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Abstract 

Radiotherapy is one of the essential treatments used in the fight against cancer. The 
goal of radiotherapy is to deliver a high dose of ionising radiation to the tumour 
volume and at the same time minimise the effect on healthy tissue by reducing the 
radiation to critical organs. This contradiction is challenging and has been driving 
the research and development of the treatments.  

Over the last two decades, there has been tremendous technical development in 
radiotherapy. The rapid increase in computational power introduced treatment plan 
optimisation and intensity-modulated radiotherapy (IMRT). IMRT made it possible 
to shape the radiation dose distribution closely around the target volume avoiding 
critical organs to a higher extent. Rotational implementation of IMRT, e.g. 
Volumetric Modulated Arc Therapy (VMAT), further improved this “dose shaping” 
ability. 

With these techniques increasing the ability to produce better treatment plans, there 
was a need for evaluation tools to compare the treatment plan quality. A plan can be 
judged by how well it fulfils the prescription and dose-volume constraints, ideally 
based on treatment outcome. In this work, this is denoted Required Plan Quality, 
the minimum quality to accept a plan for clinical treatment. If a plan does not fulfil 
all the dose-volume constraints, there should be a clear priority of which constraints 
are crucial to achieve. On the other hand, if the constraints are easily fulfilled, there 
might be a plan of better quality only limited by the treatment systems ability to find 
and deliver it. This is denoted Attainable Plan Quality in this work– the quality 
possible to achieve with a given treatment system for a specific patient group. 

In work described in this thesis, the so-called Pareto front method was used to search 
for the attainable plan quality to compare different treatment planning systems and 
optimisation strategies. More specifically, a fall-back planning system for backup 
planning and an optimiser to find the best possible beam angles. The Pareto method 
utilises a set of plans to explore the trade-off between target and nearby risk organs. 
The Pareto plan generation is time-consuming if done manually. The Pareto method 
was then used in a software that automated the plan generation allowing for a more 
accurate representation of the trade-off. The software was used to investigate the 
attainable plan quality for prostate cancer treatments. In the last two publications in 
this thesis, machine learning approaches were developed to predict a treatment plan 
closer to the attainable plan quality compared to a manually generated plan.  
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In the thesis, tools have been developed to help move the treatment plan quality 
from Required Plan Quality towards the Attainable Plan Quality, i.e. the best quality 
we can achieve with our current system. 
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Summary in Swedish 

Målet med strålbehandling är att leverera en tillräckligt hög stråldos för att skada 
cellerna i en cancertumör utan att skada omkringliggande friska celler. Olika typer 
av celler är olika känsliga för strålning vilket man måste ta hänsyn till vilket idag 
görs med datoriserad stråldosplanering. Vid dosplanering provas olika antal strålfält 
med olika vinklar och intensitet forma stråldosen att täcka tumören utan att spilla 
över för mycket till frisk vävnad. Känsliga organ kan ibland vara väldigt nära 
tumören vilket försvårar planeringen och behandling. På senare år har det 
introducerats nya tekniker där strålfält roterar runt tumören och fältöppningen 
justeras under tiden. Dessa tekniker kallas för intesitetsmodulerad strålbehandling 
eftersom strålintensiteten varieras, moduleras, kontinuerligt under behandlingen. 
Intensitetsmodulerad behandling möjliggör en skarp gräns mellan ett område med 
hög dos och ett med låg dos. Dosplanering av intensitesmodulering kräver en 
optimering där en dator söker efter den bästa lösningen för en sorts önskelista som 
dosplaneraren väljer. I önskelistan anges hur hög stråldos tumören minst ska få och 
samtidigt hur mycket som friska organ maximalt tillåts få.  

Problemet är att dosplaneringsystemet sällan ger exakt det man ber om och därför 
måste flera gissningar göras för att till slut uppnå önskat resultat. Detta gissande kan 
ibland vara svårt och ta lång tid och man vet inte om det verkligen är den bästa 
lösningen. Man behöver också säkerställa att den planerade behandlingen är tekniskt 
genomförbar. Ett annat problem är att vissa organ rör sig under behandlingen och 
kan ”putta” tumören ut ur strålfältet. 

I de första två arbetena som ingår i den här avhandlingen har metoder utvecklats för 
att systematiskt utvärdera optimeringens kvalité. Metoden användes sedan för att 
jämföra plankvalitet från olika optimeraringsmetoder och dosplanerings-system. 

I det tredje arbetet har flera tumörrörelsers påverkan av plankavaliten utvärderats 
och olika stråltyper har undersökts som en lösning. 

I det fjärde och femte arbetet har modeller för artificiell intelligens (AI) utvecklats 
för att lära sig hur en strålplan men bra kvalitet ser ut för att sedan skapa bra planer 
för nya patienter. I det femte automatiserades metoden från de tidiga arbetena och 
användes för inlärningen av AI-modellen. 
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1 Introduction 

“Is this treatment plan as good as it can get? Can the risk organ doses be pushed 
down a bit more? Do we have time? When is the patient scheduled for treatment 
start? Ok so that machine does not have VMAT, can we rebook to another machine? 
Why can't we get VMAT for this patient?”  

These are all questions that occur during the dose plan reviews at radiotherapy 
clinics all over the world. The increased frequency of these types of questions started 
around 10 to 15 years ago, with the development of Intensity Modulated Radiation 
Therapy (IMRT). Suddenly the radiation doses could be shaped to avoid critical 
organs, and at the same time squeezed tighter around the tumour targets. This 
breakthrough revolutionised radiotherapy. However, this came with some pitfalls, 
uncertainties, and many challenges. Decades of experience with previous techniques 
was suddenly less valuable. 

The purpose of radiotherapy is to deliver targeted ionising radiation to a tumour 
volume to kill all cancer cells. Depending on the location and extent of the tumour, 
nearby healthy organs can be affected by the radiation. These organs at risk (OAR) 
have, for many years, been the restraining factor for radiotherapy. The amount of 
radiation given, the absorbed dose, is limited by the sensitivity of adjacent organs. 
The ultimate goal is to maximise the dose to the tumour area and at the same time 
minimise the dose to healthy OARs. Depending on the type of organ, either the 
organ or the tumour has the highest priority. This contradiction between healthy 
organs at risk and tumours makes radiotherapy, as a whole, a multicriteria problem. 
The introduction of intensity-modulated techniques has offered a possible solution 
to this problem.  

Before IMRT techniques, the radiotherapy treatment was delivered by a few, 
typically 5 or less, static beams. The beams were open, block-shaped and covering 
the whole tumour volume. The intensity modulation in the new techniques is 
achieved by delivering the dose in several beams which themselves are composed 
of many small beam segments. By not covering the tumour volume with all the 
beams and segments, the dose can be shaped to avoid critical organs without 
compromising the tumour coverage. This benefit, however, comes with a cost. 

The first drawback of IMRT techniques is the time-consuming treatment planning 
process. The dose distribution is composed of several small beam segments. To 
align these segments to deliver the desired dose, a computerised optimisation is 
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required. During this optimisation, a treatment planner asks the computerised 
treatment planning system (TPS) for the desired dose in the target volume and 
restricts the dose to risk organs, also called inverse planning. The TPS then performs 
an optimisation based on the planner's input, and presents a mathematically optimal 
solution. This solution is rarely clinically acceptable, and the planner therefore 
needs to adjust the input, and run additional optimisations. This trial-and-error 
process continues until the treatment planner is satisfied with the dose distribution, 
providing there is still time before the patient is scheduled for treatment. This 
workflow inevitably results in the plan quality being dependent on the time available 
for treatment planning. Even if the IMRT plans are better than the conventional 
ones, there is no guarantee that the plan is as good as possible - using the available 
clinical treatment systems - for each patient. Conventional treatment planning is 
more straightforward than inverse optimisation. The treatment planner arranges 
beams to cover the tumour, and adjusts the amount of radiation from each beam to 
avoid risk organs as much as possible.  

Another issue with intensity-modulated techniques is the uncertainty in the actual 
dose delivery. More and smaller beam segments lead to more complex dose 
delivery. The different components of a treatment machine work extensively and 
are put under more stress, (movement of beam collimating components, variations 
in dose rate and gantry speed) leading to an increased risk of failure during delivery. 
The calculation of the planned dose also is more uncertain because of the 
complexity. To verify that every treatment plan can be delivered as calculated by 
the planning system, every treatment plan is transferred to a patient equivalent 
phantom geometry which can then be delivered and measured. This verification 
measurement also adds to the total preparation time of an intensity-modulated 
treatment. 

