to prepare the grip size of our
hands to hold the objects accurately (Johansson and Cole, 1992), and we estimate the weight
of the objects based on their size and type of materials Saccone et al., 2019, and prepare the
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grip force that is required to manipulate the objects without slippage (Zoeller et al., 2019).
Perceived hardness/softness is based on the compliance of the material the object is made
from and is measured as how much an object deforms when force is applied to it (mm/N)
(Lederman and Klatzky, 1987). For a study on perceived compliance see e.g. Zoeller et al.
(2019). Hardness differs from other modalities in that it requires an active manipulation of the
object to be perceivable.

Other material characteristics, such as surface gloss, are perceived using sight but may
nevertheless convey tactile information (e.g. friction), see e.g.Chadwick and Kentridge (2015);
Paulun et al. (2016), which is interesting considering that a number of studies have demon-
strated similarities in material representations between the visual and the haptic domains, see
e.g. (Baumgartner et al., 2013; Vardar et al., 2019). For instance, a high correspondence
has been demonstrated between perceived softness based on tactile and visual information of
compliance (Cavdan et al., 2021). Furthermore, a number of studies have demonstrated the
involvement of implicit prior knowledge of the physical properties when planning interactions
with object, in which the planning of the haptic exploration is guided by learned associations
between the typical visual features of the objects and previous sensorimotor experience of sim-
ilarly looking objects (Buckingham et al., 2009, 2011; Flanagan and Wing, 1997; Flanagan and
Beltzner, 2000; Wolpert and Flanagan, 2001).

The ability to recognize physical properties of materials based on visual features is present
at an early age. Paulus and Hauf (Paulus and Hauf, 2011) demonstrated a developmental
progression of material knowledge in 9-, 11-, and 13- month old infants using a preferential
reaching task, in which 11 month old infants were able to visually recognize previously pre-
ferred light object over a heavy object based on their visual features alone. More interestingly,
the 13 month old infants were able to generalize the previously learned association between
the material properties and visual characteristics, to novel objects made of same materials as
the previously explored objects. That said, material knowledge is a complicated process that
involves information from all of our senses as well as our memories of previous interactions with
similar materials.

J. J. Gibson (1966; 1979) described the link between perception and action by defining the
concept affordance, and argued that we as active agents perceive action possibilities (affor-
dances) of objects directly through vision (Şahin et al., 2007). According to Gibson, the design
of a chair affords the action to sit and the handle of a coffee cup affords the action to hold.
Although Gibson’s idea of the term affordance usually applies to the geometrical shape of an
object, one could borrow the concept to describe perceived action possibilities based on other
object properties than shape. After all, objects do not only come in various geometrical forms,
but they also come in various types of materials that differ in physical properties, in which each
property requires a specific type of handling. For instance, a fluffy cube with round edges made
of synthetic fibres has soft physical properties and would afford the action to squash, whereas
a similarly shaped wooden cube with sharp edges and hard physical properties would require
a greater force to be deformed. Despite their similarities in geometrical shape, the perceived
action possibilities are different due to their different material properties.

Several studies have investigated how robots can learn affordances by interacting with ob-
jects (Fitzpatrick et al., 2003; Gonçalves et al., 2014; Montesano et al., 2008; Stoytchev, 2005),
how a robot could learn about tools use (Mar et al., 2015) and the dynamic properties of objects
(Tikhanoff et al., 2013). Methododlogies includes Bayesian networks(Montesano et al., 2008),
convolutional networks (Nguyen et al., 2016), and more recently, metric learning (Hjelm et al.,
2019).

Although the shape of an object is usually the primary focus in studies of affordances, a
number of techniques have been developed to allow humanoid robots to sense the hardness of
manipulated objects. Matsuoka (1995) used competitive neural networks to learn the hard-
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Figure 1: The robot Epi the picking up an object.

ness of objects from measurements made using force-sensitive resistors in combination with a
potentiometer-based angle sensor in each finger. A similar idea was used to recognize both
hardness and texture using self-organizing maps (Johnsson and Balkenius, 2008b,a, 2009). Re-
goli at al. (Regoli et al., 2017) also used this approach for the iCub that repeatedly squeezed
an object to determine its hardness. This can be seen as exploratory movements that serve to
obtain information about the object (Hoelscher et al., 2015). An alternative method is to use
optical techniques to record the deformation of the finger as it touches an object (Yussof et al.,
2008). Common to all these methods is that they look at the sensory signal over time as an
object is touched and the change to the sensory signal over time reflects the hardness of the
object.

