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1. Introduction

Absolute stability theory, including passivity and small gain theorems, is an
important tool for analysis of systems with nonlinearities, time-variations and
uncertainty. So called multipliers are used to reduce conservatism and exploit
structural information about the system components. However, systematic
methods for computation and optimization of such multipliers have not been
available until recently.

The development of numerical methods for multiplier optimization started
with the structured singular value in the early eighties, [21, 4]. The real break-
through came with the polynomial time algorithms for convex optimization
with constraints defined by linear matrix inequalities, {14, 3]. This was used
in connection with multiplier optimization in Balakrishnan, et.al. [1] and Ly
et.al. [11] and in full generality by Rantzer and Megretski [18, 12].

In general, the computation of multipliers becomes a convex optimiza-
tion problem over an infinite-dimensional space. Such problems can be solved
by considering a sequence of finite-dimensional approximations. More specifi-
cally, in the search for a rational function that satisfies certain constraints, the
finite-dimensional approximation could mean that the denominator is fixed,
while the search is restricted to the numerator coefliceints. For example, this
approach was used in controller design by Boyd and Barratt [2].

Duality plays an important role in optimization theory, particularly in
convex optimization. This paper aims to demonstrate that multiplier opti-
mization is no exception. For an important class of stability problems, which
results in infinite-dimensional convex optimization, we will state a correspond-
ing infinite-dimensional dual problem. The dual gives valuable information
about the original problem, in particular error bounds for the finite dimen-
sional approximations.

A general and unified approach to the use of multipliers was introduced
by Megretski and Rantzer [18, 12] based on the concept integral quadratic
constraint (IQC). An operator A (possibly nonlinear) on L3*[0, co) is said to
satisfy the IQC defined by the matrix function II, called multiplier, if

/oo j}‘\(jw') ] I(jw ﬂjw.) > 0 forall v € LT[0, 00)
oo | (Av)(jw) (Av)(jw)

Here 7 denotes the Fourier transform of v. Based on this definition, each
operator A can be described by a set IIn of multipliers II, that define IQC:s
satisfied by A. For example, a passive operator satisfies the IQC defined by

[0 I]

I 0

while a linear time-invariant operator with H,,-norm less than one, satisfies
any IQC defined by a matrix of the form

R

where z(jw) > 0 for w € R. Basically, all properties of an operator, that
can be expressed by IQC’s, can be exploited in stability analysis. This is
demonstrated by the following result, that reduces stability analysis of the
feedback loop in Figure 1, to a search for a matrix function II in II,, that
satisfies a certain matrix inequality.



G(s)

Figure 1. Feedback system with perturbation.

ProPosITION 1—[12]
Let G be a linear causal operator with transfer function G(s) € RHZ*™ and
let A be a bounded causal operator on LJ*[0, 00). Assume that

(i) for any 7 € [0, 1], the interconnection of G and TA is well-posed.
(ii) for any 7 € [0, 1], the IQC defined by II is satisfied by TA.
(iii) there exists ¢ > 0 such that

*

GUe) 1 mgwy | CU9) | < 1 vw > 0 (1)
I I
Then the feedback interconnection of G and A is stable. O

Robust stability and performance analysis based on IQC:s can be formulated
as optimization problems on the form

infy subject to (2)
M1 € Ta(y) such that

P Gliu)1* G(i
[ (}w)] I(jer) [ (}w)] <0, Yw € [0, 0]

where vy corresponds to the robustness criterion under consideration. The set
IIA (%) is generally infinite-diminsional and solutions to (2) can be obtained by
considering optimization over a finite-dimensional subset of ﬁA. Conservative-
ness of this approach can be investigated by means of the dual optimization
problem corresponding to (2). The dual was considered for general assump-
tions on the multipliers in fIA('y) in [7] and [8]. In this paper we show that
much stronger results can be obtained for the case of constant multipliers, fre-
quency dependent multipliers defined by a frequency independent constraint
and multipliers that are a combination of these two classes of multipliers.

2. Mathematical Preliminaries

This section presents the necessary mathematical preliminaries and notation
needed in the paper. The following standard definitions and results from
functional analysis are available in for example [10].

e Let X be a normed vector space. The dual of X is the normed space
consisting of all bounded linear functionals on X and it is denoted by
X* Ifz € X and 2* € X*, then (z,2*) denotes the value of the linear



functional * at . The vector spaces considered in this paper are defined
over the real scalar field and the linear functionals defined by functions
from the dual space are real valued.