An increasingly relevant concern with intensity-modulated techniques, covered by 
this work, is the issue of tumour motion. With a conventional treatment technique, 
moving tumours are covered providing that the planning margins are sufficient. 
However, this is not necessarily the case for intensity-modulated methods. Due to 
the complex composition of smaller beams not covering the whole tumour during 
the entire treatment, a moving target can be partly or entirely missed. For some cases 
which have a significant tumour movement within the delivered treatment time, the 
use of intensity modulation is restricted because the risk of losing tumour coverage 
is unacceptable. These cases would otherwise benefit significantly from intensity-
modulation, so there is a clear benefit in addressing this issue.  
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1.1 Aims 
This work aims to address the three issues: the time-consuming trial-and-error 
treatment planning process, the uncertainty in the dose delivery, and the issue of 
tumour motion, which can then give answers to the questions described in the 
opening of this chapter.  

To be specific: the aim is to develop methods for unbiased, clinically relevant 
comparisons of different treatment techniques, beam modalities, treatment 
strategies and treatment planning systems with consideration of target movement 
(Paper I, II, and III).  

These comparison tools will then be applied to Intensity Modulated Radiation 
Therapy (IMRT), and Volumetric modulated Arc Therapy (VMAT) treatment 
planning with a focus on automation and machine learning approaches (Paper IV 
and V).  

The goal is to make intensity-modulation treatment planning less biased, less time 
consuming, more robust, more accessible to different patient groups, and with an 
overall higher quality for all patients. 
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2 Background 

2.1 Early development of radiation therapy 
The first radiotherapy was delivered to a breast cancer patient in January 1896, less 
than sixty days after Röntgen's discovery of the X-ray (1). This rapid clinical 
implementation was done by Emil Grubbé in Chicago (2). A couple of months later, 
cancer patients were treated for gastric tumours and basal cell carcinoma in France, 
America, and Sweden. In this very early stage of radiotherapy, the mechanism of 
X-rays and its effect on healthy tissue were not well understood. Despite the lack of 
knowledge, the pioneers of X-ray research worked together and implemented new 
treatment techniques at a remarkable speed. With this rapid development, the 
harmful effects of radiation quickly became apparent (3). In the first half of the 
twentieth century, the energy of the X-ray based radiotherapy was limited to 200-
500 kilo Volts (kV), so called ortho-voltage. These low treatment energies (by 
today’s standards) caused significant side effects for the patients. The inevitable 
skin toxicity made it very difficult to treat deeply situated tumours. The need for 
treatment planning to take the harmful effects into account became apparent. 
Already by this point, the goal became to maximise tumour effect and at the same 
time limit the harmful effect on the healthy tissue. Treatment planning at this time, 
however, was very primitive.  

The discovery of natural radiation by Henry Becquerel and the discovery of Radium 
by Marie Curie also led to further advances in radiotherapy. The gamma-rays, as 
these photons became known, have higher energies (deeper penetration into 
material), and therefore offered a solution for deep seated tumours. Radium was the 
only source of gamma-ray in radiotherapy for the first twenty years (1). The radium 
was encapsulated in some form, and the treatment was delivered with a source to 
skin distance, (SSD), of a few centimetres. The amount of radium in each capsule 
was limited to a few grams, which reduced the SSD and resulted in treatment times 
of up to several hours. To solve the treatment time and SSD issues, a new radiation 
source was required. The first solution for the limitations of Radium was Cobalt 60 
(60Co) (4). The first treatment machine using 60Co as its radiation source was 
installed in Canada in 1948. With an energy of 1.2 Mega Volts (MV), this therapy 
machine made it possible to treat deeply situated tumours and limit the dose to risk 
organs at the same time. This was a revolutionary breakthrough for radiotherapy 
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and thousands of these machines were sold in the following years, and were widely 
used for the next 20-30 years.  

At the same time as the 60Co machines were installed, a new technology - sprung 
from radar technology research - was introduced, the linear accelerator (linac). The 
first medical linear accelerator was installed in 1953 in London. The advantages of 
linear accelerators were many. The first and most distinct advantage of linacs over 
60Co is the lack of a radioactive source. There is no weakening of the beam over 
time, no required source change and no risk of the source getting stuck in an open 
position, possibly harming the patient. The second advantage is the higher photon 
energy. Medical linear accelerators (then and currently) produce X-rays of 4-20MV. 
This energy range allowed treatment of very deeply situated tumours to absorbed 
doses of up to 70 Gray (Gy) without exceeding the tolerances to risk organs, (for 
many tumour types but not all) (5). The third main advantage of linacs is that they 
can produce and deliver electron beams, meaning that a single machine can treat 
superficial tumours (with the electron modes) as well as deeply situated tumours 
(with the photon modes). 

2.2 The development of intensity-modulated 
radiotherapy 

Linear accelerators and 60Co coexisted for many years; however, in the 1980s, the 
linacs started to become the dominant treatment modality in radiotherapy. In the 
mid-1980s the multi-leaf collimator MLC was commercially introduced, primarily 
for linacs. The MLC is composed of several thin tungsten blades that together can 
shape the radiation field to fit the tumour and shield the surrounding healthy organs. 
The MLC, in combination with computed tomography imaging, (part of the 
motivation for the 1979 Nobel prize, ”Well-informed observers believe that 
computer-assisted tomography has introduced a new era in radiation therapy”(6)), 
lead to what today is called 3D conformal radiotherapy.  

Although the MLC was originally designed to conformally shape radiation beams 
around targets, this was not what made the most significant impact on radiotherapy. 
Instead, the MLC had (and still has), a central role in all kinds of intensity modulated 
radiotherapy.  

The first paper describing the dose shaping that later became known as IMRT was 
written by Brahme et al. in 1982. This paper describes how a rotating beam with a 
fluence modulated with a unique wedge could form a circular dose distribution (7). 
In 1988, Brahme published another paper on the subject, introducing a new concept 
of treatment planning. Brahme describes a method that derives the optimal incident 
beam dose from the desired dose distribution to the target, in what became known 
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as inverse optimisation or inverse planning (8). These two ground-breaking papers 
kickstarted the evolution of IMRT. Within the same year, a second IMRT paper was 
published by the same group, suggesting a practical way to deliver these shaped 
dose distributions using moving MLC blades (9).  

During the 1990s and early 2000s, several research groups developed the technique 
of inverse optimisation and the practicalities of delivering IMRT treatments (10-
17). By 2003 all radiotherapy departments wanted to have IMRT in their clinic. The 
two main strategies for IMRT delivery with static (fixed) beam angles, were, (and 
still are) Dynamic MLC and step-and-shoot MLC. The step-and-shoot IMRT 
method utilises several small MLC-shapes in every beam. The radiation is stopped 
while the MLC blades move to shape the next segment. Each segment delivers a 
small amount of radiation, and the sum of all beamlets results in a shaped dose 
distribution. During dynamic IMRT delivery, the MLC blades move while the 
radiation is on. The MLC shapes a narrow slit that slides from one side of the open 
beam to the other. The opening of this slit can also change during this sliding 
window delivery, as it is also called. To deliver the best possible treatment, 
regardless of which technique is employed, several beam angles are required. IMRT 
in this form results in longer treatment times (10-15 min compared to 2-3min for 
conventional therapy). This increase in time can be a significant discomfort for 
patients. The risk of potential problems related to organ and tumour motion also 
increases with beam delivery time. For these reasons faster treatment techniques 
were researched. 

2.3 Volumetric modulated arc therapy (VMAT) 
In 2008 a new type of IMRT technique was described by Karl Otto. This method 
utilised the rotation of the linac head and gantry, while at the same time the MLC 
was moving dynamically (18). During all these machine movements, the radiation 
beam is on. This technique was called Volumetric Modulated Arc Therapy (VMAT) 
in the paper and later became a general denotation for these kinds of treatments. 
Shortly after this publication the first patients got treated with VMAT. The most 
significant advantage of VMAT over static beam IMRT was the delivery time. The 
beam on times for a single rotation VMAT is about 1min. This results in 10% or 
less beam-on time compared to IMRT. More and more clinics implemented and 
treated with VMAT alongside IMRT. Clinics that had not yet started IMRT 
treatment skipped them entirely and went directly to VMAT treatments (19).  

Because of the short treatment times, better plan quality and the fact that 
conventional c-arm linacs can be used, VMAT is the most common treatment 
technique at many hospitals today.  
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2.4 The treatment planning process 
Traditionally the treatment planning process for 3D conformal radiotherapy 
(nowadays referred to as simply conventional radiotherapy) is a trial-and-error 
process. The treatment planners try different beam angles, various weighting 
contributions from each beam and wedging of the fields where available using a 
computer treatment planning system (TPS). This manual process of optimization of 
the plan parameters and recalculation of the dosimetry goes on until a satisfactory 
result is reached, covering the target without overdosing critical risk organs.  

