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Public Summary 

Diabetes is a chronic disease defined by blood sugar levels above the normal. It is 
avery concerning disease to every individual at any age especially when diagnosed 
at a late stage and accompanied by serious complications: decrease in kidney 
function, eyesight changes, brain and heart conditions. Usually, patients pass with a 
pre-diabetic phase, characterized by an increase in body weight, water retention and 
in many cases increase in blood pressure, before they are diagnosed with diabetes. 
This clinical presentation is known as metabolic syndrome.  

Blood sugar is regulated by insulin hormone secreted from the beta cells of the 
pancreas in response to food intake. When insulin binds to its receptors on the cells 
it facilitates sugar uptake by the cells which maintains blood sugar levels within the 
normal range. Other body systems, including the endocrine, nervous and immune 
systems, interact and affect the regulation of blood glucose.  

Traditionally, patients are classified into two main groups: type 1 diabetes (T1D) 
and type 2 diabetes (T2D). T1D is usually diagnosed with diabetes at a very early 
age and insulin therapy is required for survival. T2D patients are diagnosed at a later 
age and antidiabetics other than insulin are used to control their blood sugar level. 
Diabetes patients, especially within the T2D group, vary in their blood sugar control, 
response to anti-diabetic medications and risk of diabetes complications.  

In a recent study conducted in southern Sweden, 14000 adult individuals were 
enrolled in the All New Diabetics In Scania (ANDIS) cohort. The assessment of 
diabetes was done based on fasting blood glucose level conjointly with body mass 
index (measured by the individual’s body weight and height), age, glycated 
haemoglobin blood level (a type of sugar-related haemoglobin), insulin resistance 
(the uptake of glucose by body cells in response to insulin after a meal) and insulin 
secretion (when and how much insulin is released after a meal). Based on the results 
of this study, diabetes was classified into five new subtypes1. These newly defined 
subtypes differ in their start time of diabetes, control of blood sugar levels, and in 
their risk to develop diabetic complications. This new subclassification has been 
reproduced in several ethnicities including Finnish, Indian, and Chinese diabetic 
populations. 

In this population-based project, individuals within each diabetes subtype were 
compared to patients without diabetes to explore the relationship between diabetes 
and genetics. Family history was determined using two approaches; patient self-
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reported questionnaire and genetics. The genetic association analysis was performed 
using the genotypes of the individuals and genetic risk scores; these are scores 
calculated for every individual in both cases and controls. Genetic analysis of kidney 
complications was performed in the subtypes using estimated glomerular filtration 
rate (eGFR) as an assessment of kidney disease. The results of the genetic analysis 
were reproduced in the Finnish cohorts and were combined in a meta-analysis. 
Protein profile analysis to determine the association of biomarkers (proteins) and 
their pathways with the subtypes was performed using the blood levels of 1161 
proteins from 176 individuals of the SIDD, SIRD, MOD, and MARD subtypes.  

The following is a brief description and summary of the findings in each of the 
newly defined subtypes.  

The first subtype, Severe Autoimmune Diabetes (SAID), included 6% of the 
patients. The family history of T1D plays an important role in this subtype. The 
immune system of these patients creates antibodies against the pancreas protein 
GAD, leading to a decreased function in the pancreas. These patients are 
traditionally referred to as T1D and LADA (Latent Autoimmune Diabetes in 
Adults), diagnosed at relatively early age, lean body weight, their insulin blood level 
is low and thus they have poor control on their blood sugar level. In this project, 
SAID was significantly associated with HLA gene variants. HLA is known to be 
associated with autoimmune diseases (where the body's immune system attacks its 
organs). These results were expected as the immune system plays an important role 
in the development of this subtype. As expected, T1D genetic risk scores were 
strongly associated with this subtype. Insulin is often the first-line therapy to gain 
control of blood sugar in SAID patients. 

The second subtype, Severe Insulin Deficient Diabetes (SIDD), included 18% of the 
patients. Family history of T2D plays an important role in this subtype. Usually, 
patients present with very high blood sugar levels, yet they do not have GADA 
antibodies. These patients have poor control of their blood sugar and are at a high 
risk to develop diabetic eye problems, that can progress to blindness if left untreated, 
and nervous system problems. In this project, we could show that SIDD is 
genetically similar to T2D and not T1D. The protein profile for SIDD showed an 
association with leptin and leptin receptors. Our results suggest that patients in this 
subtype could benefit from this new subclassification and get insulin at an early 
stage to improve their blood sugar and protect them against serious eye problems.  

The third subtype, Severe Insulin Resistant Diabetes (SIRD), included 15% of the 
patients. Family history plays a less strong role in this subtype. Usually, patients are 
diagnosed at a later age and suffer from increased body weight. These patients are 
at a high risk of developing kidney disease, fatty liver, serious heart, and brain 
diseases. In this project, strikingly, SIRD was not associated with the well-known 
T2D associated TCF7L2 gene variant. Additionally, the T2D individual risk scores 
showed a smaller association compared to other subtypes. These results could 
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suggest that SIRD individuals are genetically different from T2D and that the 
pancreas has a minor role compared with other subtypes. Fasting insulin risk scores 
showed a unique association with SIRD, this reflects the insulin resistance in this 
subtype. Insulin resistance is a condition where blood sugar levels are high because 
of the lower response of the cells to insulin. In contrast to SIDD and MARD, kidney 
complication genetic analysis in SIRD did not show association with the well-
known PDILT-UMOD gene variants instead showed unique association with 
variants in the CTNNA2. This finding suggested that the development of DKD in 
SIRD has a different mechanism than the other subtypes. Protein analysis showed 
association with proteins associated with elevated blood pressure and inflammation. 
The results suggest that SIRD patients are genetically different from other subtypes. 
Patients in this subtype, have to get their liver and kidney functions monitored to 
protect or delay serious diseases. 

The fourth subtype, Mild Obesity-related Diabetes (MOD), included 22% of the 
patients. Family history of T2D is common. Patients within this group present with 
increased body weight and poor blood sugar control. The study revealed that this 
group has the least risk to develop diabetic complications (kidney, liver, and heart). 
In this study, genetic variants in the LRMDA gene specifically increased the risk of 
developing the MOD subtype.  

The fifth subtype, Mild Age-Related Diabetes (MARD), included 39% of the 
patients. As its name implies, these patients are diagnosed with diabetes at a later 
age and have relatively good control of their blood sugar. Family history plays a 
minor role in this subtype and they are at low risk to develop diabetes complications.  

This new subclassification of diabetes has identified three high-risk subtypes of 
diabetes that mandates prompt interventions by the healthcare professionals to 
design a personalized follow-up and treatment strategy that will improve the 
patient’s quality of life by better control of blood sugar, earlier identification of 
diabetes complication and implementation of suitable therapies to delay or prevent 
complications. This new subclassification empowers the development of new 
medications for diabetes. Let us all together make the world a better place for 
ourselves and the new generations. 
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Introduction 

Section I: Diabetes 

Diabetes is a chronic disease characterized by elevated blood sugar above 
homeostatic level. The prevalence of diabetes is expected to rise from 8% in 2011 
to 10% in 2030 leading to a greater burden on the healthcare budget and society7-9.  

Traditionally, the well-known diabetes types are T1D and T2D, monogenic 
diabetes, and gestational diabetes10-12. The clinical diagnosis is based on the blood 
level of a single variable, blood glucose. Common risk factors for developing 
diabetes and diabetes complications, highlighted in many research studies, include 
family history, body mass index (BMI), age, physical activity and stress13-37.  
Mechanisms underlying the pathogenesis of T1D include reduced insulin secretion 
due to autoimmune reactions against pancreatic beta cells38-41. On the other hand, 
the interplay between pancreatic insulin secretion and reduced insulin sensitivity, 
essentially in the liver, skeletal muscles and adipose tissue, play a central role in the 
pathogenesis of T2D42-47. 

The heterogeneity of T2D is reflected in its pathophysiological complexity, an 
orchestra of the main body systems and the pancreas, insulin system, and their effect 
on glucose homeostasis15,48-52. The following is a summary of the journey of glucose 
within the human body in the fed and fasting state. A fascinating tour to get an 
overview of diabetes. 

Glucose transporters 

The glucose uptake in body cells is via glucose transporters that are classified into 
two major families; glucose transporters (GLUTs) and sodium-glucose 
cotransporters (SGLTs). GLUTs are facilitated transport proteins encoded by the 
solute carrier family 2 (SLC2) genes53. SGLTs are encoded by solute carrier family 
5 (SLC5) genes and are facilitated transporters of both sodium and glucose at the 
same time. SGLT1, SGLT2 and SGLT3 are expressed in the small intestine, renal 
tubular cells, and skeletal muscles respectively54. 
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Pancreatic beta cells and insulin secretion 

Pancreatic beta cells are the only producers of insulin hormones. In obesity, beta 
cell mass increases by 50%. In T1D, cytokines, and chemokines released by 
aggravated immune cells in the islets; macrophages, and T-cells accompanied by 
apoptotic signals, attack the pancreatic beta cells, decreasing the beta cell mass 
leading to the need for life-long insulin therapy55-57.  

Insulin secretion is an electrophysiological process initiated by beta cell sensors of 
blood glucose level and the cytoplasmic beta-cell metabolite concentration of 
glycolytic products; glyceraldehyde 3 phosphate and adenosine triphosphate to 
adenosine diphosphate (ATP/ADP) ratio. Glucose enters the beta cells by GLUT1 
facilitated transport. In the cytoplasm, glucose is anchored by two irreversible 
phosphorylation steps by glucokinase enzyme (GCK), followed by phosphorylation 
by phosphofructokinase. These steps maintain the gradient of glucose across the 
pancreatic beta cell membrane and the cytoplasm enabling the entrance of glucose 
and, to prevent the glucose from leaving the cell, thus decreasing the blood glucose 
levels. Closure of the ATP potassium voltage-gated channels in response to 
ATP/ADP ratio initiates an action potential, where calcium influx through L-type 
calcium channels initiates the exocytosis of insulin from beta cells58-62.  

 

1. In the Fed state  

Insulin receptor and glucose uptake 

Once released in the blood, insulin binds to the transmembrane insulin receptors on 
the body cells to facilitate glucose uptake62,63. The cytoplasmic glucose transporters 
are translocated to the cell membrane to facilitate insulin-dependent glucose uptake. 
Net glucose uptake by the main players, liver, brain, red blood cells, skeletal 
muscles and fat is the rate-limiting factor in the control of the postprandial blood 
glucose levels. In the case of insulin resistance, the glucose uptake is reduced in the 
liver, skeletal muscles, and adipose tissues62,64,65. 

Insulin-dependent glucose uptake 

In the liver, the net glucose uptake is via GLUT2 and is proportional to the 
postprandial hyperglycemia and hyperinsulinemia. The latter is greatly influenced 
by the portal concentration of the lipids and amino acids absorbed from the gut, the 
hepatic portal signal (sympathetic and parasympathetic, hypothalamic AMPK 
phosphorylation), and the arterial portal vein glucose gradient64,66. The skeletal 
muscle is the main blood glucose disposal organ. The glucose uptake depends on 
the translocation of the GLUT4 glucose transporter to the sarcolemma which is 
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greatly influenced mainly by insulin binding to the muscle insulin receptors at rest 
and the synergistic effect of muscle contraction during exercise65,67,68. The net 
glucose uptake by skeletal muscles is greatly affected by the net hepatic glucose 
uptake. In the adipocytes, the glucose uptake is also insulin-dependent via the 
GLUT4 translocation44,65,69.  

Insulin-independent glucose uptake 

Basal glucose supply in most cells is maintained by insulin-dependent glucose 
uptake via glucose transporters GLUT1, to maintain cell functionality. The 
expression of GLUT1 depends on the availability of glucose; hypoglycemia 
increases GLUT1 expression and hyperglycemia decreases its expression. The 
highest expression is in erythrocytes, endothelial cells, and blood-brain barrier. 
GLUT1 in the skeletal muscles, maintain the basic needs of glucose during the 
fasting state. The phosphorylation of GLUT1-glucose by GCK causes feedback 
inhibition of translocation and glucose uptake by GLUT4. The latter can lead to 
decreased insulin sensitivity of the GLUT4 glucose uptake pathway70.  

