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Abstract 

In this study, we investigate which factors affect the false positive fraction (FPF) for digital breast 

tomosynthesis (DBT) compared to digital mammography (DM) in a screening population by using 

classification and regression trees (C&RT) and binary marginal generalized linear models. 

The data was obtained from the Malmö Breast Tomosynthesis Screening Trial, which aimed to 

compare the performance of DBT to DM in breast cancer screening. By using data from the first half 

of the study population (7 500 women), a tree with the recall probability for different groups was 

calculated. The effect of age and breast density on the FPF was estimated using a binary marginal 

generalized linear model. 

Our results show that breast density and breast cancer were the main factors influencing recall. The 

FPF is mainly affected by breast density and increases with breast density for DBT and DM.   

In conclusion, the results obtained with C&RT are easy to interpret and similar to those obtained 

using binary marginal generalized linear models. The FPF is approximately 40% higher for DBT 

compared to DM for all breast density categories. 
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Introduction 

Breast cancer screening programs are believed to improve the early detection of breast cancer and 

thus they may help to reduce breast cancer mortality [1]. However there are negative aspects 

associated with screening, such as overdiagnosis and false positive cases [1]. Digital mammography 

(DM) is the standard technique for breast cancer screening. However, it has limitations due to the 

fact that DM is a two dimensional technique that depicts a three dimensional organ. Hence, cancer 

detection can be hampered due to overlapping tissue in the images. Laming et al. [2] has estimated 

that around 15% to 30% of cancer cases may not be detected when screening with DM. Digital breast 

tomosynthesis (DBT) is a three-dimensional imaging technique that may address some of the 

limitations that DM has, in particular problems related to overlapping tissue. Several recent studies 

have shown that the combination of DBT and DM improves the cancer detection rate [3–9]. 

The Malmö Breast Tomosynthesis Screening Trial (MBTST) was designed to compare the 

performance of one-view DBT as a single screening modality to two-view DM. The study population 

consisted of a random sample of 15 000 women invited to participate in the breast cancer screening 

program in the city of Malmö, Sweden. Women accepting to participate in the study were offered a 

DBT examination in addition to the DM examination at the screening visit. The first results of the 

screening trial, obtained after half of the study population was enrolled, were recently presented by 

Lång et al. [10]. The cancer detection rate for DBT was superior to that for DM, and that the overall 

recall rate for DBT was higher than that for DM [10]. 

One of the main concerns of breast cancer screening programs is the significant amount of healthy 

women that are recalled for further examination and then found free of breast cancer (false positive 

screening)  [1,6,11]. It has been calculated that the cumulative risk of a false-positive screening result 

in women aged 50–69 undergoing 10 biennial screening tests is around 20 % [12]. The purpose of 

this article is to quantify the probability of a false positive screening using the MBTST data for the 

first half of the study population using different statistical methods. The probability of a false positive 

screening is also called false positive fraction. In some context it is also referred as false positive rate. 

We will use interchangeably the terms false positive fraction, probability of a false positive screening 

as well as recall probability and recall rate. 

Binary marginal generalized linear models (GLM) can be used to estimate how different factors 

would affect the recall probability for groups of women that share similar characteristics such as 

breast density and age.  A more recently developed non-parametric tool suitable for this type of 

problems is called Classification and Regression Tree (C&RT) [13] . This technique is employed in 

clinical research with the aim to obtain a simple pattern to classify subjects between ill and healthy, 

and to get information about which groups of individuals could benefit more from targeted 

interventions [14–18]. One of the main advantages of C&RT is that the result of the analysis is a 

classification tree, which is easier to interpret in clinical practice [14]. However, due to the 

hierarchical nature of C&RT, it is not possible to estimate the effect of a single variable on the 

probability of recall. Therefore, we complemented the results obtained with C&RT with regression 

analysis. We applied C&RT to study which characteristics the recalled women have in common for 

both imaging methods and to present this information with a classification tree. In order to further 

analyse how these factors affect the probability of false positive screening we used a binary marginal  