Expert treatment planners can go through this process rapidly while it takes longer 
for inexperienced ones. No matter how skilled the treatment planner might be, the 
plan quality is limited by the degrees of freedom available. For conventional 
treatments these freedoms are limited to the few mentioned above (beam angles, 
wedging and relative contribution to the total delivered dose).  

The planning process for IMRT and VMAT is different. The first step is similar to 
conventional planning, where several beams are distributed around the patient, but 
for IMRT usually equally distanced. The number of beams usually is larger for 
IMRT. Next, the clinical goals for target volumes and risk organs are put into a list 
of goals for the plan in the TPS. These goals become the objectives for the 
optimisation. The objectives are now prioritised (given relative importance) by the 
planner, and the automatic optimisation is started. Now the computer attempts to 
fulfil as many of the objectives as possible. The optimal fluence from each beam is 
converted to deliverable MLC segments, static or dynamic. The treatment planner 
now examines the resulting treatment plan and will often find that it is not good 
enough (according to the requirements of the relevant clinical protocol). To improve 
the plan the optimisation is re-run with different objectives, sometimes several times 
(Figure 1). 
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Figure 1. 
Illustration of the trial-and-error process involved in treatment planning of intensity modulated radiation therapy 
treatments (IMRT and VMAT). 

For VMAT treatments the process is very similar in principle. The only difference 
is that the planner chooses the number of rotations, start, and stop angles instead of 
the fixed beam angles. This means that IMRT and VMAT planning is also a trial-
and-error process just like for conventional planning. Because of the infinite number 
of combinations of different objectives and priorities, the questions remain: 

• is the treatment better than before or as good as it could be?  

• is the deliverable treatment plan as good as it looks on the computer screen?  

The quality of a treatment plan can only be judged by how well it fulfils the 
prescription (20). A quantitative evaluation of the plan therefore depends on the 
stated objectives. Prescriptions should be defined for targets as well as OARs with 
stated importance for each objective - ambiguines importance can lead to individual 
prioritisation of objectives depending on personal preference. The deliverability of 
the plan should also be included in quality evaluation, which may not always be the 
case in the planning process.  
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3 Optimisation 

The basis of the inverse planning, used in both IMRT and VMAT, is an optimisation 
algorithm. The treatment planning optimisation problem - maximising the target 
dose and at the same time minimising or even restricting the dose to critical organs 
- could be set up in a general form to find optimal values for all variable treatment 
parameters. Because of the many treatment parameters, the search space becomes 
too large to be practical and the optimisation problem needs to be limited to a few 
variables. The parameters, for static field IMRT at least, are beam orientation, 
irradiation geometry, dynamic or static intensity modulation, radiation modality, 
and beam energy (14). The beam orientation & beam angles are usually set prior to 
the optimisation but can be included or pre-optimised, (which will be discussed later 
in this chapter). The parameter left for optimisation are the beam profiles incident 
at the target. The process starts with an initial guess and then the beam profiles are 
changed iteratively until an optimal solution is found. The optimal solution is 
evaluated against an objective function which is a weighted sum of all the dose- 
volume criteria stated by the user at the start of the optimisation. Two groups of 
optimisation algorithms are commonly used to determine the optimal beam profiles: 
deterministic and stochastic.  

3.1  Dose volume objectives and objective function 
The predominant types of objective used in commercial systems for intensity 
modulated treatment planning are: dose-volume based, or a combination of dose-
volume and dose. Usually, for target volumes the minimum required dose and the 
allowed maximum dose can be specified in the optimiser. In some systems volume 
requirements are also allowed for targets, however a strict minimum dose is always 
required. For risk organs there is naturally no minimum dose requirement, only 
maximum dose, and maximum dose to a specified volume – dose objectives can 
also be stated as: Dose, Gray (Gy), to 0% of the volume to specify maximum 
allowed dose in systems with only dose-volume objectives (see Figure 2). There is 
usually a weight (or priority factor) that needs to be specified for each dose volume-
objective. During the optimisation process the dose distribution from each iteration 
is evaluated against the weighted sum of all the objective values resulting in a total 
score value (21). The optimisation algorithms are designed to minimise the 
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objective value, i.e. the difference between the desired dose and the optimised dose. 
(21). The optimisation algorithms are designed to minimise the objective value, i.e. 
the difference between the desired dose and the optimised dose.  

Figure 2. Example of setting the dose-volume objectives for PTV in a commercial TPS 
Dose-volume objectives set for the PTV in a commercial treatment planning system. In this example, upper means: 
maximum allowed dose, 43.34Gy or more to 0% of the volume and lower means: at least 42.06Gy to 100% of the 
volume. The two different objectives have priority 100 and 200 meaning that the lower objective will have be twice as 
important in the optimisation. 

3.2 Optimisation methods 
The most common deterministic optimisation method used for IMRT planning is 
the gradient descent method. To be able to optimise the beam profile for each 
projection, it is divided into smaller parts called beamlets or beam elements (bixels) 
(14, 21). All the beamlets that have a projection of the target are included in the 
optimisation. The patient’s 3D volume is also divided into smaller volume elements 
(voxels). An initial guess of beamlet intensities representing the beam profile, is 
used to calculate the dose in every voxel of the patient. The difference between the 
stated objectives and the resulting dose is calculated and then the beamlet intensities 
are changed. The new “guess” is evaluated in the same way and if it results in a 
better dose distribution it is retained. The iteration goes on until one of the stop 
criteria - maximum number of iterations or optimal solution set by the user - is 
reached. The process can be illustrated by an example (Figure 3).  
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Figure 3. Graphical illustration of the gradient descent method 
The graphs in the figure are two examples of objective functions – the measure of how good an optimised treatment 
plan is, the lower value the better plan – for one adjustable parameter to be optimised, X, e.g. the intensity of one 
beamlet of a beam profile. From the initial guess X0 the next step is found X1 by subtracting from X0 a value, given by 
gradient at X0. In this way the gradient of the objective function is followed stepwise until a minimum is reached. In the 
left example there is only one minimum and the gradient descent optimiser finds the lowest possible value. In the 
example on the right, there are several minima and because the initial guess is on the right side of the curve, the 
optimiser gets stuck in a local minimum. 

For a given objective function the optimisation starts with an initial guess X0. From 
this point, the gradient method calculates its next step X1 by subtracting from X0 a 
value given by the gradient at the point X0. This is repeated in the same way from 
X1 to X2, X2 to X3 etc. If the objective function only has one minimum, as in the 
left graph in Figure 3, the gradient descend algorithm easily finds it and thereby the 
optimal solution. In the other example, to the right in Figure 3, there are several 
minima and the initial guess X0 happens to be on the right side of this objective 
function curve. In this case the optimisation gets stuck in one of the local minima 
and a suboptimal solution is found. The gradient method is the fastest, computation 
wise, of the early algorithms implemented for IMRT planning (14, 22-26). The 
drawback of the method is, the fact that a sub-optimal solution is likely to be 
identified if used with dose-volume base objectives (26). To get around this problem 
other algorithms were developed simultaneously.  

The most researched stochastic optimisation technique is simulated annealing (10, 
12, 21, 27-29). Annealing is a method used to soften metals by heating them to high 
temperatures and then quickly cooling them in water. For optimisation the annealing 
is simulated; the ‘temperature’ (representing the parameter to be changed during the 
optimisation), determines the step size in the search area, i.e. the amount that the 
beamlet intensity is changed in each iteration. The temperature also controls the 
likelihood that an increase of the objective value will be accepted – the higher the 
temperature the more likely that a worse solution is temporarily accepted. If many 
configurations are tested the optimisation can escape the local minima as shown in 
Figure 3 (right), and the best solution from the tested configurations will be found. 
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The temperature is lowered as the optimisation progresses leading to smaller steps 
and less probability of uphill jumps. Stochastic algorithms tend to be slow and to be 
sure to find the best solution a lot of iterations are required (because steps in the 
wrong direction are allowed), making it even slower. 

The slowest component in both methods is the dose calculation between each 
iteration. To make the optimisation more practical, simpler, and faster, dose 
calculation models are used making them less accurate. The beam profile is usually 
optimised without all treatment machine characteristics meaning that the optimised 
fluence needs to be converted into a deliverable plan and then a more accurate final 
dose calculation is required. 