The weight of an object is in principle is easier to determine. It can be measured by using
piezoelectric sensors directly (Choi et al., 2006) or by using deflection sensors in the limbs
(Sugaiwa et al., 2010).

Below, we show that both hardness and weight can be estimated without any specific sen-
sors by using feedback from the servos involved in the manipulation of an object. Furthermore,
we show how a robot can learn an associative mapping between visual features and proprio-
ceptice features (hardness and weight). The proposed mechanism could constitute a part of an
affordance learning system.

We approach the problem in two experiments. In the first, we test if the robot is able to
measure weight and hardness using a small number of objects as a proof of concept. Based
on the results of the first experiment we subsequently developed a system based on different
learning mechanisms that is able to learn both weight and hardness dimensions and we tested
the system in a systematic way with a larger number of objects. Finally, we designed a model
of how the robot can learn a map between the different modalities.

The humanoid robot Epi

For the experiments, we used the humanoid robot Epi that has been developed at Lund Uni-
versity Cognitive Science (Johansson et al., 2020) (Fig. 1). It has two arms with five degrees
of freedom each, three in the shoulder, one in the elbow, and one in the wrist. Each joint
is controlled by a Dynamixal MX-106 servo that allows position control and produces a large
number of feedback signals that can be read through a serial interface. These include, the
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Figure 2: The design of the robot hand used in the experiments. The four movable fingers are
controlled by a single servo through a gear rack that drags rubber tendon using a whippletree
mechanism within the palm of the hand to distribute the force from the servo to the different
fingers.

current position, the current used, temperature etc, and specifically the a value called ‘load’
that roughly corresponds to the current effort of the servo. Load has relatively low resolution,
but by integrating over time, a better sensitivity can be obtained.

Epi has two hands with a single servo that controls all fingers except for the stationary
thumb (Fig. 2). Each of the movable digits are controlled by an individual tendon made
from 3D-printed polyurethan plastic. The force onto each of the tendons is controlled by a
whippletree mechanism (Fukaya et al., 2000) within the palm of the hand that distributes the
forces between the fingers and makes the fingers automatically grasp around objects.

The rubber design can withstand very strong forces and it is not possible to manually break
the tendons by dragging or tearing. The joints continue into the tendon that then seamlessly
connect to tendon of the next finger (Johansson et al., 2020).

The fingers have no dedicated touch sensors. Instead, the robot uses feedback from the
servo controller to determine if the fingers are touching during a grasp.

The head contains two laterally moving eyes with HD-cameras. The head itself can turn
sideways and tilt up and down.

The robot is controlled by the Ikaros1 system that is an infrastructure for system-level brain
modeling that also implements a number of analysis and control modules that were used in this
study (Balkenius et al., 2010).

2 Experiment 1

In the first experiment feedback data from the hand and arm of the robot was analyzed while
it manipulated different objects. We also recorded images of the objects from the robot eyes.
The data was used to analyse the weight and hardness of the objects as well as their visual
appearance.

1www.ikaros-project.org
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Figure 3: The objects used for the experiment as viewed by the robot. They differ in hardness,
weight as well as color and texture.

Objects

Eight objects were used in the experiment (Fig. 3). They were selected based on their different
visual appearance and different hardness. The objects from hardest to softest were (A) a
wooden cube with a black and white texture, (B), a pink foam ‘egg’, (C) a clementine, (D) a
crocheted light pink cube, (E) a crocheted blue cube, (F) a light green sponge, (G) a piece of
white cotton, and (H) the light green sponge in another orientation.

Procedure

The robot performed the same motion for each object. The behavior was a pick-and-place oper-
ation where the robot first grasps an object and then lifts it to transport it to another location.
The movement of the robot is controlled by the motion sequencer in Ikaros that produces a
fixed behavior pattern. This behavior is controlled using position control with a resolution of
40 Hz to allow the arm to trace the desired trajectory. The objects that were manipulated were
always located at the same location so no eye-hand coordination was necessary.

