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Abstract: The prospect of ex vivo functional evaluation of donor hearts is considered.
Particularly, the dynamics of a synthetic cardiac afterload model are compared to those of
normal physiology. A method for identification of continuous-time transfer functions from
sampled data is developed and verified against results from the literature. The method relies
on exact gradients and Hessians obtained through automatic differentiation. This also enables
straightforward sensitivity analyses. Such analyses reveal that the 4-element Windkessel model
is not practically identifiable from representative data while the 3-element model underfits the
data. Direct comparison of aortic pressure–flow relations, without relying on matching of fitted
Windkessel model parameters, is therefore suggested as an alternative for comparing afterload
dynamics.

Keywords: Medical systems, Identifiability, Windkessel models

1. INTRODUCTION

1.1. Ex vivo heart evaluation
Today, donor hearts are routinely discarded due to un-
certainty about their function. A method of functional
evaluation of donor hearts therefore has the potential to
increase the availability of heart transplantation.
Such ex vivo (outside of the body) functional evaluation
requires a system that mimics vascular dynamics—the
afterload—and can be controlled to emulate a broad range
of recipient physiology and working conditions.
The afterload can be decoupled from heart dynamics by
simultaneously measuring aortic flow and pressure, and
relating them through an impedance model. Here, we
delimit our focus to Windkessel models, being a class
of linear time-invariant (LTI) arterial impedance models
introduced by Otto Frank in the late 19th century and
commonly employed both academically and clinically.
We propose a method for identifying the Windkessel
models from data, and perform sensitivity analyses to
quantify uncertainty of the identified models. Three data
sources are considered: previously published in vivo human
data; porcine heart beating in vivo; porcine heart beating
ex vivo against a synthetic afterload. The data and code
used to generate the results are available on GitHub, see
Pigot (2021).
The novelty resides in performing a standard local identi-
fiability analysis, whereas other publications on the topic
generally focus on model fit in the output-error sense. In
general, over-flexible models produce better fits, but can
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Fig. 1. Circuit analogy of the parallel 4-elementWindkessel
model with driving current (flow) D2, corresponding
voltage (pressure) H2, and parameters '? , �, '2 , !.

do so for a variety of parameter values as a consequence of
being highly sensitive. This does not mean that such mod-
els are without utility, but they should not be compared
in terms of their parameter values.
This work focuses on technical aspects related to identifi-
ability and parameter identification; details on the device
and data generating experiments will be presented else-
where.

1.2. The arterial Windkessel
Several variants of the Windkessel model have been pro-
posed in the literature, see for instance Westerhof et al.
(2009). Here we have employed the parallel 4-element
Windkessel model, being one of the more general formula-
tions. It can be expressed in terms of the circuit analogy
shown in Fig. 1, that relates pressure (potential) H2 to
antegrade flow (current) D2 through a dynamic impedance
�2, where we use subscript 2 to denote continuous time.
The passive component parameters are described in ta-
ble 1.



Table 1. Parameters of the Windkessel model
shown in Fig. 1. Note that subscript 2 here
denotes characteristic resistance (impedance)
Westerhof et al. (2009), not to be confused
with our use of subscript 2 to indicate con-

tinuous time.

Parameter Unit Name

'? mmHg/(L/min) Peripheral resistance

� L/mmHg Compliance

'2 mmHg/(L/min) Characteristic resistance

! mmHg min/(L/min) Inertance

Using the circuit analogy of Fig. 1 we next derive the
expression for the transfer function �2 (B). In the Laplace
domain the pressure (voltage) * across resistance ',
inertance (inductance) ! and compliance (capacitance) �
relate to the flow (current) � flowing though each element
through '� = *, B!� = *, and � = B�*, respectively.
Denoting by ?2 the (pressure) potential between the
resistances according to Fig. 1, Kirchhoff’s current law
yields

D2 =
1
'2
(H2 − ?2) +

1
B!
(H2 − ?2) =

1
'?