3.3 MLC leaf sequencing  
To convert the optimised beam profile into a more realistic dose distribution, the 
characteristics of the MLC need to be added – a process called leaf sequencing or 
leaf segmentation. Both static (11, 30) and dynamic (31) leaf patterns can be 
calculated. There are several different physical characteristics of the MLC leaves 
that need to be modelled. The two most important are the leaf leakage and the 
tongue-and-groove effect, (these will be discussed in the chapter on deliverability). 
The discrepancies between optimised fluence and segmented fluence or dose can be 
significant (32, 33). In Paper I both a static step-and-shoot leaf sequence and a 
dynamic sliding window sequence was used. In Paper II only a static MLC delivery 
was used. Depending on where in the IMRT optimisation chain the plan is 
evaluated, a sub optimal solution could be chosen.  

To mitigate the problem with apparently optimal plans that are challenging to 
deliver, several groups developed optimisers that directly optimised the MLC 
patterns (34-39)so sequencing was “built-in”. A different approach, penalising the 
intensity pattern in the optimisation to find smoother beam profiles was also 
suggested (34, 40). Some methods used only optimization of the jaws (41). These 
direct machine parameter or aperture optimisers were attractive for commercial TPS 
vendors who successfully implemented them (33, 42). The direct machine 
parameter optimisation methods were found to be superior to fluence based 
optimisation methods, both in complexity and plan quality in the final dose 
calculated step. It was for this reason the direct optimisation methods were used in 
the development and optimisation of Intensity Modulated Arc Therapy (IMAT) 
techniques (43).  
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3.4 VMAT optimisation 
In a ground-breaking publication, Karl Otto in 2008 presented a method to deliver 
a conformal IMRT treatment in a single 360° gantry rotation (arc) (18). He proposed 
a direct aperture optimisation method - MLC leaf positions and dose monitor units 
(MU) weights are used as optimisation parameters - with an optimisation function 
based on dose volume constraints. Treatment machine characteristics like maximum 
leaf travel per gantry angle, gantry rotation speed, and maximum dose rate (output 
per gantry angle) are used to constrain the optimisation. The optimiser always aims 
to move the gantry as fast as possible; if this is not possible because the dose rate 
happens to be insufficient, the gantry slows down. Another innovative approach 
shown in the publication, was the progressive increase of beam angles with an MLC 
aperture, called control points. The optimiser starts with a few (6-8) control points 
and then more are added as the optimisation progresses, thereby increasing the 
accuracy. The implementation of the VMAT optimiser in Varians treatment 
planning system, Eclipse (Varian Medical Systems, Palo Alto USA), is very similar 
to the one presented by Otto (44). 

In Paper I two different optimisation methods were used, one fluence optimisation 
with a dynamic MLC sequence added later and one direct aperture optimiser for 
step-and-shoot delivery. In paper II the step-and-shoot optimiser was used. In  

Papers III and IV, Varian’s implementation of Otto’s VMAT algorithm was used.  
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4 Pareto Optimisation 

The definition of multicriteria optimisation, also known as Pareto optimisation is: a 
mathematical optimisation problem involving more than one objective function to 
be optimised simultaneously. In radiotherapy, there have always been at least two 
conflicting objectives. With IMRT and VMAT treatment planning these objectives 
can be optimised (45). What is mathematically optimal in the TPS might not be- - 
and most likely is not- dosimetrically, or clinically optimal. That is the reason for 
the trial-and-error process described in chapter 2. In a multicriteria optimisation, 
there is no one optimal solution where all the objectives are met. Instead, there is a 
trade-off between mutually conflicting goals. These contradictory objectives are 
most commonly the doses to the tumour and a nearby risk organ. There can be 
different priorities between organs and targets depending on the sensitivity of the 
risk organ. For example, the spinal cord is a sensitive organ, and the tolerance doses 
are never exceeded because the implications are extremely severe for the patient 
(e.g. paralysis) (46). Tumours close to the spinal cord have a lower priority and get 
a dose level that the organ tolerates. An organ that is less sensitive or with a less 
catastrophic outcome if tolerances are exceeded, is the parotid gland. The parotid 
glands, one on each side of the mouth, produce saliva. If they are overdosed, the 
saliva production is impaired with resulting mouth dryness, called xerostomia (47). 
In the parotid gland case, nearby tumours have higher priority and get the full 
prescription dose no matter what the parotid receives.  

A multicriteria optimisation can reach a state where one of the objectives cannot be 
improved without worsening another. This is called Pareto optimality. For the two 
example organs above this could happen for the parotid gland in practice. The 
treatment planning system always tries to make a mathematically optimal solution 
based on the objective function which is a result of the user-defined objectives and 
priorities. This way of optimising always makes a compromise between goals. To 
handle the multi criteria nature of the optimisation problem, the boundaries of 
individual objectives need to be found and evaluated against the others. In the 
pioneering work of Craft et al. optimisers were developed that generated Pareto 
optimal solutions for several conflicting goals (48, 49). However, with all the 
physical constraints of the treatment machine not considered during the 
optimisation, final deliverable plans might not be Pareto optimal in a clinical sense. 
To visualise the Pareto optimality for a specific patient, two of its conflicting 
objectives can be plotted, e.g. the x-axis can represent the target underdose and the 
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y-axis the dose to the selected risk organ. To analyse if a solution is Pareto optimal 
or not, several solutions, or in this case treatment plans, need to be generated. The 
optimisation objectives for each plan should be different. It should be noted that the 
objectives may not be different, only the weights, if the Pareto optimality is 
evaluated strictly mathematically. This is because the objective function changes is 
the objectives are changed. The Pareto optimal plans form a boundary between 
feasible and infeasible solutions. This boundary is called the Pareto front (Figure 4). 
A larger number of plans give a better representation of the Pareto front. The Pareto 
plot can be generated with the optimal fluence or the fluence with MLC 
shapes/motions taken into account, called segmented fluence (50). A substantial 
difference has been seen between optimal and segmented Pareto fronts (32, 50).  

 
Figure 4. Visualisation of the Pareto front and its generation process. 
The plot to the left contains all generated treatment plans. The green ones are clinically acceptable and the red ones 
are not. In the middle plot, clinically acceptable are filtered out. Green marks the Pareto optimal plans and the red are 
suboptimal plans. In the right plot only plans on the Pareto front are displayed 

In Paper I the clinical Pareto optimality was investigated, meaning that all presented 
treatment plans are deliverable and have a final dose calculation performed. Pareto 
fronts were manually generated for two commercial treatment planning systems and 
linear accelerator vendors. The automatic beam angle optimisation in both systems 
was also investigated. The study was performed on head and neck cancer patients, 
and the visualised trade-off was between dose coverage of the planning target 
volume (PTV) and dose to one of the parotid glands. Paper I demonstrated that the 
Pareto front method could be used to compare different treatment planning systems, 
new functionalities, or different machines. Previous studies had shown this method 
for optimal fluence and segmented fluence but not for deliverable clinical treatment 
plans (50, 51). It has been argued whether this approach compares apples to oranges 
and therefore, it is essential to stress the deliverability of the presented treatment 
plans. If a plan is deliverable with a calculated dose - ideally measured on a phantom 
– that is what is delivered to the patient no matter what TPS is used. The gantry 
angle optimisation was found to produce equally good or better plans compared to 
the equidistant beam arrangement, for both systems. The findings in Paper I 
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contributed to the clinical implementation of gantry angle optimisation at the Skåne 
University Hospital.  

In Paper II, the same manual multicriteria Pareto front method was used as in Paper 
I. In Paper II however, the technique was used to evaluate the clinical performance 
of a fall-back TPS for Tomotherapy. The fall-back TPS was designed to convert 
Tomotherapy treatment plans into step-and-shoot IMRT plans deliverable on a 
conventional linac. Pareto fronts for the Tomotherapy system were compared to 
Pareto fronts generated in the fall-back planning system as well as the clinical TPS 
at Skåne University Hospital. The optimal number of beam angles and number of 
segments per beam, was also investigated. Paper II demonstrated that plans 
generated by the fall-back system were of similar or better plan quality compared to 
the clinical TPS. The paper also showed that there is no improvement in plan quality 
if 11 or more beam angles are used.  

The advantage of the Pareto front method as a comparative tool is that it is not 
dependent on human user skills. Therefore, it is unbiased in the sense that the 
displayed differences rise from the TPS itself, the investigated modality, or 
functionality. Perhaps the most valuable information provided by the Pareto front 
method is the free improvement element of the treatment plan quality. This means 
that in the Pareto fronts there is a rapid improvement of risk organ dose and only a 
marginal decrease in PTV coverage. At some point, in this work called the “knee”-
point, the relationship becomes the opposite; the PTV dose is decreased rapidly with 
only a minimal dose reduction to the risk organ. This free improvement element can 
only be visualised by Pareto plots and is strongly dependent on patient anatomy. 
This information can later be used as input to machine learning approaches.  