When the motion sequencer begins a new action, it triggers the modules that do hardness
and weight estimation, to let them start their measurements (see below). It also triggers the
visual system to make it store images of the objects from the left and right eyes of the robot
before manipulation. The motion sequencer communicates with the robot through a servo
control module that sends commands to the servos in the robot and also collects the feedback
signals from those servos. Specifically, the load signals of the hand and the shoulder servos are
sent onward to the hardness and weight estimators.
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Figure 4: Weight measurements for the eight objects (in arbitrary units) based on servo load
in the shoulder joint. There is a relatively small difference in the weight of the objects.

Weight analysis

To estimate the weight of an object we used measurements of load from the servo at the first
shoulder joint which would be expected to result in the largest effect due to the larger leverage
at this point. We here used the average of the load measurements over the whole action to
reflect that the servo is influenced by the weight of the object throughout the action.

We tested whether the robot could measure the weights of the different object during the
pick-and-place behavior. Fig. 4 shows the results. There is not a large difference in the mea-
surements for the different objects, reflecting their relatively similar weights.

To test a larger range of weights, we let the robot lift a box containing weights several
time. We used the weights 50 g, 150 g and 200 g and measured the load on the first shoulder
servo throughout the movement. Fig. 5 shows the result. There is an almost linear relationship
between weight and the load measurement.

Hardness analysis

To analyze the hardness of a grasped object, the robot uses the time series consisting of the
load feedback from the servo controllers during the closing of the grip. We have earlier shown
that the time series generated at a pressure sensor during a grasp contains information about
the hardness of an object (Johnsson and Balkenius, 2008b,a, 2009). Here, we instead use
feedback signals from the servo. For a soft object, there is nearly no resistance during the
closing of the hand. For a harder object, resistance is larger. We analyzed the load of the
servo over time and concluded that the average of the load during the closing of the hand was
a good predictor of hardness. Surprisingly, the lead measurement appears to be the inverse
of what we expected. Unfortunately, the computation of this signal in the Dynamixel servo is
undocumented (Mensink, 2008), so we can not determine why this is the case without further
experimentation with the servos. Nevertheless, it is a useful signal that can substitute for
pressure sensors in the fingers and can be mapped to a hardness dimension (See Fig. 6).

The results show that the variability is relatively low, but there are a few outliers. The
sponge laying flat on the table, object H, also has a larger variability than the other objects.
The reason for this is that this object in this orientation is very sensitive to the exact location of
the grasp since it contains both softer and harder material. The outliers are a result of the same
problem. When the robot grasps slightly differently, it may measure the hardness differently.
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Figure 5: The load at the first shoulder servo for three objects with the weights 50 g, 150 g and
200 g recorded during the whole pick-and-place operation. There is an almost linear relationship
between the integrated load and weight. Each circle represents one measurement.

This can easily be overcome by allowing the robot to squeeze the same object several times
and average the measurements, similar to how a human would measure hardness by repeatedly
squeezing.

Image analysis

The image of each object from the left eye was analyzed to produce a visual description of the
object. Before visual analysis of each object, foreground pixels where detected using using the
Stauffer-Grimson background subtraction method (Stauffer and Grimson, 1999). This method
learns a gaussian mixture model of the background pixels that is later used to detect pixels with
a color that differs from the learned background. Since this method depends on a stationary
camera, it can only be used while the robot is looking at the same location on the table in
front of it, but that is sufficient for the current study. When the foreground pixels have been
detected, morphological operators are used to fill out the pixels to a simply connected region.

Next, the foreground pixels are analyzed in two ways. The first is based on a color histogram
(Swain and Ballard, 1991; Van De Sande et al., 2010). The output of this processing stage is a
vector with 64 elements, each of which codes for the relative amount of color within a certain
color band. For simplicity, this is done in the RGB-color space since that is sufficient here, but
in general, a transformation to a more adequate color space could be useful.

The second component uses a HOG-description of the foreground pixels (Dalal and Triggs,
2005). Since we are not interested in object detection for current study, but rather in how
visual surface properties can be associated with material properties, a single HOG-descriptor
is applied to the whole foreground area. The output is a histogram with eight elements that
represent the distribution of gradients in the foreground patch of the image.

Mapping visual features to material properties

The model used to let Epi associate visual properties to material properties is shown in figure. 7.
There are essentially two pathways from the sensory systems to a central associative mechanism.
One has its origin in visual processing, starting at the top of the figure, while the other starts
in the motor control system and is drawn at the bottom of the figure.
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Figure 6: The estimated hardness of each object ranging from hard (A) to soft (H) based on
the measured servo load during the closing of the hand (peak). Each box represents six grasps
of an object and shows the variability of the measurement.

