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Those who explore an unknown world are travelers without a map:
the map is the result of the exploration.

The position of their destination is not known to them,
and the direct path that leads to it is not yet made.

Hideki Yukawa, 1986





Abstract

Abstract

Over the last couple of years both cameras, audio and radio sensors have become cheaper
and more common in our everyday lives. Such sensors can be used to create maps of where
the sensors are positioned and the appearance of the surroundings. For sound and radio,
the process of estimating the sender and receiver positions from time of arrival (TOA) or
time-difference of arrival (TDOA) measurements is referred to as automatic calibration.
The corresponding process for images is to estimate the camera positions as well as the
positions of the objects captured in the images. This is called structure from motion (SfM)
or visual simultaneous localisation and mapping (SLAM). In this thesis we present studies
on how to create such maps, divided into three parts: to find accurate measurements; robust
mapping; and merging of maps.

The first part is treated in Paper I and involves finding precise – on a subsample level –
TDOA measurements. These types of subsample refinements give a high precision, but are
sensitive to noise. We present an explicit expression for the variance of the TDOA estimate
and study the impact that noise in the signals has. Exact measurements is an important
foundation for creating accurate maps.

The second part of this thesis includes Papers II–V and covers the topic of robust self-
calibration using one-dimensional signals, such as sound or radio. We estimate both sender
and receiver positions using TOA and TDOA measurements. The estimation process is di-
vided in two parts, where the first is specific for TOA or TDOA and involves solving a
relaxed version of the problem. The second step is common for different types of prob-
lems and involves an upgrade from the relaxed solution to the sought parameters. In this
thesis we present numerically stable minimal solvers for both these steps for some different
setups with senders and receivers. We also suggest frameworks for how to use these solvers
together with RANSAC to achieve systems that are robust to outliers, noise and missing
data. Additionally, in the last paper we focus on extending self-calibration results, especially
for the sound source path, which often cannot be fully reconstructed immediately.

The third part of the thesis, Papers VI–VIII, is concerned with the merging of already es-
timated maps. We mainly focus on maps created from image data, but the methods are
applicable to sparse 3D maps coming from different sensor modalities. Merging of maps
can be advantageous if there are several map representations of the same environment, or if
there is a need for adding new information to an already existing map. We suggest a com-
pact map representation with a small memory footprint, which we then use to fuse maps
efficiently. We suggest one method for fusion of maps that are pre-aligned, and one where
we additionally estimate the coordinate system. The merging utilises a compact approx-
imation of the residuals and allows for deformations in the original maps. Furthermore,
we present minimal solvers for 3D point matching with statistical deformations – which
increases the number of inliers when the original maps contain errors.
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Popular Summary

Popular Summary

Can computers understand the world as well as humans do? Can a robot navigate on its
own? Can a drone remember the appearance of a room? And can you from a number of
images learn what the environment they depict looks like? All of these questions have a
connection to the contents of this thesis.

The figure shows how to combine two different images of the same scene into a panoramic image. This requires the identification
of interesting and matching points in both images, for example marked by the red, green and blue circles. The yellow circles
show an example of points that are bad to use, since these are not unique.

Computer vision is an area which focuses on teaching computers how to gain knowledge
and understanding from images, just as humans do when they see something. In many
ways cameras are similar to the human eye, and humans and other animals are in general
very good at understanding which type of objects that are in front of them or how far away
different things are. The idea with computer vision is that computers should be able to do
this as well. One thing that images can be used for is to create 3D models or maps of the
world. We humans can determine the depth of what we see and using this, our memory
and our experiences we can create our own map of, for example, a room or a flat. The
same thing can actually be achieved digitally, using computers. The procedure is similar to
that of creating panoramic images. Today, most mobile phones have both a camera and an
application for creating panoramic images – that is, many small images stitched together
to one larger image. The essential parts of image stitching is to find interesting points that
can be seen in both images and then to move the images such that these points match. An
example of this can be seen in the figure above.
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Using several images the 3D position of the “interesting” points can be found. If there are enough images one can create a 3D
model, here represented as a point cloud, of the person in the images.

Similarly, with enough images taken from different angles, these can be “stitched” into a
3D model. The depth can be recovered since the images are taken at different positions,
as can be seen in the figure above. To estimate 3D coordinates using interesting image
points and known camera positions is called triangulation and if the camera positions are
unknown but estimated as well, we call it structure from motion. If sufficiently many points
are triangulated a map of the environment is obtained.

Such maps can also be created using other types of sensors and signals, such as microphones
and sound. Sound describes some sort of information in one dimension in the same way
that images do in two dimensions. Most people have probably, at some point, counted the
seconds from the flash of a lightning until the thunderclap can be heard. Through this, you
know how far away the thunderstorm is. You do not know in which direction it is located,
but you do know that it is positioned somewhere on a circle where you are the centre, and
the counted distance is the radius. If you could also know the thunder’s distance to two
other positions, you could draw two more circles and then the thunderstorm would be
located where these intersect. This has been illustrated in the figure on the next page. The
same procedure can be used for microphones and loudspeakers that are set up in a room,
and if there are sufficiently many it is actually enough to only know the distances between
them to compute the relative positions of both the microphones and the speakers. This
gives a map of the microphone positions, in many ways similar to the map that can be
created from images.

Once the 3D maps are obtained, they can be used for positioning – to find out where in the
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Popular Summary

The image illustrates how you can find out where a thunderstorm is, if three people hear the thunder from different positions.
By drawing a circle around each person, the position of the storm is given by the intersection of the circles.

map you are, either using sound or images. One example of a system that uses signals that
are similar to sound is GPS, which is used a lot for outdoor positioning and navigation.
The GPS does, however, work less well indoors, and because of this it can be good to have
other systems that can be used in similar ways for indoor positioning. For the positioning
to be as good as possible it is important that the map is as good as possible and in general
the maps get better if more measurements are used (for example more images). Therefore,
it is a good thing to be able to merge different maps of the same environment, to a more
exact map and to be able to update it in case something in the environment changes. This
can be done by identifying corresponding interesting points in the different maps and then
stitching them so that they coincide – just as for panoramic stitching and triangulation.

Map merging can, for example, be useful for self-driving cars. Today, many cars have one or
several cameras which can be used to determine the position of the car in an already known
environment. Imagine that we have a map of a city and that a car is driving through this
city. While driving, it will collect many images and using these images it can create its
own, local map of the city. Now, if the local map can be added to the large, global map,
the updated global map will after that contain more information than before. This makes
it more exact. So if all cars that drive through the city can do the same thing, the map
will gradually get better. Also, if some infrastructure of the city is changed, this will also be
captured in the map, without the map being re-created.

In this thesis we first focus on finding good measurements between microphones and loud-
speakers. We then cover the topic of creating maps using such measurements and the more
exact the measurements are, the better will the resulting maps be. Finally, we show how
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several such maps – consisting of 3D point clouds – can be fused into a single, more accur-
ate map. The local maps can be created either using sound or images, as in the examples
above.
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Populärvetenskaplig sammanfattning

Populärvetenskaplig sammanfattning

Kan datorer förstå världen lika bra som människor? Kan en robot navigera på egen hand?
Kan en drönare komma ihåg hur ett rum ser ut? Och kan man från platta bilder förstå hur
omgivningen de avbildar ser ut? Allt detta är frågor med koppling till innehållet i denna
avhandling.

Bilden visar sammansättning av två olika bilder som fångar samma scen till en panoramabild. För detta krävs att man identifierar
intressanta och matchande punkter i de båda bilderna, exempelvis de som är markerade av de röda, gröna och blå cirklarna. De
gula cirklarna markerar punkter som är dåliga att använda, eftersom dessa inte är unika.

Datorseende är ett område som handlar om att lära datorer att förstå och utläsa information
ur digitala bilder, precis som vi människor gör när vi ser någonting. Det mänskliga ögat
är i många avseenden likt en kamera och generellt är människor och djur väldigt bra på
att förstå saker – som vad det är man ser eller hur långt bort olika saker är. Datorseende
handlar om att lära datorer att göra samma sak. En sak som bilder kan användas till är att
skapa 3D-modeller eller kartor av verkligheten. Vi människor kan bedöma djupet i det vi
ser, och med hjälp av detta, vårt minne och våra erfarenheter kan vi skapa oss våra egna
kartor av hur exempelvis ett rum eller en lägenhet ser ut. Samma sak kan man göra digitalt,
med hjälp av datorer. Tillvägagångssättet är ganska likt det man använder när man skapar
panoramabilder. I dag har de flesta mobiltelefoner både en kamera och en funktion för
att skapa panoramabilder – det vill säga stora bilder som egentligen är flera ihopklistrade
bilder. Om man vill klistra ihop två bilder gör man väsentligen så att man noterar intressanta
punkter som syns i båda bilderna och ser till att dessa matchar. Ett exempel på detta syns i
figuren ovan.
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Med hjälp av flera bilder bestäms positionen i 3D för de “intressanta” punkterna. Om man har tillräckligt många bilder kan man
skapa en 3D-modell, här i form av ett moln av punkter.

På samma sätt kan man, om man har tillräckligt många bilder från olika vinklar, “klistra
ihop” dem till en 3D-modell. Djupet fås, precis som när människor ser, av att bilderna är
tagna från olika ställen, se bilden ovan. Att med hjälp av kamerapositioner och intressanta
punkter i bilder beräknar positionen för 3D-punkter kallas det för triangulering och om
man dessutom samtidigt hittar kamerapositionerna brukar det kallas struktur och rörelse,
eller structure from motion. När tillräckligt många punkter har triangulerats har man en typ
av karta av omgivningen.

Sådana här kartor kan även skapas med hjälp av andra sensorer och signaler, till exempel
mikrofoner och ljud. Precis som att en bild beskriver någon form av information i två di-
mensioner så gör ljudet det i en dimension. De allra flesta har nog vid något tillfälle räknat
sekunderna från det att man ser en blixt tills dess att man hör åskknallen. Därigenom vet
man hur långt bort åskan är. Man vet inte vilket håll den kommer ifrån, men man vet
att den befinner sig någonstans på en cirkel där man själv är centrum och det uträknade
avståndet är radien. Om man dessutom känner till vad avståndet till några fler punkter är
kan man rita upp fler cirklar och där dessa skär varandra befinner sig åskan för stunden.
Detta finns illustrerat i figuren på nästa sida. Samma sak kan man göra med vanliga mik-
rofoner och högtalare som står uppställda i ett rum. Finns det tillräckligt många så räcker
det att man vet de respektive avstånden för att kunna beräkna de relativa positionerna både
för mikrofonerna och för högtalarna. Därigenom får man en karta över mikrofonposition-
erna, som på många sätt är lik den karta man kan skapa med hjälp av bilder.

När man väl har 3D-kartor kan dessa användas för positionering, alltså för att ta reda på var
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Populärvetenskaplig sammanfattning

Bilden illustrerar hur man kan lista ut var exempelvis ett åskoväder befinner sig, om man är tre personer som hör åskan från olika
platser. Genom att rita cirklar runt de olika personerna med radier som motsvaras av avståndet, så vet man att åskan är där
cirklarna skär varandra.

man befinner sig, antingen med hjälp av ljud eller bilder. Ett exempel på ett system som
använder signaler som liknar ljud är GPS, som används flitigt för utomhuspositionering
och navigation. Inomhus fungerar dock GPS sämre, och därför kan det vara bra att ha
andra system som kan användas på liknande sätt men för inomhuspositionering. För att
positioneringen ska bli så exakt som möjligt är det viktigt att kartan är så exakt som möjligt
och kartorna blir generellt bättre ju fler mätningar man gör (exempelvis ju fler bilder man
använder). Därför är det bra om man kan slå samman flera olika kartor av samma miljö, för
att öka noggrannheten och för att kunna uppdatera kartan om någonting ändras. Detta kan
man göra genom att – precis som i bilderna – identifiera motsvarande intressanta punkter
i de olika kartorna och pussla ihop dem så att de överlappar.

Ett exempel på när kartsammanslagning kan vara användbart är för självkörande bilar.
Många bilar har i dag kameror och dessa kan användas för att bestämma positionen för
bilen i en sedan tidigare känd miljö. Vi tänker oss att vi har en karta över en stad och
att en bil sedan kör igenom denna stad. Medan detta händer kommer bilen samla in en
massa bilder och den kan då skapa sig sin egen, lokala karta av de delar av staden som den
passerar. Om denna lokala karta sedan kan läggas till den stora, globala kartan, så kommer
den därefter att innehålla mer information och därmed vara med exakt. Om alla bilar som
kör genom staden kan göra detta kommer kartan successivt att bli bättre och om någon in-
frastruktur i staden ändras kommer detta att återspeglas i kartan utan att den helt behöver
göras om.

I den här avhandlingen fokuserar vi först på att hitta exakta mätningar för avstånden mellan
mikrofoner och högtalare. Sedan arbetar vi vidare med att skapa kartor med hjälp av sådana
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mätningar, och ju mer exakta mätningarna är, desto bättre kommer de slutgiltiga kartorna
att vara. Slutligen, om vi har flera sådana kartor – som består av 3D-punktmoln – så visar
vi hur dessa kan slås samman till en, mer exakt karta. De lokala kartorna kan vara skapade
antingen med hjälp av ljudmätningar eller bilder, som i exemplen ovan.

xiv



List of Publications

List of Publications

This thesis is based on the following publications, referred to by their Roman numerals.
They are reproduced and included in this thesis with the permission of their respective
publishers. The author’s contributions to each paper is listed below.

Main papers

I Stochastic Analysis of Time-Difference and Doppler Estimates for Audio Signals
G. Flood, A. Heyden and K. Åström
Pattern Recognition Applications and Methods, Springer International Publishing,
Cham, 2019.

Author’s contributions: The paper evolved from a previous paper written by KÅ and
AH and a conference paper (subsidiary) with the same authors. GF contributed
to the theory development and discussions about the paper. GF wrote most of the
code for the experiments, together with KÅ, and generated the final results. GF
also did a large part of the writing, with input from the co-authors.

II Robust Self-Calibration of Constant Offset Time-Difference-of-Arrival
K. Batstone, G. Flood, T. Beleyur, V. Larsson, H. R. Goerlitz, M. Oskarsson and
K. Åström
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2019.

Author’s contributions: The original ideas were suggested by KÅ, but MO, KB and
VL helped to develop them for the paper. The coding was mainly conducted by
KÅ, MO, KB and VL, and VL developed the fast solver. GF contributed to the
experiments, both in the collection of real data and parts of the synthetic experi-
ments. GF also took part in the writing process together with all the other authors.

III Upgrade Methods for Stratified Sensor Network Self-Calibration
M. Larsson, G. Flood, M. Oskarsson and K. Åström
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020.

Author’s contributions: The ideas were suggested by KÅ, MO and ML, but all au-
thors took part in discussing them. GF helped with the experiments and the writ-
ing process.

xv



IV Fast and Robust Stratified Self-Calibration Using Time-Difference-of-Arrival
Measurements
M. Larsson, G. Flood, M. Oskarsson and K. Åström
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2021.

Author’s contributions: The paper was a natural continuation from Paper III. The
ideas were suggested by KÅ, MO and ML, but all authors took part in discussing
them. GF contributed to the experiments and the writing process.

V Extension of Time-Difference-of-Arrival Self Calibration Solutions Using Ro-
bust Multilateration
K. Åström, M. Larsson, G. Flood and M. Oskarsson
29th European Signal Processing Conference (EUSIPCO), 2021.

Author’s contributions: The ideas were discussed during the process of earlier papers
and suggested by KÅ. All authors took part in developing the ideas, the experi-
ments and the writing.

VI Efficient Merging of Maps and Detection of Changes
G. Flood, D. Gillsjö, A. Heyden and K. Åström
Scandinavian Conference on Image Analysis (SCIA), 2019.

Author’s contributions: The idea for the merging algorithm came from KÅ, but GF
contributed to the development of the original idea to the theory and methods
used in the paper. The majority of the code was written by GF, DG and KÅ. GF
did most of the writing of the paper, but all the authors contributed, and wrote
some parts each.

VII GenericMerging of Structure fromMotionMapswith a LowMemory Footprint
G. Flood, D. Gillsjö, P. Persson, A. Heyden and K. Åström
25th International Conference on Pattern Recognition (ICPR), 2021.

Author’s contributions: The paper was a continuation and generalisation of Paper
VI. The ideas were discussed between all authors but KÅ and GF had a leading
role in developing them. GF, KÅ and DG wrote most of the code and PP helped
in conducting the experiments. GF wrote most of the paper but with help from
all authors.

xvi



List of Publications

VIII Minimal Solvers for 3D Map Matching with Statistical Deformations
G. Flood, E. Tegler, D. Gillsjö, A. Heyden and K. Åström
Manuscript.

Author’s contributions: The idea to use minimal solvers to refine matches came
from KÅ, but was based on discussions about and work with Paper VII. GF had
a leading role in the development of the research and wrote most of the code,
with help from KÅ, DG and ET.

Subsidiary papers

Estimating Uncertainty in Time-difference and Doppler Estimates
G. Flood, A. Heyden and K. Åström
7th International Conference on Pattern Recognition Applications and Methods (IC-
PRAM), 2018.

Paper I is an extended version of this paper.

xvii





Acknowledgements

Acknowledgements

These acknowledgments only cover a few pages of this thesis, but they include people that
have been as fundamental for my development and the resulting research as any knowledge,
research paper or book has been. There are so many people that have helped me in different
ways throughout these years and I would especially like to express my gratitude to:

My thesis advisors, Kalle Åström, Anders Heyden and Carl Olsson. Thank you for guiding
me into and through the jungle of academia, helping me prepare so that maybe one day
I can explore it on my own. Kalle, thank you for everything. For academic expertise and
endless number of research ideas. For being supportive and encouraging when I have been
struggling. Thank you for not only showing me research but doing it with me and for
being a great role-model. I do not think that there is a type of thesis advisor that is good
for everyone, but I am certain that you have been the best advisor for me. Anders, thank
you for all the advice and support and for being down-to-earth when I have been stressed.
Carl, thank you for great proof-reading of my licentiate and doctoral theses, but also for
being an inspiration.

My fellow PhD students at the Centre for Mathematical Sciences, for making hard times
easier and good times even better. In particular: Maria Priisalu, with whom I shared office
for most of my PhD studies. Thank you for acting as my common sense when I have lost it.
Thank you for always making me in a better mood, even during the lousiest of mornings,
and for laughing both with me and at me (in a friendly way). Ida Arvidsson, who has been so
much during these five years – a supportive colleague, a fantastic study partner and a close
friend all at once. Thank you for letting me go through these years and grow together with
you. Thank you for all your help with this thesis and for always listening to my complaints
and concerns. I have learnt a lot from you. Anna Gummeson and Linn Öström, for making
Friday afternoons during the pandemic so much better and for proof-reading this thesis.
Thank you Anna, for being the first person that I actually discussed ongoing research with
– during our Master’s theses – and for then coming back to MC to become a dear collegue.
Thank you Linn for being refreshing and cheerful from your first day at MC and becoming
a friend in just a few weeks. Mats Bylund, for making coffee breaks during the pandemic
enjoyable. Thank you for lunch training sessions, for explaining mathematics to me and for
always having a reasonable view on things. David Gillsjö, for never making me feel stupid,
independently of how trivial questions I ask and for great collaboration and discussions
throughout the years. Johan Fredriksson, for early showing me how cool a PhD student in
applied mathematics can be and for answering all my stupid questions concerning life as a
PhD student in the beginning of my studies.

My other colleagues. Thank you for being an inspiration, for teaching me about academia
and for making coffee breaks fun and interesting. I would particularly like to thank: Niels

xix



Christian Overgaard, for good advice and hard questions during my licentiate defense and
for proofreading this thesis. Also, for always being open minded and for being the first
senior colleague – except for my advisors – that made me feel like a peer. The co-authors of
the papers, for the collaborations, research discussions and everything you have taught me.
Everyone in the SSF Smart Systems project, for fruitful discussions and worthwhile present-
ations that have broadened my view and knowledge. Eva-Lena Borgström and Lena Lööf,
for always being helpful. Everyone who has trained with me, once or more often, during the
lunch breaks. Thank you for helping me return to work in the afternoon with a slightly
clearer mind. I would also like to thank the Math Building, for being my second home for
the last ten and a half years.

Others that have been of importance for my development as a PhD student, despite not
necessarily working at MC. In particular: Lea Versbach and Marcus Klasson – The Da Vinci
PhDs – for many hours spent together during our Master’s theses, and an environment that
was encouraging and made me feel that working in academia was as good of an option as
working in the industry. Also, thank you for great chats during the last five years and for
sharing the PhD experience, recognising what I have been going through and sometimes
making me feel less weird. Sara Månsson, for discussions on PhD related matters, acknow-
ledging both good and bad parts, and for sharing a lot of information and advice on thesis
writing.

People outside the academia that are close to me, for joy and recovery outside working
hours. My wonderful friends Christina Rönngren and Matilda Hjälle, for always being
completely unconditional. Thank you for your understanding during hectic periods, for
supporting me but also for telling me when things have gone too far. Thank you for all the
happy and relaxing moments that have been so important in between the studies. My great
friends in the cycling club Lunedi, for helping me to take my mind off work. Thank you for
soothing Sunday fika rides and for forcing me to think about nothing other than lactic acid
and to not get dropped every Tuesday and Thursday evening.

Everyone that has been of importance for my way to the PhD studies and still are. Es-
pecially: My family. Thank you Mamma for teaching me the importance of studies, for
helping me with literately every homework until I was 18 years old and for arising my
interest in pedagogics. Thank you Pappa for helping me find my interest in natural sci-
ences – through both nice discussions, Kunskapskanalen and Illustererad vetenskap – and
for showing me the beauty of logic. Thank you Syster for always taking care of me and
for leading the path and sharing with me both the ups and the downs of pursuing a PhD.
Thank you for being both just like me and completely different at the same time and for
being a great friend. My almost-family childhood friends Malin Hermansson and Veronica
Persson-Lilja, for not giving up on me despite that I moved away and sometimes forget to
call. Thank you for always supporting me, for embracing our differences and for asking
me about what I am actually doing down here in Skåne time and again. Johan Andersson;

xx



Acknowledgements

there are not words enough to express the gratitude I am feeling. Thank you for helping me
through the downs of this journey – because there has indeed been some. Thank you for
cooking dinner, for fixing my bike and all those other things that I have down prioritised
during hectic periods. Thank you for sometimes questioning me and my decisions, but
also respecting them. And last but not least, thank you for listening to every thought about
everything and just always being there for me.

Funding

This work was supported by the Swedish Foundation for Strategic Research project – Se-
mantic Mapping and Visual Navigation for Smart Robots – (grant no. RIT15-0038). It
was also partially supported by strategic research project ELLIIT and Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and
Alice Wallenberg Foundation.

xxi





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Popular Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Populärvetenskaplig sammanfattning . . . . . . . . . . . . . . . . . . . . . . xi
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction 1

2 Methodology 7
2.1 One-Dimensional Signal Processing . . . . . . . . . . . . . . . . . . . . 7
2.2 Two-Dimensional Signal Processing . . . . . . . . . . . . . . . . . . . . 9
2.3 Statistical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Minimal Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Optimisation and Parameter Estimation . . . . . . . . . . . . . . . . . . 21
2.6 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Sensor Modelling 29
3.1 Sensor Modelling for Sound . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Sensor Modelling for Vision . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Mapping and Localisation 39
4.1 Trilateration and Multilateration . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Self-Calibration for TOA and TDOA . . . . . . . . . . . . . . . . . . . 41
4.3 Localisation for Image Data . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Triangulation for Image Data . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Structure from Motion and Simultaneous Localisation and Mapping . . . 51

5 Map Merging 59
5.1 Feature Extraction and Matching . . . . . . . . . . . . . . . . . . . . . 60
5.2 Point Cloud Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Merging Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusions 69
6.1 Paper I: Precise Measurements . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Papers II–V: Self-Calibration Using One-Dimensional Signals . . . . . . . 70

xxiii



Contents

6.3 Papers VI–VIII: Map Merging . . . . . . . . . . . . . . . . . . . . . . . 75

References 79

Scientific Publications 89

Paper I: Stochastic Analysis of Time-Difference and Doppler Estimates for Audio
Signals 91
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2 Modeling Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Time-difference and Doppler Estimation . . . . . . . . . . . . . . . . . 97
4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Paper II: Robust Self-Calibration of Constant Offset Time-Difference-of-Arrival 119
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2 Time-difference-of-arrival self calibration . . . . . . . . . . . . . . . . . 122
3 Local optimization and the low rank relaxation . . . . . . . . . . . . . . 123
4 Minimal problems and solvers . . . . . . . . . . . . . . . . . . . . . . . 124
5 Using RANSAC for five rows . . . . . . . . . . . . . . . . . . . . . . . 125
6 Robust estimation of parameters . . . . . . . . . . . . . . . . . . . . . . 125
7 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Paper III: Upgrade Methods for Stratified Sensor Network Self-Calibration 133
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2 A Stratified approach to self calibration . . . . . . . . . . . . . . . . . . 136
3 Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4 Minimal Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Paper IV: Fast and Robust Stratified Self-Calibration Using Time-Difference-of-
Arrival Measurements 147
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2 Stratified Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 150
3 Minimal Solvers for the Offsets . . . . . . . . . . . . . . . . . . . . . . 151
4 Minimal Solvers in RANSAC . . . . . . . . . . . . . . . . . . . . . . . 152
5 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xxiv



Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Paper V: Extension of Time-Difference-of-Arrival Self Calibration Solutions Using
Robust Multilateration 161

Paper VI: Efficient Merging of Maps and Detection of Changes 165
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2 The Separate Bundles - for TOA and Images . . . . . . . . . . . . . . . . 169
3 Merging Separate Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4 Detection of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Paper VII: Generic Merging of Structure fromMotion Maps with a Low Memory
Footprint 181
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
2 SfM Systems and Bundle Adjustment . . . . . . . . . . . . . . . . . . . 186
3 Merging Several SfM Sessions . . . . . . . . . . . . . . . . . . . . . . . 189
4 Hypothesis Testing of the Merge . . . . . . . . . . . . . . . . . . . . . . 191
5 Using Merging for Increased Robustness . . . . . . . . . . . . . . . . . . 193
6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Paper VIII: Minimal Solvers for 3D Map Matching with Statistical Deformations 205

xxv





Chapter 1

Introduction

Computer vision refers to a research field where computers are to extract relevant inform-
ation from images, in a similar way that humans can do. One example of this could be
the ability to recognise certain objects in an image, or to read the numbers and letters of
a license plate. An image is a two-dimensional representation of the three-dimensional
world. To go in the opposite direction, to recover 3D information from images, is called
geometric computer vision, as it uses the geometry of the camera and scene to regain this
information [88]. Given only one image, and no additional information, it is not possible
to determine at which distance, or depth, an object is positioned using only geometry.
However, if the object is also seen from another image which is taken at another location,
the relative depth can be estimated. Using several images to compute both the positions
of 3D objects and the cameras that took the photos is known as structure from motion
(SfM) [35, 59, 93]. Using structure from motion we can create 3D reconstructions – or
models – of captured objects. If the reconstruction covers a whole scene, we can refer to it
as a map. The distances between the image points and the reprojections of their reconstruc-
tions are called measurement errors, see Figure 1.1. If these are zero mean and Gaussian,
the maximum likelihood estimate of the 3D reconstruction is obtained by minimising the
sum of squared errors. The iterative process that is used for finding these estimates is called
bundle adjustment. The name refers to the bundle of rays that goes from each 3D point in
space to each camera and in general it can be seen as a large, sparse geometric parameter
estimation problem [92].

The process of estimating a map and computing the position of cameras can also be re-
ferred to as visual simultaneous localisation and mapping (SLAM) [23, 27]. Classically,
visual SLAM has focused more on the motion, while SfM has been more focused on the
structure. Also, visual SLAM often requires there there is only one moving camera and it is
often used for online applications, while SfM can be used for unsorted images from differ-
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Figure 1.1: The image illustrates the reprojection error. The measured image point is ũij. However, once the 3D point Uj and
camera Pi are estimated, the projection – which is achieved by intersecting the line from Pi to Uj with the image
plane – ends up on a slightly different position. The distance between the original image point and the projection
PiUj is called the reprojection error and in order to improve the 3D reconstruction the aim is to make this as small
as possible.

ent cameras and commonly works on all images. Nevertheless, the two methods essentially
solve the same problem, but are originating from different research fields. However, the
term SLAM is also used for other types of sensors, such as lasers, lidar, wifi, etc. In this
thesis, we have – in addition to images – also worked with one-dimensional signals such as
sound and ultra wide-band (UWB) signals. The same principles that we use are, however,
applicable to any similar one-dimensional signal. We will mainly refer to the simultaneous
estimation of sender and receiver positions using these signals as self-calibration or automatic
calibration, but again, this is mainly a matter or terminology [22, 47, 71, 108]. Because of
its similarities to SfM the process can also be called structure from sound when sound signals
are used [91]. These calculations require either time of arrival (TOA) or time-difference of
arrival (TDOA) measurements, that is, measurements of the travel time from each sender
to each receiver, or the differences in travel time from a sender to pairs of receivers, respect-
ively. The two types of measurements can also be thought of as absolute and relative time
distances, or delays [42]. An example of automatic calibration using TDOA measurements
is shown in Figure 1.2.

Once we have collected data – for example TOA measurements or images – and estimated
a map from this using SfM or automatic calibration, the map can be used for localisation.
For vision, localisation would mean to find the position of a camera, given an image of
the already mapped environment. This can for example be useful for an agent that returns
to a scene that has previously been visited. It can also be useful for path planning. In
the case of sound signals localisation often refers to determining where the sound source is
located, given the signal and the position of the microphones [12, 18, 19, 26]. A group
of sensors that are placed at different positions can also be referred to as a sensor network.
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Figure 1.2: A setup consisting of twelve microphones that were used to collect TDOA measurements from a moving sound
source. Both the receiver and sender positions were calculated using automatic calibration. The reconstructed
sound source path is shown as a blue curve and the ground truth path in orange. The orange circles indicate where
the microphones were placed and the blue dots show the estimated receiver positions.

Except for mapping and localisation, other usages of sensor networks are, for example,
sound quality improvement using beam-forming [2] and speaker diarisation – used for
example to determine who spoke when [3].

Localisation in a known environment will be easier the more accurate the map is. Because
of this, it can be a good thing if information can be added to an already existing map, or if
several different map representations of the same scene can be merged or fused into a single,
more accurate, map. One example for when this could be useful is the following: Imagine
that every car that is driving through a city can build its own, local map of the city using its
collected image data and SfM/SLAM techniques. The result would be a large amount of
representations of the same city map. If we have a fast and accurate way to merge individual
map representations into one global map, each car could contribute to that global map. The
city map would thus improve with each car passing. This also means that changes in the
infrastructure could be added, without the map being re-made. Figure 1.3 shows three
local maps of a room and a merge of these into a global map which covers more of the
room and is more accurate. The merge actually consists of several parts, such as identifying
which regions that are the same in the local maps; to match or align the different maps;
and to then do the actual merge of the parts that are the same.

The problem of map merging has a strong connection to loop closure, where any drift that
has arisen in the SfM process has to be adjusted for when the camera returns to a position
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Figure 1.3: The three images on top – the blue, red and green point clouds – show three different 3D reconstructions or local
maps of a room obtained using SfM. In the plot below three such local maps have been merged into one, global
map of the room.

that has already been visited [97]. This corresponds to a merge of the start and the end
of the map. The map fusion issue has also been addressed within the field of collaborative
SLAM, where several cameras are simultaneously used for SLAM. There are for example
applications with several drones where the merge is based on a few keyframes [78]. This is
fast, but is highly dependent on the choice of keyframes. In some other cases the problem
has been simplified by common initialisation [111], or by mounting the cameras such that
their relative position is fixed [66].

In this thesis we investigate several ways of achieving accurate maps. The included pa-
pers can be divided in three parts: Paper I which has a focus on finding very accurate
TDOA measurements; Papers II–V that focus on the robust self-calibration problem for
one-dimensional signals; and Papers VI–VIII that investigate how matching and merging
of maps can be done in a fast but accurate way.

Before the papers are presented, the introductory part of the thesis will be organised as fol-
lows: In Chapter 2 some methodology will be introduced and in Chapter 3 we go through
sensor modelling. In Chapter 4 we show how sensor data can be used for mapping and loc-

4



alisation, including SfM. Chapter 5 treats the problem of map merging and in Chapter 6
we present a summary of the results from the included papers and discuss how this work
can be developed in the future.
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Chapter 2

Methodology

Signals are fundamental for the studies in this thesis. A signal can be described as the
entity that carries some sort of information from one point to another [36, p. 1]. It can
also be viewed as any physical quantity that varies with time, space or one or several other
independent variables [72, p. 2]. Parts of this thesis regard the study and analysis of audio,
that is, information transmitted as an acoustic wave through space. This is an example
of a one-dimensional signal. Other examples of such are radio signals, for example ultra
wide-band (UWB), which is used in Paper II. UWB is a radio technology that transmits
information short distances using a wide frequency band and low energy [84]. There are
also signals of higher dimensions than these, such as two-dimensional images. An image
consists of one or several channels, where each pixel in a channel is a number representing
an intensity. Examples of signals with three or four dimensions are, respectively, voxel
represented images used in for example medicine and such voxel images with an additional
dimension that corresponds to change over time. This thesis will, however, only treat one-
and two-dimensional signals.

Even if we study several different signal realisations, many principles are the same for them
all and both methods and applications can be adjusted slightly such that another signal type
can be used. Therefore, parts of this thesis will discuss signals in general, while parts will
be more focused on either audio or images.

2.1 One-Dimensional Signal Processing

Most of the signals that we model and analyse are in reality analogue, but for analysis
they need to be converted into a digital format. For the one-dimensional case this is done
through sampling. Assume that we have an analogue signal xa(t), t ∈ R, and denote the

7



Chapter 2. Methodology

discretisation operator by D : B → ℓ. Here, B are functions f ∈ C(R,R) that are square
integrable with vanishing Fourier transform outside [−π, π], while ℓ denotes the set of
discrete, square summable functions from Z to R. An analogue signal can thus be sampled
by

x(n) = D(xa)(n) = xa(nT), (2.1)

where T is the period, that is, a sample is taken every T seconds, and x(n) with n ∈ Z is
the digital signal corresponding to xa(t). The sampling period also defines the sampling
rate or frequency, Fs = 1/T.

As long as the sampling frequency is at least twice as big at the highest frequency Fmax
in the signal, Fs > 2 · Fmax, the sampling theorem states that the analogue xa(t) can be
recovered exactly from its digital representation x(n) [44, 67, 72, 81, 96]. The recovered
analogue signal x̂a can be obtained by interpolation of x with a kernel g. If we denote the
interpolation operator Ig : ℓ → B, we have

x̂a(t) = Ig(x)(t) =
∞∑

i=−∞
g(t− i)x(i). (2.2)

With g given by the normalised sinc operator

sinc(k) =

{
sin(πk)

πk , if x ̸= 0,
1, if x = 0,

(2.3)

we have that
Isinc(D(xa)) = xa. (2.4)

Hence, x̂a(t) = xa(t) if x̂ is obtained using g = sinc. This is referred to as ideal interpol-
ation.

In many cases a sampled signal does, however, also contain noise. Then, the connection
could rather be described as

x̃(n) = x(n) + e(n) = D(xa)(n) + e(n), (2.5)

where e(n) describes the noise and x̃(n) is the digital signal that is used for analysis. The
noise can have several origins, such as other signals that were not supposed to be captured
or added noise that has arisen in the sampling process. For an audio signal this could be
someone speaking in the background, or disturbances in the microphone.

Noise coming from disturbances often has a high frequency. To remove some of that noise
one can apply a filter to the sampled signal, in order to smooth out the high-frequency
components. Usually the signal itself contains lower frequencies, so most of the information
in the signal can be kept through the filtering. Furthermore, patterns on a coarser scale are
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easier captured after smoothing [57]. In this thesis, smoothing will refer to interpolation
with the Gaussian kernel

Gσ(x) =
1√

2πσ2
ex

2/(2σ2). (2.6)

The value σ is the standard deviation of the Gaussian function and determines the width
of the kernel. The higher the value of σ is, the more smoothing.

Furthermore, there is another advantage of smoothing with a Gaussian function when ideal
interpolation is employed. It turns out that interpolation with a Gaussian kernel followed
by interpolation with the sinc kernel can be approximated by only Gaussian interpola-
tion [4]. What we get is

x̂a(t) = (Gσ ∗ Isinc(x))(t) = IGσ∗sinc(x)(t) ≈ IGσ(x)(t). (2.7)

However, this only holds when the standard deviation σ is large enough. How large it has
to be is studied in Paper I.

2.2 Two-Dimensional Signal Processing

In many ways, what was presented in the previous section concerning one dimensional
signals is also relevant for two dimensional signals. Therefore, the presentation in this
section will be slightly briefer. As in the case of a one-dimensional signal, a two-dimensional
signal has to be discretised in order for it to be processable. An example of a discretised,
two-dimensional signal is an image X. Each pixel of the image represents the intensity
from a certain area in the real world. The corresponding continuous signal is denoted
Xa. A (continuous) greyscale image can be seen as a function Xa : Ω → R+, where
Ω = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d} ⊆ R2 and R+ are the non-negative real numbers.
Sometimes, mainly to simplify the theory, the limits of the domain are ignored, and we
let Ω = R2, similar to what we did in the previous section. Furthermore, in order to get
the discrete image X the variables x and y are discretised in a chosen number of rows m
and columns n and m · n gives the total number of pixels – sometimes denoted m × n.
To down- or up-sample the image, the values of m and n can be decreased or increased,
respectively. For a coloured image there are several channels; an RGB image, for example,
has a third dimension to represent the intensity values belonging to the red, green and blue
primary colours separately. Hence, the discrete RGB image is a function X(i, j, k). For
image processing, each of these channels can be treated separately, and for simplicity this
section will only treat greyscale images, that is functions X(i, j).