Adipose tissue 

The quality and quantity of adipose tissue have an influential effect on energy 
expenditure and glucose homeostasis. Adipose tissue has three phenotypes: brown, 
beige and white. The brown (healthy) phenotype is a heat generator characterized 
by high mitochondrial content and is involved in thermogenesis71. On the other 
hand, the white phenotype is the energy storage (toxic monster) and has differential 
deposition, subcutaneous under the skin (WAT) and visceral (VAT), and is strongly 
associated with the development of the metabolic syndrome. The beige phenotype 
is formed by the browning of white adipose tissue and is embedded in the white 
adipose tissue71-74. White adipose tissue releases adipokines (leptin, adiponectin, 
resistin), tumor necrosis factor-alpha and vasoactive substance, that mediates the 
neural, endocrine, vascular and immune effects of the adipocytes.  Collectively they 
play an important role in the development of obesity and diabetes-related micro and 
macro-vascular complications73,75-77.  

 

2. In the fasting state 

During fasting, endogenous glucose is produced by glycogenolysis and 
gluconeogenesis from metabolic precursors; deamination of amino acids, glycerol, 
and Kreb’s cycle intermediates in response to glucagon hormone secreted from 
pancreatic alpha cells in response to low blood glucose levels. Gluconeogenesis 
takes place in the liver, intestine, kidneys and skeletal muscles78-80.   
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The balance between fed and fasting states is crucial in controlling insulin secretion 
and insulin sensitivity and hence prevention and management of T2D. 

Cell bioenergetics 

Once glucose enters the cell, glucose metabolism and cell bioenergetics are vital 
limiting steps in glucose homeostasis. The balance between glycolysis (anaerobic 
respiration) and oxidative phosphorylation, Kreb’s cycle (aerobic respiration), plays 
an important role in the energy production and output81,82.  

Renal glucose reabsorption 

Renal glucose reabsorption (GR) is the final destination of glucose. In healthy 
individuals, GR is 100% and no glucose is passed in the urine. SGLT2 and SGLT1 
transporters expressed in the early and distal renal proximal tubules contribute to 
90% and 10% glucose reabsorption respectively and have a significant impact on 
blood glucose levels83. 

Additional factors  
Brain, hormones, and blood composition have a critical effect on insulin secretion 
and glucose homeostasis include circadian clock and inflammatory responses52,84-86. 
Melatonin hormone secreted from the pineal gland in the brain to regulate the sleep-
wake cycle reduces insulin secretion. Nocturnal meal intake is unhealthy due to the 
inhibition of insulin secretion by elevated melatonin87,88. The peripheral clocks of 
skeletal muscles are greatly affected by physical activity and play an important role 
in the regulation of blood insulin levels89-92. Hypothalamic Pituitary Adrenal (HPA) 
axis dysregulation and metabolic memory are vital modulators of glucose 
homeostasis. Adrenal hormones, epinephrine, and cortisol are key players in the 
HPA93-95. Iron deficiency, so-called anemia, decreases the oxygen-carrying capacity 
of the red blood cells by downregulating the synthesis of hemoglobin (the red 
pigment in RBCs that combines with oxygen molecules at the alveolar gas exchange 
surface to form oxy-hemoglobin) leading to a state of hypoxia (decreased oxygen 
levels in the cells). Moreover, anemia has a negative effect on Kreb’s cycle enzymes 
and the mitochondrial energy production leading to a shift in the balance toward the 
glycolytic pathway, thus affecting glucose metabolism and homeostasis96-98.  

Insulin resistance, obesity, & metabolic syndrome 

Insulin resistance is a progressive condition and the severity depends on the duration 
of the condition45. In the beginning, the glucose uptake decreases due to decreased 
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insulin sensitivity in the main organs; liver, skeletal muscle, and adipose tissues. 
This results in elevated post-prandial blood glucose levels, leading to an increase in 
pancreatic insulin secretion, hyperinsulinemia, and insulin-mediated lipogenesis. 
Later on, the pancreatic insulin secretion decreases and cannot compensate for the 
reduced glucose uptake and hyperglycemia leading to decreased insulin-mediated 
gluconeogenesis suppression, and impaired free fatty acid oxidation in the liver.  As 
a consequence, there will be an increase in the overproduction of hepatic 
endogenous glucose as well as an increase in ectopic hepatic fat deposition (visceral 
fat) and development of non-alcoholic fatty liver disease (NAFLD), de novo 
lipogenesis and dyslipidaemia, leading to the increase in subcutaneous white 
adipose tissue and development of obesity4,99. At this prediabetic stage, metabolic 
syndrome develops characterized by visceral adipose tissue, insulin resistance, 
dyslipidemia, and hypertension induce inflammatory responses that counteract the 
anti-inflammatory role of insulin leading to elevated cytokine secretion and chronic 
low-grade inflammation100. Finally, the pancreatic insulin secretion decreases to an 
extent where there is persistent hyperglycemia and the development of diabetes. 
Diabetes accompanied by metabolic syndrome increases the risk for atherosclerosis, 
macrovascular and microvascular complications of diabetes6,101,102. The prevalence 
of NAFLD is 50-75% in T2D diagnosed by ultrasound4. In the case of insulin 
resistance, bioenergetics’ balance is shifted toward the glycolytic pathways leading 
to less energy production and reactive oxygen species formation (ROS) in 
macrophages and monocytes promoting inflammation and vascular 
complications103-105. Insulin resistance in skeletal muscle leads to mitochondrial 
dysfunction and decreased mitochondrial capacity, which increases the glycolytic 
to the oxidative capacity of the cell and the net energy production is eventually 
diminished106,107. Additionally, insulin resistance causes an increase in the 
proinflammatory cytokines and their anti-erythropoietic effect leading to apoptosis 
of immature RBCs and hence decreasing the hemoglobin, causing anaemia30,108 
Hyperinsulinemia increases the expression of SGLT2 in response to the glucose 
load in the kidneys83,109,110. Despite this, in the case of diabetes, glucosuria is 
manifested.111 Diabetes and diabetic complications are the major consequences of 
poor glycemic control. 

Glycation  

Glycation  is the non-enzymatic glycosylation of proteins due to persistent high 
glucose levels in plasma and in the tissues. The degree and extent of damage differs 
between cells and proteins. Plasma protein (albumin, globulin, and fibrinogen) 
modification can have serious effects on platelet aggregation, immune system, and 
drug plasma protein binding. Advanced glycation end products (AGEs)  affect many 
body parts, including the heart, eye, lungs, brain, kidney, liver, vascular tissue and 
bones, leading to the development of complications through the cross-linking of the 
extracellular matrix and by binding to the receptor for AGE (RAGE)112-114.  
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Antidiabetic agents 

Insulin is a peptide hormone secreted by pancreatic beta cells. Insulin replacement 
therapy is the first line treatment in T1D, where the pancreatic beta cells are attacked 
by the immune system. Insulin is dispensed in many formulations that differ in their 
drug delivery system and duration of action115. 

Sulfonylureas stimulate insulin secretion by blocking the voltage-gated potassium 
ATP sensitive channels in the pancreatic beta cells, reducing potassium efflux and 
depolarizing the cell membrane along with an increase in calcium influx, the net of 
which is an increase in insulin secretion. Sulfonylureas differ in their onset of action 
and their duration and elimination. An important consideration during sulfonylurea 
therapy is their elimination route (liver, kidney function) and their increased risk of 
life-threatening hypoglycaemia116.  

Meglitinides act in the same way as sulfonylureas. They bind to a different site on 
the ATP-voltage gated potassium channel and enhance insulin secretion but has a 
weaker effect, hence they do not cause life-threatening hypoglycaemia117. 

Biguanides, available as Metformin, is a non-sulfonylurea and is the most common 
first-line treatment in T2D alone or in combination with other antidiabetic agents. 
Metformin does not act on the pancreatic beta cell’s insulin secretion, instead, it acts 
at the insulin binding receptors and thus increases insulin-dependent glucose uptake 
in the tissues. In the liver, it decreases gluconeogenesis. The dual effect leads to a 
gradual decrease in blood glucose levels without causing life-threatening 
hypoglycaemia118-121. 

Alpha-glucosidase inhibitors are competitive and reversible inhibitors of the 
intestinal alpha-glucosidase enzyme. The alpha-glucosidase enzyme is responsible 
for carbohydrate digestion in the intestine, so the inhibitors slow the digestion and 
delay glucose absorption resulting in a gradual rise in postprandial blood levels122.  

Incretin mimetics are incretin hormones, receptor agonists. Incretins are metabolic 
hormones secreted from the gut in response to glucose. The antihyperglycemic 
effect of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP) is by 
their collective effect on pancreatic beta-cell insulin secretion, pancreatic alpha cell 
glucagon secretion, slowing of gastric emptying rate, and appetite suppression. They 
are used to treat T2D alone or in combination with other antidiabetic agents123-129. 

Dipeptidyl peptidase 4 (DPP-4) inhibitors are competitive reversible inhibitors of 
dipeptidyl peptidase enzymes that are responsible for incretin degradation. As a 
result, they increase incretin levels accompanied by an enhanced antihyperglycemic 
effect. Food & Drug Administration (FDA) warning of severe joint pain and risk of 
heart failure are reported side effects130. 

SGLT-2 inhibitors inhibit the renal SGLT-2 proteins responsible for glucose 
reabsorption, thus decreasing blood glucose levels, increasing glucose elimination 
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in the urine. They are beta-cell independent. The major side effect is the increased 
risk of urinary tract infections, fungal infections, and genital infections due to the 
high glucose content131.   

Thiazolidinediones bind to the adipocyte receptor called the peroxisome 
proliferator-activated receptor-gamma (PPARᵞ) and promote fat cell maturation and 
fat deposition into peripheral tissues. They increase insulin sensitivity of the 
peripheral tissues by decreasing circulating fat. They have protective cardiovascular 
effects. Their major side effect is a fat deposition and cosmetic weight gain132,133.  

Vitamins are food supplements. Their additional benefit to T2D is controversial, yet 
some benefits likely exist134,135.   

The potential protective role of Vitamin D in the prediabetic and diabetic phase is 
published in many research studies136-149. 

Vitamin B6 (pyridoxine) is a co-factor in glucose, lipid, and amino acid metabolism. 
It has antioxidant effects against ROS and AGEs, and protective effects against 
progressive diabetic retinopathy.121,135,150 

Antihypertensives are blood pressure-lowering agents, which vary in their 
mechanism of action, usually used in combination with antidiabetics in order to get 
better control over insulin resistance, glucose, and lipid metabolism and manage 
diabetic complications. ACE-inhibitors are antihypertensive agents used to control 
blood pressure in patients suffering from diabetic kidney disease151-155 

Subclassification of diabetes 

Diabetes, especially T2D, is a very heterogeneous disease. Diabetes occurs when 
insulin secretion can no longer compensate for increased insulin requirements due 
to obesity or insulin resistance. Several pathways can lead to this situation.  

Cluster analysis aims to group individuals with similar characteristics into one group 
using a set of variables. Connectivity models (hierarchical clustering) and centroid 
models (k-mean) are the most common methods used for cluster analysis156,157. 

In order to identify more homogeneous diabetes groups, Ahlqvist et al. used k-
means clustering in the Swedish All New Diabetics In Scania (ANDIS) cohort using 
six clinical variables: age at diabetes onset, BMI, GADA, HbA1c, insulin secretion 
estimated as HOMA2B, and insulin sensitivity as HOMA2IR, derived from fasting 
glucose and C-peptide. The clustering identified five clusters of patients with 
different clinical characteristics, disease progression and outcomes1. These clusters 
were replicated in three other Swedish cohorts and a Finnish cohort. The clustering 
has also been replicated in numerous cohorts since. 
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A cross-validation of ANDIS-subclassification was done by Zaharia et al, in the  
German Diabetes Study (GDS) to test comprehensive phenotyping at diagnosis and 
determine the differences in the diabetes-related complications among the clusters 
during 5-years of follow-up158.  In an IMI-RHAPSODY study, clustering using age, 
HbA1c, HDL-cholesterol, BMI, and C-peptide, showed stability of clusters between 
the two cohorts with the identification of an additional cluster characterized by slow-
glycemic deterioration159. The ANDIS subclassification was also replicated in 
different ethnicities; Chinese, Indian, and Mexican160,161. More studies are ongoing 
in different populations.   