The results of the weight and hardness analysis are sent to a pair of associator modules that
learn associative mappings from the visual descriptors of an object to the hardness and weight
of that object. The expected material properties are calculated as a linear mapping from the
visual feature vector.

The associator uses the LinearAssociator module in Ikaros that can learn the mapping on-
line, either using the delta rule or directly by estimating the optimal mapping using the least
square method. The latter method was used here and the association was calculated by left
division of a matrix containing the visual feature vectors for each objects in the columns with
the column vector containing the estimated hardness or weight for each object:

There are two comparators in the model that compares the expected hardness and weight
to the estimated sensory properties and produce a surprise signal when expectations are not
met. These modules compute the difference between the expected properties computed from
visual features and the currently estimated value from the interaction with the object.

The robot was allowed to test each of the objects once to learn an associate mapping from
visual features to hardness and weight. Given the low number of objects, the robot was able to
learn a perfect mapping. The error in the expected hardness and weight was less than 10−14 for
all the objects. This is what would be expected if the visual description vectors were orthogonal
to each other. To test this we computed the confusion matrix for the different descriptors using
cosine similarity between every pair of objects (Fig. 8). As can be seen, the description vectors
are not orthogonal, but there is still a good separation between the objects.

As can be expected, the two green sponges (object F and H) are most similar with a
similarity of 0.91. The most dissimilar objects are the clementine (C) and the piece of cotton
(G) with a similarity of 0.21. Surprisingly, the cotton also matches the green sponges. However,
this is an effect of the RGB-color space used for the color histogram that does not handle white
very well.
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Figure 7: Overview of the implemented model. See text for explanation.

A B C D E F G H

A 1.00 0.54 0.30 0.74 0.56 0.68 0.81 0.77

B 0.54 1.00 0.26 0.55 0.43 0.63 0.63 0.62

C 0.30 0.26 1.00 0.33 0.26 0.26 0.21 0.28

D 0.74 0.55 0.33 1.00 0.53 0.67 0.72 0.79

E 0.56 0.43 0.26 0.53 1.00 0.52 0.54 0.57

F 0.68 0.63 0.26 0.67 0.52 1.00 0.84 0.91

G 0.81 0.63 0.21 0.72 0.54 0.84 1.00 0.88

H 0.77 0.62 0.28 0.79 0.57 0.91 0.88 1.00

Figure 8: Confusion matrix for the visual description vectors for the eight objects. The visual
coding is sufficiently different for the different objects to allow perfect mapping to the material
properties.
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Discussion

Through repeated experiences of weighing or squeezing an object and associating that weight
and hardness with the visual characteristics of that object humans develop internal models of
material knowledge and incorporate that knowledge into our future actions. We implemented
this mechanism in a humanoid robot and tested how well it was able to estimate the material
properties during manipulation of objects.

Furthermore, we designed a computational model that can learn to associate visual features
with material properties to form expectations of future interaction with the object. Similarly to
infants learning physical properties of the world through repeated encounters of seeing, reaching
for and grasping various objects, the humanoid robot learns to pair heaviness and hardness with
provided visual information.

A limitation of the visual system is that the texture analysis using the HOG-operator is
only made at a single scale. It would also be useful to look at other visual texture features to
make the analysis of the surface properties more complete.

Another possible extension would be to explore behaviors that more actively tries to measure
the hardness and weight of objects, for example, to press the object repeatedly or to move
the hand up and down while weighing the object in the way that a human would. Such
behaviors would allow the robot to integrate the signals over a longer time and will potentially
result in more stable measurements. It is possible that such strategies would result in better
measurements for objects with a low weight, as those shown in Fig 4. There also appear to
be some interaction between shape, hardness and weight that could be further explored. We
address some of these issues in a second experiment.

3 Experiment 2

The promising results of the first experiment encouraged us to further investigate multimodal
representations of objects with a larger data set. In the second experiment we used 25 objects
and looked at the ability of the robot to estimate the weight and hardness of the objects.

Objects

For the second experiment we used 25 different object (Fig. 9). These were selected to represent
different weights and hardness as well as different visual features including size, color and
texture. We also used a set of 50 g weights to train the robot on weight perception.