A discrete image X can be interpolated in order to recover the continuous signal. Hence,
if the image X(i, j) is a discretisation of Xa, then

X(i, j) = D(Xa)(i, j) = Xa(iT, jT), (2.8)
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with T being sampling width. The converse, interpolation, is defined as

X̂a(x, y) = Ig(X)(x, y) =
∞∑

k=−∞

∞∑
l=−∞

g(x− k, y− l)X(k, l), (2.9)

where g again is the interpolation kernel – here in two dimensions. For sinc in two dimen-
sions we get

g(x, y) = sinc(x)sinc(y), (2.10)

and as before, this ideal interpolation gives that for square integrable, bounded functions
with Fourier transform that is zero outside [−π, π] × [−π, π] the original signal is re-
stored [4],

Isinc(D(Xa)) = Xa. (2.11)

If we decide to include measurement errors – for example coming from the camera – in the
model, we could describe the digital image as

X̃(i, j) = X(i, j) +E(i, j) = D(Xa)(i, j) +E(i, j), (2.12)

where E(i, j) is the noise in the different pixels. As in the previous section, an image can
be smoothed through convolution with a Gaussian kernel

Gσ(x, y) =
1

2πσ2 e−(x2+y2)/(2σ2), (2.13)

with σ being the standard deviation in both directions. This action can decrease the im-
pact of measurement noise. There are also several other kernels that can have this effect,
depending on the character of the noise.

2.3 Statistical Measures

In this section we will begin by mentioning some statistical measures for one-dimensional
signals. For a more thorough explanation, see [58]. We denote one such signal x(n) and
let this be a stochastic variable signal. Given this, the expected value E[·] is defined as

E[x(n)] =
∑

apx(n)(a), (2.14)

where px(n)(a) = P(x(n) = a) is the probability function. Using the expected value, the
variance of a signal is

V[x(n)] = E[(x(n)−E[x(n)])2] = E[x(n)2]−E[x(n)]2, (2.15)
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and the standard deviation is the square root of the variance,

σx(n) =
√

V[x(n)]. (2.16)

For the connection between two signals x(n) and y(n), the covariance is defined as

C[x(n),y(n)] =E[(x(n)−E[x(n)])(y(n)−E[y(n)])]
=E[x(n)y(n)]−E[x(n)]E[y(n)].

(2.17)

The covariance is such that C[x(n),x(n)] = V[x(n)]. For a single process, the covariance
function is

r(n,m) = C[x(n),x(m)]. (2.18)

Furthermore, the cross-correlation between two signals is [42]

(x ⋆ y)(n) = E[x(a)y(a+ n)]. (2.19)

The cross-correlation is also a valuable measure for deterministic signals, for which it is
defined as

(x ⋆ y)(n) =
∑
a

x(a)y(a+ n). (2.20)

This is a common way to measure at which delay the two signals are most common, see
Section 3.1.3.

A stochastic process that has constant mean and a covariance function that only depends
on the delay – that is, r(n,m) = r̂(n − m) – is called a weakly stationary or wide-sense
stationary (WSS) process [58]. This means that for example the mean in Equation (2.14)
and the standard deviation in Equation (2.16) do not depend on n. This is a common
assumption. In this thesis, noise will be assumed to be WSS and have expected value zero.

Using the constant mean of a function E[x] and the noise E[e], the noise level in a signal
can be measured through the signal-to-noise ratio (SNR). The SNR can be computed in
different ways, depending on what information that is known about the signal. Some
definitions are [58]

SNR =
Psignal

Pnoise
=

E[x2]

E[e2]
=

E[x2]

σ2
e

, (2.21)

where Psignal and Pnoise is the power of the signal and the noise, respectively, and σe is the
standard deviation of the noise. Since we assume that the noise is WSS, E[e2] = σ2

e. Also,
in most cases the signal is deterministic, hence E[x2] = x2, and the fraction simplifies to
x2/σ2

e. If the signal is stochastic and with mean zeros as well, we get that

SNR =
σ2
x

σ2
e

, (2.22)
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with σx being the standard deviation of the signal.

The statistical measures above are defined analogously for two dimensional signals. Firstly,
each such signal can be viewed as a one dimensional signal by column stacking the pixel
measurements

x(a+ (b− 1)m) = X(a, b), a = 1, . . . ,m, b = 1, . . . , n. (2.23)

This column stacking can also be denoted x = X(:). Through this, the mean and variance
of an image can be computed as described in Equations (2.14) and (2.15). Concerning the
cross-correlation between two images X and Y, this is defined as

(X ⋆Y)(i, j) =
∑
a

∑
b

X(i+ a, j+ b)Y(a, b). (2.24)

2.3.1 Matrix Decompositions

In this section some useful matrix decompositions, such as eigenvalue decomposition and
QR factorisation, will be mentioned. We will also briefly mention PCA analysis. For more
information on these matters, see [90], from which the rest of this section has been inspired.

Singular Value Decomposition

Any real-valued m× n matrix X can be divided into a singular value decomposition (SVD)

X = UΣVT

=
[
u1 u2 . . . up

]

σ1

σ2
. . .

σp



vT

1
vT

2
...
vT
p

 =

p∑
i=1

σiuiv
T
i ,

(2.25)

where p = min(m, n), U is an orthonormal m × p matrix, V is an orthonormal n × p
matrix and Σ is a diagonal p× p matrix. The singular values σi are all non-negative and the
number of positive singular values is the same as the rank r of X. If r < p, the last p − r
columns of U and V can be neglected. As an example, this means that for a 5 × 6 matrix
A of rank 3, we can express it as UΣV, where U is 5 × 3, V is 6 × 3 and Σ is 3 × 3.

Furthermore, a matrix X can be compressed and approximated with a lower rank matrix

12



2.3. Statistical Measures

X̃ by decreasing the upper limit of the sum in Equation (2.25), that is, by letting

X̃ =
[
u1 u2 . . . up

]


σ1
. . .

σk
0

. . .
0




vT

1
vT

2
...
vT
p

 =
k∑

i=1

σiuiv
T
i , (2.26)

we get a k rank approximation. This will give the best possible approximation to the original
matrix, in a least squares sense [90]. Note that due to the zeroes, we might as well neglect
the last columns of U and V and write this as

X̃ =
[
u1 . . . uk

] σ1
. . .

σk


v

T
1
...
vT
k

 . (2.27)

Eigenvalue Decomposition

Given a square n× n matrix X, it has the eigenvectors pi and eigenvalues λi if these satisfy

λipi = Xpi. (2.28)

If X is of full rank, there will be n linearly independent eigenvectors. If so is the case it can
be decomposed as

X = PΛPT

=
[
p1 p2 . . . pn

]

λ1

λ2
. . .

λn



pT

1
pT

2
...
pT
n

 =
n∑

i=1

λipip
T
i .

(2.29)

If X is symmetric the eigenvalues and eigenvectors only contain real numbers, while non-
symmetric matrices can give complex entries [90].

When doing eigenvalue decomposition of a covariance matrix, this is referred to as principal
component analysis (PCA). The covariance C of a set of points xi (potentially in several
dimensions) is

C =
1
n

n∑
i=1

(xi − x̄)(xi − x̄)T, (2.30)

13



Chapter 2. Methodology

where x̄ denotes the mean of the points (this is similar to Equation (2.17)). This matrix
C is positive semi-definite and all its eigenvalues are non-negative. If these eigenvalues are
ordered in decreasing size, the eigenvector corresponding to the largest eigenvalue will rep-
resent the direction in which the covariance is largest, that is, where there is most variation
for the points xi. The eigenvectors of a covariance matrix can also be called the modes of
variation.

QR Decomposition

The QR decomposition or QR factorisation of a matrix X is a factorisation

X = QR, (2.31)

where Q is an orthonormal matrix (satisfying QQT = I) and R is upper triangular. If we
use such a factorisation, the square of a matrix can be expressed as

XTX = RTQTQR = RTR. (2.32)

This has been used in several of the papers of this thesis. Analogously, we can define the
RQ factorisation, where the matrix order is reversed

X = RQ, (2.33)

that is, the upper triangular matrix R is multiplied with the orthogonal matrix Q from the
right. RQ factorisation can be used to divide a camera matrix into a rotation matrix and
an upper triangular calibration matrix, see Section 4.3.1 [35].

2.4 Minimal Solvers

Many of the papers in this thesis – and tasks in computer vision and automatic calibration in
general – concern solving some problem which can be defined by one or several equations.
There are different ways of finding an optimal solution to such a problem. One way could
be to first find a reasonable – but not necessarily optimal – initial solution for the problem,
and then refine that solution. Another way could be to solve a sub-problem which is small
enough for us to find an exact, optimal solution to, and then extend that solution to the
rest of the problem. In this section, the concept of minimal solvers will be explained.

Given a system of polynomial equations, a minimal problem is a case where the effective
number of degrees of freedom is the same as the number of variables to solve for. A minimal
solver is a solver that uses the minimal amount of data, that is, that solves a minimal problem
using just enough data. In most cases we also require the number of solutions to be finite.

14



2.4. Minimal Solvers

This is for practical reasons; in computer vision we often want to go through all solutions to
find the one that suits the problem best, and this is not possible if there are no or infinitely
many solutions. Hence, we search for minimal problems with a finite number of solutions.

One example of a minimal problem is to fit a line to two points in 2D or 3D and another
is to fit a plane to three points in 3D. For the latter, if only two points are given, the plane
is not uniquely determined and given four arbitrary points it is in general not possible to
find a plane that goes through them all. Given the three points (x1, x2, x3), (y1, y2, y3) and
(z1, z2, z3) the system of equations to solve would be

x1 + ax2 + bx3 + c = 0,
y1 + ay2 + by3 + c = 0,
z1 + az2 + bz3 + c = 0.

(2.34)

There are in total three degrees of freedom (one from each equation) and there are three
variables to solve for (a, b and c).

Solutions to minimal problems can often be found using methods from algebraic geometry.
In this section a brief introduction to the field will be given. For more details, see [20, 21,
51], from which this section has been inspired.

2.4.1 Basics of Algebraic Geometry

In this section we will use a number of variables x = {x1, x2, . . . , xn}. For these, a
monomial is a finite product

xα = xα1
1 · xα2

2 · . . . · xαn
n . (2.35)

It is said to have degree |α| = α1 + . . . + αn. Let K denote a field, for example R or C.
A polynomial f in x with coefficients in K is a finite linear combination of monomials,

f (x) =
∑
α

aαxα, aα ∈ K. (2.36)

For f (x) to be a polynomial we require that the sum is finite, that is, that there are only
finitely manyα such that aα ̸= 0. Indirectly, this means that we could change the sum such
that we only sum over the terms for which aα is non-zero. Using a set of such polynomials,
a system of equations can be described as

f1(x) = 0,
f2(x) = 0,

...
fm(x) = 0.

(2.37)
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Chapter 2. Methodology

Figure 2.1: For f1 = x2 + y2 − 1 and f2 = x − y the leftmost plot shows the affine variety V (f1) in blue and the plot in the
middle show the variety V (f2), also in blue. The red dots in the rightmost plot shows V (f1, f2).

The set of all polynomials in x with coefficients in K is denoted K[x].

It is common to write a polynomial with the largest monomial first followed by monomi-
als in decreasing order. For a single variable this is trivial – the largest monomial is that
of highest degree, and this monomial is unique – but for polynomials of several variables
there can be several monomials of the same degree and it is not obvious which of these is
the largest. There are different ways of ordering such monomials, that is, different rules to
decide which monomial is the largest. Examples of monomial orderings are lexiographical
ordering (lex), graded lexiographical ordering (grlex) and graded reverse lexiographical or-
dering (grevlex), see [20]. Once an ordering has been chosen, we can define the leading
term of a polynomial LT(f ) to be the term (including the coefficient) containing the largest
monomial with respect to the ordering.

Furthermore, the affine variety V (f1, . . . , fm) ⊂ Kn is the set of all points x such that
fi(x) = 0 for all i = 1, . . . ,m,

V (f1, . . . , fm) = {(a1, . . . , an) ∈ Kn; fi(a1, . . . , an) = 0 ∀ i = 1, . . . ,m}. (2.38)

Hence, this affine variety represents all solutions to the system of Equations (2.37). With
K = R, f1 = x2 + y2 − 1 and f2 = x − y, V (f1) represents the unit circle, and V (f1, f2)
consists of the two points (−1/

√
2,−1/

√
2) and (1/

√
2, 1/

√
2). These are illustrated in

Figure 2.1.

Moreover, the ideal generated by a set of polynomials (f1, . . . , fm) is defined as

⟨f1, . . . , fm⟩ =
{ m∑

i=1

hifi; h1, . . . , hm ∈ K[x]

}
, (2.39)

and the polynomials generating the ideal are called the basis of the ideal. An ideal is such
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2.4. Minimal Solvers

that 
0 ∈ I,
f1, f2 ∈ I ⇒ f1 − f2 ∈ I,
f ∈ I, h ∈ K[x] ⇒ hf ∈ I.

(2.40)

The set in Equation 2.39 has these properties, but any set of polynomials {fi} that fulfills
these the requirements is an ideal, so the ideal does not necessarily have to be created as
given in Equation 2.39. However, it can be shown that every ideal can be generated by
some (not unique) finite basis. Furthermore, we can form the ideal of an affine variety,
I (V ), which will be the set of all polynomials f for which f (V ) = 0 (that is, f (v) = 0
for all v ∈ V ). The leading term of an ideal I is the collection of all the leading terms of
elements of I , that is

LT(I ) = {aαxα; there exist f ∈ I with LT(f ) = aαxα}. (2.41)

Given a monomial order, a subset G = {g1, g2, . . . , gm} of an ideal I is a Groebner basis if

⟨LT(g1), . . . , LT(gm)⟩ = ⟨LT(I )⟩, (2.42)

that is, if the leading terms of the Groebner basis generate the same ideal as all the leading
terms of any polynomial generating I. One can also think of this as G being a Groebner
basis if for any f ∈ I, LT(f ) is divisible by some LT(gi). This means that a Groebner basis
for an ideal I is also a basis for the ideal. Furthermore, any ideal has a Groebner basis. A
Groebner basis for an ideal I can be found for example using the Buchberger’s Algorithm
or improvements thereof [20].

Given any ordered m-tuple F = (f1, . . . , fm)) of polynomials in K[x]m and a chosen
monomial order, the division algorithm states that every f ∈ K[x] can be written

f = a1f1 + . . .+ amfm + r. (2.43)

Both ai, r ∈ K[x] and the remainder r is either zero or such that no monomials in r are
divisible by any of LT(f1), . . . , LT(fm). One issue with the division algorithm is that for
a general polynomial f and set of polynomials F, the remainder will be dependent on the
order of the polynomials in F. However, if the polynomial f is divided by a set of poly-
nomials G = {g1, . . . , gm} which is a Groebner basis, the remainder will be unique and
independent of the order of gi. This also gives that the polynomial f ∈ I if and only if
r = 0 after division by a Groebner basis G. The remainder of f after division by G is also
denoted f G. This is also called the normal form of f ∈ K[x] with respect to G. For more
details on the division algorithm, see [20, 51].

Furthermore, we define the quotient ring K[x]/I associated with the ideal I as the set of
equivalence classes such that

a ∼ b ⇔ a ≡ b mod I ⇔ a− b ∈ I. (2.44)
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Chapter 2. Methodology

The equivalent class that a certain polynomial a belongs to is denoted [a] and hence [a] =
{b ∈ K[x]; a− b ∈ I}. This means that every polynomial that is in the ideal is zero in the
equivalent class, and for polynomials that are not in the ideal, we only save the remainder
after division with the basis of the ideal. Considering an ideal generated by a uni-variate
polynomial of degree n, I = ⟨f (x)⟩, with f =

∑n
i=1 aix

i, the quotient ring K[x]/I will be
spanned by the monomials of degree lower than n, that is, {x n−1, . . . , x, 1}. Monomials
x i such that {x i; x i /∈ ⟨LT(I )⟩} are called the standard monomials. The same applies to
polynomials of several variables, that the monimials that cannot be reduced further are
called standard monomials. This would be the monomials {xα; xα /∈ ⟨LT(I )⟩}.

2.4.2 Solving Systems of Equations

There are different ways of solving systems of polynomial equations using algebraic geo-
metry. Many of them seeks to transform the original problem into an eigenvalue problem,
see Section 2.3.1. In this section we will give a brief overview of resultant based meth-
ods and the action matrix method. For a more thorough explanation for these and other
methods, see [21, 51].

Resultant Based Method

Given two uni-variate polynomials

f (x) = anx n + an−1x n−1 + . . .+ a1x+ a0, an ̸= 0

g (x) = bmxm + bm−1xm−1 + . . .+ b1x+ b0, bm ̸= 0,
(2.45)

the resultant is the determinant of a (m+ n)× (m+ n) matrix, defined as

Res(f, g) = det



an . . . . . . a0
an . . . . . . a0

. . . . . .
an . . . . . . a0

bm . . . b0
bm . . . b0

. . . . . .
bm . . . b0


. (2.46)

The first m rows contain the coefficients of the f polynomial and the last n rows the coeffi-
cients of g. The resultant is such that if f and g have a common root, Res(f, g) = 0. Hence,
the resultant can be used to find such roots, for a uni-variate pair of equations. Further-
more, if there are two unknowns, one of them can be considered as a coefficient and be
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included in the resultant to give a constraint for a common solution. This is referred to as
the hidden variable trick. The resultant method is a good theoretical instrument, but as the
systems of equations become large, with several polynomials and unknowns, solving the
equation Res(f, g) = 0 becomes hard and therefore it is not applicable to all problems.

Action Matrix Methods

Again, consider a polynomial in K[x] in one variable, for which the coefficient of the
highest term is one,

f (x) = xn + an−1x n−1 + . . .+ a1x+ a0. (2.47)

The companion matrix connected to f (x) is

C =


−an−1 −an−2 . . . −a0

1
1

. . .
1

 . (2.48)

and the characteristic polynomial of this matrix is equal to the polynomial in Equation 2.47.
Hence, the roots of the polynomial are given by the eigenvalues of the companion matrix.
This can be used to solve the equation f (x) = 0.

Furthermore, consider the map Tα : K[x]/I → K[x]/I which multiplies a polynomial
p(x) ∈ K[x] with a fixed monomial (or polynomial) α, Tα([p(x)]) = [αp(x)]. In the
case above, we have Tα : K[x]/⟨f (x)⟩ → K[x]/⟨f (x)⟩. If we let α = x and also define the
basis for K[x]/⟨f (x)⟩ as b = {b1, . . . , bn} = {x n−1, . . . , x, 1} we see that we can express
Tα(b) = Tx(b) using the companion matrix

Tx(b) = x


x n−1

...
x
1

 =


x n
...
x 2

x

 =


−an−1 −an−2 . . . −a0

1
1

. . .
1



x n−1

...
x
1

 , (2.49)

since [x n] = [−an−1x n−1 − . . . − a1x − a0] in K[x]/⟨f ⟩. As can be seen, the value for
x can be found as an eigenvalue to the companion matrix, as well as within the (correctly
normalised) eigenvector b.

This can be generalised to polynomials of more variables. If we have a system of equations as
in Equation (2.37) the solution is given by the shared roots of f1(x), . . . , fm(x). Again, let I
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be the ideal generated by the set of polynomials, I = ⟨f1, . . . , fm⟩, and letb = {b1, . . . , bn}
be a basis for K[x]/I. Similar to above, we can express the operator Tα (now with a general
monomial/polynomial α) using an unknown n× n matrix M

Tα(b) = α


b1
b2
...
bn

 =


m11 m12 . . . m1n

m21
. . .

...
...

. . .
...

mn1 . . . . . . mnn



b1
b2
...
bn

 = Mb. (2.50)

This can also be described as

Tα([bi]) = [αbi] =

 n∑
j=1

mijbj

 . (2.51)

As before, the equation αb = Mb is an eigenvalue problem.The solution to the system of
equations can often be obtained from the eigenvectors (and eigenvalues), as these consist
of basis elements bi which are monomials in the quotient ring. The matrix M is called the
action matrix and α is referred to as the action monomial/polynomial.

The action matrix is a transformation matrix which describes how the basis elements are
transformed when multiplied by α. It is worth noting that the term transformation matrix
often refers to the matrix that explains the mapping of the coordinates rather than the
basis elements; in this case that would be MT. Both the mapping of the basis elements
and the coordinates can be of interest, at different situations, and when solving systems of
polynomial equations it has turned out to be more convenient to use the former. However,
due to this ambiguity other literature might state that the basis vectors are found as the left
eigenvectors of the action matrix (then referring to MT) [21, p. 64],[87, p. 5].

In order to find the matrix M one can choose the basis b to be the standard monomials of
the quotient ring. Since αbi −

∑n
j=1 mijbj = 0 mod I the first term, αbi can be divided

by the Groebner basis to obtain

αbi
G
=

n∑
j=1

mijbj, (2.52)

for all bi. The remainders after division will be spanned by the standard monomials (that
is, b) and M can be obtained from the coefficients.

However, in practice it can be preferable to avoid division by the Groebner basis. Instead,
an elimination template can be used to express αbi in b without the division [52]. The idea
is to find polynomials pi in the ideal such that

pi = αbi −
n∑

j=1

mijbj =
m∑

k=1

hikfk ∈ I, (2.53)
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where hik ∈ K and fk are the polynomials generating the ideal. The first thing to do
is to take the set of polynomials fk in the system of equations and multiply them by a
number of monomials, in order to get more polynomials and equations. This also requires
an extension of the basis vector to contain more monomials. We call the new coefficient
matrix C and the new monomial vector X. Then the extended set of equations can be
expressed as CX = 0.

The second thing to do is to partition the monomials in X into excessive monomials e –
those that we want to eliminate; reducible monomials that are of the form αb; and basis
monomials b. With this, the coefficient matrix will be partitioned into corresponding parts

[
Ce Cr Cb

]  e
αb
b

 = 0. (2.54)

We then perform Gaussian elimination, corresponding to multiplication from the left by
some matrix A, yielding

ACX =
[
ACe ACr ACb

]  e
αb
b

 =
[
0 I −M

]  e
αb
b

 = 0, (2.55)

and the action matrix M can be found from the multiplication of A with Cb.

Automatic Generators

This section has briefly described some introductory parts of algebraic geometry and how to
solve systems of polynomial equations. When solving large systems there are several other
aspects to take into account. In this thesis an automatic generator that generates solution
templates for pre-defined problems has been used [53] and the preceding theory is mainly
included for completeness. The automatic generator does however, use the methods above.
There are also other automatic generators [48]. Despite automatic solver generators being
used, the task of parametrising the problem in a solvable way remains.

2.5 Optimisation and Parameter Estimation

As was stated before, if we cannot immediately find an exact solution to a problem or an
equation, one way to optimise it can be to find a reasonable solution and then refine it.
Many times in computer vision, we want to adjust a number of parameters to best suit a
chosen model and the measured data. Different models will be discussed in Chapter 3 and
in this section, we will assume that the model is given or has already been chosen. If we
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collect the parameters which we want to optimise in θ and the values that can be measured
in β, we want to minimise the distance from the measured values βm to the by θ estimated
values βe(θ) – where βe(θ) is calculated according to the model. Often, this is expressed
as an error function

E(βm,θ), (2.56)

where E in some way describes how well βe fits to βm. This value can also be called the
estimation error. It is common to use some type of distance between the two values

E(βm,θ) = d(βe(θ),βm), (2.57)

since a small distance shows that the estimation is good. Here, d denotes the distance
function. This is also commonly expressed as a function of the difference between the
measured and calculated value

E(βm,θ) = f (βe(θ)− βm). (2.58)

One common distance measure is the Euclidean distance. If we denote the different entries
of β by subscript i, it is defined as

d2(βe(θ),βm) =||βe(θ)− βm||2 =

√∑
i

(βei(θ)− βmi)2. (2.59)

Sometimes the squared Euclidean distance is used instead, to avoid the square root. This
is also called the l 2-loss. If we average the l 2-loss over the number of samples, the mean
squared error (MSE) and root mean squared error (RMSE) are achieved

MSE =
1
n

n∑
i=1

(βei(θ)− βmi)
2,

RMSE =
√

MSE.

(2.60)

The l 1-loss is commonly used as well,

d1(βe(θ),βm) =||βe(θ)− βm||1 =
∑
i

|βei(θ)− βmi|. (2.61)

There are also combinations of l 1 and l 2, such as the Huber loss, where each term of the
loss is quadratic if the value is small, and linear if it is higher

dH(βe(θ),βm) =
∑
i

dHi(βe(θ),βm), (2.62)

where

dHi(βe(θ),βm) =

{
1
2(βei(θ)− βmi)

2, if |βei(θ)− βmi| ≤ τ,

τ |βei(θ)− βmi| − 1
2τ

2, otherwise,
(2.63)

22



2.5. Optimisation and Parameter Estimation

Figure 2.2: In the plots the x-axes show βe(θ)−βm and the y-axes the error functions f (βe(θ)−βm). The left plot shows l 1-
and l 2-loss in blue and red, respectively. In the right plot the Huber loss with threshold τ = 1 is shown in red and
the blue curve shows truncated l 1-loss with threshold τ̄ = 0.8.

for some threshold value τ . This threshold value is the limit for when the loss function goes
from being quadratic to linear.

Furthermore, there are truncated variants of the loss function. These are similar to the
Huber loss in that they use for example l 1 and l 2 for lower parameter values, but then
they are constant over a certain threshold τ̄ . The truncated l 1 loss and truncated l 2 loss are,
respectively, defined as

min
(∑

i

|βei(θ)− βmi|, τ̄
)

(2.64)

min
(∑

i

(βei(θ)− βmi)
2, τ̄
)
. (2.65)

Note that τ̄ is a threshold in the total error, while τ in Equation (2.63) is a threshold in
the residual. Some of these loss functions, viewed as functions f (βe(θ)−βm), are plotted
in Figure 2.2.

2.5.1 Non-Linear Least Squares

It is common that the measurements βm contain noise, for example from the measurement
units. This means that even if some optimal parameters are found, it is unlikely that the
error can reach a zero level. Instead, we focus on making it as small as possible. If we return
to the error function in Equation (2.59) and denote the residuals ri(θ) = βei(θ)−βmi, the
total squared Euclidean distance can be written

E(βm,θ) =||βm − βe(θ)||22 =
∑
i

ri(θ)2 = rTr, (2.66)

23



Chapter 2. Methodology

with the residual vector r(θ) containing all values ri(θ) column stacked. This error is com-
monly referred to as the sum of squared residuals and to minimise this error by finding the
optimal parameters

θopt = argminθ E (βm,θ), (2.67)

is known as the non-linear least squares problem. Denoting the Jacobian of r by J = ∂r/∂θ,
and differentiating the error, we get

∇E(θ) =
∂E(βm,θ)

∂θ
=
∑
i

2∇ri(θ)Tri(θ) = 2JTr. (2.68)

To minimise this problem we linearise it using second order Taylor expansion

E(θ + δθ) ≈ E(θ) +
(
∂E
∂θ

)T

δθ +
1
2
δθT ∂

2E
∂θ2 δθ, (2.69)

where ∂2E/∂θ2 denotes the Hessian of E in the point θ. Differentiating this approximation
with respect to δθ yields

∇E(θ + δθ) =
∂E
∂θ

+
∂2E
∂θ2 δθ, (2.70)

and by setting this to zero we get the Newton step

δθ = −
(
∂2E
∂θ2

)−1
∂E
∂θ

. (2.71)

However, computing the Hessian of E is computationally expensive. By assuming that the
residuals ri are small, we can approximate it according to [10]

∂2E
∂θ2 = 2JTJ+ 2

∑
i

ri∇2ri ≈ 2JTJ. (2.72)

Then we get

δθ = −
(
∂2E
∂θ2

)−1

∇E(θ) = −(JTJ)−1JTr, (2.73)

that is, we iteratively update the values of θ according to

θ(k+1) = θ(k) −
((

J(k))TJ(k)
)−1(

J(k))Tr(k), (2.74)

where J(k) and r(k) are the values of J and r for the parameters θ(k) of iteration k. Using
Newton’s method on a least squares problem with the approximation above is called the
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Gauss-Newton method [10, 32, 55, 92]. Note that in Newton’s method, there is a risk that
the Hessian is indefinite. However, using the approximation in Equation (2.72) this is not
an issue, since JTJ is always positive semi-definite.

One problem with the Gauss-Newton method is that there is no guarantee that the step (2.73)
is small enough to keep the parameters inside the region where the second order approxim-
ation holds. One way to solve this is to use a damped version of the method, for example
the Levenberg-Marquardt, where the step instead is

δθ = −(JTJ+ λD)−1JTr, (2.75)

for some damping parameter λ and some diagonal, positive definite matrix D [30, 56, 61].
Examples of D are the identity matrix and a matrix consisting of the diagonal values of
JTJ. Furthermore, the damping parameter can change throughout the optimisation, for
example such that it is large in the beginning and smaller later.

Both the Gauss-Newton and the Levenberg-Marquardt methods are iterative, numerical
methods that require some stopping criteria. This can for example concern the step size δθ
or the size of the residual vector r.

2.5.2 Bundle Adjustment

The term bundle adjustment originates from the field of photogrammetry [33], and has
later been widely used within computer vision [35]. The name refers to the bundle of light
rays that goes from points in space to each camera. The process consists of simultaneous
optimisation of the sensors and the structure of the scene. In the case of computer vision,
this would refer to the camera positions, their intrinsic parameters and the 3D feature
points. The method can also be translated to work for one-dimensional signals, and for
sound signals the optimisation would be performed over the senders as well as the receiver
positions. In [92], the method is described as: “Bundle adjustment is really just a large
sparse geometric parameter estimation problem”.

Classically, bundle adjustment is formulated as a non-linear least squares problem as in
the previous section. Within this thesis, this is also what has been used, but it is worth
mentioning that there does exist a number of variations where the cost models are non-
quadratic, see [92]. However, we have mainly been using the following error function

E (βm,θ) = f (βe(θ)− βm) =
n∑

i=1

||βei(θ)− βmi||22, (2.76)

or some other variant of the function f with a robust error norm. This is helpful when the
measurements βm contain noise, as they mostly do.
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For the bundle adjustment to give a good result, a good initialisation is required. For this,
the previous section on minimal solvers can be used, but in general this is a research area in
itself and will not be covered thoroughly in the introductory part of the thesis. In some of
the papers we assume that a good initialisation is already found, while we present a solution
for the initialisation in some.

2.6 RANSAC

A big challenge that arises when working with real data is the handling of outliers. In the
error model in Equation (2.76) each of the nmeasurements is equally important and if a few
measurements are wrong, the penalty for this will be high. Outliers can be measurements
that do not fit the model, where the noise is very large. In the presence of outlier values,
a parameter estimation that in reality is good can give a large error, which would make us
discard that estimation. Actually, many big outliers may prevent us from finding any good
solution to the optimisation problem at all. Measurements that fit the model and are not
outliers are referred to as inliers.

One way to get past this problem is to use theRANdom SAmpling Consensus (RANSAC) [29].
The idea with RANSAC is to use as little data as possible to estimate the model paramet-
ers and then use the rest of the data to evaluate these parameters. Such estimates can, for
example, be found using minimal solvers, which were described in Section 2.4. If m is the
minimum number of data points that are needed to estimate parameters for the chosen
model, the algorithm works as follows:

Algorithm 2.1: RANSAC
1 while Model is not good enough do
2 Randomly select m data points.
3 Estimate the model parameters θ from the selected set of points.
4 Count how many of the other data points that are close enough (the consensus

set) and keep the model if it is the best so far.
5 end
6 The model is good enough, keep the model and (potentially) improve it using all of

the consensus set.

The set of data points that are close enough and that are counted in step 4 of Algorithm 1
is called the consensus set, and the aim is to get a large consensus set. We have, however,
not defined what close enough means for the consensus set and how to know that a model is
good enough to terminate. These are parameters for the RANSAC method that have to be
decided. A maximum number of iterations is also required in order to not get stuck when
an optimum cannot be found.
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2.6. RANSAC

Figure 2.3: The plot on the top left shows a noisy set of points sampled from a line. The plot on the top to the right shows the
least squares estimate of the line, given all samples. In the bottom to the left the results from two different RANSAC
iterations are shown and the rightmost bottom plot shows the best result after the RANSAC loop is terminated. The
solid lines show the estimated lines and the dashed lined show the inlier threshold.

The RANSAC method is specifically good when the set of outliers is large. In this case,
RANSAC is robust, can provide a good solution and detect the outliers as well [29]. As
mentioned, if the whole dataset is used directly, the outliers might affect the parameter es-
timation such that the final model does not fit any samples good. The same goes for datasets
with missing data. However, since a minimal set of samples is used for the parameter es-
timation, it is easier to avoid the missing and outlier samples. Finally, the consensus set
will give an estimation of which samples that are inliers.

One example of how RANSAC can be used is shown in Figure 2.3. The plot to the top left
shows noisy samples from the line y = 0.5x+ 3. There are also many outlier samples. The
task is to, from these samples, estimate the line parameters k and m such that y = kx+m.
In the rightmost plot on the top row of the figure, the result from a least squares estimation
is shown. Due to the many outliers, the line is estimated erroneously as y = 0.32x+ 3.11.
Therefore, we try a RANSAC approach. The minimum number of point that are needed
to estimate a line in the plane are two, so in each RANSAC iteration two random points
are chosen, whereupon k and m are estimated. The plot in the bottom left of Figure 2.3
shows the results from two such iterations. The green and magenta dots are the consensus
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set for the two lines, respectively. The dashed lines show the limit for when points are
inliers, and the distance from the solid line to the dashed is the threshold. The plot to the
bottom right shows the best result after the RANSAC loop is terminated, which was the
line y = 0.51x+ 3.1.

Since the first paper about RANSAC was published, a number of variations have been
presented and today these are also widely used. For some of them, see [17, 43, 73]. These
different RANSAC methods are good for finding an initial estimation of the parameters.
Once the RANSAC loop is terminated, it is common that some local optimisation is per-
formed over the inlier set.

Using RANSAC followed by l 2-optimisation over the inliers can be compared to optimisa-
tion using truncated l 2 loss. When we remove the outliers using RANSAC, we decide that
values for which the residual is larger than some threshold should not be penalised as hard
in the total error as those with smaller residuals. If we use the same threshold in truncated
l 2 we get the same effect. Therefore, in one way RANSAC followed by l 2-optimisation can
be seen as a heuristic for achieving truncated l 2-optimisation.
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Sensor Modelling

In this chapter details about sensor modelling are presented and the analysis of signals is
developed. First, the focus will be on sound and then we also present modelling equations
for images.

3.1 Sensor Modelling for Sound

This section will present models for sound, but the same principles often apply to other
one-dimensional signals, such as UWB. Firstly, we will focus on measurements that can be
used to calculate sender and receiver positions and thus can be used for localisation and
mapping.

3.1.1 TOA and TDOA

Assume that we have a setup with a number of receivers ri ∈ R3, i = 1, ..,m and senders
sj ∈ R3, j = 1, .., n. Also, assume that these are synchronised, that is, that their internal
clocks coincide. Then, by comparing when the signals were emitted from the senders to
when they reached the receivers, we can get the travel time, and by multiplying these meas-
urements with the speed of the signal v, the absolute distance measures between each sender
and receiver can be derived. The distance dij will be

dij = v(tij − Tj) = ∥ri − sj∥, (3.1)

where tij denotes the arrival time for signal j to receiver i and Tj is the emission time. This
time difference is called the time of arrival (TOA) measurement or absolute travel time. All
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distances dij can be collected in a distance matrix

D =


d11 d12 . . . d1n
d21 d22 . . . d2n

...
...

. . .
...

dm1 dm2 . . . dmn

 . (3.2)

One could also consider a setup where the receivers are synchronised, but not the senders.
That would instead give us time-difference of arrival (TDOA) measurements, or the relative
travel time; for emitted sound, we know how much longer it took for the sound to reach
receiver 2 compared to receiver 1, etc. This could be explained by the following equation

zikj = ∥ri − sj∥+ oj. (3.3)

Here, zikj is the TDOA value and oj is an offset that is different for each sound event and
the arrival and emission times are not synchronised. The explanation of the third index k
becomes evident when we look at the next equation. What we actually measure in this case
is

(tij − Tj)− (tkj − Tj) = tij − tkj, (3.4)

that is, how much longer it took for sound j to reach receiver i than receiver k. The value
can be multiplied by v to give the difference in distance. Equation (3.3) can be obtained
from Equation (3.1),

∥ri − sj∥ = v(tij − Tj) = vtij − vTj. (3.5)

Now, we add and subtract the constant T0 = tkj from this equation, which gives

∥ri − sj∥ = v(tij − T0 + T0 − Tj) = v(tij − tkj) + v(T0 − Tj). (3.6)

Note that the receiver index k in tkj is fixed. Since v is known and tij− tkj can be measured,
we call that term zikj = v(tij− tkj), while the part that cannot be measured will be the offset
oj = −v(T0 − Tj), which results in Equation (3.3). The value zikj ca also be expressed as

zikj = ∥ri − sj∥ − ∥rk − sj∥. (3.7)

For an illustration of TOA and TDOA, see Figure 3.1.

There are also other variations of TOA and TDOA. One can think of a situation where the
senders are not synchronised with the receivers, but where the signals are emitted regularly.
This would give an expression similar to Equation (3.3), but with a constant offset, that is

zikj = ∥ri − sj∥+ o. (3.8)
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a

b

Figure 3.1: The figure is illustrating TOA and TDOA measures. The sound emitted from the speaker will reach the two micro-
phones at different times. For TOA we have that d11 = a and d21 = b. For TDOA we instead measure the difference,
(t21 − T1) − (t11 − T1) = (b − a)/v.