The (Cartesian) product of two vector spaces X; and X,, which are
defined over the same field of scalars, is denoted X; x X3 and it consists
of all ordered pairs ¢ = (z1,23), with 2; € X; and 23 € X». z; and
¢, are said to be the coordinates of X; X X,. Addition and scalar
multiplication is defined as (z1,22) + (¥1,¥2) = (€1 + y1,22 + 92) and
a(z1, z2) = (az1, azy).

The dual of X; X X3 is given as X; x Xj, where X and X; are the
duals of X; and X, respectively. Given z = (z1,2z3) € X1 X X3 and
e* = (x,23) € X§ x X3, we define (2, 2*) = (21, 2]) + (22, 23).

XN denotes the Cartesian product of N copies of X.

Let H : X — Y be a bounded linear operator. Then the adjoint operator
H*X :Y*— X* is defined by the equation

(Hz,y*) = (z, H*y*)

forallz € X and y* € Y™*.

Next is a list of notation and function spaces used in this paper.

*

M
M

- llr

Conjugation of a complex valued matrix.
Hermitian conjugation of a matrix.

The Frobenius norm of a real or complex matrix M is defined as

| M|l = /a3 20).

RL™™ The space consisting of proper real rational matrix functions with no

poles on the imaginary axis. F € RLTX™ satisfies F(—jw) = F(jw).

RH™*™ The subspace of RLTX™ consisting functions with no poles in the

mXiXm

R

closed right half plane. Note that G* generally means the Hilbert
adjoint of G(s) € RH™*™, defined as GT(—s). The Hilbert adjoint
reduces to the Hermitean conjugate of G when s = iw. We let || - ||
denote the usual norm on RHTX™, defined as |G|/ = sup, 7(G).

The subspace of R™*™ consisting of symmetric matrices with the
topology determined by the Frobenius norm. The dual space can
be identified with S**™ itself. The linear functionals are defined as
(X,Z)g = t1(X Z), where X,Z € Sg”"™.

SmXm  The subspace of C™*™ consisting of Hermitean matrices with the

topology determined by the Frobenius norm. The dual space can
be identified with ST**™ itself. The linear functionals are defined as
(X,Z)g = tr{X Z}, where X, Z € S¢™.

2.1 Some Results from Convex Analysis

We will next state some results and definitions from convex analysis. Refer-

ences

for this material can be found in for example, [10], [20]

A translated subspace is called an affine set (linear variety). The dimen-
sion of an affine set is defined as the dimension of this subspace.



e The affine hull of a nonempty set S, denoted aff S, is the unique smallest
affine set containing S

e The relative interior of a nonempty set S, denoted ri §, is the collection
of points in S, which are interior points of S relative to aff S. This
means that for every z¢ in the relative interior of S, there exists € > 0
such that all z € aff S satisfying ||z — 2ol are also members of S. Hence,
the relative interior of § is an open subset of aff S.

e The dimension of a convex set C is defined as the dimension of the affine

hull of S.

e A convez cone C is a convex subset of a vector space with the property
that if © € C, then az € C for all a > 0.

The following separating hyperplane theorem will be a main tool in this paper

THEOREM 1—SEPARATING HYPERPLANE THEOREM

Let C; and C; be disjoint convex sets in a vector space X. Assume further
that C; is open, then there exists z* € X* such that (z1,2*) < (23,2*) for all
z1 € C1 and z5 € Cs.

Proof: This is a minor reformulation of Theorem 3 on page 133 in {10]. [

THEOREM 2—HELLY

Let {C;|i € I} be a collection of closed, bounded convex sets in R™. I is a
set of indices with arbitrary cardinality. If N;c7C; = 0, then there exists a
subcollection consisting of n 4 1 or fewer sets {Cy;la; € I, 1 =1,...,n+ 1}
such that N7 'Cy; = 0. If the index set I is finite then the result also holds
when the C; are not necessarily closed or bounded.