GLM [19].  
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Materials and methods  

Study population and image reading 

The MBTST was a clinical trial performed at the Mammographic Clinic at the Skåne University 

Hospital, in the city of Malmö (Clinical Trial number NCT01091545).  The study was approved by the 

Regional Ethical Review Board at Lund University (Dnr 2009/770) and the local Radiation Safety 

Board at the Skåne University Hospital in Malmö. Participating women gave written informed 

consent. The main characteristics of the study are discussed here. A thorough description of the 

study and the evaluation of the results from the analysis of the first half of the study population are 

presented elsewhere [10]. 

The Swedish Board of Health and Welfare recommends breast cancer screening with DM for women 

aged 40-74 at 18-24 month intervals (20). The participants of the MBTST were randomly selected 

from the screening population in Malmö. The women accepting to take part in the study were 

offered a DBT examination in addition to the DM examination at the screening visit.  

Six readers with at least 8 years of breast imaging experience participated in the study. The readers 

had experience of DBT reading from previous studies [21–23]. Two blinded readers evaluated the 

DBT reading sequence independently from the two blinded readers of the DM reading sequence. The 

DBT sequence of images consisted of an initial presentation of a one-view DBT alone, followed by the 

addition of a one-view DM and finally previous two-view DM was shown if available. The DM 

sequence consisted of a two-view DM and then an addition of a prior two-view DM if available. The 

images were evaluated and scored at each step before moving to the next step according to a 5-point 

scale: 1. normal, 2. benign findings, 3. non-specific finding with low probability of malignancy, 4. 

findings suspicious of malignancy, 5. findings highly suspicious of malignancy.  

If any of the readers at any step of a sequence scored at least 3 points for the case, it was discussed 

at an arbitration meeting, where at least two readers re-evaluated the images and decided whether 

to recall the woman or not  [10]. Furthermore, a woman could be recalled if she reported symptoms 

from the breasts at the examination in spite of negative image findings.  

Recalled women were assessed in accordance with ordinary screening routine [10]. The cancer cases 

were verified with record linkage with the South Swedish Cancer Register.  For all women in the 

study there was at least one-year follow-up.  

The breast density was also evaluated at the final step of the DM reading sequence using the 4th 

edition of the American College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS) 

scale for breast composition [24]: 1. The breast is almost entirely fat, 2. There are scattered 

fibroglandular densities, 3. The breast tissue is heterogeneously dense, 4. The breast tissue is 

extremely dense. 

The first 7 500 women participating in the trial were examined in January 2010 - December 2012. In 

this population, 352 women were recalled for further examination (282 recalled in the DBT sequence 

and 197 in the DM sequence) [10].  The total number of screening detected cancer cases was 68 (67 

cases detected in the BT sequence and 47 in the DM sequence) [10].  In this sample, 6 640 women 
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had a density evaluation. Those without density evaluation were not included in this analysis. The 

group of women without density evaluation had similar age distribution to the studied population 

and were neither recalled nor had cancer. The population characteristics were discussed in a 

previous publication [10]. The most important parameters of the sample for the analysis are listed in 

Table 1. 

Total number of women  6 640 

Number of recalled women Total 352 

 Recalled in DBT reading sequence 282 

 Recalled in DM reading sequence 197 

Cancer cases Total  68 

Detected in DM reading sequence 47 

Detected in DBT reading sequence 67 

Age Median 54.3 

Min 39.7 

Max 75.9 

38-49 35.0 % 

50-59 28.2 % 

60-76 36.8 % 

Breast Density (BI-RADS) 1 19.8 % 

2 37.8 % 

3 34.0% 

4 8.5% 
Table 1: Main characteristics of the study population [10]. All women in the study had at least one-year follow-up. 