This case will be referred to as constant offset time-difference of arrival (COTDOA). Here,
the emission times can be expressed as Tj = T1 + (j− 1) · ϕ, if ϕ is the time between the
sound events.

Furthermore, if neither the senders nor the receivers are synchronised, we get the unsyn-
chronised time-difference of arrival (UTDOA) problem. This equation will also be similar
to Equation (3.3), but with a second constant, connected to the receivers

zikj = ∥ri − sj∥+ qi + oj. (3.9)

Papers I, IV and V in this thesis uses regular TDOA measurements, while Paper II focuses
on the COTDOA problem and the methods in Paper III works for either. Note that by
subtracting the offsets oj or o (together with qi) from zikj we get the distance measurements
dij.

The TDOA Vector and Matrix

In the section above, we let one of the receivers be fixed. There are also cases when the
sender is fixed, while there are several receivers. Then, the index j will instead be constant,
while we vary i and k. In this case, the different TDOA measurements in Equation 3.7 can
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be collected in an m× m (m being the number of receivers) matrix

Z =

z11j . . . z1mj
...

. . .
...

zm1j . . . zmmj

 . (3.10)

We will refer to Z as the TDOA matrix. Each of the columns in Z can be used as a TDOA
vector

v =
[
v1 v2 . . . vm

]T
=
[
z1kj z2kj . . . zmkj

]T
. (3.11)

This corresponds to taking the relative distances from one receiver to all the others. Note
that we can express the TDOA matrix as Z = v111T − 111vT, where 111 is a vector with all
entries equal to 1. The TDOA matrix formulation has, for example, been used in [5, 94].

It is worth mentioning that the indexing of the TDOA measurements might vary depend-
ing on the use-case. If one of the receivers is fixed, the measurements from Equation 3.7
are often denoted

zij = zikj =||ri − sj||−||rk − sj||. (3.12)

This is the case in Papers I–IV. However, if the sender is constant, the measurements from
Equation 3.7 might instead be expressed as

zik = zikj =||ri − sj||−||rk − sj||. (3.13)

This notation has been used in Paper V. If only two subscripts are used the meaning of zab
has to be taken from the context.

3.1.2 Model Selection and Parameter Estimation

To find the optimal model parameters from the expression in Equation (2.67) the model
must first be decided. Assume that we have two measurements from different receivers,
where the received signals x(n) and x̄(n) come from the same emitted signal. The easiest
connection between these two is to consider one of them to be a translated version of the
other,

x(n) = x̄(n+ h). (3.14)

This corresponds to, for example, TDOA, where h would be the time difference value
in Equation (3.4). If x̄(n) rather is the emitted signal while x(n) is the received one,
h corresponds to the TOA value. Going back to them both being received signals, the
connection between the them could also look differently. For example, it is reasonable
to assume that the signal is stronger when it reaches a receiver that is close to the sender,
compared to one that is further away. Therefore, an amplitude parameter γ might be added

x(n) = γx̄(n+ h). (3.15)
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A

B

C

Figure 3.2: This shows what different sound models can capture. In A we have a sound and a translated copy of it, connected
to Equation (3.14). Plot B shows what happens if we only have the impact of an amplitude, corresponding to γ,
with h = 0, in Equation (3.15) and C shows the same thing but for Doppler, corresponding to h = 0, γ = 1 in
Equation (3.16).

Furthermore, if the sender is moving while emitting the sound this may result in a stretched
or compressed signal. This raises the need of a Doppler parameter α,

x(n) = γx̄(αn+ h). (3.16)

The effect of a translation, an amplitude difference and the presence of a Doppler factor is
shown in Figure 3.2. The models in Equations (3.14), (3.15) and (3.16) have been used in
Paper I. One could also think of a number of other suitable models, and the model might
need to be adjusted to the specific problem.

These models could be used to express an optimisation problem. If we collect the paramet-
ers of interest in θ. For the model in (3.14) we would have θ = {h} and for the model
in (3.16) we have θ = {h, γ, α}, while β = {x, x̄} in both cases.

3.1.3 Estimating TOA and TDOA

Once the model has been decided, the error function from Equation (2.76) can be used to
estimate the parameters in θ. Again, assume that we have two signals x and x̄ and that we
want to find how these relate to one another. In this case, we can express the error function
as

f (β,θ) =
∑
n

(x(n)− (η(x̄,θ)))2, (3.17)
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where β = {x, x̄} and η(x̄,θ) can be for example x̄(n+h) or γx̄(αn+h), in accordance
with the previous section. We see that the distance function d is given by the squared
difference between the two signals. Once this error function is formulated, the parameter
estimation can be found using the methods previously described, in Section 2.5.2.

As mentioned above, if x is the emitted signal, x̄ is the received signal and the model is that
of Equation (3.14) the estimated value h will represent the time of arrival. If we instead
choose x and x̄ to be the signals received by two different receivers coming from the same
emitted signal, we will estimate a time-difference of arrival.

Furthermore, if we use the model in Equation (3.14) we can also estimate the parameter h
using cross-correlation. Remember the cross-correlation for two real signals x and x̄ from
Equation (2.20)

(x ⋆ x̄)(h) =
∑
n

x(n)x̄(n+ h). (3.18)

The translation h is obtained by maximising the cross-correlation function,

hopt = argmaxh(x ⋆ x̄)(h). (3.19)

This estimation will be exactly the same as the one coming from minimisation of (3.17),
since

argminh f (β,θ) = argminh
∑
n

(x(n)− x̄(n+ h))2 = argminh

∑
n

(
(x(n))2+

(x̄(n+ h))2 − 2x(n)x̄(n+ h)
)
= argminh

∑
n

−2x(n)x̄(n+ h)

=argmaxh
∑
n

x(n)x̄(n+ h) = argmaxh (x ⋆ x̄)(h).

(3.20)
Hence, for the models in Equations (3.15) and (3.16) we use error function (3.17), but if
we stay with the smaller model (3.14) (that is if γ = 1 and α = 1) we might as well use
cross-correlation to find the h that minimises the error function.

There are also variants of cross-correlation, for example generalised cross-correlation with
phase transform (GCC-PHAT), which we used for initialisation in Paper I. In GCC-PHAT,
the correlation value is scaled by the magnitude of the spectrum [42]. If we let X (f ) and
X̄ (f ) be the Fourier transform of x(n) and x̄(n), respectively, the Fourier transform of the
cross correlation will be

F(x ⋆ x̄) = X (f ) · X̄ (f ), (3.21)

where X̄ (f ) represents the complex conjugate of X̄ (f ). Then, the GCC-PHAT is given
by

GCC-PHATx,x̄ = F−1

(
X (f ) · X̄ (f )∣∣X (f ) · X̄ (f )

∣∣
)
, (3.22)
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where the symbol F−1 represents the inverse Fourier transform. With this, GCC-PHAT
can be used in Equation 3.19 instead of the regular cross-correlation function. By this, all
frequencies get an equal weighing. This increases the robustness against reverberation. For
more information, see [13, 42].

There are also cases where the time delay or time-difference of arrival are easier to find. If
the signal consists of distinct sound events, for example claps, this will give a clear peak in
the signal. The value of h can then be found by simply detecting the first or largest peak in
both signals and differentiate the time/sample number of these.

Estimation on Subsample Level

In the equations above, the translation h will be estimated as an integer number of samples.
To refine the estimations further, we can do the parameter estimation on continuous signals,
achieved from ideal interpolation. This would result in the following error function

f (βm,θ) =

∫
t
(xa(t)− τ(x̄a,θ))

2 dt, (3.23)

with τ defined in accordance with η above, but for continuous values (remember that
τ(x̄a,θ) in either case contains a t which is is integrated over). Minimising this error
would result in parameters on an even finer scale than the sample rate, and thus even more
exact measures. However, the estimation also becomes more sensitive to noise. This matter
is considered in Paper I.

3.2 Sensor Modelling for Vision

For computer vision and 3D reconstructions the pinhole camera model is a common way to
model the relation between the 3D points and 2D points matrices [35]. Two alternatives
are the affine and projective camera models. We will begin by introducing the pinhole
camera.

3.2.1 Camera Models

The pinhole camera model takes a point Û =
[
X Y Z

]T ∈ R3 in 3D to a point û =[
x y

]T ∈ R2 in the image by following the straight line from Û to the camera centre in
the origin, Ĉ =

[
0 0 0

]T, and intersecting it with the image plane. If the distance from
the camera centre to the image plane is 1 and we assume that the image plane is parallel to
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Figure 3.3: An illustration of the pinhole camera model. The camera centre C is located in the origin in the xyz-coordinate
system. The image plane is parallel to the xy-plane and located at unit distance from C in the positive z-direction.
A 3D point U is mapped to the image point u, where u is given by the intersection of the image plane and the
straight line going from U to C, see Equation (3.24).

the xy-plane – that is, the viewing direction is along the z-axis – the projection is given by

û =

[
x
y

]
=

[
X/Z
Y/Z

]
, (3.24)

see Figure 3.3.

For camera modelling it is convenient to describe the points in 2D and 3D using homo-
geneous coordinates, that is, we write û as u =

[
x y 1

]T ∈ P2 and represent Û by
U =

[
X Y Z 1

]T ∈ P3. The symbol P represents the projective space [90]. For a
general camera projection matrix P ∈ R3×4, we have the relationship

ab
c

 = P


X
Y
Z
1

 , (3.25)

where we then can divide by c to obtain the image point in Cartesian coordinates,[
a/c b/c 1

]T
=
[
x y 1

]T. We usually write this as a proportionality,

xy
1

 ∼ P


X
Y
Z
1

 . (3.26)

Any point λ
[
x y 1

]T ∈ P2, for any value of λ, represents the same image point since
λ
[
x y 1

]T ∼
[
x y 1

]T. The same is true for points in P3, multiplication with a
constant does not change which 3D points they represent.
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Also lines can be described in the projective space, similar to points. A line in R2 with the
equation

αx+ βy+ γ = 0, (3.27)

can be represented as l =
[
α β γ

]T ∈ P2. Through this, we can also determine if a
point x =

[
λx λy λ

]T ∈ P2 lies on the line by looking at the scalar product of the
vectors

xTl =
[
λx λy λ

] αβ
γ

 = λ(αx+ βy+ γ). (3.28)

If this is equal to zero, the point lies on the line.

We now return to the representation of a camera P. For the pinhole camera model the
camera matrix is P =

[
I 000

]
, with I being the 3× 3 identity matrix, and 000 a 3× 1 vector

of zeroes. If the camera moves, that can be represented by a 3 × 3 rotation matrix R (that
is, RTR = I and det(R) = 1) and a 3 × 1 translation vector t, giving P =

[
R t

]
.

These are sometimes referred to as extrinsic parameters.

A more general model of the camera matrix is

P = K
[
R t

]
=

µf s x0
0 f y0
0 0 1

 [R t
]
. (3.29)

The matrix K describes the intrinsic parameters of the camera. The value f is called the focal
length and is a re-scaling parameter that changes the image coordinates to pixels. Both the
aspect ratio µ and the skew parameter s re-scales for non-square pixels (and are often one
and zero, respectively) and the point

[
x0 y0

]T is referred to as the principal point, and
gives a translation to get the correct image centre. The effect of some of these parameters
is shown in Figure 3.4. A camera represented by the matrix in Equation (3.29) is called a
finite projective camera. Such cameras have eleven degrees of freedom [35].

We call P and affine camera if it has the structure

P =

[
A t
000 1

]
, (3.30)

where A is a 2 × 3 matrix, t has size 2 × 1 and 000 is 1 × 3 vector of zeroes. The affine
camera is a good approximation when the distance from the camera to each point in the
scene is approximately the same. A general projective camera is given by an arbitrary 3 × 4
matrix with rank 3 [35]. The affine camera has eight degrees of freedom, while the general
projective camera has eleven. In this thesis, most cameras will be assumed to be finite
projective cameras.
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Figure 3.4: An illustration of the extrinsic parameters R and t and the intrinsic parameters f, x0 and y0. The matrix [R t]
represents a change in coordinate system from the world coordinates to one where the camera centre is placed in
the origin. The focal length f is the distance from the camera centre to the image plane and the principal point
[x0 y0]

T gives a translation to the correct image centre.

3.2.2 Camera Calibration

The matrixK in Equation (3.29) corresponds to a transformation of the points in the image
plane in R2 to the actual image coordinates, measured in pixels, while the matrix

[
R t

]
transforms the position and coordinate system of the camera. If the intrinsic parameters
– that is, the values in K – are known, the camera P is said to be calibrated, and K is
referred to as the calibration matrix [35]. By applying the inverse of the calibration matrix
to Equation (3.26) the normalised coordinates,

u′ = K−1u =
[
R t

]
U, (3.31)

are obtained. Similarly, K−1P =
[
R t

]
is said to be a normalised camera. How to find

the camera matrix P and the calibration matrix K will be discussed further in Section 4.3.

3.2.3 Parameter Estimation for Vision

When it comes to vision, we can always measure the images, and thus the image points,
while the 3D points and the camera matrices might be known or unknown. Assume that
we have a set of m cameras which each capture n different 3D points. If both 3D points and
cameras are unknown, our sought set of parameters will be θ = {P1, ...,Pm,U1, ...,Un}.
The measurable quantities will be the image points that come from projecting each 3D
point in each camera, βm = {u11, ...,u1n,u21, ...,umn}, where uij ∼ PiUj and βm in
total contains 2mn values, since each uij has two unknown coordinates. If the 3D points
or the cameras are known, we move these parameters from θ to βm.
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Mapping and Localisation

This chapter will discuss the subjects of mapping and localisation, both using TOA/TDOA
data and images. Before these terms are explained, the following is worth noting: In this
thesis we treat, for example, sound and images as different types of signals, but we also
focus on the similarities in how they can be used. In many cases, such as the map merging
treated later in Chapter 5, it is of little importance which type of signal that was used to
create the map. Therefore, this chapter includes both mapping and localisation, using both
sound and vision.

Locating the position of several anchors or nodes for one-dimensional signals, for example
receivers, is a type of mapping, where we use measurements and a priori information (in
this case about the position of the sender) to create a map of the setup. If we are to find
the position of the sender among a number of known receivers, this can also be referred to
as localisation, as we localise in the previously mapped environment. In a similar way, we
can do mapping of a scene using a camera with known intrinsic and extrinsic parameters,
as we find the position of objects in the scene. Once this is done, this known map can be
used for localisation in the scene, that is, to find an unknown camera position.

As explained above, the mapping and localisation steps are performed separately, but given
enough sensor data both parts can actually occur at once. This is often referred to as sim-
ultaneous localisation and mapping (SLAM) and structure from motion (SfM) for images.
Using sound, this is sometimes called structure from sound, because of the similarities to
SfM. Simultaneous localisation and mapping can also be referred to as the calibration prob-
lem for one-dimensional signals.

Before we go into the details on the algorithms, we want to mention a few things about
noise. As mentioned in Section 2.5.1 and 2.5.2, the measurement values – either TOA/
TDOA values or image point positions – often contain noise. This makes it impossible
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b
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Figure 4.1: The figure shows trilateration in a plane using TOA measurements from one sound source and three receivers. The
location of the speaker is unknown and the positions of the microphones, r1, r2, r3 are known. Furthermore, the
distances d11 = a, d21 = b and d31 = c are measured. The location of the loudspeaker is given by the intersection
of the three circles.

to find a perfect solution and that has to be taken into account when the parameters are
estimated, for example using least squares. However, when we solve minimal cases (see
Section 2.4) we will assume that there is no noise, and solve the equations exactly – in
many cases to get an initial solution which can then be improved on. For this reason, some
of the measurement equations below will contain noise, while some will not. As this might
seem a bit ambiguous at first sight, it is important to read the equations with their context
in mind.

4.1 Trilateration and Multilateration

Trilateration is a process for determining the position of a sender given the distances to
several receivers, that is TOA distances. To illustrate the idea, we consider two receivers r1,
r2 and one sender s1, all located in a plane. For these we have TOA measurements, such
that the distances d11 and d21 from the sender to each of the receivers are known. Then
there are two potential points where the sender could be located, namely where the circle
with centre in r1 and radius d11 and the circle with centre in r2 and radius d21 intersect. If
we add a third receiver r3, the circle around that with radius d31 will contribute to a single
intersection point of the three circles (assuming that they do not lie on a line) and this will
be the solution for the position of s1. For an illustration, see Figure 4.1.

In three dimensions each distance measure dij defines the radius of a sphere with rj as centre,
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4.2. Self-Calibration for TOA and TDOA

and in a similar way the positions of the senders can be found as the intersections of the
different spheres. If we have few measurements, we might get several possible solutions. The
opposite problem, when senders are known and receivers and unknown, is solved identically
if we have TOA measurements – that is, it does not matter for the algorithm whether a node
or an anchor is a sender or a receiver.

The corresponding problem for TDOA measurements is called multilateration. The dif-
ference here is that we also have to estimate an offset for each sender. The principles are,
however, similar, but instead of knowing the actual radii, we know the differences between
the radii. Therefore, the solution will be given by the intersection of a number of hyper-
boloids rather than spheres.

In the presence of noise there will not be an actual intersection of all curves or surfaces and
the system has to be be solved in a least squares sense.

4.2 Self-Calibration for TOA and TDOA

From the TOA or TDOA measurements we can formulate a large system of equations,
representing the spheres or hyperboloids that were discussed in the previous section. We
could have a static setup where the receiver positions are known and the sender positions
are to be found, as in the small 2D example above. The problem could also be the opposite
– that the sender positions are known while the receiver positions are unknown. As stated
before, given enough measurements, it is also possible to calculate both receiver and sender
positions, if all are unknown [53, 91]. This is called self-calibration or automatic calibration.

4.2.1 Systems of Equations

If we again let j denote the sender number and i the number of the receiver, squaring
Equation (3.1) for the TOA case will yield the system of equations

d 2
ij = ∥ri − sj∥2 = (ri − sj)

T(ri − sj), (4.1)

and in the case of TDOA, re-arranging and squaring Equation (3.3) we get

(zij − oj)2 = ∥ri − sj∥2 = (ri − sj)
T(ri − sj), (4.2)

for all i and j. If we have measurements of different values dij or zij, they probably contain
noise and we rather get the models

d̃ij =
√

(ri − sj)T(ri − sj) + ϵij, (4.3)

z̃ij =
√

(ri − sj)T(ri − sj) + oj + εij, (4.4)
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where ϵij and εij are noise terms representing either inliers – assumed to be normally dis-
tributed with a relatively small standard deviation – or outliers – assumed to be drawn from
a uniform distribution with significantly larger standard deviation.

Independently of whether there is noise or not, if we have m receivers and n senders this will
result in m ·n equations to be solved. An initial guess for the unknowns can be found using
the methods described in Section 2.4. However, the problem first needs to be formulated
correctly. This can be done in several ways, of which a few will be mentioned here.

Calibration Using TOA

We assume that both sender and receiver positions are unknown and that we have TOA
measurements between all senders and receivers. The following procedure to solve for the
positions was presented in [47]. First, looking at Equation (4.1), this can be expanded to

d 2
ij = (ri − sj)

T(ri − sj) = rTi ri + sTj sj − 2rTi sj. (4.5)

Organising all the distances dij in a matrix D, as in Equation (3.2), followed by element-
wise squaring (denoted by superscript ◦2) gives

D◦2 =


d 2

11 d 2
12 . . . d 2

1n

d 2
21

. . . d 2
2n

...
. . .

...
d 2
m1 d 2

m2 . . . d 2
mn

 . (4.6)

By subtracting the first column of D◦2 from the rest of the columns and thereafter sub-
tracting the first row from the rest of the rows we obtain

B =


d 2

11 d 2
12 − d 2

11 . . . d 2
1n − d 2

11
d 2

21 − d 2
11

... B̄
d 2
m1 − d 2

11

 , (4.7)

where B̄ is an (m−1)× (n−1) matrix with entries d 2
ij −d 2

i1 −d 2
1j+d 2

11, for i = 2, . . . ,m
and j = 2, . . . , n. This matrix is called the double compaction matrix [7, 46]. Doing the
corresponding operations to the matrix with entries rTi ri+sTj sj−2rTi sj results in a system of
equations that is equivalent to the original system in Equation (4.5). The row and column
operations cancel some of the quadratic terms in ri and sj, leaving us with a system with
four types of equations:

1. one equation d 2
11 = rT1 r1 + sT1 s1 − 2rT1 s1,
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2. n− 1 equations d 2
1j − d 2

11 = sTj sj − sT1 s1 − 2rT1 (sj + s1),
3. m− 1 equations d 2

i1 − d 2
11 = rTi ri − rT1 r1 − 2(ri − r1)

Ts1,
4. (m− 1)(n− 1) equations d 2

ij − d 2
i1 − d 2

1j + d 2
11 = −2(rT1 s1 + rTi sj − rTi s1 − rT1 sj).

If we let Ri = ri+1 − r1 for i = 1, . . . ,m − 1 be the columns of a matrix R and
Sj = −2(sj+1 − s1) for j = 1, . . . , n− 1 the columns of a matrix S, the fourth group of
equations can be written as B̄ = RTS. Assuming that the receivers and senders span 3D
– that is that they do not lie for example on a line or in a plane – the matrix B̄ will have
rank 3. Hence, we can express the matrix using a low rank approximation, for example,
using singular value decomposition. This does, however, require that m ≥ 4 and n ≥ 4,
since this is required for both senders and receivers to span 3D and also for B̄ to be large
enough to yield this decomposition. If the decomposition gives that B̄ = R̂TŜ, we can use
a full-rank 3× 3 transformation matrix L to also express the double compaction matrix as
B̄ = R̂TL−1LŜ, with R = L−TR̂ and S = LŜ. Furthermore, we choose the coordinate
system such that r1 = 000 is at the origin and s1 = Lw, where w is a 3 × 1 vector. For the
rest of the receivers and senders we get that

ri = L−TR̂i−1, i = 2, . . . ,m,

sj = L

(
Ŝj−1

−2
+w

)
, j = 2, . . . , n.

(4.8)

These parametrisations can now be used in the equations of the first three types. Denoting
H = (LTL)−1 this gives

d 2
11 = (r1 − s1)

T(r1 − s1) = sT1 s1 = wTLTLw = wTH−1w, (4.9)

d 2
1j − d 2

11 = sTj sj − sT1 s1 =
1
4
ŜT
j−1L

TLŜj−1 −wTLTLŜj−1 (4.10)

=
1
4
ŜT
j−1H

−1Ŝj−1 −wTH−1Ŝj−1,

d 2
i1 − d 2

11 = R̂T
i−1L

−1L−TR̂i−1 − 2wTL−1LR̂i−1 (4.11)

= R̂T
i−1HR̂i−1 − 2wTR̂i−1.

This system only contains the unknowns H and w, a total of twelve unknown values,
but since H is symmetric there are actually only nine unique unknowns. By rewriting
H−1 = adj(H)/ det(H) and multiplying Equations (4.9) and (4.10) by det(H) all the
equations can be written as polynomial equations. There are in total m+ n− 1 equations,
of which m − 1 are linear, n − 1 are of degree 3 and one of degree 4. The constraint
that m + n − 1 ≥ 9 gives the minimal cases with six receivers and four senders (or the
converse) and five receivers and five senders, also denoted (6r/4s) and (5r/5s), respectively.
Using either of these setups and the parametrisation above, the 3D position can be found
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using methods from algebraic geometry. Note that in the (5r/5s) case we also need that
det(B̄) = 0. This condition is used explicitly in Paper II to solve for the constant offset
case (COTDOA).

4.2.2 Calibration Using TDOA and the Stratified Approach

In the case of TDOA, there are – in addition to ri and sj – also n unknown offsets oj, see
Equation (4.2). One approach to solve for these – as well as the anchor positions – is to use
a two-tiered stratified solution method, where we first find the offsets and then solve for
the anchors. If we first find all the offsets, the problem can be converted to a TOA problem
and solved as explained in the previous section (if the number of senders and receivers
agree). However, it is common that the first step of this approach also includes solving the
following relaxed problem

(zikj − oj)2 = uT
i vj + ai + bj, (4.12)

where ui and vj are the columns of two sought matrices U ∈ R3×m and V ∈ R3×n,
respectively, and a ∈ Rm and b ∈ Rn are – apart from a scalar offset – affine combinations
of the columns and rows of the matrix D◦2 = {d 2

ij} with entries d 2
ij = (zikj − oj)2. The

matrices U and V are similar to R̂ and Ŝ in the previous section in such way that they
together form a low rank approximation of the double compaction matrix M = UTV. In
this section we denote the double compaction matrix by M, since it is described in a more
general way than B̄, namely [49]

Mij = (zikj − oj)2 − ai − bj, (4.13)

with Mij being the elements of M. If we let a and b be the first row and column of D◦2,
respectively, and we subtract the constant d 2

11 from either of them, then M will be the
same as B̄, except for a zero row and column (and the fact that we are now using offsets as
well). However, this formulation is more general in the sense that it does not depend on
the first column and row of the matrix D to be complete. The connection between B̄ and
M is described further in Paper III. After the computations described above, the second
part of the stratified approach includes an upgrade, from the relaxed solution to R, S and
o (collecting all offsets oj in o).

To summarise the stratified approach we can say that in the first step we are looking for a
set of relaxed parameters θ2 = {U,V,b,a,o} and in the second step the actual sought
parameter set θ1 = {R,S,o}. Different ways to solve for the first step and to upgrade are
covered in Papers II–IV of this thesis.
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4.2.3 RANSAC and Row and Column Extension

To solve for node positions we typically need minimal cases, for example the one mentioned
above with five senders and five receivers. However, mostly we have larger problems, with
more receivers and senders. These can be solved by choosing the suitable amount of rows
and columns (corresponding to receivers and senders) of the measured distance matrix
D = {dij}, solve for the position of these, and then extend this solution to the rest of
the nodes. The selection of rows and columns can be done in a RANSAC framework (see
Section 2.6), in order for us to get the best possible solution.

Once the solution for the chosen sub-matrix is found, more columns and rows of the meas-
urement matrix can be added. This has been briefly described in [7] and can also be found
in the code used for [50]. Note that the measurement matrix will contain noisy measure-
ments d̃ij for the TOA case and z̃ij for the TDOA cases. First, the solution is extended to
more columns. This means that for the TOA problem the receivers ri are known and the
senders sj are to be found; for the original TDOA problem both sj and the offsets oj are
unknown; and for the relaxed problem the known values are ui and ai, while vj, bj and oj
are unknown. This reduces the number of unknowns compared to the original problem,
and the unknowns can be found using as many of the measurement values in that column
as it requires – three for sj; four for sj and oj; and five for vj, bj and oj. This is done using
Equation (4.1) for TOA, Equation (4.2) for the original TDOA problem and (4.12) for the
relaxed TDOA problem. Clearly, only values in rows that have been solved for previously
can be used, that is, rows i for which ri or ui and ai have already been computed. There-
after, the solution is tested on the remaining measurement values of that column (again,
only for previously solved rows) – using the same equation – to add more inlier values. If
there are more rows that are solved for than the number of values that are required to solve
the equation, this as well is done in a RANSAC loop.

Once as many columns as possible are added, new rows are added in a similar fashion. The
difference is that now sj are known and ri unknown for TOA; sj and oj are known and ri
unknown for the original TDOA problem; and vj, bj and oj are known and ui and ai are
known for the relaxed problem. Except for the variables solved for, the procedure is the
same.

Thereafter, it might be possible that even more columns can be added, as new rows have
been solved for, and similarly for the rows after that. Once no more rows or columns can be
added all variables that can be solved for are solved for, and the values in the measurement
matrix that have not been of use are classified as outliers. Above, we started the extension
with adding more rows, followed by columns, but this could as well be done in the opposite
order. Figure 4.2 shows a schematic image of the procedure of row and column extension.

To give an example of how this extension can be done, we look at Equation (4.12) for the
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Figure 4.2: The scheme shows how to solve for node positions for larger systems. a) A measurement matrix {d̃ij} or {z̃ij} of size
6×11 is given (that is, there are six receivers and eleven senders). So far, no measurements are used and all positions
are blank. Used measurements will be marked by a dot. b) A (5r/5s) solver will be used so a 5 × 5 submatrix is
chosen and these values are solved for using the minimal solver. This is done in a RANSAC fashion, indicated by
the green lines. c) The solution is extended to another column using the already calculated values and for example
Equation (4.1), (4.2) or (4.12). This extension is done in a RANSAC loop, indicated by the blue lines. d) The solution
is extended to even more columns. e) Once there are no more columns to which the solution can be extended, the
solution is extended to new rows. f) After the row extension, more columns are added, again followed by more
rows etc. Once no more measurement values can be added, the process stops. Measurements that have not been
used are marked by red circles. These are either outlier values or missing data points. One iteration of both the inner
(blue) and the outer (green) RANSAC loop end here.

relaxed TDOA problem above. If we want to extend a partial solution to more rows, we
have four unknowns – three values in ui and one value in ai. Hence, we will need values for
vj, bj and oj from four (random) columns and the corresponding four measurement values
zikj from the chosen row to extend the solution. For these four values of j we re-arrange the
equation to [

vT
j 1

] [ui
ai

]
= (zikj − oj)− bj. (4.14)

The unknowns are now collected in a vector and this linear system can easily be solved using
the four measurements. Once this is done, the found values of ui and ai are inserted into
Equation (4.12) together with the corresponding values for the j’s that have not yet been
used (but have been solved for previously) to count the consensus set. This is one RANSAC
iteration. After this four new values of j are used and so forth. Remember that except for
this, we also have an outer RANSAC loop, where the initial rows and columns are chosen.

4.2.4 Bundle Adjustment

The minimal solvers and RANSAC scheme above are good for finding an initial solution
as well as an inlier set for the measurements. However, given this, the result can be im-
proved even further using local optimisation. Once the initial solution is found, the error
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function (2.76) can be formulated as

E ({d̃ij}, {ri, sj}) =
∑
i,j

(
d̃ij −

√
(ri − sj)T(ri − sj)

)2
, (4.15)

for TOA and

E ({z̃ikj}, {ri, sj, oj}) =
∑
i,j

(
z̃ikj − oj −

√
(ri − sj)T(ri − sj)

)2
, (4.16)

for the final step of TDOA. For the relaxed TDOA problem, we get the error function

E ({z̃ikj}, {ui,vj, ai, bj, oj}) =
∑
i,j

(
z̃ikj − oj −

√
uT
i vj + ai + bj

)2
. (4.17)

Here, the summation indices are slightly simplified, as we rather summarise over the i, j
for which d̃ij or z̃ij are inliers. Clearly, we can choose other error functions as well, see
Section 2.5. Using these error functions, bundle adjustment can be performed to minimise
the error and to achieve optimal estimates, see Section 2.5.2. At which stage it is best to
perform the local optimisation is briefly discussed in Paper V. Remember that d̃ij and z̃ij
are noisy measurements of dij and zij, respectively. Since hopefully all outliers values have
been detected in the RANSAC step, we are only optimising over inliers with small noise
which is assumed to be Gaussian.

4.3 Localisation for Image Data

For TOA and TDOA problems, the algorithms for mapping the environment and localising
a new sensor in the scene are similar. The reason for this is that senders and receivers
are represented in the same way. However, this is not the case for vision. Therefore, the
localisation – or camera resection – and the mapping – or triangulation – are here divided in
two sections. We start with localisation. The rest of this chapter has been inspired by [35]
and [68].

When it comes to localisation, we have the following problem: the image points and the
3D points are known, while the camera matrices are unknown. The problem is solved by
finding a solution to the system of equations given by

λjuj = PUj, j = 1, ..., n, (4.18)

where the camera matrix P is the sought value, Uj are the 3D points, uj the corresponding
image points and λj are unknown factors – also called depths – that arise when we make
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the image points homogeneous. Again, for measured values, we are likely to have some
noise in the system, such that{

λjũj = PUj, j = 1, ..., n,
ũj = uj + εj,

(4.19)

where εj ∈ N (0, σ)×N (0, σ) if it is an inlier and much larger if the point is an outlier.
As long as we have sufficiently many point correspondences uj and Uj we can solve for the
unknowns using a method called direct linear transform (DLT). Looking at Equation (4.18),
each 2D-3D correspondence does in fact give 3n equations, one for each coordinate. Fur-
thermore, there are eleven unknowns in P (given that the scale is arbitrary) and one extra
unknown λj for each 2D-3D point pair. Hence, we need

3n ≥ 11 + n ⇔ n ≥ 5.5, (4.20)

that is at least n = 6 points to solve for the camera matrices, as well as the depths. Now, if
we denote the ith row of P by pT

i , the three equations coming from Equation (4.18) will
be 

UT
j p1 − λjuj1 = 0,

UT
j p2 − λjuj2 = 0,

UT
j p3 − λj · 1 = 0,

(4.21)

where ujk represents the kth coordinate ofuj. These equations can be written using matrices,
and for six different values of j we get a 18 × 18 matrix with known values and a 18 × 1
vector of unknowns

UT
1 000 000 −u11 0 0 . . . 0

000 UT
1 000 −u12 0 0 . . . 0

000 000 UT
1 1 0 0 . . . 0

UT
2 000 000 0 −u21 0 . . . 0

000 UT
2 000 0 −u22 0 . . . 0

000 000 UT
2 0 1 0 . . . 0

...
...

. . .
UT

6 000 000 0 0 0 . . . −u61
000 UT

6 000 0 0 0 . . . −u62
000 000 UT

6 0 0 0 . . . 1





p1
p2
p3
λ1
λ2
...
λ6


= Mv = 000. (4.22)

Here, 000 denotes a vector of zeroes (to the left 1 × 4 vectors, to the right a 18 × 1 vector).
As the positions of Uj and uj might contain noise, it is unlikely that we can find an exact
solution to Equation (4.22). Instead, we solve for

min
∥v∥2=1

∥Mv∥2 = min
vTv=1

vTMTMv, (4.23)
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where the constraint ∥v∥2 = 1 is added to get a unique solution although the scale is
arbitrary. Actually, there will still be an ambiguity concerning the sign of v, since ∥v∥2 =
∥ − v∥2, but then we choose the sign that gives a positive solution for the depths λj. For
a solution, we need the gradients of vTv − 1 and vTMTMv to be parallel, that is [10]

∇(vTMTMv) = µ∇(vTv − 1) ⇒ MTMv = µv, (4.24)

for some value µ. Now, we can identify an eigenvalue problem, where the solution v is
an eigenvector to MTM. However, this can be found through SVD of M, with M =
WΣVT, since

MTM = VΣTWTWΣVT = VΣTΣVT. (4.25)

Comparing this to Equation (2.29), we see that Λ = ΣTΣ contains the eigenvalues
of MTM and V contains the eigenvectors. Furthermore, in order to minimise Equa-
tion (4.23), we should choose the eigenvector corresponding to the smallest eigenvalue,
since

∥Mv∥ = ∥µv∥ =|µ|∥v∥ =|µ|. (4.26)

This means that the solution is given by the last column of the matrix V and from the first
twelve values of that vector we can find P. Note that the scale is still arbitrary.

The problem above can be ill-conditioned if the values of Uj and uj are large. This can be
solved by normalising the points before forming the matrix M. It is also worth noting that
M can be created using more than six point correspondences, if more are known, but not
less. [35]

4.3.1 Finding the Intrinsic and Extrinsic Parameters

Once the camera matrix P is obtained, we can factorise it in order to find K, R and t.
From Equation (3.29) we know that P =

[
KR Kt

]
. Focusing on the left 3 × 3 matrix

KR, this can be factorised into an upper triangular matrix K and an orthogonal matrix
R using RQ decomposition, see Section 2.3.1. Once K is known, we can obtain t from
back-substitution using the rightmost column Kt. For more details, see [35].

4.4 Triangulation for Image Data

In the previous section we showed how the position of the camera can be found if we know
a number of point correspondences. In that case, the image points and the 3D points were
known, while camera matrices were unknown. When it comes to mapping, we have the
opposite problem: the image points and the cameras are known, while the 3D points are

49



Chapter 4. Mapping and Localisation

Figure 4.3: Triangulation of three points given two images. The corresponding image points ui as well as the cameras Pi are
given. Each 3D point U is obtained by intersecting the lines from each camera centre through the corresponding
image point.

unknown. This problem is called triangulation and refers – just as the name suggests – to
deciding distances using triangles. A small triangulation example is shown in Figure 4.3.

Assuming that we have corresponding image points ui taken by the cameras Pi, we for
each corresponding feature point pair i have,

λiui = PiU (4.27)

(or for noisy values λiũi = PiU) where U is the unknown 3D feature point that the
image points ui depict. If the camera matrices Pi are known, one can draw a line from
each camera centre, through the corresponding image point, out in space. The lines will
lie in a plane and intersect in a point – the point U [35]. To find the coordinates of U,
we need a total of n image point correspondences. This will give 3n equations and n + 3
unknowns, which means that we require

3n ≥ n+ 3 ⇔ n ≥ 1.5, (4.28)

that is, it is enough with two images points to solve for U.

If we collect the equations for the different coordinates and points in a matrix, as for local-
isation, we get the equation

[
P1 −u1 000
P2 000 −u2

]Uλ1
λ2

 = Mv = 000. (4.29)

Again, in reality, there is in most cases some noise in the measurements and the 3D points
will have to be estimated in a least squares sense. This can be done using DLT, as for the
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case of localisation in the previous section. Just as before, more point correspondences can
be used, but it will give an over-determined system. How the point correspondences can
be found will be discussed later, in Section 5.1.

