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Sensor Fused Indoor Positioning Using Dual Band WiFi Signal
Measurements

Fredrik Karlsson1, Martin Karlsson2, Bo Bernhardsson2, Fredrik Tufvesson1 and Magnus Persson3

Abstract— In this paper, signal strengths from known WiFi
access points are used together with a particle filter to perform
indoor navigation. It is shown that more information is obtained
by using signals of both 2.4 and 5.0 GHz, compared to using
only one frequency. Thus, using both frequencies provides a
more accurate positioning. The second contribution is an algo-
rithm where WiFi measurements are combined with pedestrian
dead reckoning (PDR), which is based on step counting using an
accelerometer and hypotheses of the heading using a gyroscope.
This was found to provide further accuracy compared to more
conventional methods.

I. INTRODUCTION

A ubiquitous and accurate positioning system for mobile
devices is of great importance, due to the large number
of applications and services it enables. In most outdoor
environments, this problem was solved by the introduction of
the Global Positioning System (GPS). In indoor or suburban
areas however, the GPS signals are often too weak to
enable a reliable position estimate. Instead, several other
techniques have been proposed. They range from using only
one portable device, to attaching several sensors on different
parts of the user’s body [7].

There are numerous examples where WiFi access points
(APs) with known locations are used to trilaterate the posi-
tion of the user. The distance to each AP is often estimated
using the signal strength. This can also be done by measuring
the time it takes for a signal to travel between the device and
an AP, see e.g. [6].

WiFi signal measurements have also been combined with
e.g. pedestrian dead reckoning (PDR) into sensor fused
approaches. In [10], such an example is presented. It is based
on a wide range of sensors including accelerometer, gyro-
scope, WiFi, magnetometer, GPS, barometer etc. Another
contribution to this area is presented in [1]. Here, PDR is
combined with GPS for an initial position estimate. Then, it
uses magnetic field and radio signal strength fingerprinting.
One important feature of this procedure is that the algorithm
is learning the radiation environment with time, and this
is used to detect when the user returns to a previously
visited area. Then, errors from the PDR are mitigated. This
method is an a example of Simultaneous Localization and
Mapping (SLAM), where a map of, in this case, the radiation
environment is developed during the positioning [4]. The
positioning is in turn aided by the map.
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In this paper, two contributions to the field of indoor
positioning are presented. The first contribution is an inves-
tigation of the behavior of two WiFi frequencies, 2.4 and 5.0
GHz, where their noise is proven to be almost uncorrelated
with each other. This is then exploited to develop a WiFi-
only trilateration algorithm by the use of a particle filter
(PF), where the only restriction is that the locations of the
APs, and how strong they transmit, need to be known.

The second contribution is based on adding information
from PDR to the estimation algorithm, to provide a more
accurate position estimate. A step counter is developed using
the accelerometer, the gyroscope detects changes in heading
and the WiFi signal strengths give information about the
position. The concept in this part is that particles with
well-approximated headings and positions will get WiFi
measurements that are more consistent with the models, and
thus be more likely to sustain and multiply. This makes it
possible to alongside the position also estimate the heading.

Three different experiments were performed. First, the
correlation between 2.4 and 5 GHz signals was investigated.
Then, the algorithm was applied without the PDR. Finally,
the position algorithm was evaluated using both frequencies,
and including the PDR. The smartphone used throughout the
experiments was a Sony Xperia Z1.

The resulting algorithm produces position estimates with a
mean error of less than two meters. It requires the orientation
of the smartphone to be reasonably constant in relation to
the user. In this paper, it is assumed that this requirement is
fulfilled whenever PDR is used. Nevertheless, it should be
mentioned that a version of the algorithm has been developed
as an online Java implementation, which is more tolerant to
changes of the orientation of the smartphone in relation to the
user. In return, however, it produces less accurate estimates
with an average error of 3.4 meters.

II. CORRELATION BETWEEN 2.4 AND 5 GHZ
SIGNALS

To obtain an estimate of the correlation between signals on
the 2.4 and 5.0 GHz bands the following method was used.
Signal strengths from a certain AP was measured, while the
distance d to it was varied. Further, the signal strength was
measured while the distance was constant. This was done
both in line-of-sight (LOS), and in non-line-of-sight (NLOS).
The following 6 series of measurement were taken.



1) d was varied from 2 to 15 meters, in LOS.
2) d was varied from 2 to 15 meters, in NLOS.
3) d was varied from 15 to 30 meters, in LOS.
4) d was varied from 15 to 30 meters, in NLOS.
5) d was kept constant, in LOS.
6) d was kept constant, in NLOS.
Subsequently, the model errors for 2.4 GHz (a) and 5 GHz

(b) were computed as the difference between the modeled
and the measured Received Signal Strength Indicator (RSSI)
values. Then, this was used to estimate the correlation coef-
ficient, rab, between the errors of the different frequencies,
for each series of measurement.