Proof: Follows from [20]. )]

3. Frequency Dependent Multipliers

We will in this section study the case when the multipliers are defined by a
frequency independent constraint. More precisely we consider the convex cone

a(y) = {II € RLZ™*?™ : TI(jw) € Ma(7), Yw € [0,00]}

where TIa(7) C SZ™*?™ is a closed convex cone for all 7 € R, satisfying the
following assumption

Assumption on IIa(7): If y2 > 71, then VII; € IIa(71), there exists
II, € HA(‘)‘z) such that II; > II,.

This means that we consider frequency dependent multipliers, where the val-
ues between different frequencies are independent except for the requirement
that II should be a rational function.

THEOREM 3

e
infy = supy



where primal and dual constraints are defined as

I € RL2™*?™ | such that
II{jw) € A (y), Yw € [0, o0]

) [ <o, et

P:

Jwe € [0,00], Z=2*>0, Z#0, s.t.

D; [G(J'WO)] 7 [G(J'WO)

T T ] € Ma(y)®

and where
Ia(7)® = {Z € S7™*™ (I, Z)c 2 0, VI €Tla(y)}

Proof: Introduce v* = infp«y. If ¥ < 4* then there exists wp € [0, 00] such
that the convex sets

-~ {[G(J;’o)]*n [G(J;*’O)] e HA(7)}

Q={XeS™m™ X <0}

are disjoint. It follows from the assumption on IIa(y) and from Lemma 1

in the Appendix that this also a necessary condition for v < 4*. By the

separating hyperplane theorem there exists a nonzero Z € Sg*™ such that
(X,Z)c >0, VXeP (3)
<X3Z>C<O: VXEQ (4)

For (4) to hold we need to have Z 3 0 such that Z > 0. The condition in (3)
can be reformulated in the following way

<[G(jwo)] - [G(jWO)] ’Z>c >0, VII € Ta(7)

I I
G . G . *
— <n[ (""°)] z[ (""°)] > >0, VII € Ta ()
I I c
G(jw G(jwo)l”
I I
This proves that infp ¥ < supp <y. The opposite inequality is obvious. O

We will next give a simple example, which illustrates the theorem. In particu-
lar, the example shows that the frequency w = oo needs to be included in the
dual.

ExampLE 1
Consider the system in Figure 1 with

28 +1 o

)= gy’



Figure 2. Nyquist curve for the system in Example 1.

and A = §, where § is an uncertain real valued parameter, which takes values
in [~a, a]. We want to find a bound a* such that the system is stable when
a < a*. We can obtain one such bound by considering the primal in Theorem 3
with

= .
HA(7)={[ - ] :mzo,yeR}
-Jy —z
and then use o* = 1/4/7%, where 7* is the primal objective. The primal
optimization problem can be formulated as
infy subject to
(3z,y € RLYX!, such that

oo ?

sup z(jw)[|G(jw)|* - 7] + 2y(jw)Im G(jw) < 0
P! w€[0,00]

z(jw) >0, Vw € [0,00]
(y(jw) ER, Vw € [0, 00]

It is easy to see that the optimal solution is the maximal value of |G(jw)|,
subject to the constraint that Im G(jw) = 0. From Figure 2 we see that
v* = max(|G(0)[?,|G(joo)|2) = |G(joo)| = 2. We will next see that the dual
of Theorem 3 gives exactly this solution. It is easy to verify that

Ta(7)® = {Z € 8% : Z11 —¥Z22 2 0, Im Z;p = 0}
Hence, the dual can be simplified to

supvy subject to
Jwyg € [0, 00], such that

D:{ |G(jwo)* —7 >0
Im G(](.Uo) =0

which of course has the solution y* = |G(i00)|? = 4.

The next example is also simple but illustrative. It will will be continued
in the next section



Gy Ay

A, Gy

Figure 3. System in Example 1 and Example 2.