One of the disadvantages of the Pareto method is that it is incredibly time-
consuming, especially for clinically deliverable plans. To generate a sufficient 
representation of Pareto front hundreds of plans need to be produced. Another 
disadvantage, for the specific method used in this work, is the lack of information 
about other trade-offs, which there are for almost all patients, than the two presented 
in the Pareto plot. One way to mitigate this problem is to always keep the other 
objectives constant and well under the clinical constraints; this, however, adds to 
the time needed to generate the Pareto front. To make the method more accessible 
in a practical sense, there is a need for automation. 

4.1 The automated Pareto plan generation software 
In Paper V, an in-house developed software for automatic generation of Pareto plans 
was used. An early version of the working loops in the software was already used 
in a small study presented at the ASTRO (American Society for Radiation 
Oncology) conference in 2017 (52). The treatment plans, for both flattening filter 
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free and flattened beams presented in Paper III, were used as base plans for an 
automatic Pareto front generation using both Eclipse, (Varian Medical Systems, 
Palo Alto USA) and RayStation (Ray Search Laboratories, Stockholm Sweden). 
Pareto fronts from the two systems and two beam modalities were compared. The 
automation allowed a finer sampling rate of the feasible plans and therefore a more 
accurate Pareto front was found. This early version of the software had no graphical 
interface for the visualisation and filtering of suboptimal and clinically unacceptable 
plans which still had to be done manually, but now for many more plans. 

For the Pareto plan generation in Paper V, a graphical user interface was developed 
for the plan generation but more importantly for the visualisation and filtering of 
feasible plans. In the plan generation part of the software, the user is given the option 
to create a base plan from scratch or to use a saved template. Then the objectives 
that should be included in the Pareto “looping” can be selected with the desired step 
size and range of the variation; the software runs all the chosen combinations 
(Figure 5). All the types of objectives available in RayStation can be chosen to be 
varied in the optimisation. Dose statistics and general information for each plan is 
saved in text format to a database. There is also an option to include a simple 
robustness test where the dose is recalculated with a chosen or random isocentre 
shift.  

 
Figure 5. Flow chart of the automatic Pareto plan generation. 
In the first step a new treatment plan is created with the desired beam energy and number of rotations, from a 
template or manually. In the next step the objectives for the starting point plan are set and the ones to be included in 
the multi criteria optimisation are specified with the desired steps. Then the optimiser is run for a pre-set number of 
iterations followed by a Collapsed Cone dose calculation; these two steps are repeated. Last, dose volume 
information is saved to a database and the optimisation is started with the next set of objectives. 
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Plan generation can be set up to go through a list of patients and run overnight. For 
each patient in Paper V the plan generation took about 28h for each patient. 

When the plan generation is done, the saved information is loaded into the Pareto 
evaluation part of the software. In Figure 6 some of the layouts and options of the 
Pareto plot tool are shown. First, all the generated plans are shown, which in this 
case numbered 800. Each plan is shown as a dot, which can be clicked to show a 
dose volume histogram (DVH) for that plan. All the goals in the clinical protocol 
can be chosen to filter acceptable from unacceptable plans. The two conflicting 
interests to be visualised in the Pareto plot can also be chosen. There is also a choice 
to only show acceptable plans according to the clinical goals and that are pareto 
optimal for the desired trade-off. Plans from several sets can be loaded at the same 
time to allow comparisons. If the robust option was chosen, the static and isocentre 
moved Pareto fronts can be compared.  

 
Figure 6. Example of sorting Pareto plan and clinically acceptable plans. 
Two sets of autogenerated treatment plans, for two different patients. The left plot shows all the plans, the ones 
fullfilling the clinical goals are denoted by circles, the ones do not are denoted by plus signs. Pareto optimal plans 
fullfiling clinical goals are shown as filled circles; only these plans are shown in the right plot. 
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5 Deliverability 

One fundamental concern with all intensity-modulated radiotherapy is whether the 
delivered treatments are as good as they seem to be in the TPS. The many MLC 
segments and movements also make it more difficult to intuitively find errors which 
was the case previously for 3D conformal therapy. The most common strategy to 
assure the quality of these types of treatment plan is to do a pre-treatment 
measurement. The most common method is to measure the clinical plan on a 
dedicated dosimetry phantom and if it passes the quality measurements and checks 
- it is locked for further editing. As the popularity of intensity-modulated therapy 
(particularly VMAT) is increasing, the time spent on pre-treatment measuring is 
becoming untenable. Possible new strategies were presented in 2015 by a working 
group of the Swedish Society of Radiation Physics (19). These guidelines suggested 
that an actual measurement is not necessary if all the critical components of a 
treatment plan are verified otherwise. However, for this to be clinically usable, the 
treatment plan characteristics should be well established for every patient group 
where individual plan measurements are not performed. To enable this strategy, 
plans that deviate from the standard should be caught already at treatment planning. 
Ideally, this verification also takes tumour motion into account. To make this work, 
comprehensive benchmarking is needed to classify the standard plans and to 
optimise the use of the available modalities for each patient. The process of ensuring 
good agreement between optimised and delivered treatment plan starts by 
characterising and modelling the treatment machine parameters. 

5.1 Treatment machine commissioning 
Acceptance testing is performed prior to commissioning the treatment machine for 
clinical use. The acceptance testing procedure is usually setup by the vendor to 
demonstrate that the machine satisfies the customer specifications defined during 
purchase of the equipment. While there may be little room for adjustment of the 
acceptance test tolerances, the on-site physicists may request slight adjustments to 
some machine parameters to demonstrate more optimal performance, well inside 
acceptance test limits. Additional supplementary acceptance tests may be agreed 
upon between the vendor and clinic to verify optimal performance in specific 
functionality related to the intended clinical use of the machine. 
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This ensures better deliverability and treatment quality for a longer period due to 
normal variations in machine performance.  

The next step of commissioning is to measure the characteristics of the treatment 
machine during clinical treatments and use these parameters for modelling the 
machine in the TPS. Beam profiles, percental depth doses and output factors for 
field sizes, defined by the vendor, are used for modelling the beam calculation 
algorithms. The systems may have different requirements on what is used from the 
measurements, so it is critical to use the right detector for each measurement and 
system (44, 53). The physics manuals should state what is important for each 
parameter, e.g. Eclipse uses the “tails” of a beam profile measurement – the dose 
under the collimators – for the second source modelling which requires adequate 
output i.e. use a small ionization chamber. It is also possible to merge measurements 
with different detectors to ensure the best modelling in each part of the profile or 
depth dose curves. 

For intensity modulated treatment plan optimisation, the modelling of MLC 
characteristics is the most critical (54, 55). The TPS requires two parameters, 
determined by the user for their individual machine, to model the MLC: MLC 
transmission and the Dosimetric Leaf Gap, (DLG) – called Dynamic Leaf Tip in 
RayStation. The Transmission is the amount of radiation transmitted when all the 
MLC leaves are closed, measured as described by Arnfied et al. (56). The tips of the 
MLC leaves are rounded to compensate for the divergence of the radiation beam. 
Because of these rounded tips the MLC will have a leakage, where the leaves meet. 
This tip leakage defined as the DLG and is recommended, by Varian, to be measured 
as described by Losasso et al. in 1998. In RayStation there is an equivalent 
modelling parameter called Minimum dynamic tip gap (53).  

For the work described in Papers III-V all treatment plans were made to be 
deliverable on Varian True Beam linear accelerator. Eclipse was used as the TPS in 
Paper III, and IV and RayStation in Paper V, (and for the additional study in relation 
to Paper III) (52). The recommended measurements for DLG and transmission 
modelling was only used as a starting value and were then tweaked and evaluated 
using the dynamic fields, e.g. Dynamic chair and C-shape, presented by Van Esch 
et al. (57, 58), measured with a 2D ion-chamber array.  

5.2 Quality Assurance (QA) 
The deliverability of all radiotherapy treatment plans depends on the consistency of 
the treatment machine and the planning system. Comprehensive, government 
authority regulated, quality assurance (QA) programs are in place at clinics world-
wide to ensure safe and accurate treatments. For treatment machines used for IMRT 
and/or VMAT delivery, the mechanical consistency of the MLC and gantry became 
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more vital requiring additional QA procedures. It is also necessary to validate that 
the TPS constantly produces deliverable treatment plans – MLC shapes and 
moments are physically possible to deliver by the machine with an accurate dose for 
every patient (19, 54, 58). In Sweden, most radiotherapy clinics have relied on pre-
treatment measurements, for every new treatment plan, as an all-in-one QA 
procedure to verify both IMRT specific machine constancy and TPS performance.  