The estimated correlation coefficients [2] between model
errors of 2.4 and 5 GHz signals together with 95% confidence
intervals [3] are shown in Table II.

TABLE I
ESTIMATED CORRELATION COEFFICIENTS AND 95 % CONFIDENCE

INTERVALS FOR MODEL ERRORS OF 2.4 AND 5 GHZ IN THE DIFFERENT

SERIES OF MEASUREMENT. THE CORRELATION DOES NOT SEEM TO BE

LARGE.

Signal path Estimated correlation, r̂ab 95 % conf. int.
1) LOS near AP -0.10 [−0.29; 0.09]
2) NLOS near AP 0.26 [0.05; 0.44]
3) LOS far from AP 0.26 [−0.09; 0.55]
4) NLOS far from AP 0.24 [0.04; 0.42]
5) LOS stationary -0.06 [−0.13; 0.01]
6) NLOS stationary -0.12 [−0.18;−0.06]

The correlation between the signal strength model errors
of 2.4 and 5 GHz does not seem to be large. Hence, more
information is obtained by using both frequency bands rather
than only one of them. This is expected to improve the
positioning.

III. POSITIONING USING WIFI SIGNALS ONLY
An important part of the positioning algorithm is the

particle filter (PF). This is an iterative estimation method
that contains various hypotheses of possible sets of states,
which are called particles [4]. In our method, the states
consist of the x− and y−coordinates of the position, and
the direction of movement. During each iteration, modeled
RSSI values are computed for every particle, based on its
current set of states. Then, these values are compared to the
measured values, and each particle is assigned with a weight
that corresponds to the probability of receiving the actual
measurements, given its set of states. Both 2.4 and 5 GHz
WiFi signals are used. Subsequently, a new set of particles is
created, where those with higher weights are more likely to
sustain and multiply. The last step is the state update, where
the states are modified according to the modeled motion of
the user.

An important part of the estimation method described
above is to model the (RSSI). The model used in this
algorithm is

log10(Pr(d)) = log10(Pr(d0)) − 20 log10

[
d

d0

]
− αd+Xσ.

(1)

Here, Pr(d) is the received signal strength, d0 is the reference
distance of 1 meter, d is the distance between the device
and the AP, and Xσ is a zero-mean Gaussian distributed
random variable with standard deviation σ [5]. Further,
α is a model parameter that reflects the obstacle density
in the environment. Examples of obstacles in an indoor
environment are walls and furniture [9]. In order to determine
d between a certain particle and an AP, the position states
of the particle are used.

The experiment was performed in an environment with
7 APs. A person carried the smartphone in the hand along
a path of approximately 100 meters, and one set of RSSI
measurements was taken each 0.5 meters. These were then
used offline to reconstruct the positions using the PF, and the
position error was evaluated. The initial states were treated as
unknown. The experiment was performed for the following
combinations of frequency bands.

1) Both 2.4 and 5 GHz.
2) 2.4 GHz only.
3) 5 GHz only.
The position error for different sets of frequencies used is

presented in Table III.

TABLE II
POSITION ERROR FOR THE DIFFERENT SETS OF FREQUENCIES. USING

BOTH FREQUENCIES GAVE THE MOST ACCURATE ESTIMATES.

Error / meter
1) 2.4 and 5 GHz 2) 2.4 GHz 3) 5 GHz

Mean 1.7 2.6 2.9
Maximum 4.5 5.3 5.8
Median 1.6 2.5 2.9

Using both frequency bands seems to result in the most
accurate positioning, which is expected due to the low
correlations between the signals in Table II.

IV. POSITIONING INCLUDING PDR
In the first part, where we compare different sets of

frequency channels used, the motion of the user is modeled
as a random walk. In the second part, information from the
accelerometer and the gyroscope is added to the algorithm.

The accelerometer is used to detect when the user takes a
step. The time derivative of the magnitude of the acceleration
is determined. The sampling frequency of the accelerometer
used is approximately 20 Hz, giving a frequency content
of the signal between 0 and 10 Hz. However, the normal
step frequency of a pedestrian is no larger than 3 Hz,
which promotes filtering of the signal. Hence, a fourth order
Butterworth filter [8] with a cut-off frequency of 3 Hz is
applied. When the filtered signal passes from below to above
a certain threshold level, this is used to indicate that a
step has been taken. The threshold is introduced to avoid
indicating steps when the user is not walking. This method is
used to determine the number of steps, N , between two WiFi
measurements. An example of the filtered signal together
with the threshold is shown in Figure 1. The step counter
has been tested while carrying the device in the hand, in a
pocket and in a bag, with less than 1% error.
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Fig. 1. Filtered accelerometer signal together with the threshold level,
while walking 17 steps with the device in the hand. When the signal goes
from below to above the threshold, this is used to indicate that the user has
walked one step. Thanks to the differentiation and filtering of the signal,
this is easy to distinguish. The threshold is introduced to avoid indicating
steps when the user is not walking.