The response to medication within the clusters was tested in the ADOPT trial. 
Dennis et al. showed that clusters differed in their glycaemic response and that 
patients in SIRD could benefit from thiazolidinediones and MARD could benefit 
from sulfonylureas162.  

Subclassification of diabetes using clustering serves as a valuable approach 
considering the complex heterogeneity. Clustering diabetes to more homogenous 
subpopulations that differ in their disease profiles has several advantages. First, to 
identify patients at high risk of developing diabetes complications. Second, to help 
optimize the cost-effective allocation of clinical resources to these patients, thus 
improving patients’ health and quality of life as well as complying with the 
constrained healthcare budget. Another advantage of the subclassification is the 
increased statistical power for clinical, genetic, and experimental analysis. Clinical 
parameters that are used for the clustering are easily available and reflect 
pathogenesis underlying the disease as well as the genetic, environmental 
exposures, and response to antidiabetics163. 

The following is a brief description of the newly defined diabetes subtypes based 
on Ahlqvist et al. 2018 (Figure 1). 

Severe Autoimmune Diabetes (SAID), 6% of adult individuals in ANDIS, includes 
GADA antibody-positive individuals. Since this project only included adult 
individuals older than 18 years, juvenile T1D diabetes was not captured. SAID 
includes both T1D (20%) and LADA (80%). Clinically, individuals are 
characterized by early disease onset, low insulin secretion, relatively low BMI, and 
elevated HbA1c levels.  

Severe Insulin Deficient Diabetes (SIDD), 18% of adult individuals in ANDIS. 
Clinically, these individuals do not have GADA antibody, yet are diagnosed by 
relatively early disease onset, low insulin secretion, relatively low BMI, and 
elevated HbA1c levels.  

Severe Insulin Resistance Diabetes (SIRD), in my opinion the most interesting 
subtype, included 15% of adult individuals in ANDIS. Clinically, these individuals 
are characterized by late disease onset, high BMI, relatively low HbA1c levels and 
insulin resistance. 
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Mild Obesity related Diabetes (MOD), 22% of adult individuals in ANDIS, are 
characterized by early disease onset and obesity (BMI >33). 

Mild Age-Related Diabetes (MARD), included 39% of adult individuals in ANDIS. 
Clinically, these individuals present with late-onset diabetes, intermediate insulin 
secretion, relatively low BMI, and relatively low HbA1c levels. 

 

Figure 1. New diabetes subclassification. Panel A shows the classical diabetes types as 
homogeneous diseases. Panel B shows heterogeneity of T2D with each patient being 
represented by the most dominant pathways. Panel C shows how clustering using clinical 
parameters can be used to group patients into groups with different dominant pathways. 
Modified from Ahlqvist et al, Diabetes, 2020. 
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Clustering using genetic approaches 

Clustering has also been used in other approaches. Udler et al used soft clustering 
to group known diabetes risk variants by their association with diabetes-related 
traits. They identified five SNP clusters related to different pathways; beta-cell 
function, proinsulin, obesity, lipodystrophy and liver-lipid. Genetic risk scores 
based on these clusters were used to identify patient groups with extreme 
phenotypes164. These clusters were examined for their association with ANDIS 
subclassification in Paper I of this thesis.  

Mahajan et al. also clustered known diabetes loci by function, identifying SNP 
clusters associated with adiposity, insulin secretion, insulin action, insulin secretion 
– action combined, and impaired lipids. These clusters were also used to construct 
risk scores in Paper I to test their association with the ANDIS subtypes165.  

Section II: Genetics of diabetes  

Monogenic and complex genetic traits  

Monogenic diseases, like MODY and neonatal diabetes, follow traditional 
Mendelian inheritance; one gene is responsible for a certain trait and is passed to 
the next generation in accordance with the Mendelian law of inheritance. Complex 
diseases and traits are caused by interaction between genetic variation in multiple 
genetic loci and the environment. Diabetes, cardiovascular disease, cancer, and 
neurological disorders are examples of complex genetic traits166-168.  

The complex heterogeneity of diabetes is attributed to both genetic and 
environmental influencers. Implementation of multi-omics methods; Genome-wide 
association studies, polygenic risk scores, epigenomics, candidate gene analysis, 
single-cell, and tissue transcriptomics as well as proteomics provide a valuable 
understanding of the heritability, the genetic make-up, and the pathways underlying 
the pathogenesis of diabetes169-171. 

Genetic variation 

Genetic variation is a permanent change in the genetic make-up due to mutations 
and recombination172. Deoxyribonucleic acid (DNA) mutations include point 
mutations usually referred to as single nucleotide polymorphisms (SNPs), 
insertions, deletions, duplications, translocations, and inversions. This genetic 
variation is passed to daughter cells during cell division, mitosis, in case of 
autosomal genetic variation (somatic mutations) or to the gametes during meiosis, 
in the case of germline genetic variation. Acquired mutations are caused by 
environmental factors and are not inherited from the parents173,174. Since the release 
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of the first draft of the human genome sequence in 2003, by the Human Genome 
Project Consortium, this influential project has opened the gate for the sequencing 
of the individual’s DNA, RNA, and proteins. High through-put sequencing 
technologies have been implemented that enables the sequencing of many 
individuals in parallel in a timely, convenient and affordable manner. In the omics 
era, genomics, epigenomics, and transcriptomics are different methods used to 
determine the role of genetics in complex genetic traits172,175. 

Genotyping methods  

Genotyping is a technique to determine the sequence variation at specific positions 
of the genome. Genotyping by sequencing technique is commonly used for genome-
wide association studies (GWAS) and depends on the hybridization with 
complementary oligonucleotides. The quality control of the raw genotyped data is a 
crucial step to ensure the validity of the GWAS results176.  

Heritability  

The narrow-sense heritability commonly referred to as just heritability, is used to 
estimate the proportion of genetic variation that contributes to the phenotype. The 
missing heritability usually refers to the portion of heritability that could not be 
captured by the implemented methods, for example, SNP heritability is an 
estimation of heritability using SNPs. Usually, the set of SNPs is not fully 
representative of the genetic variation, so the estimated heritability will represent 
only part of the true genetic variation177,178. 

In the early phase of genetics, the heritability of a given trait was determined using 
studies conducted on monozygotic identical twins (100% similar genetic-make-up) 
or dizygotic non-identical twins (50% similar genetic make-up) to study the 
influence of environment. The concordance is the probability that a pair of twins 
will have the trait given one has the trait. The discordance means one of the twins 
does not have the trait, this gives valuable information about the influence of the 
environment179,180. 

Heritability of T1D is estimated to be >80%,  most of which is attributed to the HLA 
locus, while in T2D it is 25-80%181. In twin studies, the proband-wise concordance 
rate for T1D was 23-61% while for T2D it was 17.5% in monozygous twins182-184.  

Linkage analysis 

Linkage analysis is based on the principle that genetic sequences that are located 
together on a chromosome tend to be inherited together and not separated during the 
homologous recombination in meiosis. If so, these sequences have genetic linkage, 
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which violates the random assortment assumption for Mendelian law of inheritance. 
In family pedigrees, when markers co-segregate in a certain phenotype, the markers, 
and the phenotype are linked or associated185. 

Linkage studies have been successfully used to identify genetic variants causing 
monogenic diseases, like MODY, but were also used for complex traits before the 
sequencing of the human genome enabled more powerful methods168. In 1996, 
linkage analysis of T1D showed that major histocompatibility complex loci (HLA), 
located on chromosome 6, are genetic susceptibility loci for T1D186-188. For T2D, 
the calpain-10 gene (CAPN10) located on chromosome 2 was identified by genome-
wide screening and positional cloning in 2004189,190. The now well-known T2D 
locus transcription factor 7 like 2 (TCF7L2), was mapped to chromosome 10 in a 
Mexican-American population in 1999, fine mapped in the Icelandic population in 
2006, and has been replicated numerous times in GWAS of T2D191,192. TCF7L2 is 
highly conserved among species, plays a fundamental role in the Wnt/β-catenin 
signaling pathway, and regulates the expression of genes involved in lipid 
metabolism in adipocytes and glucose-induced insulin exocytosis193.  

Candidate genes studies 

Candidate studies are performed for selected genes based on prior information about 
the gene's effect on the trait of interest.  These studies have more statistical power 
to detect the differences between cases and controls because they only test a small 
set of genetic variants but are prone to false-positive findings. Another major 
limitation is the selection bias of genes and pathways of interest194-196.  

Candidate genes studies in diabetes were conducted for beta-cell function affecting 
genes that had substitutions in the protein-coding regions. Insulin receptor substrate 
1 (IRS1), Peroxisome proliferator-activated receptor gamma (PPARG), and insulin 
receptor substrate 2 (IRS2), Wolfram syndrome 1 (wolframin) (WFS1), potassium 
inwardly-rectifying channel, subfamily J, member 11 (KCNJ11), HNF1 homeobox 
A (HNF1A), HNF1 homeobox B (HNF1B) and HNF4A, their association with T2D 
was identified by candidate gene studies194,197. 

Genome-wide association studies (GWAS)  

GWASs determine the genetic variation across the entire genome in the form of 
SNPs and compare the frequency of variants e.g. in cases and controls. Usually, 
GWAS is performed using large sample sizes. Successful GWAS depends on cohort 
selection, quality of genotyping, and imputation of the genetic data.  

In 2007, GWAS caused a revolution in the field of complex genetics. The first 
GWAS studies of T2D identified haematopoietically expressed homeobox (HHEX), 
solute carrier family 30 member 8 (SLC30A8), cyclin-dependent kinase inhibitor 



31 

2A/2B (CDKN2A/2B), insulin-like growth factor 2 mRNA binding protein 2 
(IGF2BP2), CDK5 regulatory subunit associated protein 1 like 1 (CDKAL1) and 
FTO alpha-ketoglutarate dependent dioxygenase (FTO)198-202.   

Following the GWAS revolution, the genetic architecture of T1D and T2D was 
determined in many populations with different ethinicities203-212. Large consortia 
were constructed to increase sample size and perform meta-analysis; DIAbetes 
Genetics Replication And Meta-analysis (DIAGRAM), Meta-Analyses of Glucose 
and Insulin-related traits Consortium (MAGIC), SUrrogate Markers for Micro- and 
macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) and  
DIAbetes Meta-ANalysis of Trans-Ethnic association studies (DIAMANTE) are 
some important examples165,213-215. GWAS of T1D has identified >50 loci associated 
with T1D, revealed pathways underlying disease, and overlap of pathways with 
autoimmune diseases181. GWAS in T2D are of low predictive value yet give 
valuable information about the mechanisms underlying the diseases.  

One of the major meta-analysis studies was published by Mahajan et al. in 2018, in 
Nature genetics165. The study identified 403 T2D associated loci that have been used 
and investigated in this thesis. 

Open access GWAS results repositories are available to get information about 
variants and their associations with T2D, e.g. T2D knowledge portal, GWAS 
catalog, PhenScanner, and open Target Genetics216,217. 

One of the challenges of GWAS is that identified variants that are associated with 
the trait, may not be the causal variants but rather in linkage disequilibrium with the 
causal variants. Further, it is often difficult to determine how the variant affects the 
trait as the variant is often outside coding regions and could affect genes and 
regulatory elements at a distance. Expression data, eQTLs, and Mendelian 
randomization are tools for inference of SNP function. 

In the omics era, there are many facilities to implement in the research of diabetes. 
The incorporation of genetics and proteomics facilitated the discovery of new 
biomarkers to aid the screening and diagnosis of T2D, follistatin, and 
osteopontin218,219. Recently, the development of new antidiabetic agents is based on 
the findings of the omics research220.  