Until recently the Swedish Radiation Safety Authority mandated a measurement for 
every new treatment field making a phantom measurement for each patient the only 
available option. Now the mandate has been changed to “verification” and a 
measurement is no longer needed if all the essential parameters are assured by other 
means. A working group initiated by The Swedish Society of Radiation Physics 
suggested strategies to implement a non-measurement based QA (19). A flow chart 
describing the strategies is shown in Figure 7.  

 
Figure 7. Flow chart of a QA strategy that doesn’t always require a patient specific phantom measurement. 
 

The idea of the method is that there are two QA strategies: one QA by measurement 
based and one process-oriented QA. The measurement QA is as commonly used 
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today and could be chosen as the only patient specific QA strategy. The process-
oriented QA is only assessable if it is validated to ensure consistency of all the 
parameters essential to the IMRT delivery: MLC-position, gantry angle, dose 
output, data integrity, and dose calculation. The process-oriented path should only 
be used for patient groups where there is a well-established planning routine and 
sufficient experience from measurements. The most difficult step in the process-
oriented strategy is to determine if an individual treatment plan should be measured 
or not. This assessment needs to be based on a quantitative metric that is related to 
the parameters that are optimised by the TPS. The machine constancy parameters 
should still be measured on a regular basis - more frequently if process-oriented QA 
is implemented. 

The deliverability of treatment plans evaluated in Papers III-V was verified with a 
phantom measurement system called Delta 4 (Scandidos AB, Uppsala, Sweden). 
The Delta 4 phantom has two orthogonal diode-arrays, (p-type diodes), placed in a 
plexiglass cylinder. The resolution of the arrays is 5mm in the 6 C 6 cm central area 
and 10 mm in the rest of the area with a total measurement area of 20 C 20 cm. The 
treatment plan to be measured is recalculated on the phantom geometry and then 
compared to the measured dose to the phantom. The g-analysis method was used as 
a quantitative measure of the difference between measured and calculated dose 
distribution (59, 60). The evaluation criteria were 3%3mm with a cut of at 15% of 
the maximum dose in addition profiles of the measured and calculated dose was 
compared visually.   

To measure the effect of motion on a treatment plan, the Delta 4 phantom can be 
connected to a system generating movement in 6 directions called HexaMotion 
(ScandiDos). The HexaMotion can reproduce motion patterns defined by the user 
and was used for the verification measurements in Paper III.  

5.3 Motion management 
Tumour motion, if unaccounted for, can lead to insufficient dose coverage resulting 
in a worse outcome than expected. Usually, the tumour motion is has been managed 
by applying a margin e.g. the PTV margin (61). Sufficient margins can account for 
tumour motion in a static, homogeneous beam, resulting in a dose blurring in the 
edges of the target. For intensity modulated beams with an inhomogeneous beams 
profile, the margins may not be sufficient. The tumour motion can interact with the 
MLC shapes small islands of overdosage and underdosage can occur. This is called 
the interplay effect (62).  

To account for interplay, information about the motion is needed. For periodic 
motion like breathing, the tumour position can be imaged in several phases. This is 
usually done with 4DCT. For a more random motion the tumour needs to be 
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monitored over a longer period usually with an inserted marker. It has been shown 
that the prostate moves in a random way (63, 64). 

In Paper III, two different beam modalities were investigated to manage the prostate 
motion during hypofractionated radiotherapy. The new hypofractionation scheme 
reduces the total treatment time from 39 fractions to only 7 (65). However, because 
of the higher fraction dose, the beam-on time at each treatment is increased. Longer 
beam-on time increases the risk of prostate movement during the treatment (66). As 
described in Paper III, this problem is solved by using a flattening filter free (FFF) 
beam that decreases the beam-on time. The results were verified using a pre-
treatment measurement under simulated motion. The plans generated using FFF 
beams were more robust to prostate motion, compared to beams with flattening filter 
(FF), and became the clinical standard for hypofractionated prostate treatment at 
Skåne University Hospital. The knowledge from Paper III will be used in future 
work to integrate motion management into automated treatment planning. The 
treatment plans and motion trajectories evaluated in Paper III were reused to 
generate Pareto fronts for comparison. Pareto fronts were generated for flattened 
and FFF beams for both Eclipse and RayStation (Figure 8). There was little or no 
separation between the four Pareto front indicating similar plan quality.  

 
Figure 8.  
Pareto fronts for a hypofractionated prostate cancer treatment generated with Eclipse (red) and RayStation (blue), 
using FF beams (rectangles) and FFF beams (triangles). 

Three plans from each Pareto front, (level 1-3 in Figure 12), were then measured 
with the Delta 4 system, static and with simulated motion Figure 9. The results from 
the motion measurements confirm the conclusions in Paper III. 
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Figure 9. 
Gamma pass rates from Delta4 measurements of VMAT plans generated in Eclipse and RayStation, using FF and 
FFF beams. Plans from three Pareto levels: static phantom and with two simulated motion patterns. 

5.4 Multi-Modality 
Many of the world’s radiotherapy clinics have access to several treatment 
modalities. These modalities can be somewhat similar or completely different. 
Some modalities could have different treatment planning systems, others use only a 
different beam modality. It can be challenging to get the most out of unconventional, 
specialist machines if the plan comparisons are made on day by day, on-demand 
basis (Paper II). Other factors, such as hypofractionation can also result in the need 
to investigate alternative modalities to ensure the plan quality. Ideally treatment 
plans for every patient could be generated and compared for all available modalities 
- should be done automatically to work in a clinical routine.  

In Paper II the plan quality of two different treatment machines/modalities was 
evaluated. Additionally, two different TPS are assessed to find the best possible 
backup plan for Tomotherapy. To ensure deliverability the plans were verified with 
a pre-treatment measurement. The fall-back planning system, SharePlan (Ray 
Search Laboratories, Stockholm Sweden) was found to generate treatment plans of 
adequate quality as backup for Tomotherapy treatments and was used routinely until 
discontinued.  
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6 Automated Treatment Planning 

About ten years ago, the research on automated treatment planning started to 
escalate. The promise that IMRT planning would be more or less automatic was not 
fulfilled, and therefore there was still room for improvement in the automation. 
Some research groups tackled the problem by navigating the mathematical Pareto 
fronts during the optimisation process. The plans are evaluated in the optimal 
fluence step prior to MLC segmentation. The trade-offs can be reviewed, and the 
desired plan is then made into a deliverable treatment plan (67-69). This approach 
is implemented in the RayStation multi criteria optimisation module (53). The 
Pareto generation software used in Paper V, described in chapter 4.1, uses the same 
principial however not with strictly mathematically Pareto optimal solutions - 
deliverable plans, verified by measurement, are sorted to form pareto fronts.   

Another approach of automation is based on clinical wish lists and multi-criteria 
optimisation including beam angles and profiles (70, 71). This approach is 
customisable for each clinic through local wish lists with clinical goals. 

One commercially available automated planning tool works with achievable dose 
volume histograms (DVH). The idea behind this approach is to have a model based 
on previously delivered plans to predict the achievable DVH therefrom derive the 
objectives to use in the regular optimisation (44, 72, 73). Note that this approach is 
model based and not machine learning based.  

6.1 AI and Machine Learning Approaches 
In recent years, the development of artificial intelligence (AI) has taken huge steps 
forward. Machine learning (ML), a branch of AI, has promising potential for 
radiotherapy applications. Commercial vendors and academic research groups are 
working simultaneously on knowledge-based, machine learning based, automated 
treatment planning. Knowledge-based in this sense means that the AI searches for 
similar patients in a database and suggests the clinical plan for that patient. With 
this approach new patients are planned with the knowledge from previously treated 
patients. There are several publications on ML based dose predictions for IMRT and 
only a few for VMAT. Most publications evaluate the predicted dose without 
converting them into deliverable plans. McIntosh et al. were the first to generate 
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deliverable VMAT plans based on ML dose predictions using a dose mimicking 
approach, (similar to the system described in Paper II) (74). 

In Paper IV 160 prostate patients were used as training data for a densely connected 
U-Net trained in 2.5D – three consecutive 2D CT images and their corresponding 
segmentation are combined into a so called triplet defining 2.5D – and a baseline 
model in 2D, using an encoder decoder U-Net architecture introduced by 
Ronneberger et al. (75). Dose predictions from both the 2.5D and 2D model were 
compared.  

A nearest neighbour (NN) search was performed to find the closes match between 
the dose prediction and one of the clinical dose distributions from the training 
dataset. The DVH for the dose distribution from the NN patient was compared to 
the DVH of the predicted dose. The dose volume objectives, used to optimise the 
from the NN plans, were adjusted so each objective fit the best of the two DVHs, 
shown in Figure 11 (from Paper IV). 