Classification and regression tree  

Classification and Regression Tree is a non-parametric technique that splits the data into different 

groups by searching which variables separate the data the most with respect to the response variable 

[14]. The separations performed in C&RT are binary. A brief introduction to this method is presented 

in the Appendix A. The aim of the analysis was to provide a clear visualization of which groups of 

women were recalled in the DM and DBT reading sequences. Furthermore, the tree also provided an 

estimate of the predicted probability of recall for the different groups.  

The analysis was performed using The Salford Predictive Modeller Software Suite, version 7. The Gini 

impurity index was used as splitting criteria and the obtained trees were validated using 10-fold cross 

validation (see Appendix A for further discussion). The response variable was whether the woman 

was recalled or not. We calculated separate trees for the DM and DBT reading sequences. The 

variables included in the models were breast density, cancer status (whether the women had breast 

cancer or not) and age at examination. The variables breast density and cancer status were included 

as categorical variables and the variable age at examination was included as a continuous variable. 

The ratio between the obtained proportions of recalled women for different groups and the 95 % 

confidence interval were estimated using the McNemar test. These calculations were performed in 

Stata version 13.1 using the command mcc. 

Binary marginal generalized linear models  

The goal of the analysis was the estimation of the false positive fractions for DBT and DM separately, 

meaning the estimation of the marginal probabilities of recalling a woman without breast cancer for 
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each method. In order to estimate how each covariate affected the probability of a false positive 

screening a marginal generalized linear model for binary outcomes was used [19]. Generalized 

estimating equations (GEE) were employed to fit the model [19]. Since the same women were 

examined with both methods (paired design), we took into account the intragroup correlation in the 

model. Paired designs are more efficient than unpaired designs with the same amount of subjects. 

The most frequently used link functions are the logit-link, the probit-link and the log-link. The logit 

and probit functions behave well numerically, however the interpretation of the results is not 

straightforward. On the other hand, the log-link has the advantage that it allows interpreting the 

model coefficients directly in terms of the relative FPF. When the log link is used, the fitted 

probabilities may exceed 1, although this is rarely observed in practice (19). In order to facilitate the 

interpretation of the results, we applied the log-link function in the model.  

Since we calculated the FPF, only data for breast cancer free women was included in the model (n = 

6572). We expected that the screening method, the breast density and the age at examination would 

influence the FPF. The variables breast density and cancer status were included as categorical 

variables and the variable age at examination was included as a continuous variable. 

The modelling process was performed in several steps. Firstly, a model for the FPF including the main 

effects screening method, density, age, and the interaction term between screening method and 

density was assessed. This interaction term was chosen since the DBT images generally show more 

features than the DM images, especially in dense breasts. The main coefficients for method and 

density were statistically significant and the coefficients for age and for the interaction terms were 

not statistically significant. Secondly, we fitted a reduced model with only the main effects age, 

method and breast density. The term age was not statistically significant. Finally, we fitted a model 

containing only the covariates method and density, which were statistically significant.  

All the calculations were performed Stata version 13.1. The model was fitted using the glm command 

and the expected FPF for different density levels were calculated using the command margins. The 

statistical significance of the model coefficients was assessed using the Wald test. The area under the 

receiver operating characteristic curve was calculated using the command roctab. The statistical 

significance level was 5 % for all the calculations. 

Results 

Classification and regression tree 

The classification tree for both reading sequences DM and DBT is shown in Figure 1. The number of 

women in the sample at each classification step is also indicated in Figure 1. As expected, the most 

important factor determining whether the women were recalled was the breast cancer status (breast 

cancer yes or no).  Breast density was the main splitting factor for breast cancer free women. In order 

to evaluate the performance of the classification tree to discriminate which women were recalled we 

calculated the area under the receiver operating characteristic curve (AUC ROC).  The AUCs ROC for 

the DBT and for the DM trees were 0.70, indicating that the classification structure was good. In the 

case of DM, we also found a tree in which age was a classification variable for women with density 3 

or 4. This model had an AUC ROC= 0.72. The objective of this part of the analysis is to find a 

pedagogical way to present information about which groups of women that are recalled. Therefore, 
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we preferred to use the simpler tree with fewer classification variables since the improvement in the 

AUC given by the inclusion of age in the model was negligible. 