Epigenetics 

Initial epigenetic studies of human pancreatic islet candidate genes for T2D, such as 
INS, PDX1, PPARGC1A, and GLP1R, found that hyperglycaemic induced DNA 
methylation decreased the differential expression of these genes leading to impaired 
insulin secretion.  Recently, findings in the islet’s epigenome revealed differential 
DNA methylation of CpG active sites in GWAS identified genes associated with 
T2D: ADCY5, FTO, HHEX, IRS1, KCNQ1, PPARG, and TCF7L2221,222. Genome-
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wide epigenetic studies in T2D revealed the modifications of genes affected by 
HbA1c, BMI, age, adipose tissue, and exercise223-236. Transcriptomics and 
metabolomics studies in diabetes bridge the gap between GWAS and clinical 
studies. Using RNAseq data from diabetes donors and non-diabetic controls, 
revealed differential expression of transcription regulators of genes affecting 
adipogenesis and some underlying diabetes pathways237. 

Genetics of novel diabetes subtypes 

In the original paper by Ahlqvist et al., I performed a genetic association analysis s 
of ANDIS individuals clustered into the newly defined diabetes subtypes for a 
designed panel of 172 candidate SNPs. The results illustrated in the Venn diagram 
represent the nearest gene of top associated variant’s with each diabetes subtypes 
(p<0.01). Strikingly, there were no genes associated in all the subtypes (Figure 2). 

 

Figure 2. Venn diagram illustrating the T2D associated genes and the top associations with 
the newly defined diabetes subtypes. 
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Section III: Diabetic kidney disease 

Diabetic kidney disease (DKD), presenting as chronic kidney disease (CKD) often 
accompanied by albuminuria, is a major complication in both T1D and T2D. Even 
though DKD in T1D differs from T2D in the onset and prevalence, they share some 
common clinical presentations238. 

Kidney and nephron 

Nephrons form the foundation of the kidney, each consisting of the bowman 
capsule, proximal tubules, loop of Henle, distal convoluted tubules, and the 
collecting duct239. Glomerular filtration takes place in the renal cortical nephron 
through the glomerular filtration barrier (GFB)240,241. Healthy GFB consists of 
podocytes; intact glomerular filtration membrane, endothelium, and capillary 
lumen. Podocytes are responsible for the formation of the glomerular basement 
membrane (GBM) components (Figure 3). They are fully differentiated visceral 
epithelial cells with special cytoplasm foot processes (pedicels). Adjacent pedicels 
form the filtration slits. Nephrin, an immunoglobulin cell adhesion molecule in 
cooperation with podocyte actin forms the backbone of the slit diaphragm and 
determines the slit size241. An intact GFB allows the blood from the renal artery to 
pass through the bowman’s capsule, filtering large protein molecules (mainly 
albumin). Then the filtrate passes to proximal tubules, where reabsorption of 
glucose and electrolytes takes place. In the case of diabetes, GFB changes including 
thickening of the basement membrane, podocyte effacement, and apoptosis, lead to 
the albumin leak seen in patients with albuminuria242. 

 

Figure 3. Glomerular filtration barrier (adapted from Trimarchi et al.243. 
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Stages of DKD 

Stage I starts around 5 years from the onset of diabetes and is characterized by 
normal or increased eGFR, no albuminuria, normal blood pressure, 20% increase in 
the size of the kidney (nephromegaly), and a 10-15% increase in the renal plasma 
flow. Stage II is characterized by the thickening of basement membrane and 
mesangial proliferation, eGFR is normalized and no clinical signs of DKD. 
However, stage III usually occurs 5-10 years after the DKD onset and is 
characterized by a decline in eGFR accompanied by microalbuminuria (albumin 30-
300 mg/day) with or without hypertension. Stage IV is characterized by irreversible 
proteinuria (>300 mg/day), decreased eGFR <60 mL/min/1.73 m2, and sustained 
hypertension. Stage V, end-stage renal disease (ESRD), is characterized by eGFR 
<15 mL/min/1.73 m2. At this stage, patients require renal replacement therapy 
(peritoneal dialysis, hemodialysis, or kidney transplantation)238,244-246. 

Histopathology of DKD in T1D and T2D 

Up to date, there is no recommendation of kidney biopsies for patients with DKD. 
Strong recommendations are that the biopsies if taken, should be taken with care at 
professional centers. Renal biopsies show that in T1D, thickening of the GBM 
occurs in the early stages followed by podocyte decrease in number in later stages. 
On the other hand, in T2D, a decrease in podocyte number takes place earlier than 
albuminuria, and the histological lesions are highly heterogenous247.  

Genetics of diabetic kidney disease  

DKD is a multi-phenotypic trait based on phenome-wide association studies and 
augmented by epigenetic studies248. Genetic studies of CKD in diabetes-free 
individuals have identified 150 genes. GWAS of kidney disease; CKD was 
performed in many populations. PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, 
STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, GCKR, AGTR1, CNDP1 have published 
loci that are associated with kidney function249,250.  

GWAS  has over the past 10 years identified 33 DKD associated genes: ABCG2, 
AFF3, AGER, APOL1, AUH, CARS, CERS2, CDCA7/SP3, CHN2, CNDP1, 
ELMO1, ERBB4, FRMD3, GCKR, GLRA3, KNG1, LIMK2, MMP9, NMUR2, 
MSRB3/HMGA2, MYH9, PVT1, RAET1L, RGMA/MCTP2, RPS12, SASH1, 
SCAF8/CNKSR3, SHROOM3, SLC12A3, SORBS1, TMPO, UMOD, and 
ZMIZ1246,251-261. Yet these genes need to be further replicated. UMOD is a well-
established GWAS significant loci associated with DKD249,262,263.  
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Aim of the studies 

Paper I 

To elucidate to what extent the new subclassification of diabetes results in 
etiologically distinct subtypes with different genetic risk profiles by performing 
GWAS and restricted genetic risk scores analysis. 

To identify new loci affecting subtype-specific disease pathways based on the new 
subclassification of T2D. 

Paper II 

To study the prevalence of new subtypes of diabetes within the ANDIS framework 
and assess the risk of diabetic macro-and microvascular complications in Iraqi 
immigrants and native Swedes. 

Paper III 

To identify genetic variants associated with kidney complications and to compare 
genetic associations in the new subtypes of diabetes to determine if the underlying 
mechanisms differ. 

Paper IV 

To analyse the proteomic profiles of the GADA negative subtypes (SIDD, SIRD, 
MOD and MARD) to investigate to what extent these four groups can be described 
by their proteomic profile and to understand the underlying pathogenesis. 
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Study populations  

The following is a brief description of the four study cohorts included in this project.  

All New Diabetics In Scania (ANDIS) 

The ANDIS project was initiated by Professor Leif Groop in 2008. This project aims 
to recruit all incident cases of diabetes within the Scania (Skåne) County in southern 
Sweden (1,200,000 inhabitants). In this thesis, we have used individuals recruited 
from the period 2008 until 2016. In this time, 177 clinics registered 14,625 patients 
aged 0-96 years, within a median of 40 days (IQR 12-99) after diagnosis. Individuals 
were assigned to clusters/subtypes as previously described1. Patient characteristics 
are in Table 1. 

Table S1. Characteristics of patients in ANDIS included in the genetic studies 

ANDIS SAID SIDD SIRD MOD MARD T2D 

N total 452 1193 1130 1374 2861 9486 

N (Males/fFemales) 285/167 951/242 732/398 917/457 1959/902 7534/1952 

Age, diagnosis 
(years) 

51.2(18.0) 57.5(11.0) 66.0(9.4) 49.8(9.5) 68.0(8.6) 61.1(13.3) 

Age, onset of CKD* 57.6(18.1) 63.5(11.2) 71.4(9.4) 54.8(9.7) 73.8(8.6) 68.4(11.8) 

Mean Duration* 6.58 (2.63) 6.2(2.64) 5.79(2.71) 6.17(2.4) 6.16(2.55) 6.11(2.53) 

BMI (Kg/m2)* 27.4(6.4) 28.9(4.8) 33.8(5.3) 35.7(5.4) 28.0(1.4) 30.5(5.9) 

HOMA2B* 55.74(42.1) 47.7(28.9) 150.6(47.6) 94.92(32.6) 86.7(26.5) 87.9(49.7) 

HOMA2IR* 2.13(1.49) 3.18(1.72) 5.52(2.71) 3.34(1.18) 2.55(0.84) 3.43(4.76) 

HbA1c (mmol/l) 79.7(31.1) 101.8(19.3) 54.0(15.3) 57.8(15.9) 50.1(9.9) 64.0(25.1) 

eGFR>60 
396 
(87.80%) 

1002 
(84.27%) 

796 
(70.44%) 

1290 
(93.95%) 

2285 
(79.87%) 

7841 
(82.66%) 

eGFR<60 
50 
(11.09%) 

178 
(14.97%) 

320 
(28.32%) 

72 
(5.24%) 

545 
(19.05%) 

1645 
(17.34%) 

eGFR<45 
24 
(5.32%) 

81 
(6.81%) 

146 
(12.92%) 

26 
(1.89%) 

219 
(7.65%) 

710 
(7.48%) 

eGFR<15 
6 
(1.33%) 

32 
(2.69%) 

46 
(4.07%) 

10 
(0.73%) 

42 
(1.47%) 

209 
(2.20%) 

Micro-albuminuria 
36 
(7.96%) 

111 
(9.30%) 

131 
(11.59%) 

109 
(70.93%) 

229 
(8.00%) 

847 
(8.92%) 

Macro-albuminuria  
13 
(2.88%) 

41 
(3.44%) 

52  
(4.60%) 

29  
(2.11%) 

46  
(1.61%) 

249 
(2.62%) 

*All reported values mean(SD). 
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Diabetes Registry Vasa (DIREVA) 

The DIREVA is a Finnish cohort from Western Finland (~170,000 inhabitants) that 
includes 5107 individuals with diabetes recruited 2009-2014 in the Vaasa hospital 
district. Patients' characteristics are in Table 2. 

Table 2. Characteristics of patients in DIREVA included in the genetic studies 

DIREVA SAID SIDD SIRD MOD MARD T2D 

N 327 394 453 596 1178 3453 

Frequency (%) 11.09 13.37 15.34 20.22 39.96   

N Men 175 265 235 300 703 1949 

Men (%) 53.50 67.26 51.87 50.33 59.67 56.44 

HBA1C (mmol/l)* 
60.31 
(18.52) 

76.55 
(19.11) 

46.77 
(8.57) 

49.74 
(10.42) 

45.30 
(6.42) 

52.93 
(16.13) 

BMI  (Kg/m2)* 
28.52 
(5.43) 

28.8 
(4.66) 

32.47 
(4.80) 

35.77 
(5.52) 

27.86 
(3.36) 

30.17 
(5.48) 

Age, diagnosis (years)* 
45.69 
(15.65) 

48.48 
(13.42) 

61.98 
(8.78) 

47.57 
(9.58) 

63.48 
(8.66) 

53.87 
(17.39) 

HOMA2B* 
38.21 
(42.53) 

29.79 
(21.90) 

120.18 
(39.10) 

62.74 
(25.50) 

61.76 
(22.50) 

64.12 
(39.63) 

HOMA2IR* 
1.25 
(1.69) 

1.49 
(1.22) 

4.17 
(2.19) 

2.02 
(0.98) 

1.62 
(0.70) 

2.09  
(2.86) 

eGFR > 60ml/min  
255 
(77.98%) 

279 
(70.81%) 

251 
(55.40%) 

488 
(81.88%) 

801 
(67.89%) 

2524 
(73.10%) 

eGFR <60ml/min  
72 
(22.02%) 

115 
(29.18%) 

202 
(44.59%) 

107 
(17.95%) 

376 
(31.92%) 

922 
(26.70%) 

eGFR < 15ml/min  
(ESRD) 

17 
(5.19%) 

21 
(5.33%) 

35 
(7.73%) 

20 
(3.36%) 

20 
(1.69%) 

132 
(3.82%) 

*All values are represented as mean(SD). 
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Malmö Diet and Cancer (MDC)  

The MDC cohort started in the early 1990s and aimed to screen middle-aged 
individuals (born between 1923 and 1950) from Malmö, Sweden, to examine the 
effect of diet on cancer incidence. Cardiovascular risk factors were measured in 
about 6000 individuals. Diabetes-free individuals (n=2744) from the MDC 
cardiovascular arm (MDC-CVA) re-examination cohort (age 61-85) were used as 
controls in genetic analyses in this thesis. Patient characteristics are in Table 3. 