Procedure

To collect training data for weight learning, the robot lifted its arm while holding different metal
weights ranging from 50 to 500 g in steps of 50 g. Each metal weight was lifted five times and the
time series from the load signal from the servos was recorded together with the position feedback
from the servos and a trigger signal that was generated when each measurement movement
started. This signal was used to divide the complete time series into separate sequences for
teach weight.

The robot used two types of movements to explore the 25 objects. The first consisted in
holding the object in the hand while moving it up and down five times. In the second, the
robot would squeeze the object five times. These procedures were repeated a number of times
for each object.

Load and position feedback from the hand and elbow servos were recorded together with a
trig signal that indicated the start of each trial.
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Figure 9: The 25 objects used in experiment 2.

Supervised learning of weight

In this experiment we first trained the robot to estimate the weights of different metal weights
with specified weights using supervised learning. Figure 10 shows five examples of the time
series recorded for the 100 g weight. There is very little variation in the time series between
the trails. A neural network was trained to map from the time series for each measurement
to the corresponding weight. We used Keras to run networks with different number of layers
and different activation functions. However, a linear mapping from the input layer to a single
output node proved to be sufficient. The first layer consisted of 230 nodes, the length of the
time series, while the output used a single node. Both layers used a linear activation function.
The training targets were scaled to the range 0 to 1 to fit the output range of the network
during training and were scaled back for the testing of the network. The network was trained
on all the data using a mean square error loss function for function approximation. We did not
use a separate test or validation set since we intended to test the network on the actual objects
in the second phase. The best run of the training phase gave a maximum error of 0.12 g. This
shows that the actual weight of the objects is a linear function of load time series during the
weighing operation so a simple linear regression would have been sufficient. Fig. 11 shows a
box plot of the learned mapping from the time series to weight. As can be seen, there is almost
no visible variation in the estimation.
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Figure 10: Five superimposed time series for the 100 g weight. The robot shows good repeata-
bility.

Figure 11: The estimated weight for each of the metal weights. Each box represents five
separate weighing operations. There is very little variation and even the outliers, marked with
circles, are very close to the median.

Estimating the weight of the different objects

We tested the ability of the robot to weigh the 25 different object after training with the metal
weights. The result are shown in figure 12. The average error was 10.3 g. The robot did
reasonably well on the heavier objects while the error was much larger for the light objects.
For the lighter objects, the weight of the arm and hand has the relatively larger effect on the
load feedback. In contrast to the training that used identical weights hanging in the exact same
way from the hand, there is also a larger variation in the grasp of the different objects which is
likely contributing to the larger variation in this case.

Unsupervised discovery of the weight dimension

Both Experiment 1 and the weight learning here indicate that that weight is a linear function
of the load feedback from the servos, it thus seems reasonable that the weight dimension could
be learned directly from the data without the actual weight as target. We investigated this
using principal component analysis (PCA) on the times series from the servos. We did not use
any manual tuning of the process. Instead, the whole time series was used for each object.

Figure 13 shows the amount of variation in the data explained by each of the first principal
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Figure 12: The estimated weight for each of the objects. Each bar represents the average of
five independent weighing operations of the same object. The last red bar to the right is the
estimation for an empty hand.

components. It is clear that nearly all variation is explained by a single dimension. The variance
ratio for the first principal component is 0.82. In Figure 14 we have plotted the measurements
for the different objects mapped onto the space spanned by the first two principal components.
This suggests that the firsts principal component is indeed weight. It is clear that the principal
component analysis has discovered the weight dimension in the time series.

As a last step, we repeated the estimation of the weights of the 25 object using the PCA-
based method. To allow a comparison between the PCA-based estimation and the actual
weights of the objects, we scaled the estimated weight for each object to obtain the same mean
for the estimations as for the actual weights. The results are shown in figure 16 together with the
estimates using the supervised learning as described above. It is clear that the PCA-estimates
are much less noisy that those for the neural network based method. The RMS error for the
neural network based method was 22.4 g while the PCA-based method had a RMS error of
17.9 g.

Unsupervised discovery of the hardness dimension

Given the results in experiment 1 and the success of the PCA-based method for weight estima-
tion, we tried this method also for hardness estimation. An example of the load feedback from
the servos during the squeeze operation is shown in figure 17. Like for weight, we performed a
principal component analysis of the feedback signals from the servos. In controst to the weight
estimations, there is substantial variance in more than one dimension (Fig. 18). The first three
principal components have a variance ration of 0.26, 0.26 and 0.07 respectively.