4.5 Structure from Motion and Simultaneous Localisation and
Mapping

We have previously in this chapter explained how mapping and localisation can be done
separately. For sound and radio data localisation corresponds to finding a sender position
si and mapping is done by finding the receivers rj. The correspondence in vision is finding
the cameras Pi for localisation and the 3D points Uj for mapping. When both mapping
and localisation are performed at once, this is referred to as SfM or visual SLAM for vision.
For sound and radio, a solution to this problem – the structure from sound or automatic
calibration problem – was given in Section 4.1. Hence, this section only covers the vision
case. It is worth mentioning, though, that the principles often are the same for different
types of sensor data.

4.5.1 Epipolar Geometry and SfM for Two Uncalibrated Cameras

In many cases when we want to use vision to map an environment we need to use SfM
algorithms, since it is uncommon that the camera positions are known. When doing the
triangulation and the camera resection separately, the systems can be solved linearly. How-
ever, now both the cameras and 3D points are unknown and we get the equations

λijuij = PiUj, or λijũij = PiUj, (4.30)

where uij is the image point retrieved from projecting Uj in camera Pi and ũij is the
corresponding point with noise. If the cameras are uncalibrated, they (and the 3D points)
can only be determined up to a projective transformation, since

λijuij = PiUj ⇔ λijuij = PiHH−1Uj = P̂iÛi, (4.31)

where H is a projective transformation, P̂i = PiH and Ûj = H−1Uj. If the cameras are
calibrated, however, they are determined up to a similarity transformation – representing a
change of rotation, translation and scale. These seven degrees of freedom are referred to as
gauge freedom.

Independently of whether the cameras are calibrated or not, it turns out that we can elim-
inate the scene points in Equation (4.31) and express the solution of the cameras using
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Figure 4.4: The figure shows two images and the camera po-
sitions C and C̄ that they were taken from. The
image point u depicts the 3D point U that is loc-
ated somewhere along the viewing ray U(s). The
image of the viewing ray in the second camera is
the epipolar line l̄ and the images of the camera
centres in the other camera are, respectively, the
epipoles e and ē.

Figure 4.5: The figure shows how the camera centres C and
C̄ and the 3D point U all lie on a plane – the epi-
polar plane. The intersections of this plane with
the image planes give the two epipolar lines l and
l̄ and both the image points u and ū and the epi-
poles e and ē lie on these lines, respectively. The
epipoles also lie on the baseline, which is the line
joining the two camera centres.

only the image points. For this, we will restrict ourselves to two cameras P and P̄. The
geometric constraints that will arise are referred to as epipolar geometry.

Since the cameras only can be determined up to a projective transformation and we can
choose the coordinate system we can always assume that the cameras are of the form

P =
[
I 000

]
, P̄ =

[
A t

]
, (4.32)

where A is a general 3 × 3 matrix. A point u in the first image is the projection of a 3D
point that lies somewhere along the line going through the camera centre of P – which we
will call C and which in this case is the origin – and the first image point u. This line (also
called the viewing ray) can be described as

U(s) =
[
u
s

]
. (4.33)

The projection of this line into the second camera will be a line in that image plane, given
by

P̄U(s) =
[
A t

] [u
s

]
= Au+ s t. (4.34)

This line is called the epipolar line of u.

Different image points u will give different epipolar lines in the second image. However,
since all the viewing rays U(s) go through the camera centre of the first camera C, the
projection of this point in the second camera will be included in all epipolar lines. This
point ē = P̄C is called the epipole. Similarly, the projection of the camera centre for
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the second camera C̄ in the first image is also an epipole e = PC̄. Figure 4.4 shows an
illustration of the connection between the epipoles and the camera centres as well as the
viewing ray and the epipolar line. Furthermore, both e and ē will lie on the line between
C and C̄ – called the baseline – and the plane that contains this line and the 3D point U
is called the epipolar plane. The intersections of the epipolar plane with the image planes
give the epipolar lines (the epipolar line in the first image is defined analogously with the
one in the second image). This plane is illustrated in Figure 4.5.

The epipolar line Au + s t can also be expressed in P2 as l̄ = t × (Au) = [t]×Au,
with [t]× being the matrix representing the cross product with t. Equivalently, it can be
described using the epipole in the second image, l̄ = [ē]×Au [35]. Since any point ū in
the second image that corresponds to the same 3D point U as u lies along this line, such
a point much fulfil

ūTl̄ = ūT[ē]×Au = ūTFu = 0, (4.35)

where we denote the matrix [ē]×A by F. This is called the fundamental matrix and encodes
the relationship between corresponding points in the two images without including the 3D
points. We note that F has rank 2 such that det(F) = 0, since [ē]× has rank 2.

The fundamental matrix contains nine elements, but since the scale is arbitrary and det(F) =
0, it has seven degrees of freedom. If we have image point pairs from the two images, where
xi in the first image matches x̄i in the second image, each image point pair (xi, x̄i) gives
rise to one equation

0 = x̄T
i Fxi = F11x̄i1xi1 + F12x̄i1xi2 + F13x̄i1xi3

+F21x̄i2xi1 + F22x̄i2xi2 + F23x̄i2xi3
+F31x̄i3xi1 + F32x̄i3xi2 + F33x̄i3xi3,

(4.36)

where Fij are the elements of F and xij is the jth value if xi. To be able to solve for F linearly
we ignore the condition on the determinant; hence, we need in total eight equations and
correspondences. Then, we can set up a linear matrix equation, similar to the ones we used
for triangulation and camera resection. Collecting all unknowns Fij in a vector v and the
known values in a matrix M gives


x̄11x11 x̄11x12 x̄11x13 x̄12x11 . . . x̄13x13
x̄21x21 x̄21x22 x̄21x23 x̄22x21 . . . x̄23x23

...
...

...
...

. . .
...

x̄81x81 x̄81x82 x̄81x83 x̄82x81 . . . x̄83x83





F11
F12
F13
F21

...
F33


= Mv = 000. (4.37)

As for Equation (4.22) we solve this using DLT. This method for computing the funda-
mental matrix is sometimes referred to as the eight-point algorithm (although – again – more
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points can be used if desired). However, due to noise, it is not certain that the resulting
matrix will have a zero determinant. If we call the matrix that is estimated by DLT F̃, we
can ensure that F has rank 2, by letting

F = W

σ1 0 0
0 σ2 0
0 0 0

VT, (4.38)

if F̃ = WΣV is an SVD of F̃ and σ1 and σ2 are the two largest singular values in Σ.

Once the fundamental matrix is computed, the camera matrix P̄ can be obtained from it.
The cameras can only be determined up to a projective transformation, but they may be
chosen as [35]

P =
[
I 000

]
, P̄ =

[
[ē]×F ē

]
, (4.39)

and a general formula is given by

P =
[
I 000

]
, P̄ =

[
[ē]×F+ ēvT µē

]
, (4.40)

where v is any 3 × 1 vector and µ is a non-zero scalar. Since the epipole ē lies on the
epipolar line we know that FTē = 0 and this means that ē can be found by computing the
null space of FT. From this, we have retained all of P̄ (up to a projective transformation).

The structure from motion problem is not yet solved, though. First, we have to find the
position of the 3D point U. However, since the cameras now are known, this can be done
using triangulation as described in Section 4.4.

4.5.2 SfM for Two Calibrated Cameras

In the previous section we derived the fundamental matrix for two general, uncalibrated
cameras. If the calibration matrices K and K̄ are known, the calibrated cameras will be

P =
[
I 000

]
, P̄ =

[
R t

]
, (4.41)

and the corresponding normalised image points u′ = K−1u and ū′ = K̄−1ū. The cor-
respondence to the fundamental matrix for calibrated cameras is called the essential matrix
E, and the correspondence to Equation (4.35) is

(ū′)TEu′ = 0. (4.42)

Substituting for the uncalibrated points we see that ūTK̄−TEK−1u = 0 and so the rela-
tionship between the fundamental and the essential matrix is E = K̄TFK. Furthermore,
the essential matrix has the form [35]

E = [t]×R. (4.43)
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Since the matrix only consists of a translation vector and a rotation matrix, and the scale
is arbitrary, E has five degrees of freedom. Except for the constraint on the determinant –
similar to F – that det(E) = 0, the two singular values of E has to be equal. Ignoring the
non-linear constraints we can solve for E using eight point correspondences, just as we did
with F. However, we will now let

E = W

1 0 0
0 1 0
0 0 0

VT, (4.44)

where we get the singular value decomposition Ẽ = WΣVT from the by DLT estimated
essential matrix Ẽ.

Once E is obtained, we want to compute the camera matrix P̄. This can be done by
factorising the essential matrix into E = SR, where S is a skew symmetric matrix and
R is a rotation. When finding the camera matrix from the fundamental matrix we had a
projective ambiguity. For the essential matrix we will instead have four different camera
matrices that fulfills the requirements. For the computation of P̄ the following matrix will
be used

Φ =

0 −1 0
1 0 0
0 0 1

 . (4.45)

Given this, and the SVD in Equation (4.44), the four possible solutions for the camera
are [35]

P̄(1) =
[
WΦVT w3

]
, P̄(2) =

[
WΦVT −w3

]
,

P̄(3) =
[
WΦTVT w3

]
, P̄(4) =

[
WΦTVT −w3

]
,

(4.46)

where w3 is the last column of W. Despite the ambiguity, only one of these four cameras
represents a solution where the 3D points are in front of both cameras. Hence, we can
find the correct camera by computing the 3D points Uj (in the same way as earlier) for all
cameras P̄(i) and then select the camera for which all points are in front of both cameras,
that is, points such that the depth λij is positive.

The Five Point Algorithm

Since the essential matrix only has five degrees of freedom, it can be solved for using fewer
point correspondences. However, this requires that we include the non-linear constraints.
In this section we briefly explain a way to solve for the essential matrix called the five point
algorithm. For further details, see [65].
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Except for Equation (4.42) and the requirement that det(E) = 0, it also holds that for
any essential matrix E [24]

EETE− 1
2

trace(EET)E = 0. (4.47)

To solve for E using only five point correspondences, we can set up a system Mv = 000, as
before, but this time with only five points. This will not be enough to find the values in E,
but the matrix E can be expressed using the four dimensional nullspace of M, such that

E = α1E1 + α2E2 + α3E3 + α4E4, (4.48)

where Ei is the ith basis vector for the nullspace, reshaped into a matrix. Now, there are
only the four unknowns αi and since the scale is arbitrary we can set α4 = 1, leaving us
with three unknowns.

By using the expression for E from Equation (4.48) in Equation (4.47) and det(E) = 0
we get a system of ten polynomial equations. By factorising these into a coefficient matrix
M and a monomial vector b, we can then solve for αi using, for example, the action matrix
method described in Section 2.4.2.

4.5.3 SfM for Several Points and Cameras

In the previous section we saw how both two cameras and a number of 3D points could be
found using only two images. To create a 3D reconstruction of a scene, however, requires
much more images. There are several different ways to solve the SfM problem for larger
scenes and we will only briefly touch upon a few of them.

One way to solve for more cameras and points is to start out just as we did in the previous
section, by solving for two cameras and their corresponding points. Then, one can take
an iterative approach, where a new image and camera is added using the overlap with the
already reconstructed 3D points using camera resection, according to Section 4.3. There-
after new points that are common between that last image (or camera) and one of the
previous images are added using triangulation, described in Section 4.4. After that is done,
a new image is added, and so forth.

The pipeline described above is called sequential structure from motion, as the images are
added one by one. It is common that error accumulates for this system, such that a 3D
point that is reconstructed towards the end, might not end up where it would have been if
it was reconstructed early in the process. This is known as the loop closure problem. There
are several ways to solve for loop closure, but this will not be covered here (though, it can
be seen as a matching and merging problem, see Chapter 5). It is, however, common that
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an additional step is added to the pipeline, where bundle adjustment is performed over all
points and cameras, to decrease the total error, see Section 2.5.2. The error function for
this would be

E(ũij, {Pi,Uj}) =
∑
ij

∥∥∥∥∥ũij −
PiUj

λij

∥∥∥∥∥
2

. (4.49)

Usually, the term ∥ũij−PiUj/λij∥ is referred to as the reprojection error. This is illustrated
in Figure 1.1.

Some examples of sequential SfM pipelines that are commonly used are COLMAP [79],
Bundler [85, 86] and VisualSFM [98–100]. There are also examples of non-sequential
structure from motion, where the camera orientations for all images are computed first, after
which the 3D points are estimated [28]. This approach is less sensitive to loop closure
problems, as the rotational consistency for all images are taken into account simultaneously,
dividing the errors more evenly.

The SfM problem and its solutions have been developed in the computer vision community
to estimate the structure of the scene and the motion of the camera using only images. Sim-
ultaneously, similar problems have been studied in other fields. The previously mentioned
SLAM pipeline for estimating map parameters and sensor motion originates from the ro-
botics community. Here, several type of sensors can be used, for example ultrasound, laser
and images. In the latter case, it is called visual SLAM. Some examples of commonly used
visual SLAM systems are PTAM [41], DTAM [64], ORB-SLAM [63], ORB-SLAM2 [62]
and ORB-SLAM3 [16]. As the term SLAM can be used for several different types of
sensors, the automatic calibration using sound in Section 4.1 is an example on SLAM.
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Map Merging

The previous chapters have described mapping, localisation and some methods needed for
that. In this chapter we will discuss one matter that can improve the localisation in a known
environment. Except for a good algorithm and exact measurements, the localisation is
highly dependent on the description of the environment, that is, the map. A map consists
of a number of feature points and each feature point has a descriptor and a position. In the
case of TOA or TDOA each point would be a receiver, with an ID as the descriptor and the
position in 3D as the position. For image data, the position would be a 3D point as well,
while the descriptor could be a vector describing the area or volume around that point (in
an image or in 3D). The map would be the set of all such feature points.

The more exact our map is, the better will the localisation be. Furthermore, the more meas-
urements we have when creating our map, the better will it be. Therefore, the knowledge
of how to merge maps is important. If we can merge maps, we can use this to add in-
formation – represented as a new map – when we get hold of new information about the
environment.

Map merging has previously been used in, for example, the fields of loop closure [97] and
collaborative SLAM [111]. In collaborative SLAM, several cameras are used simultan-
eously and the problem can be simplified by initialising the cameras such that their relative
positions are known. This makes the problem similar to that of loop closure, where the
beginning and end of an SfM map should be merged. In the merging papers of this thesis,
we have no common initialisation and the mappings are assumed to be done at different
times. An image illustrating the idea of map merging can be seen in Figure 5.1. Now, we
will discuss some subjects that are of importance when it comes to map merging, namely
feature extraction, feature matching and registration.
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SfM SfM SfM SfM SfM

Merge

Figure 5.1: An overview of the idea of map merging and how it can be used to improve map quality. First, individual map
estimates consisting of point clouds with descriptors are created from several images using SfM. Then, these maps
can be merged in order to obtain a global map with lower variance, as the one in the bottom of the image.

5.1 Feature Extraction and Matching

In Sections 4.4 and 4.5, we assumed that point correspondences in images were given.
However, this is usually not the case, and in order to triangulate points in 3D, point matches
have to be found. This is also, for example, needed for alignment of images and for finding
stereo correspondences. The correspondences are usually found by first identifying feature
points or landmarks separately in the different images. Such landmarks are points that are
interesting and can be distinguished from other points, for example edges and corners –
points where the gradient in the image is large. An early detector of corners in images is the
Harris corner detector [34]. In general, the points need to be detected as well as described,
in order to be compared to other points. An example of good and less good points to match
are given in Figure 5.2.

Some desired properties of feature points are that they should be invariant to scale, rotation
and be recognisable from different viewpoints. Furthermore, they need to be described in
some way, using some feature descriptor that can be compared between images. There are
several known methods to find and describe such feature points. In this thesis, mainly
ORB [75] has been used. Other common feature descriptors are SIFT [60], BRIEF [15],
SURF [8] and there are several more. The descriptors look slightly different, but mostly they
consist of a vector of numbers of some type which describe the pixel and its surroundings.
It is also common that the descriptors consider several different scale space representations
– in some way – to be scale invariant, and that the rotation invariance is accounted for. All
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Figure 5.2: The figure shows two images and some matching points. The green, red and blue circles mark points that can be
good for matching, as they are unique. The yellow circles show points that are less good, as they are not unique.

the descriptors that are mentioned so far are hand-crafted.

Over the last years many new descriptors have been developed using deep learning. The
FAST descriptor [74] has partly been developed with machine learning techniques. Ex-
amples of descriptors using deep learning are DeepDesc [83], LIFT [103] and LF-Net [69].
These solve the problem of finding a good descriptor but work on image patches, like, for
example, SIFT does [90]. However, there are also examples of methods that work on the
whole image and solve both detection and description of features, such as SuperPoint [25].
For more examples of both hand-crafted and learned feature descriptors, see [90].

Once the feature extraction is done it remains to match these features, for example between
two images. Independently of which feature is used, two feature descriptors can be com-
pared using the Euclidean distance. One straightforward way to establish tentative matches
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would be to compare each feature in the first image to those of the second image and say
that it is a match if the distance between their descriptors is below a certain threshold. If
we call the two images X and Y and the found features (xi, fi)

N
i=1 and (yj,gj)

M
j=1, respect-

ively, (xi and yj denoting the positions and fi and gj the descriptors), this would mean
that xk and yl match if

∥fk − gl∥2 < t1, (5.1)

where the t1 is the threshold. The distance could also be measured by some other metric,
for example the Hamming distance for binary descriptors.

This method could, however, lead to many false matches if the threshold is too high and
the opposite if it is too low. Also, each point in X could match to several points in Y.
Another option would therefore be to say that (xk, fk) matches to the nearest neighbour in
Y, that is, (yl,gl) is a match if

argminj∥fk − gj∥ = l. (5.2)

Since every point inX has a nearest neighbour inY, while there in reality are many detected
feature points that does not match to the other image, it is a good idea to use a threshold
as well. Again, choosing this threshold might be hard.

Therefore, in [60] it is suggested that one instead looks at the ratio of the distance to the
nearest neighbour and the second nearest neighbour. A false match is likely to have a
similar distance to several points, while a correct match more likely has a significantly larger
distance to the second nearest neighbour compared to the first. This would mean that two
feature points (xk, fk) and (yl,gl) match if

minj,j̸=l ∥fk − gj∥
∥fk − gl∥

< t2, (5.3)

where t2 again is some pre-set threshold.

Another way to establish matches could be to first find the nearest neighbour of each xi in
Y, and then find the nearest neighbour for each yj in X and see if the closest points agree.
This means that if {

argminj∥fk − gj∥ = l,
argmini∥fi − gl∥ = k,

(5.4)

then (xk, fk) and (yl,gl) are a match.

The easiest way to search for matches and nearest neighbours is to compute the distance
between all pairwise points. This can, however, be very time consuming. For examples of
more efficient search methods, see [90].

Once tentative matches are established using either of the methods above, it is common to
use geometry to find which of these matches that are actual matches, or inliers, and which
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are outliers. This can be done in a RANSAC framework, see Section 2.6. The geometric
alignment will be discussed further in the next section, but the idea is that we choose the
minimum number of required point matches to compute some chosen transformation.
Using these, the transformation parameters are calculated, whereupon all points in one of
the images are transformed accordingly. Finally, using some threshold the consensus set is
computed. This is iterated until the largest consensus set is found – the set of points which
are inliers. The rest of the points will be outliers, or false matches. There are also methods
for finding a good inlier set that are built on deep networks [70, 104, 106].

Finally, to evaluate the used method or threshold, one can for example count the number of
true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). The true
positives are the true matches that are correctly estimated as matches and the false positives
are points that are not matches but that are estimated to be. True and false negatives are
defined accordingly. Using these, we can define the true positive rate (TPR) and the false
positive rate (FPR)

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

. (5.5)

The desire is to reach a high TPR and a low FPR, something that is reflected in the receiver
operating characteristic (ROC) curve, where the TPR is plotted against the FPR. The curve
is created by evaluating the rates for several different threshold, and a good method will
have a curve that lies close to the upper left corner. All this does, of course, require that
there is a ground truth for the inlier set.

5.1.1 Features in 3D

The image features are enough to create 3D models, but to merge different point clouds –
or to just create maps – we need a way to describe points in 3D. One way to do this, which
is also what we have been using in the thesis, is to bring the 2D features into 3D. Each 3D
point is a reconstruction of a number of 2D points from different images. Each of these
points has a descriptor and all of them look similar, but are not necessarily the same. In
Paper VIII we let the 3D point have the mode of the ORB features for the corresponding
2D points and match them according to Equation (5.4). Another way to do this is to let the
whole set of descriptors describe the 3D point, either by saving all of them or, for example,
the mean and the standard deviation. There are also descriptors that are developed to work
on point clouds, for example [37, 40, 102].

The matching of feature points between point clouds can be done in a similar fashion as for
images, described above. The deep learning methods might, however, not work, but the
other methods will – with the exception that X and Y above will be replaced by the point
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clouds and the geometric alignment in the RANSAC loop will have to be adjusted. Again,
there are learning method for this that work directly on the point clouds, such as [77, 101].

5.2 Point Cloud Registration

Point cloud registration refers to the alignment of point clouds, typically using a rigid trans-
formation or a similarity transformation. The problem can also be referred to as the abso-
lute orientation problem. The problem can be solved either using known correspondences
between the point clouds, or without such correspondences. There are many different al-
gorithms for point cloud registration, but we will only over a couple in this introduction.

For the registration problem we have two point clouds P1 = {p1, . . . ,pm} and P2 =
{q1, . . . ,qn} with points in R3 and N point correspondences (pki ,qli), i = 1, 2, . . . ,N.
The subscript indices ki and li are due to potentially different orderings within the two
point clouds. Now, we seek to find a scale parameter s ∈ R, a translation vector t ∈ R3

and a rotation matrix R ∈ SO3 that minimises

N∑
i=1

∥pki − (sRqli + t)∥2, (5.6)

that is, we seek the least squares solution. Here, we assume that the measurement errors
are Gaussian with mean zero. This problem can be solved using Procrustes analysis [38, 39].
For this, we begin by defining the centroids of the point sets as

p̄ =

∑N
i=1 pki
N

, q̄ =

∑N
i=1 qli
N

, (5.7)

and the points translated by these centroids as

p′
i = pki − p̄, q′

i = qli − q̄. (5.8)

These new points are such that
∑N

i=1 p
′
i =

∑N
i=1 q

′
i = 0. Now, the covariance of the point

sets is

H =

N∑
i=1

p′
i(q

′
i)
T, (5.9)

and the optimal rotation matrix is the closest orthogonal matrix to H. Hence, if the SVD
of H is H = UΣVT, the optimal rotation matrix is given by

R = UVT. (5.10)
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Finding this rotation matrix – or rather an orthogonal matrixQ that minimises
∑N

i=1 ∥pki−
Qqli∥2 – is known as the orthogonal Procrustes problem [80]. To ascertain that R is a ro-
tation and not a reflection, that is, that det(R) = 1, we can instead let [110]

R = U

1 0 0
0 1 0
0 0 det(UVT)

VT. (5.11)

Once the rotation matrix is obtained the scaling factor is given as

s =
∑N

i=1(p
′
i)
TRq′

i∑N
i=1 ∥p′

i∥2
, (5.12)

and the translation vector is
t = p̄− sRq̄. (5.13)

To use Procrustes analysis, at least three point correspondences are needed, since there are
seven degrees of freedom to solve for. It is also common that the scale is known beforehand,
such that only the rotation and translation are sought.

If point correspondences within the point clouds are unknown, the data association can
be solved together with the registration in an iterative manner. The first step is then to
associate each point in P2 with the nearest point in P1. Then, the registration step is
performed using these point correspondences. After this, the data association is re-done,
again using nearest neighbour, whereupon a new registration step is performed, and so on.
This is done until some termination criteria is reached. This is known as the iterative closest
point (ICP) algorithm [9]. In general, the algorithm assumes that the scale of the two point
clouds is the same. There are, however, variants where a scaling factor is included, as in the
Procrustes registration above [110]. There are also several other variants of the original ICP
algorithm [76].

Once the point clouds have been aligned, the gauge freedom for the whole map still re-
mains. This means that the maps can be scaled, rotated and translated without any change
of the error.

5.3 Merging Point Clouds

Registration of point clouds is a good way to add information to an existing map, for
example by adding local maps of smaller environments to a global map that captures a larger
area. However, the final map will contain duplicates of the points that matched between
the local maps, something that might not be desirable. To begin with, these duplicates will
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A B C

Merge

Figure 5.3: A and B show two different map representations – in blue and red, respectively – of the same environment. However,
the corresponding feature points are not exactly the same. In C these are merged into one global map, in green.
The positions of the original feature points are shown by contours.

require a higher memory capacity. Also, it is not guaranteed that matched points will end
up at the exact same position. It is actually rather unlikely, as this would mean that there is
no noise or other disturbances in the system, such that the cost function in Equation (5.6)
is minimised to zero. However, if the points are a true match, they should be at the same
position. With this as a motivation, it can be a good idea not only to align the maps, but
rather to fuse them. A small map fusion example, to illustrate the idea, can be seen in
Figure 5.3.

One straightforward way to add several maps would be to make a new estimation of the
environment, using all the data that was used to obtain each of the individual maps. In the
case of computer vision, this would correspond to re-estimating the parameters and then
bundle over all 3D points and all camera matrices for each of the local maps at once. In
terms of accuracy, this is a good method for merging, as all error terms are minimised sim-
ultaneously. However, this process could be time consuming and computationally heavy,
since the number of images involved grows quickly.

Another, more efficient, way to fuse maps could be to first co-register the maps and then
merge the matched points in some way, for example by replacing the pair by the average
point or simply neglecting one of the points [16]. To improve the map further, this can be
followed by (local) non-linear optimisation. One advantage with allowing some optimisa-
tion and not only rigid registration is that inherent drift and local errors can be corrected
for.
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5.3. Merging Point Clouds

Figure 5.4: The figure shows a motivating example, where the red and blue maps to the left should be matched. Since the
overlapping area contains drift, a rigid matching method will not be able to find all the matches, see the zoomed
in image in the middle. Allowing for statistical deformations, such matches can be found and the errors can be
corrected, as in the right plot.

Some fields for which map merging is useful are loop closure and collaborative SLAM [1,
105, 109]. In many cases, the collaborative SLAM systems are initialised such that all
cameras view the same scene – something that simplifies the problem [111]. Also, the ac-
tual merge is rarely the focus of these papers and often the process is not well described.
There are, however, examples of papers where this is not the case. In [16] the multi-session
mapping is brought up as one of the advantages of their SLAM system and the merging
is given some focus. The matching is, in similarity with many other papers, based on key-
frames and the merging is done by erasing duplicates from the local maps, followed by local
bundle adjustment over the concerned keyframes. Other methods that use keyframes – and
more specifically bag-of-words for these – for detection of loop closure or map matching
are [31, 63, 89].

Several review papers about map merging for multi-robot systems have been published
during the last years and the authors conclude that more research on map merging in 3D
is needed [1, 11] and that a key step in the merging is to extract stable point features [105].

Map merging has been one of the focus areas of this thesis. One of the aims has been to find
efficient merging methods, where no images – not even keyframes – have to be saved and
the bundle over all reprojection errors can be avoided. A key idea here has been to divide
the parameters in one set of main parameters and one of auxiliary parameters. The main
parameters are those that are of higher interest. This could for example be all map points, or
a subset of the map points that we know are static, are likely to match over several mappings
or generally represent the environment in a good way. The rest of the parameters – that is,
the rest of the 3D points and the cameras – belong to the auxiliary parameters. This division
is introduced in Paper VI. Once this division is done, we only explicitly optimise over the
main parameters. This reduces the memory footprint and simplifies the cost function.
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The second aim for the fusion papers of this thesis has been to allow the map points to not
only transform rigidly, but also to move in the directions where the local maps are most
uncertain. This does not necessarily give a non-rigid transformation, but rather a rigid
transformation with statistical deformations. Figure 5.4 shows an example of the type of
errors that we try to avoid by allowing these statistical deformations. The two maps that are
to be merged both contain some inherent drift and therefore a fully rigid transformation
will never result in a perfect match. Map fusion is treated in Papers VI, VII and VIII of
this thesis.
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Conclusions

This thesis has a focus on mapping and merging using sound and vision. It is built on eight
conference papers, and as a finish to this introductory part of the thesis, we will include a
summary and discussion on some of the main contributions of these papers. The papers
can roughly be divided into three parts: Paper I which has a focus on refining TDOA
measurements; Papers II–V which treat self-calibration using sound and ultra wide-band;
and Papers VI–VIII which have a focus on map merging.

6.1 Paper I: Precise Measurements

The first paper covers the earliest step in the process treated in this thesis, namely to achieve
accurate TDOA measurements. While the paper does not explicitly handle mapping and
self-calibration, this pre-processing step is of importance for the mapping results as well.
In the paper we work with sound signals, but the methods are applicable for any one-
dimensional signal modality. The paper is inspired by [4] where scale space smoothing and
stochastic analysis are used in similar settings but for images, and by [107], where TDOA
was studied on a subsample level. In the latter of these, it was empirically shown that the
subsample refinements improved the calibration process.

Our paper continues on the same track, but we also present an analysis of the limitations
of the methods by investigating the uncertainties in the estimates. Rather than using cross-
correlation to find the TDOA measurements, we formulate this as a minimisation of a loss
function, see Equation (3.17). While these two formulations are analogous if only a time
delay is estimated, our formulation allows for more variations in the model and makes
it easier to analyse the uncertainty. We then present explicit formulae for the standard
deviation of these time delay estimates.
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The second contribution of the paper is the estimation of a Doppler factor, together with
uncertainty estimates thereof, and an amplitude, see Equation (3.16) and Figure 3.2. The
Doppler factor becomes relevant for signals where the sound source is moving, and despite
noisy measurements we show that there are relevant information to gain even when the
sound source is moving slowly. We show on synthetic data that the estimation of the
Doppler factor also improves the estimate of the time delay, if the sound source has moved.
However, it seems like our theoretical formula underestimates the standard deviation for
the Doppler factor.

Future Work

One topic for further research would be to look into why the standard deviation of the
Doppler factor is underestimated. It would also be interesting to see if there are other use
cases for the Doppler and amplitude estimates rather than to only improve on the time
delay.

6.2 Papers II–V: Self-Calibration Using One-Dimensional Sig-
nals

The topic in Paper I gives a good transition into Papers II–V, where the measurements are
used for robust automatic calibration – that is, to find both sender and receiver positions,
as we discussed in Section 4.2. Mostly in these papers, we assume that the distance meas-
ures are given and in the experiments we often use cross-correlation (Equation (2.20)) or
GCC-PHAT (Equation (3.22)) to compute them. The four papers cover different parts
of the calibration process, but are all closely connected. The topic has also been studied
at the Centre for Mathematical Sciences at Lund University for several years, and several
PhD theses include work that has lead up to these papers [6, 14, 45, 52, 82, 87]. In all Pa-
pers II–V the stratified solution approach explained in Section 4.2.2 is used. Furthermore,
all papers have a focus on robust estimation and use a RANSAC approach (Section 2.6)
to achieve this, both to find a good solution and a large inlier set. We have also developed
minimal solvers in each of the papers. These have been created using the techniques in
Section 2.4 and an automatic solver generator [53]. The minimal solvers have been used
to initialise a solution, whereupon this has been extended to more rows and columns, ac-
cording to Section 4.2.3.
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Paper II

Paper II treats the COTDOA problem – TDOA with a constant offset – from Equa-
tion (3.8). This case arises when the emission of the sound events are repetitive with
a known period, and only one offset has to be estimated, in comparison to the original
TDOA problem where there is one offset per sender. In the paper, we study the (5r/5s)
problem including five receivers and five senders and provide a fast minimal solver for the
first step in the stratified approach. This step involves solving for the relaxed parameters
θ2 = {U,V,b,a, o}, see Section 4.2.2. Specifically, we express a 4th degree polynomial
in terms of a determinant, using the constraint that the double compaction matrix from
Equation (4.13) has rank 3. When this polynomial is solved we get four possible solutions
for the offset o. Each of these possible solutions then give a possible solution for θ2. The
upgrade to the original parameters θ1 = {R,S, o} is then done using techniques presented
in [47, 54].

Using the presented solver, the step of calculating o and the rest of θ2 is significantly faster
than that of upgrading to θ1. Therefore, we suggest that local optimisation is done for the
relaxed problem before upgrading the solution (see Section 4.2.4). Since the minimal solver
is fast we can allow for many RANSAC iterations. The solver also shows good numerical
stability.

Paper IV

Paper IV also covers the first step of the two-tiered approach, but for the regular TDOA
problem in Equation (3.3). In the paper, we improve on three non-linear minimal solvers
that were previously presented in [46], for the cases (5r/6s), (7r/6s) and (6r/8s) – where
(xr/ys) again refers to a system with x receivers and y senders. The new solvers use the
rank 3 constraint of the compaction matrix (Equation (4.13)), which is expressed as all
minors of the matrix of order 4 being zero. These minors are expressed in lower order
minors using Laplace expansion, which makes some common sub-expressions cancel. This
leads to a smaller system of equations which can be solved using action matrix methods
(Section 2.4). The simplification makes the solvers significantly faster and more memory
efficient solvers than the solvers in [46]. We also consider two linear cases from the same
paper, namely (7r/4s) and (9r/5s).

We suggest how to use these five solvers in a full RANSAC system. To solve the self-
calibration we randomly choose one of the five presented solvers and a suitable subset of
the measurements. The offsets in o are found using the solver, and then we compute the
rest of the relaxed parameters using the compaction matrix, by extending to more rows
and columns according to Section 4.2.3. To improve the results further, we occasionally
do local optimisation over θ2. At this stage we minimise directly over the measurement

71



Chapter 6. Conclusions

errors, according to the error function in Equation (4.17). Thereafter the upgrade is done
using the methods presented in Paper III (see next paragraph) whereupon the receiver and
sender positions are re-estimated using trilateration and multilateration (see Section 4.1)
to improve the results. The results show that the system is robust to outliers and missing
data. The linear solvers are more numerically stable than the non-linear solvers, but since
there might be cases where there are not enough receivers to use, for example, the (9r/5s)
solver, all solvers could be of use. The code for the paper is available online¹.

Paper III

Following these two papers, Paper III has a focus on the second step of the stratified method
(Section 4.2.2). Again, we present several minimal solvers, this time for the upgrade from
the relaxed θ2 to θ1. Since the offsets are determined in the first step, the methods in
this paper are applicable to all the cases of time of arrival (TOA); time-difference of arrival
(TDOA); constant offset TDOA (COTDOA); and uncalibrated TDOA (UTDOA), see
Equations (3.1), (3.3), (3.8) and (3.9), respectively. To compensate for the larger gauge
freedom in the relaxed problem we add conditions on the relaxed solution, which we meet
by translating the parameters in θ2. We also suggest a new, more general, formulation
of the double compaction matrix – namely the one in Equation(4.13) where the compu-
tations do not depend on a certain column of the distance matrix. We then decompose
the double compaction matrix and parameterise the sender and receiver positions in terms
of two reference points and a transformation matrix. This leads to a system of equations
with nine unknowns and we derive equations of three types, one of which is linear and two
non-linear. There are in total 19 minimal configurations and we present solvers for ten of
these; one which only builds on linear equations and the rest on increasingly amount of
non-linear equations. The systems of equations are solved for using action matrix methods
and Cholesky factorisation, see Section 2.3.1 and 2.4 .

When we solve for the upgrade we follow the same solution scheme as [54]. However, we
present smaller templates for setting up the action matrices for some of the problems that
they solved and extend the number of solvers, as they only studied certain receiver/sender
configurations. The linear solvers exhibit the best numerical stability for the fully spanned
cases, but are more sensitive to degenerate configurations. We also show that better results
can be achieved by optimising over the upgrade parameters, which we used to parameterise
R and S. The code for the paper is available online².

¹The code can be found at https://github.com/martinkjlarsson/tdoa-self-calibration.
²The code is available at https://github.com/martinkjlarsson/upgrade-methods.

72

https://github.com/martinkjlarsson/tdoa-self-calibration
https://github.com/martinkjlarsson/upgrade-methods


6.2. Papers II–V: Self-Calibration Using One-Dimensional Signals

Paper V

The fourth paper in this group, Paper V does not focus on the stratified solution, but rather
on improving solutions from self-calibration – that is, to improve on the receiver and sender
positions. If the sound source has been moving there are often many more sender positions
than receivers. In that case it is common that only a partial solution for the sound source
path can be found, such that the sender positions are found for some time steps but not for
others. In this paper we present minimal solvers for multilateration (see Section 4.1) using
TDOA measurements to pairs of microphones that improve on the sound source position.
We also present a framework for how to use these solvers for robust improvement on all
the node positions – sender as well as receiver positions. Furthermore, we provide a new
dataset for TDOA multilateration³.

One difference compared to the previous papers is that in this paper we assume that the
receiver positions are known, when we estimate the sound source positions using multi-
lateration. We do this improvement by going back to the putative TDOA measurements,
for example the peaks of the GCC-PHAT from Equation (3.22). That the measurements
are putative means that we sometimes do not know which correlation peak is the strongest
and therefore sometimes use several peaks. Previous methods for this has required that all
time-differences are given to the same microphone, while we extend this so that any three
measurements from the TDOA matrix (see Section 3.1.1) can be used. Using an automatic
solver generator [53] we produce a solver, which together with the problem formulation is
a contribution of the paper. Furthermore, we consider the inclusion of smoothness priors
on the sound source path, and we also include local optimisation over both sound source
and receiver locations. The code for the paper is available online⁴.