?2 + B�?2 . (1)

From (1) we can eliminate ?2 = '?/(1+ B�'?)D2 to obtain
the transfer function

�2 (B |\) = '2 +
'%

1 + B�'?
− '2

1 + B!/'2
(2)

from D2 to H2, parameterized in \ = ['? � '2 !]> � 0.
The Windkessel model (2) is hence a parallel interconnec-
tion between '2 and two first-order systems. Note that
the characteristic resistance '2 only impedes accelerating
flows, since for steady flows, the impedance of the iner-
tance ! is 0. This explains why the static gain of (2) is
� (0) = '? (and not, as some might assume '2 + '?).
The 4-element Windkessel also comes in a less widespread
series form, used in for example Gellner et al. (2020). In
the series form, the inductance is connected in series with
'2, and its transfer function is obtained by replacing the
last term in (2) by B!. The static gain is '2 + '?, but the
transfer function is improper, as the term B! corresponds
to an unfiltered differentiation of the input.
Introducing the state G2 = [G21 G22]>, defined through

H2 = '2D2 +
'?

1 + B�'?
D2︸         ︷︷         ︸

1
�
G21

− '2

1 + B!/'2
D2︸          ︷︷          ︸

'2
!
G22

, (3)

results in the state space form S24 with matrices defined
through

¤G2 =

− 1
�'?

0

0 −'2
!

︸             ︷︷             ︸
�2

G2 +
[

1
'2

]
︸︷︷︸
�2

D2 ,

H2 =

[
1
�
−'2
!

]
︸      ︷︷      ︸

�2

G2 +
[
'2

]
︸︷︷︸
�2

D2 ,

(4)

with G21 being the volume (charge) in �. From (4) it is di-
rectly visible that the system has two poles corresponding
to time constants )1 = �'? and )2 = !/'2.
The 3-element and 2-element Windkessel models—S23
and S22—are commonly employed special cases of the 4-
element version (4). In anticipation of Sec. 3, we note that
!/‖\‖ → 1 results in S24 → S23, while either ! → 0,
'2 → 0, or '2/‖\‖ → 1 result in S24 → S22.

2. METHOD

2.1. Experiments
The porcine data used in this work were recorded from two
65 kg Swedish pigs (sus scrofa domesticus). Large-animal
experiments were needed to obtain a reliable characteriza-
tion of the synthetic afterload module under consideration.
All institutional and national guidelines for the care and
use of laboratory animals were followed and approved
by the appropriate institutional committees. The animals
were treated in compliance with Directive 2010/63/EU,
The European Parliament (2010). The study ran un-
der ethics permission M174-15, issued by “Malmö/Lunds
Djurförsöksetiska Nämnd” (local REB).
In both the in vivo and ex vivo experiments, a CardioMed
CM4000 ultrasonic transit time flow meter (Medistim
ASA, Oslo, Norway) was secured to the ascending aorta.
Aortic pressure was measured using a Meritrans DTXPlus
pressure transducer (Merit Medical, Singapore). In-house
developed data acquisition hardware and software were
used to log the signals at 200 Hz.
Different hearts were used for the in vivo and ex vivo
data. The in vivo data reflects normal sinus rhythm at
rest. The ex vivo data was recorded after 24 hours of cold
non-ischemic perfusion, as described in Steen et al. (2016),
beating against an actively controlled synthetic afterload
akin to the device described by Gellner et al. (2020).

2.2. Model formulation
We relate the continuous-time flow D2 (C) to the aortic
pressure H2 (C) through H2 = 62 ∗ D2 + n2, where 62 is the
impulse response of an LTI system model with transfer
function �2, and n2 is the output error signal of the model,
also referred to as the residual.
We do not have access to D2 and H2 directly, but only
to corresponding measurement time series D, H, each of =
elements. The time series will here be considered equi-
temporarily sampled at a period of ℎ, although the pro-
posed methodology is readily applicable also under irreg-
ular sampling schemes.
Applying the zero-order-hold operator Xℎ we thus obtain
[D, H, n ′, �] = Xℎ [D2 , H2 , n2 , �2] that relate through H =

6 ∗ D + n and discrete time state space realization S :
{�, �, �, �} =XℎS2
In order to evaluate the residual, n , we simulate S with D
as input.The residual can be decomposed into one model-
mismatch term and one noise term. The former typically
arises from a candidate 6 under-modelling the data D, H.
The latter arises if H cannot be fully explained by D. This
is for instance the case if D and H have been subjected to



measurement noise. In this work we do not discern between
the two contributors to n .
To determine the initial state vector for this simulation, we
could choose an arbitrary value, e.g. G0 = 0 and drive S
with a repeated stack [D> . . . D>]> with sufficiently many
repetitions of D for the transient caused by G0 to fade,
and then discard all but the last = simulated output sam-
ples. An efficient and approximation-free alternative is to
directly enforce the corresponding “periodic stationarity”
condition G0 = G=. Simulating the system forward in time
over one cardiac cycle then gives

G1 = �G= + �D=
G2 = �

2G= + ��D= + �D1
...