 

Figure 1: Classification tree for recalled women. At each classification step, the number of women in the sample and the 
corresponding percentage are indicated. 

 

 

 

 

 

Screening population 

n=6640

Recalled women: 6288 (94.7 %)

Non-recalled women: 352 (5.3%)

Cancer

Yes

n=68

Recalled women DBT: 67 (98.5 %)

Non-recalled women DBT: 1 (1.5 %)

Recalled women DM: 47 (69.1 %)

Non-recalled women DM: 21 (30.9 %)

No

n=6572

Recalled women DBT: 215 (3.33 %)

Non-recalled women DBT: 6357 (96.7 %)

Recalled women DM: 150 (2.3 %)

Non-recalled women DM: 6422 (97.7 %)

Breast density

Breast density 1 or 2

n=3799

Recalled women DBT: 81 (2.1%)

Non-recalled women DBT: 3718 (97.9 %)

Recalled women DM: 53 (1.4 %)

Non-recalled womenDM: 3746 (98.6 %)

Breast density 3 or 4

n=2773

Recalled women  DBT: 134 (4.8%)

Non-recalled women DBT: 2639 (95.2 %)

Recalled women DM: 97 (3.5 %)

Non-recalled womenDM: 2676 (96.5 %)
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The predicted probability of a woman to be recalled can be estimated from the proportion of women 

recalled with the same characteristics. The results are listed in Table 2. The ratio between the 

proportions from the different groups and the 95 % confidence intervals are also shown in Table 2. 

Group n Recalled proportion (%)  with 95 %  
confidence interval 

Ratio DBT/DM with 
95 % confidence 
interval DBT  DM 

Women with breast cancer 68 98.5 (92.1, 
100.0) 

69.1 (56.7, 
79.8) 

1.4 ( 1.2 , 1.7) 

Breast cancer free women with 
breast density (BI-RADS) 1 or 2 

3799 2.1 (1.7, 2.6) 1.4 (1.0, 1.8) 1.5 (1.2, 2.0) 

Breast cancer free women with 
breast density (BI-RADS) 3 or 4 

2773 4.8 (4.1, 5.7) 3.5 (2.8, 4.3) 1.4 (1.1 , 1.7) 

Table 2: Proportions of recalled women for different groups of women obtained with the classification tree. The exact 95 
% confidence intervals are also shown. The ratio between the proportions for DBT and DM and the 95 % confidence 
intervals are calculated using the McNemar test. 

The probability to recall a woman with breast cancer is approximately 99 % and 70 % for DBT and 

DM, respectively. The probability of recalling a breast cancer free woman increases with breast 

density for both methods.  The ratio between the recalled proportions using DBT and DM for the 

different groups is about 1.4 for all cases. 

By using the breast distribution and the breast cancer incidence of this study (Table 1) we estimate 

how many women would be false positive per 1000 screened women.  We would expect 

approximately 12 and 20 false positive screenings with DBT for women with low (BI-RADS 1+2) and 

high (BI-RADS 3+4) breast density, respectively. By using DM we would expect around 8 and 15 false 

positive screenings for women with low and high breast density, respectively. 

Binary marginal generalized linear models 

In order to further investigate how breast density and age affect the FPF for DM and DBT we 

calculated a binary marginal generalized linear model [19]. The fitting procedure was described in 

detail in the section Material and methods. Briefly a model containing the main effects age, breast 

density and imaging method and an interaction term between imaging method and breast density 

was fitted. This model was then reduced by removing the non-statistically significant terms in several 

steps until a model with only statistically significant terms was achieved. The results for the model 

for the FPF with covariates imaging method and density are listed in Table 3. A more detailed table 

with the coefficients of the model is listed in Appendix B. The FPF of DBT is larger than that of DM. 