Summary and Future Work

An overview of the whole calibration and improvement system can be seen in Figure 6.1.
The input to the system, Figure 6.1a, is sound recordings, or some other type of one-
dimensional signals. The step between Figure 6.1a and 6.1b consists of finding putative
TDOA estimates and the step from Figure 6.1b to 6.1c to refine these. Paper I would
be positioned here, going from sensor data to TDOA measurements. All of Papers II, IV
and III cover the step from Figure 6.1c to 6.1d, where TDOA measurements are used to
estimate sender and receiver positions. This step could have been divided into two, for
the relaxed solution and the upgrade. Finally, Paper V uses both the node positions in
Figure 6.1d and the original, putative TDOA measures in Figure 6.1b to improve on the
solution, especially for the sender path. The result is a refined solution, as in Figure 6.1e.

³The dataset can be found at https://vision.maths.lth.se/sfsdb/.
⁴Link to the code https://github.com/kalleastrom/StructureFromSound.
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a b c

de

Figure 6.1: The figure shows an overview of the self-calibration system and the different parts that have been included in this
thesis. In (a) the raw sound data is shown, in (b) noisy TDOA measurements and (c) refined measurements. The
figure in (d) shows noisy sender and receiver estimates and (e) a refinement of these. The different papers in this
theses correspond to the arrows.

One future goal for this set of papers – covering robust self-calibration – is to develop a
toolbox, where each combination of calibration type (TOA, TDOA, COTDOA, UTDOA,
see Section 3.1.1) and each reasonable dimensionality of the senders and receivers is covered.
For this, we want to find as many common formulations as possible for the different cases.
The stratified solution approach is one step on the way here, but there might be more to
be found. Each paper will contribute as one (or several) tool in the toolbox, and there are
still minimal cases to consider before every case is covered. For example, there are many
unanswered questions concerning the UTDOA case (Equation (3.9)). The minimal cases
get much larger as there are offsets for both senders and receivers.

Another interesting topic for future research is to develop good methods for refining the
putative TDOA measurements, that is the step between Figure 6.1b to 6.1c. Given GCC-
PHAT values we wish to choose those that give high peaks, but if there has been a moving
sound source, we also want the chosen values to be smooth over time. It is possible that
this problem could be solved using learning based methods.
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6.3 Papers VI–VIII: Map Merging

The last group of papers concern map matching and merging (explained in Chapter 5) and
requires that maps have already been created, for example using the techniques described
in the previous papers, or using some SfM or SLAM pipeline, see Section 4.5. Papers VI
and VII treat the actual merging process, while Paper VIII concerns the step before, where
point matches are ascertained. Nevertheless, the three papers have much in common and
follow the same idea. The motivation behind the papers is to establish a technique for fusion
of individual, local maps, into a more accurate, global, map, without having to re-estimate
the map from scratch using bundle adjustment over all reprojection errors.

Paper VI

The problem is introduced in Paper VI, where we present a method for efficient map mer-
ging with a small memory footprint. The paper is mainly focused on sound data, but also
covers some vision. One of the key ideas for the compact map format is to divide the
parameters – that is the senders and receivers or the cameras and 3D points – into main
parameters and auxiliary parameters, as described in Section 5.3. By dividing the Jacobian
accordingly, we can use first order Taylor expansion to get an approximate expression for
how the residuals are affected by a change in the main parameters. The auxiliary parameters
will follow this change, but they are not the focus and will not explicitly be optimised over.
By this, we can express how the error changes if we change the map, using only the error
in the optimal point; the main map points; and a triangular matrix obtained from QR
decomposition of a Jacobian. The error can for example be the one from Equations (4.16)
or (4.49). One big advantage here is that the triangular matrix that we get from QR decom-
position encodes the same information as the Jacobian, but contains much fewer values,
see Equation (2.32).

For the actual fusion, we assume that the maps have been aligned, so that they are in the
same coordinate system, see Section 5.2. Using the linearisation of the residual and the
compact representation of the map, the merge can be solved linearly. This makes the merge
very efficient. Through this we keep most of the information from the individual bundles,
but we focus on the map points that are of particular interest – that is the main parameters.
Also, the problem does not scale even if more auxiliary parameters are added; for example,
it does not matter how many sender positions that are used to create the local maps, if the
number of receivers is the same (and the receivers are the main parameters).

Furthermore, if the errors (Equation (4.16) or (4.49)) from the individual bundles are
assumed to be Gaussian with mean zero, we show how the total error in the individual
and the merged maps can be used to discover whether any changes have occurred in the
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scene between the mapping occasions. It turns out the the error should increase according
to a gamma distribution when maps are merged. If the increased error is far from this
distribution, one can suspect that something has changed. This could for example be used
as a hypothesis test to remove inconsistent parts of the maps.

Paper VII

The assumption that the maps are aligned is a disadvantage of Paper VI. However, we ad-
dress this issue in Paper VII. There, we use the same compact map representation as in the
previous paper, but we develop the merging algorithm to work for maps represented in dif-
ferent coordinate systems. This means that we solve the registration problem (Section 5.2)
and the merging problem (Section 5.3) simultaneously. In this paper we have a focus on
image data, with maps originating from SLAM or SfM, although the method works for
other signal modalities as well.

In Paper VI, described in the previous section, all points in the global map have to be visible
in all the local maps. This is generalised so that the global map can contain points that are
visible in one or more of the local maps, and that no points have to be seen in all maps. We
represent this by including a projection from the space of the global map to those of the
main parameters of the local maps. Furthermore, we include a similarity transformation
for each local map, that transforms between the local and the global coordinate system, see
Equation (5.6). Since the change of coordinate system is non-linear, we can no longer solve
the merging linearly. Therefore, we collect the individual residuals and optimise over the
global map points and the transformation matrices. To ensure that the linearisations for
the local maps are still valid, we also add extra penalties by changing the nullspace of the
triangular matrices representing the Jacobians.

Even though we perform bundle adjustment (described in Section 2.5.2) to optimise the
global map, it will be much more efficient than a bundle over all 3D points and cameras, as
we have reduced the number of parameters to optimise, as well as the number of residuals.
In the original error function all reprojection errors in all cameras are included, while our
cost function only includes the errors of the main 3D points. Except for these contribu-
tions, we also updated the formula for the hypothesis test, used for change detection, to
work for the new settings.

Paper VIII

In the two merging papers described we assume that point matches between the maps were
given. The process of finding such matches is the subject of Paper VIII. Given a set of
tentative matches between two point clouds we develop methods to refine these matches
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and find a reliable inlier set, see Section 5.1. In this match, we allow the points to modify
in the direction of the largest modes of variation – that is, in the direction where the local
map is most uncertain and the error function is least affected, see Section 2.3.1. Through
this, errors that occurred in the original SLAM can be corrected for.

We formulate and present solvers for the minimal problems of matching both three and four
point pairs, both for similarity and for Euclidean transforms. The three-point-matching
problem includes two and three modes, respectively, and the four-point-matching problem
five and six modes, respectively. Furthermore, we present a solver for matching of duplicate
points within maps, which can be used to solve loop closure problems (see Chapter 5). The
systems of equations for matching between maps are solved using methods from algebraic
geometry, see Section 2.4.2. We use an automatic solver generator to produce these solvers,
but adjust the solvers manually to make the calculations more simple and effective. The
solvers are available online⁵.

Finally, we suggest how the minimal solvers can be utilised in a RANSAC framework (Sec-
tion 2.6). We also use the resulting matches as input to the merging algorithm presented
in Papers VI and VII. For this to work, we adjust both the fusion method and the hypo-
thesis test to allow for matches within maps. The code developed throughout these merging
papers is available online⁶.

Future Work

We have had several discussions about how to formulate the problems concerning map
merging and believe that there are still many ways to explore and expand the papers on the
subject included in this thesis. One potential topic for future research could be to make the
methods work in a larger setting, where the hypothesis test (that is the method we used for
change detection in Paper VI) could be used for increased robustness, by dividing uncertain
maps and adding one part at a time. If the maps are large, this would also require some
development of the code, to speed up the computations for larger sets of data. It would also
be interesting to find ways to express the compressed map representation for a smaller set
of main parameters from the compressed representation for a larger set of parameters. This
would give more freedom in the division of the parameters, as it could then be re-made
without having to re-compute the original bundles. It would also be interesting to allow
for cameras to be included in the main parameters.

Another investigation for the future could be to combine these geometric models with
modern deep learning techniques. If we could determine the semantics for the 3D points
this could be used to decide which parts that are more likely to be static and therefore are

⁵Solvers at https://github.com/gabrielleflood/statistical-mapmatching-minsolv.
⁶The code can be found at https://github.com/gabrielleflood/mapmerging.
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good to use as main parameters. One could also try to use both semantics, geometry and
the original 2D features for point matching, in order to obtain a more robust 3D feature.
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Stochastic Analysis of Time-Difference and Doppler
Estimates for Audio Signals

Gabrielle Flood, Anders Heyden and Kalle Åström

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract: Pairwise comparison of sound and radio signals can be used to estimate
the distance between two units that send and receive signals. In a similar way it is
possible to estimate differences of distances by correlating two received signals. There
are essentially two groups of such methods, namely methods that are robust to noise
and reverberation, but give limited precision and sub-sample refinements that are
more sensitive to noise, but also give higher precision when they are initialized close
to the real translation. In this paper, we present stochastic models that can explain
the precision limits of such sub-sample time-difference estimates. Using these models
new methods are provided for precise estimates of time-differences as well as Doppler
effects. The developed methods are evaluated and verified on both synthetic and real
data.

Keywords: time-difference of arrival, sub-sample methods, Doppler effect, uncer-
tainty measure

1 Introduction

Audio and radio sensors are increasingly used in smartphones, tablet PC’s, laptops and other
everyday tools. They also form the core of internet-of-things, e.g. small low-power units
that can run for years on batteries or use energy harvesting to run for extended periods of
time. If the locations of the sensing units are known, they can be used as an ad-hoc acoustic
or radio sensor network. There are several interesting cases where such sensor networks can
come into use. One such application is localization, cf. [5–7, 9]. Another possible usage
is beam-forming, i.e. to improve sound quality, [2]. Using a sensor network one can also
determine who spoke when through speaker diarisation, [1]. If the sensor positions are
unknown or if they are only known to a certain accuracy, the performance of such use-cases
are inferior as is shown in [18]. It is, however, possible to perform automatic calibration,
i.e. to estimate both sender and receiver positions, even without any prior information.
This can be done up to a choice of coordinate system, [8, 12, 13, 19, 22], thus providing
accurate sensor positions for improved use. A key component for all of these methods is the
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Figure 1: Precise time-difference of arrival estimation can be used for many purposes, e.g. diarization, beam-forming, positioning
and anchor free node calibration. The figure illustrates its use for anchor free node calibration, sound sourcemovement
and room reconstruction. The image is taken from [10].

process of obtaining and assessing estimates of e.g. time-difference of arrival of transmitted
signals as they arrive in pairs of sensors. In this paper the focus is primarily on acoustic
signals, but the same principles are useful for the analysis of radio signals [4].

All of these applications depend on accurate methods to extract features from the sound
(or radio) signals. The most common feature is the time-difference-of-arrival, which is
then used for subsequent processing. For applications, it is important to find as precise
estimates as possible. In [23] time-difference estimates were improved using sub-sample
methods. It was also shown empirically that the estimates of the receiver-sender configur-
ations were improved by this. However, no analysis of the uncertainties of the sub-sample
time-differences was provided.

This paper is an extended version of [10]. The main content is thus similar. However this
version has been developed and is more thorough. E.g. the derivations in Section 3.1 have
been extended, a comparison between different models has been added, see Section 3 and
4.1, and the experiments on real data in Section 4.2 have been changed and improved. In
addition we have also performed stochastic analysis for the real data experiments. This is
presented in Section 4.2. Then follows Section 4.3 which is partly new. Furthermore, most
of the figures have been updated, even if a few remain from the original paper.

The main contributions of [10] and this paper are:

• A scheme for computing time-difference estimates and for estimating the the preci-
sion of these estimates.

• A method to estimate minute Doppler effects, which is motivated by an experimental
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Figure 2: The figure examplifies one usage of precise time-difference of arrival estimation. The image illustrates the estimated
microphone positions (dots), estimated mirrored microphone positions (dots) and sound source motion (solid curve)
from Figure 1. The estimated reflective planes are also shown in the figure. These three planes correspond to the
floor, the ceiling and the wall. The image is taken from [10].

comparison between the models.

• An extension of the framework to capture and estimate amplitude differences in the
signals.

• An evaluation on synthetic data to evince the validity of the models and provide
knowledge of when the method fails.

• An evaluation on real data which demonstrates that the estimates for time-difference,
minute Doppler effects and the amplitude changes contain relevant information.
This is shown for speeds as small as 0.1 m/s.

2 Modeling Paradigm

2.1 Measurement and Error Model

In this paper, discretely sampled signals are studied. These could e.g. be audio or radio
signals. Here, the sampling rate is assumed to be known and constant. Furthermore, we
assume that the measured signal y has been ideally sampled after which noise – e.g. from
the receivers – has been added, s.t.

y(k) = Y (k) + e(k) . (1)
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The original, continuous signal is denoted Y : R 7→ R and the noise, which is a discrete
stationary stochastic process, is denoted e.

Let the set of functions Y : R → R that are (i) continuous (ii) square integrable and
(iii) with a Fourier transform equal to zero outside [−π, π] be denoted B. Furthermore,
denote the set of discrete, square integrable functions y : Z → R by ℓ. Now, define the
discretization operator D : B → ℓ by

y(i) = D(Y )(i) = Y (i). (2)

Moreover, we introduce the interpolation operator Ig : ℓ → B, as

Y (x) = Ig(y)(x) =
∞∑

i=−∞
g(x− i)y(i) . (3)

It has been shown that interpolation using the normalized sinc function, i.e. with g(x) =
sinc(x), restores a sampled function for functions in B, see [20] Thus, we call Isinc : ℓ → B
the ideal interpolation operator and we have that

Isinc(D(Y )) = Y . (4)

In the same way other interpolation methods can be expressed similarly. E.g. we obtain
Gaussian interpolation by changing sinc in the expression above to

Ga(x) =
1√

2πa2
ex

2/(2a2). (5)

2.2 Scale-space Smoothing and Ideal Interpolation

A measured and interpolated signal is often smoothed for two reasons. Firstly, there is often
more signal as compared to noise for lower frequencies, whereas for higher frequencies there
is usually less signal in relation to noise. Therefore smoothing can be used in order to remove
some of the noise, while keeping most of the signal.

Secondly, patterns in a more coarse scale are easier captured after smoothing has been ap-
plied, [15]. A Gaussian kernel Ga2 , with standard deviation a2, has been used for the
smoothing. We will also refer to a2 as the smoothing parameter.

Given a sampled signal y, the ideally interpolated and smoothed signal can be written as

Y (x) = (Ga2 ∗ Isinc(y))(x) = IGa2∗sinc(y)(x). (6)
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If a2 is large enough the approximation Ga2 ∗ sinc ≈ Ga2 holds. Thus, one can use inter-
polation with the Gaussian kernel as an approximation for ideal interpolation followed by
Gaussian smoothing, [3], s.t.

Y (x) = IGa2∗sinc(y)(x) ≈ IGa2
(y)(x). (7)

What large enough means will be studied in Section 4.1.

Moreover, we will later use the fact that discrete w.s.s. Gaussian noise interpolates to con-
tinuous w.s.s. Gaussian noise, as is shown in [3].

3 Time-difference and Doppler Estimation

Assume that we have two signals, W(t) and W̄(t). The signals are measured and interpolated
as described above. Also assume that the two signals are similar, but with one e,g. translated
and compressed in the time domain. This could occur when two different receivers pick
up an audio signal from a single sender. Then the second signal can be obtained from the
other and a few parameters. We describe the relation as follows

W(t) = W̄(αt+ h), (8)

where h describes the time-difference of arrival, or translation in the signals. In a setup
where the sound source has equal distance to both microphones h = 0. The second para-
meter, α, is a Doppler factor. This parameter is needed for example if the sound source or
the microphones are moving. For a stationary setup α = 1.

When the two microphones pick up the signals these are disturbed by Gaussian w.s.s. noise.
Thus, the received signals can be written

V(t) = W(t) + E(t) and V̄(t) = W̄(t) + Ē(t) . (9)

Here, E(t) and Ē(t) denotes the two independent noise signals after interpolation.

Assume that the signals V and V̄ are given. Also, denote by zzz =
[
z1 z2

]T
=
[
h α

]T, the
vector of unknown parameters. Then, the parameters for which (8) is true can be estimated
by the zzz that minimizes the integral

G(zzz) =
∫
t
(V(t)− V̄(z2t+ z1))

2 dt . (10)

Comparing with Cross Correlation

If we only estimate a time delay h, the minimization of the error function (10) would in
practice be the same as maximizing the cross correlation of V and V̄. The cross-correlation
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for real signals is defined as

(V ⋆ V̄)(h) =
∫
t
V(t)V̄(t+ h) dt . (11)

Thus, the h that maximize this cross-correlation is given by

argmaxh(V ⋆ V̄)(h) = argmaxh

∫
t
V(t)V̄(t+ h) dt . (12)

If we expand the error function (10), while neglecting the Doppler factor we obtain the
minimizer

argminh

∫
t
(V(t)− V̄(t+ h))2 dt = argminh

∫
t
(V(t))2 + (V̄(t+ h))2 − 2V(t)V̄(t+ h) dt

= argminh

∫
t
−2V(t)V̄(t+ h) dt = argmaxh

∫
t
V(t)V̄(t+ h) dt.

(13)
Note that since we integrate over t, the integral

∫
t(V̄(t+h))2 dt is almost constant, ignoring

edge effects.

We choose to use (10) for estimation of the parameters since it is simple to expand and is
valid even if we add more parameters.

3.1 Estimating the Standard Deviation of the Parameters

If zzzT =
[
hT αT

]T is the “true” parameter for the data and ẑzz is the parameter that has
been estimated by minimizing (10), the estimation error can be expressed as

X = ẑzz− zzzT. (14)

Assume, without loss of generality, that zzzT =
[
0 1

]T. The standard deviation of ẑzz will be
the same as the standard deviation of X and the mean of those two will only differ by zzzT.
Thus, it is sufficient to study X to get statistical information about the estimate ẑzz.

Linearizing G(zzz) around the true displacement zzzT =
[
0 1

]T gives

G(zzz) ≈ F(X) =
1
2
XTaX+ bX+ f, (15)

with
a = ∇2G(zzzT) , b = ∇G(zzzT) , f = G(zzzT) . (16)
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Using (9) and (8), we get

f =G(
[
0 1

]T
) =

∫
t
(V(t)− V̄(1 · t− 0))2 dt =

∫
t
(W(t) + E(t)− (W̄(t) + Ē(t)))2 dt

=

∫
t
(E− Ē)2 dt =

∫
t
E 2 + 2EĒ+ Ē 2 dt.

(17)
To find the coefficients a and b we first calculate the derivatives ∇G(zzz) and ∇2G(zzz).

∇G =

[ ∫
t 2(V(t)− V̄(αt+ h)) · (−V̄ ′(αt+ h)) dt∫

t 2(V(t)− V̄(αt+ h)) · (−V̄ ′(αt+ h) · t) dt

]
= −2

[ ∫
t(W(t) + E(t)− W̄(αt+ h)− Ē(αt+ h))(W̄ ′(αt+ h) + Ē ′(αt+ h)) dt∫

t(W(t) + E(t)− W̄(αt+ h)− Ē(αt+ h))(W̄ ′(αt+ h) + Ē ′(αt+ h)) · t dt

]
.

(18)
Inserting the true displacement zzzT, at the point of linearization, gives

b =∇G(zzzT)

=− 2
[ ∫

t(W(t) + E(t)− W̄(t)− Ē(t)) · (W̄ ′(t) + Ē ′(t)) dt∫
t(W(t) + E(t)− W̄(t)− Ē(t)) · (W̄ ′(t) + Ē ′(t)) · t dt

]
=− 2

[∫
t(E− Ē)(W̄ ′ + Ē ′) dt∫
t(E− Ē)(W̄ ′ + Ē ′)t dt

]
= −2

[ ∫
t EW̄

′ + EĒ ′ − ĒW̄ ′ − ĒĒ ′ dt∫
t(EW̄

′ + EĒ ′ − ĒW̄ ′ − ĒĒ ′)t dt

]
.

(19)

To simplify further computations, we introduce

φ̂ = EW̄ ′ + EĒ ′ − ĒW̄ ′ − ĒĒ ′, (20)

such that

b = −2
[∫

t φ̂ dt∫
t tφ̂ dt

]
. (21)

Furthermore,

∇2G =[ ∫
t−2V̄ ′(αt+ h) · (−V̄ ′(αt+ h)) + 2(V(t)− V̄(αt+ h))(−V̄ ′′(αt+ h)) dt∫

t−2V̄ ′(αt+ h) · t · (−V̄ ′(αt+ h)) + 2(V(t)− V̄(αt+ h))(−V̄ ′′(αt+ h) · t) dt ...∫
t−2V̄ ′(αt+ h) · (−V̄ ′(αt+ h)) · t+ 2(V(t)− V̄(αt+ h)) · (−V̄ ′′(αt+ h) · t) dt∫

t−2V̄ ′(αt+ h) · t(−V̄ ′(αt+ h)) · t+ 2(V(t)− V̄(αt+ h)) · (−V̄ ′′(αt+ h) · t 2) dt

]
= 2

[ ∫
t(V̄

′(αt+ h))2 − V(t)V̄ ′′(αt+ h) + V̄(αt+ h)V̄ ′′(αt+ h) dt∫
t t · (V̄

′(αt+ h))2 − t · V(t)V̄ ′′(αt+ h) + t · V̄(αt+ h)V̄ ′′(αt+ h) dt . . .∫
t ·(V̄

′(αt+ h))2 − t · V(t)V̄ ′′(αt+ h) + t · V̄(αt+ h)V̄ ′′(αt+ h) dt∫
t t

2 · (V̄ ′(αt+ h))2 − t 2 · V(t)V̄ ′′(αt+ h) + t 2 · V̄(αt+ h)V̄ ′′(αt+ h) dt

]
.

(22)
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Now, introducing the notation

ϕ(zzz) = (V̄ ′(αt+ h))2 − V(t)V̄ ′′(αt+ h) + V̄(αt+ h)V̄ ′′(αt+ h), (23)

we can write ∇2G shorter as

∇2G = 2
[∫

t ϕ dt
∫
t tϕ dt∫

t tϕ dt
∫
t t

2ϕ dt

]
. (24)

If we let ϕ̂ be the value of ϕ for zzzT

ϕ̂ =ϕ(zzzT) = (W̄ ′(t) + Ē ′(t))2 − (W(t) + E(t))(W̄ ′′(t) + Ē ′′(t))
+ (W̄(t) + Ē(t))(W̄ ′′(t) + Ē ′′(t))

=(W̄ ′)2 + 2W̄ ′Ē ′ + (Ē ′)2 − EW̄ ′′ − EĒ ′′ + ĒW̄ ′′ + ĒĒ ′′
(25)

we get

a = ∇2G(zzzT) = 2
[∫

t ϕ̂ dt
∫
t tϕ̂ dt∫

t tϕ̂ dt
∫
t t

2ϕ̂ dt

]
. (26)

We also have that F(X) = 1/2 · XTaX+ bX+ f. To minimize this error function, we find
the X for which the derivative of F(X) is zero. Since a is symmetric we get

∇F(X) = aX+ b = 0 ⇔ X = g(a, b) = −a−1b. (27)

In the calculations below, we assume that a is invertible.

Now we would like to find the mean and covariance of X. For this, Gauss’ approximation
formulas are used. If we denote the expected value of a and b with µa = E[A] and µb =
E[b] respectively the expected value of X can be approximated to

E[X] =E[g(a, b)] ≈ E[g(µa, µb) + (a− µa)g
′
a(µa, µb) + (b− µb)g

′
b(µa, µb)]

=g(µa, µb) + (E[a]− µa)g
′
a(µa, µb) + (E[b]− µb)g

′
b(µa, µb)

=g(µa, µb) = −µ−1
a µb = −E[a]−1E[b].

(28)

In a similar manner the covariance of X is

C[X] =C[g(a, b)] ≈ g′a(µa, µb)C[a]g
′
a(µa, µb)

T + g′b(µa, µb)C[b]g
′
b(µa, µb)

T

+ 2g′a(µa, µb)C[a, b]g
′
b(µa, µb)

T ,
(29)

where C[a, b] denotes the cross-covariance between a and b. For further computations
g′a(a, b), g′b(a, b), E[a], E[b], C[b] and C[a, b] are needed.
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By computing the expected value of φ̂

E[φ̂] =E[EW̄ ′ + EĒ ′ − ĒW̄ ′ − ĒĒ ′]

=E[E]W̄ ′ +E[E]E[Ē ′]−E[Ē]W̄ ′ −E[Ē]E[Ē ′] = 0
(30)

we get

E[b] =E

[
−2
[∫

t φ̂ dt∫
t tφ̂ dt

]]
= −2

[∫
tE[φ̂] dt∫
t tE[φ̂] dt

]
= −2

[ ∫
t 0 dt∫

t t · 0 dt

]
=

[
0
0

]
. (31)

In the second step of the computation of E[φ̂] we have used the fact that for a weakly
stationary process the process and its derivative at a certain time are uncorrelated, and thus
E[ĒĒ ′] = E[Ē]E[Ē ′], [16]. Hence,

E[X] = −E[a]−1E[b] = −E[a]−1
[

0
0

]
=

[
0
0

]
. (32)

For the partial derivative of g(a, b) w.r.t. b we get [17]

g′b(a, b) =
∂

∂b
(
−a−1b

)
= −(a−1)T = −(aT)−1 = −a−1 (33)

and thus g′b(µa, µb) = −(E[a])−1. Since E[b] = 000, we get that g′a(µa, µb) = 000, [17].
Hence the first and the last term in (29) cancel, leaving

C[X] =g′b(µa, µb)C[b]g
′
b(µa, µb)

T = (−E[a]−1)C[b](−E[a]−1)T

=E[a]−1C[b](E[a]−1)T.
(34)

To find the expected value of a the expected value of ϕ̂ is needed. This is obtained from

E[ϕ̂] =(W̄ ′)2 + 2W̄ ′E[Ē ′] +E[(Ē ′)2]− W̄ ′′E[E]−E[E]E[Ē ′′] + W̄ ′′E[Ē] +E[ĒĒ ′′]

=(W̄ ′)2 +E[(Ē ′)2] +E[ĒĒ ′′] = (W̄ ′)2.
(35)

In the last equality we have used that E[ĒĒ ′′] = −E[(Ē ′)2], [16]. Thus, the two last terms
cancel out. The expected value of a is therefore

E[a] =2
[∫

tE[ϕ̂] dt
∫
tE[tϕ̂] dt∫

tE[tϕ̂] dt
∫
tE[t2ϕ̂] dt

]
= 2

[ ∫
t(W̄

′)2 dt
∫
t t(W̄

′)2 dt∫
t t(W̄

′)2 dt
∫
t t

2(W̄ ′)2 dt

]
. (36)

Now, since the expected value of b is zero, the covariance of b is

C[b] = (−2)2
[
C11 C12
C21 C22

]
, (37)
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with
C11 = E

[∫
t1
φ̂(t1) dt1 ·

∫
t2
φ̂(t2) dt2

]
C12 = E

[∫
t1
t1φ̂(t1) dt1 ·

∫
t2
φ̂(t2) dt2

]
C21 = E

[∫
t1
φ̂(t1) dt1 ·

∫
t2
t2φ̂(t2) dt2

]
C22 = E

[∫
t1
t1φ̂(t1) dt1 ·

∫
t2
t2φ̂(t2) dt2

]
.

(38)

Note that by changing the order of the terms inC12 it is clear thatC21 = C12. Furthermore,
we obtain

C11 =E

[∫
t1
φ̂(t1) dt1 ·

∫
t2
φ̂(t2) dt2

]
=E
[( ∫

t1
(E− Ē)(W̄ ′ + Ē ′) dt1

)
·
(∫

t2
(E− Ē)(W̄ ′ + Ē ′) dt2

)]
=E
[ ∫

t1

∫
t2
(E(t1)− Ē(t1))(W̄ ′(t1) + Ē ′(t1))

· (E(t2)− Ē(t2))(W̄ ′(t2) + Ē ′(t2)) dt1dt2
]
.

(39)

Denoting E[(E(t1)− Ē(t1))(E(t2)− Ē(t2))] = rE−Ē(t1 − t2) and assuming that
E[Ē ′(t1)Ē ′(t2)] is small gives

C11 =E

[∫
t1
φ̂(t1) dt1 ·

∫
t2
φ̂(t2) dt2

]
=

∫
t1

∫
t2
E[(E(t1)− Ē(t1))(E(t2)− Ē(t2))] · (W̄ ′(t1)W̄ ′(t2)

+ W̄ ′(t1)E[Ē ′(t2)] +E[Ē ′(t1)]W̄ ′(t2) +E[Ē ′(t1)Ē ′(t2)]) dt2dt1

≈
∫
t1

∫
t2
rE−Ē(t1 − t2)W̄ ′(t1)W̄ ′(t2) dt2dt1

=

∫
t1
W̄ ′(t1)(W̄ ′ ∗ rE−Ē)(t1) dt1.

(40)

The time t is a deterministic quantity and the other elements in C[b] can be computed

102



4. Experimental Validation

similarly. Finally we have

C11 =

∫
t
W̄ ′(t)(W̄ ′ ∗ rE−Ē)(t) dt

C12 = C21 =

∫
t
tW̄ ′(t)(W̄ ′ ∗ rE−Ē)(t) dt

C22 =

∫
t
tW̄ ′(t)((tW̄ ′) ∗ rE−Ē)(t) dt

(41)

and through (34) we get an expression for the variance and thus also the standard deviation
of X.

3.2 Expanding the Model

It is easy to change or expand the model (8) to contain more (or fewer) parameters. If we
keep h and α and add an extra amplitude parameter γ, we get the model

W(t) = γW̄(αt+ h). (42)

The error integral (10) would then be changed accordingly and the optimization would
instead be over over zzz =

[
z1 z2 z3

]
=
[
h α γ

]
.

The computations for achieving the estimations does in practice not get harder when we
add more parameters. However, the analysis from the previous section gets more complex.

4 Experimental Validation

For validation we perform experiments on both real data and synthetic data. The purpose
of using synthetic data is to demonstrate the validity of the model, but also to verify the
approximations used. In the latter case we have studied at what signal-to-noise ratio the
approximations are valid. Furthermore, to show that the parameter estimations contain
useful information, we have done experiments on real data. This is well-known for time-
difference, but less explored for the Doppler effects and amplitude changes.

4.1 Synthetic data - Validation of Method

The model was first tested on simulated data in order to study when the approximations
in the model derivation hold. The linearization using Gauss’ approximation formula, e.g.
(28) and (29), is one example of such approximations. Another is the usage of Gaussian
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Figure 3: The simulated signal that was used for the experimental validation. To achieve a more realistic signal noise of different
levels was added later on. The plot is taken from [10].

interpolation as an approximation of ideal interpolation followed by convolution with a
Gaussian, (7).

To do these studies we compared the theoretical standard deviations of the parameters
calculated according to Section 3.1 with empirically computed standard deviations. The
agreement of these standard deviations makes us conclude that our approximations are
valid.

First we simulated an original continuous signal W(x), see Figure 3. The second signal
was then created according to (8) s.t. W̄(x) = W(1/α · (x− h)). The signals were ideally
sampled after which Gaussian white discrete noise with standard deviation σn was added.
After smoothing with a Gaussian kernel with standard deviation a2 (see Section 2.2) the
signals can be described by V(t) and V̄(t) as before.

The two signals V and V̄ were simulated anew 1000 times to investigate the effect of a2
and σn. Each time the same original signals W and W̄ were used, but with different noise
realizations. Then, we computed the theoretical standard deviation of the parameter vector
zzz, σzzz =

[
σh σα

]
. This was done in accordance with the presented theory. We also com-

puted an empirical standard deviation σ̂zzz =
[
σ̂h σ̂α

]
from the 1000 different parameter

estimations.

When studying the effect of a2 the noise level was kept constant, with σn = 0.03. The
translation was set to h = 3.63 and the Doppler factor was α = 1.02. However, the
exact numbers are unessential. While varying the smoothing parameter a2 ∈ [0.3, 0.8] the
standard deviation was then computed according to the procedure above.

The results from these simulations can be seen in Figure 4. When a2 is below a2 ≈ 0.55 the
theoretical values σzzz and the empirical values σ̂zzz do not agree, while they do for a2 > 0.55.
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Figure 4: The plots show the standard deviation of the parameters in zzz for different values of the smoothing parameter a2. The
stars (∗) represent the theoretical values σzzz and the crosses (x) the empirical values σ̂zzz. The left plot shows the results
for the translation z1 = h and the right plot for the Doppler factor z2 = α. It is clear that the approximation is valid
approximately when a2 > 0.55. The plots are taken from [10].

Therefore we draw the conclusion that the approximation (7) of ideal interpolation should
only be used when a2 > 0.55.

Secondly, the effect of changing the noise level was investigated. The smoothing parameters
was fixed to a2 = 2 and the translation and the Doppler factor were kept on the same level
as before. Instead we varied the noise level s.t. σn ∈ [0, 1.6]. Then the standard deviations
of the parameters σzzz and σ̂zzz were computed in the same way as in the previous section.

The results from this run can be seen in Figure 5, with the results for the translation para-
meter h to the left and for the Doppler parameter α to the right. When σn is lower than
σn ≈ 0.8 the theoretical and empirical values for the translation parameter are similar. For
higher values of σn they do not agree. The same goes for the Doppler factor when the noise
level is below σn ≈ 1.1.

By this, we reason that noise with a standard deviation up to σn ≈ 0.8 can be handled. The
original signal W have an amplitude that varies between 1 and 3.5 and using the standard
deviation of that signal, σW, we can compute the signal-to-noise ratio that the system can
manage. We get the result

SNR =
σ2
W
σ2
n
≈ 4.7. (43)
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Figure 5: The standard deviation of the translation (to the left) and Doppler factor (to the right) for different levels of noise in
the signal. The stars (∗) mark the theoretical values σzzz and the crosses (x) the empirical σ̂zzz. For the translation the
values agree for signals with a noise level up to σn ≈ 0.8. For the Doppler factor the theoretical values follow the
empirical values when σn < 1.1. The plots are taken from [10].

Comparing Different Models

In this paper we have chosen to work with the models (8) and (42). However, we have so
far not presented any comparison between different models. To investigate this, we studied
two models, namely (8), which we call model B and a slightly simpler model which we call
model A,

W(x) = W̄(x+ h). (44)

To begin with, we simulated data according to model A. We call this data A. During the
simulation the standard deviation of the noise in the signals was set to σn = 0.02 and the
smoothing parameter was a2 = 2.0. Furthermore, we studied this data both using model
A, i.e. by minimizing

∫
t(V(t)− V̄(t+ h))2 dt and using model B, see (10). The results can

be seen in the first column (Data A) of Table 1.

Secondly, a similar test was made but this time we simulated data according to model B.
We call this data B. We then studied this data using both model A and B. The results are
shown in the second column (data B) of Table 1.

Studying the first column of Table 1 we see that model B estimates the parameters as good
as model A – which in this case is the most correct model – does. Though, for model B the
standard deviation σh is more than twice as big as for model A.

In the second column of the table we see that since model A cannot estimate the Doppler
effect, the translation parameter is erroneously estimated. The standard deviation σh is
however still lower for model A. To minimize the error function model A estimates the
translation such that the signal is fitted in the middle, see Figure 6. This means that even
though the standard deviation is low, the bias is high.

If we know that our collected data has only been affected by a translation it is clearly better
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Table 1: Comparison between model A from (44) and model B from (8). Data A consists of signals with only translational
differences while the second signal in data B is affected by both translation and a Doppler effect. The standard deviations
for model B in the table regards the theoretical values that were derived in Section 3.1, and a similar analysis has been
performed for model A.

Data A Data B

True values
Translation, hT 3.63 3.63
Doppler factor, αT 1.00 1.02

Model A Est. h, ĥ(A) 3.63 13.4
Std. of h, σ(A)

h 1.01 · 10−2 1.02 · 10−2

Model B

Est. h, ĥ(B) 3.63 3.66
Std. of h, σ(B)

h 2.30 · 10−2 2.30 · 10−2

Est. α, α̂(B) 1.00 1.02
Std. of α, σ(B)

α 5.32 · 10−5 5.33 · 10−5

to use model A. However, the loss for using a more simple model is larger on complex
data than the loss for using a larger model for simple data. Thus, based on the results from
Table 1 we conclude that it is better to use a larger model for the real data in the following
section.

4.2 Real data - Validation of Method

The experiments on real data were performed in an anaechoic chamber and the recording
frequency was f = 96 kHz. We used 8 T-Bone MM-1 microphones and these were con-
nected to an audio interface (M-Audio Fast Track Ultra 8R) and a computer. Furthermore,
the microphones were placed so that they spanned 3D, approximately 0.3-1.5 meters away
from each other. As a sound source we used a mobile phone which was connected to a small
loudspeaker. The mobile phone was moved around in the room while playing a song.

We used the technique described in [22] and refined in [21] to achieve ground truth con-
sisting of a 3D trajectory for the sound source path s(t) and the 3D positions of the mi-
crophones r1, . . . , r8. The method uses RANSAC algorithms which are based on minimal
solvers [14] to find initial estimates of the sound trajectory and microphone positions.
Then, these are refined using non-linear optimization of a robust error norm, including a
smooth motion prior, to reach the final estimates.

However, to make ground truth independent from the data that we used for testing we
chose to only take data from microphone 3-8 into account during the first two thirds of
the sound signal. Thus, by that we estimated s(t) for certain t and r3, . . . , r8. For the final
third of the signal we added the information from microphone 1 and 2 as well, such that
our solution would not drift compared to ground truth. By that we estimated the rest of
s(t), r1 and r2.
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Figure 6: The results after using model A on data B, where the second signal is affected both by a translation and Doppler effect.
Since the model does not estimate any Doppler factor, the estimated translation will be biased. The two signals agree
well in the middle, while there is a gap between them at the beginning and the end. This gap cannot be captured by
a translation.