Table S3. Patient characteristics of Malmö Diet and Cancer (MDC), diabetes-free controls for ANDIS 

MDC Diabetes free individuals 

N (Male/Female) 2744 (997/1746) 

Age (years) 71.69 (5.24) 

BMI (Kg/m2 ) 26.91 (4.47) 

Fasting Glucose (mmol/l)  6.16(2.022) 

 

Botnia 

The Botnia study has recruited patients with T2D and their family members in the 
area of five primary health care centers in Western Finland since 199036. Unrelated 
(based on estimated genetic relationships) diabetes-free individuals were used as 
controls for DIREVA. Patient characteristics are in Table 4. 

Table S4. Patient characteristics Botnia, diabetes-free controls for DIREVA 

Botnia Diabetes free individuals 

N (Male/Female) 1683 (941/742) 

Age (years) 55.95 (10.49) 

BMI (Kg/m2) 26.62 (4.05) 

Fasting Glucose (mmol/l) 5.57 (0.58) 
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Methodology 

Genotyping  

ANDIS and DIREVA were genotyped with InfiniumCoreExome-24v1-1 BeadChip 
arrays (Illumina, San Diego, CA, USA), at Lund University Diabetes Centre, 
Malmö, Sweden.  MDC was genotyped at the Broad genotyping facility using 
Infinium OmniExpressExome-8 version 1.0 BeadChip arrays (Illumina, San Diego, 
CA, USA). Botnia were genotyped using Illumina Global Screening array-24v1 at 
Regeneron Pharmaceuticals Inc, NY, US. 

Power Calculations 

The power to detect genetic associations depends on the risk allele frequency, the 
magnitude of the genetic risk (i.e. effect size), the type 1 error rate, and imputation 
quality, and the sample size. In Paper I, non-centrality parameter calculations was 
based on double genomic controlled standard error estimates from the additive 
model meta-analysis; these estimates integrate information on allele frequency, 
imputation quality, and sample size, which typically vary across studies. The type 1 
error was set at 5 × 10-08 and an additive risk model was assumed.  

Quality control of the genetic data  

Quality control for the individuals and the markers ensures the validity of the data 
analysis results. The quality control is performed using a generalized approved 
protocol 264.  The protocol adjusts for individuals (sample) and markers (SNPs). For 
individuals, the adjustment is based on sex, relatedness, and population 
stratification, and for markers based on genotyping call rate, minor allele frequency, 
and Hardy-Weinberg equilibrium. The QC protocol uses the PLINK platform and 
is run in the form of a pipeline with adjusted parameters. Samples were excluded if 
ambiguous gender, call rate < 95%, and any duplicate or related individuals (pi_hat 
≥ 0.2). SNPs were excluded if monomorphic SNPs, SNPs with MAF < 0.05, and 
SNPs with missingness rate > 0.05.  
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Since the genotyping of ANDIS and MDC was done at a different time and using 
different arrays, genotypes from the ANDIS (12770 individuals) and MDC (3344 
individuals) cohorts genetic were merged using PLINK,265 including only SNPs 
present on both genotyping arrays. After the ANDIS-MDC merge, 16804 
individuals and 324063 SNPs passed quality control (QC).  

Imputation of the genetic data 

Imputation is the inference of the haplotype of non-genotyped SNPs based on 
alignment with a reference genome. One of the most important GWAS limitations 
is the sample size. The imputation method increases the number of SNPs beyond 
those that were genotyped, thus increasing the resolution and power of GWAS in 
detecting true associations. The genotype imputation quality depends on the 
software used, reference genome selection, SNP density of the dataset, number of 
samples, and the sequencing coverage266. In ANDIS-MDC merged dataset, 
autosomal chromosomes, data files were submitted to the Haplotype Reference 
Consortium (HRC) Michigan server in the form of variant call files (VCF) after 
passing QC267. 

X-chromosome imputation  

The X-chromosome imputation was problematic as the HRC imputation server 
imputed only the autosomal chromosomes in 2017. MINIMAC3 implementation 
based on the protocol stated by the software was used for imputation267,268. 

Study design and phenotypes 

Paper I  

In Paper I, we used a case-control study design where the newly defined subtypes 
for ANDIS and DIREVA were used as cases for the genetic analysis:  

Severe Autoimmune Diabetes (SAID, NANDIS=452, NDIREVA=327),  

Severe Insulin Deficient Diabetes (SIDD, NANDIS=1193, NDIREVA=394),  

Severe Insulin Resistant Diabetes (SIRD, NANDIS=1130, NDIREVA=453),  

Mild Obesity-Related Diabetes (MOD, NANDIS=1374, NDIREVA=596),  

Mild Age-Related Diabetes (MARD, NANDIS=2861, NDIREVA=1178).  
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The controls were non-diabetic individuals from MDC (N=2744) and Botnia 
(N=1683) for ANDIS and DIREVA, respectively.  

The analysis included SNP heritability, GWAS, GRS, and LD score regression. 
Discovery analysis was done in ANDIS-MDC followed by replication in DIREVA-
Botnia and meta-analysis. 

Heritability was studied using questionnaire data about family history of diabetes 
from ANDIS and ESTRID, a substudy of ANDIS, as well as SNP-based heritability. 

For the GRS analysis, trait GRS was created using published genome-wide 
significant SNPs. 

A flow chart of study design and methods is found in Figure 4. 

 

Figure 4. Paper I flow chart. 

Paper II 

In Paper II, Iraqi individuals from ANDIS (N=286) were used as cases, and Swedish 
individuals (N=10641) were used as controls. Only GADA-negative individuals 
were included. Prevalence of subtypes and diabetic complications defined by ICD10 
codes were compared between the cases and controls.  

The analysis included cluster analysis, risk of complications, and genetic risk scores. 
For the clustering analysis, Ahlqvist clustering was applied to 286 Iraqi individuals, 
and the distribution within the subtypes was reported. The risk for developing 
complications, including coronary events, CKD, stroke, and diabetic retinopathy 
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were compared using Cox-regression. GRS was designed as in Paper I for traits; 
T2D, insulin sensitivity, insulin secretion, and BMI.  

A flow chart of study design and methods is found in Figure 5. 

 

Figure 5. Paper II flow chart. 

Paper III 

In Paper III, the geometric mean of eGFR in the last year of follow-up was used as 
the primary phenotype (quantitative trait) for GWAS analysis due to the relatively 
low number of individuals with CKD and albuminuria.  The secondary phenotypes 
were CKD60 (eGFR less than 60 ml/min/1.73m2), CKD45 (<45ml/min/1.73m2) and 
ESRD as binary traits. Measures of eGFR and albuminuria were calculated from 
data collected from the Skåne Clinical Chemistry database. The eGFR was 
calculated using serum creatinine (in mg/dL) as an input for the MDRD formula, 
GFR = 186 × Serum Cr-1.154 × age-0.203 × 0.742 (if female).  

The analysis included the prevalence of CKD, GWAS of eGFR, association analysis 
with CKD and GRS.  The GWAS was performed using primary phenotype for each 
diabetes subtype in ANDIS and DIREVA followed by meta-analysis. Association 
analysis with secondary phenotypes swas performed for significant variants in the 
subtypes in ANDIS. The GRS analysis for the traits; kidney (CKD, eGFR, and 
UACR), T1D-DKD, T2D-DKD were designed from the published genome-wide 
SNPs associated with the traits.  
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A flow chart of study design and methods is found in Figure 6. 

 

Figure 6. Paper III flow chart. 

Paper IV 

In Paper IV, 176 individuals were selected from SIDD, SIRD, MOD, and MARD 
to represent their subtypes based on Euclidian distance to their cluster center. Equal 
sample sizes were selected from males and females. All selected individuals were 
of European origin and were born in Sweden. The concentration of 1161 protein 
biomarkers was measured in the blood samples using Olink panels.  
Generalized linear models adjusted for covariates were performed for biomarkers in 
each subtype to identify differential biomarkers. Tree-based machine learning 
algorithms were applied to identify biomarkers that can fine-tune the clustering 
analysis.  A flow chart of study design and methods is found in Figure 7. 
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Figure 7. Paper IV flow chart. 

Analysis of genetic data 

Genetic datasets are a rich source of information that empowers the development of 
new approaches for screening, diagnosis, and management of complex genetic 
traits. There is an array of methods used to analyze genetic data depending on the 
research questions and they output valuable information about the complex genetic 
trait. This section describes in brief the principles, software, and output of the 
methods used in this thesis.  

Heritability  

In Paper I, heritability was performed to determine to what extent the newly defined 
diabetes subtypes were inherited, the percentage of the genetic component that 
affects the complex genetic trait. The heritability analysis was done by two 
approaches; self-reported family history of diabetes from questionnaires and the 
SNP heritability calculated using GCTA 1.92.3 beta version software269. 

The principle of the GCTA software is to estimate the proportion of genetic 
variation of the complex genetic traits by using the restricted maximum likelihood 
method based on the genetic relation matrix (GRM) calculated using the SNPs of 
all individuals included in the analysis. 
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Genetic risk scores 

GRS also called polygenic risk scores, is a method to predict each individual’s risk 
for a certain trait. GRS was estimated based on GWAS significant trait-associated 
SNPs weighted by their effect size published in the GWAS catalog217. The analysis 
aimed to determine the genetic risk of individuals in each subtype for the trait of 
interest. The GRSs were estimated for individuals within each diabetes subtype and 
non-diabetic controls. Logistic regression was used to determine the association of 
the trait-GRS and each diabetes subtype versus non-diabetic controls. GRS was 
calculated using PLINK270 software. Association with the traits was performed 
using logistic regression in R. In Paper I, logistic regression was run for traits-GRS 
for each diabetes subtype versus non-diabetic controls in both ANDIS and 
DIREVA. In Paper II, the logistic regression was performed for the traits-GRS of 
Iraqi cases versus Swedish controls. In Paper III, the logistic regression was 
performed for traits-GRS versus eGFR within each diabetes subtype. 

Genome wide association analysis 

In this thesis, SNPTEST version 2.5.2170 was used for the GWAS analysis assuming 
an additive model and the method used was the “score”; likelihood score test. This 
estimates the likelihood function for each subtype under the null hypothesis271. 

The effect size is estimated by the beta; an estimate of the increase in log-odds that 
can be attributed to each copy of the effect allele (allele B). The association of the 
variant is described as genome-wide significant if the association p-value is below 
5x10-08 and suggestive if the p-value is <10-05. 

In Paper I, the case-control GWAS model was adjusted for sex and the first four 
principal components (PCs) calculated in the QC.  

In Paper III, GWAS was performed for eGFR as a quantitative trait in all GADA-
negative individuals and the newly defined subtypes separately. The model was 
adjusted for sex, age at onset of diabetes diagnosis, duration, and the first four PCs.  
Adjusting for BMI, HbA1c and HOMA2IR were done to test the effect of these 
covariates on eGFR. In ANDIS, association analysis for the binary traits; CKD60, 
CKD45 were performed for the findings of the former GWAS of CKD (quantitative 
trait) in T2D, SIDD, MOD, and MARD and ESRD in SIRD only. 

Replication of the GWAS results 

A major step in GWAS is the reproducibility of the genotype-phenotype association 
results. Replication using different study designs and populations ensures that the 
association is true and not by chance or artefact in the genetic data. Optimal 
replication cohorts have the minimal heterogeneity tested by Cochran’s Q test of 



46 

homogeneity. Being of Scandinavian European origin, DIREVA and Botnia were 
the convenient replication cohorts272. 

In Paper I, the phenotypes used were the newly defined subtypes as in ANDIS. Case-
control GWAS was performed using DIREVA-Botnia individuals 

In Paper III, in DIREVA, the geometric mean of eGFR in the last year's follow-up 
was used as a quantitative trait as in ANDIS.  In DIREVA, the geometric mean was 
normally distributed so was used without transformation. GWAS was done in T2D 
and the newly defined diabetes subtypes.  