G= = �
=G= + �=−1�D= +

=−1∑
:=1

�=−:−1�D:︸                             ︷︷                             ︸
"

. (5)

Using that G= = G0 we solve (5) for
G0 = (� − �=) \ ", (6)

where, for numeric robustness, the sum in (5) is preferably
computed as a convolution, rather than term-by-term.

2.3. Parameter identification
As stated in Sec. 2.2 we do not explicitly consider observa-
tion model (or other noise source) stochastics in this work,
and therefore proceed with output error identification. The
objective is hence to minimize the residual cost

� (\) = 1
2= n (\)

>n (\) (7)

to identify
\> = arg min

\�0
� (\). (8)

For a candidate \ we can evaluate S(\) = XℎS2 (\), and
obtain G0 using (5). Driving S with D, we then obtain the
output Ĥ(\) and residual n (\) = H − Ĥ(\).
The solution \> of (8) will also minimize �2 = 1

2ℎ= ‖n2 ‖
2
2 ,

under the assumption that D2 is piece-wise constant be-
tween the samples in D, and that the signals D2 and H2
have been subjected to analog filtering effectively removing
spectral power above the Nyquist frequency (2ℎ)−1. The
latter holds true for the data considered here. The former
constitutes a valid approximation as long as 1/ℎ is large
compared to the magnitudes of the poles of �. Validity of
this approximation has been ensured through sampling at
a high frequency compared to the cardiac cycle dynamics.
The optimization problem (8) is generally non-convex in
\. We therefore employ a multiple initialization procedure.
Being the static gain of the system, '? is initialized
with the mean output (pressure) divided by mean input
(flow). The initial values of the remaining parameters
are drawn from a multivariate uniform distribution, and
we retrospectively verify that this distribution covers the
identified parameters \>.
For each initialization point, Newton’s method is then used
to obtain a cost minimizer candidate, and the one of them
that minimizes � gets denoted \>.

A dual number implementation (see Revels et al. (2016))
of the zero-order-hold operator Xℎ enabled exact (down
to machine precision) forward-mode automatic differentia-
tion and thus evaluation of the gradient ∇� (\) and Hessian
∇2� (\) required in each Newton iteration. This enables
us to identify the continuous-time model parameter \

directly, without the need of finite difference, or other,
approximations. It also means that we can obtain an exact
evaluation of the Hessian � = ∇2� (\>) of the cost � with
respect to the parameter \, evaluated at the optimum \>.

2.4. Persistence of excitation
A classical result for identification of LTI systems is that
the order of persistence of excitation (PE) of an input
sequence D determines whether D is sufficiently informative
to distinguish parameter candidates \ and \ ′ given some
model class, or structure, �. Particularly, PE of order at
least < is required for D to be sufficiently informative to
distinguish any pair of transfer functions of < parameters.
See for example Mareels et al. (1987) for further detail.
The PE degree can be determined in several (equivalent)
ways, one being through a rank condition on the expecta-
tion of the auto-correlation matrix of D:

ΦD,< =


A (0) . . . A (< − 1)
...

. . .
...