The ratio between FPF for DBT and DM is 1.432 with 95 % confidence interval (1.226, 1.673).  In 

accordance with the results from the C&RT analysis, this model also indicates that the breast density 

affects the FPF for both methods in a similar way.  When the breast density increases, the FPF 

increases. The FPF approximately doubles for breasts with density BI-RADS = 2 compared to breasts 

with density BI-RADS = 1 for both DM and DBT. For breasts with density BI-RADS = 4, the FPF is 

approximately five times higher than for fatty breasts, BI-RADS = 1.  
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The estimated FPFs at different density levels are listed in Table 4. The overall FPF for DM is 0.023 

with 95 % confidence interval (0.019, 0.026). The overall FPF for DBT is 0.032 with 95 % confidence 

interval (0.028, 0.037). Since the interaction term between the variables method (DM and DBT) and 

breast density is not statistically significant, this model indicates that the breast density affects the 

FPF in the same manner for DM and DBT. 

We also calculated the expected amount of recalled women per 1000 screened women as in the 

C&RT analysis. The results are presented in Table 4. For fatty breast (BI-RADS categories 1 and 2), we 

would expect around 9 false positive screening cases per 1000 examined women for both methods. 

For dense breasts (BI-RADS categories 3 and 4), we would expect 19 false positive cases for DBT and 

14 for DM per 1000 examined women.  

A measure of the performance of the model to correctly classify which women would have a false 

positive screening is the area under the receiver operating characteristic curve (AUC ROC). For DBT 

the AUC ROC was 0.62 and for DM was 0.64, indicating that the discriminant capacity of the model is 

good. 

 

 

 

 

 

 

 

Covariates  Parameter Estimates with  
95 % confidence 
interval 

p-value 

Method 
Density 
(density  BI-RADS =1 
used as reference 
level) 

FPFDBT/ FPFDM 1.432 
(1.226,1.673) 

<0.001 

FPFDensity BI-RADS= 2/ FPF Density 

BI-RADS= 1 
1.898  
(1.180, 3.052) 

0.008 

FPF Density BI-RADS= 3/ FPF Density 

BI-RADS= 1 
3.367 
(2.135,   5.308) 

<0.001 

FPF Density BI-RADS= 4/ FPF Density 

BI-RADS= 1 
5.304  
(3.197,  8.802) 

<0.001 

Table 3: Estimates for a model with breast density and method as covariates. All the estimates are rounded at the third 
decimal place. The total number of women included in the analysis is 6572 (density BI-RADS 1 = 1307, density  BI-RADS 2 = 
2492, density BI-RADS 3 = 2221, density BI-RADS 4 = 552 ). 
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Discussion 

In this study we present a statistical analysis of the first part of the data collected in the MBTST with 

focus on recall rate and false positive screening. By using classification and regression trees we 

calculate a simple diagram with information about which groups of women that are recalled. We 

conclude that the main factor affecting whether a breast cancer free woman was recalled for further 

work-up was the breast density for both DBT and DM. In order to estimate how the FPF of DM and 

DBT is affected by breast density and age, we apply a binary marginal generalized linear model. The 

overall FPF is lower for DM than for DBT. The FPFs for both methods increase with breast density in a 

similar way.  

In some cases, it has been shown that the predictive accuracy of C&RT is somewhat lower than for 

logistic models [18]. In our case, the results obtained using C&RT and the regression model are 

comparable. Both models have good discriminatory performance and give similar estimates for the 

amount of recalled women per 1000 screened women. The regression tree may be a more 

pedagogical alternative to the regression coefficient table in those situations where the objective is 

to communicate the results to clinicians in a simple way.  