We only used data from microphone 1 and 2 for the validation of the method presented
in this paper. The sound was played for around 29 sec. and the loudspeaker was constantly
moving during this time. Furthermore, both the direction and the speed of the sound
source changed.

Since our method assume a constant parameter zzz in a window we divided the recording into
2834 patches of 1000 samples each (i.e. about 0.01 sec.). Within these patches the para-
meters were approximately constant. Each of the patches could then be investigated and
compared to ground truth separately. From ground truth we had a constant loudspeaker
position s(i), its derivative ∂s(i)

∂t (i) and the receiver positions r1 and r2 for each signal patch
i.

Estimating the Parameters

If we call signal patch i from the first microphone V (i)(t) and let V̄ (i)(t) be the patch from
the second microphone we can estimate the parameters using (8) to model the received
signals.

The method presented in this paper is developed to estimate small translations, s.t. h ∈
[−10, 10] samples. However, in the experiments the delays were larger than that. Therefore
we began by pre-estimating an integer delay h̃ (i) using GCC-PHAT. The GCC-PHAT
method is described in [11]. After that we did a subsample refinement of the translation
and estimated the Doppler parameter using our method. This was done by minimization
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Figure 7: The received signal patches at a certain time – the first signal in dashed (- -) and the second as solid (—). The top plot
shows the signals as they were received. In the lower plot the same patches have been modified using the optimal
parameters h and α.

of the intergral ∫
t
(V (i)(t)− V̄ (i)(α(i)t+ h̃ (i) + h (i)))2 dt. (45)

Here, the optimization was over h (i) and α(i), while h̃ (i) should be seen as a constant.

The results after applying the optimized parameters to one of the signal patches can be seen
in Figure 7. The optimization was carried out for all different patches.

Comparison with Ground Truth

The distances d (i)
1 and d (i)

2 from the microphones to the loudspeaker were computed from
the ground truth receiver and sender positions (r1, r2 and s(i)) according to

d (i)
1 = |r1 − s(i)|, d (i)

2 = |r2 − s(i)|. (46)

The difference of these distances,

Δd (i) = d (i)
2 − d (i)

1 (47)

has a connection to our estimated translation h (i) and the time difference of arrival. How-
ever, Δd (i) is measured in meters, while we compute h (i) in samples. To be able to compare
these two, we multiplied h (i) with a scaling factor c/f. The recording frequency was f = 96
kHz and c = 340 m/s is the speed of sound. From this we could obtain an estimation of
Δd (i),

Δd̄ (i) =
c
f
· h (i). (48)
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Figure 8: The figure shows the difference between the distances from receiver 1 to the sender (d1) and receiver 2 to the sender
(d2) over time. The ground truth Δd (i) is plotted as a solid line (—) and the values Δd̄ (i) obtained from time-difference
estimates as dots (•). Each dot represents the value for one signal patch. It is hard to distinguish the line representing
ground truth since the estimations agree well with this. The plot is similar to Figure 7 in [10], but has been generated
using the updated and more independent method which is presented in this paper.

Thereafter we could compare our estimated values Δd̄ (i) to the ground truth values Δd (i).
The ground truth is plotted together with our estimations in Figure 8. The plot shows the
results over time, for all different patches. It is clear that the two agree well.

The Doppler parameter measures how the distance differences changes, i.e.

∂Δd
∂t

=
∂d2

∂t
− ∂d1

∂t
. (49)

Here, the distances over time are denoted d1 and d2 respectively. The derivative of d1(t) =
|r1 − s(t)| is

∂d1

∂t
=

r1 − s
|r1 − s|

· ∂s
∂t
, (50)

where · denotes the scalar product between the two time dependent vectors. The derivative
of d2 can be found correspondingly. If n(i)1 and n(i)2 are unit vectors in the direction from
s(i) to r1 and r2 respectively, i.e.

n(i)1 =
r1 − s(i)

|r1 − s(i)|
, n(i)2 =

r2 − s(i)

|r2 − s(i)|
, (51)

the derivatives can be expressed as

∂d (i)
1
∂t

= n(i)1 · ∂s
(i)

∂t
,

∂d (i)
2
∂t

= n(i)2 · ∂s
(i)

∂t
. (52)
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Figure 9: The derivative of the distance differences Δd plotted over time. The dots (•) are our estimations and the solid line (—)
is computed from ground truth. We see that even though the estimations are noisy the pattern agree with ground
truth. The plot is similar to Figure 8 in [10], but has been generated using the updated and more independent method
which is presented in this paper.

Thus
∂Δd (i)

∂t
= n(i)2 · ∂s

(i)

∂t
− n(i)1 · ∂s

(i)

∂t
. (53)

These ground truth Doppler values can be interpreted as how much Δd changes each
second. However, our estimated Doppler factor α is a unit-less constant. We can express
the relation between the two values as

∂Δd
∂t

= (α− 1) · c, (54)

where c still denotes the speed of sound. In Figure 9 the ground truth is plotted as a solid line
together with our estimations marked with dots. The similarities are easily distinguishable
even if the estimations are noisy.

It is clear from the plots that the estimations contain relevant information. However, there
is quite some noise in the estimates in Figure 8 and 9. This can be reduced further by
computation of a moving average. We have computed a moving average over 20 patches
– approximately 0.2 sec. – for the distance difference derivative and plotted the result in
Figure 10. The plot can be compared to Figure 9, where no averaging has been done. We
see that the moving average substantially reduces the noise in the estimates.

Even in Figure 10, the estimates in the beginning are noisy. This is due to the character
of the song that was played, where the sound is not persistent until after 5-6 sec. In the
beginning there are just intermittent drumbeats and silence between these. Then the in-
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Figure 10: This plot shows essentially the same thing as Figure 9, i.e. ∂Δd/∂t, but with a 20-patches moving average over the
estimations. The averaging substantially reduces the noise. The plot is similar to Figure 10 in [10], but has been
generated using the updated and more independent method which is presented in this paper.

formation is not sufficient to make good estimates. Thus, it is more fair to the algorithm
to review the results from 5-6 sec. and forward.

Estimating the Standard Deviation of the Parameters

We have also computed the standard deviations of the parameters in accordance to Section
3.1. These are plotted over time in Figure 11. We can see that the estimations are more
uncertain in the beginning of the song, in consistence with when the signal is not persistent.
However, just by looking at the estimated Doppler factor this seems to be more uncertain
than the theoretical standard deviation suggests.

We also estimated the standard deviations empirically. This was done using the results in
Figure 8 and 9. The empirical standard deviation was computed for the difference between
our estimations and ground truth, for a certain time window, namely t ∈ [10, 15].

The different standard deviations are displayed in Table 2. For the theoretical values we have
computed the mean and median, both for all signal and for t ∈ [10, 15] for comparison
with the empirical values.

We can see that the theoretical and empirical values agree quite well for the translation.
The reason that the mean of the theoretical standard deviation is higher for all signal is due
to the parts of the signal that are more uncertain. However, in the chosen time window the
values agree well.
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Figure 11: The standard deviation for parameters that was estimated for the real data. The upper plot shows the standard
deviation of the distance difference in Figure 8 over time and the lower plot shows the standard deviation of the
derivative of the distance difference in Figure 9.

For the Doppler factor the theoretical standard deviation is lower compared to the empirical
estimates. This is interesting and there can be several reasons. To begin with, we made
some assumptions for the received signals when we derived the equations in Section 3.1,
which are probably not true for our data. E.g. in our experiments we estimated the noise
in the signals as the difference between the two signals after modification. In the bottom
plot of Figure 7 we see that there is still an amplitude difference between the two signals.
This means that our estimated noise will not be w.s.s., as was assumed in the derivations.
Furthermore, the noise will thus be overestimated. Actually, it turned out the the SNR was
below 4.7.

Except from this, our method is developed to work with one signal with constant para-
meters and does not take into account that the patches in our real data actually constitutes
one long signal. Also, we might have forgotten to take some important factor into account
in out derivations for the standard deviation of the Doppler factor. It might be that the
problem cannot be modeled as linear. Regardless, an interesting point for future focus is
to investigate this.

4.3 Expanding the Model for Real Data

As mentioned in Section 3.2 it is in practice not much harder to estimate three model
parameters. Therefore, to get a more precise solution (see Section 4.1 and the end of the
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Table 2: The mean and the median for the standard deviation of the estimated distance difference (Figure 8) and the Doppler
factor (Figure 9) for the two received signals.

Translation, d2 − d1 Doppler factor, ∂Δd/∂t

Theoretical, all signal
Mean of std 1.03 · 10−2 5.25 · 10−3

Median of std 4.71 · 10−3 2.39 · 10−3

Theoretical, ttt ∈ [111000, 111555] Mean of std 4.58 · 10−3 2.29 · 10−3

Median of std 4.12 · 10−3 2.08 · 10−3

Empirical, ttt ∈ [111000, 111555] 3.88 · 10−3 4.43 · 10−1

previous section), we have also made experiments on the same data using (42) as model for
the signals. The computations are made in the same manner as in the previous section but
the error function (45) is replaced by∫

t
(V (i)(t)− γ(i)V̄ (i)(α(i)t+ h̃ (i) + h (i)))2 dt, (55)

and the optimization is performed over all three parameters, the subsample translation h (i),
the Doppler factor α(i) and the amplitude factor γ(i).

The results from using this model for the same signal patch as in Figure 7 can be seen in
Figure 12. After moving the signals according to the estimated parameters the norm of the
difference between the signals (bottom plot in the figures) has decreased with 20% when
we included the amplitude factor compared to when we did not.

The plots for the translation parameter and the Doppler factor look similar to the plots
in Figure 8 and 9. However, we can now make a comparison to ground truth for the
amplitude factor γ as well.

The amplitude difference of the two received signals can be compared to d (i)
1 and d (i)

2 .
The amplitude estimate γ(i) is related to the quotient of the distances, d (i)

2 /d (i)
1 . Since the

sound spreads as on the surface of a sphere, the distance quotient is proportional to the
square root of the amplitude γ(i),

d (i)
2

d (i)
1

= C ·
√
γ(i). (56)

The unknown constant C depends on the gains of the two recording channels. For the
experiment, the estimated proportionality constant was C = 1.3.

The distance quotient is plotted over time in Figure 13 – our estimations as dots and ground
truth as a solid line. Again we see that they clearly follow the same pattern.
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Figure 12: The plot shows the same signal patches as in Figure 7. The difference is that a larger model, namely (42), has been
used here and thus an amplitude has been estimated as well. The bottom image shows the same signals after
modifications using the optimal parameters.

5 Conclusions

In this paper we have studied how to estimate three parameters – time-differences, amp-
litude changes and minute Doppler effects – from two audio signals. The study also con-
tains a stochastic analysis for these estimated parameters and a comparison between differ-
ent signal models. The results are important both for simultaneous determination of sender
and receiver positions, but also for localization, beam-forming and diarization. In the pa-
per we have built on previous results on stochastic analysis of interpolation and smoothing
in order to give explicit formulas for the covariance matrix of the estimated parameters. In
the paper it is shown that the approximations that are introduced in the theory are valid as
long as the smoothing is at least 0.55 sample points and as long as the signal-to-noise ratio
is greater than 4.7. Furthermore, we show using experiments on both simulated and real
data that these estimates provide useful information for subsequent analysis.
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Abstract: In this paper we study the problem of estimating receiver and sender posi-
tions from time-difference-of-arrival measurements, assuming an unknown constant
time-difference-of-arrival offset. This problem is relevant for example for repetitive
sound events. In this paper it is shown that there are three minimal cases to the prob-
lem. One of these (the five receiver, five sender problem) is of particular importance.
A fast solver (with run-time under 4 µs) is given. We show how this solver can be used
in robust estimation algorithms, based on RANSAC, for obtaining an initial estimate
followed by local optimization using a robust error norm. The system is verified on
both real and synthetic data.

Keywords: time-difference-of-arrival, constant offset, RANSAC, minimal problem

1 Introduction

The problem of estimating receiver-sender node positions from measured arrival times of
radio or sound signals is a key issue in different applications such as microphone array
calibration, radio antenna array calibration, mapping and positioning. This field is well
researched but in this paper we will focus on the anchor-free sensor network calibration
both in terms of time-of-arrival measurements (TOA) and time-difference-of-arrival meas-
urements (TDOA). For time-of-arrival the planar case of three receivers and three senders
(3R/3S) was solved in [1]. For the full 3D case the over-determined problem (10R/4S) was
studied in [2], where a solver for this non-minimal case was provided. There are actually

This work was partially supported by the following funding bodies: strategic research projects ELLIIT and
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gence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Founda-
tion, Emmy Noether research (grant no. GO2029/2-1) of the Deutsche Forschungsgemeinschaft to HRG.
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three minimal cases for the 3D case, namely (4R/6S), (5R/5S) and (6R/5S). A practical
solver was presented in [3]. There are in general 38, 42 and 38 solutions respectively for
the three different set ups. Faster solvers for these minimal cases were provided in [4].

In this paper we study the constant offset TDOA self-calibration problem. It is a problem
that naturally arises e.g. when signals are emitted with a known period. As an estimation
problem it lies between TOA and full TDOA. In the paper we study the minimal (5R/5S)
problem and provide a fast (few µs) solver. Robust parameter estimation often use the
hypothesize and test paradigm, e.g. using random sampling consensus, [5] or one of its
many variants [6–8]. In these frameworks minimal solvers are important building blocks
for generating model hypotheses, and we show in the paper how a minimal solver can be
used for robust parameter estimation of sender positions, receiver positions and unknown
offset. The system is capable of handling missing data, outliers and noise. The algorithms
are tested on synthetic data as well as real data, in an office environment and in a cave.
The methods are straightforward to generalize for degenerate configurations which arise if
senders or receivers are restricted to a plane or to a line.

2 Time-difference-of-arrival self calibration

The problem we are considering involves m receiver positions ri ∈ R3, i = 1, . . . ,m, and n
sender positions sj ∈ R3, j = 1, . . . , n. This could for example represent the microphone
positions and locations of sound emissions, respectively. Assume that the arrival time of a
sound j to receiver i is tij and that the time that sound j is emitted is Tj. Multiplying the
travel time tij − Tj with the speed v of the signal we obtain the distance between senders
and receiver,

v(tij − Tj) = ∥ri − sj∥2, (1)

where ∥.∥2 is the l 2-norm. The speed v is throughout the paper assumed to be known and
constant.

In many settings the times of emissions Tj are unknown, but regular, e.g.

Tj = k1j+ k0, (2)

where the interval k1 is known. Inserting (2) into (1) we obtain

v(tij − k1j− k0) = ∥ri − sj∥2. (3)

Assuming an erroneous (but regular) emission time T̃j = k1j + k̃0 and introducing (the
measured) zij = v(tij − T̃j) and (the unknown) o = v(k0 − k̃0) yields the following
expression

zij = ∥ri − sj∥2 + o. (4)
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3. Local optimization and the low rank relaxation

Note that this is a simplified variant of the general time-difference-of-arrival problem (see
e.g. [9]), which allows for a different offset o for every j,

zij = ∥ri − sj∥2 + oj. (5)

Problem 1. (Constant Offset Time-Difference-of-Arrival Self-Calibration) Given measure-
ments z̃ij

z̃ij = ∥ri − sj∥2 + o+ ϵij, (6)
for a subset W ⊂ I of all the receiver-sender index pairs I = {(i, j)|i = 1, . . .m, j = 1, . . . , n}
determine receiver positions ri, i = 1, . . . ,m and sender positions sj, j = 1, . . . , n and offset
o. Here the errors ϵij are assumed to be either inliers, in which case the errors are small (ϵij ∈
N(0, σ)) or outliers, in which case the measurements are way off.

Here we will use the set Win for the indices (i, j) corresponding to the inlier measurements
and Wout for the indices corresponding to the outlier set.

3 Local optimization and the low rank relaxation

If an initial estimate of the parameters θ1 = {R, S, o} is given and if the set of inliers
is known, then refinement of the estimate can be found by optimization methods, e.g.
Levenberg-Marquardt (LM) [10, 11],

min
θ1

f (θ1) =
∑

(i,j)∈Win

(zij − (∥ri − sj∥2 + o))2. (7)

There is an interesting relaxation to the problem, that exploits the fact that the matrix with
elements (zij−o)2 is rank 5, [2]. Further simplifications use the double compaction method
[9]. The double compaction matrix M is defined as the matrix with elements

Mij = (zij − o)2 − ai − bj, (8)

and it can be shown to have rank 3, i.e. M = UTV, where U is of size 3 × m and V is of
size 3× n. The relaxed problem involves a set of parameters θ2 = {U,V, b, a, o}. Here the
constraints can be written as

zij =
√

uTi vj + ai + bj + o, (9)

where ui denotes column i of U and vj denotes column j of V. Refinement of parameters
can be done by performing local optimization on

min
θ2

f (θ2) =
∑

(i,j)∈Win

(
zij − (

√
uTi vj + ai + bj + o)

)2

. (10)
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4 Minimal problems and solvers

By counting equations and unknowns, one finds that there are three minimal problems.
The first two are the symmetric case when m = 4, n = 7 or m = 7, n = 4. This case
is not addressed in this paper, but we believe it to be difficult to solve. The other case is
m = n = 5. Here, we first present a solver for the constant offset and then discuss how to
solve for sender and receiver positions.

Given a 5 × 5 matrix, Z, with time-difference-of-arrival measurements zij, the rank 3 con-
straint on the double compaction matrix in (8) can be written as

f (o) = det(CT(Z− o)◦2C) = 0, (11)

where

C =


−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (12)

and ◦2 denotes element-wise squaring (Hadamard power). Although the elements of (Z−
o)◦2 are of degree 2 in o, the quadratic terms cancel out after multiplication with CT and
C. Thus the elements of CT(Z − o)◦2C are linear in o. Since the determinant is linear in
each column, the determinant f (o) is a polynomial of degree four in the offset o. This can
be summarized as

Theorem 1. Given time-difference-of-arrival measurements from five receivers to five senders,
there are four possible offsets o, given as the roots to the fourth degree polynomial f (o), counting
complex roots and multiplicity of roots.

For each solution o it is possible to generate a solution θ2 to the relaxed problem, according
to

b=
(
(z11−o)2 (z12 − o)2 (z13 − o)2 (z14 − o)2 (z15 − o)2),

a =


0

(z21 − o)2 − (z11 − o)2

(z31 − o)2 − (z11 − o)2

(z41 − o)2 − (z11 − o)2

(z51 − o)2 − (z11 − o)2

 , (13)

U =
(
0 u2 u3 u4 u5

)
, (14)
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Table 1: Execution times for 5 × 5 minimal solvers steps. Notice that the steps of calculating o and the relaxed solution is
significantly faster than upgrading to the full solution

Implementation Matlab C++

Calculation of o 38 µs 3.7 µs
Calculation of θ2 = {U,V, a, b, o} 100 µs N/A

Calculation of θ1 = {R, S, o} 600ms 22ms

V =
(
0 v2 v3 v4 v5

)
, (15)

where
(
u2 u3 u4 u5

)T (v2 v3 v4 v5
)

is any rank 3 factorization of the matrix
CT(Z− o)◦2C.

From a solution θ2 to the relaxed problem it is possible to upgrade to a solution θ1 to the
original problem. This involves solving a system of polynomial equations. The procedure
was first described in [3], where an algorithm for solving this was presented. Recently, a
faster algorithm was presented in [4].

An efficient implementation for calculating the four solutions of the offset o given the
measurements z takes 4 µs for a C++-implementation. Generating the solution θ2 to the
relaxed problem adds a few µs. However, calculating a solution θ1 to the original problem
takes another 22 ms. Thus, it is advantageous to estimate the parameters of the relaxed
problem and postpone the upgrade from θ2 to θ1 as a final step, see Table 1.

5 Using RANSAC for five rows

We propose the use of the fast minimal solver in an hypothesize and test framework to
obtain (i) a initial estimate on the offset o and (ii) an initial inlier set. The steps are described
in Algorithm 1

6 Robust estimation of parameters

We use these minimal solvers with RANSAC as described in the previous section to find one
or several initial estimates of the parameters θ2 for a subset of five receivers and k senders.
The solution is extended to additional rows and/or columns using robust techniques as
described in [12]. During this process it is useful to keep the errors down by occasionally
refining the solutions using local optimization. This has shown to reduce failures, see e.g.
[13, 14]. In the proposed estimation algorithm we postpone the upgrade from θ2 to θ1
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Algorithm 1: Offset RANSAC
1: Randomly select 5 rows and columns. Find the four solutions on o given the

time-difference-of-arrival measurements.
2: For each solution o, calculate the relaxed solution θ2 = {U,V, a, b, o}.
3: For selected rows and for each remaining column, check for inliers according to the

residuals in (10).

until we have found a good solution involving a large portion of the receiver and sender
positions.

7 Experimental Validation

7.1 Minimal Solver

To test the numerical accuracy and robustness of our minimal solver we conducted an ex-
periment using simulated data without noise. We generated a large number of instance
problems (10,000) with known offsets. We then ran our solvers and compared the re-
turned solutions with the ground truth solution. For each instance problem we recorded
the distance to the closest solution. In Figure 1 the resulting histogram of the logarithm of
the absolute errors are shown. As can be seen, both implementations get close to machine
precision.

7.2 Experimental Setup for Real Data

We have tested our system on (i) experiments made in an office environment and (ii) ex-
periments made at the Orlova Chuka cave, Bulgaria.

For the office experiments, 12 microphones (8x t.bone MM-1, 4x Shure SV100) were
positioned around a room (∼ 3 × 5 m 2) and measured using a laser to obtain ground
truth positions of the microphones with an error of ±2 mm. The space was cleared of most
the furniture to create an open space to conduct the experiment in. The sound recordings
were captured using a Roland UA-1610 Sound Capture audio interface and automatically
amplified. The recordings were made using the open source software Audacity 2.3.0 with a
sampling frequency of 96 kHz on a laptop. A synthetically generated chirp was then played
using a simple loudspeaker every half second for 30 s while moving the speaker around in
the room.

For the cave experiments, 12 microphones (4x Sanken CO-100K, 8x Knowles SPU0410)
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Figure 1: Left shows the histogram of the logarithm of the absolute errors, for the Matlab implementation of our minimal solver.
To the right the corresponding histogram for the C++ implementation.

were positioned in a section of the cave, four microphones were placed on an inverted T ar-
ray near one wall, while the other eight microphones were placed on the adjacent wall. The
sound recordings were captured using pre-amplifiers (Quadmic, RME) and two synchron-
ised Fireface 800 (RME) audio interfaces running at a sampling frequency of 192 kHz.
Recording and playback were controlled via a custom written script based on the sound
device library [15] in Python 2.7.12 [16]. Ultrasonic chirps (8 ms, 16 − 96 kHz upward
hyperbolic sweep) were played every second via one of the audio interfaces, amplified (Ba-
setech AP-2100) and presented through a Peerless XT25SC90-04 loudspeaker. The speaker
was attached to a 3-m-long pole and slowly waved in the approximately 5 × 9 × 3 m 3 re-
cording volume. Playbacks were done past 6:00 am to prevent disturbing the resident bat
population.

7.3 Experimental Evaluation for Real Data

Once the office recordings were taken, an algorithm was used to find the chirps in the
captured sound recordings and the algorithm then outputs the zij matrix. This can then
be used in our RANSAC scheme, Algorithm 1. For this experiment we used the (5R/5S)
minimal solver. A fixed number of iterations was used; 100 iterations for the initial selection
of 5 receivers and senders, then the extension to more columns and rows was allowed until
there was no better solution. The tolerance was set to T = 0.01 for the initial selection and
extension of rows and column.

Once the initial values have been estimated, it underwent l 2 optimization on the inlier
set. The results of the estimated microphone positions after the optimization are shown in
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Figure 2: For the office experiment the figure shows detected inliers Win (top), inlier residual histogram (bottom left), and
estimated and ground truth microphone positions (bottom right).

Figure 2.

This produced an Euclidean distance error between each of the microphones calculated po-
sition and its ground truth position as (0.2016, 0.0587, 0.1444, 0.1153, 0.2017, 0.1326,
0.1407, 0.1198, 0.2041, 0.2010, 0.1908, 0.2110) m.

For graphical purposes, a Procrustes fitting was used on the microphone positions to spread
the total error over all 12 microphones. In the Procrustes fitting only rotation and transla-
tion were allowed.

For the cave experiment a similar scheme was devised and the results are shown in Figure 3.

8 Conclusions

In this paper, a novel method has been constructed to efficiently solve a TDOA problem
with a constant offset. This has been verified using simulated data to test the solver and real
experimental data to test our algorithms in realistic scenarios.

Looking at Figure 1 and Table 1, it can be seen that the calculation of the offsets and the
calculation of the relaxed form θ2 are very fast solvers without loss in numerical accuracy.
The advantage of this is that when using a RANSAC approach, the iterations are performed
quickly, giving a good initial estimate in which to optimize over, which is important in
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Figure 3: For the cave experiment the figure shows detected inliersWin (top), inlier residual histogram (bottom left) and estimated
microphone and sound source positions, red dots and line respectively (bottom right).

highly non-linear systems such as this.

Looking at the results from the office experiment, Figure 2, we can see that the calculated
microphone positions are accurate and the residuals are small, mostly in the range±0.04m.
Further to this our inlier set appears to be accurate. The first and last few columns (corres-
ponding to sound emissions) are not used in our initialisation. This is correct because the
recording started before the chirps were sounded and ended after, so the chirp detection
algorithm falsely determined that they were also chirps but our method decided that the
data in those regions do not fit the model. A comparison of the calculated microphone
positions were made to a solution from a Full TDOA system, [9], which produced similar
results and very similar residuals. This provided a sanity check that the chirp detection was
working correctly and that from this dataset a better solution could not be found.

For the cave experiment, similar conclusions can be made, since the residuals are very low,
we can conclude that we have an accurate model. This gives a real life example of how
algorithms such as the one proposed can be used.

For future work, the study of the number of inliers could be of use. At the moment our
algorithm may not extend to more rows and columns if the initial solution is poor, perturb-
ing our final solution. Perhaps a method which could adapt the initial selection in order to
give a required amount of inliers could be more advantageous.
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Upgrade Methods for Stratified Sensor Network
Self-calibration

Martin Larsson¹,², Gabrielle Flood¹, Magnus Oskarsson¹ and Kalle Åström¹
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²Combain Mobile AB

Abstract: Estimating receiver and sender positions is often solved using a stratified,
two-tiered approach. In the first step the problem is converted to a low-rank matrix
estimation problem. The second step can be seen as an affine upgrade. This affine
upgrade is the focus of this paper. In the paper new efficient algorithms for solving
for the upgrade parameters using minimal data are presented. It is also shown how to
combine such solvers as initial estimates, either directly or after a hypothesis and test
step, in optimization of likelihood. The system is verified on both real and synthetic
data.

Keywords: time-of-arrival, time-difference-of-arrival, RANSAC, minimal Problems,
calibration

1 Introduction

The problem of estimating receiver-sender node positions from radio or sound signals is a
key issue in different applications such as microphone array calibration, radio antenna array
calibration, mapping and positioning [1]. If all senders and receivers are synchronized, it
is possible to obtain absolute distance measurements between senders and receivers. These
measurements can be used for self-calibration and such problems (Time-of-Arrival prob-
lems, TOA) have been studied in, e.g., [2–17]. Some variants of this TOA problem are
(i) TDOA - if the receivers are synchronized, whereas the senders are unsynchronized [18–
20]; (ii) (COTDOA) - constant offset time-difference-of-arrival [21]; and (iii) UTDOA -
if neither senders nor receivers are calibrated [22].

A popular strategy to analyze and solve these tasks is to follow a two-tiered stratified ap-
proach [18, 21, 23]. The first part of this approach is based on solving a relaxed version

This work was partially supported by the following funding bodies: strategic research projects ELLIIT and
eSSENCE, Swedish Foundation for Strategic Research project - Semantic Mapping and Visual Navigation for
Smart Robots - (grant no. RIT15-0038), Wallenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation
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of the problem. For this part it is possible to estimate the unknown offsets in the TDOA,
COTDOA and UTDOA cases. The first part also involves estimating a low rank decom-
position of a matrix derived from the measurements and offsets [24, 25]. The rank here
depends on the minimum of the dimensions of the affine spans of the receivers and of the
senders. Thus, for the general 3D case the rank is three, whereas the rank is two if, e.g., the
receivers are coplanar and one if, e.g., the senders are colinear.

The second part of the two-tiered approach can be seen as an affine upgrade and it involves
estimating a few parameters. This part is common for the cases of TOA, TDOA, COTDOA
and UTDOA, since the offsets have already been estimated in the first part. Here, it is also
possible to handle degenerate cases such as when the dimensions of the affine spans of the
receivers and senders are different [26, 27]. The stratified approach is an efficient way of
separating the full calibration problem into several well-defined sub-problems.

In this paper we study the upgrade problem, i.e., the second part of the two-tiered approach,
and provide solvers for the most interesting minimal cases.¹ We also demonstrate how such
solvers can be used in combination with nonlinear least squares optimization, [28, 29], to
produce efficient algorithms for these upgrades. This can be used for all above mentioned
stratified sensor network self-calibration problems.

2 A Stratified approach to self calibration

The problem we address involves m receiver positions rrri ∈ R3, i = 1, . . . ,m, n sender
positions sssj ∈ R3, j = 1, . . . , n, and possibly unknown offsets. This could for example
represent the microphone positions and locations of sound emissions, respectively. The
arrival time of a sound j to receiver i is denoted tij and the time that sound j is emitted is
τj. Multiplying the travel time tij− τj with the speed v of the signal, we obtain the distance
between senders and receivers

v(tij − τj) = ∥rrri − sssj∥2, (1)

where ∥.∥2 denotes the ℓ 2-norm. The speed v is throughout the paper assumed to be known
and constant. Assume that we have measurements zij of v(tij − τj). Then we have

zij = ∥rrri − sssj∥2. (TOA)

¹The solvers were implemented in C++ and MATLAB and the code is available at https://github.
com/martinkjlarsson/upgrade-methods.
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Estimating rrri and sssj from zij is known as the node calibration problem. For the cases of
COTDOA, TDOA and UTDOA the measurement equations are similar:

zij = ∥rrri − sssj∥2 + o, (COTDOA)

zij = ∥rrri − sssj∥2 + oj, (TDOA)

zij = ∥rrri − sssj∥2 + qi + oj. (UTDOA)

The first part of the stratified approach involves estimating the offsets and will not be
covered in this paper. We can thus assume that these offsets are known and subtract them
from zij to get the actual distances dij. Additionally, since the distances are assumed to be
positive we can without loss of generality square them and for all the cases above we get the
problem

d 2
ij = ∥rrri − sssj∥2

2 = rrrTi rrri − 2rrrTi sssj + sssTj sssj. (2)

In addition to finding the offsets, the first step also includes finding a solution to the fol-
lowing relaxed problem

d 2
ij = −2uuuTi vvvj + aj + bi, (3)

where uuui and vvvj are columns of two sought matricesUUU ∈ R3×m andVVV ∈ R3×n, respectively,
and aaaT ∈ Rn and bbb ∈ Rm only depend on data. Due to noise there is typically not an
exact solution to (3). Furthermore, the matrix −2UUUTVVV forms a low-rank approximation
of the so called double compaction matrix MMM [18], where the rank is determined by the
smallest dimension of the affine spans of the receivers and senders. For our purposes the
rank will be three. The second part in the stratified approach is to take a solution to the
relaxed problem and upgrade it to find the receivers and senders. This second part is the
main focus of the paper.

3 Upgrade

Let RRR and SSS be the matrices whose columns are rrri and sssj, respectively. The problem of
upgrading a relaxed solution (UUU,VVV, aaa, bbb) to a solution in (RRR, SSS) was first introduced in
[11] and later improved upon in [17]. In this section we generalize the problem slightly
and provide conditions which must be satisfied in the relaxed solution for the upgrade
to work. We will assume that the receivers and senders are points in 3D but the scheme
generalizes to any dimension. We start by introducing the matrices

CCCr = III− wwwr111T, (4)

CCCs = III− wwws111T, (5)

where wwwr ∈ Rm and wwws ∈ Rn are vectors such that wwwT
r 111 = wwwT

s 111 = 1. Additionally,
let rrr0 = RRRwwwr and sss0 = SSSwwws be affine combinations of the receiver and sender positions,
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respectively. The double compaction matrix, MMM, can then be expressed in the distances, DDD,
as

MMM = CCCT
r DDD

◦2CCCs = DDD◦2 − 111aaa− bbb111T + c111111T (6)

where aaa = wwwT
r DDD

◦2, bbb = DDD◦2wwws and c = wwwT
r DDD

◦2wwws. Here DDD◦2 denotes the element-wise
square of DDD. By inserting (2) we get, after some simplifications,

MMM = −2(RRR− rrr0111T)T(SSS− sss0111T), (7)

aj = wwwT
r diag(RRR

TRRR)− 2rrrT0 sssj + sssTj sssj, (8a)

bi = rrrTi rrri − 2rrrTi sss0 + wwwT
s diag(SSS

TSSS), (8b)

c = wwwT
r diag(RRR

TRRR)− 2rrrT0 sss0 + wwwT
s diag(SSS

TSSS). (8c)

From (7) we see that, by decomposing MMM = −2UUUTVVV using, e.g., singular value decompos-
ition, we can find the receiver and sender positions up to some full rank transformation LLL
and reference points rrr0 and sss0, such that

RRR = LLL−TUUU+ rrr0111T and SSS = LLLVVV+ sss0111T. (9)

3.1 Conditioning the relaxed problem

Due to the larger gauge freedom in the relaxed problem than in the original problem some
constraints need to be added before it fits into the upgrading scheme. Firstly, we see from
(9) that

uuu0 ≜ UUUwwwr = LLLT(RRR− rrr0111T)wwwr = 000, (10)

vvv0 ≜ VVVwwws = LLL−1(SSS− sss0111T)wwws = 000. (11)

This results from our definition of MMM and is not true for a general UUU and VVV. However, we
can ensure that the conditions are met by translating UUU and VVV:

UUU → UUU− uuu0111T, VVV → VVV− vvv0111T (12)

and compensating aaa, bbb and c accordingly

aaa → aaa− 2uuuT0VVV, bbb → bbb− 2UUUTvvv000, c → c− 2uuuT0 vvv0. (13)

Secondly, from (6) we see that c = aaawwws = wwwT
r bbb which can be ensured by adding appropriate

constants to aaa, bbb and c, making sure (3) still holds.
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3.2 Solving for the upgrade parameters

We are now left with finding the unknowns LLL, rrr0 and sss0 using the equations in (8). Any
solution to RRR and SSS is only determined up to a rigid transform. To fix the translational part
of the transform we let rrr0 = 000. We then parameterize the remaining unknowns as sss0 = LLLqqq
and HHH = (LLLTLLL)−1 where qqq ∈ R3 and where HHH ∈ R3×3 is a symmetric matrix.

To simplify the equations we will henceforth assume that wwwr and wwws are zero vectors except
for one element which is set to 1, i.e., rrr0 = rrri for some 1 ≤ i ≤ m and sss0 = sssj for some
1 ≤ j ≤ n. The equations in (8) can now be written as

aj = (vvvj + qqq)THHH−1(vvvj + qqq), (14a)

bi = uuuTi HHHuuui − 2uuuTi qqq+ qqqTHHH−1qqq, (14b)

c = qqqTHHH−1qqq. (14c)

HHH is symmetric and can together with qqq be parameterized in nine unknowns. However,
the equations above are not independent due to the two linear constraints c = aaawwws = wwwrbbb.
Consequently, we need m+ n+ 1 ≥ 11 for the problem to be well-defined.

If we subtract c from the first two equations,

aj − c = vvvTj HHH
−1vvvj − 2vvvTj HHH

−1qqq, (15a)

bi − c = uuuTi HHHuuui − 2uuuTi qqq, (15b)

c = qqqTHHH−1qqq, (15c)

we get m− 1 linear constraints on the unknowns from (15b). With m ≥ 10 the problem
becomes linear and if m < 10, HHH and qqq can be parameterized in 10 −m unknowns αk for
k = 1, . . . , 10 − m:

HHH = HHH0 +
10−m∑
k=1

αkHHHk, qqq = qqq0 +
10−m∑
k=1

αkqqqk. (16)

If we multiply the nonlinear equations (15a) and (15c) with det(HHH) they become poly-
nomial in αk and can be solved, e.g, using action matrix methods [9]. We might have
introduced additional solutions for the case where det(HHH) = 0. However, these can be
removed using saturation as described in [17]. Once HHH is solved for, LLL can be found using
Cholesky decomposition and finally the receiver and sender positions can be attained using
(9).
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Table 1: The number of solutions and template sizes for the solvers, with and without saturation, together with their execution
time.

# Solutions Template size Exec.

Solver no sat. sat. no sat. sat. time

900 1 - - - 39 s
810 3 3 - - 130 s
801 4 4 - - 130 s
720 9 9 12 × 21 12 × 21 170 s
711 12 12 16 × 28 16 × 28 210 s
630 21 17 88 × 109 112 × 129 600 s
621 30 26 122 × 152 156 × 182 1.2ms
540 ∞ 21 - 310 × 331 5.3ms
531 ∞ 38 - 493 × 531 19ms
441 ∞ 42 - 817 × 859 72ms

4 Minimal Solvers

In [11] two problems are considered. The first involves six receivers and four senders and
results in five linear equations corresponding to (15b), three nonlinear equations corres-
ponding to (15a) and one nonlinear equation corresponding to (15c). Because of this, we
introduce a new notation and denote this problem with 531. Similarly, the second problem
in [11] involves five receivers and five senders which we would denote 441.