EXAMPLE 2

Consider the system in Figure 3, where G, G2 € RH, and where A; and A,
are linear time-invariant uncertainties satisfying ||A1l/eo < 1 and [|Az]|e < a.
The system can equivalently be described as in Figure 1 with A = diag(A1, A)
and

0 Gl] R
G = € RH2*?
[Gz 0 *°

We want to find a bound a* such that the system is stable if @ < a*. Such a
bound can be obtained by solving the primal in Theorem 3 with the following
choice of II5(7)

A (y) = {diag(e1, 22, —21, —722) 2k > 0,k = 1,2}
and then use o* = 1/4/9*. It is easy to verify that

Ia(7)® = {Z € 884|211 — 233 > 0, 222 — Y744 > 0}
The dual in Theorem 3 can be written

supy subject to
dwp € [0,00], 211,222 > 0, 211 # 0 or 232 #0, s.t.
D : { 225|G1(jwo)|? — z11 > 0

211|Ga(jwo)|® — Y222 > 0
which can be further simplified into

sup |G1(jwo)Ga(jwo)l?

wq €[0,00]

Hence the dual objective is equivalent to ||G1G2||2, This result is of course
expected. We will see in the next section that when we consider the same
problem with time-varying parameters §; and 63 then two frequencies will be
involved in the dual.

Remark If we allow A;, Ay to be time varying with arbitrary slow rate
of of variation then the primal in Example 2 is also a necessary condition for
stability, see [17].



4. Constant Multipliers

We will in this section give a similar result as Theorem 3, with the multiplier
assumed to be a constant matrix from the closed convex cone

Ma(7) = {¥: ¥ € ¥a(7)}

It is assumed that $A(7) is a closed convex cone for all ¥ € R, which satisfies
the following assumption.

Assumption on Ua(y): If v2 > 71, then V¥; € ¥a(71), there exists
Ty € Tp(7y2) such that ¥; > ¥,

THEOREM 4

fy =
by S%P‘Y

where the primal and dual constraints are defined as

(3T € Ta(y), such that

P=<[G0wq*T[GUw)
7 I
(dwy,...,wN € [0,00], Zr=2;>0, Zp#0, s.t.

b liv:Re [G(j“”“)] 7 [G(jw")]* € Ua(7)®
k=1

] <0, Ywe€]0,o00]

I I
where N < dim(%a(y))+ 1, and
Ua(1)® = {2 € ™™ (¥, Z)p 20, VY€ Ua(7)}
Furthermore, if 0 & i ¥5(7), then N < dim(¥a(7))-
Proof This theorem is a special case of Theorem b in the next section. [J

ExAMPLE 3

Consider again the system in Figure 3 but now when §; and §; are time-varying
parameters satisfying |8;(t)| < 1, V¢ > 0 and |82(t)| < e, V& > 0 respectively.
Again, we search for the smallest a* such that the system is stable if a < a*.
By solving the primal in Theorem 4 with

¥a(7) = {diag(z1, z2, —21, —Y22) |2x > 0,k = 1,2}
we get the bound a* = 1/4/9*. It is easy to verify that

Ua(7)® ={Z € 83%* |211 — 233 2 0,220 — V244 > 0}
Since N = dim(Pa(y)) =2 and 0 ¢ ri ¥a(7), we get

supy subject to

Jwy,ws € [0,00], 2}, 239, 231, 23 > 0, not all zero, s.t.,
D : ¢ 235|Ga(jwr)” — 211 + 735|G1(jws)|? — 2y 2 0 (5)

211 |Ga(jwr)|? — vz35 + 22|Ga(jwa)|? — 7235, 2 0



Now choose w; and wy such that |Gy (jw1)| = ||G1]|ee and |G2(jw2)| = ||G2||co;
respectively. Then the constraint in (5) can formulated as

G oo . G Jw
< MGl [, + uieationt - i - 1S20)E

S hti, 1l

This implies that v < ||G1]/%,||G2||%,. Furthermore, we obtain equality by
choosing zh = z2, = 0. Hence we have shown that the dual objective is

* = ||G1]|%,]|G2l|%, and furthermore that the dual optimization problem
involves two frequencies unless the norms ||G1||cc and ||G2||« are obtained at
the same frequency.

Remark If we instead consider two time-varying operators A; and A,
with arbitrary time-variation, which satisfies [A;]| < 1 and ||As|| < @, then
the primal in Example 3 is also a necessary condition for stability, see [13],
[17].

5. Mixed Multipliers

We will in this section derive the dual of robustness problems involving both
frequency dependent multipliers and constant multipliers. More precisely, the
multipliers involved are from the closed convex cone

Ma(y) = {IT+ ¥ € RLZ™™ : 1I(jw) € Ta(7),Yw € [0,00], ¥ € Ta(7)}

where IIa (7) C SZ™X™ and ¥a(y) € SZ™**™ are closed convex cones for all
v € R, satisfying the following assumptions.
Assumptions on II5(y) and ¥4(y):

1. If ¥3 > 71, then VII; € IIo(71), there exists II, € IIa(7y2) such that
H1 > Hz.

2. If y3 > 71, then V¥, € ¥a(71), there exists ¥y € Wa(y2) such that
U, > U,

Next follows the main result in this paper.