A flowchart of replication is in Figure 8. 

 

Figure 8. Replication cohort analysis flow chart. 

Meta-analysis  

For GWAS to detect common variant associations with small effect sizes, large 
sample sizes are required and this aim is often not attainable in a single cohort. 
Instead, meta-analysis using the results of more than one GWAS is performed to 
increase the sample size and hence the power to detect true association273.  

In Paper I, meta-analysis was performed for pairwise GWAS of both ANDIS and 
DIREVA respectively. Meta-analysis was performed based on effect sizes, using 
genome-wide association meta-analysis (GWAMA version 2.2.2)274 software 
program.  In Paper III, since the phenotype eGFR was on different scales; log-
transformed in ANDIS and not transformed in DIREVA, meta-analysis was 
performed using weighted p-value based analysis for the GWAS results for eGFR 
as a quantitative trait) using METAL (generic-metal-2011-03-25.tar.gz) 275-277. 
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Post-GWAS quality control and result visualization 

In Paper I and Paper III, the GWAS results were quality controlled based on the 
imputation score, Hardy-Weinberg, and allele frequency using PERL scripts. 
Genomic control was performed by calculating the inflation factor; lambda for the 
p-values of each subtype using the “GenABEL” package in R278. Manhattan plots 
and Q-Q plots were generated in R using the “QQMAN” package to illustrate the 
results of the twenty-two autosomal chromosomes and highlight the GWAS 
significant SNPs and suggestive SNPs. Locus zoom plots for the chromosome 
region +/- 400KB, were done for the GWAS significant SNPs in the open web 
interface for “LocusZoom” 279. 

Post-GWAS variant interpretation 

In Paper I and III, variants that reached genome-wide significance level and 
suggestive level were further interpreted. To get information on the variant gene and 
nearby gene, many available open access databases can be used for the variant 
interpretation. Locus zoom plots give information about the genes within the region. 
The Variant Effect Predictor (VEP)280, the open web interface implemented by 
Ensembl gives information about the variant (SNP), type of variant either upstream, 
downstream, intron variant, type of the mutation; missense variants, stop variants, 
mapped gene, and the variant deleteriousness. The Integrative Genome Viewer 
(IGV)281,282, is an open web interface that gives information about the mapped gene, 
and by scrolling the slider you can also identify the nearest gene. Following variant 
annotation, using the National Center of Biotechnology Information (NCBI), a 
thorough study of the genes in the region, their coding protein function, tissue 
expression levels, and publications about the genes. The Genotype-Tissue 
Expression (GTEx) portal gives the expression quantitative loci (eQTL) for the 
variants of interest283. T2D knowledge portal284, GWAS catalog217, and UK 
Biobank285 give information about the association of the variant in published GWAS 
studies. 

Linkage Disequilibrium Score Regression analysis (LDscore) 

In GWAS, the test statistic could be inflated either due to polygenicity (true finding) 
or population stratification (False positive due to confounding). LD score regression 
method is used to differentiate between true findings and false positive, by 
regressing the standardized test statistic versus the LD score, the greater the 
correlation between test statistics and LD score the more likely it is true finding. For 
trait association analysis, two traits are used; trait 1 (newly defined diabetes subtype) 
and trait 2 (LDHub trait), the SNPs selected are known to be associated with trait 2, 
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so if the trait1 test statistics showed correlation with the LD score of the trait-
associated SNPs, then the two traits are correlated178,286.. 

In Paper I, this method was used to determining the association between newly 
defined diabetes subtypes and traits of interest. The analysis was performed in the 
open web interface LDHub287 using LDHub SNPs and traits. LDHub has selected 
trait-associated SNPs for which the LD score was calculated. The main assumption 
is that the population used to estimate LD scores for the SNPs should be matched 
with the population of the GWAS. The European population was used for the 
analysis.  

Machine learning Models (ML) 

Machine learning models are algorithms built to make predictions or decisions. 
Unsupervised machine learning makes predictions without prior information about 
the targets. Supervised machine learning (SML) uses information given about 
features in the training dataset and predicts outcomes about the targets for a test 
dataset. Support vector machines (SVM), logistic regression, naïve Bayes, K-
nearest neighbors, decision trees, random forests are examples of SML that are used 
to analyze data for classification and regression analysis. A linear classifier performs 
linear combination analysis using the features to make classification decisions.  
Gradient boosting is the implemented technique in decision trees. Usually, 
combinations of classifiers are used to increase the accuracy of the prediction288-291. 

In Paper IV, the input dataset included both clinical observations and NPX data that 
was evaluated for outliers using an unsupervised clustering algorithm, One-Class 
Support Vector Machine (OC-SVM). Recursive feature selection for the 
classification model was performed by applying a one-way ANOVA F-test 
(Bonferroni corrected; p<4.191e-05) to the standardized data. Features selected for 
classification were 33 biomarkers and 4 minimal cluster variables (age at diagnosis, 
BMI, HbA1c, and HOMA2-IR). The main dataset (176 samples and 1161 
biomarkers) was split into a training dataset (67% of the samples) and a cross-
validation test dataset (33% of the samples), these were used to train and evaluate 
the performance of the tree-based algorithms.  The Shapley Additive explanation 
package (SHAP) was used to interpret the models. The CAT boost classifier 
performed best, so the output was used for downstream analysis292. The entire 
analysis was performed using packages Catboost, shap, pandas, sklearn, seaborn, 
and matplotlib in Python 3.6.9 along with the OlinkAnalyze package R version 4.0.2 
for data pre-processing and normalization. 
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Pathway analysis 

Pathway analysis gives information about the pathways genes and biomarkers are 
involved in and thus reflects the importance of the pathogenesis of the complex 
genetic trait. The gene and tissue enrichment analysis of the variants of interest is 
performed before the pathway analysis. There are open-source pathway databases: 
Gene Ontology293, KEGG294, STRING295, PANTHER169, REACTOME296, Elsevier 
database297,298, and BIOCARTA299. Pathway scoring algorithm (Pascal)300, 
computes gene and pathway scores from summary statistics of the SNP-phenotype 
association. In Paper I, the DEPICT301 software was used to annotating the SNPs of 
interest. Pathway analysis was performed in REACTOME302. In Paper IV, 
differentially expressed biomarkers were used for the protein-protein interactions 
and pathway enrichment analysis using STRING, KEGG, and REACTOME. 
Elsevier database was used to identify related phenotypes and diseases. 

 

Figure 9. Mendelian randomization principle (developed by DAGitty303) 

Mendelian Randomization (MR) 

MR is a method that determines the causal relationship between genetic variation 
and modifiable exposure on the outcome using SNPs as instruments. GWAS 
Catalog published trait-associated SNPs (GWAS significant) are used as 
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instrumental variables to estimate the causality between two traits304. Natural 
randomization of alleles at the gene level takes place during crossover and random 
assortment processes in the meiosis and gamete formation thus MR is a randomized 
controlled study. As a major assumption for MR, the instrumental variables (SNPs) 
should be associated with the exposure and independent from the outcome, to be 
valid instruments (Figure 9). Pleiotropy happens when the SNPs have an indirect 
effect on the outcome, and this should be taken into consideration. In Paper IV, MR 
was performed using the TwoSampleMR package implemented in R using SNPs 
associated with the blood level of the biomarker as the exposure dataset and the 
results of the case-control GWAS for the same set of SNPs as the outcome. Five 
models are implemented in TwoSampleMR: the Egger regression model, inverse 
variance model, weighted-median model, and the two mode-estimate models; 
simple-mode model and weighted-mode model. The weighted median model is 
considered the optimal model to account for pleiotropy. The results of 
TwoSampleMR represent the five models and the magnitude of the causal effect i.e. 
the effect of the SNP on the outcome when the exposure is changed by one unit 
provided no confounding.  
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Results 

Paper I. Genome-wide association analyses highlight 
etiological differences underlying newly defined 
subtypes of diabetes.  

Heritability 

The family history of diabetes was different between subtypes. As expected, SAID 
showed association with a family history of T1D. SIDD and MOD showed the 
strongest association with a family history of T2D. 

Genome wide association study (GWAS) 

Three genome-wide significant associations were identified (Figure 10). The HLA 
gene variant rs9273368 was significantly associated with SAID. The well-known 
T2D associated variant rs7903146 in the TCF7L2 gene was associated with SIDD, 
MOD, and MARD. The variant rs10824307 near the LRMDA gene was uniquely 
associated with MOD. The look-ups for the variant rs10824307 in the AGEN and 
DIAMANTE study212, revealed a significant association with T2D supporting that 
it is a true finding. In the UK biobank285, variant rs10824307 was associated with a 
higher basal metabolic rate and higher whole-body fat-free mass. In the GTEx 
database, the same variant was an eQTL for the LRMDA gene in adipose tissue and 
pancreas283. 

Genetic risk scores (GRS) 

The GRSs analysis was performed using logistic regression of GRSs of each 
diabetes subtype versus non-diabetic controls to determine the association of each 
subtype and the traits.  

T1D GRS and T2D GRS 

Two GRS for T1D were used: a T1D GRS calculated using all variants associated 
with T1D at genome-wide significant levels in the largest European T1D fine-
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mapping study 211 and the T1D GRS2 score developed by Sharp et al that also takes 
interactions between SNPs into account.39. Both scores were only significantly 
associated with SAID in ANDIS and DIREVA. T2D GRSs were constructed from 
SNPs from Mahajan et al, the largest European T2D meta-analysis study published 
SNPs at the time of analysis165. A global score (T2D-gPRS) including all SNPs in 
the genome showed a significant association for all the diabetes subtypes with the 
greatest effect size for SIDD and MOD and smaller risk for SAID, SIRD, and 
MARD. When using T2D restricted GRSs (T2D-GRS) calculated by including only 
GWAS significant SNPs (n=304 SNPs) from Mahajan et al165,  the difference 
between subtypes was even larger. In ANDIS, T2D GRS was strongly associated 
with the greatest effect size in SIDD with much smaller effect sizes in SIRD. T2D-
gPRS and T2D-GRS were replicated in DIREVA. 



53 

 

Figure 10. Manhattan plots for case-control GWAS in ANDIS. SAID-MDC (panel A), SIDD-
MDC (panel B), SIRD-MDC (panel C), MOD-MDC (panel D), and MARD-MDC (panel E). 
The red line indicates the genome-wide significance threshold (p < 5 ×10-08) and the blue 
line suggestive association (P< 10-05). 
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GRS analysis for insulin secretion and sensitivity measures 

T2D weighted GRS (T2D-wGRS) were estimated from known T2D associated 
SNPs using their effect sizes on the first-phase insulin response calculated in non-
diabetic individuals. T2D-wGRSs included corrected insulin rate (CIR), insulin 
secretion rate (ISR), fasting insulin (FINS), insulin sensitivity index (ISI), fasting 
glucose, 2h-glucose, and fasting proinsulin. CIR and ISR were strongly associated 
with SIDD and not with SIRD. On the other hand, FINS showed a unique 
association with SIRD and not with the other subtypes. ISI was strongly associated 
with SIRD and MOD and nominally associated with SIDD and MARD.  

GRS analysis for weight-related phenotypes. 

The Body mass index (BMI), waist circumference (WC), and visceral adipose tissue 
(VAT) GRSs were strongly associated with MOD and not MARD. The waist-hip 
ratio adjusted for BMI GRS had a strong association with SIRD and not MOD.  

SNP-cluster GRS 

Two previous publications have clustered diabetes-associated SNPs by their 
associations with diabetes-related traits164,165,305  

GRS based on clustered SNPs from Mahajan et al. included adiposity that had an 
association with MOD and not in MARD. Impaired lipids GRS was nominally 
associated with SIRD and not MOD. The insulin secretion GRSs (independent 
GRSs) had no association with SIRD (P>0.2) yet were associated with SIDD, MOD, 
and MARD, and the insulin action GRS were associated with all the diabetes 
subtypes. GRS based on clustered SNPs from Udler et al. included beta cell function 
which was strongly associated with SIDD and not SIRD. Proinsulin-GRS had an 
association with increased risk of SIDD and MARD but was protective in SIRD. 
The liver dystrophy GRS was associated with increased risk of SIDD, SIRD, MOD, 
and MARD subtypes and a weak association with SAID and the liver GRS had a 
strong association with SAID and not the other subtypes. The obesity GRS had an 
association with SIRD and MOD. 