The comparison of our results with previous studies was not straightforward since the MBTST was 

the first trial with focus on the evaluation of the performance of one-view DBT relative to two-view 

DM in a standard screening program environment [10]. The overall FPF for DM is in agreement with 

some older reported values [25]. Two recent population-based screening trials have focused on the 

comparison of DM to the combination DM and DBT [3,7]. Ciatto and colleagues reported that the DM 

recall rates were approximately 4 % and 7 % for women with low breast density (BI-RADS 1 and 2) 

and high breast density (BI-RADS 3 and 4) [7], respectively. The values obtained in the present study 

are somewhat lower and differences in the study population and design as well as in the reading and 

Table 4 : FPF for different density values for a model with breast density and method as covariates.  All the estimates are 
rounded at the third decimal place.  The number of recalled women per 1000 screened women is calculated using the 
density population parameters observed in this study and listed in Table 1. The results for the number of women are 
rounded to the first integer. 

Density (BI-
RADS) 

FPFDBT   
Estimate with 
95 % CI 

Number of 
recalled 
women per 1000  
screening  for DBT 

FPFDM 
Estimate with 
95 % CI 

Number of 
recalled 
women per 1000  
screening  for DM 

1 0.013   
(0.007, 0.019)  

2 0.009 
(0.005, 0.013)  

2 

2 0.025 
(0.019, 0.031) 

7 0.017  
(0.013, 0.022) 

7 

3 0.044  
(0.036, 0.052) 

13 0.031 
(0.024, 0.037) 

10 

4 0.069 
(0.049, 0.089) 

6 0.048 
(0.034, 0.063) 

4 

Overall 0.032 
(0.028,0.037) 

28 0.023 
(0.019,0.026) 

23 
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recall procedures may explain the discrepancy. Ciatto and colleagues also reported the recall rate for 

the combination of DBT and DM to be around 3 % and 6 %  for low breast density (BI-RADS 1 and 2) 

and high breast density (BI-RADS 3 and 4) [7], respectively. Skaane and colleagues reported that the 

recall rate for the combination of DBT and DM was around 5 % [3]. These numbers are comparable 

with those obtained here using one-view DBT alone.  Teertstra et al. [26] performed a study to 

evaluate the potential value of DBT in a population of women with abnormal screening mammogram 

or with clinical symptoms. The authors reported that the FPF for DBT was approximately 0.16 and 

that the FPFs of DBT and DM were similar [26]. The discrepancies between the previously reported 

values and those obtained here are probably due differences in the study design and population.   

This study has several limitations both related to the clinical study and to the statistical methods.  

The limitations related to the clinical study are discussed by Lång et al [10]. Briefly, the MBTST 

limitations are mostly related to the fact that the study was performed in a Swedish population, with 

limited amount of readers and with only one type of tomosynthesis equipment [10]. Furthermore, 

DBT was used for the first time in this population, i.e. it should be regarded as a prevalence screening 

where a higher recall rate and more findings (both cancers and non-cancers) not visible at earlier DM 

screenings are observed. 

Regarding the statistical methods, the accuracy of the model is dependent on the influence of the 

covariates included in the models on the recall. In this case, we had information about the breast 

density and age of the women. However, there may be other factors that may affect the breast 

composition and its appearance in the images that were not included in the models. Furthermore, 

we had a homogenous group of radiologists with several years of experience. Wallis et al. [27] 

compared the diagnostic accuracy of DM to DBT in an observer study involving two institutions and 

130 cases. The study showed that two-view DBT outperforms DM  but only for readers with the least 

experience [27]. No difference in the diagnostic accuracy of DM compared to one-view DBT were 

observed [27].  A similar observer study was performed at our institution involving eight breast 

radiologists and 185 cases to compare the ability to detect breast cancers using one-view DBT 

relative to two-view DM [28]. Our data showed that the diagnostic accuracy was better for DBT 

compared to DM for experienced readers. In the case of inexperience readers no significant 

difference was observed [28]. Different study settings and readers may explain the differences and 

further studies are needed as DBT gains more acceptance. Unfortunately the MBTST does not 

provide information about how one-view DBT would perform when it is used by less experienced 

radiologists.  