THEOREM 5

-
infy =supy

where the primal and dual constraints are defined as

3T € U, (y), IT € RL2™*?™ such that
M(jw) € Ma(y), Yw € [0, 00]

[G(;W)

P:
] (I1( )+‘1:)[ (e )]<0, Vw € [0, oo]



'le,... ,WN E [0,00], Zy =2y 20, Zy £ 0, s.t.

[G(jwk)] Z [G(jwk)

" ; ] € Ta(7)°®

$° e[ 0099 5, [ €M) c e

Lt I I

where N < dim(%A(y))+ 1 and

a(7)® = {Z € $2™X™ (I, Z)g > 0, VIIeTa(y)}
Ua(7)® = {Z € 2™ |(T,Z)g >0, V¥ eUa(y)}

Furthermore, if 0 ¢ ri Ua(7), then N < dim(¥®a(7))-

Proof The case when dim(¥a(y)) = 0 is treated in Theorem 3 so we may
assume that dim(® (7)) > 0. The proof is based on an idea in [17] and [16].
For given w € [0, 00| we define

C.(v)= {T €Tup(y):IML € Ia(y), s.t. Ma(w)(IL + ) < 0}

where Mg (w) : S3™*2™ s ST**™ denotes the linear operator defined by

6]’ )]

M(w)Il = [ I 1

for any II € 8¥™**™ and w € [0,00]. We note that C,(7) is a convex set.
The proof is based on the following two statements, which are proved in the
appendix.

(i) We have

7" =infy = sup gl
P nue[o,oo]CW('Y)=0

(ii) Nyefo,00)Cw(7) = B if and only if there exists at most N = dim(¥a(y))+1
frequencies wy,...,wy € [0,00] such that N, Cy,(v) = 0. Further-
more, if 0 € ri ¥o(7y), then N < dim(¥a(7)).

From statement (i) and statement (ii) above, it follows that v < y* iff there
exists at most N frequencies wyq,...,wy such that the convex sets

P = {(Mg(w1)(y + ¥),..., Me(wn)(Iy + ¥)) : i € Ta(y), ¥ € Ta(y)}
Q= {XES;"X"‘:X<O}N

are disjoint. By the separating hyperplane theorem this is equivalent to the

existence of a nonzero N-tuple (Z1,...,2Zn) € (ST*™)N | such that
N
> Xk, Ze)e 20, Y(X1,...,XN)EP (6)
k=1
N
Y ( Xk Zr)g <0, ¥(X1,...,XN)EQ (7)
k=1

10
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Figure 4. Process model of car suspension.

It is clear that for (7) to hold we need Z; > 0,for k=1,...,N.
The condition in (6) gives

N N
Z <MG(wk)Hk1 Zk)c + Z (Mg(wk)lIJ, Zk)C =
1 k=1

B
1

M=

£
||
-

N
(T, M (wk)* Zk) o + ‘I’,ZRGMG(wk)XZk> >0
k=1 R

for all II, € A (y) and for all ¥ € ¥A(y). Hence,

[G(];Uk)jl Z [G(J'I“’k)]* €Ta(y)®, k=1,...,N

N . . *
( P
ZRe [G\ka)] 7z, [G(-’wk)] c ‘I’A(‘)’)GB
k=1 I I

and the theorem follows. O

6. Example

In this example we investigate the performance of the suspension of a simple
car model. We will follow the approach in [6] for obtaining a simple model of
the system. Figure 4 shows one fourth of a car with one wheel and the car
suspension equipment consisting of a nonlinear spring with nonlinear spring
constant k(-) and damping ratio d. Below follows a list of notation for this
example

11



” Notation ‘ Explanation ”

p(t) spring length

q(t) road profile

Do unsprung length of spring
m mass of car body

g 9.81m/s?

k nonlinear spring constant

d damping ratio of the spring

The differential equation describing the length of the spring p(t) due to the
road profile ¢(t) is

m [B(t) + §(t)] = —k(p(t) — po) — dp(t) — mg

and is valid as long as the car has contact with the road. In order to obtain
a state space equation we use the states z1(t) = p(t) — p°, and =z,(t) = %"‘tl,
where p° is the stationary value of p(t) when g(t) = 0. We assume that
k(p(t) — po) + mg = k(z1(t) + p° = po) + mg = ki[ey + ¢(x1)], where ¢ is a
nonlinear function satisfying kminz? < ¢(z)z < kmaxz?, Vz € R.