LD Score regression analysis 

The case-control GWAS results for LDHub specified trait-associated SNPs were 
used to estimate the association between the subtypes (Trait 1) and LDHub traits 
(Trait2). Obesity-associated traits (fat body mass, waist circumference, hip 
circumference, basal metabolic rate, cholesterol-related traits, hypertension, were 
strongly associated with MOD. Maternal and paternal diabetes, cholesterol levels 
were associated with SIDD, while fasting glucose, birth weight aswas associated 
with MARD. SIRD had no association with the LDHub traits. The results of this 
analysis were not included in the published version of Paper I.  
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Paper II. Adult-Onset Diabetes in Middle Eastern 
Immigrants to Sweden: Novel subgroups and diabetic 
complications  

Comparison of Iraqi and Swedish individuals with diabetes 

The onset of diabetes was a decade earlier in Iraqi patients than in Swedes. The 
frequency of male individuals was higher in Iraqi (71%) than in Swedes (59.9%). 
Iraqi individuals were younger than Swedes individuals. The HbA1c in Iraqi (66.9 
mmol/ml) was greater than in Swedes (62.7 mmol/ml). The prevalence of CKD 
stage 3A (eGFR <60 mL/min/1.73m2) in Iraqi (0.05%) was lower than in Swedes 
(64%) at baseline and no Iraqi had the CKD stage 3B (eGFR<45 mL/min/1.73m2). 
Fewer Iraqi (45.4%) had hypertension than Swedes (72.9%). 

Prevalence of diabetes subtypes 

In Iraqi immigrants, the MOD subtype was the most prevalent (39.3 vs 19.1% in 
native Swedes) followed by the SIDD subtype (27.9 vs 16.2%).  On the other hand, 
in native Swedes, the MARD subtype, the SIRD subtype, and the SAID subtype, 
respectively, were 2-3 times as prevalent as in Iraqi immigrants (MARD 41.3 vs 
25.1%; SIRD 16.3 vs 5.5%; SAID 7.0 vs 2.2%). 

Risk of diabetic complications 

During the 8-year follow-up, Iraqi patients had a higher risk of coronary events than 
native Swedes, females being at considerably lower risk than males, and higher BMI 
patients at baseline had a slightly lower risk of coronary events during follow-up. 
Iraqi patients had a considerably lower risk to develop CKD as compared to native 
Swedes adjusted for sex, age at diabetes onset, baseline BMI and HbA1c that was 
no longer significant after adjusting the model for baseline eGFR. The risk of 
developing CKD in females was considerably higher than in males. There were no 
significant differences in the incidence of stroke between individuals from Iraqi and 
Swedes, during follow-up. Early-onset of diabetes onset predicted increased risk for 
stroke, whereas HbA1c and BMI did not affect the risk. The risk of developing 
stroke in females was less than males. Fundus photography showed that the 
prevalence of patients displaying at least moderate retinopathy was almost twice as 
high in the Iraqi individuals compared to Swedish individuals, but the difference 
was not statistically significant, possibly due to the small sample size. 
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Genetic risk score analysis 

GRS analysis for T2D, BMI, insulin secretion rate (ISR), and insulin sensitivity 
(ISI) traits using Iraqi individuals (cases) versus Swedish individuals (controls). 
T2D-GRS and ISI-GRS showed a greater association with Iraqi individuals than 
Swedes. On the other hand, BMI-GRS and ISR-GRS showed lower association in 
Iraqi individuals compared to Swedish individuals (Figure 13). 

 

Figure 13. Genetic Risk Scores (GRS) in Iraqi (cases) versus Swedes (controls). 
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Paper III. Genetics of kidney complications in diabetes 
subtypes 

Frequency of diabetic kidney disease 

In the ANDIS cohort, the mean prevalence of CKD, the highest frequency was seen 
in the SIRD subtype with 28.32% eGFR<60 and 12.92% eGFR<45. Micro and 
macroalbuminuria were observed in 8.92% and 2.62% of T2D respectively, with the 
highest prevalence of microalbuminuria in SIDD 9.30% and of macroalbuminuria 
in SIRD 4.60%. In DIREVA, the prevalence of CKD was similar to ANDIS, SIRD 
had higher frequencies for eGFR<60 and eGFR <15 (ESRD) (Tables 1, 3).  

Genome-wide association analysis (GWAS) 

In ANDIS eGFR-GWAS, the variant rs77924615, A allele, in the Protein Disulfide 
Isomerase Like Testis expressed (PDILT)-Uromodulin (UMOD) locus, reached 
genome-wide significance in T2D. This association was stable after adjusting for 
BMI and HbA1c but was weakened by adjusting for HOMA2IR. The variant was 
also associated with eGFR in MARD and SIDD but not SIRD or MOD. In SIRD, 
the variant rs377038, C allele in the Catenin alpha 2 (CTNNA2) locus reached near 
genome-wide significance. This association was strengthened on adjusting for 
HOMA2IR. This variant was not associated with eGFR in T2D or other subtypes.  

In DIREVA, the PDILT-UMOD association was replicated for T2D, MARD, and 
SIDD and was also associated with SIRD but there was no association in MOD. 
Unfortunately, the CTNNA2 variant did not replicate in SIRD. 

Only PDILT-UMOD loci reached genome-wide significance in meta-analysis in 
T2D and MARD. 

Genetic risk scores analysis  

GRS were created for three kidney traits; CKD (NSNPs=34), eGFR (NSNPs=625), and 
UACR (NSNPs=94). For CKD-GRS,  the strongest association was seen in the 
MARD subtype. Kidney-TlD GRS and kidney-T2D GRS were created using 
GWAS significant SNPs for kidney disease in TlD and T2D respectively. Both 
scores showed no association with eGFR in T2D or the subtypes after removal of 
the PDILT-UMOD  SNP. 

GRS for BMI and fasting insulin showed nominal association with eGFR in 
T2D, the latter mostly driven by the association in SIRD. GRS of fasting 
glucose showed association with eGFR only in SIDD.  
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Paper IV. Proteomic profiles of novel diabetic subtypes  

Protein biomarkers whose concentrations differed between subtypes 

In one-way ANOVA Model 1, adjusted for sex 168 biomarkers were significant in 
at least two pairwise comparisons; 12 with SIDD, 88 with SIRD, 16 with MOD, 29 
with MARD, 17 others in more than one subtypes and 6 in all subtypes. Leptin and 
GDF-15 differed significantly in all subtype comparisons. PLC, TIMP4, FSTL3, 
Gal-4, EDA2R, and TRAIL-R2 were associated with the SIRD subtype. In Model 
2, adjusting for age and BMI; LEP, Gal-4, GDF-15, PLXNB2, C1QTNF1, ACE2, 
KIM1, GUSB, and CDHR2, were the differential significant biomarkers among the 
subtypes. The biomarkers that had the strongest association after adjustment for sex, 
age, BMI, and medications were leptin, leptin receptor, SELE, GUSB, and Gal4. 

Pathway analysis 

In SIDD, the overrepresented pathways were mostly related to leptin signaling and 
incretin hormone biology. Associated phenotypes were polycystic ovary syndrome 
and arterial hypertension. Cytokine signaling, metabolism of angiotensinogen, and 
TNF pathways were overrepresented in SIRD along with myocardial ischemia. 
Atherosclerosis was associated with both SIRD and MOD. In MOD, hormones that 
underlie human gastrointestinal functions and eating behavior were the second top 
association. The cytokine-cytokine receptor signaling pathway was overrepresented 
in MOD compared to MARD. 

Accuracy of classification with and without original variables 

Biomarker prioritization was based on the model development and performance 
using different clinical variables and biomarkers that were significant for each 
subtype. The CAT boosting algorithm developed with the free variables age, sex, 
and BMI along with biomarkers, classified the patient samples into precise subtypes 
with no confusion between subtypes using only 33 variables.  

Mendelian randomization 

The causality between the most important biomarkers and both subtypes and T2D 
GADA negative individuals was performed using Mendelian Randomization. The 
strongest association was observed for Selenocysteine lyase (SCLY) in T2D and all 
GADA-negative subtypes in ANDIS. The biomarkers showed no significant 
association after adjustment for multiple testing.  
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Discussion 

Ahlqvist et al. clutered diabetes into five subtypes based on six clinical variables. 
They reflect the heterogeneity of diabetes by the differences in prevalence, age at 
onset, glycemic control and risk to develop diabetic complications. In this thesis we 
characterized these subtypes using GWAS and biomarkers. 

For the SAID subtype, findings were by as expectatied considering that this subtype 
is made up of T1D and LADA patients. Family history of T1D, defined as a 
diagnosis at age below 40 years and insulin treatment, was strongly associated with 
SAID. SAID also showed strong association with HLA variants, a well-known locus 
for its association with autoimmune disease39,306,307. As expected, SAID had the 
strongest association with the T1D-GRS and T1D-GRS2 (HLA variants 
excluded)39. In accordance with the large proportion of LADA in this subtype, SAID 
also showed some association with T2D-GRS and family history of T2D. 

For the SIDD subtype, family history of T2D was common and this finding was 
supported by the results of SNP heritability. SIDD showed association with TCF7L2 
variants, a well-known T2D locus, and had the strongest association with the T2D-
GRS and insulin secretion GRSs. The results from Paper I show that SIDD belongs 
to T2D rather than T1D and highlights the role of pancreatic beta-cell function in 
this subtype. The non-autoimmune nature of the subtype is also supported by the 
lack of autoantibodies. 

In Paper IV, the biomarker analysis indicated an important role for leptin and the 
leptin receptor in SIDD, which was supported by a few nominal associations in MR. 
Leptin has a major role in energy regulation, food intake, obesity, inflammation, 
metabolic syndrome, diabetes, and diabetes-related cardiac dysfunction101,308-311.  

For the SIRD subtype, the family history of T2D had a smaller effect compared to 
SIDD and MOD and this finding was supported by the results of SNP heritability. 
SIRD showed no association with the TCF7L2 variants or insulin secretion GRS 
suggesting a mostly beta-cell-independent pathway in this subtype. SIRD showed a 
unique association with fasting insulin GRS versus non-diabetic controls and versus 
eGFR, reflecting the insulin resistance status in these individuals312.  In Paper III, 
SIRD showed no association with PDILT-UMOD but instead had a unique 
association with CTNNA2 locus. The UMOD gene encodes uromodulin, the most 
abundant protein in the urine of healthy adults which is produced in the loop of 
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Henle following the proteolytic cleavage of the luminal cell surface ectodomain 
protein. Uromodulin is expressed only in the kidneys and is protective against renal 
calcium crystallization and bacterial urinary tract infections. The lack of association 
in individuals with high BMI supports a finding by Cornelia et al. that the presence 
of metabolic syndrome decreases serum uromodulin levels313. The catenin alpha 2 
protein encoded by the CTNNA2 locus, belongs to the cell adhesion protein family, 
which plays an important role in connecting cadherins located on the plasma 
membrane to the actin filaments inside the cell255. The main units in GFB are 
podocytes; fully differentiated kidney cells where the vital processes of podocyte 
differentiation and effacement are highly regulated by the cytoskeleton 
mechanisms, actin filament, and foot mobility. The association of CTNNA2 with 
SIRD could suggest podocyte malfunction and disintegration of the glomerular 
basement membrane of the nephron and this explains the accompanying 
macroalbuminuria in this subtype257,314-316. Unfortunately, in DIREVA, the CTNNA2 
locus did not replicate, which, excluding the possibility of the original finding being 
a false positive, could be due to the low power to detect the association and the great 
random variation due to small sample size or other reasons; population differences 
(Swedish and Finnish), follow-up time differences (6 years in ANDIS versus 9.7 
years in DIREVA), and sampling routines.  