Figure 19 shows the location of the measured objects in the space spanned by the first
two principal component of time series recorded during the squeezing operation. The first
principal component roughly corresponds to the hardness of the objects but the second principal
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Figure 13: The variance explained by the 25 first principal components.

component also appears to differ for the different objects. Subsequent measurement of the
same objects are nicely clustered together indicating both that the robot hand shows good
repeatability and that different objects can be distinguished based on the load feedback. The
separation of the objects is not perfect but that would not be expected given that some of the
objects are rather similar. For example, the two cubes differ only in visual appearance and not
in weight, shape or hardness.

A haptic self-organizing map

To see if the objects could be distinguished purely based on feedback from the servos we trained
a self-organizing map (Kohonen, 1990) to represent the space of the haptic feedback. We used
one the values produced by the PCA-analysis for weight and hardness, one for weight and two
for hardness There were thus three measurements for each object as input to the self-organizing
map. Before training we normalized the input variables to each have zero mean and a standard
deviation of 1. The reason for this is that we did not want one of the variables to dominate the
training of the self-organizing map. The

We used the SimpSOM library (Comitani, 1019) for for the simulations and set up a network
with 50×50 nodes and trained it for 10000 epochs with an initial learning rate of 0.01.

Figure 20 shows the maps learned as a result of the training for the three input variables.
The different patterns for the three dimensions indicate that nodes have learned to react to
different combinations of the input values.

Figure 21 shows the weight difference map which is an indication of soft borders between
clusters. The image also shows the location of each of the objects in the map as white dots.
The self-organizning map does a reasonably good job at distinguishing between the objects
based on the haptic feedback.

14



Figure 14: The weight dimension is discovered as the first principal component of the data.

Figure 15: The weight as a function of the first principal component of the measurements. It
is clear that the first principal component represents weight.
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Figure 16: TOP. The actual weights of the objects. MIDDLE. The weights of the objects
estimated using the neural network. BOTTOM. The weights of the objects estimated using
the first principal component (scaled to the mean of the actual data for comparison). The
PCA-based method is clearly less noisy.

Figure 17: Five consecutive time series for object A. The variability of the measurements is
slightly lager than for the weight measurements.
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Figure 18: The variance ration for the first 25 principal components of the times series during
the squeeze operation.

Figure 19: The first two principal components of the feedback from the hand servo during a
sequence of squeezes of objects A-Z. Objects with similar properties such as A and B or G and
H are represented very close to each other in the space.
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Figure 20: The maps for each of the three features. The different feature dimensions are mapped
preferentially to different locations in the map.

Figure 21: The location of each of the objects on the self-organizing map plotted on a graph
of the node’s weight difference.
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Discussion

In the second experiment we further investigated the information in the haptic feedback from
the servos during manipulation of 25 objects. We first showed that a simple neural network
could be trained to very accurately estimate the weight of each of the object. Furthermore, we
shoved that weight and hardness dimensions could be recovered from the data using principal
component analysis. Finally, trained a self-organizing map to code the different object on a
two-dimensional map. It is interesting to note that the shape of the object influences the
perception of hardness. Since the robot hand has five fingers that are connected to a single
servo, it will matter whether all fingers meet resistance from the object or not. This will make
a larger object where all fingers are stopped in their movement feel harder than a smaller object
like the cubes where one or two of the fingers can still bend almost completely before reaching
the object.

Although the noise in the PCA-based estimation was lower than that of the neural network,
it is possible that the neural network method could in principle give similar results if a more
thorough training method had been used to avoid overfitting. After all, both methods learn a
simple linear mapping of the data. The robustness and simplicity of the PCA-based method
still gives it an advantage. There are no parameters to set and the result is deterministic.

The self-organizing map used to learn the different object from haptic feedback shows that
there is sufficient information in this feedback to distinguish between object with different
haptic properties. Although the separation between the different objects is far from perfect,
there is a clear mapping of similarity on the map surface. Similar objects are mapped to similar
locations. For example, the three larger soft objects C, D and E are all represented in the lower
right corner of the map. Similarily object G and H that are virtually identical are represented
in the middle of the map, while F and K who both have a cylindrical shape and similar weight
and hardness are represented further to the right.