The mass of the car is uncertain due to varying load. It is assumed that
m € [m,m]. We let the nominal mass be mo and we define m by the relation

1 1
—=—+a
m my

where mg = 2mm/(m + ), § € [-1,1], and a = (M — m)/(2mm).
With the state z = [21 23 ]T and output z as the normal force acting on
the compartment, we get the following model for the system

[2] - [i[—kz[ml +m<;(w1)] = dmz]] " [—01] e(t) (8)
2(t) = ki(21(2) + ¢(21(t))) + dea(2)

where e(t) = %%;1 is regarded as a disturbance to the system.

The system in (8) is equivalent to the system in Figure 5 where the non-
linearity ¢ and the uncertainty § are collected in a perturbation matrix. This
system is equivalent to the system in Figure 1 with

G = starp(Q, H)
0
A= [¢ ]
0 6
where starp(+, -), denotes the Redheffer star product defined as, [19] and [15]

Fi(Q, H11) Q12(1 — H11Q22) 1 Hy,y

Starp(Q’ H) - [Hzl(I - Q22H11)_1Q21 Fu(H’ sz)

where

F(Q,Hi1) = Q1 + QuzHu1(I — Q22H11)7'Qm

12



I S e -

Figure 5. Transformed system.

and
Fy(H,Qa3) = Haa + Ha1Q22(I — H11Q2) ' Hyy

H and @ are defined as

0 0 1 0 0
—k 0 —k —d O
! ! 02 Q12
H=| 0 0 0o 1 o0 Q= g G
0 1 0 0 -1 g e
| B 0 B 4 0 |

Qiz=[I. 02], Q2= , Qa2 = diag(0,1/mg, s I5)

o O o =
o o a8 O

We are interested in study worst case L, performance of the system above
subject to the nonlinearity ¢ and the mass uncertainty §. We assume the
following normalized parameter values, k; = 1, d = 0.2, kpnin = —0.1, kpax =
0.1 and m € [0.8,1.2]. In this case G € RH3X3. A bound for the induced L;-
norm of the system is given as /7, where v* is the solution to the following
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Ro(s) | So(s) | 4 |
i 1 UNFEASIBLE
1 | Ritz(0.2,1) 14.64
1 Ritz(5, 1) 14.64

Table 1. Numerical results for the primal optimization problem in the car sus-
pension example.

convex optimization problem

infy subject to
39 € ¥a(y),II € RL2™*?™ such that
O(jw) € Ta(y), Yw €0, 0]

P
G(jw)1* G(j
[ (;“’)] (l'[(jw)+'§[’)[ (}w)]<o, Yw € [0, 00]
where
(70 0 0 0 0 0] )
0 z 00 jy O
0 0 00 0
TIa(y) = { ey " z,yecR,z2>0)
0 —jy 0 0 —= O
(Lo o oo o0 o] )
and
([0.1%z;, 0 O 0 0 0 1 )
0 0 0 0 0 0
Taly)= 0 0 2z, 0 0 O Sol
= T1,29 >
A 0 0 0 -z 0 0 L
0 0 0 0 0 0
L L 0 0 0 0 0 —vyzy | ]

A solution to the primal can be obtained as suggested in [9]. The idea is to
restrict the search of the frequency dependent multiplier to a finite dimensional
subspace. Let z(jw) = R*(jw)UR(jw) and y(jw) = VS(jw) - S*(jw)V7T,
where R € RHYX!, § ¢ HYX! are basis multipliers and where U € RN
satisfying U = UT > 0andV € RIXM yre the corresponding coordinates. The
resulting optimization problem can be transformed into an LMI optimization
problem. We obtained the solution in Table 1 using LMI-lab, [5], where

n1T
thz(p,n):[l SRR %ﬁ)%]