A (< − 1) . . . A (0)

 , (9)

where A (g) is expectation of the auto-correlation of D, with
respect to some stochastic observation model relating D2
to D. In absence of stationary (additive) noise model, it
is customary to assume that the observation D2 (:ℎ) is
an unbiased and consistent estimate of D(:) and use the
observed auto-correlation, defined through (9) with

A (g) = 1
=

=∑
:=0

D̃(:)D̃(: + g), (10)

where D̃(:) is typically defined as D(:) for 1 ≤ : ≤ =, and
0 otherwise. Since we are dealing with signals of periodic
nature here, we will instead use the periodic expansion
D̃(:) = D((: mod =) + 1). We can efficiently evaluate the
corresponding circular sample auto-correlation sequence

A = [A (0) . . . A (= − 1)]> = 1
=
� (�D � �D), (11)

where � is the = × = DFT matrix, � its conjugate, and �
denotes element-wise matrix-matrix multiplication.
The rank condition states that in order for D to be PE of
order at least <, the corresponding ΦD needs to be positive
definite. A major concern here is that any D can be turned
into a signal of arbitrarily high PE order by adding a signal
of independent samples ∼ N(0, f2), even with arbitrarily
small f > 0. From a practical perspective it is therefore
more relevant to consider the spectrum of ΦD.

2.5. Sensitivity analysis
Next, we investigate how much model fit, expressed in
terms of the cost �, deteriorates if the optimal parameter
\> is subject to an additive perturbation with magnitude
‖X‖2. The Taylor series expansion of the perturbed cost is



� (\> + X) = � (\>) + ∇� (\>)>︸    ︷︷    ︸
0

X + 1
2X
>∇2� (\>)X + A (X), (12)

where the residual A (X) is a linear combination of mono-
mials in the components of X, each with degree at least 3.
If ‖X‖2 is small, then the contribution of A (X) to � is small.
In that case the cost increment is well approximated by

� (\> + X) − � (\>) ≈ &(X) = 1
2X
>�X =

1
2X
>+Σ+>X, (13)

where the Hessian � = ∇2� (\>) is a symmetric real matrix
and therefore has a singular value decomposition according
to (13). The singular vectors make up the columns of
the unitary matrix + = [E1 . . . E<] and we can write the
quadratic form as

&(X) = 1
2 (f1 (X>E1)2 + . . . + f< (X>E<)2). (14)

For a fixed ‖X‖2, (14) is minimized (maximized) when X

is parallel to the singular vector E: corresponding to the
smallest (largest) singular value f: . This reveals in what
direction a small move away from \> contributes least
(most) to increase �. Further, the fraction between the
largest and smallest singular value, being the condition
number of �, reveals the relative change in cost when mov-
ing a small (infinitesimal) distance ‖X‖2 in the least and
most sensitive directions, respectively. A large condition
number is therefore an indicator of over-parametrization
with respect to the experimental data.

3. RESULTS

3.1. Identified models
The identification method was first validated against a
previously published human data set—henceforth referred
to as the human data—by digitizing the waveforms in
Fig. 4 of Stergiopulos et al. (1999). Numerical values are
reported in table 2; time domain model outputs and cor-
responding pressure–volume (PV) loops in Fig. 2; output
error residuals in Fig. 5. As seen in Fig. 2, the parameter
values identified using the method of Sec. 2 reproduce the
appearance of the results in Stergiopulos et al. (1999). We
also identified 2- and 3-element Windkessel models to see
how they compare in terms of output error and sensitivity.
Moving on to the experimental data, identified parameter
values, mean squared error (MSE) of the time domain
model fit, being directly proportional to � (\>), and the
condition number of the Hessian � = ∇2� (\>) are listed
in table 2. Time domain model outputs and PV loops are
shown in Fig. 3 and Fig. 4; output error residuals are shown
in Fig. 5.
Bode plots of the identified models are shown in Fig. 6.
These indicate that for the experimental data an almost
perfect pole-zero cancellation takes place in the 4-element
models, as can be verified by inserting the parameter
values of table 2 into (2). This also explains why corre-
sponding time-domain plots are visually indistinguishable.

3.2. Persistence of excitation
The 10 largest singular values of the auto-correlation
matrices ΦD for the inputs of the human, in vivo, and ex
vivo data sets are shown in Fig. 7. According to Sec. 2.4,
the figure indicates that identification of 2 to 4 parameters
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Fig. 2. Data set D, H and reported 4-element Windkessel
model output Ĥ digitized from Fig. 4 of Stergiopulos
et al. (1999); model output Ĥ: of the herein identified
:-element Windkessel models. Top pane shows time
domain model fit; bottom pane shows aortic PV loop.