4 General Discussion

We trained a humanoid robot to recognize objects based on proprioceptive signals from the arm
and hand as well as through visual features. A novel feature of the robot used is that it can
estimate hardness, and to some extent shape, without having any sensors in the fingers. This
makes the hand very robust since there are no fragile parts in the actual fingers. Furthermore,
we investigated how the robot could learn to perceive the weight of different objects and showed
that very accurate weight measurements can be learned by both supervised and unsupervised
methods. Finally, we tested how a self-organizing map could learn to represent a haptic space
where the different object are mapped according to similarity.

There are several limitations of the current approach. For example, the weight and hardness
perception of the robot hand depends on doing the exact same motion every time. It would be
interesting to also include the position feedback from the servos in the analysis to potentially
allow the robot to sense both weight and hardness also for different speeds of the hand and
arm motions. More advanced haptic exploration behaviors could also be explored.

We have earlier investigated other robot hands with a large set of sensors (Johnsson and
Balkenius, 2008b,a, 2009), but the current study shows that in some cases a simpler design
may be sufficient. This may be of practical use in cheaper robots where the number of sensors
have to be limited. Another use of the hardness sensing described here, is that it can also be
used to detect if the robot has dropped an object. This is something we will explore further
in the future. However, we also want to combine the ‘proprioceptive’ sensing used here with
traditional contact and bend sensors on the fingers to allow the hands to sense shape as well
as hardness. Contact senors are very important for manipulation since they tell the robot that
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the shape of the hand contains information about the object.
The visual analysis can also be extended in several ways. A better color analysis will be

necessary to cope with changing illumination –– a problem that we did not address here. It
would also be possible to use more advanced texture recognition algorithms. Other properties
such as the shininess of an object could also be measured since it will typically influence the
properties of the object, for instance are brighter looking objects judged to weigh less than dark
looking objects (Walker and Walker, 2010), and glossier objects are judged to be more slippery
than matte objects (Adams and Graf, 2016).

We also want to test the generalization ability on a larger set of objects. Presumably, visual
properties such as as size and texture could be used to guess the weight and hardness of an
object even if there will obviously be a much greater error than for previously encountered
objects. The main next step will be to allow the robot to use a more advanced visual feature
analysis to estimate the weight and hardness also for previously unseen objects. Although there
is obviously no correct answer in these cases, it would nevertheless be interesting to see if the
robot could use the size and surface texture of objects to make a reasonable guess.

It is likely that a deep network could be trained to do map visual input to a feature vector
describing the glossiness and texture of an object or perhaps directly to expected weight and
hardness. This would probably require an even larger set of objects to include the possibility
for generalization between object with similar properties.

It is interesting to note that the mechanisms used here for tactile categorization could shed
some light on the corresponding mechanisms in the brain. Like our model, humans do not
usually have access to an objective measurement of the weight and hardness of an object.
Instead, we need to rely on our our own senses to learn the relevant dimensions. Our model
shows that dimensionality reduction of proprioceptive time series may play a role in this process.
Here we used PCA for this purpose, but dimensionality reduction is a property of many neural
network models and could presumably also take place in the brain using similar mechanisms
(Beyeler et al., 2019). The self-organizing map used to categorize the objects also has at least
a superficial similarity to how cortex represents perceptual information.

On use of the system in a robot would be to limit the energy consumption during manipu-
lation of objects. This is especially important for robots that runs off battery. Typically, the
servo motors are allowed to use an excessive amount of energy to move along the programmed
paths. However, by reducing the maximum current available, the energy consumption can be
significantly reduced. We currently experiment with this feature of the servos we use. By
identifying an object using vision before it is lifted, the robot can set the available current to
the minimum necessary for the operation based on its expectation of the weight of the object.

We currently use position control to move the robot joints, but if we instead used force
control, this mechanism would be even more useful. In that case, the force would need to
be adjusted so that the robot does not lift light objects with too much force. An error in
the predicted weight would in this case be similar to when we try to lift, for example, a milk
package that we believe to to be full but in fact is empty.

In summary, we have shown how a humanoid robot can detect weight and hardness using
feedback signals from its servos without the need for dedicated tactile sensors. Furthermore,
we have shown how a visual analysis of surface properties such as color and texture can be used
to predict material properties through an associative learning mechanism.
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