No higher order basis functions gave smaller primal objective value. Does
this mean that the last two basis function in Table 1 are close to optimal? We
will use the dual in Theorem 5 to investigate this question.
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In order to solve the dual for the car suspension example we need to de-
termine the cones ITa (7)® and ¥ (7)®. It is simple to verify that

Oa(7)® ={Z2 € 85°:  Zyy— Zss >0, Im Zy5 = 0}
Ua(7)®={Z2€857%: 01211 — 244 >0, Zzz—7Zes >0}

We have dim(¥a(y)) = 2, which means that we can formulate the dual for
the car suspension example as

supy subject to
(Jwy,ws € [0,00), Z1, Zy € S3*3, such that
Z4,29> 0,2, #0

Hy(jwr) ZpHy (jwi) — Hs ZRHY >0, k=1,2
! Im {Ho(jwy)ZrHE} =0, k=1,2

2
> " Re{0.1°Hy (jwi) 2 Hi (jwr) — HaZpHi} > 0
k=1

2
> " Re{Hs(jwk) ZrH3 (jwr) — YHeZrHg } > 0
\ k=1

where

Hy=[G11 G2 Gis]
Hy =[Gy G2 Gas)
H3 =[G31 G3z Gas]

Hy=[1 0 0]
H;=[0 1 0]
He=[0 0 1]

This optimization problem can be transformed into an LMI optimization prob-
lem involving real matrices and NV algebraic conditions, which corresponds to
the constraints Im {Hz(jwk)ZkHsT} =0,k=1,2.

With only the frequency w; = 0.91 in the dual optimization problem, we
get v* = 14.60 and

0.1491 —0.1230 0.1020 0 —1.4879 0.0081
Zy ~ | —0.1230 14.9706 —0.1650] +1 [ 1.4879 0 1.0122
0.1620 —0.1650 0.0704 —0.0081 —-1.0122 0

It is easy to verify that Z; satisfies the conditions for the dual and we see that
the dual objective v* = 14.60 is very close to the value of the primal objective
v* = 14.64. This shows that the chosen basis are indeed close to optimal.

7. Conclusions

We have derived duality results for obtaning bounds for robustness analysis.
Several examples have shown its applicability for simple cases.
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8. Appendix

This section contains the proofs of statement (i) and (ii) in the proof for
Theorem 5.

Proof of statement (i) The next lemma is the main tool for the proof of
statement (i). We will use functions from the the Banach space B™X™ defined
as

DEFINITION 1
Let B™*™ be the Banach space of n X n complex valued functions that are

bounded on the extended imaginary axis and satisfy X (—iw) = X (jw) for all
w € [0, 00]. We define the norm on B™*™ as || X ||z = sup,¢[o,00] Tmaz(X (Jw)).
g

Note that RL C B.

LemMa 1
Given G € RHTX™ ¥ ¢ S3™*2™ and v € R, then the conditions

[G(;'W)

M(jw) = O(jw)* € Ha(y), VYw € [0, 0]

]*(H(jw) + ) [G(j“’)] <0, Ywel0,o0] "

are satisfied by some II € B2™X?™ if and only if they are satisfied by some
I ¢ RLZmX 2m
ok .

Proof: The sufficiency is trivial. For the necessity we transform the condi-
tion in (9) to the unit circle. For this we use the M&bius transform ¢(z) =
(z—1)/(z+1). Let G(z) = G(1(2)), II(2) = T(3(2)), and let the affine map
H be defined as

@(ej“’)

I ]

me) = [0 i)+ 0 [

for any I € B*™*2™, Consider the convex set
¢ = {Te B . B1)(e) <0, Ti(e) = fi(el*)” € Ma(r); Vo € 0,71}

By assumption there exists a function II € C. We will show that it is possible
to construct from II a function IT € RL2™*2™ which is in C. Then the lemma
follows.