 
Figure 10. Objectives adjusted to fit the best DVH (figure from Paper IV). 
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The adjusted set of objectives are combined with the predicted dose and the VMAT 
segment from the NN plan. This merge is then run through the last step of the Eclipse 
optimiser to adjust the MLC segments to fit the dose prediction. The resulting 
deliverable plans were compared to the ground truth and were also measured with 
the Delta 4 system. The entire workflow can be seen in Figure 12 (from Paper IV). 

Figure 11. The suggested treatment planning workflow to transform a deep learning dose prediction into a 
deliverable treatment plan (figure from Paper IV). 
 

In Paper V, Pareto front based automated treatment planning is used to explore the 
achievable rectum and femoral head doses during hypofractionated prostate cancer. 
The Pareto automated software (chapter 4.1) generated 800 treatment plans for each 
patient by systematically varying the objectives using the optimiser and dose 
calculation of a commercial TPS. This “swarm” of plans are then sorted so that only 
the ones that fulfil the clinical dose criteria and Pareto optimal ones are left. The 
clinical dose-volume criteria were evaluated for the CTV, PTV, rectum, femoral 
heads, and the body contour for four regions of the pareto front (Figure 13). The 
achieved dose-volume criteria were compared to manually generated treatment 
plans for the same patients. 
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Figure 12. Pareto front from two different patients with the examples of the four Pareto levels circled. 
The four Pareto levels that were evaluated and compared to the manual plans in Paper V were: 1 (PTV>rectum),  
2 (Knee), 3 (PTV<rectum), and 4 (PTV<<rectum). The circled areas are examples of the different Pareto levels’ 
positions. 

The Pareto plans were also used as training data for two different machine learning 
algorithms. One algorithm, a k-nearest neighbour algorithm (KNN) and a deep 
neural network-based autoencoder (DA). The KNN algorithm was trained with 
patient specific features derived from the delineated structures and the DA was 
trained on the CT images. For a new patient the ML, the two algorithms combined, 
searches for the closest matched patient in the database and suggests optimisation 
objectives to generate a Pareto front. Only the Pareto optimal objectives are 
proposed, not the hundreds of plans required to create the training data. With this 
method almost every possible solution is gone through, making it likely to find the 
optimal plan for the entire system. ML Pareto fronts generated for four test patients 
were compared to a Pareto front generated by the Pareto software. The significance 
of the difference between the Pareto fronts was evaluated with a 2D Kolmogorov-
Smirnov test described by Peacock (76). 

A potential correlation between achievable rectum PTV doses and the volume of 
the overlap between the PTV and the rectum was also investigated. The achievable 
rectum V90%, V75%, and V65% as a function of the overlapping volume was 
evaluated for the three first pareto levels. An F-test was used to test the significance 
of the slope of the linear regression model. A level of significance of a = 0.05 was 
used. The overlap dependence of the V95% for PTV was likewise studied.  
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7 Evaluating treatment plan quality 

The quality of a treatment plan can only be judged by how well it fulfils the 
prescription and, if available, OAR dose requirements. The plan should also be 
achievable considering the deliverability parameters described in chapter 5. There 
should be no additional dose calculation or plan conversion step required for the 
evaluated plans. 

For a manual optimisation workflow, the first step in the assessment of the plan 
quality is done after the first round of optimisation (see Figure 1). In the optimisation 
module of a modern TPS, dose information is presented in several ways: a DVH 
and a visualisation of the dose distribution on a CT slice of the patient (typically 
displayed with a colour wash or with isodose lines). To navigate the 3D dose 
distribution, individual CT slices can be displayed in succession. The DVH also 
contains markers for the selected dose volume objectives giving the user feedback 
about how well they are set and if they are contributing to the optimisation or not.  

 
Figure 13. Visual feedback of the DVH and the dose distribution during optimisation. 
To the left: DVH with dose volume objectives marked. The minimum dose objective for the PTV is fullfiled and no 
longer contributes to the optimisation. To the right: Dose distribution displayed as isodose lines on a CT slice of the 
patient.  
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The dose-volume objective for the PTV in Figure 14 is touching the DVH curve for 
the PTV. This indicates that the objective is completely (or almost completely) 
fulfilled, and therefore no longer contributing to the optimisation. This is also 
indicated by a very small objective value displayed by the TPS. To achieve better 
target coverage in this case, the planner needs to ask for higher dose. This 
assessment only gives information about how well the resulting plan of an 
optimisation fulfils the chosen optimisation objectives. An evaluation of how well 
the clinical dose-volume constraints are fulfilled is also needed. This can be done 
by evaluating each dose-volume constraint achievement manually from the DVH, 
or from the dose statistics list. In some TPS the clinical constraints can be defined 
and automatically evaluated, with a green light displayed in the user interface (UI) 
if fulfilled and a red light if not fulfilled. Because spatial information gets lost in a 
DVH representation of the dose it is essential to also evaluate the 3D dose 
distribution on the CT images (20). 

 
Figure 14. Traditional visualisation of a plan comprison. 
Top panel: Side-by-side comparison of three different treatment plans for the same patient. Lower panel: DVH 
comparison of the three plans (figure from Paper IV). 
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To evaluate how changing a certain plan parameter affects the treatment plan quality 
a more systematic and unbiased assessment is required. 

In Paper I, the Pareto optimisation method described in chapter 4 was used to 
compare the change in quality of head and neck cancer treatments plans when 
introducing a beam angle optimiser. Pareto fronts were generated for two different 
TPS, Varian Eclipse and Oncentra Master Plan (OMP) (Nucletron BV), with and 
without beam angle optimisation, totalling four fronts per patient. The two TPS use 
different approaches to optimise the beam angles. Eclipse used a two-step method, 
first selecting beam angles depending on the relative position of the targets and 
OAR, and then slightly adjusting the beam angles during the regular IMRT 
optimisation. OMP only performed the second step of beam angle optimisation. The 
trade-off used in the Pareto fronts was the one between underdosed PTV and the 
mean dose of one of the parotid glands. There was a clear separation between the 
beam angle optimised Pareto front and the equidistant control front for Eclipse but 
not for the OMP front. The conclusions were that beam angle optimisation might be 
better for Eclipse and the equivalent in OMP, however, beam angle optimisation 
resulted in more acceptable treatment plans for both systems. The differences of the 
Pareto fronts were not quantified.  

In Paper II, the Pareto front was used to evaluate the performance of a commercial 
fall-back TPS for Tomotherapy treatments of head and neck, and prostate cancer. 
The plan quality of the fall-back plans was compared with the plan quality of the 
clinical TPS as well as the original Tomotherapy plans. The quality of the fall-back 
plans was found to be comparable to the plans from the clinical system.  

All the plans in both Papers I and II were generated manually, making it 
tremendously time consuming. To make the Pareto method useful on a day-to-day 
basis, automatic plan generation is needed. The number of plans needed to represent 
a Pareto front was investigated by Craft and Bortfeld in 2008. They concluded that 
N+1 plans, where N is the number of objectives, is sufficient to form a Pareto front 
(67). Their conclusions considered fluence based treatment plans which indicates 
that the manual method using a commercial TPS, additional plans would be required 
for a sufficient representation.  

In Paper V automated Pareto front generation was used, allowing a search for 
optimal plans in a wider range. The automation was thus used to achieve a better 
representation of the Pareto front instead of decreasing the required pan generation 
time. With a better representation of the Pareto front, the achievable quality of a 
treatment system (TPS and treatment machine combination) can be explored. 
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To be able to improve the overall plan quality of a particular system, the quality 
evaluation must be split into two categories: 

• Required Plan Quality – the minimum quality to accept a plan for clinical 
treatment. 

• Attainable Plan Quality – the quality possible to achieve with a given 
treatment system for a certain patient group (close to the physical limits of 
the system). 

To assess if a plan has reached the required plan quality dose-volume statistics are 
compared to the clinical dose-volume constraints (mentioned in the introduction to 
this chapter). If any of the dose-volume constraints are easily achieved and the user 
doesn’t continue the optimisation, the attainable plan quality will not be reached. 
This was most clearly demonstrated in Paper V for the femoral heads – the 
maximum dose to the femoral heads for the Pareto generated plans were 
significantly reduced compared to manually generated plans.  

Current dose-volume constraints are derived from studies done decades ago, 
evaluating end points and the effect of the radiation as understood at the time (5, 77, 
78). There is also a lack of data considering doses given with IMRT techniques or 
with unconventional fractionation, that are not in the single fraction dose range of 
1.8-2Gy. Recently, studies investigating other, less severe endpoints and 
hypofractionation have been published (79-82). In order to improve plan quality, it 
is essential for radiotherapy clinics to continually update their local dose-volume 
constraints based on these kinds of studies.  