Problem 531 is minimal in the sense that there are 24 distance measurements and 24 degrees
of freedom in RRR and SSS. However, problems 531 and 441 are both minimal in the sense that
they have nine equations and nine unknowns in (15). There is indeed a total of 19 possible
minimal configurations of the equations, 10 of which are listed in Table 1. The first solver,
900, is linear and subsequent solvers get increasingly nonlinear. Note that, although we
used the same scheme as in [17], our templates for setting up the action matrices for solvers
531 and 441 are slightly smaller.

5 Validation

5.1 Numerical stability of solvers

To test the numerical stability of the solvers we generated 10 random receiver and 10 ran-
dom sender positions within a unit cube, RRR, SSS ∈ [0, 1]3×10, from which we could calculate
the distance matrix DDD. The relaxed version of the problem (UUU, VVV, aaa, bbb and c) could then
be found as described in Section 3. For every solver in Table 1 a minimal sample of the
relaxed problem was taken and solved. From the estimated receiver and sender positions
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Figure 1: Error histograms for all solvers in Table 1 when provided with noise free data. Note that the graphs for 900, 810 and
801 extend beyond the plot.

the RMS error in the estimated distances was calculated. Figure 1 shows histograms of the
RMS errors over multiple runs. As can be seen the 900, 810 and 801 solvers performed
best and the numerical stability generally worsens as more nonlinear equations are added.

5.2 Degenerate configurations

The solvers behave differently when it comes to certain degenerate configurations of RRR and
SSS. For example, during testing we observed that the rank of the linear system resulting
from (15b) never exceeds eight when the receivers are confined to certain two-dimensional
manifolds (e.g. ellipsoids, paraboloids, hyperboloids). Consequently, the linear 900 solver
performs poorly for such configurations. More generally, one could imagine a distance
matrix DDD for which there are several possible embeddings of RRR and SSS. If the number of
embeddings exceeds the number of solutions of a solver, that solver might not find the
correct embedding.

Figure 2 shows RMS distance errors for the solvers in Table 1 when the receivers and senders
are located on a unit sphere. It can be seen that only solvers that include equation (15c)
are stable.

5.3 Minimal solvers in a RANSAC system

In this section we show how our upgrade solvers can be used in a simple system. We
assume that we have a solution to the first part in the stratified approach, i.e., we have a
low rank approximation solution (UUU, VVV, aaa, bbb and c), and want to upgrade this solution to
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Figure 2: Error histograms for all solvers in Table 1 when provided with noise free data from points located on a sphere.

actual receiver and sender positions. From the given (UUU, VVV) (and a chosen minimal solver)
we sample minimal configurations and solve using the chosen upgrade solver. From the
solution we can estimate the distance errors. We then iterate a small number of times and
choose the best solution. The results of this can be seen in Figure 3 for three example solvers.
Here we have used synthetic data, and show the results for varying levels of added noise.
The graph also shows the results after nonlinear optimization over the upgrade parameters
LLL and qqq respectively after subsequent nonlinear optimization over the receiver and sender
positions. The rationale for optimizing over LLL and qqq first, is that this is in general faster and
more robust, since it only involves nine parameters. For larger problems, optimizing over
the full receiver and sender positions would involve hundreds or thousands of parameters.

5.4 Real data from UWB

We evaluate the solvers on real TOA datasets gathered with an ultra-wideband (UWB)
setup. Six senders were kept stationary in an area of 3 × 3 × 2 meters while a receiver
was moved through the setup. Ground truth positions were gathered using an optical
motion capture system. The noise in the UWB measurements corresponds roughly to
σ = 0.26. The RANSAC scheme discussed in the previous subsection was used to find
a good initialization with three selected solvers. Table 2 shows the RMS errors in sender
positions from the solver initialization, after nonlinear optimization over LLL and qqq, and after
nonlinear optimization over LLL and qqq followed by RRR and SSS. None of the solvers performed
best for all datasets and after optimization they all performed similarly.
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Table 2: RMS errors (meters) in sender positions for three real UWB datasets.

Init Opt. (LLL, qqq) Opt. (LLL, qqq),(RRR, SSS)

Data 900 801 441 900 801 441 900 801 441

1 0.75 1.85 1.01 0.96 0.95 0.96 0.33 0.32 0.33
2 0.62 0.73 0.48 0.38 0.38 0.38 0.28 0.28 0.28
3 0.41 0.40 0.57 0.49 0.49 0.49 0.21 0.21 0.21

6 Conclusions

In this paper, several novel solvers have been constructed to efficiently solve the upgrade
step in a two-tiered stratified approach to solving TOA, TDOA and COTDOA problems.
These have been verified using simulated data to test the solver and real experimental data
to test our algorithms in realistic scenarios.

For future work, it would be interesting to further study how best to combine low rank
estimation problems for TOA, TDOA and similar problems with affine upgrade methods.
This would make it possible to produce systems that could solve a wide variety of estimation
problems (TOA, TDOA, UTDOA) with a wide variety of assumptions on senders and
receivers, e.g., spanning 3D or being coplanar or colinear.
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Abstract: In this paper we study the problem of estimating receiver and sender
positions using time-difference-of-arrival measurements. For this, we use a stratified,
two-tiered approach. In the first step the problem is converted to a low-rank matrix
estimation problem. We present new, efficient solvers for the minimal problems of
this low-rank problem. These solvers are used in a hypothesis and test manner to
efficiently remove outliers and find an initial estimate which is used for the subsequent
step. Once a promising solution is obtained for a sufficiently large subset of the
receivers and senders, the solution can be extended to the remaining receivers and
senders. These steps are then combined with robust local optimization using the
initial inlier set and the initial estimate as a starting point. The proposed system is
verified on both real and synthetic data.

Keywords: TDOA, self-calibration, minimal problems, RANSAC

1 Introduction

Precise localization of sender/receiver node positions using radio or sound signals is a key
enabler in numerous applications such as microphone array calibration, speaker diariza-
tion, beam-forming, radio antenna array calibration, mapping and positioning [1]. There
are several variants of this problem, for example (i) TOA, (ii) TDOA, (iii) COTDOA
and (iv) UTDOA. The time-of-arrival (TOA) problem refers to the problem where meas-
urements of absolute distances between senders and receivers can be obtained [2–4]. One
example of this is when senders and receivers are jointly synchronized. The time-difference-
of-arrival problem (TDOA) is the problem when the receivers are synchronized, whereas

This work was partially supported by the strategic research projects ELLIIT and eSSENCE, the Swedish
Foundation for Strategic Research project, Semantic Mapping and Visual Navigation for Smart Robots (grant
no. RIT15-0038) and Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP)
funded by Knut and Alice Wallenberg Foundation. The authors gratefully acknowledge Lund University Hu-
manities Lab.
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the senders are unsynchronized, or vice versa [5, 6]. The constant offset time-difference-of-
arrival problem (COTDOA) is similar to the TDOA problem, but the unknown offset is
constant [7]. Finally the UTDOA refers to the problem where neither senders nor receivers
are synchronized [8].

In addition, the self-calibration problem becomes fundamentally different depending on
the respective dimension of the affine hull of the senders and of the receivers. The senders
and receivers can, for example, separately be confined to a line, a plane or span 3D space
[9, 10].

Considering each combination of calibration type (TOA, TDOA, COTDOA, UTDOA)
with each combination of sender/receiver dimensionality within a common framework is
a challenge. One strategy to understand and solve the self-calibration problem is to follow
a two-tiered stratified approach [6, 7]. The first part of this approach is based on solving a
relaxed version of the problem where, in the case of TDOA, COTDOA and UTDOA, any
offsets are solved for. The second part consists of upgrading a relaxed solution to a solution
to the original problem. This was recently studied in [11].

A different approach for performing robust TDOA self-calibration was proposed in [12],
where subsets of the TDOA measurements were selected to calculate candidate TOA meas-
urements. After poor candidates were discarded the median of the remaining ones was used
to perform TOA self-calibration. In [13] the redundancy of the full set of TDOA meas-
urements was exploited using low-rank approximation to perform denoising, fill in missing
data and remove outliers. However, no system for self-calibration was proposed.

In this paper we follow the stratified approach, focusing on the TDOA case in 3D. Our
contribution here is twofold. First, we improve on existing minimal solvers for finding the
TDOA offsets [6], making them notably faster and reducing their memory requirements.
Second, utilizing these improved solvers in efficient RANSAC [14] methods we produce a
system for TDOA self-calibration that is robust to noise, missing data and outliers¹. We
also verify the solvers and system using synthetic and real data.

2 Stratified Self-Calibration

The problem we address involves m receiver positions rrri ∈ R3, i = 1, . . . ,m and n sender
positions sssj ∈ R3, j = 1, . . . , n. These could for example represent the microphone posi-
tions and locations of sound emissions, respectively. The arrival time of a sound j to receiver
i is denoted tij and the time that sound j is emitted is denoted τj. Multiplying the travel
time tij − τj with the speed v of the signal, we obtain the distance between sender and

¹MATLAB and C++ source code can be found at https://github.com/martinkjlarsson/
tdoa-self-calibration.
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3. Minimal Solvers for the Offsets

receiver
dij = zij − oj = ∥rrri − sssj∥, (1)

where zij = vtij, oj = vτj and ∥.∥ denotes the ℓ 2-norm. Let ẑij be noisy measurements of
zij that suffer from small approximately Gaussian noise, outliers with substantially larger
errors and missing data. Estimating rrri, sssj and oj from ẑij is known as the TDOA node
calibration problem.

We will use the notation θ1 = {RRR, SSS, ooo} for the unknown parameters, where rrri and sssj are
columns of RRR and SSS, respectively, and ooo is the vector of offsets. We will also let ẐZZ ∈ Rm×n

denote the matrix with entries ẑij and let Win denote the index set where (i, j) ∈ Win

indicates that ẑij is not missing and is an inlier. Given the measurements ẐZZ and an initial
solution θ1 the refinement of the estimate can be found by local optimization methods,
e.g., Levenberg-Marquardt [15, 16], by minimizing

f (θ1) =
∑

(i,j)∈Win

L
(
ẑij − (∥ri − sj∥+ oj)

)
, (2)

where L(·) is a loss function, e.g., the quadratic loss or the robust Huber loss [17].

The stratified approach is based on a relaxation of the problem, that exploits the fact that
DDD◦2 has rank 5 [5], where DDD◦2 ∈ Rm×n is the matrix with entries d 2

ij = (zij− oj)2. Further
simplifications use the double compaction method [6]. The double compaction matrix
MMM ∈ Rm×n is defined as the matrix with elements Mij = (zij − oj)2 − ai − bj, where
aaa and bbb are, apart from a scalar offset, affine combinations of the columns and rows of
DDD◦2, respectively (see [11]). The matrix MMM can be shown to have rank 3, i.e., it can be
expressed as MMM = UUUTVVV, where UUU ∈ R3×m and VVV ∈ R3×n. The relaxed problem thus
involves a set of parameters θ2 = {UUU,VVV, bbb, aaa, ooo}. Here the constraints can be written as
zij =

√
uuuTi vvvj + ai + bj+oj, where uuui and vvvj denote columns i and j ofUUU andVVV, respectively.

Refinement of the parameters can be done by local minimization of

f (θ2) =
∑

(i,j)∈Win

L
(
ẑij −

(√
uuuTi vvvj + ai + bj + oj

))
. (3)

3 Minimal Solvers for the Offsets

The first step in the stratified approach is to estimate the unknown offsets ooo. In [6] a
technique for solving five minimal problems is presented (see Table 1). Throughout the
paper we will use (mr/ns) to denote the problem or solver that requires m receivers and n
senders. Two of the problems, (7r/4s) and (9r/5s), are linear, while the remaining three are
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Table 1: Execution times and elimination template sizes for our implementation of five minimal offset solvers.

Rank m n # solutions Exec. time Template size

2 7 4 1 37 s 14 × 15
2 5 6 5 810 s 37 × 42
3 9 5 1 36 s 29 × 30
3 7 6 5 1.4ms 52 × 57
3 6 8 14 7.1ms 320 × 334

nonlinear. In this section we propose improvements to the nonlinear ones, using automated
tools from [18], making them significantly faster than in [6].

The constraint on MMM to be of rank 3 is equivalent to all minors of order 4 being zero.
This results in a polynomial system in oj, which can be solved using action matrix methods
[19]. In the resulting solver all polynomial coefficients must be calculated from data, i.e.,
a large number of polynomials in zij must be evaluated. The worst solver in this regard
is (6r/8s), where there are 5025 coefficients of degrees between four and eight in zij. To
explicitly evaluate these one by one is time consuming and results in code that requires a
lot of memory to compile if implemented in, e.g., C++.

However, using Laplace expansion the minors can be written using combinations of lower
order minors and consequently, the polynomial system in ooo has many common subexpres-
sions. This in turn results in common subexpressions in the coefficients which we eliminate
to decrease the execution time and memory requirements of the solvers. Table 1 shows the
execution time of our solvers implemented in MATLAB. These are significantly faster than
the original solvers in [6], where times in the order of 500ms was reported.

4 Minimal Solvers in RANSAC

We propose the use of the fast minimal solvers in a hypothesize and test framework to
obtain (i) an initial estimate of the offsets ooo and (ii) an initial inlier set.

We start by randomly picking one of the minimal cases with m ′ receivers and n ′ senders.
We then randomly selectm ′ rows and n ′ columns of ẐZZ containing no missing data and solve
for the corresponding offsets ooo ′. For each real solution ooo ′ we can find the corresponding aaa ′,
bbb ′ and double compaction matrix MMM ′. From MMM ′ we can extract UUU ′ and VVV ′ using singular
value decomposition (SVD).

A partial solution can then be extended by utilizing more columns of ẐZZ. For each remaining
column j we pick 5 measurements randomly from the m ′ selected rows and solve for vvvj,
bj and oj. However, we require there to be at least 6 measurements available, so that there
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are extra measurements to use for testing the extension and to classify as inliers or outliers
according to the residuals in (3).

5 Systems

In this section we put the offset solvers into a robust system for solving TDOA. We use
a two-tiered stratified approach as in [6] where we start by constructing a solution θ2 =
{UUU,VVV, aaa, bbb, ooo} which is later upgraded to a solution θ1 = {RRR, SSS, ooo}. Some of the compon-
ents are described in detail below and the system as a whole is summarized in Algorithm 1.
For comparison we also implemented a naïve system relying on random initialization, see
Algorithm 2.

5.1 Initialization of θ2

We start by initializing a solution θ2 as described in Section 4. It is worthwhile finding a
reasonable initial solution supported by many inliers, as a good initialization will speed up
the remainder of the system.

5.2 Extending Solution in θ2

The initialization will most likely yield only a partial solution in the sense that not all uuui
and vvvj are estimated, and that not all available measurements in ẐZZ are used. The solution is
extended with additional rows and columns using robust techniques as described in [20].
During this process it is useful to keep the errors down by occasionally refining the solution
using local optimization. This has been shown to reduce failures (see e.g. [21, 22]).

5.3 Upgrade Solution in θ2 to Solution in θ1

A solution in θ2 is upgraded to a solution in θ1 using the minimal solvers presented in [11].
In RANSAC fashion a solver is randomly selected to find the upgrade parameters LLL ∈ R3×3

and qqq ∈ R3. Receiver and sender positions are then given by the affine transformations
RRR = LLL−TUUU and SSS = LLL(VVV + qqq111T), and inliers/outliers are classified according to the
residuals in (2).

153



Paper IV

5.4 Reestimate Rows and Columns in θ1

At this stage in the process, we can end up with receivers or senders that have not yet
been estimated or that have ended up in incorrect locations, e.g., gotten stuck at a local
minimum. To mitigate this, all receivers and senders are reestimated using trilateration
and multilateration, respectively. If a new node position reduces the residuals in (2) it is
kept, otherwise the old position is used.

Algorithm 1: Proposed system
1: Initialize solution θ2 (Section 4).
2: Local nonlinear optimization over θ2.
3: Extend rows and columns (Section 5.2).
4: Upgrade relaxed solution θ2 to solution θ1 (Section 5.3).
5: Reestimate receiver and sender positions (Section 5.4).
6: Local nonlinear optimization over θ1 using robust norm.

Algorithm 2: Random initialization system
1: Initialize solution θ1 randomly.
2: Local nonlinear optimization over θ1.

6 Experimental Validation

To test the numerical accuracy and robustness of our minimal solvers we generated 10,000
synthetic problem instances with known offsets. We then ran our solvers and compared
the solutions with the ground truth solution. In Figure 1 the resulting histograms of the
logarithm of the errors are shown. The linear solvers, (7r/4s) and (9r/5s), performed best
and overall the solvers show better numerical stability as the rank and number of solutions
decrease.

Note that while the linear solvers seem to be more numerically stable and faster (see Table 1),
the other solvers are still useful in scenarios where we do not have a sufficient number of
receivers. One could also imagine measurements that admit multiple possible solutions to
the offsets, and in those cases the linear solvers will only give one of them.

To investigate the robustness of our systems with respect to outliers and missing data we
generated 15 receivers RRR and 100 senders SSS with each coordinate drawn from N (0, 1), and
corresponding offset values ooo ∈ N (0, 1). These were used to acquire distance measure-
ments ẐZZ according to (1), with additive measurement noise ϵij ∈ N (0, 0.01). Additionally,
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Figure 1: Histograms of the logarithm of the errors for our minimal solvers.

a number of values were deleted from ẐZZ to simulate missing data, and some were changed
to uniformly distributed values zij ∈ U(−2, 6), to simulate gross outlier measurements.

We then solved for θ1 = {RRR, SSS, ooo} using (i) Algorithm 1 and the (9r/5s) solver, (ii) Al-
gorithm 1 and the (7r/6s) solver, (iii) Algorithm 1 and the (6r/8s) solver, and (iv) Al-
gorithm 2. This was done 100 times to get an estimate on how often the different systems
converge. A solution counted as successful if the Euclidean distance between the ground
truth receiver position and the corresponding estimated receiver position was at most 0.03
for any of the receivers.

The experiment above was conducted with a fixed outlier ratio of 1% while the ratio of
missing data was varied from 0–40%. The results from this are shown in the top plot in
Figure 2. We then kept the missing data ratio fixed at 1% while varying the ratio of outliers
between 0–20%. These results can be seen in the bottom plot of Figure 2. It is clear that
our systems, from Algorithm 1, outperforms Algorithm 2. The choice of minimal solver
only has a small impact on the result, but overall, the (9r/5s) solver is a better choice for the
type of data synthesized here considering it is significantly faster than the other two solvers
(see Table 1).

We also evaluated our system using real data. The setup consisted of 12 omni-directional
microphones (the T-bone MM-1) spanning a volume of 4.0×4.6×1.5 meters. A speaker
was moved through the setup while emitting sound. Ground truth positions for the micro-
phones and speaker positions where found using a Qualisys motion capture system. Seven
datasets were gathered in which a chirp sound was played with regular (dataset 1-5) or ir-
regular (dataset 6-7) intervals. The arrival times were found using cross-correlation between
the recordings and the original chirp. There was no missing data. The temperature in the
room was measured to be 20.1 ◦C which indicates a speed of sound of v = 343m/s. How-
ever, we choose to disregard this estimate and consider v, and thus the scale of the solution,
unknown. Because of this, the estimated microphones were registered to the ground truth
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Figure 2: Convergence ratio with respect to ratio of missing data (top) and ratio of outliers (bottom) for four different systems.

using a similarity transform. The scale component of the transform was then used to es-
timate the speed of sound. Table 2 shows the RMS errors in the estimated microphone
positions and the estimated speed of sound for each dataset. The errors are overall low
with a consistent estimate of v that is close to the estimate based of the room temperature.
While the true outlier rate is unknown our system classified 14–20% of the measurements
as outliers. The estimated node positions for the fourth dataset are shown in Figure 3. As
can be seen, the estimated speaker positions closely follow the ground truth.

7 Conclusions

In this paper we have made several improvements to three minimal solvers for estimating
offsets from time-difference-of-arrival data. The new solvers require less memory and some
are two orders of magnitude faster than the state-of-the-art solvers. In the paper we also
develop hypothesis and test algorithms that incorporate these new solvers and develop soft-
ware systems that combine these with robust nonlinear estimation. The resulting compon-
ents and systems have been tested on both synthetic and real data, where they demonstrate
high quality solutions even in the presence of missing data and outliers. Consolidating fur-
ther calibration types and dimensionality constraints in one coherent framework is future
work.
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7. Conclusions

Table 2: Results from seven real TDOA datasets including the RMSE in the estimated receiver positions.

Dataset m n RMSE Est. speed of sound

1 12 89 58mm 347m/s
2 12 106 50mm 347m/s
3 12 97 45mm 348m/s
4 12 105 52mm 347m/s
5 12 108 82mm 348m/s
6 12 131 64mm 354m/s
7 12 115 55mm 350m/s

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

GT r

GT s
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Est. s

Figure 3: Top view of ground truth and estimated microphone/receiver and speaker/sender positions for the fourth dataset. The
scale is in meters.
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Efficient Merging of Maps and Detection of Changes

Gabrielle Flood, David Gillsjö, Anders Heyden and Kalle Åström
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Abstract: With the advent of cheap sensors and computing capabilities as well as
better algorithms it is now possible to do structure from motion using crowd sourced
data. Individual estimates of a map can be obtained using structure from motion
(SfM) or simultaneous localization and mapping (SLAM) using e.g. images, sound
or radio. However the problem of map merging as used for collaborative SLAM needs
further attention. In this paper we study the basic principles behind map merging
and collaborative SLAM. We develop a method for merging maps – based on a small
memory footprint representation of individual maps – in a way that is computation-
ally efficient. We also demonstrate how the same framework can be used to detect
changes in the map. This makes it possible to remove inconsistent parts before mer-
ging the maps. The methods are tested on both simulated and real data, using both
sensor data from radio sensors and from cameras.

Keywords: map merging, change detection, collaborative SLAM, SfM

1 Introduction

Structure from motion [5], is the problem of estimating the parameters of a map and of
sensor motion using only sensor data. The map is typically a set of 2D or 3D points each
consisting of a position and a feature vector. Assuming that feature errors are zero-mean
Gaussian, the maximum likelihood estimate is that of minimising the sum of squares of the
residuals. Within the field of computer vision this process is denoted bundle adjustment,
where bundle refers to the bundle of light rays connecting each camera with each 3D point.
For an overview of the literature and theory, see [13].

These optimization techniques are applicable not only to vision, but also to other types
of sensors, such as audio, [9, 14] and radio [1]. With the advent of cheaper sensors and
computing capabilities as well as better algorithms, it is now possible to gather and use
much larger datasets. Instead of mapping a city every 5 years using special measurement
cars or aerial photography, it is in principle possible for every car to add to the map of
cities as they drive through them. Thus there is an additional need for research on map
merging, including the problem of determining what has changed in a map. In this paper
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SfM SfM SfM SfM SfM

Merge

Figure 1: Structure from motion (SfM) is used to estimate a 3D map of scene features using images (or other sensors). In this
paper we study the problem of detecting changes and merging maps, given multiple maps estimated by SfM from
datasets collected at different occasions.

we study the basic principles behind map merging and collaborative SLAM. A straight-
forward method to merge several individual maps is to take all measurements into account
simultaneously. However, non-linear optimization using all data can be prohibitively slow.
We will study how a small memory footprint representation of a map can be generated and
used to merge maps in a way that is computationally efficient, while still retaining most of
the information from each individual bundle adjustment. We also demonstrate how the
same framework can be used to detect changes in the map. This makes it possible to remove
changing parts before merging the stationary parts of the map. The idea is demonstrated
in Figure 1.

The idea of approximating the result from parts of the data has previously been used in
the rotation averaging literature, cf. [2]. These approximate methods can give satisfactory
results at a much increased speed. Another example of this idea is the approach of Global
Epipolar Adjustment [12], in which a simplified error metric is based on the linear epipolar
constraints for image pairs. Another approach is incremental light bundle adjustment,
iLBA, [6] in which an error metric based on a combination of epipolar constraints and a
variant of the trifocal constraint is used.

The main contributions of this paper are a novel method for computationally efficient
merging of individual maps obtained from bundle adjustment, utilizing a compact rep-
resentation of the Jacobian matrix, and a change detection method based on a statistical
analysis of the residuals.
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2 The Separate Bundles - for TOA and Images

Before different maps are merged, the individual map estimates have to be created. In this
section we present some of the notations used to understand how the raw data relates to
the quality of the map estimates.

For the case of time of arrival (TOA) measurements the feature map consists of a number
of receiver positions. Initially, TOA measures between m receivers at positions xi ∈ R3

and n sender positions yj ∈ R3 are given. For each sender-receiver pair this measure can
be translated into a distance estimate dij = |xi − yj|+ εij, where 1 ≤ i ≤ m and 1 ≤ j ≤ n
and where | · | denotes the Euclidean norm of a vector in R3. The measurements errors εij
are assumed to be independent, Gaussian with mean zero and standard deviation σ.

The final map estimate for a TOA or structure from motion system is usually obtained by
non-linear least squares minimization over inlier measurements; this process is referred to as
bundle adjustment in computer vision. Here, a few key components from the optimization
are presented.

For the TOA data, let r denote the measurements residuals,

r =
[
r11 . . . r1n r21 . . . r2n rm1 . . . rmn

]T
, rij = dij − |xi − yj| , (1)

and denote the parameters of interest, which are optimized, by z. This would typically be
the receiver and the sender positions,

z = (x1, x2, . . . xm, y1, . . . yn) . (2)

The computer vision case is analogous. Denoting the camera matrices Pi and the 3D points
Uj, each image point uij gives a residual rij. The residual vector r is found by stacking all
image feature residuals rij and the parameters are collected in a parameter vector

z = (P1, P2, . . . Pm, U1, . . . Un) . (3)

The maximum likelihood estimate of z is found by minimizing the sum of the squares of
the residuals, i.e.

z∗ = argminzr
Tr , (4)

which gives the optimal parameter update

Δz = −(JTJ)−1JTr . (5)

For more details on the optimization, see [13]. For the analysis, the estimate of the matrix
J (the Jacobian) is containing the derivatives of the residuals with respect to the parameters
is of interest, i.e. r with respect to z, further on denoted ∂r/∂z.
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The map points can only be estimated up to a choice of coordinate system. For simplicity
we will in the TOA case normalize the coordinate system so that the first receiver is placed in
the origin, the second along the x-axis, the third in the xy-plane and so forth. By removing
this gauge freedom with dimension ϕwe see that the effective number of degrees of freedom
in the problem is ddof = (m+n)ρ−ϕ, where ρ denotes the dimension. For TOA problems
in 3D we have ρ = 3 and ϕ = 6. The effective degrees of freedom for the computer vision
case becomes ddof = (6m+3n)−ϕ, with gauge freedom ϕ = 7 since we are free to choose
position, orientation and scale of the coordinate system.

3 Merging Separate Maps

Once the N separate maps are obtained they can be merged to get a single more accurate
map. We have investigated three different ways to do this.

3.1 The Full Bundle

One way to add the maps is do one large bundle where all the individual measurements
are used simultaneously. Merging all maps through a large bundle is a good way to get an
accurate map. However, the method is time consuming and if a new measurement is made
after the original merge, the whole map has to be re-bundled. In that sense, there is no way
to add new information to the existing, which makes this method unsuitable for online
applications.

3.2 The Kalman Filter

A traditional method designed to update parameters gradually is the Kalman filter [8]. The
algorithm for the Kalman filter looks as follows:

Priori estimate update:
x1 = A · x0 (6)

P1 = A · P0 · AT + Q (7)

Measurement update:

K = P1 ·HT · (H · P1 ·HT + R)−1 (8)
x2 = x1 + K · (u−H · x1) (9)
P2 = (I− K ·H) · P1 . (10)

Then, H · x2 is the new state prediction, and x2 and P2 are the new estimates replacing x0
and P0 for the next iteration. In our case x0 will be the receivers from the first measurement
occasion, x0 = q(1) (superscript denoting measurement occasion), while the observation
u will be the receiver values from the following N − 1 measurements s.t. uk−1 = q(k),
2 ≤ k ≤ N. Both the update matrix and the observation matrix are identity matrices,
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A = I, H = I and the covariance of the random excitation is set to Q = 0.1 · I. Finally, P0
and R are measurement uncertainties, P0 = C[Δq(1)] and Rk−1 = C[Δq(k)], 2 ≤ k ≤ N.
The covariance C[Δq] can be extracted from the covariance of Δz from Equation (5). This
is given by

C[Δz] = (JTJ)−1JT ·E[rTr] · J(JTJ)−1 = σ2(JTJ)−1 . (11)

The covariance of the map, C[Δq], can be retrieved by picking the rows and columns in
C[Δz] that correspond to q and the variance of r can be approximated by [7, p. 148]

σ2 ≈ 1
m · n− ddof

· rTr =
1

m · n− ddof
·
m·n∑
i=1

r 2
i . (12)

The Kalman filter is a computationally cheap method. However, it is not as accurate as the
full bundle. Also, the parameters need to be tuned for the specific problem and it is not
evident either how to detect and handle changes in the map.

3.3 The Linearized Method

The idea of this method is that the optimal residuals from the separate bundles can be
linearized – such that all that needs to be saved is a small memory footprint representation
– to avoid the large bundles. Having the optimal residuals r(k) and the optimal Jacobians
J (k) from each run k, the residuals can be linearized using a first order Taylor approximation.
A key idea here is to divide the unknown parameters in z into two parts q and s, where q
are the parameters that exist in several SLAM sessions. The parameters s can be thought
of as auxillary paramters, e.g. those that are relevant only for one specific bundle session.
In the time-of-arrival case, some of the 3D anchors might be constant over several SLAM
sessions whereas the measurement points and some of the anchors might be different. For
vision based structure from motion, some of the 3D points are the same (these go into q)
whereas the rest of the points and camera matrices go into s.

The Compressed Residual

First, the Jacobian is divided into two blocks

J =
[
Ja Jb

]
, (13)

where Ja contains the columns that correspond to the main parameters q and Jb contains
the columns corresponding to the auxiliary parameters s. The squared Jacobian is

JTJ =
[
JTa
JTb

]
·
[
Ja Jb

]
=

[
JTa Ja JTa Jb
JTb Ja JTb Jb

]
=

[
U W
WT V

]
. (14)
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Furthermore, if we insert this in the equation for the optimal update from (5) we get

Δz =

[
Δq
Δs

]
= −(JTJ)−1JTr ⇔

[
U W
WT V

] [
Δq
Δs

]
= −JTr . (15)

The product −JTr is zero in an optimal point and so the second row provides a connection
between q and s. This gives a linear constraint on how to adjust the auxiliary parameters s
when the main parameters q change. Thus the partial derivatives of s with respect to q is

WTΔq+ VΔs = 0 ⇔ Δs = −V−1WTΔq ⇒ ∂s

∂q
= −V−1WT . (16)

We can use this together with the definition J = ∂r/∂z to find how the residuals change
if we change the receiver map

Δr =
[
Ja Jb

] [Δq
Δs

]
=

(
Ja + Jb ·

∂s

∂q

)
Δq . (17)

Thus, Ja + Jb ∂s
∂q will be the Jacobian for the map, further on denoted Jq.

Now, denote the residuals as a function of Δq. A first order Taylor expansion gives

r(Δq) ≈ r|o + r′Δq|oΔq = r|o + Jq|oΔq . (18)

Here o denotes an optimal point and |o denotes evaluating an expression at the point o.
Then, the square of these residuals will be

rTr ≈ (r|o + Jq|oΔq)T(ro + Jq|oΔq) = r|Toro + 2r|To Jq|oΔq+ ΔqTJq|To Jq|oΔq . (19)

In a minimum point r|To Jq is zero. Furthermore, using the QR-decomposition of the Jac-
obian we get

ΔqTJTq JqΔq = ΔqT(QR)TQRΔq = ΔqTRTQTQRΔq = ΔqTRTRΔq . (20)

Introducing the notation a = (r|Tor|o)1/2, the squared residuals from (19) can be written
shorter as

rTr ≈ a2 + ΔqTRTRΔq , (21)

and this is our compressed expression for the squared residuals.

TheMerge

Furthermore, this compressed expression can be used to add two separate maps. Assume
that we have the residuals for the two maps,(

r(i)
)T(

r(i)
)
=
(
a(i)
)2

+
(
Δq(i))T(R (i))TR (i)Δq(i) , i = 1, 2 . (22)
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Adding the two equations and writing Δq(i) = q− q(i) for an arbitrary q gives
2∑

i=1

(
r(i)
)T(r(i)) = 2∑

i=1

(
a(i)
)2

+
(
Δq(i))T(R (i))TR (i)Δq(i) =

(
a(1)
)2

+
(
a(2)
)2

+

[
R (1)(q− q(1))
R (2)(q− q(2))]T [R (1)(q− q(1))

R (2)(q− q(2))] = (a(1))2
+
(
a(2)
)2

+ r̂Tr̂ .

(23)

The terms (a(1))2 and (a(2))2 are fixed while the third term r̂Tr̂ can be minimized to
minimize the sum of the residuals. Introducing new notations M and b, r̂ can be written

r̂ =

[
R (1)(q− q(1))

R (2)(q− q(2))

]
=

[
R (1)

R (2)

]
q−

[
R (1)q(1)

R (2)q(2)

]
= Mq− b . (24)

To minimize r̂ and thus r̂Tr̂ is a least squares problem which can be solved using the pseudo
inverse. Denoting the merged map q∗ gives

q(∗) = (MTM)−1MTb . (25)

We can also compress the final result. Using that a general q can be written q = Δq(∗) +
q(∗), the third term in (23) can be expressed

r̂Tr̂ =(Mq− b)T(Mq− b) =
(
Mq(∗) − b+MΔq(∗))T(Mq(∗) − b+MΔq(∗))

=
(
Mq(∗) − b

)T(Mq(∗) − b
)
+
(
Δq(∗))TMTMΔq(∗) ,

(26)

where the linear term vanishes due to orthogonality. Using this in Equation (23) gives(
r(∗)
)T
r(∗) =

(
a(1)
)2

+
(
a(2)
)2

+
(
Mq(∗) − b

)T(Mq(∗) − b
)
+
(
Δq(∗))TMTMΔq(∗) .

(27)
If M is QR-decomposed in a similar manner as Jq was in (20) this total result can be com-
pressed as (

r(∗)
)T
r(∗) =

(
a(∗)
)2

+
(
Δq(∗))T(R (∗))TR (∗)Δq(∗) , (28)

with R(∗) being the triangular matrix from the QR-decomposition of M and

a(∗) =
((

a(1)
)2

+
(
a(2)
)2

+
(
Mq(∗) − b

)T(Mq(∗) − b
)) 1

2
. (29)

By this, the representation of the final map is the same as in (21) and the merged map can be
treated as one of the original. Furthermore, more maps can be added using the algorithm
described above. Thus, to add maps, all we need to save from the separate bundles are
the maps q(i), the squared residuals a(i), and the triangular matrices R (i) from the QR-
decompositions of the Jacobians.

In some cases the linearized method is similar to the Kalman filter. However, several maps
can be added at once using the linearized model and it also allows for better control. We
will also show that this method can be developed to detect map changes.
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4 Detection of Changes

Once we know how to merge two or more maps we can also use this to detect whether
the map has changed between the measurement occasions. For this, assume that we have
two maps q(1) and q(2) and their merge q(∗). Furthermore, we have the norms of their
residuals, a(1), a(2) and a(∗). An approximation for the residual variance is derived in (12).
This can be used to find the estimated value of how the squared residuals change when we
add maps. Rearranging terms from (12), we get

E
[(
a(i)
)2]

=E
[(
r(i)
)T(

r(i)
)]

= σ2(mn− (nρ+ mρ− ϕ)) , i = 1, 2 (30)

E
[(
a(∗)
)2]

=E
[(
r(∗)
)T(

r(∗)
)]

= σ2(mn− (Nnρ+ mρ− ϕ)) , (31)

and subtracting these – in this case with N = 2 maps – gives

E
[(
a(∗)
)2 −

(
a(1)
)2 −

(
a(2)
)2]

= σ2(N− 1)(mρ− ϕ) . (32)

If we use real data, σ is unknown, but it can be estimated from the separate bundles using
(12), s.t. σ̂2 = ((σ(1))2 + (σ(2))2)/2.

The values in (32) can be seen as a sum of (N− 1)(mρ−ϕ) Gaussian variables, and a sum
of 2ν independent Gaussian distributed variables with mean zero and standard deviation
σn has a Γ distribution with density [3, p. 47]

fα,ν(x) =
1

Γ(v)
ανxν−1e−αx , (33)

with α = 1/(2σ2
n) and Γ being the gamma function. This density will be denoted Γ(α, ν)

(two parameters). Furthermore, using ã = (a(1))2 + (a(2))2 − (a(∗))2 and γ = (N −
1)(mρ−ϕ) we get that ã ∼ Γ(1/(2σ2), γ/2). Thus, to know whether a map has changed
we can compare the estimated ã to the distribution. A reasonable choice is that if the
difference ã lies within the 99 percentile of Γ(1/(2σ2), γ/2) there has not been any change
in the map, but if ã is higher than this limit, a change has probably occured.

If a change between two maps is discovered, we further investigate those maps. By compar-
ing the positions for each map point, we say that if the distance between them is larger than
3σ̂ the map point has probably moved. This could also be used to decrease the variance
even further for the receivers that have not changed, by using information from all maps
for these receivers.