Table 2. Identified parameters of 4-, 3-, and
2-element Windkessel models together with
mean squared error (MSE) [mmHg], directly
proportional to � (\>) of (7). The last column
shows the conditioning of � = ∇2� (\) at \ =

\>.

'? � '2 ! MSE cond(�)

Human 13.6 0.0743 0.952 0.0952 5.88 3.18e3

13.0 0.108 0.582 8.48 3.65e2

13.6 0.0996 48.2 3.07e2

in vivo 62.9 0.0855 1.58 8.52 30.9 1.20e7

61.3 0.0877 1.58 30.9 1.57e3

62.9 0.0853 77.1 1.37e3

ex vivo 148 0.345 0.615 31.3 7.16 2.76e9

148 0.346 0.615 7.16 1.00e2

147 0.353 23.3 5.56e1

may be feasible, which prompts further consideration of
parameter sensitivity in the fitted models. Since the input
is generated by the heart, it cannot be arbitrarily changed
to increase excitation and elucidate more parameters.
One can note that two parameters (degrees of freedom)
are necessary to reproduce arbitrary diastolic and systolic
pressure levels. For the 4-element Windkessel model S24,
this leaves two parameters to influence the shape of the
model output; one “shape” parameter for S23; none for
S22.
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Fig. 3. In vivo porcine data set D, H together with outputs
Ĥ: of identified :-element Windkessel models.
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Fig. 4. Ex vivo porcine data set D, H together with outputs
Ĥ: of identified :-element Windkessel models.

3.3. Parameter sensitivities
The singular value decompositions � = +Σ+> of the
Hessian � = ∇2� (\), evaluated at the identified parameter
\ = \> are shown in table 3. The last column of the + ma-
trices indicate that the least certain direction in parameter
space coincides with '2 for the human data. The in vivo
and ex vivo data instead result in uncertain estimates of
!. Recalling from Sec. 1.2 how limit cases of ! and '2
correspond to the 2- and 3-element Windkessel structures,
it is not surprising—given the indicated sensitivities—that
the 3-element models explain the experimental data almost
identically well, while the 2-element counterparts fail to do
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Fig. 6. Bode plots of the identified 4-element (solid), 3-
element (dashed), and 2-element (dotted) Windkessel
models from the human (blue), in vivo porcine (green)
and ex vivo porcine (bronze) data sets.

so based on lacking degrees of freedom, as mentioned in
Sec. 3.2. Furthermore, the parameters dominating the least
certain direction for the 3-element models were found to
be � for the human data and '? for the porcine data.

4. DISCUSSION

A method for identification of continuous time dynamics
from time series data has been proposed with the objective
of comparing the dynamics of a synthetic afterload with
those of normal physiology.
Upon validation against previously published results from
Stergiopulos et al. (1999), the method was therefore ap-
plied to two porcine data sets: one collected in vivo,
featuring normal physiology; one collected ex vivo, with
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the heart working against a synthetic afterload, as may
be used in functional evaluation of donor hearts prior
to possible implantation. The human-data model MSEs
were comparable to the results of Segers et al. (2008) who
reported mean MSEs of 9.2 and 8.9 for the 3 and 4-element
models, respectively, when fitting to measured data from
2404 humans. We can note that our human-data model
fit is slightly better than for our experimental data. This
is presumably caused by how our measurement setup was
devised, and we are planing to conduct similar but refined
measurements to investigate this. Nonetheless, the non-
whiteness of output error residuals from all three data sets,
shown in Fig. 5, suggest that the Windkessel structure
under-models representative pressure–flow data. At the
same time, the persistence of excitation analysis of Sec. 2.4
and local sensitivity analysis of Sec. 2.5 suggest that the
inputs D do not support identification of substantially
more complex LTI model structures than the 3-element
Windkessel.

5. CONCLUSION

The well-established 4-element parallel Windkessel model
is not reliably identifiable from our sets of experimentally
collected porcine and previously published human aortic

pressure–flow time series data. Particularly, the inertance
parameter ! is practically unidentifiable. For the sake of
comparing afterload impedance dynamics, it is therefore
advisable to look directly at the relation between aortic
pressure and flow, rather than comparing Windkessel
model parameters.
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