To evaluate the attainable plan quality, a systematic approach is needed and should 
be done for each patient category and treatment system. In Paper V the attainable 
plan quality was explored for hypo-fractionated prostate cancer treatment with 
optimised doses calculated with RayStation for Varian TrueBeam linacs. It was 
shown that under the above circumstances there is room for improvement regarding 
the required plan quality, with the aim to get closer to the attainable plan quality. 

The strive to close the gap between required and attainable plan quality can be 
helped even without automation available in clinical routine. In Paper V a 
significant overlap dependence was shown for the achievable rectum doses. If this 
dependence is known in advance by the planners, they can work towards this goal, 
thus creating plans which are closer to the attainable plan quality. 
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8 Discussion 

Evaluating treatment plan quality is not a trivial task. There is always a compromise 
between at least two conflicting objectives, sometimes more. Systematically 
exploring and visualising this trade-off can help find the range of attainable plan 
qualities for a given system. A comparison of this range is more suitable than a plan-
by-plan comparison when evaluating different TPS or optimisation strategies.  

In Paper I and II, the Pareto front method first described by Ottosson et al. (50) was 
used to evaluate the performance of, respectively, I: beam angle optimisers in 
commercial TPSs, and II: the performance of a fall-back TPS. In these early studies, 
all the plans were generated manually. As a result, both the optimisation and dose 
calculations took longer time than would be the case today. For these reasons, the 
Pareto fronts presented in these papers might not be as close to the attainable quality 
than if they were created automatically as in Paper V. The main conclusions are still 
as valid but less relevant now because VMAT is replacing IMRT.  

No measure or statistical test was used to quantify the separation between Pareto 
fronts, which might have changed the conclusion about the beam angle optimiser in 
Eclipse in Paper I. In Paper II, the conclusion was that the fall-back planning system 
generates plans comparable to plans developed by the clinical system. This 
conclusion would probably be confirmed with a statistical test. However, despite 
the limitations discussed, the Pareto front method was less user-biased than a plan-
by-plan comparison. For example, suppose two treatment plans from two different 
Pareto levels, in Figure 12, are compared. In that case, the difference is because of 
optimisation priorities and not because of a difference between the compared 
treatment planning systems. 

In Paper III, the plan quality of VMAT plans with FF beams and FFF beams were 
compared by evaluating their dose-volume statistics. There was no clinically 
significant difference in plan quality between FF and FFF plans. Pareto fronts based 
on the treatment plans from Paper III were generated and compared in a smaller 
study, Figure 9. The Pareto fronts visually confirmed the comparable plan quality 
found in Paper III, however, no direct quantitative measure was used. 

As described in this work, Pareto fronts can be used for example in implementation 
or benchmarking of new techniques. However, automation is required for this to be 
of practical use considering a typical clinical workflow. 
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In Paper V, an automated Pareto front generation software was developed. The 
automation allowed for an extensive scale search for achievable Pareto optimal 
treatment plans. About 2% of the 800 generated plans were on the pareto front. The 
low yield of pareto optimal plans indicates that a manual approach is unlikely to 
find the true Pareto front. In Paper V an ML approach was described to recreate the 
Pareto fronts. The ML model successfully generated Pareto fronts for four test 
patients. It should be noted again that the Pareto optimality evaluated in this manner 
might not be Pareto optimal in the mathematical sense. However, all the presented 
plans were instead deliverable in the sense that they had dose calculated for realistic, 
dynamic MLC control points (because a validated clinical TPS vas used for 
optimisation). To evaluate deliverable plans is desirable and also recommended by 
an international review on plan quality by Hernandez et al. (83). 

The evaluation of dose-volume criteria of Pareto optimal plans, compared to 
manually generated plans, showed a statistically significant reduction in rectum 
doses without a significant loss of PTV dose coverage. There was also a significant 
decrease of the maximum dose to the femoral heads for the automated plans. The 
study was set up to include only plans that fulfil all the dose-volume constraints, 
meaning that all plans fulfilled the required plan quality (chapter 7). The automated 
Pareto plans demonstrated that the attainable plan quality was not reached, most 
clearly for the femoral head doses. To avoid an ambiguous approach based on 
personal preference, stricter dose-volume constraints, with clear priorities (20, 83) 
could drive the manual planning towards the attainable plan quality. There is a need 
for continuous improvement of both dose-volume constraints and in treatment 
planner skills (84).  

There is a large number of publications demonstrating the potential of artificial 
intelligence and machine learning to improve plan quality, but only a few 
specifically considering VMAT, e.g. (74, 85-88). Transforming the ML predicted 
dose into deliverable plans is even more uncommon (86). 

In Paper IV a deep learning model was developed to predict VMAT dose 
distributions for hypofractionated prostate treatments. A novel planning workflow 
was used to transform the predicted dose into a deliverable treatment plan. The 
model training was done with patients previously treated between 2018 and 2019. 
By restricting the inclusion to more recent years, the trained model performed better 
predictions. This illustrates a potential problem with including too many patients in 
a training dataset – treatment plans from several years ago are most likely of inferior 
quality compared with today’s standards. It is also remarkable that so few have 
evaluated deliverable ML based treatment plans. There is a resemblance to the 
fluence based vs segmented IMRT plan evaluations discussion from a decade ago.  
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8.1 Conclusions 
The Pareto front method was successfully used to compare and evaluate different 
treatment planning systems and optimisation strategies by assessing the target vs 
OAR trade-off. However, with the lack of automation, the technique is impractical 
(c.f. Paper I-II). 

The physical and mechanical limitations of conventional photon radiation therapy 
machines regarding plan quality are about to be reached. This, however, does not 
mean that this limit can always be “found” with the current planning systems or 
strategies. Artificial intelligence brings promising results in the strive for better plan 
quality, however sometimes overlooking the physical limitations of the treatment 
machines, ML dose predictions can and should be converted into deliverable 
treatment plans. Automation of the Pareto front method helps find the limits, 
Attainable Plan Quality, for a specific system (c.f. Paper IV-V). 

 Evaluating treatment plan quality is not a trivial task and will always be subject to 
bias and personal preference. However, by knowing the limits of a treatment system, 
the Attainable Plan Quality and modelling of correlations between patient 
characteristics, e.g. rectum PTV overlap, can map out the achievable quality for 
each patient. (c.f. Paper V). 

Deliverability for moving targets can be improved by choosing and evaluating 
different beam modalities, for example, FF vs. FFF beams for moving targets (c.f. 
Paper III). Even if a shorter beam on time may not shorten the treatment time slot, 
it should be considered as an easily attainable method to improve deliverability. 

 If all the information mentioned above is available at treatment planning, the 
answerers to the question in the introduction could be: 

 – “Is this treatment plan as good as it can get?”– “For the current trade-off 
situation, yes! You can navigate the Pareto plans to see.” 

–” Can the risk organ doses be pushed down a bit more?” – “Yes, but then the 
target dose will decrease by this amount.”   
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8.2 Future perspectives 
Ongoing work with the Pareto software involves integrating the movement patterns 
used in Paper III to directly account for motion in the initial plan generation. The 
software is also updated to include the Eclipse optimiser in the workflow. The aim 
is to use Pareto optimal plans generated with the Pareto software as training data for 
the ML model in Paper IV, considering motion and deliverability (possibly plan 
complexity).  

The Pareto software has only been tested for prostate cancer. The plan generation 
can be set up or other treatment sites. The number of plans needed increases for 
every trade-off included. For head-and-neck cancer, with many organs close to the 
target, several thousand plans are required. It would be helpful information.  

The correlation between rectum overlap and achievable dose could be used to assess 
which patients require prostate rectal spacers to reach the required plan quality. This 
feature, linear regression models, could be used as information in ML training. 
Other patient-specific features cloud also be investigated for correlation with organ 
doses.   

It would be valuable to verify the trained ML models in a multi-institutional study. 
For example, several models could be trained for each clinic with their own 
treatment plans, one trained with all the plans, and one trained with automatically 
generated Pareto optimal plans. The Pareto optimal Plans should be roughly the 
same for clinics with the same treatment setup. Such study could clarify the 
importance of training data for ML models predicting dose distributions, 
particularly if predictions are made deliverable, which they should.  

All work presented in this thesis was done on photon radiotherapy, mainly delivered 
with c-arm linacs. However, to further explore the attainable plan quality, the 
concept should be widened to assess the limits of all available treatment machines 
and modalities.  
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