The sample size is another limiting factor. Even though there were 7 500 participating women, only a 

small fraction of them (352) were selected for additional follow-up. In order to obtain reliable 

estimates for the different variables in the model, a moderate number of women in each category 

are needed.  Finally, the performances of both models were assessed using the same set of data. In 

order to assess the prediction capability of the models, new data would be needed.   

Conclusions 

The aim of this study was to provide information about which women that are recalled for further 

work-up due to inconclusive results from breast cancer screening using one-view DBT compared to 

DM. We analysed the data using traditional parametric methods and recently developed non-

parametric tools.  In situations where the objective is to communicate the results to clinicians a 
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classification tree is recommended. The main conclusion is that both imaging modalities have 

limitations for women with dense breasts. The results presented here provide an important piece of 

information to be considered in the discussion about implementing DBT in breast cancer screening. 

Contributions 

Aldana Rosso, Kristina Lång, Ingemar F Petersson and Sophia Zackrisson were involved in study 

design, interpreted the results and wrote the manuscript. Sophia Zackrisson is the principal 

investigator of the MBTST. Kristina Lång and Sophia Zackrisson participated in the data collection. 

Aldana Rosso performed the statistical analysis. 

Ethical approval 

The MBTST was approved by the Regional Ethical Review Board at Lund University (Dnr 2009/770) 

and the local Radiation Safety Board at the Skåne University Hospital in Malmö. Participating women 

gave written informed consent. 

Funding 

This project has received funding from the Skåne University Hospital. 

Conflict of interest statement 

The authors declare that they have no conflicts of interest.  

Appendix A: Classification and regression tree 

Classification and regression tree (C&RT) is a non-parametric method applied to find associations 

between several variables and an outcome.  The method was first developed by Breiman and 

colleagues [13] in the 1980s. Classification and regression tree classifies the observations into 

mutually exclusively groups by selecting those variables that most separate the data. The result of 

the analysis is a classification tree, in which all the observations are classified into groups. The 

separations performed are binary.  The goal of the method is to achieve a tree in which all the 

elements in the leaves (nodes) belong to the same category. In very few cases it is possible to achieve 

a perfect classification and therefore there are several alternative numerical rules about how to split 

the data in the most efficient way. These rules (splitting criteria) attempt to minimize the impurity of 

the classification, meaning that most observations should share the same characteristic at each leaf 

(node) of the tree. All splitting criteria compare the impurity in the parent node with the impurity 

that would be achieved by splitting the data into two child nodes. When building the tree, a stopping 

rule is needed in order to decide at which point adding predictor variables does not significantly 

improve the performance of the model. One possible approach to find the optimal tree is to build 

several trees until all predictor variables are used. Then, the optimal tree can be selected by cross 

validation [29]. This method divides the sample into V number smaller samples and is called V fold 

cross validation. All possible trees are fitted until the maximum tree size is achieved using V-1 

samples, and the remaining sample is used to evaluate the rate at which the cases are misclassified 

by the trees. This procedure is repeated using another sample as the remaining sample, until all 

samples are used. The misclassification cost of all the trees are then combined and applied to the 

tree obtained with the entire sample. The best tree is the tree with the lowest misclassification cost. 
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The goal of the analysis presented here was to find which variables were most important in 

determining the recall of a woman by using digital mammography or breast tomosynthesis. We 

applied one of the most frequently used splitting criterion:  the Gini impurity index [14,29]. We 

calculated a separated tree for each screening method. The explanatory variables in the dataset were 

the age at examination, the breast density and the cancer status (whether the women had breast 

cancer). The result of the analysis is a classification tree in which cancer status and breast density 

were the splitting variables. These variables were selected since they gave the minimum amount of 

impurities. For example, women with cancer that were not recalled were the impurities in the cancer 

node (see Figure 1).  In order to find the optimal tree, we applied a 10-fold cross validation method. 

 

Appendix B: Results from the regression model 

The coefficient of the final regression model for the false positive fraction with covariates breast 

density and method is listed in Table 5.  
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