Since G is continuous on the unit circle it follows that every & € [0, 7] is
contained in an open (as a subset of [0, ]) interval I such that

[@(;"‘”)]* (fi(e®) + ¥) [a(;jw)] <0, Ywel,

Compactness of [0, 7] implies that there exists a finite number of such intervals
Ip,,- .- ,I5, that cover [0, n]. It is no restriction to assume the following

1. f[(ejak) is in the relative interior of IIo(y),for k=1,...,N.
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2. Wy = 0 and Wy = 7. Since, @(ejal),a(ejal") € R™*™ it then follows
that it is no restriction to use II(ei®), II(e/@N) € SZ™*2™,
3. I;,nI;,,,=0,fork=1,..., N -2

W2

Let us now define the intervals I, and Jy as

I = Iak\(IalH-l Ul 1)
Jr = (ak,ﬂk) I L D I3

Wrt1

It is then clear that the continuous function ﬁc defined as

ﬁ(eja"), w € I}
ﬁc(ej“’) = aﬁ(ejak) +(1- a)ﬁ(ejaHl), w=aor+(1—a)br € J
M (e-v), w € [-7,0)

is in the relative interior of I (v), for all w € [0, 7].
Next, let us define

fin(e) = 5= [ Bu(eX) (X0t (10)

where the Fejér kernel K, is defined as

m

m+1l—-n
Km(Z): E Tl:l—z

n=—m

It is easy to verify that ﬁm(e_j“’) =1 I, (ei), and since IIA(7y) is a closed
convex cone, and by the properties of the convolution integral in (10), it follows
that I, (ef) = i (e7?)* € Ta(v), for all w € [0,7]. We note that i,
corresponds to the rational function

fm(z)= Y T,z
where
~ m+1— _
N 1-[ 3¢ Jn('d RZmXZm
27r(m + 1) — (e”)e Ce

From Fejérs Theorem it follows that i, — II, uniformly on the unit circle as
m — 00, see for example [22]. In other words, since Il = = TL.(y~Y(s)) is in C,
it follows that the function TI(s) = IL, (%~ 1(.s)) € RL2™X?™ 3ls0is in C if m
is taken large enough. O

Tt is clear from Lemma 1 that ¥ < 7* implies that Nye[0,00]Cw(Y) = 9. Fur-
thermore, it follows from the assumptions on ITx (y) and ¥ (y) that if y > v*
then NC, # 0. This means that the condition NC,, = § implies that 7y < v*,
and statement (i) is proved.
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Proof of statement (ii) We first reduce the number of frequencies to
N = dim(®a(y)) + 1. This part is proven exactly as in [17]. We give the
details for completeness. For any ¢ > 0 and p > 0, define the compact convex
set Cy(7,€,p) as

Cu(7,6,9) = {¥ € Ta(7) : Mo(w)(I + ¥) < eI, T € Ma(7), [T < p, [¥] < p}

Next assume that NCu(y) = 0. Since Cu(7,€,p) C Cu(y) it follows that
NCy,(7,€,p) = 0. By Helly’s Theorem there exists N distinct frequencies
wy,...,wy € [0,00] such that

mg:léwk(%eap) =0 (11)

Take sequences {¢;} — 0, {p;} — oo and let w,‘; be corresponding frequencies
such that (11) holds for all i. By compactness of [0, 00] there exists subse-
quences {&;;} \, 0, {p;;} /* 00 and {wi} — wp.

Assume that r‘lﬁ’:lC’wg('y) is nonempty, i.e. there exists ¥y € ﬂiv:leg('y).
By continuity of G € RHT*™, there exists &g > 0, po < 0o and 6p > 0 such
that for k=1,...,N, ¥4 € C.(7, €0, po), Yw € [wl — o, w) + o).

Choose index j such that &;; < €0, pi; > po and wi" € [wp — 8o, wd + o),
then ¥ € nszlé i (7,85, P35) = 0, which is a contradiction. Hence, it follows

Wi

that NI, Cup (7) = 0. The reversed implication is trivial.

Next assume that 0 ¢ ri Ta(y). We will now use this assumption to
show that the existence of N 4+ 1 = dim(%¥4(7)) + 1 frequencies wy, such that
ﬂszﬁIka (v) = 0 is equivalent to the existence of a subcollection consisting of
N frequencies wy; such that ﬂf’:lcwkj (y) = 0. The sufficiency is trivial. For
the necessity we can assume that C,, (y) # 0, since otherwise the result is
obvious. Note that if ¥ € C,,(7), then a¥® € C,,(7) for any a > 0. By this
and the assumption that 0 ¢ ri () it follows it is no restriction to fix one
element in ¥4 () to 1 or —1. We have now reduced the dimension on ¥a(7)
by one and the result follows from Helly’s Theorem.
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