In Paper IV, for the biomarker pathway analysis, cytokine pathway including 
numerous TNF Receptor Superfamily members and an angiotensin related pathway 
including ACE2, CPB1, REN, and CTSD, showed a strong association with SIRD. 
Cytokines are potent immunomodulating proteins that play a vital role in cell 
signaling, endocrine function, and inflammatory processes. Many studies published 
information about the intimate relationship of metabolic syndrome and 
inflammation, indicating an important role of the immune system in SIRD51,77,105,317-

319. Renin-angiotensin System (RAS) pathway in the kidney, is known to play an 
important role in blood pressure control, electrolyte homeostasis and influences 
different processes like immune response, inflammation, and ageing106,320-322.  

For the MOD subtype, the family history of T2D was common,  which was 
supported by SNP heritability. MOD showed association with the TCF7L2 variants, 
T2D-GRS, insulin secretion GRS and no association with fasting insulin, in contrast 
to SIRD, suggesting that insulin resistance plays a smaller role in this subtype. One 
of the main aims of this project was to identify subtype-specific locus, which was 
accomplished in MOD. The LRMDA loci showed association in the recent studies, 
AGEN and DIAMANTE, suggesting it is a true diabetes locus212,323 . In GTEx, the 
associated SNP was an eQTL for LRMDA in adipose tissue and pancreas, supporting 
that this is the functional gene but this remains to be proven323. The LRMDA is 
highly expressed in many tissues and the main known function is melanocyte 
differentiation, however, knock out of the gene in mice show a muscle-related 
function suggested by elevated circulation creatinine and increased grip strength. 
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These lookups collectively support the role of obesity in the MOD subtype. For the 
lipid-related GRS, MOD showed a greater association with BMI and VAT GRS and 
smaller for WHR adjusted for BMI in contrast to SIRD, reflecting the dominant role 
of obesity and to a less extent the role of metabolic syndrome in this subtype. A 
recent study conducted by Isidor et al. to compare the transcriptomics of WAT and 
VAT, revealed that in the visceral adipocyte, systemic insulin resistance leads to 
gene expression dysfunction in adipose tissue that is not similar to that caused by 
increased BMI. This could explain the healthier profile seen in the MOD subtype 
compared to the SIRD subtype324.  

In Paper II, MOD was the most prevalent subtype in Middle Eastern; Iraqi 
individuals compare to European; Swedish individuals.  

In Paper III, MOD showed no association with PDILT-UMOD as in SIRD yet also 
no association with CTNNA2 in contrast to SIRD. The lack of association with 
PDILT-UMOD could be due to the clinical presentation of obesity and PDILT-
UMOD being an obesity-dependent locus, but could also be due to the low 
prevalence of CKD cases in MOD, especially in ANDIS (5.26%)313. Replication in 
other cohorts with a longer duration time is strongly recommended to make 
definitive conclusions about the interaction between clinical variables and the 
PDILT-UMOD locus. On the other hand, the lack of association with CTNNA2 could 
be due to a true difference in the underlying pathways for DKD in both subtypes. In 
Paper IV, the biomarker interaction GH1-LEP-PPY-CCL11 suggested mechanisms 
related to obesity, including the synthesis of Ghrelin and appetite regulation by 
leptin17,325-329.  The concentration of GH1 and PPY aswas lower in MOD compared 
to all other subtypes including SIRD, while leptin levels were higher in SIRD and 
MOD subtypes.  

For the MARD subtype, the family history of T2D was less common compared to 
SIDD and MOD and this finding was supported by the results of SNP heritability. 
MARD showed association with the TCF7L2 variant, T2D-GRS, and insulin 
secretion GRSs suggesting an important role of the pancreas. The most striking 
genetic finding for  MARD was a lack of association with GRS for BMI and obesity, 
suggesting this is of less importance in the development of this subtype. 

In Paper IV, the combination of biomarkers EGFR-CDH1-SELE-NOS3 and LEP-
IL1RN-IL1R2 showed a unique association with MARD except for LEP249,330,331. 
The related diseases include several age-related complications (presented by 
cardiovascular and kidney complications) and the finding supports the incidence of 
these complications in MARD.  

The overall findings suggest etiological differences between the newly defined 
subtypes in the development of diabetes and diabetic complications. A hypothesis 
suggestion of the interaction of different body organs and the newly defined diabetes 
subtypes is illustrated in Figure 14. 
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Figure 14. Hypothesis suggesting organ-subtype interactions for the new defined diabetes 
subtypes. 
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Summary and conclusions 

A new subclassification is a promising approach in the future of diabetes. Clinical 
variables used for the clustering are valuable parameters to diagnose diabetes. A 
subclassification application can be implemented in the healthcare clinics to get 
information about the patient’s diabetes subtype. SIDD and SIRD are high-risk 
subtypes and recommendations are to initiate early management and monitor for 
complications to prevent or delay the onset and severity of diabetic complications.  

In Paper I, the genetic analysis provides strong evidence for distinct genetic 
backgrounds of the new diabetes subtypes. Strikingly, SIRD stands out in contrast 
to the other subtypes showing the genetic evidence for beta-cell independent 
pathogenesis and the unique association with fasting insulin GRS, reflecting liver 
insulin resistance. In Paper II, Middle Eastern individuals with diabetes differed in 
the distribution of the diabetes subtypes but also showed different risks of 
cardiovascular and kidney complications compared to native Swedes. This 
illustrates the importance of considering ethnicity in the study of diabetes and the 
subtypes.  In Paper III, there is some suggestive support for different genetic 
backgrounds of DKD in diabetes subtypes. In Paper IV, the different proteomic 
profiles indicate variability in the underlying pathways of the subtypes. 
Differentially expressed biomarkers could be used to fine-tune the clustering.  

A new diabetes subclassification is a promising approach however application in 
the healthcare system could be challenging. The results of this project shed highlight 
the genetic background of the newly defined diabetes subtypes. The main limitation 
of this project is the low statistical power due to the small samples size. Further 
analysis in larger populations will increase the power, hopefully, support the 
findings and maybe enable new findings that were not captured in this project. 

The initiation of awareness programs to inform people about the clinical 
presentation of diabetes and its complications, who is at high risk, and how 
prediabetic individuals can benefit from early detection and the new 
subclassification of diabetes would be valuable. This could help in diabetes 
management and prevention or delay of complications. 

New approaches in managing chronic disease especially diabetes by screening, early 
detection, new subclassification and genetics is a game changer and can decrease 
diabetes incidence and diabetes impact on healthcare budget in the future. 
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Future prospectives 

Diabetes is one of the most challenging chronic diseases. As a complex outcome of 
a cascade of events, it requires a deep understanding of the molecular mechanisms 
and the behavior of the pivotal molecules and their interactions within the cell and 
the neighboring cells, using genetic data analysis, transcriptomics, single-cell 
biology technologies, proteomics, and metabolomics. 

The new diabetes subclassification allows the focus of the Omics technologies on 
specific patient subgroups with certain features. This focus makes it easier to 
explore how biological molecules interact and affect the specific subtype. 

I think from now and on, diabetes will not be seen as two major subtypes T1D and 
T2D, instead, as different five subtypes (SAID, SIDD, SIRD, MOD, and MARD) 
based on the clinical and genetic data. Larger cohorts are required for the replication 
of the results presented in this thesis. Following these replications, downstream 
functional studies for the top genome-wide significant variants will determine the 
metabolic pathways underlying the diabetes subtype and be valuable for new drug 
development. 

Until the time, when diabetes is officially announced as five subtypes and the new 
subclassification becomes the main guideline for diagnosis and treatment of diabetic 
patients, the researchers and healthcare professionals should work hand in hand to 
facilitate the application of the new subclassification, measure the patient outcomes 
and develop new medications to serve the new approach in the future. 
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Glossary 

1. DNA: Deoxyribonucleic acid consists of two complementary 
polynucleotide chains that coil to form a double helix.  

2. RNA: Ribonucleic acid is a single polynucleotide chain and regulates gene 
expression. 

3. Nucleosome: DNA wrapped around histone proteins. 

4. Chromatin: compact dense package of long DNA wrapped around proteins 
in the nucleus of eukaryotic cells. 

5. Chromosome: Long DNA strands that carry genetic information. Each 
diploid cell has 22 pairs of autosomal chromosomes and 1 pair of sex 
chromosomes. Haploid cells have 23 chromosomes; 22 autosomal and 1 sex 
chromosome.  

6. Nucleotide: Constitutes the main unit of DNA and RNA. It is made up of 
sugar, phosphate, and a nitrogenous base. The sugar is deoxyribose and 
ribose in DNA AND RNA respectively. The nitrogenous bases in DNA are 
adenine and its complementary base thymine, guanine, and its 
complementary base cytosine. RNA has uracil instead of thymine. 

7. Cell cycle: The four stages of cell division; interphase (G1), synthesis phase 
(S), condensation phase (G2), and mitosis phase (M). 

8. Mitosis: Each diploid cell divides into two genetically identical diploid 
daughter cells. Prophase, anaphase, metaphase, and telophase are the four 
phases of mitosis. 

9. Meiosis: Takes place in the ovaries and testis to produce gametes, where 
each diploid cell divides into four haploid cells (gametes). It has eight steps; 
the first four are for the crossover and replication of chromosomes and the 
second four are the same as mitosis. 

10.  Gametes: Ova and sperms for the female and males, respectively. They are 
genetically different due to the crossover and recombination in meiosis. 

11. Crossing over: The exchange of genetic material between homologous 
chromosomes in prophase I of meiosis. 
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12. Recombination: The new combination of chromosomes after crossing over 
and is important for the genetic diversity of the offspring. 

13. Mutations: Variation in the DNA. 

14. Somatic mutations: Mutations that take place in the normal cells and not 
in the gametes. 

15. Germline mutations: Mutations that take place in the gametes and are 
passed to the offspring. 

16. Aneuploidy: Change in chromosome number. 

17. Copy number variations / structural variation: Number of repeats of a 
certain part of the genome that varies between individuals. 

18. Point mutations: Changes in the DNA that occur at one position 
(nucleotide) on the chromosome and are also called single nucleotide 
polymorphism (SNP). This change can be within the non-coding regions of 
the gene; introns or within the coding region; exons.  

19. Exon mutations: Mutations in the genetic code on the transcribed mRNA 
that could stop the formation of the encoded protein; stop-codon or the 
formation of an entirely different protein  

20. Missense mutations:  Changes in the genetic code on the transcribed 
mRNA could lead to the formation of a different protein. 

21. Insertions/Deletions/Duplications: Changes where nucleotides are added 
or subtracted from the DNA sequence. 

22. Translocations: Abnormal chromosome breaks and rearrangements 
between non-homologous chromosomes.  

23. Karyotyping: The technique for ordering and pairing the organism’s 
chromosomes. 

24. Shotgun sequencing: Sequencing of random DNA strands of an 
organism’s genome by breaking the DNA into small fragments that are 
sequenced separately. 

25. Menedelian inheritance: Laws set by Gregor Mendel in 1865. 

Genetic characters are unitary (discrete) and have alternate forms (alleles), 
each allele is inherited from one parent. The phenotype is described by the 
dominant allele and assumes independent assortment; genes are not linked. 

26. Menedelian traits: Inherited monogenic phenotypes caused by one copy 
of the dominant allele or two copies of the recessive allele. 
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27. Genomics: The study of the genome including all genes, gene-gene 
interaction, gene-environment interactions. 

28. Epigenomics: The study of epigenetic modifications (markers that tag the 
DNA and DNA-associated proteins). 

29. Transcriptomics: The study of the mRNA and the tissue-specific gene 
expression. 

30. Gene expression: Formation of functional protein from the gene. 

31. Transcription: Formation of messenger RNA complementary to the DNA 
in the gene. 

32. Transcription factors:  Proteins that bind to the DNA at the promoter 
region and regulate gene expression. 

33. Proteomics: The study of structural and functional proteins in the cell, 
tissue, or organism. 

34. Metabolomics: The study of the metabolic pathways and the metabolites 
involved in cell metabolism. 

35. Functional genomics: The integration of genomics, transcriptomics, and 
proteomics to understand cell physiology. 

36. System biology: The use of omics to understand the biological systems. 
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