5 Experimental Validation

To validate the method suggested in this paper, experiments on simulated TOA data as
well as real ultra-wideband (UWB) data have been performed. We have also developed the
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Table 1: The results from the experiment explained in Section 5.1. The values come from a merge of two maps between which
no change has occured. These values are the mean of 10 similar runs.

n 10 100 1000 4000

Runtime [s]
Full bundle 2.3 · 10−2 0.19 3.8 54.7
Linearized 1.9 · 10−3 3.2 · 10−4 4.7 · 10−4 3.3 · 10−4

Kalman 2.4 · 10−3 2.1 · 10−4 2.2 · 10−4 2.1 · 10−4

|| |q(t) − q| ||
Full bundle 1.20 0.11 1.6 · 10−2 3.0 · 10−3

Linearized 1.34 0.11 1.6 · 10−2 3.0 · 10−3

Kalman 1.48 0.12 2.2 · 10−2 5.8 · 10−3

rTr
mn = a2

mn

Full bundle 0.11 0.12 0.13 0.13
Linearized 0.11 0.12 0.13 0.13

method to work for, and tried it on, 3D-reconstructions from image data.

5.1 Time of Arrival – Simulated Data

For each of the simulated experiments m receivers in 3D were generated from a uniform
distribution, q(t) ∼ U(0, 10), superscript (t) denoting the true value. We simulated N dif-
ferent measurement occasions with n sender positions s(t) ∼ U(0, 10) each and calculated
the mn sender-receiver distances. Gaussian noise with standard deviation σ was added to
achieve distance measurements. For each measure we performed a separate bundle to get
the N maps q(1), . . . ,q(N) and the compressed representation explained in Section 3.3 and
more specifically in (21).

Test of Time and Accuracy

For the first experiment m = 10, σn = 0.3, N = 2 and no change occured in the true
map. The experiments were run four times with n = 10, 100, 1000, 4000 respectively.
For each case, the merge was computed using the three methods presented in this paper and

the runtimes were measured. We computed the error norm
√∑m

i=1 |q
(t)
i − qi|2 and for

the full bundle and the linearized method, we also computed the squared distance residuals
per residual rTr/(mn) = a 2/(mn). The results can be seen in Table 1.

Even if the runtime is highly dependent on the implementations, the table gives a valid
comparison between the methods. The linearized method is almost as accurate as the full
bundle. Moreover, when only the sender positions increase, and thus also the number of
distances, the runtime for the linearized method and the Kalman filter do not increase
notably, while the runtime for the full bundle does. Hence, the linearized method is faster
than the full bundle and more accurate than the Kalman filter.
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Figure 2: The plots show histograms of the residuals ãfull (to the left) and ãlin (to the right) computed using the full bundle and
the linearized method respectively. The curve (–) shows the Γ distribution which we expect ã to belong to.

Validating the Detection Threshold

To validate the threshold for detection of changes described in Section 4, we tested the
distribution of ã empirically. Using m = 30, n = 200, N = 2 and σn = 0.5 the distances
were computed. The separate bundles as well as the merge using both the full bundle and
the linearized method were then conducted. For all of the different maps we computed the
compressed representations from (21). We then computed

ãfull =
(
a(1)
)2

+
(
a(2)
)2 −

(
a(∗)full

)2
, and ãlin =

(
a(1)
)2

+
(
a(2)
)2 −

(
a(∗)lin

)2
, (34)

where subscript index full and lin denotes the full bundle and the linearized method re-
spectively. This was re-made 2000 times with different noise. The total degrees of freedom
were γ = (N − 1)(m · ρ − ϕ) = 30 · 3 − 6 = 84. The results of ãfull and ãlin were then
plotted in a histogram together with a Γ(2, 42) distribution in Figure 2. The histograms
agree well with the gamma distribution in both cases; hence, this can be used to test the
significance.

Detection of Changed Maps

Furthermore, we did an experiment where the map actually had changed. This time we
used m = 10, n = 30, N = 3 and σn = 0.5. Four of the ten receivers moved before the
last measurement. After running the separate bundles and merging the maps both using a
full bundle and our linearized method we investigated the differences in the residuals. The
system had γ = 2 · (10 · 3 − 6) = 48 degrees of freedom and thus ã should be such that
it could come from a Γ(1/(2σ̂2), 24) distribution if no changes has occured. Using the
estimated σ̂2 the 99-percentile of this was ã = 17.7. In this specific case, the results from
the merge gave ãfull = 603 and ãlin = 749 and this clearly showed that something had
changed. The results from the unsuccessful merge can be seen to the left in Figure 3. To
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Figure 3: An unsuccessful merge of map 1,2 and 3 (left) and a successful merge of map 1 and 2 (right). The stars (∗) show the
true receiver positions, the squares the results from full bundle (□) and the linearized method (□). In the right figure,
the points for which a change has been detected are (correctly) marked by a diamond (⋄,⋄).

the right in Figure 3 are the results from the merge between the first and second map, after
the system successfully had detected the change.

5.2 Time of Arrival – Real Data

To test our method N = 9 experiments were conducted using a Bitcraze Crazyflie quad-
copter and their Loco-positioning system which consists of m = 5 anchors with UWB
chips and a flying quadcopter with a mounted UWB chip, giving approximately n = 600
sender positions for each measurement. The five anchors were positioned around the room
and one of them was moved before the last three runs. The experiment was conducted in
a MOCAP studio to record the ground truth flightpath as well as the anchor positions.
Distance measurements from the quadcopter (sender) to all the anchors (receivers) were
measured at a frequency of 30 Hz.

The problem was solved as explained in previous sections, except that the threshold for ã
now was 10 times the 99 percentile for the Γ distribution. This threshold was used for
all real data experiments. In Figure 4 the results from the Kalman filter and the linearized
method are shown. While the dynamics of the Kalman filter makes the estimated receivers
end up further away from the true positions – on their way to the correct position – for some
of the measurements, the linearized method correctly detects when a change has occured.
Thereafter, only the similar maps are merged.

5.3 Images – Real Data

In this experiment, N = 5 sets of images were taken of an indoor scene, a bookshelf with
a number of toy models, as depicted in Figure 1. In between set 2 and 3 an R2D2 model
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Figure 4: Results from two of the maps from the experiments with UWB data. The stars (∗) show the true receiver positions, the
circles (◦) the results from the Kalman filter and the squares (□) from the linearized method. The change between the
maps has been correctly detected by the linearized method and changed receivers are marked with a diamond (⋄).

was moved, which we wanted to detect. As a first step we used a structure from motion
pipeline [11] to obtain a 3D reconstruction for each set. The points in this reconstruction
are the feature points in the map, corresponding to the receivers in the TOA experiments.

Unlike the TOA experiments, correspondence between 3D points in the different datasets
are not given. Prior to merging, we performed data association by SIFT [10] feature match-
ing and geometric alignment in a RANSAC [4] framework. After this the maps were also
in the same coordinate system, which is required for the linearized method and speeds up
the full bundling method.

Using the same method as in Section 5.2 – with detection based on a Γ distribution and the
feature point distances – the algorithm detected change during the merge of dataset 2 and 3,
which is correct. In Figure 5 we see that the feature points on R2D2 are correctly detected
as changed. Note that some features are not present in both datasets and therefore these
features on the R2D2 are not marked as changed. Figure 6 shows the 3D reconstruction
from above. Here we see that the merged points on R2D2 does not align with either dataset
2 or 3.

Figure 5: Changes detected in merge between dataset 2 and 3. Feature points are maked with blue dots and changed features
are circled in cyan.
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6. Conclusions

Figure 6: To the left, the merge between dataset 1 and 2 where no change was detected. The separate maps are marked with
dots (•,•) and the merge by diamonds (⋄). To the right, the merge between dataset 2 and 3, where a change was
detected. The points for which a change was detected are marked by squares (□).

6 Conclusions

We have presented a novel and efficient method, with small memory footprint, for merging
individual maps obtained from bundle adjustment optimization along with a statistically
motivated method for detecting changes in the map. The method has been compared
favorably to using full bundle adjustment and the Kalman filter and is shown to be a good
compromise between performance and time efficiency. This makes the method suitable
for online applications as well as the use of crowd sourced data. The performance has
been confirmed on both TOA and vision problems for both simulated and real data. One
limitation is that the map points used for the coordinate system normalization need to be
consistent for all maps. However, if this problem is solved, we believe that the method
could be further developed to a full collaborative SLAM system.
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Abstract: With the development of cheap image sensors, the amount of available
image data have increased enormously, and the possibility of using crowdsourced
collection methods has emerged. This calls for development of ways to handle all
these data. In this paper, we present new tools that will enable efficient, flexible and
robust map merging. Assuming that separate optimisations have been performed for
the individual maps, we show how only relevant data can be stored in a low memory
footprint representation. We use these representations to perform map merging so
that the algorithm is invariant to the merging order and independent of the choice of
coordinate system. The result is a robust algorithm that can be applied to several maps
simultaneously. The result of a merge can also be represented with the same type of
low-memory footprint format, which enables further merging and updating of the
map in a hierarchical way. Furthermore, the method can perform loop closing and
also detect changes in the scene between the capture of the different image sequences.
Using both simulated and real data — from both a hand held mobile phone and from
a drone — we verify the performance of the proposed method.

1 Introduction

Over the last couple of years the availability of cheap image sensors — such as cameras in
mobile phones — has increased immensely. This allows for fast and relatively straightfor-
ward collection of large datasets through crowdsourcing. The images can be used to create
3D maps of the environment. However, the more data there are, the heavier the computa-
tions for creating these maps will be and due to this, there is a need for faster algorithms for
creating 3D maps. Furthermore, additional research on how to fuse individual maps into
one global, more accurate map is needed. One use case of such algorithms can be found
in the industry for self-driving cars. With a fast and accurate way to merge individual sub-
maps, each car that drives in an environment could create its own local map and use that
to contribute to a global map.

Estimating map parameters and sensor motion using only sensor data is referred to as sim-
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Figure 1: A drone equipped with a camera, IMU and a Raspberry Pi. The drone is used for real-time mapping and was used for
one of the real data experiments in this paper.

ultaneous location and mapping (SLAM) [1, 2] and structure from motion (SfM) [3].
Classically, SLAM has focused more on the motion, while SfM has been more focused
on the structure. Also, SLAM often requires that one moving camera is used, while SfM
can be used for unsorted images from different cameras. Nevertheless, the two methods
essentially solve the same problem, but are originating from different research fields.

When image data are used, the SfM is usually performed using bundle adjustment. The
name refers to the bundle of rays going from each 3D point in space to each camera and
it can be seen as a large sparse geometric parameter estimation problem, cf. [4]. Bundle
adjustment is commonly used both as a final step and as an intermediate step in the op-
timisation to prevent error buildup [5, 6]. It can also be used to merge maps, by doing a
new optimisation over all data at once. However, bundle adjustment is a computationally
expensive process and there is a need for making these methods more efficient.

A faster method to align two maps is to use point cloud registration. One example of
a commonly used method for registration is iterative closest point (ICP) [7]. This does
not require any knowledge of point matches between the different sets. If such matches
are known, one can instead use e.g. Procrustes analysis [8]. The methods for point cloud
registration do not, however, solve the merging problem, but leaves a map with double
representations of matching points.

When it comes to fusion of individual maps, there are different ways to do this, but many
of the methods are developed for concurrent mapping. Several of them have been created
to perform collaborative visual SLAM. There are examples of collaborative visual SLAM
that work for several units at once and are fast enough to run in real-time [9]. Many of
these examples are focused on implementations in drones flying simultaneously. In these
cases, parts of the pipeline are run on the platform, while parts are computed in the cloud.
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The map fusion is then based on a few keyframes, to decrease the need for storage space
[10]. There are also several examples where the bundle adjustment is only performed locally
to decrease the computational effort [11]. In the collaborative SLAM method presented
by [12] a dynamic environment is possible and several cameras can be used. However, the
cameras are initialised by viewing the same scene. This simplifies the global coordinate
system, but is not always applicable, since it is often the case that there are no common
points for all bundle sessions. There are also studies where several cameras have been used
at the same time, but when they are fixed on a stereo head [13]. All these methods are
developed for simultaneous mapping using several cameras. When maps from different
occasions are merged the conditions change, which gives other limitations and possibilities.

Another important problem within SfM is the ability to perform loop closure. This prob-
lem appears when a reconstruction is made iteratively on a long image sequence and some
feature points reappear after some time. Due to the inherent drift and error accumulation
the reappearing points will not be reconstructed at the same position as they where recon-
structed initially. For the loop closure problem it is assumed that it is possible to identify
which points in the images that belong to the same 3D point. When re-appearing points
are detected, it is possible to utilise this information and increase the quality of the recon-
struction and at the same time position these at the same 3D location. Some techniques
for loop closure can be found in [14–16].

There are also examples where SLAM is solved using a Bayesian approach [17], which is
faster but not as accurate as bundle adjustment [4]. The methods that are discussed so far
in this paper are not only applicable to images, but work similarly for other sensor data as
well, e.g. wifi [18] and audio [19, 20]. Gaining information and ideas from these fields can
thus be useful for SfM as well.

In [21], a method that is a compromise between a full optimisation bundle and the Kalman
filter was presented. The method was primarily evaluated on audio data together with
a small experiment for image data. In this paper we develop that idea further to work
automatically for SfM data from RGB images. The idea behind the method presented in
[21] is that maps can be merged efficiently using only a small memory footprint from the
map and the residuals. Then the merging problem can be solved linearly. For this to work
on images from different datasets there is a need for a coordinate system estimator.

In this paper, we present a method for efficient and simultaneous estimation of the paramet-
ers — i.e. camera matrices and 3D points — as well as the coordinate system. The system
is also adopted for partially non-overlapping data. The pre-process of the data starts with
the detection of feature point descriptors, e.g. using SIFT [22] or ORB [23], whereupon
the individual maps are estimated using a SfM pipeline [24]. The data can be collected us-
ing a hand-held camera or an autonomous drone, like the one in Figure 1. The individual
maps are then fused at the same time as transformations into a global coordinate system
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are estimated using only the map points and a compressed representation of the Jacobian.
This means that once the individual maps are computed, there is no need for saving the
actual images — not even a few keyframes.

The main contribution of this paper is the generic and efficient method for merging sub-
maps obtained from several image sequences. The proposed method is independent of the
chosen order of the sequences and the choice of coordinate system. It is furthermore very
efficient compared to making a full bundle adjustment of all image sequences together, by
utilising a compact and efficient representation of each bundle, consisting of a considerably
reduced number of free variables. The merging method can also be used to detect changes
in a scene and to solve the loop closure problem. This is validated on both simulated and
real data.

2 SfM Systems and Bundle Adjustment

The pre-processing steps, such as creating the individual map representations, are not the
focus of this paper. Nonetheless, we will briefly go through the theory. Many of the nota-
tions that will be used later in the paper are introduced in this section. The purpose of the
individual optimisation bundles is to find the m camera matrices Pi and the n 3D points
Uj that induce the image points uij. Each image point gives rise to two residual terms rij,
one for each image coordinate, when it is compared to the projection of Uj in camera i,

rij =

P 1
i Uj

P 3
i Uj

− u1
ij

P 2
i Uj

P 3
i Uj

− u2
ij

 . (1)

Above, P k
i denotes row k of camera matrix Pi and ukij denotes element k of uij. The total

residual vector r is composed by stacking all individual residual vectors rij. Furthermore,
we collect the unknown parameters in a structure z, s.t.

z = (P1, P2, . . . Pm, U1, U2, . . . Un). (2)

In the optimisation we use local parametrisations, Δz ∈ R6m+3n, around each point z0 in
the parameter space,

(z0,Δz) −→ z. (3)

While z contains twelve parameters for each camera, the local parametrisations only use six
parameters per camera, in order to assure that the camera is composed by a rotation matrix
and a translation matrix. To find out how a change Δz affects the residual r, we compute
the derivatives of the components in r with respect to the elements in Δz. Even if we only
refer to the six parameters per camera together with the 3D points we will for simplicity
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further on denote this Jacobian J = ∂r/∂z. The maximum likelihood estimate z∗ of z is
found by minimising the sum of squared residuals,

z∗ = argminzr
Tr. (4)

Using Gauss-Newton, each step of the iterative bundle adjustment corresponds to the para-
meter update

Δz = −(JTJ)−1JTr. (5)

Performing the optimisation on N separate data collections results in N different parameter
representations z(k), where superscript index (k) denotes the representation number. Some
of the 3D points are visible in several representations while some are visible in only one.
Note that the ordering might differ, such that U (k)

j does not represent the same point

as U (l)
j . Once matches between the different data collections have been established, e.g.

using ORB or SIFT features, the individual map representations can be merged into one
global map. One way to do this would be to perform a bundle adjustment with all data
from all data collections, but this could be prohibitively expensive in terms of memory and
computations. Another way could be to do co-registration of the point clouds, e.g. using
Procrustes. The naive way to merge the maps would be to then take the average position of
matching points. One drawback of this merging method is that the resulting global map
is depending on the merging order.

2.1 A Compact and Efficient Model for a Bundle Session

The proposed method exploits the fact that the optimal residuals from the separate bundles
can be linearised to avoid the large bundles. Our bundle representation is built on theory
from [21] and for completeness, we will summarise some of that theory in this section.

A key idea is to divide the unknown parameters in z into two parts q and s, where q
contains the parameters that potentially could match to those of other SfM sessions. The
parameters in s can be thought of as auxiliary parameters. There is an interesting trade-off
here. Making q larger allows for a higher number of potential matches with other SfM
sessions, but requires a large memory footprint and vice versa. In this paper we use the
approach that some (or all) of the 3D points go into q, whereas the rest of the points and
camera matrices go into s.

Approximating the Residual

The parameters in z are ordered such that Δz =
[
Δq Δs

]T. The Jacobian J is divided
correspondingly, with the part that corresponds to the parameters in q denoted Ja and one
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that corresponds to the parameters in s denoted Jb. The auxiliary parameters in s will
depend on the points in q as follows

∂s

∂q
= −(JTb Jb)

−1(JTa Jb)
T. (6)

That derivative can furthermore be used to express how the residuals change if the points
in q are moved. We have that

Δr =
(
Ja + Jb ·

∂s

∂q︸ ︷︷ ︸
Jq

)
Δq. (7)

Furthermore, viewing the residual as a function of an update Δq and linearising it around
an optimal point o gives the following approximation of the squared residual

rTr ≈ a2 + ΔqTRTRΔq, (8)

where a2 = r|Toro and R is a triangular matrix originating from QR-decomposition of Jq|o.

Another way to view this is to form a modified residual vector r̂ according to

r̂ =

[
a

RΔq

]
=

[
a

R(q− q|o)

]
, (9)

whose sum of squares is an approximation of the original sum of squares, i.e.

rTr ≈ r̂Tr̂. (10)

The linearisation decreases the memory footprint substantially compared to the original
problem.

To summarise the theory from [21], the compressed representation of data consists of
(q|o, a,R), where q|o is a subset of the 3D points. Note that while Jq is a rectangular
matrix, R will be quadratic and thus much smaller than Jq. Despite this, it was shown in
[21] that it is possible to obtain a good approximation of the residual according to Equa-
tion (8). Furthermore, once an update has been made, the rest of the points and the camera
matrices can be updated using ∂s/∂q.

2.2 Gauge Freedom

SfM estimates can only be determined up to an unknown choice of coordinate system,
which is called gauge freedom. This involves translation, rotation and change of scale,
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which in total has seven degrees of freedom. A consequence of this is that the Jacobian
Jq and also the matrix R has a seven-dimensional nullspace. The process of changing co-
ordinate system is however non-linear, and therefore the approximation we presented in
the previous section is only valid for points close to the optimal point q|o. In [21] the
different maps were pre-aligned and the gauge freedom was therefore less relevant.

3 Merging Several SfM Sessions

As we mentioned before, one way to add several individual SfM sessions would be to do a
new bundle, over all data. However, this could be computationally expensive and require
storing a large amount of data. The faster approach presented in [21] solved the problem
linearly. Though, this did require that the individual map representations were aligned and
that a number of points were visible in all maps. In this section, we generalise this further to
work for any representations and handle the coordinate ambiguity. Thus, no pre-alignment
is needed and that makes the approach much more flexible.

Assume that for each map k we have the compressed information as (q(k), a(k),R (k)). De-
note the global map q and let that contain some or all of the 3D points that are contained
in at least one of the individual maps q(k).

If q is assumed to contain n̄ 3D points, all potential global map representations lie on a
3n̄-dimensional manifold. Each representation can then be projected to lower dimensional
spaces in which the local map representations lie. In practice, the projection pk(q) simply
means that we leave some points out, while we keep the rest, i.e. pk(q) has the same num-
ber of points (and the same point order) as q(k). However, they might be in a different
coordinate system. Therefore, we apply a similarity transform Tk to obtain a local map
representation. Hence, we would like Tkpk(q) to be close to q(k).

Thence, the unknowns are the global map q and the N different transformations Tk. By
collecting individual residuals, similar to the ones in (9), the approximate modified residuals

r̂ =


a(1)

R (1)(T1p1(q)− q(1))
...

a(N)

R (N)(TNpN(q)− q(N))

 (11)

are such that r̂Tr̂ is approximately equal to the sum of the squared residuals for all N
sessions.

Our approach to solve this problem is to bundle over q and all Tk, trying to minimise (10)
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Figure 2: The blue solid lines show the level curves of the linearised error function and the o shows the point we have linearised
around. By adding a penalty in the perpendicular direction, along the dashed green line, the resulting error function
is the one shown as red ellipses.

with  r̂ according to (11). This bundle will be significantly smaller and faster than bundling
over all the original images with the re-projection errors as loss.

One difficulty with this approach is that the approximation (8) only holds when each map
Tkpk(q) is close to its working point q(k). An interesting thing to note here is that the last
seven rows of R (k) — the triangular matrix which comes from QR-decomposition of the
Jacobian w.r.t. q of bundle k — will be zero, due to the gauge freedom. An illustration of
this is given in Figure 2, where we visualise this in a lower dimension. The error function
locally looks like a parabolic cylinder (illustrated with blue level curves in the figure). To
force the error function to be quadratic — a paraboloid — we change the last seven rows
of R (k) such that they are orthogonal to the rest of the rows (see the green dashed line).
The change of the last rows of R (k) results in an error function that has the level curves
shown by the red ellipses. By optimising over the transformation T (k), we will end up at a
point where the orbit is tangent to a level curve (a red curve in Figure 2). One such point
could be the one marked by x in the image. Since this x is close to our working point o, the
linearisation is still valid and the addition of the last rows of R (k) will have little undesired
effect.

3.1 The Bundle Initialisation

The initialisation for the merge bundle can be done in several ways. We have decided to
initialise q from q(1), andT1 to be the identity matrix, while we initialise the rest of theTk:s
using Procrustes analysis between matching points in q(k) and q(1). Points in q that are
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not in q(1) are initialised from the other maps and Tk. Initial estimates between two maps
can be obtained using three point correspondences, but there are also solvers for mini-loop
closure involving fewer than three points between three, four and five maps, cf. [25].

3.2 The Bundle for Merging the Maps

Similar to the individual bundle approach, we collect the unknown variables in a structure
w, s.t.

w = (q, T1, T2, . . . ,TN), (12)

and use local parametrisations, Δw ∈ RM, around each point w0 in the parameter space,

(w0,Δw) −→ w. (13)

The dimension M of Δw depends on how many of the points in q that are common
between the individual maps. In the local optimisation we use a Levenberg-Marquart ap-
proach. In each step we calculate the Jacobian Jw that describes how changes in the para-
meters Δw affect the residual r̂.

3.3 Compressing the Result from the Merge

Once the merge is done, the residuals can be compressed for future merges. The Jacobian
Jw is again divided in one part J̄a that corresponds to the parameters in q and one J̄b that
corresponds to the rest of the parameters s (now corresponding to changes in T1, . . . ,TN
and some of the 3D points). From this we again calculate how s depends on q, similar to
what we did in Equation (6). We then calculate R̄ from a QR-factorisation of J̄q = J̄a +
J̄b · ∂s/∂q. In this way, a compact representation (q, ā, R̄) of the result can be calculated,
again similar to what we did for the individual bundle sessions. The value ā 2 is the squared
residual in the optimal point.

4 Hypothesis Testing of the Merge

Even if we assume that the matches between the maps are given, some of them might be
wrong. Also, there could be other errors in the merge, e.g. if any object in the scene has
moved. For this reason, some hypothesis test is needed. We use the same approach as
in [21] and compare the increased error to a Γ distribution, and extend that theory here.
Again, let N denote the number of map representations that are merged.

If we assume that the measurement errors in the images are zero mean Gaussian with a
standard deviation σ, the expected value of the squared residuals (a(k))2 in the individually
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optimal points from (8) are

E[
(
a(k)
)2
] = E[

(
r(k)
)T(

r(k)
)
] = σ2(η(k)res − d (k)

dof

)
. (14)

We denote the number of residuals in bundle k by η(k)res and the effective degrees of freedom
d (k)
dof . In a bundle with m cameras and n 3D points, these will be ηres = 2mn and ddof =

6m + 3n − 7, where the 7 represents the gauge freedom. Furthermore, if we assume that
the merge was successful, the expected value for the merged map will be

E[ā2] = E[rTr] = σ2(ηres − ddof), (15)

where ddof is the effective degrees of freedom in the merge and ηres is the total number of
residuals. We have that ηres =

∑
k η

(k)
res , while the value of ddof will depend on the overlap

between the individual map representations.

Now, for the difference between ā 2 and all (a(k))2, we have

E
[
ā 2 −

∑
k

(
a(k)
)2

︸ ︷︷ ︸
ã

]
= σ2

(
ηres − ddof −

∑
k

(
η(k)res − d(k)dof

))
. (16)

Letting ã = ā 2 −
∑

k
(
a(k)
)2 and denoting the number of 3D points that are common in

i individual maps κi, this gives

E[ã] =σ2
(∑

k

d (k)
dof − ddof

)
=σ2

(( N∑
i=1

3κi(i− 1)
)
− 7 · (N− 1)

)
,

(17)

where the factor 3κ(i − 1) represents that we have locked another 3κi point coordinates
i − 1 times. We subtract by 7 · (N − 1) since all individual maps are now merged to the
same coordinate system.

Furthermore, since the noise is Gaussian, the value in (17) will be a sum of
∑

k d
(k)
dof − ddof

Gaussian distributed variables. Altogether, this means that for a successful merge, ã should
come from a Γ distribution with the following density [26]

fα,ν(x) =
1

Γ(v)
ανxν−1e−αx. (18)

Here, Γ is the gamma function and

α =
1

2σ2 , ν =

(∑N
i=1 3κi(i− 1)

)
− 7 · (N− 1)

2
. (19)
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5. Using Merging for Increased Robustness

Hence, if the merge for some reason was not successful, this could be discovered by com-
paring the value of ã to the expected Γ distribution. Using this, we can detect whether
changes has occurred in the scene between the different mapping occasions.

The standard deviation σ of the noise is often unknown. Nevertheless, it can be estimated
as the mean of the standard deviations for the individual map representations, which in
turn would be estimated according to [27, p. 47].

5 Using Merging for Increased Robustness

Once we know which Γ distribution the increased error ã should come from, this can be
used as a hypothesis test. This could furthermore be used to increase robustness in a large
SfM session. If we do a bundle over a scene and the residuals are not sufficiently small, one
might suspect that there is corrupt data or outliers involved. The SfM session could then
be divided to a number of parts, where SfM first is performed on each of them, resulting
in a number of sub-maps. Given that the different sub-maps are divided such that they
have overlap, they can be merged using our method. By merging one part at a time and
checking the distribution of ã, it can be found where in the dataset there is corrupt data.
That part can thereafter be divided into smaller parts, and the process can be repeated. We
can by that avoid to add erroneous information to the global map, while we successfully
can add the other parts which are correct.

6 Experimental Validation

To verify the proposed method we have run a number of experiments, both on simulated
and real image data. The experiments are described in an order of increased complexity.

6.1 Verification on Simulated Data

First, we verified the method and the hypothesis test on simulated data. We simulated 100
3D points Uj in a box of size 10 × 6 × 2 and ten cameras Pi pointing towards the box.
The cameras were re-simulated three times to mimic three mappings. All 3D points were
visible in all cameras and we added Gaussian noise with zero mean and standard deviation
σ = 0.05 in the image projections. On each mapping we separately performed bundle
adjustment using only the image projections uij, resulting in three different representations
of the same scene, each given in a different coordinate system. We found matches between
all three map representations and using ten of these matches in q, we merged the maps into
one global map.
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Figure 3: The image shows the histogram of ã achieved from running the same experiment several times with different noise
realisations. The histogram is expected to follow the Γ distribution shown by the red curve.

We repeated the experiment above 2 000 times with the same cameras and 3D points, but
with different noise realisations. For each run, we saved ã and finally we plotted a histogram
over the result. Figure 3 shows the histogram together with the expected Γ distribution
from Equation (18). The figure clearly shows that the error follows the distribution even
though we have linearised the residual according to Equation (11). This is a verification
that the method works even when we are optimising over the transformations to the global
coordinate system as well as the global map.

Early Stopping of Pre-Processing

In the previous experiment we let the individual map representations reach an optimal state
before merging them. However, this is not always the case in reality, due to poorly chosen
bundle thresholds or to shortage of time. In the second experiment we investigated how the
system performance degrades with less optimisation in the pre-processing steps. The setup
was similar; all 3D points were visible in all map representations (but only in 80 % of the
cameras). We used noise with σ = 0.005. We stopped the bundle for the individual maps
based on the Euclidean norm of the gradient 2r̂J, which is obtained by differentiating (10),
with the residual given by (9) and the Jacobian J defined from that. The termination was set
at different levels, after which we used our proposed method for merging. For comparison,
we performed a large bundle on all data, and we also did Procrustes registration (using an
arbitrary order) followed by averaging over matching points. The mean RMSE over 1 000
runs was computed and is plotted in Figure 4. For comparison, the mean RMSE for the
three individual map representations is shown as well. To compute the RMSE we first did
Procrustes registration of the respective map to the true map.
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Figure 4: How the RMSE for the final map achieved using different merging methods change when the individual map bundles
are terminated at different levels. The x-axis shows the Euclidean norm of the gradient and the y-axis the RMSE. The
error for the individual maps is included for comparison.

Our proposed method performs better than Procrustes at all stages, and furthermore the
graph is less steep than that of the individual errors, which means that some of the per-
formance that is lost from the early stopping is recovered using our method. Finally, one
can see that for small gradient norms, our method performs as well as the large bundle,
which is much more computationally expensive.

Solving Loop Closure by Map Splitting

Furthermore, we wanted to show that our method can solve the problem of loop closure,
not within one individual bundle, but in the merging of several slightly overlapping ses-
sions. We also decreased the number of parameters in q to be a small part of all the 3D
points. First off, we simulated a SfM session of a room of size 5 × 6 × 2 m and divided it
into four parts, such that each sub-map captured one of the walls, with a few corner points
common between the different sub-maps, and no points common in more than two maps.
Each sub-map consisted of 200 3D points and only 6 % of these coincided with points
from any of the other maps. The noise level was σ = 0.005.

To simulate a loop closing problem we used two merging methods — one with matches
between sub-maps 1-2, 2-3 and 3-4 and one where there were matches between sub-maps
1-4 as well. The first case represents what happens when you do SfM starting at one point of
the room and do a loop without using any loop closing technique, while the latter uses our
proposed method. We could see that our method improves the performance concerning
loop closure. In most cases there was a drift in the map for the first method, but if we
added matches between sub-maps 1-4 as well, this drift disappeared. Figure 5 shows how
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Figure 5: The left plot shows the result from merging the different sub-maps without matches in the beginning and the end of
the map. To the right we have added matches between these two and the loop closure problem is solved.

the method fails to connect the ends of the blue and the purple sub-maps in the first case,
but succeeds in the second.

Running the same experiment 1 000 times shows that adding matches between sub-maps
1-4 gives a reduced Euclidean distance from the ground truth in 85 % of the cases, and
the distance is reduced by 50 % or more in 80 % of the cases. In terms of RMSE, this
error was less than 0.1 in 99.8 % of the cases for the full bundle. This can be considered
as gold standard. The corresponding value for our method with all matches was 80 %;
for our method without 1-4 matches 25 %; and for Procrustes and averaging 7.7 %. The
mean RMSE within those 80 % for our method was 0.038. If the merge is unsuccessful,
the RMSE value is not very suggestive, since the registration made for comparison might
be wrong too.

Furthermore, Table 1 illustrates how much the memory footprint is decreased when we use
our compressed error representation. The linearised residual in (8) reduces the parameters
in the Jacobians from approximately 3 000×660 to 30×30 compared to the full residual.
This becomes even more evident when we look at the size of the bundle for the map mer-
ging, compare Equations (10) and (11). All this show that our proposed method performs
best except for the full bundle and that it therefore is a very good compromise between
performance and efficiency.

6.2 Verification on Real Data

Small Bookshelf Experiment

In this experiment we made five separate data collections of a bookshelf. Between collection
2 and 3 we moved an R2D2 figure a few centimeters, see Figure 6. The individual maps
were then merged pairwise in sequence — i.e. 1-2, 2-3, 3-4 and 4-5 — and compared with
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Table 1: Four sub-maps were merged. The table shows the size of the Jacobian for using the full residual (1) and the linearised
residual (8) for each sub-map. The last line shows how much smaller the merging problem becomes using our method.

Bundle # points Size of full Size of compressed
session Jacobian Jacobian
1 200 3 082 × 660 27 × 27
2 200 2 792 × 660 24 × 24
3 200 3 140 × 660 33 × 33
4 200 3 190 × 660 36 × 36
merge 784 12 204 × 2 601 120 × 88

our previous work [21] where the transforms between maps were computed prior to the
merging. As we see in Figure 7 the residuals are smaller when jointly estimating merge and
transform. The squared residuals ã are then compared with the 99:th percentile of the Γ
distribution from Section 4. We see that change between collection 2 and 3 is correctly
detected for both versions, while the previous work with fixed transform is giving a false
positive between dataset 3 and 4. Even if the differences are small, this experiment shows
that our proposed method performs better than the previous one, despite the problem being
harder.

Experiment in an Office Environment

In the following experiment we made four separate data collections using a drone. Sample
images from these datasets, as well as 3D reconstructions, are shown in the two top rows
of Figure 8. Each recording consisted of approximately a minute worth of video footage.
The recordings were made with a small drone equipped with a monochrome global shutter
camera (OV9281) with resolution 480 × 640 and an inertial measurement unit (MPU-
9250). The 3D reconstructions were generated by a SLAM system built on ORB features
[23] and IMU data [28], where the matches are filtered using the technique from [29] and
the solution is optimised using [30]. For each of the reconstructions, the object points
were saved along with extracted feature locations and descriptors. The feature locations
were undistorted prior to saving, to remove fish-eye effects.

The statistics for the four experiments are shown in Table 2. The saved descriptors were
used to generate hypothesis matches between the different reconstructions. These tentative
matches were then tested in a hypothesis and testing framework using the hypothesis test
proposed in Section 4 of this paper. This process produced 24 points that were matched
across the four experiments.

In the bottom row of Figure 8 we show parts of the merged map after Procrustes to the left
and merging using our method to the right. Notice that the top and left wall in the upper
left corner had double representations after Procrustes. After merging the two copies of the
walls they are positioned on top of each other. After the merge with the proposed method
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Figure 6: This figure shows how the R2D2 model moved between collection 2 and 3 in the bookshelf experiment.

it was possible to identify an additional 346 points that could be merged.

To validate the performance we selected a few points in one of the maps and calculated a
number of interpoint distances before and after merging. We also measured these distances
in reality with a measuring tape. The results are presented in Table 3. The results show that
our method reduces the error in all the measured distances.

7 Conclusion

In this paper we have presented a new method for merging of 3D maps. The method
relies on a low memory footprint representation of the individual residuals that makes it
efficient even for a large amount of image data. By bundling over an approximate error,
the size of the Jacobian is reduced with several orders of magnitude compared to doing
bundle adjustment over all data at once. Furthermore, the method is robust and flexible
in the sense that the individual sub-maps do not have to be in the same coordinate system.
Our merging method can be used to add two or several maps at once and also for updating
a global map using local map estimates. This can furthermore be used to perform loop
closing, which is verified using both simulated and real data. Using a hypothesis test based
on a statistical analysis of the error we can analyse whether the merge was successful and
discover if changes has occurred in the scene between the mappings. In the future we would
like to use this to develop a system that can divide a large map into several sub-maps in order
to only add the parts of the map that preserves robustness. Another interesting extension
would be to generalise the method to rotation averaging.
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Figure 7: The sum of squared residuals for the merges of different dataset pairs. We see that jointly estimating the transform
and 3D points during the merge yields smaller residuals than when estimating the transform before merging as in
previous work [21]. Change between dataset 2 and 3 is correctly detected.

Table 2: Four datasets were collected by drone recordings. The number of 3D points and the size of the Jacobians for each
dataset are shown. The proposed method makes it possible to compress the data to a 72 × 72 matrix for each dataset.

Bundle # points Size of full Size of compressed
session Jacobian Jacobian
1 999 18 918 × 3 621 72 × 72
2 603 11 972 × 2 151 72 × 72
3 549 11 114 × 1 989 72 × 72
4 386 7 596 × 1 452 72 × 72
merge 2465 49 600 × 8 997 288 × 100

Table 3: Interpoint distances between a few selected points in the office experiment before and after merging using Procrustes
registration followed by averaging and our proposedmethod. The column to the right shows the ground truth distances.

Pt 1 Pt 2 Dist (mm) Dist (mm) Dist (mm) Dist (mm)
ind ind one map merge Pro. merge our gt
52 766 365 365 220 213
52 839 589 589 512 516
52 840 1358 1296 1264 1260
60 839 825 825 834 840
60 840 879 1023 860 857
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Figure 8: The two top rows shows the 3D reconstructions and a few images from two of the four drone recordings in the office
experiment. The bottom row shows parts of the merged map using Procrustes to the left and our proposed method
to the right. Note that the top and left walls are doubled after the Procrustes registration, while our method solves
that problem.
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