The gyroscope measures the angular velocity of the head-
ing. This is projected on the direction of gravity, which is
determined using the accelerometer. From this, the change of
heading during time step k, ∆θk, is computed using ordinary
time integration.

Using this information, the state update between time step
k and k + 1 is done as follows.

xk+1 = xk +N · (l + rk) · cos θk

yk+1 = yk +N · (l + rk) · sin θk (2)
θk+1 = θk + ∆θk + vk

Here, l is a predetermined step length. Further, rk and vk
are Guassian random variables with zero mean and σr and
σv as standard deviations.

An experiment was performed in an environment contain-
ing 20 APs. The smartphone was carried in the hand, and
held reasonably fixed in relation to the user, along a path of
273 meters. The user walked in a normal walking pace, and
one set of RSSI measurements was obtained every 4 seconds.
Subsequently, the positions were reconstructed offline using
both 2.4 and 5 GHz signals, and including the PDR.

To compare, the reconstruction was also done using the
PF and WiFi only, and by using PDR only. Further, it was
done using WiFi combined with the method of least squares
(LS), which is a conventional positioning method while using
signal strengths.

The initial states were treated as unknown, except while
using PDR only.

The position error for the different algorithms is presented
in Table III.

TABLE III
POSITION ESTIMATE ERROR USING FOUR DIFFERENT ALGORITHMS

BASED ON PDR AND/OR WIFI. COMBINING WIFI AND PDR GAVE THE

BEST RESULTS.

Algorithm Maximum error / m Average error / m
LS - WiFi Only 11.2 4.8
PF - WiFi Only 11.6 3.5
PDR only 7.7 4.2
PF - WiFi + PDR 5.8 1.3

A plot of the position estimate using WiFi combined with
PDR is shown in Figure 2. A plot of the position error is
shown in Figure 3.

Combining WiFi with PDR clearly provided the best
positioning results. It resulted in an average error of 1.3
meters. Moreover, this method produces estimates more
frequently than if only WiFi is used, since PDR estimations
are performed between the WiFi measurements
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Fig. 2. Position estimate using both WiFi and pedestrian dead reckoning,
along a true path of 273 meters. True start and stop point was (109;10),
and the initial heading was in the negative x-direction. These were treated
as unknown. The step length was considered as known and set to 0.83
meters. The average error is 1.3 meters. This proved to be the most accurate
algorithm of those evaluated in this paper.

V. CONCLUSIONS
A. Using Both 2.4 and 5 GHz Signals

The correlation between the signal strength model errors
of 2.4 and 5 GHz does not seem to be large (see Table II).
Hence, more information is obtained by using both frequency
bands rather than only one of them, which is expected to
improve the positioning. This is supported by the fact that
the smallest error was obtained by using signals on both
frequencies, as shown in Table III.

B. Combining WiFi Measurements and PDR

Since the initial heading is treated as unknown, it is
required to have more than one set of RSSI measurements
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Fig. 3. Position error over the number of steps taken by the user, for the
method that combines WiFi and PDR. The average error is 1.3 meters. See
also Figure 2.

before the particles with consistent headings can be sorted
out. Hence, the initial estimates fail to follow the movement
of the user, which yields the maximum error of 5.8 meters
(see Table III). This explains the gap of estimated locations
in the beginning of the path in Figure 2. Once the heading is
well approximated, the performance is considerably better.

This navigation system is constrained by the assumption
that the localizations of the APs, and how strong the signals
are transmitted, are known. The orientation of the smart-
phone in relation to the user is assumed to be reasonably
constant. Initial heading and position are, however, assumed
to be unknown. Further, the proposed algorithm will work for
any kind of smartphone, as long as it is capable of receiving
the WiFi signals and contains the necessary sensors. How-
ever, the representation of the RSSI varies between different
models, which has to be taken into account.

Combining WiFi with PDR clearly provided the best posi-
tioning results, as shown in Table III. It resulted in an average
error of 1.3 meters, along a path of 273 meters. Moreover,
this method produces estimates more frequently than if only
WiFi is used, since PDR estimations are performed between
the WiFi measurements.
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